WorldWideScience

Sample records for mono-divalent cation exchange

  1. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    Science.gov (United States)

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  2. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  3. Synthesized cellulose/succinic anhydride as an ion exchanger. Calorimetry of divalent cations in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Julio C.P. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Silva Filho, Edson C. [LIMAV, Federal University of Piaui, 64049-550 Teresina, Piaui (Brazil); Santana, Sirlane A.A. [Departamento de Quimica/CCET, Universidade Federal do Maranhao, Av. dos Portugueses S/N, Campus do Bacanga, 65080-540 Sao Luiz, MA (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-09-20

    Highlights: {yields} Synthetic route based on anhydride melting point. {yields} Cellulosic biopolymer/anhydride as ion exchanger. {yields} Calorimetry of cation exchange at solid/liquid interface. {yields} Favorable thermodynamic data of exchanging process. - Abstract: A synthetic route to a biopolymer/anhydride ion exchanger adds cellulose directly to molten succinic anhydride in a quasi solvent-free procedure. An amount of 3.07 {+-} 0.05 mmol of pendant groups incorporated onto the polymeric structure, which was characterized by elemental analysis, solid state carbon NMR, infrared, X-ray and thermogravimetry. The new polysaccharide is able to exchange cations from aqueous solution through a batchwise methodology, to obtain 2.46 {+-} 0.09 mmol g{sup -1} for divalent cobalt and nickel cations. The net thermal effects obtained from calorimetric titrations gave endothermic values of 3.81 {+-} 0.02 and 2.35 {+-} 0.01 kJ mol{sup -1}. The spontaneity of this ion-exchange process reflected in negative Gibbs energies and also a positive entropic contribution. These thermodynamic data at the solid/liquid interface suggests a favorable ion exchange process for this anchored biopolymer, for cation removal from the environment.

  4. The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations

    Directory of Open Access Journals (Sweden)

    Chen Xuanmao

    2010-12-01

    Full Text Available Abstract Concentrations of extracellular divalent cations (Ca2+ and Mg2+ fall substantially during intensive synaptic transmission as well as during some pathophysiological conditions such as epilepsy and brain ischemia. Here we report that a synthetic serine protease inhibitor, nafamostat mesylate (NM, and several of its analogues, block recombinant TRPM7 currents expressed in HEK293T cells in inverse relationship to the concentration of extracellular divalent cations. Lowering extracellular Ca2+ and Mg2+ also evokes a divalent-sensitive non-selective cation current that is mediated by TRPM7 expression in hippocampal neurons. In cultured hippocampal neurons, NM blocked these TRPM7-mediated currents with an apparent affinity of 27 μM, as well as the paradoxical Ca2+ influx associated with lowering extracellular Ca2+. Unexpectedly, pre-exposure to NM strongly potentiated TRPM7 currents. In the presence of physiological concentrations of extracellular divalent cations, NM activates TRPM7. The stimulating effects of NM on TRPM7 currents are also inversely related to extracellular Ca2+ and Mg2+. DAPI and HSB but not netropsin, blocked and stimulated TRPM7. In contrast, mono-cationic, the metabolites of NM, p-GBA and AN, as well as protease inhibitor leupeptin and gabexate failed to substantially modulate TRPM7. NM thus provides a molecular template for the design of putative modulators of TRPM7.

  5. A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast

    Science.gov (United States)

    Yadav, Akhilesh K.; Shankar, Alka; Jha, Saroj K.; Kanwar, Poonam; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    In plant cell, cations gradient in cellular compartments is maintained by synergistic action of various exchangers, pumps and channels. The Arabidopsis exchanger family members (AtCCX3 and AtCCX5) were previously studied and belong to CaCA (calcium cation exchangers) superfamily while none of the rice CCXs has been functionally characterized for their cation transport activities till date. Rice genome encode four CCXs and only OsCCX2 transcript showed differential expression under abiotic stresses and Ca2+ starvation conditions. The OsCCX2 localized to tonoplast and suppresses the Ca2+ sensitivity of K667 (low affinity Ca2+ uptake deficient) yeast mutant under excess CaCl2 conditions. In contrast to AtCCXs, OsCCX2 expressing K667 yeast cells show tolerance towards excess Na+, Li+, Fe2+, Zn2+ and Co2+ and suggest its ability to transport both mono as well as divalent cations in yeast. Additionally, in contrast to previously characterized AtCCXs, OsCCX2 is unable to complement yeast trk1trk2 double mutant suggesting inability to transport K+ in yeast system. These finding suggest that OsCCX2 having distinct metal transport properties than previously characterized plant CCXs. OsCCX2 can be used as potential candidate for enhancing the abiotic stress tolerance in plants as well as for phytoremediation of heavy metal polluted soil. PMID:26607171

  6. Divalent cations as modulators of neuronal excitability: Emphasis on copper and zinc

    Directory of Open Access Journals (Sweden)

    RICARDO DELGADO

    2006-01-01

    Full Text Available Based on indirect evidence, a role for synaptically released copper and zinc as modulators of neuronal activity has been proposed. To test this proposal directly, we studied the effect of copper, zinc, and other divalent cations on voltage-dependent currents in dissociated toad olfactory neurons and on their firing rate induced by small depolarizing currents. Divalent cations in the nanomolar range sped up the activation kinetics and increased the amplitude of the inward sodium current. In the micromolar range, they caused a dose dependent inhibition of the inward Na+ and Ca2+ currents (I Na and I Ca and reduced de amplitude of the Ca2+-dependent K+ outward current (I Ca-K. On the other hand, the firing rate of olfactory neurons increased when exposed to nanomolar concentration of divalent cations and decreased when exposed to micromolar concentrations. This biphasic effect of divalent cations on neuronal excitability may be explained by the interaction of these ions with high and low affinity sites in voltage-gated channels. Our results support the idea that these ions are normal modulators of neuronal excitability

  7. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    Science.gov (United States)

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  8. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Science.gov (United States)

    Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko

    2013-08-13

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  9. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C.; Larese, Kathleen Caroline; Bontchev, Ranko Panayotov

    2017-05-30

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  10. Divalent cations in tears, and their influence on tear film stability in humans and rabbits.

    Science.gov (United States)

    Wei, Xiaojia Eric; Markoulli, Maria; Millar, Thomas J; Willcox, Mark D P; Zhao, Zhenjun

    2012-06-05

    Reduced tear film stability is reported to contribute to dry eye. Rabbits are known to have a more stable tear film than humans. Thus, we sought to examine the tears of rabbits and humans for metal cations, and to test how they influence tear film stability. Tears were collected from 10 healthy humans and 6 rabbits. Tear osmolality was measured by vapor pressure osmometer, and metals analyzed using inductively coupled plasma (ICP) mass spectrometry or ICP atomic emission spectroscopy. The influence of divalent cations on tears was analyzed by measuring surface tension using the Langmuir trough in vitro, using different concentrations of cations in the subphase, and grading the tear break-up in rabbits in vivo after instillation of chelating agents. Rabbit tears had a higher osmolality compared to humans. Major metals did not differ between species; however, rabbits had higher levels of Mg(2+) (1.13 vs. 0.39 mM) and Ca(2+) (0.75 vs. 0.36 mM). In rabbit tears in vitro, diminishing divalent cations resulted in a decrease in the maximum surface pressure from 37 to 30 mN/m. In vivo, an increase in the amount of tear film that was broken-up was found. In contrast, when changing divalent cation concentrations in human tears, the maximum surface pressure remained at 26 mN/m. The normal osmolality of rabbit tears is significantly higher than that in humans. While divalent cations had little influence on human tears, they appear to have an important role in maintaining tear film stability in rabbits.

  11. Mitochondrial membranes with mono- and divalent salt: Changes induced by salt ions on structure and dynamics

    NARCIS (Netherlands)

    Pöyry, S.; Róg, T.; Karttunen, M.E.J.; Vattulainen, I.

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl2) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering, and

  12. Effect of illite clay and divalent cations on bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X. [SNC-Lavalin Inc., Calgary, AB (Canada); Repka, C. [Baker Petrolite Corp., Fort McMurray, AB (Canada); Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-12-15

    Nearly 35 per cent of Canada's petroleum needs can be met from the Athabasca oil sands, particularly as conventional sources of petroleum decline. The interactions between bitumen and clay minerals play a key role in the recovery process of bitumen because they affect bitumen aeration. The 2 clays minerals found in various oil sands extraction process streams are kaolinite and illite. In this study, doping flotation tests using deionized water and electrokinetic studies were performed to examine the effect of illite clays on bitumen recovery. The effect of magnesium ions was also examined and compared with calcium ions. This paper also discussed the effects of temperature and tailings water chemistry. The negative effect of illite clay on bitumen recovery was found to be associated with its acidity. Denver flotation cell measurements indicated that the addition of calcium or magnesium ions to the flotation deionized water had only a slight effect on bitumen recovery, but the co-addition of illite clay and divalent cations resulted in a dramatic reduction in bitumen recovery. The effect was more significant at lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to determine the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a pronounced effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. When tests were conducted using plant recycle water, the combination of illite clay and divalent cations did not have an adverse effect on bitumen recovery. 25 refs., 3 tabs., 15 figs.

  13. Binding of Divalent Cations to Polygalacturonate: A Mechanism Driven by the Hydration Water.

    Science.gov (United States)

    Huynh, Uyen T D; Lerbret, Adrien; Neiers, Fabrice; Chambin, Odile; Assifaoui, Ali

    2016-02-11

    We have investigated the interactions between polygalacturonate (polyGal) and four divalent cations (M(2+) = Ba(2+), Ca(2+), Mg(2+), Zn(2+)) that differ in size and affinity for water. Our results evidence that M(2+)-polyGal interactions are intimately linked to the affinity of M(2+) for water. Mg(2+) interacts so strongly with water that it remains weakly bound to polyGal (polycondensation) by sharing water molecules from its first coordination shell with the carboxylate groups of polyGal. In contrast, the other cations form transient ionic pairs with polyGal by releasing preferentially one water molecule (for Zn(2+)) or two (for Ca(2+) and Ba(2+)), which corresponds to monodentate and bidentate binding modes with carboxylates, respectively. The mechanism for the binding of these three divalent cations to polyGal can be described by two steps: (i) monocomplexation and formation of point-like cross-links between polyGal chains (at low M(2+)/Gal molar ratios, R) and (ii) dimerization (at higher R). The threshold molar ratio, R*, between these two steps depends on the nature of divalent cations and is lower for calcium ions (R* 0.3). This difference may be explained by the intermediate affinity of Ca(2+) for water with respect to those of Zn(2+) and Ba(2+), which may induce the formation of cross-links of intermediate flexibility. By comparison, the lower and higher flexibilities of the cross-links formed by Zn(2+) and Ba(2+), respectively, may shift the formation of dimers to higher molar ratios (R*).

  14. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C.

    Directory of Open Access Journals (Sweden)

    Myriam A Badr

    Full Text Available Cardiac troponin C (cTnC is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP and an acceptor fluorescent protein (YFP. The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC's N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+ conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.

  16. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange

    Science.gov (United States)

    2017-01-01

    Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1–xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs. PMID:28260380

  17. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    International Nuclear Information System (INIS)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-01-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 μM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 μM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca 2+ and non-Ca 2+ divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 μM MeHg, 97.7% of Purkinje cells were viable. At 3 μM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 μM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca 2+ divalent cation released by MeHg in Purkinje neurons

  18. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2017-11-01

    Full Text Available Aquaporins (AQPs are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophila melanogaster DmBIB were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+ on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2 showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.

  19. Induction of divalent cation permeability by heterologous expression of a voltage sensor domain.

    Science.gov (United States)

    Arima, Hiroki; Tsutsui, Hidekazu; Sakamoto, Ayako; Yoshida, Manabu; Okamura, Yasushi

    2018-01-06

    The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K + channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Cation exchange removal of Cd from aqueous solution by NiO

    International Nuclear Information System (INIS)

    Mahmood, T.; Saddique, M.T.; Naeem, A.; Mustafa, S.; Dilara, B.; Raza, Z.A.

    2011-01-01

    Graphical abstract: Sorption of Cd on NiO particles is described by modified Langmuir adsorption isotherms. - Abstract: Detailed adsorption experiments of Cd from aqueous solution on NiO were conducted under batch process with different concentrations of Cd, time and temperature of the suspension. The solution pH is found to play a decisive role in the metal ions precipitation, surface dissolution and adsorption of metal ions onto the NiO. Preliminary adsorption experiments show that the selectivity of NiO towards different divalent metal ions follows the trend Pb > Zn > Co > Cd, which is related to their first hydrolysis equilibrium constant. The exchange between the proton from the NiO surface and the metal from solution is responsible for the adsorption. The cation/exchange mechanism essentially remains the same for Pb, Zn, Co and Cd ions. The sorption of Cd on NiO particles is described by the modified Langmuir adsorption isotherms. The isosteric heat of adsorption (ΔH) indicates the endothermic nature of the cation exchange process. Spectroscopic analyses provide evidence that Cd is chemisorbed onto the surface of NiO.

  1. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides

    Science.gov (United States)

    Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun

    2017-10-01

    The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.

  2. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes.

    Science.gov (United States)

    Dishon, Matan; Zohar, Ohad; Sivan, Uri

    2011-11-01

    Application of two complementary AFM measurements, force vs separation and adhesion force, reveals the combined effects of cation size and charge (valency) on the interaction between silica surfaces in three 1:1, three 2:1, and three 3:1 metal chloride aqueous solutions of different concentrations. The interaction between the silica surfaces in 1:1 and 2:1 salt solutions is fully accounted for by ion-independent van der Waals (vdW) attraction and electric double-layer repulsion modified by cation specific adsorption to the silica surfaces. The deduced ranking of mono- and divalent cation adsorption capacity (adsorbability) to silica, Mg(2+) cation bare size as well as cation solvation energy but does not correlate with hydrated ionic radius or with volume or surface ionic charge density. In the presence of 3:1 salts, the coarse phenomenology of the force between the silica surfaces as a function of salt concentration resembles that in 1:1 and 2:1 electrolytes. Nevertheless, two fundamental differences should be noticed. First, the attraction between the silica surfaces is too large to be attributed solely to vdW force, hence implying an additional attraction mechanism or gross modification of the conventional vdW attraction. Second, neutralization of the silica surfaces occurs at trivalent cation concentrations that are 3 orders of magnitude smaller than those characterizing surface neutralization by mono- and divalent cations. Consequently, when trivalent cations are added to our cation adsorbability series the correlation with bare ion size breaks down abruptly. The strong adsorbability of trivalent cations to silica contrasts straightforward expectations based on ranking of the cationic solvation energies, thus suggesting a different adsorption mechanism which is inoperative or weak for mono- and divalent cations.

  3. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  4. Divalent cations and the protein surface co-ordinate the intensity of human platelet adhesion and P-selectin surface expression.

    Science.gov (United States)

    Whiss, P A; Andersson, R G G

    2002-07-01

    At sites of blood vessel injury, platelets adhere to exposed vessel components, such as collagen, or immobilized fibrinogen derived from plasma or activated platelets. The divalent cations Mg(2+) and Ca(2+) are essential for platelet adhesion and activation, but Mg(2+) can also inhibit platelet activation. The present study evaluates, by an enzymatic method, the effects of various divalent cations on the adhesion of isolated human platelets to collagen, fibrinogen, albumin or plastic in vitro. By enzyme-linked immunosorbent assay, platelet surface expression of P-selectin was measured to estimate the state of activation on adherence. Mg(2+) increased platelet adhesion exclusively to collagen and fibrinogen at physiologically relevant concentrations. At higher concentrations, the adhesion declined. Ca(2+) induced a weak adhesion only to fibrinogen at physiological doses and a peak of increased adhesion to all protein-coated surfaces at 10 mmol/l. Mn(2+) elicited dose-dependent adhesion only to collagen and fibrinogen. Zn(2+), Ni(2+) and Cu(2+) increased the adhesion of platelets independently of the surface. Ca(2+) dose-dependently inhibited adhesion elicited by Mg(2+) to collagen and fibrinogen. No other combination of divalent cations elicited such an effect. Mg(2+)-dependent platelet adhesion to collagen and Ca(2+)-dependent adhesion to fibrinogen increased P-selectin expression. Thus, the present study shows that the outcome of the platelet adhesion depends on the surface and the access of divalent cations, which co-ordinate the intensity of platelet adhesion and P-selectin surface expression.

  5. Data in support of the negative influence of divalent cations on (?)-epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2)

    OpenAIRE

    Deb, Gauri; Batra, Sahil; Limaye, Anil M.

    2015-01-01

    In this data article we have provided evidence for the negative influence of divalent cations on (−)‐epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2) activity in cell-free experiments. Chelating agents, such as EDTA and sodium citrate alone, did not affect MMP-2 activity. While EDTA enhanced, excess of divalent cations interfered with EGCG-mediated inhibition of MMP-2.

  6. Ion exchange equilibrium for some uni-univalent and uni-divalent ...

    African Journals Online (AJOL)

    The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well ...

  7. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  8. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer.

    Science.gov (United States)

    Hayashi, N; Ito, M; Horiike, S; Taguchi, H

    2001-05-01

    Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.

  9. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  10. Synergistic extraction of some divalent metal cations into nitrobenzene by using strontium dicarbollylcobaltate and electroneutral macrocyclic lactam receptor

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Sedláková, Zdeňka; Vaňura, P.; Selucký, P.

    2013-01-01

    Roč. 295, č. 3 (2013), s. 2263-2266 ISSN 0236-5731 Institutional support: RVO:61389013 Keywords : divalent metal cations * macrocyclic lactam receptor * complexation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.415, year: 2013

  11. Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations.

    Science.gov (United States)

    Haagh, M E J; Siretanu, I; Duits, M H G; Mugele, F

    2017-04-11

    The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na + , K + , Ca 2+ , and Mg 2+ , wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery.

  12. Multicomponent ion transport in a mono and bilayer cation-exchange membrane at high current density

    NARCIS (Netherlands)

    Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.

    2017-01-01

    This work describes a model for bilayer cation-exchange membranes used in the chlor-alkali process. The ion transport inside the membrane is modeled with the Nernst–Planck equation. A logistic function is used at the boundary between the two layers of the bilayer membrane to describe the change in

  13. Prediction of Intrinsic Cesium Desorption from Na-Smectite in Mixed Cation Solutions.

    Science.gov (United States)

    Fukushi, Keisuke; Fukiage, Tomo

    2015-09-01

    Quantitative understanding of the stability of sorbed radionuclides in smectite is necessary to assess the performance of engineering barriers used for nuclear waste disposal. Our previous study demonstrated that the spatial organization of the smectite platelets triggered by the divalent cations led to the apparent fixation of intrinsic Cs in smectite, because some Cs is retained inside the formed tactoids. Natural water is usually a mixture of Na(+) and divalent cations (Ca(2+) and Mg(2+)). This study therefore investigated the desorption behavior of intrinsic Cs in Na-smecite in mixed Na(+)-divalent cation solutions under widely various cation concentrations using batch experiments, grain size measurements, and cation exchange modeling (CEM). Results show that increased Na(+) concentrations facilitate Cs desorption because Na(+) serves as the dispersion agent. A linear relation was obtained between the logarithm of the Na(+) fraction and the accessible Cs fraction in smectite. That relation enables the prediction of accessible Cs fraction as a function of solution cationic compositions. The corrected CEM considering the effects of the spatial organization suggests that the stability of intrinsic Cs in the smectite is governed by the Na(+) concentration, and suggests that it is almost independent of the concentrations of divalent cations in natural water.

  14. Insights into gelation kinetics and gel front migration in cation-induced polysaccharide hydrogels by viscoelastic and turbidity measurements: Effect of the nature of divalent cations.

    Science.gov (United States)

    Huynh, Uyen T D; Chambin, Odile; du Poset, Aline Maire; Assifaoui, Ali

    2018-06-15

    Polysaccharide-based hydrogels were prepared by the diffusion of various divalent cations (X 2+ ) into the polygalacturonate (polyGal) solution through a dialysis membrane. The diffusion of various divalent cations (Mg 2+ , Ca 2+ , Zn 2+ and Ba 2+ ) was investigated. The polyGal gel growth was studied as a function of the initial cation concentration by both viscoelastic and turbidity measurements. We have demonstrated for the first time that the determination of the spatiotemporal variation of turbidity during the gelation process allowed to study the gel front migration. For Ca-polyGal, Zn-polyGal and Ba-polyGal, the gel front migration was characterized by the presence of a peak at the sol/gel interface. This peak was not observed in the case of Mg-polyGal where the gel was not formed. The apparent diffusion coefficient of the gel front (D app ) which was calculated from the evolution of this peak increased when the initial cation concentration was increased. Moreover, we have suggested a gelation mechanism based on the presence of a threshold molar ratio R* (=[X 2+ ]/[Galacturonic unit]) in which some point-like crosslinks are precursors of the formation of dimers and multimers inducing the contraction of the gel and thus the formation of the gel front. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  16. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande

    2008-04-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  17. Cationic mobility in polystyrene sulfone exchangers - Application to the elution of a cation on an exchange column

    International Nuclear Information System (INIS)

    Menin, Jean-Pierre

    1969-01-01

    The aim of this work is to improve elutions and separations carried out on inorganic exchangers by selective electromigration of the ionic species to be displaced. To do this, it has been found indispensable to make a fundamental study of the mobility of cations in exchangers. As the field for this research we have chosen those organic exchangers whose structure and behaviour with respect to ion-exchange are much better known that in the case of their inorganic equivalents. We have related the idea of the equivalent conductivity to that of the cation mobility in the exchanger, and this has entailed determining the specific conductivity of the exchanger and the cation concentration in the resin. The results obtained have allowed us to draw up a hypothesis concerning the cation migration mechanism in the exchanger. The third part of our work has been the application of the preceding results to an operation on an ion-exchange column, viz. the elution by an acid solution of a single fixed ion, magnesium or strontium. This work has enabled us to show that the electromigration of a cation during its elution can markedly accelerate or retard this elution. (author) [fr

  18. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    International Nuclear Information System (INIS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-01-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function. (paper)

  19. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  20. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  1. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei; Nalaparaju, Anjaiah; Eddaoudi, Mohamed; JIANG, Jianwen

    2012-01-01

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry's constant

  2. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  3. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  5. Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations

    International Nuclear Information System (INIS)

    Lodato, D.T.; Reed, G.H.

    1987-01-01

    The 2 equiv of divalent cation that are required cofactors for pyruvate kinase reside in sites of different affinities for different species of cation. The intrinsic selectivity of the protein-based site for Mn(II) and of the nucleotide-based site for Mg(II) has been exploited in electron paramagnetic resonance (EOR) investigations of ligands for Mn(II) at the protein-based site. Oxalate, a structural analogue of the enolate of pyruvate, has been used as a surrogate for the reactive form of pyruvate in complexes with enzyme, Mn(II), Mg(II), and ATP. Superhyperfine coupling between the unpaired electron spin of Mn(II) and the nuclear spin of 17 O, specifically incorporated into oxalate, shows that oxalate is bound at the active site as a bidentate chelate with Mn(II). Coordination of the γ-phosphate of ATP to this same Mn(II) center is revealed by observation of superhyperfine coupling from 17 O regiospecifically incorporated into the γ-phosphate group of ATP. By contrast, 17 O in the α-phosphate or in the β-phosphate groups of ATP does not influence the spectrum. Experiments in 17 O-enriched water show that there is also a single water ligand bound to the Mn(II). These data indicate that ATP bridges Mn(II) and Mg(II) at the active site. A close spacing of the two divalent cations is also evident from the occurrence of magnetic interactions for complexes in which 2 equiv of Mn(II) are present at the active site. The structure for the enzyme-Mn(II)-oxalate-Mg(II)-ATP complex suggests a scheme for the normal reverse reaction of pyruvate kinase in which the divalent cation at the protein-based site activates the keto acid substrate through chelation and promotes phospho transfer by simultaneous coordination to the enolate oxygen and to a pendant oxygen from the γ-phosphate of ATP

  6. Cation immobilization in pyrolyzed simulated spent ion exchange resins

    International Nuclear Information System (INIS)

    Luca, Vittorio; Bianchi, Hugo L.; Manzini, Alberto C.

    2012-01-01

    Significant quantities of spent ion exchange resins that are contaminated by an assortment of radioactive elements are produced by the nuclear industry each year. The baseline technology for the conditioning of these spent resins is encapsulation in ordinary Portland cement which has various shortcomings none the least of which is the relatively low loading of resin in the cement and the poor immobilization of highly mobile elements such as cesium. The present study was conducted with cationic resin samples (Lewatit S100) loaded with Cs + , Sr 2+ , Co 2+ , Ni 2+ in roughly equimolar proportions at levels at or below 30% of the total cation exchange capacity. Low temperature thermal treatment of the resins was conducted in inert (Ar), or reducing (CH 4 ) gas atmospheres, or supercritical ethanol to convert the hydrated polymeric resin beads into carbonaceous materials that contained no water. This pyrolytic treatment resulted in at least a 50% volume reduction to give mechanically robust spherical materials. Scanning electron microscope investigations of cross-sections of the beads combined with energy dispersive analysis showed that initially all elements were uniformly distributed through the resin matrix but that at higher temperatures the distribution of Cs became inhomogeneous. Although Cs was found in the entire cross-section, a significant proportion of the Cs occurred within internal rings while a proportion migrated toward the outer surfaces to form a crustal deposit. Leaching experiments conducted in water at 25 °C showed that the divalent contaminant elements were very difficult to leach from the beads heated in inert atmospheres in the range 200–600 °C. Cumulative fractional loses of the order of 0.001 were observed for these divalent elements for temperatures below 500 °C. Regardless of the processing temperature, the cumulative fractional loss of Cs in water at 25 °C reached a plateau or steady-state within the first 24 h increasing only

  7. Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds

    International Nuclear Information System (INIS)

    Carro, Leticia; Barriada, Jose L.; Herrero, Roberto; Sastre de Vicente, Manuel E.

    2011-01-01

    Highlights: → Native and protonated macroalga S. muticum are good materials for mercury removal. → Fast kinetic process and high mercury uptakes have been found for those materials. → Diffusion control is the rate limiting step of the process. → Competition effects by organic compounds, inorganic salts and divalent cations were analyzed. → Continuous flow experiments allowed identification of mercury reduction during metal removal. - Abstract: Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed.

  8. The Compact and Biologically Relevant Structure of Inter-α-inhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations.

    Science.gov (United States)

    Scavenius, Carsten; Nikolajsen, Camilla Lund; Stenvang, Marcel; Thøgersen, Ida B; Wyrożemski, Łukasz; Wisniewski, Hans-Georg; Otzen, Daniel E; Sanggaard, Kristian W; Enghild, Jan J

    2016-02-26

    Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Composition dependence of glow peak temperature in KCl1-xBrx doped with divalent cations

    International Nuclear Information System (INIS)

    Perez-Salas, R; Aceves, R; RodrIguez-Mijangos, R; Riveros, H G; Duarte, C

    2004-01-01

    Thermoluminescence measurements of β-irradiated Eu 2+ - and Ca 2+ - doped KCl 1-x KBr x solid solutions excited at room temperature have been carried out to identify the effect of composition on the glow peaks. A typical glow peak has been distinguished for each composition. A linear dependence of its temperature on the composition x has been found. These results indicate that for divalent impurity-doped alkali halide solid solutions these glow peak temperatures are mostly dependent on the lattice constant of the host than on the size of the anion or impurity cation

  10. Ion exchange in ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Matthews, D.P.; Rees, L.V.C.

    1986-01-01

    The ion exchange properties of Na-ZSM5 have been studied using a number of univalent and divalent cations at 25degC and 65degC. All the univalent cations studied achieved 100 per cent exchange. The thermodynamic affinity sequence Cs > Rb=NH 4 =H 3 O>K>Na>Li was found at both temperatures for a sample with Si/Al=39. Standard enthalpies of exchange ΔH o were calculated using the van't' Hoff isochore and standard entropies of exchange were then calculated from ΔH o and ΔG o . Multivalent cations were unable to achieve 100 per cent exchange. The maximum exchange was found to increase through the series Ca 2+ cations ( 57 Fe enriched) on dehydration and rehydration following sorption and desorption of ethanol. At least 3 sites for Fe 2+ were observed in the dehydrated zeolite. (author)

  11. Adiabatic differential scanning calorimetric study of divalent cation induced DNA - DPPC liposome formulation compacted for gene delivery

    Directory of Open Access Journals (Sweden)

    Erhan Süleymanoglu

    2004-11-01

    Full Text Available Complexes between nucleic acids and phospholipid vesicles have been developed as stable non-viral gene delivery vehicles. Currently employed approach uses positively charged lipid species and a helper zwitterionic lipid, the latter being applied for the stabilization of the whole complex. However, besides problematic steps during their preparation, cationic lipids are toxic for cells. The present work describes some energetic issues pertinent to preparation and use of neutral lipid-DNA self-assemblies, thus avoiding toxicity of lipoplexes. Differential scanning calorimetry data showed stabilization of polynucleotide helix upon its interaction with liposomes in the presence of divalent metal cations. It is thus possible to suggest this self-assembly as an improved formulation for use in gene delivery.

  12. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  13. Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl(2)) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering......, and membrane electrostatic potential. The changes induced by salt are more prominent in dynamical properties related to ion binding and formation of ion-lipid complexes and lipid aggregates, as rotational diffusion of lipids is slowed down by ions, especially in the case of CaCl(2). In the same spirit, lateral...... diffusion of lipids is slowed down rather considerably for increasing concentration of CaCl(2). Both findings for dynamic properties can be traced to the binding of ions with lipid head groups and the related changes in interaction patterns in the headgroup region, where the binding of Na(+) and Ca(2+) ions...

  14. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.

    Science.gov (United States)

    Kim, Younggy; Walker, W Shane; Lawler, Desmond F

    2012-05-01

    In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    Science.gov (United States)

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  16. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  17. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    Science.gov (United States)

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  18. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  19. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Simmons, C.J.; Simmons, J.H.; Macedo, P.B.; Litovitz, T.A.

    1982-01-01

    A process is reported for reacting a porous silicate or borosilicate glass or silica gel with alkali metal cations, Group lb cations and/or ammonium cations bonded to the silicon through divalent oxygen linkages on the internal surfaces of the pores. Ion exchange of the cations with toxic or radioactive cations was possible resulting in a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. The ion exchange reaction may be done successfully with acidic, neutral or alkaline pH solutions. The aim of the immobilization is for permanent storage of hazardous materials such as Hg 2+ , Hg + , Cd 2+ , Tl + , Pb 2+ and radioactive cations

  20. Cation exchange of 53 elements in nitric acid

    International Nuclear Information System (INIS)

    Marsh, S.F.; Alarid, J.E.; Hamond, C.F.; McLeod, M.J.; Roensch, F.R.; Rein, J.E.

    1978-02-01

    Cation-exchange distribution data are presented for 53 elements from 3 to 12M HNO 3 for three strong-acid resins, having cross-linkages of 8%, 4%, and macroporous. Data obtained by 16- to 18-h dynamic batch contacts are compared to cation-exchange distribution data from strong HCl and HClO 4

  1. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    Science.gov (United States)

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  2. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  3. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  4. CATION EXCHANGE METHOD FOR THE RECOVERY OF PROTACTINIUM

    Science.gov (United States)

    Studier, M.H.; Sullivan, J.C.

    1959-07-14

    A cation exchange prccess is described for separating protactinium values from thorium values whereby they are initially adsorbed together from an aqueous 0.1 to 2 N hydrochloric acid on a cation exchange resin in a column. Then selectively eluting the thorium by an ammonium sulfate solution and subsequently eluting the protactinium by an oxalate solution.

  5. Organic solvation of intercalated cations in V/sub 2/O/sub 5/ xerogels

    International Nuclear Information System (INIS)

    Lemordant, D.; Bouhaouss, A.; Aldbert, P.; Baffier, N.

    1986-01-01

    V/sub 2/O/sub 5/ xerogels (V/sub 2/O/sub 5/, 1.6H/sub 2/O) undergo a topotactic reversible exchange reaction at room temperature in organic solvents containing monovalent alkali or divalent (Mn/sup 2+/) cations. Basal spacing are dependent on solvent type and charge-to-radius ratio of guest cations. From the interlayer distances, two solvation stages have been inferred, depending on the nature of the solvent and of the cation, except with Cs/sup +/ for which no intracrystalline swelling by organic solvents is observed

  6. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Akaighe, Nelson [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Depner, Sean W.; Banerjee, Sarbajit [Department of Chemistry, 410 Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000 (United States); Sharma, Virender K. [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Sohn, Mary, E-mail: msohn@fit.edu [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2012-12-15

    The formation and characterization of AgNPs (silver nanoparticles) formed from the reduction of Ag{sup +} by SRNOM (Suwannee River natural organic matter) is reported. The images of SRNOM-formed AgNPs and the selected area electron diffraction (SAED) were captured by high resolution transmission electron microscopy (HRTEM). The colloidal and chemical stability of SRNOM- and SRHA (Suwannee River humic acid)-formed AgNPs in different ionic strength solutions of NaCl, KCl, CaCl{sub 2} and MgCl{sub 2} was investigated in an effort to evaluate the key fate and transport processes of these nanoparticles in natural aqueous environments. The aggregation state, stability and sedimentation rate of the AgNPs were monitored by Dynamic Light Scattering (DLS), zeta potential, and UV-vis measurements. The results indicate that both types of AgNPs are very unstable in high ionic strength solutions. Interestingly, the nanoparticles appeared more unstable in divalent cation solutions than in monovalent cation solutions at similar concentrations. Furthermore, the presence of SRNOM and SRHA contributed to the nanoparticle instability at high ionic strength in divalent metallic cation solutions, most likely due to intermolecular bridging with the organic matter. The results clearly suggest that changes in solution chemistry greatly affect nanoparticle long term stability and transport in natural aqueous environments. Highlights: Black-Right-Pointing-Pointer Formation of SRNOM-AgNPs under environmentally relevant conditions Black-Right-Pointing-Pointer Influence of monovalent versus divalent cations on SRHA- and SRNOM-AgNP stability Black-Right-Pointing-Pointer Effect of AgNPs on organic matter removal from water columns.

  7. Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.

    Science.gov (United States)

    Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2017-08-01

    N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pHMg 2+ >RNTD + >K + >DMA + >NH 4 + >Na + . The partition coefficient of DMA + to Na + was 1.41±0.26, while that of RNTD + to Na + was 12.1±1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca 2+ were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes. Copyright © 2017. Published by Elsevier B.V.

  8. Converting Hg-1212 to Tl-2212 via Tl-Hg cation exchange in combination with Tl cation intercalation

    International Nuclear Information System (INIS)

    Zhao Hua; Wu, Judy Z

    2007-01-01

    In a cation exchange process developed recently for epitaxy of HgBa 2 CaCu 2 O 6 (Hg-1212) thin films, TlBa 2 CaCu 2 O 7 (Tl-1212) or Tl 2 Ba 2 CaCu 2 O 9 (Tl-2212) precursor films were employed as the precursor matrices and Hg-1212 was obtained by replacing Tl cations on the precursor lattice with Hg cations. The reversibility of the cation exchange dictates directly the underlying mechanism. Following our recent success in demonstrating a complete reversibility within '1212' structure, we show the conversion from Hg-1212 to Tl-2212 can be achieved via two steps: conversion from Hg-1212 to Tl-1212 followed by Tl intercalation to form double Tl-O plans in each unit cell. The demonstrated reversibility of the cation exchange process has confirmed the process is a thermal perturbation of weakly bonded cations on the lattice and the direction of the process is determined by the population ratio between the replacing cations and that to be replaced

  9. Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations.

    Directory of Open Access Journals (Sweden)

    Ashwat Visvanathan

    Full Text Available The organisation of the large volume of mammalian genomic DNA within cell nuclei requires mechanisms to regulate chromatin compaction involving the reversible formation of higher order structures. The compaction state of chromatin varies between interphase and mitosis and is also subject to rapid and reversible change upon ATP depletion/repletion. In this study we have investigated mechanisms that may be involved in promoting the hyper-condensation of chromatin when ATP levels are depleted by treating cells with sodium azide and 2-deoxyglucose. Chromatin conformation was analysed in both live and permeabilised HeLa cells using FLIM-FRET, high resolution fluorescence microscopy and by electron spectroscopic imaging microscopy. We show that chromatin compaction following ATP depletion is not caused by loss of transcription activity and that it can occur at a similar level in both interphase and mitotic cells. Analysis of both live and permeabilised HeLa cells shows that chromatin conformation within nuclei is strongly influenced by the levels of divalent cations, including calcium and magnesium. While ATP depletion results in an increase in the level of unbound calcium, chromatin condensation still occurs even in the presence of a calcium chelator. Chromatin compaction is shown to be strongly affected by small changes in the levels of polyamines, including spermine and spermidine. The data are consistent with a model in which the increased intracellular pool of polyamines and divalent cations, resulting from depletion of ATP, bind to DNA and contribute to the large scale hyper-compaction of chromatin by a charge neutralisation mechanism.

  10. Effect of cation exchange of major cation chemistry in the large scale redox experiment at Aespoe. Revision 1

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1996-06-01

    Geochemical modeling was used to test the hypothesis that cation exchange with fracture-lining clays during fluid mixing in the Aespoe Hard Rock Laboratory can significantly affect major element chemistry. Conservative mixing models do not adequately account for changes in Na, Ca and Mg concentrations during mixing. Mixing between relatively dilute shallow waters and more concentrated waters at depth along fracture zones was modeled using the EQ3/6 geochemical modeling package. A cation exchange model was added to the code to describe simultaneously aqueous speciation, mineral precipitation/dissolution, and equilibration between a fluid and a cation exchanger. Fluid chemistries predicted to result from mixing were compared with those monitored from boreholes intersecting the fracture zone. Modeling results suggest that less than 0.1 equivalent of a smectite exchanger per liter of groundwater is necessary to account for discrepancies between predictions from a conservative mixing model and measured Na and Ca concentrations. This quantity of exchanger equates to an effective fracture coating thickness of 20 microm or less given a fracture aperture width of 1,000 microm or less. Trends in cation ratios in the fluid cannot be used to predict trends in cation ratios on the exchanger because of the influence of ionic strength on heterovalent exchange equilibrium. It is expected that Na for Ca exchange will dominate when shallow waters such as HBHO2 are mixed with deeper waters. In contrast, Na for Mg exchange will dominate mixing between deeper waters

  11. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  12. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  13. Hydrolysis of Zr(4) with formation of mono- and polynuclear hydroxocomplexes in solutions

    International Nuclear Information System (INIS)

    Davydov, Yu.P.; Zabrodskij, V.N.

    1987-01-01

    The state of Zr(4) has been studied in the wide range of H + -ions concentrations (10 -3 -3.0 mol/l) and in the wide range of Zr(4) concentrations (10 -13 -10 -12 mol/l) in the solution using a set of such physical-chemical methods as spectrophotometry, ion exchange, dialysis, centrifugation. The conditions of formation of hydrated cations, monochange, dialysis, centrifugation. The conditions of formation of hydrated cations, mono- and polynuclear hydrocomplexes, colloidal-size particles have been determined. The thermodynamic stability of ZrOH 3+ and Zr(OH) 2 2+ complexes has been determined by the ion exchange and spectrophotometry methods

  14. Fabrication of Cationic Exchange Polystyrene Nanofibers for Drug ...

    African Journals Online (AJOL)

    Purpose: To prepare polystyrene nanofiber ion exchangers (PSNIE) with surface cation exchange functionality using a new method based on electrospinning and also to optimize crosslinking and sulfonation reactions to obtain PSNIE with maximum ion exchange capacity (IEC). Method: The nanofibers were prepared from ...

  15. Paddle-wheel versus percolation mechanism for cation transport in some sulphate phases

    DEFF Research Database (Denmark)

    Andersen, N.H.; Bandaranyake, P.W.S.K.; Careem, M.A.

    1992-01-01

    in these phases. A single-crystal neutron diffraction study has been performed for cubic lithium sulphate. The refinement of the data gives a very complex model for the location of the lithium ions. There is definitely a void at and near the octahedral (1/2, 1/2, 1/2) position. 90% of the lithium ions are located...... and interdiffusion, all studied mono- and divalent cations are very mobile in the rotor phases, which lack the pronounced correlation with ionic radii that is characteristic for diffusion in other classes of solid electrolytes. The quoted studies are to be considered as strong evidence against a percolation model...

  16. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  17. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd

    OpenAIRE

    Duguid, J.; Bloomfield, V.A.; Benevides, J.; Thomas Jr, G.J.

    1993-01-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) ind...

  18. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  19. Method for in situ determination cation exchange capacities of subsurface formations

    International Nuclear Information System (INIS)

    Fertl, W.H.; Welker, D.W.

    1980-01-01

    A method is disclosed for the in situ examination of each subsurface formation penetrated by a borehole to ascertain the cation exchange capacity of such formations within a geological region. Natural γ ray logging is used to develop signals functionally related to the total γ radiation and to the potassium-40, uranium and thorium energy-band radiations. A first borehole is traversed by a potential γ ray spectrometer to provide selected measurements of natural γ radiation. Core samples are taken from the logged formation and laboratory tests performed to determine the cation exchange capacity thereof. The cation exchange capacities thus are developed then correlated with selected parameters provided by the γ ray spectrometer to establish functional relationships. Cation exchange capacities of formations in subsequent boreholes within the region are then determined in situ by use of the natural γ ray spectrometer and these established relationships. (author)

  20. The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide.

    Science.gov (United States)

    Wee, May S M; Matia-Merino, Lara; Goh, Kelvin K T

    2015-10-05

    The shear-thickening rheological behaviour (between 5 and 20s(-1)) of a 5% (w/w) viscoelastic gum extracted from the fronds of the native New Zealand black tree fern or mamaku in Māori was further explored by manipulating the salt content. The freeze-dried mamaku gum contained a high mineral content and sugars which upon removal via dialysis, resulted in the loss of shear thickening. However, this loss was reversible by the addition of salts to the dialysed dispersion. The mechanism of shear-thickening behaviour was therefore hypothesised to be due to shear-induced transition of intra- to intermolecular hydrogen bonding, promoted by the screening effect of cations. Mono-, di- and trivalent salts, i.e. Na(+), K(+), N(CH3)4(+), Ca(2+), Mg(2+), Al(3+) and La(3+) at concentrations between 0.001 and 1.0M were tested to support the hypothesis as well as to demonstrate the sensitivity of the biopolymer to cation valency and concentrations. The cation valency and concentration were crucial factors in determining: (i) zero-shear viscosity, (ii) critical shear rate, γ˙c (or shear rate at the onset of shear-thickening) and (iii) the extent of shear-thickening of the solution. For mono- and divalent cations these parameters were similar at equivalent ionic strengths and fairly independent of the cation type. Trivalent cations (La(3+)) however caused precipitation of the gum in the concentration range of 0.005-0.05 M but clear dispersions were obtained above 0.05 M. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cation dependency of the hydrolytic activity of activated bovine Protein C

    International Nuclear Information System (INIS)

    Hill, K.A.W.

    1986-01-01

    The hydrolytic activity of activated bovine plasma Protein C (APC) is dependent upon monovalent or divalent cations. The kinetics of APC activity were examined with a variety of monovalent and divalent cations, and significant differences were observed. Similar studies were performed with des(1-41, light chain)APC (GDAPC), from which all γ-carboxyglutamic acid residues have been removed. These studies provided useful information concerning the cation dependency. Divalent cations apparently stimulate APC and GDAPC kinetic activity through association at a single γ-carboxyglutamic acid-independent high affinity binding site. A Mn(II) binding site of this nature of GDAPC was determined by EPR spectroscopy, to possess a dissociation constant of 53 +/- 8 uM. Monovalent cations stimulate GDAPC activity through association at an apparently single binding site that is distinct from the divalent cation site. The monovalent cation , Tl(I), was determined, by 205 Tl(I) NMR spectroscopy, to bind to APC and GDAPC with dissociation constants of 16 +/- 8 mM and 32+/- 11 mM, respectively. Both NMR and EPR spectroscopy have been utilized to estimate topographical relationships between divalent cation sites, monovalent cation sites, and the active site of GDAPC. By observing the paramagnetic effects of either Mn(II) or an active site directed spin-label on the longitudinal relaxation rates of Tl(I) nuclei bound to this enzyme, the average interatomic distance between Mn(II) and Tl(I) was calculated to be 8.3 +/- 0.3 A, and the average distance between Tl(I) and the spin-label free electron was estimated to be 3.8 +/- 0.2 A

  2. Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes.

    Science.gov (United States)

    Téllez, Helena; Druce, John; Kilner, John A; Ishihara, Tatsumi

    2015-01-01

    The surface and near-surface chemical composition of electroceramic materials often shows significant deviations from that of the bulk. In particular, layered materials, such as cation-ordered LnBaCo2O(5+δ) perovskites (Ln = lanthanide), undergo surface and sub-surface restructuring due to the segregation of the divalent alkaline-earth cation. These processes can take place during synthesis and processing steps (e.g. deposition, sintering or annealing), as well as at temperatures relevant for the operation of these materials as air electrodes in solid oxide fuel cells and electrolysers. Furthermore, the surface segregation in these double perovskites shows fast kinetics, starting at temperatures as low as 400 °C over short periods of time and leading to a decrease in the transition metal surface coverage exposed to the gas phase. In this work, we use a combination of stable isotope tracer labeling and surface-sensitive ion beam techniques to study the oxygen transport properties and their relationship with the surface chemistry in ordered LnBaCo2O(5+δ) perovskites. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS) combined with (18)O isotope exchange was used to determine the oxygen tracer diffusion (D*) and surface exchange (k*) coefficients. Furthermore, Low Energy Ion Scattering (LEIS) was used for the analysis of the surface and near surface chemistry as it provides information from the first mono-atomic layer of the materials. In this way, we could relate the compositional modifications (e.g. cation segregation) taking place at the electrochemically-active surface during the exchange at high temperatures and the oxygen transport properties in double perovskite electrode materials to further our understanding of the mechanism of the surface exchange process.

  3. Isotope exchange reaction of tritium on precious metal catalyst based on cation-exchanged mordenite for blanket tritium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Precious metal catalyst based on cation-exchanged mordenite was prepared. • Isotope exchange reaction between H{sub 2} and HTO on the catalyst was investigated. • The order of entire reaction is not clear, but it is the first-order reaction as for HTO. • Effect of exchanged cation may appear as the difference of the surface area of catalyst. - Abstract: It is known that the chemical forms of tritium released from a ceramic breeder blanket are hydrogen form and water form. To recover tritiated water vapor, adoption of dryer that is packed column of synthetic zeolite has been proposed. On the other hand, synthetic zeolite is often used as a support of precious metal catalyst. Such catalysts usually have a capability of hydrogen isotope exchange between gas and water vapor. If this catalyst is used to dryer, the dryer may obtain a preferable function for tritium recovery by isotopic exchange reaction. To assess such functions, reaction rate should be estimated. The results of water adsorption experiment on cation-exchanged mordenite-type zeolite suggested the possibility that state of adsorbed water varied by exchanged cation. So, in this work, precious metal catalyst based on cation-exchanged mordenite was prepared, and the reaction rate of chemical exchange between hydrogen and tritiated water was investigated under temperature range between 30 °C and 80 °C by the steady-state approximation. In the case of platinum on Na-mordenite, the reaction between gaseous hydrogen and tritiated water vapor was almost expressed as first-order reaction concerning tritiated water vapor concentration.

  4. Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.

    Science.gov (United States)

    Khan, Asif Ali; Baig, Umair; Khalid, Mohd

    2011-02-28

    In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.

    Science.gov (United States)

    Liu, Hui F; McCooey, Beth; Duarte, Tiago; Myers, Deanna E; Hudson, Terry; Amanullah, Ashraf; van Reis, Robert; Kelley, Brian D

    2011-09-28

    Cation exchange chromatography using conventional resins, having either diffusive or perfusive flow paths, operated in bind-elute mode has been commonly employed in monoclonal antibody (MAb) purification processes. In this study, the performance of diffusive and perfusive cation exchange resins (SP-Sepharose FF (SPSFF) and Poros 50HS) and a convective cation exchange membrane (Mustang S) and monolith (SO(3) Monolith) were compared. All matrices were utilized in an isocratic state under typical binding conditions with an antibody load of up to 1000 g/L of chromatographic matrix. The dynamic binding capacity of the cation exchange resins is typically below 100 g/L resin, so they were loaded beyond the point of anticipated MAb break through. All of the matrices performed similarly in that they effectively retained host cell protein and DNA during the loading and wash steps, while antibody flowed through each matrix after its dynamic binding capacity was reached. The matrices differed, though, in that conventional diffusive and perfusive chromatographic resins (SPSFF and Poros 50HS) demonstrated a higher binding capacity for high molecular weight species (HMW) than convective flow matrices (membrane and monolith); Poros 50HS displayed the highest HMW binding capacity. Further exploration of the conventional chromatographic resins in an isocratic overloaded mode demonstrated that the impurity binding capacity was well maintained on Poros 50HS, but not on SPSFF, when the operating flow rate was as high as 36 column volumes per hour. Host cell protein and HMW removal by Poros 50HS was affected by altering the loading conductivity. A higher percentage of host cell protein removal was achieved at a low conductivity of 3 mS/cm. HMW binding capacity was optimized at 5 mS/cm. Our data from runs on Poros 50HS resin also showed that leached protein A and cell culture additive such as gentamicin were able to be removed under the isocratic overloaded condition. Lastly, a MAb

  6. Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method

    Science.gov (United States)

    Wiyantoko, Bayu; Rahmah, Nafisa

    2017-12-01

    The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.

  7. Response of a benzoxainone derivative linked to monoaza-15-crown-5 with divalent heavy metals.

    Science.gov (United States)

    Addleman, R S; Bennett, J; Tweedy, S H; Elshani, S; Wai, C M

    1998-08-01

    The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.

  8. Homogeneous cation exchange membrane by radiation grafting

    International Nuclear Information System (INIS)

    Kolhe, Shailesh M.; G, Agathian; Ashok Kumar

    2001-01-01

    Preparation of a strong cation exchange membrane by radiation grafting of styrene on to polyethylene (LDPE) film by mutual irradiation technique in the presence of air followed by sulfonation is described. The grafting has been carried out in the presence of air and without any additive. Low dose rate has been seen to facilitate the grafting. Further higher the grafting percentage more is the exchange capacity. The addition of a swelling agent during the sulfonation helped in achieving the high exchange capacity. The TGA-MASS analysis confirmed the grafting and the sulfonation. (author)

  9. Postsynthetic Doping of MnCl2 Molecules into Preformed CsPbBr3 Perovskite Nanocrystals via a Halide Exchange-Driven Cation Exchange.

    Science.gov (United States)

    Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping

    2017-08-01

    Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Computer simulation of displacement cation exchange chromatography: separation of trivalent actinides and lanthanides

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1980-05-01

    A first-generation mathematical model of displacement cation exchange chromatography (CES) was constructed. The model incorporated the following phenomena: diffusion of cations up and down the column, diffusion of cations from the bulk liquid to the resin surface, and equilibrium of cations between liquid and solid resin beads. A limited number of experiments with rare earths using DTPA as the separation agent were undertaken to increase the current understanding of the processes involved in cation exchange chromatography. The numerical computer program based on the mathematical model was written in FORTRAN IV for use on the IBM 360 series of computers

  11. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  12. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  13. Effects of divalent cations, EDTA and chitosan on the uptake and photoinactivation of Escherichia coli mediated by cationic and anionic porphyrins.

    Science.gov (United States)

    Gsponer, Natalia S; Spesia, Mariana B; Durantini, Edgardo N

    2015-03-01

    The effect of divalent cations, EDTA and chitosan (CS) on the uptake and photoinactivation of Escherichia coli produced by 5,10,15,20-tetrakis(4-N,N,N-trimethylammoniumphenyl)porphyrin (TMAP(4+)), 5,10-di(4-methylphenyl)-15,20-di(4-N,N,N-trimethylammoniumphenyl)porphyrin (MPAP(2+)) and 5,10,15,20-tetra(4-sulphonatophenyl)porphyrin (TPPS(4-)) were examined under different conditions. These porphyrins were rapidly bound to E. coli cells (TMAP(4+), MPAP(2+) and TPPS(4-), respectively. The addition of Ca(2+) or Mg(2+) to the cultures enhanced the uptake of MPAP(2+) and TPPS(4-) by cells. In contrast, the amount of TMAP(4+) bound to cells was decreased. The presence of EDTA produced an increase in the uptake of porphyrins by cells, while CS mainly enhanced the amount of TPPS(4-) bound to E. coli. The photoinactivation of E. coli cells mediated by TMAP(4+) was highly effective even at low concentration (1μM) and short irradiation period (5min). However, a reduction in the phototoxicity was found for TMAP(4+) in presence of Ca(2+) and Mg(2+). In contrast, the phototoxic activity mediated by MPAP(2+) and TPPS(4-) was increased. Addition of EDTA did not show effect on the photoinactivation induced by cationic porphyrins, while a small enhance was found for TPPS(4-). Moreover, inactivation of E. coli cells was achieved in the presence CS. This cationic polymer was antimicrobial by itself in the dark. Using a slightly toxic CS concentration, the phototoxic activity induced by TMAP(4+) was diminished. This effect was mainly observed at lower concentration of TMAP(4+) (0.5-1μM). In contrast, an increase in E. coli photoinactivation was obtained for MPAP(2+) and TPPS(4-) in presence of CS. Thus, this natural polymeric destabilizer agent mainly benefited the photoinactivation mediated by TPPS(4-). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Nava Galve, R.G.

    1993-01-01

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  15. The exchangeable cations in soils flooded with sea water

    NARCIS (Netherlands)

    Molen, van der W.H.

    1958-01-01

    The changes in the exchangeable cations of soils flooded with sea-water were extensively studied in the Netherlands after the inundations of 1940, 1945 and 1953. A synopsis of the results was given, both from a theoretical and a practical viewpoint.

    Current formulae for ion-exchange tested in the

  16. Immobilization of ethylenesulfide on babassu coconut epicarp and mesocarp for divalent cation sorption

    International Nuclear Information System (INIS)

    Santana, Sirlane A.A.; Vieira, Adriana P.; Silva Filho, Edson C. da; Melo, Julio C.P.; Airoldi, Claudio

    2010-01-01

    A new synthetic methodology route consisted in reacting the natural babassu coconut mesocarp (BCM) and babassu coconut epicarp (BCE) with ethylenesufide, for adding basic sulfur centers in pendant chains that possess high potential activity for coordinating divalent cations from aqueous solution. All biomaterials were characterized by elemental analysis, infrared (IR), 13 C NMR and thermogravimetry. The sulfur elemental analysis gave 2.00 ± 0.05 and 8.67 ± 0.01% for BCES and BCMS, which correspond to 0.60 ± 0.01 and 2.71 ± 0.01 mmol of this element per each gram of BCE and BCM, to confer a degree of functionalization of 20.2 ± 0.07 and 86.7 ± 0.01 mg g -1 . This synthesis enabled from IR weak SH band at 2544 cm -1 due to the incorporation of the reagent into the structure. The basic centers favor copper sorption with increasing pH from 2 to 6 observed by a batchwise methodology and the data obtained from the chosen pH 6 were adjusted to Freundlich and Langmuir models, favoring fit for the latter equation. The kinetics of sorption was established at 30 min for both biopolymers with a pseudo-second-order model.

  17. Influence of pine bark particle size and pH on cation exchange capacity

    Science.gov (United States)

    Cation exchange capacity (CEC) describes the maximum quantity of cations a soil or substrate can hold while being exchangeable with the soil solution. While CEC has been studied for peat-based substrates, relatively little work has documented factors that affect CEC of pine bark substrates. The ob...

  18. Structural insights into the osteopontin-aptamer complex y molecular dynamics simulations

    Science.gov (United States)

    La Penna, Giovanni; Chelli, Riccardo

    2018-01-01

    Osteopontin is an intrinsically disordered protein involved in tissue remodeling. As a biomarker for pathological hypertrophy and fibrosis, the protein is targeted by an RNA aptamer. In this work, we model the interactions between osteopontin and its aptamer, including mono- (Na+) and divalent (Mg2+) cations. The molecular dynamics simulations suggest that the presence of divalent cations forces the N-terminus of osteopontin to bind the shell of divalent cations adsorbed over the surface of its RNA aptamer, the latter exposing a high negative charge density. The osteopontin plasticity as a function of the local concentration of Mg is discussed in the frame of the proposed strategies for osteopontin targeting as biomarker and in theranostic.

  19. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-01-01

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca 2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK a2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d 001 ) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  20. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  1. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States); Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 (United States); Beard, Matthew C.; Johnson, Justin C. [National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 (United States)

    2016-06-01

    Highlights: • Photoluminescence and transient absorption are used to probe PbS QD films. • Cation-exchanged PbS QDs show room-temperature PL emission. • Bimolecular recombination is shown for the first time in coupled, PbS QD films. - Abstract: Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  2. Cation exchange process for molten salt extraction residues

    International Nuclear Information System (INIS)

    Proctor, S.G.

    1975-01-01

    A new method, utilizing a cation exchange technique, has been developed for processing molten salt extraction (MSE) chloride salt residues. The developed ion exchange procedure has been used to separate americium and plutonium from gross quantities of magnesium, potassium, and sodium chloride that are present in the residues. The recovered plutonium and americium contained only 20 percent of the original amounts of magnesium, potassium, and sodium and were completely free of any detectable amounts of chloride impurity. (U.S.)

  3. Inhibition of Na(+) -K+ pump activity by divalent cations in intact peritoneal mast cells of the rat

    DEFF Research Database (Denmark)

    Knudsen, T; Berthelsen, Carsten; Johansen, Torben

    1990-01-01

    1. The inhibition by the divalent cations magnesium, barium and strontium and the trivalent ion lanthanum of the Na(+) -K+ pump in the plasma membrane of rat peritoneal mast cells was studied in pure mast cell populations by measurement of the ouabain-sensitive uptake of the radioactive potassium...... or more, but no decrease was observed after 2 min incubation when the cells are supposed to be loaded with sodium due to the cell isolation procedure. 3. Barium and strontium caused concentration-dependent decreases in the ouabain-sensitive K(+) -(86Rb+) -uptake of the cells but the ouabain......-resistant uptake was not changed. Half maximum decrease in the ouabain-sensitive K+(86Rb+)-uptake was observed with 1.8 mM magnesium, 1.2mM barium and 0.7 mM strontium. 4. The trivalent ion lanthanum blocked almost completely the ouabain-sensitive K+(86Rb+)-uptake at a concentration of 1 microM as does 1 m...

  4. Exchanged cations and water during reactions in polypyrrole macroions from artificial muscles.

    Science.gov (United States)

    Valero, Laura; Otero, Toribio F; Martínez, José G

    2014-02-03

    The movement of the bilayer (polypyrrole-dodecylbenzenesulfonate/tape) during artificial muscle bending under flow of current square waves was studied in aqueous solutions of chloride salts. During current flow, polypyrrole redox reactions result in variations in the volumes of the films and macroscopic bending: swelling by reduction with expulsion of cations and shrinking by oxidation with the insertion of cations. The described angles follow a linear function, different in each of the studied salts, of the consumed charge: they are faradaic polymeric muscles. The linearity indicates that cations are the only exchanged ions in the studied potential range. By flow of the same specific charge in every electrolyte, different angles were described by the muscle. The charge and the angle allow the number and volume of both the exchanged cations and the water molecules (related to a reference) between the film to be determined, in addition to the electrolyte per unit of charge during the driving reaction. The attained apparent solvation numbers for the exchanged cations were: 0.8, 0.7, 0.6, 0.5, 0.5, 0.4, 0.25, and 0.0 for Na(+), Mg(2+), La(3+), Li(+), Ca(2+), K(+), Rb(+), and Cs(+), respectively. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Review on cation exchange selectivity coefficients for MX-80 bentonite

    International Nuclear Information System (INIS)

    Domenech, C.; Arcos, D.; Duro, L.; Sellin, P.

    2005-01-01

    Full text of publication follows: Bentonite is considered as engineered barrier in the near field of a nuclear waste repository due to its low permeability, what impedes groundwater flow to the nuclear waste, and its high retention capacity (sorption) of radionuclides in the eventuality of groundwater intrusion. One of the main retention processes occurring at the bentonite surface is ion exchange. This process may exert a strong control on the mobility of major pore water cations. Changes in major cation concentration, especially calcium, can affect the dissolution-precipitation of calcite, which in turn controls one of the key parameters in the system: pH. The cation exchange process is usually described according to the Gaines-Thomas convention: Ca 2+ + 2 NaX = CaX 2 + 2 Na + , K Ca = (N Ca x a 2 Na + )/(N 2 Na x a Ca 2+ ) where K Ca is the selectivity coefficient for the Ca by Na exchange, ai is the activity of cation 'i' in solution and NJ the equivalent fractional occupancy of cation 'J' in bentonite. Parameters such as solid to liquid (S:L) ratio and dry density of the solid have an important influence on the value of selectivity coefficients (K ex ). Although in most geochemical modelling works, K ex values are directly taken from experiments conducted at low S:L ratios and low dry densities, the expected conditions in a deep geological nuclear waste repository are higher S:L and higher bentonite density (1.6 g.cm -3 in the SKB design to obtain a fully water saturated density of around 2.0 g.cm -3 ). Experiments focused at obtaining selectivity coefficients under the conditions of interest face the difficulty of achieving a proper extraction and analyses of pore water without disturbing the system by the sampling method itself. In this work we have conducted a complete analyses of published data on MX-80 bentonite cationic exchange in order to assess the effect of the S:L ratio and dry density on the value of the selectivity coefficients determined so far

  6. In vivo cation exchange in quantum dots for tumor-specific imaging.

    Science.gov (United States)

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  7. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  8. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe 3+ > Al 3+ > Cu 2+ >> Ca 2+ > K + > Na + , which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na + -smectite and K + -smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe 3+ , Al 3+ , and Cu 2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O 2 − · , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  9. The role of cation exchange in controlling groundwater chemistry at Aspo, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1995-01-01

    Construction-induced groundwater flow has resulted in the mixing of relatively dilute shallow groundwater with more concentrated groundwater at depth in the underground Hard Rock Laboratory (HRL) at Aespoe, Sweden. The observed compositional variation of the mixed groundwater cannot be explained using a conservative mixing model. The geochemical modeling package EQ3/6, to which a cation-exchange model was added, was used to simulate mixing between the two fluids. The results of modeling simulations suggest that cation exchange between groundwater and fracture-lining clays can explain the major element fluid chemistry observed in the HRL. The quantity of exchanger required to match simulated with observed fluid chemistry is reasonable and is consistent with the observed fracture mineralogy. This preliminary study establishes cation exchange as a viable mechanism for controlling the chemical evolution of groundwaters in a fracture-dominated dynamic flow system. This modeling study also strengthens their confidence in the ability to model the potential effects of fracture-lining minerals on the transport of radionuclides in a high level nuclear waste repository

  10. Modification of thermal sensitivity of Chinese hamster cells by exposure to solutions of monovalent and divalent cationic salts

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Azzam, E.I.; Vadasz, J.

    1984-06-01

    Chinese hamster V79 cells were heated in culture medium or in 0.155-mol.dm -3 solutions of LiCl, NaCl, KCl, MgCl 2 , CaCl 2 and BaCl 2 . The presence of any one of these ionic solutions during heating increased the thermal sensitivity of the cells. The order of increased thermal sensitivity was KCl > LiCl > NaCl for the monovalent salts and BaCl 2 > MgCl 2 > CaCl 2 for the divalent cation salts. The addition of glucose to LiCl or NaCl solutions did not reduce the thermal sensitization caused by these solutions. When cells were sensitized by LiCl or NaCl treatment, a change in pH from 7.2 to 6.6 did not further increase thermal sensitivity. These data show that nutrient and ionic factors and their interplay are involved in cellular thermal sensitivity

  11. Selective oxidation of propane over cation exchanged zeolites

    NARCIS (Netherlands)

    Xu, J.

    2005-01-01

    This thesis focuses on investigation of the fundamental knowledge on a new method for selective oxidation of propane with O2 at low temperature (< 100°C). The relation between propane catalytic selective oxidation and physicochemical properties of cation exchanged Y zeolite has been studied. An

  12. Novel non-viral vectors for gene delivery: synthesis of a second-generation library of mono-functionalized poly-(guanidinium)amines and their introduction into cationic lipids.

    Science.gov (United States)

    Byk, G; Soto, J; Mattler, C; Frederic, M; Scherman, D

    1998-01-01

    The development of new gene delivery technologies is a prerequisite towards gene therapy clinical trials. Because gene delivery mediated by viral vectors remains of limited scope due to immunological and propagation risks, the development of new non-viral gene delivery systems is of crucial importance. We have synthesized a secondary library of mono-functionalized poly-(guanidinium)amines generated from a library of mono-functionalized polyamines applying the concept of "libraries from libraries." The method allows a quick and easy access to mono-functionalized geometrically varied poly-(guanidinium)amines. The new building blocks were introduced into cationic lipids to obtain novel poly-(guanidinium)amine lipids, which are potential DNA vectors for gene delivery. Copyright 1998 John Wiley & Sons, Inc.

  13. Properties of sulfonated cation-exchangers made from petroleum asphaltites

    International Nuclear Information System (INIS)

    Pokonova, Yu.V.; Pol'kin, G.B.; Proskuryakov, V.A.

    1982-01-01

    The use of ion-exchangers in radiochemical technology is accompanied by changes of their properties under the influence of ionizing radiation. The rate of development of these processes depends on the nature and structure of the matrix and on the nature and amount of ionic groups. We have proposed a method of synthesis of ion-exchangers resistant to γ radiation from petroleum asphaltites. Continuing these investigations, we prepared cation-exchangers by sulfonation of a mixture of petroleum asphaltites and acid asphalt. An investigation of their radiation resistance is described in this paper

  14. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.

    Science.gov (United States)

    Duguid, J; Bloomfield, V A; Benevides, J; Thomas, G J

    1993-11-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between

  15. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    : DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6......-fold lower affinity for Ca2+, as judged by the ability of Ca2+ to inhibit the reaction in the presence of 10 mM Mg2+. Wild type PRPP synthetase is subject to product inhibition by AMP, but AMP inhibition of the prsA1 mutant enzyme could not be detected. It has been previously proposed that a divalent...

  16. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  17. An isotopic method to distinguish between ion exchange and adsorption of diazonium cations of zeolites

    International Nuclear Information System (INIS)

    Mohl, M.; Fejes, P.; Horvath, G.

    1984-01-01

    The ion exchange isotherms of two different diazonium cations have been determined on synthetic mordenite and faujasite using 22 Na as radiotracer. Under similar conditions (but with no radiotracer) the isotherms were followed spectrophotometrically so that a comparison between the amounts of ion exchanged and adsorbed cations can be made. (author)

  18. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  19. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  20. Metal-Exchanged β Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Aurora J. Cruz-Cabeza

    2012-01-01

    Full Text Available Various metal-β zeolites have been synthesized under similar ion-exchange conditions. During the exchange process, the nature and acid strength of the used cations modified the composition and textural properties as well as the Brönsted and Lewis acidity of the final materials. Zeolites exchanged with divalent cations showed a clear decrease of their surface Brönsted acidity and an increase of their Lewis acidity. All materials were active as catalysts for the transformation of acetone into hydrocarbons. Although the protonic zeolite was the most active in the acetone conversion (96.8% conversion, the metal-exchanged zeolites showed varied selectivities towards different products of the reaction. In particular, we found the Cu-β to have a considerable selectivity towards the production of isobutene from acetone (over 31% yield compared to 7.5% of the protonic zeolite. We propose different reactions mechanisms in order to explain the final product distributions.

  1. Cation diffusion facilitators transport initiation and regulation is mediated by cation induced conformational changes of the cytoplasmic domain.

    Directory of Open Access Journals (Sweden)

    Natalie Zeytuni

    Full Text Available Cation diffusion facilitators (CDF are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all domains of life. CDF's were shown to be involved in several human diseases, such as Type-II diabetes and neurodegenerative diseases. In this work, we employed a multi-disciplinary approach to study the activation mechanism of the CDF protein family. For this we used MamM, one of the main ion transporters of magnetosomes--bacterial organelles that enable magnetotactic bacteria to orientate along geomagnetic fields. Our results reveal that the cytosolic domain of MamM forms a stable dimer that undergoes distinct conformational changes upon divalent cation binding. MamM conformational change is associated with three metal binding sites that were identified and characterized. Altogether, our results provide a novel auto-regulation mode of action model in which the cytosolic domain's conformational changes upon ligand binding allows the priming of the CDF into its transport mode.

  2. Basic exchangeable cations in Finnish mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1972-09-01

    Full Text Available The content of exchangeable Ca, Mg, K and Na replaced by neutral ammonium acetate was determined in 470 samples of mineral soils from various parts of Finland, except from Lapland. The amount of all these cations tended to increase with an increase in the clay content, but variation within each textural class was large, and the ranges usually overlapped those of the other classes. The higher acidity of virgin surface soils was connected with a lower average degree of saturation by Ca as compared with the corresponding textural classes of cultivated soils. No significant difference in the respective contents of other cations was detected. The samples of various textural groups from deeper layers were usually poorer in exchangeable Ca and K than the corresponding groups of plough layer. The mean content of exchangeable Mg was equal or even higher in the samples from deeper layers than in the samples from plough layer, except in the group of sand soils. The percentage of Mg of the effective CEC increased, as an average, from 9 in the sand and fine sand soils of plough layer to 30 in the heavy clay soils; in the heavy clay soils from deeper layers its mean value was 38 ± 4 %. In the samples of plough layer, the mean ratio of Ca to Mg in sand and fine sand soils was about 9, in silt and loam soils about 6, in the coarser clay soils about 4, and in heavy clay about 2.

  3. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  4. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  5. Radiation induced graft copolymerization for preparation of cation exchange membranes: a review

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor

    1999-01-01

    Cation exchange membranes are regarded as the ideal solid polymer electrolyte materials for the development of various electrochemical energy conversion applications where significant improvements in the current density are required. Such membranes require special polymers and preparation techniques to maintain high chemical , mechanical and thermal stability in addition to high ionic conductivity and low resistance. A lot of different techniques have been proposed in the past to prepare such membranes. Radiation-induced graft copolymerization provides an attractive ft method for modification of chemical and physical properties of polymeric materials and is of particular interest in achieving specially desired cation exchange membranes as well as excellent membrane properties. This is due to the ability to control the membrane compositions as well as properties by proper selection of grafting conditions. Therefore numerous parameters have to be investigated to properly select the right polymeric materials, radiation grafting technique and the grafting conditions to be employed. In this paper a state-of-the-art of radiation-induced graft copolymerization for preparation of cation exchange membranes and their applications are briefly reviewed. (Author)

  6. Concentration of ions Co(II), Ni(II) at the Tokem-250 carboxylic cation exchange for catalysts development

    Science.gov (United States)

    Zharkova, Valentina; Bobkova, Ludmila; Brichkov, Anton; Kozik, Vladimir

    2017-11-01

    Sorption and catalytic properties of the cation exchanger are investigated. It was found that the Tokem-250 has a wide operating range of pH. The value of the effective ionization constant of the functional groups of the cation exchanger (pKa) is 6.59. The Tokem-250 cation exchanger exhibits selectivity to Ni2+ ions to Co2+ (D˜103). This is probably due to the stability of ion-exchange complexes detected by the method of diffuse reflectance electron spectroscopy (ESDD). According to these data, for Co2+ ions, in contrast to Ni2+, tetragonal distortion of octahedral coordination is characteristic, which has a positive effect on the stability of complexes with Co2+. To obtain spherical catalysts on the basis of Tokem-250, cobalt-containing samples of cation exchanger were used. The developed spherical materials have catalytic activity in the reactions of deep and partial oxidation of n-heptane.

  7. Conventional resin cation exchangers versus EDI for CACE measurement in power plants. Feasibility and practical field results

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Manuel [Swan Systeme AG, Hinwil (Switzerland)

    2017-10-15

    The conductivity measurement after a cation exchanger in power plants with steam turbines was introduced soon after 1950 by Larson and Lane. Due to the simple measuring principle, the sensitivity to ionic contaminations and to its high reliability, the conductivity measurement after a cation exchanger (CACE) has become the most commonly used online analytical method in power plants with steam generators. Swan has investigated electro deionisation (EDI) as substitution of the conventional cation exchange resin and has developed a new conductivity instrument using this principle. This paper provides a description of the conventional method for cation conductivity measurements as well as of the new AMI CACE using EDI method.

  8. Conventional resin cation exchangers versus EDI for CACE measurement in power plants. Feasibility and practical field results

    International Nuclear Information System (INIS)

    Sigrist, Manuel

    2017-01-01

    The conductivity measurement after a cation exchanger in power plants with steam turbines was introduced soon after 1950 by Larson and Lane. Due to the simple measuring principle, the sensitivity to ionic contaminations and to its high reliability, the conductivity measurement after a cation exchanger (CACE) has become the most commonly used online analytical method in power plants with steam generators. Swan has investigated electro deionisation (EDI) as substitution of the conventional cation exchange resin and has developed a new conductivity instrument using this principle. This paper provides a description of the conventional method for cation conductivity measurements as well as of the new AMI CACE using EDI method.

  9. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Fractionation of lithium isotopes in cation-exchange chromatography

    International Nuclear Information System (INIS)

    Oi, Takao; Kawada, Kazuhiko; Kakihana, Hidetake; Hosoe, Morikazu

    1991-01-01

    Various methods for lithium isotope separation have been developed, and their applicability to large-scale enriched lithium isotope production has been assessed. Ion-exchange chromatography is one such method. Cation-exchange chromatography of lithium was carried out to investigate the lithium isotope effect in aqueous ion-exchange systems. The heavier isotope. 7 Li, was preferentially fractionated into the resin phase in every experiment conducted, and this result is consistent with the results of previous work. The value of the separation factor was 1.00089-1.00171 at 25C. A comparison of lithium isotope effect with those of potassium and rubidium indicated that the isotope effect originating from hydration is larger than the effect due to phase change for lithium, while the opposite is the case with potassium and rubidium

  11. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    Science.gov (United States)

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.

  12. Cation exchange assisted binding-elution strategy for enzymatic synthesis of human milk oligosaccharides (HMOs).

    Science.gov (United States)

    Zhu, Hailiang; Wu, Zhigang; Gadi, Madhusudhan Reddy; Wang, Shuaishuai; Guo, Yuxi; Edmunds, Garrett; Guan, Wanyi; Fang, Junqiang

    2017-09-15

    A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation. This strategy circumvented the incompatible issue between glycosyltransferases and solid support or large polymers, and no purification was needed for intermediate products. With current approach, polyLacNAc backbones of HMOs and fucosylated HMOs were synthesized smoothly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    International Nuclear Information System (INIS)

    Bengtsson, B.; Ingemarsson, R.; Settervik, G.; Velin, A.

    2010-01-01

    In Ringhals NPP, more than four years of successful operation with a full-scale EDI for the recycling of steam generator blow down (SGBD) gave the inspiration to modify and 'scale down' this EDI process. This with purpose to explore the possibilities to replace the cation exchanger columns used for cation conductivity analysis, with some small and integrated electrochemical ion-exchange cells. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, it's connected to the disadvantage of getting the resins rapidly exhausted, with needs to be frequently replaced or regenerated. This is causing interruptions in the monitoring and giving rise to high workload for the maintenance. This paper reports about some optimization and tests of two different two-compartment electrochemical cells for the possible replacements of cation resin columns when analyzing cation conductivity in the secondary steam circuit at Ringhals NPPs. Field tests during start up condition and more than four months of steady operation together with real and simulated test for impurity influences, indicates that a ELectrical Ion Echange process (ELIX) could be successfully used to replace the resin columns in Ringhals during operating with high pH-AVT (All Volatile Treatment), using hydrazine and ammonia. Installation of an ELIX-system downstream a particle filter and upstream of a small cation resin column, will introduce additional safety and further reduce the maintenance with possible interruptions. Performance of the ELIX-process together with other chemical additives (Morpholine, ETA, MPA, DMA) and dispersants, may be further evaluated to qualify the ELIX-process as well as SGBD-EDI for wider use in nuclear applications. (author)

  14. Separation of radionuclides from water by magnesium oxide adsorption

    International Nuclear Information System (INIS)

    Tseng, Chia-Lian; Lo, Jem-Mau; Yeh, Si-Jung

    1987-01-01

    Adsorption by magnesium oxide of more than forty radionuclides in respective ionic species in water was observed. Generally, the radionuclides in di-valent and/or multi-valent cations are favorably adsorbed by magnesium oxide; but not for the those in mono-valent cations. In addition, the adsorption by magnesium oxide was not effective to most of the radionuclides in negative ionic species. From the observations, the adsorption mechanism is more prominently by the ion exchange of the di- or multi-valent cation species with the hydrous magnesium oxide. Separation of the radionuclides related to the corrosion products possibly produced in a nuclear power plant from natural seawater was attempted by the magnesium oxide adsorption method. It should be emphasized that the adsorption method was found to be practical for separating radionuclides from a large quantity of natural seawater with high recovery and high reproducibility. (author)

  15. Exchange of interlayer cations in micaceous minerals. Final report, February 1, 1967--August 31, 1976

    International Nuclear Information System (INIS)

    Scott, A.D.

    1976-08-01

    Laboratory experiments were carried out to establish a comprehensive understanding of the processes and factors governing the sorption and release of interlayer cations in micaceous minerals. A diverse approach with several lines of work was used to delineate the effects of different procedures, solution compositions and mineral properties. It was soon clear that the major factors controlling the exchange of interlayer cations are the blocking effects of dissolved fixable cations and the limiting effects of small particles. By using sodium tetraphenylboron to reduce the blocking effects and by excluding particles that were smaller than 2 μm, however, the subtle effects of many other factors were brought out. The redox status of structural iron, the hydroxyl groups, the interlayer spacing and the layer charge of the minerals are indicative of the type of factors involved and the fact that they are mainly interactive in nature. One conclusion from this work is that most experimental results for interlayer cation exchange are bound to reflect some combination of the controlling factors. More important, however, was the observation that proper management of interlayer cation exchange can make micaceous minerals a good sink for cesium and source of potassium

  16. Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.

    Science.gov (United States)

    Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob

    2017-06-12

    A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO 3 - and NO 2 - in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg 2+ , Ca 2+ , and Ba 2+ from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.

  17. The influence of temperature and P/P0 upon cationic exchange constants

    International Nuclear Information System (INIS)

    Blanc, P.; Vieillard, P.; Gailhanou, H.; Gaboreau, S.; Gaucher, E.C.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. The knowledge of thermodynamic properties of clay minerals forming clay materials is important in the context of a disposal within clayey formations (Callovo-Oxfordian argillite) or for clayey barriers. Different experiments have been previously performed concerning the long term behavior of clay materials, indicating that strong transformations are influenced by the alkaline solutions issued from the cementitious materials. But the first stages of the transformations affect the hydration and exchange capacity of the mineral, which are closely related to their retention properties. This work aims at assessing the influence of temperature and relative humidity upon the thermodynamic functions related to cationic exchange and hydration reactions. It is carried out within the framework of the Thermochimie project, aiming at defining a consistent thermodynamic database for modeling purposes. This work is an extension of the thermodynamic of hydration study carried out by Vieillard et al. (2010). Using the same, regular, solid solution model developed by the authors, we first consider the influence of temperature on the hydration reaction by expressing the hydration constant LogK hyd (T) according to the enthalpy and entropy of hydration and to the gas constant. Predicted isotherms are then compared with experimental data acquired on the MX80 smectite at 40, 60, 75, 90 and 100 deg. C. We now consider a cationic exchange reaction between cations A+ and B+, with z cations per mole of smectite and y2 and y1 mole of water per mole of smectite for A and B end members, respectively. The exchange constant LogK A/B , for a given temperature and relative humidity, is expressed as a function of the difference between anhydrous end members, and of the difference between anhydrous end-members activities. A comparison with room temperature exchange constants derived from experiments suggests that discrepancies are related to

  18. The colloid fraction and cation-exchange capacity in the soils of Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Nešić Ljiljana

    2015-01-01

    Full Text Available The colloidal complex of soil consists of humus and clay, the most important acidoids which are able to create the bonds between oppositely charged ions (cations through the forces strong enough to provide protection from leaching, and also weak enough to enable absorption through the plant root. This ability becomes more pronounced if the degree of dispersity is higher, i.e. if particles have smaller diameters. Total of 435 soil samples were collected from the surface horizon in 2011, for the purpose of soil fertility control in Vojvodina and prevention of its possible degradation in broader terms. This paper presents a part of study through selected representative soil samples, related to the research results of mechanical composition, basic chemical properties, and cation-exchange capacity in the most frequent types of soils in North Bačka and Banat (chernozem, fluvisol, semiglay, humoglay, solonchak, solonetz, due to the fact that soil fertility and its ecological function in environment protection largely depend on the studied properties. The average content of clay was 25.26%, ranging from 5.76 to 49.44%, the average content of humus was 3.10%, ranging between 1.02 and 4.30%, while the average value of CEC was 27.30 cmol/kg, ranging between 12.03 and 46.06 cmol/kg. Soils with higher content of clay and humus have greater cation-exchange capacity. According to the established average values of CEC in cmol/kg, the order of soil types is as follows: solonetz (40.06, semiglay (31.98, humoglay (30.98, solonchak (26.62, chernozem (22.72, and fluvisol (22.40. Research results have shown that cation-exchange capacity depends on clay fraction and humus content. Higher correlation coefficient between CEC and clay, compared to CEC and humus, indicates that clay content compared to humus content has greater effect on cation-exchange capacity.

  19. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang

    2016-01-01

    lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large

  20. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.

    Science.gov (United States)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-04-28

    Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Studies on radiation damage to polystyrene exchanger in different cationic forms

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Jagtap, N.B.; Waghmare, S.; Kulkarni, S.A.

    1985-01-01

    Polystyrene divinylbenzene copolymer containing nuclear sulfonic acid functional group and H + , Sr 2+ , Cu 2+ , UO 2 2+ or Al 3+ exchangeable cation was subjected to varying gamma doses to study the effects on its physicochemical properties. The exchange capacity and moisture content decreased, the maximum effect was in the case of Cu ++ form of the resin. The data are explained on the basis of metal oxygen bonding. IR spectra indicated the formation of new exchange sites upon irradiation and disapearance of the original functional groups. (author)

  2. Destruction of gel sulfonated cation-exchangers of the KU-2 type under the influence of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Roginskaya, B.S.; Zavadovskaya, A.S.; Znamenskii, Yu.P.; Paskhina, N.A.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the mechanism of interaction of Soviet sulfonated cation-exchangers of the KU-2 type with hydrogen peroxide. It is shown that under the influence of hydrogen peroxide sulfonated cation-exchangers begin, after a certain induction period, to lose capacity and to release destruction products into water; the length of the induction period increases with the degree of cross-linking. In a given time of contact between the resin and the solution the degree of destruction falls with increase of cross-linking. The principal product of destruction of sulfonated cation-exchangers is an aromatic sulfonic acid containing oxidized groups in the side chains.

  3. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios.

    Science.gov (United States)

    Bourgeois, J C; Walsh, M E; Gagnon, G A

    2004-03-01

    Spent filter backwash water (SFBW) and clarifier sludge generally comprise the majority of the waste residual volume generated and in relative terms, these can be collectively referred to as combined filter backwash water (CFBW). CFBW is essentially a low-solids wastewater with metal hydroxide flocs that are typically light and slow to settle. This study evaluates the impact of adding calcium and magnesium carbonates to CFBW in terms of assessing the impacts on the sedimentation and DAF separation processes. Representative CFBW samples were collected from two surface water treatment plants (WTP): Lake Major WTP (Dartmouth, Nova Scotia, Canada) and Victoria Park WTP (Truro, Nova Scotia, Canada). Bench-scale results indicated that improvements in the CFBW settled water quality could be achieved through the addition of the divalent cations, thereby adjusting the monovalent to divalent (M:D) ratios of the wastewater. In general, the DAF process required slightly higher M:D ratios than the sedimentation process. The optimum M:D ratios for DAF and sedimentation were determined to be 1:1 and 0.33:1, respectively. It was concluded that the optimisation of the cation balance between monovalent cations (e.g., Na(+), K(+)) and added divalent cations (i.e., Ca(2+), Mg(2+)) aided in the settling mechanism through charge neutralisation-precipitation. The increase in divalent cation concentrations within the waste residual stream promoted destabilisation of the negatively charged colour molecules within the CFBW, thereby causing the colloidal content to become more hydrophobic.

  4. Study on properties of cation-exchange membranes containing sulfonate groups

    International Nuclear Information System (INIS)

    Zu Jianhua; Wu Minghong; Qiu Shilong; Yao Side; Ye Yin

    2004-01-01

    Strong acid cation-exchange membranes were obtained by irradiation grafting of acrylic acid (AA) and sodium styrene sulfonate (SSS) onto high-density polyethylene (HDPE). Thermal and chemical stability of the cation-exchange membranes was investigated. The effectiveness of sulfonate-containing films was conformed in inducing high resistance to oxidative degradation. Thermal stability of the grafted HDPE was weaker than HDPE as detected by TGA analyzing technique. Char residue by TGA of the grafted HDPE is greater than that of HDPE. It shows that the branch chains including -SO 3 Na and -COOH was grafted onto the backbone of HDPE, and thus give a catalytic impetus to the charing. Crystallinity of the grafted membranes decreased with increasing grafting yield of the membrane samples. It is supposed that the decreased crystallinity is due to collective effects of the inherent crystallinity dilution by the amorphous grafted chains and disruption of spherulitic crystallites of the HDPE component

  5. Kinetics and exchange mechanism of Zn2+and Eu3+ ions on tin and zirconium silicates as a cation exchange materials

    International Nuclear Information System (INIS)

    Zakaria, E.S.; Ali, I.M.; Aly, H.F.

    2005-01-01

    Tin and zirconium silicates have been prepared with Sn/Si and Zr/Si molar ratios of 1 and 0.75, respectively. Kinetics and exchange studies of Zn 2+ and Eu 3+ ions on the prepared stannous and zirconium silicates have been carried out as a function of reaction temperature, particle diameters, solution concentration of the exchanging cations from water and alcohol-water mixture. The capacity of the exchangers for the studied cations from alcohol-water mixture was found higher than in pure aqueous solutions. The rate of exchange was dependent on particle diameters and independent on concentration of metal ions. The kinetic and thermodynamic parameters, vis. effective diffusion coefficients, activation energies and entropies of activation have been evaluated. Negative values of entropy, enthalpy and free energy of activation for Zn 2+ /M + and Eu 3+ /H + on both exchangers have been recorded at different conditions

  6. Electromotive force and impedance studies of cellulose acetate membranes: Evidence for two binding sites for divalent cations and for an alveolar structure of the skin layer

    DEFF Research Database (Denmark)

    Smith Sørensen, T.; Jensen, J.B.; Malmgren-Hansen, B.

    1991-01-01

    asymmetic membranes. The skin layer in asymmetric membranes is assumed to have properties similar to dense membranes. The EMF measurements were interpreted by means of a Donnan-Nernst-Planck (Teorell-Meyer-Sievers) model, which functions quite well due to the low fixed charge in the membrane. The membrane...... diffusion potential is calculated by the Henderson method and in some cases by solving transcendental equations according to Planck, Pleijel and Schlogl. There is no great difference between the membrane potentials calculated by the two methods, but the ion profiles and the actual rates of electrodiffusion...... of ca. 30 in the alveolar phase is also supported by a simple dielectric calculation of the Nernst distribution of mono- and divalent ions between external water and the alveolar solution. Corrections for activity coefficients only seems important above 0.5 M. The Onsager-Samaras dielectric repulsion...

  7. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang

    2016-10-04

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  8. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Sakuma, Hiroshi; Stipp, Susan Louise Svane

    2014-01-01

    We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral-fluid inte......We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral...

  9. Safety evaluation of cation-exchange resins

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.

    1977-08-01

    Results are presented of a study to evaluate whether sufficient information is available to establish conservative limits for the safe use of cation-exchange resins in separating radionuclides and, if not, to recommend what new data should be acquired. The study was also an attempt to identify in-line analytical techniques for the evaluation of resin degradation during radionuclide processing. The report is based upon a review of the published literature and upon discussions with many people engaged in the use of these resins. It was concluded that the chief hazard in the use of cation-exchange resins for separating radionuclides is a thermal explosion if nitric acid or other strong oxidants are present in the process solution. Thermal explosions can be avoided by limiting process parameters so that the rates of heat and gas generation in the system do not exceed the rates for their transfer to the surroundings. Such parameters include temperature, oxidant concentration, the amounts of possible catalysts, the radiation dose absorbed by the resin and the diameter of the resin column. Current information is not sufficient to define safe upper limits for these parameters. They can be evaluated, however, from equations derived from the Frank-Kamenetskii theory of thermal explosions provided the heat capacities, thermal conductivities and rates of heat evolution in the relevant resin-oxidant mixtures are known. It is recommended that such measurements be made and the appropriate limits be evaluated. A list of additional safety precautions are also presented to aid in the application of these limits and to provide additional margins of safety. In-line evaluation of resin degradation to assess its safety hazard is considered impractical. Rather, it is recommended that the resin be removed from use before it has received the limiting radiation dose, evaluated as described above

  10. Performance Evaluations of Ion Exchanged Zeolite Membranes on Alumina Supports

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nair, Sankar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-27

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. In the first phase of this effort, several monovalent and divalent cation-exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. In the second phase, Linde Type A (LTA) zeolite membranes were synthesized in disk and tubular supports. The pervaporation process performance was evaluated for the separation and concentration of tritiated water.

  11. Investigation of the resistance of some naturally occurring and synthetic inorganic ion exchangers against gamma radiation

    International Nuclear Information System (INIS)

    Nilchi, A.; Khanchi, A.; Ghanadi Maragheh, M.; Bagheri, A.

    2003-01-01

    The effect of various doses of gamma radiation on the ion-exchange capacity, distribution coefficient values, elution behaviour, physical effect, pH titration and infrared spectra of some synthetic inorganic ion exchangers, namely the cerium substituted phosphates; and naturally occurring inorganic ion exchangers, zeolites from different parts of Iran, have been studied systematically. No significant change has been observed in the ion-exchange capacity (with the exception of CeP(Na), CeP(Di·Na) and zeolite 5 (deposits of arababad talas)), elution behaviour, physical effect, chemical stability and the infrared spectra of the synthetic ion exchangers irradiated up to a total dose of 200 kGy, while a change has been observed in the pH-titration and distribution behaviour. The increase in pH is sharper for irradiated samples with divalent cations than for the normal samples. Furthermore, the K d values, and hence the selectivity towards certain cations increase with the total dose absorbed, reaching its optimum selectivity with the dose of 50-100 kGy. The natural zeolites chosen for these studies, show, similar pattern to those of synthetic ion exchangers, and in some cases an extremely high selectivity toward certain cations, like Be II . These make, zeolites, which are naturally occurring ion exchangers more viable economically, and extremely useful alternative in this industry

  12. Assessing the role of cation exchange in controlling groundwater chemistry during fluid mixing in fractured granite at Aespoe, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1996-06-01

    Geochemical modeling was used to simulate the mixing of dilute shallow groundwater with deeper more saline groundwater in the fractured granite of the Redox Zone at the Aespoe underground Hard Rock Laboratory (HRL). Fluid mixing simulations were designed to assess the role that cation exchange plays in controlling the composition of fluids entering the HRL via fracture flow. Mixing simulations included provision for the effects of mineral precipitation and cation exchange on fluid composition. Because the predominant clay mineral observed in fractures in the Redox Zone has been identified as illite or mixed layer illite smectite, an exchanger with the properties of illite was used to simulate cation exchange. Cation exchange on illite was modeled using three exchange sites, a planar or basal plane site with properties similar to smectite, and two edge sites that have very high affinities for K, Rb, and Cs. Each site was assumed to obey an ideal Vanselow exchange model, and exchange energies for each site were taken from the literature. The predicted behaviors of Na, Ca, and Mg during mixing were similar to those reported in a previous study in which smectite was used as the model for the exchanger. The trace elements Cs and Rb were predicted to be strongly associated with the illite exchanger, and the predicted concentrations of Cs in fracture fill were in reasonable agreement with reported chemical analyses of exchangeable Cs in fracture fill. The results of the geochemical modeling suggest that Na, Ca, and Sr concentrations in the fluid phase may be controlled by cation exchange reactions that occur during mixing, but that Mg appears to behave conservatively. There is currently not enough data to make conclusions regarding the behavior of Cs and Rb

  13. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: muscovite and talc.

    Science.gov (United States)

    Yan, Lujie; Masliyah, Jacob H; Xu, Zhenghe

    2013-08-15

    Smooth basal plane and edge surfaces of two platy phyllosilicate minerals (muscovite and talc) were prepared successfully to allow accurate colloidal force measurement using an atomic force microscope (AFM), which allowed us to probe independently interactions of divalent cations with phyllosilicate basal planes and edge surfaces. The Stern potential of basal planes and edge surfaces was obtained by fitting the measured force profiles with the classical DLVO theory. The fitted Stern potential of the muscovite basal plane became less negative with increasing Ca(2+) or Mg(2+) concentration but did not reverse its sign even at Ca(2+) or Mg(2+) concentrations up to 5 mM. In contrast, the Stern potential of the muscovite edge surface reversed at Ca(2+) or Mg(2+) concentrations as low as 0.1 mM. The Stern potential of the talc basal plane became less negative with 0.1 mM Ca(2+) addition and nearly zero with 1 mM Ca(2+) addition. The Stern potential of talc edge surface became reversed with 0.1 mM Ca(2+) or 1 mM Mg(2+) addition, showing not only a different binding mechanism of talc basal planes and edge surfaces with Ca(2+) and Mg(2+), but also different binding mechanism between Ca(2+) and Mg(2+) ions with basal planes and edge surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Synthesis, dehydration studies, and cation-exchange behavior of a new phase of niobium(V) phosphate

    International Nuclear Information System (INIS)

    Qureshi, M.; Ahmad, A.; Shakeel, N.A.; Gupta, A.P.

    1986-01-01

    Twenty-three samples of niobium(V) phosphate have been synthesized under different conditions using niobium sulfate and phosphoric acid solutions. The amorphous sample having the ion-exchange capacity of 1.06 mEq g -1 and niobium to phosphorus mole ratio of 0.670 was studied in detail for its cation-exchange behavior. Molar distribution coefficients for 25 cations have been studied on this gel at pH 1,2,3, and 5.5. Four quantitative separations of Mg 2+ -Ca 2+ , Mg 2+ -Ba 2+ , Zn 2+ -Cd 2+ , and Bi 3+ -Zn 2+ have successfully been achieved on it. The properties of this sample have been compared with those of niobium arsenate, niobium antimonate, and niobium molybdate. A tentative structural formula is proposed for this sample of niobium phosphate on the basis of chemical composition, cation-exchange capacity, pH-titration, IR spectra, T.G.A., water absorption, and heat treatment data. (author)

  15. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    Science.gov (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  16. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts.

    Science.gov (United States)

    Bhaskar, M; Surekha, M; Suma, N

    2018-02-01

    The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n +  = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.

  17. Toxic and biochemical effects of divalent metal ions in Drosophila: correlation to effects in mice and to chemical softness parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K B; Turner, J E; Christie, N T; Owenby, R K

    1983-01-01

    The mechanism of toxicity of 11 divalent cations was evaluated by determining the effects of dietary administration to Drosophila melanogaster and measurement of the frequency of lethality at 4 days, alterations in the developmental patterns of proteins, and changes in specific transfer RNAs. The relative effectiveness of divalent cations to kill Drosophila is significantly correlated to the relative values of the coordinate bond energy of the metal ions. The resistance of Drosophila to cadmium toxicity appears to be genetically determined since different inbred strains vary markedly. Also, the resistance is maximal in the young adult. Two different genetic strains seem to respond to different cations (Cd/sup 2 +/, Hg/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, Ba/sup 2 +/, and Sr/sup 2 +/) in a similar manner. Basic mechanisms of toxicity may be studied in Drosophila as well as mice since the chemical properties of the metals reflect their toxic effects on the former as closely as the latter. 25 references, 5 figures, 1 table.

  18. Separation of cations of heavy metalsfrom concentrated galvanic drains

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2018-01-01

    Full Text Available When applying galvanic coatings, soluble salts of heavy metals such as iron, copper, nickel, zinc, cadmium, chromium and other metals are used, toxic cations enter the water, with subsequent migration to the biosphere. To date, many methods have been developed for cleaning galvanic sewage, which cannot be considered sufficiently effective. The joint sorption of divalent cations of copper, nickel and cadmium from concentrated aqueous solutions was investigated. Calculation and experimental methods were used to determine the separation conditions of the bivalent ion systems that differed and close in sorption properties on the aminophosphonic polyampholyte Purolite S950 in a natrium form. It is shown that the cadmium (II cations can be isolated from solutions containing copper (II or nickel (II cations even at the height of the sorption layer of 0.13 m due to the difference in the defining characteristics of the cations. This layer height can be used not only in a chromatographic column, but also in a concentrating cartridge. Separation of the copper (II and nickel (II close to the sorption properties requires an absorbing layer of 0.76 m, which can only be used in a chromatographic column, but not for a concentrating cartridge. In this paper, the degrees of ion separation in various sorption conditions are calculated. The applicability of the conductometric method for controlling the ion exchange process is shown not only when the free cations are isolated from aqueous solutions but also bound to complexes.

  19. Polyacrylonitrile (PAN)/crown ether composite nanofibers for the selective adsorption of cations

    NARCIS (Netherlands)

    Tas, Sinem; Kaynan, Ozge; Ozden-Yenigun, Elif; Nijmeijer, Dorothea C.

    2016-01-01

    In this study, we prepared electrospun polyacrylonitrile (PAN) nanofibers functionalized with dibenzo-18-crown-6 (DB18C6) crown ether and showed the potential of these fibers for the selective recovery of K+ from other both mono- and divalent ions in aqueous solutions. Nanofibers were characterized

  20. Cation exchange process for recovery of plutonium from laboratory solutions containing chloride

    International Nuclear Information System (INIS)

    Gray, L.W.

    1978-10-01

    A cation exchange technique was developed for the separation of plutonium from laboratory solutions containing either Pu(III) or Pu(III)--Pu(IV) mixtures in acidic solutions containing chloride ions. The procedure consists of adjusting the acid concentration to less than one molar and adjusting the valence of the plutonium ion to the (III) state, if necessary. The adjusted solution is fed to a cation exchange column and washed with distilled water to remove residual chlorides from the column. Plutonium is then eluted from the column with 5M nitric acid containing 0.34M sulfamic acid. This procedure was used to separate plutonium from 1.2M chloride solution on a production-scale column. Typical plutonium recovery was 99.97%, while greater than 96% of the original chloride was rejected

  1. Model Simulations of a Field Experiment on Cation Exchange-affected Multicomponent Solute Transport in a Sandy Aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Ammentorp, Hans Christian; Christensen, Thomas Højlund

    1993-01-01

    A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic...... by batch experiments and by the composition of the cations on the exchange complex. Potassium showed a non-ideal exchange behaviour with K&z.sbnd;Ca selectivity coefficients indicating dependency on equivalent fraction and K+ concentration in the aqueous phase. The model simulations over a distance of 35 m...... and a period of 250 days described accurately the observed attenuation of Na and the expelled amounts of Ca and Mg. Also, model predictions of plateau zones, formed by interaction with the background groundwater, in general agreed satisfactorily with the observations. Transport of K was simulated over a period...

  2. Diazonium cation-exchanged clay: an efficient, unfrequented route for making clay/polymer nanocomposites.

    Science.gov (United States)

    Salmi, Zakaria; Benzarti, Karim; Chehimi, Mohamed M

    2013-11-05

    We describe a simple, off-the-beaten-path strategy for making clay/polymer nanocomposites through tandem diazonium salt interface chemistry and radical photopolymerization. Prior to photopolymerization, sodium montmorillonite (MMT) was ion exchanged with N,N'-dimethylbenzenediazonium cation (DMA) from the tetrafluoroborate salt precursor. DMA acts as a hydrogen donor for benzophenone in solution; this pair of co-initiators permits us to photopolymerize glycidyl methacrylate (GMA) between the lamellae of the diazonium-modified clay, therefore providing intercalated MMT-PGMA nanocomposites with an onset of exfoliation. This work conclusively provides a new approach for bridging reactive and functional polymers to layered nanomaterials via aryl diazonium salts in a simple, fast, efficient cation-exchange approach.

  3. Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions.

    Science.gov (United States)

    Søvik, E; LaMora, A; Seehra, G; Barron, A B; Duncan, J G; Ben-Shahar, Y

    2017-06-01

    Members of the natural resistance-associated macrophage protein (NRAMP) family are evolutionarily conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here, we show that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision-making in insects. Our studies suggest that the homeostatic regulation of the intraneuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Partitioning of hydrophobic pesticides within a soil-water-anionic surfactant system.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2009-02-01

    Surfactants can be added to pesticide-contaminated soils to enhance the treatment efficiency of soil washing. Our results showed that pesticide (atrazine and diuron) partitioning and desorbability within a soil-water-anionic surfactant system is soil particle-size dependent and is significantly influenced by the presence of anionic surfactant. Anionic surfactant (linear alkylbenzene sulphonate, LAS) sorption was influenced by its complexation with both the soluble and exchangeable divalent cations in soils (e.g. Ca2+, Mg2+). In this study, we propose a new concept: soil system hardness which defines the total amount of soluble and exchangeable divalent cations associated with a soil. Our results showed that anionic surfactant works better with soils having lower soil system hardness. It was also found that the hydrophobic organic compounds (HOCs) sorbed onto the LAS-divalent cation precipitate, resulting in a significant decrease in the aqueous concentration of HOC. Our results showed that the effect of exchangeable cations and sorption of HOC onto the surfactant precipitates needs to be considered to accurately predict HOC behavior within soil-water-anionic surfactant systems.

  5. Exchangeable cations in some soils of Mt. Stara planina

    Directory of Open Access Journals (Sweden)

    Belanović Snežana

    2005-01-01

    Full Text Available Land use in forest and pasture ecosystems requires the respecting of ecological and economic interactions between the individual components of these ecosystems. The content of nutrition elements in the soil solution depends on soil types, climate conditions and vegetation species, i.e., it is conditioned by their cycling in the ecosystem. This paper studies the cation exchange capacity in pasture and forest soils of Mt. Stara Planina.

  6. Theoretical studies on selectivity of dibenzo-18-crown-6-ether for alkaline earth divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jiyoung [Sangmyung Univ., Seoul (Korea, Republic of)

    2012-04-15

    Crown ether is one of well-known host molecules and able to selectively sequester metal cation. We employed M06-2X density functional theory with IEFPCM and SMD continuum solvation models to study selectivity of dibenzo-18-crown-6-ether (DB18C6) for alkaline earth dications, Ba{sup 2+}, Sr{sup 2+}, Ca{sup 2+}, and Mg{sup 2+} in the gas phase and in aqueous solution. Mg{sup 2+} showed predominantly strong binding affinity in the gas phase because of strong polarization of CO bonds by cation. In aqueous solution, binding free energy differences became smaller among these dications. However, Mg{sup 2+} had the best binding, being incompatible with experimental observations in aqueous solution. The enthalpies of the dication exchange reaction between DB18C6 and water cluster molecules were computed as another estimation of selectivity in aqueous solution. These results also demonstrated that Mg{sup 2+} bound to DB18C6 better than Ba{sup 2+}. We speculated that the species determining selectivity in water could be 2:1 complexes of two DB18C6s and one dication.

  7. Light-induced cation exchange for copper sulfide based CO2 reduction.

    Science.gov (United States)

    Manzi, Aurora; Simon, Thomas; Sonnleitner, Clemens; Döblinger, Markus; Wyrwich, Regina; Stern, Omar; Stolarczyk, Jacek K; Feldmann, Jochen

    2015-11-11

    Copper(I)-based catalysts, such as Cu2S, are considered to be very promising materials for photocatalytic CO2 reduction. A common synthesis route for Cu2S via cation exchange from CdS nanocrystals requires Cu(I) precursors, organic solvents, and neutral atmosphere, but these conditions are not compatible with in situ applications in photocatalysis. Here we propose a novel cation exchange reaction that takes advantage of the reducing potential of photoexcited electrons in the conduction band of CdS and proceeds with Cu(II) precursors in an aqueous environment and under aerobic conditions. We show that the synthesized Cu2S photocatalyst can be efficiently used for the reduction of CO2 to carbon monoxide and methane, achieving formation rates of 3.02 and 0.13 μmol h(-1) g(-1), respectively, and suppressing competing water reduction. The process opens new pathways for the preparation of new efficient photocatalysts from readily available nanostructured templates.

  8. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  9. Production and application of cation/anion exchange membranes of high performance

    International Nuclear Information System (INIS)

    Xu Zhili; Tan Chunhong; Yang Xiangmin

    1995-01-01

    A third affiliated factory of our university has been established for the production in batches of cation/anion exchange membranes of high performance, trade marks of which are HF-1 and HF-2. Membrane products have been applied in various fields (including industries and research institutions) with great success

  10. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Longo, Paolo; Buha, Joka; Botton, Gianluigi A.; Lazar, Sorin; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo; Prato, Mirko; Li, Hongbo; Ghosh, Sandeep; Palazon, Francisco; De Donato, Francesco; Lentijo Mozo, Sergio; Zuddas, Efisio; Falqui, Andrea

    2016-01-01

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  11. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto

    2016-01-27

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  12. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Jobelin, I. [CEA Marcoule, Nucl Energy Div, RadioChem and Proc Dept, Actinides Chem and Convers Lab, F-30207 Bagnols Sur Ceze (France); Ramiere, I. [Fuel Simulat Lab, Fuel Study Dept, F-13108 St Paul Les Durance (France)

    2010-07-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  13. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    International Nuclear Information System (INIS)

    Picart, S.; Mokhtari, H.; Jobelin, I.; Ramiere, I.

    2010-01-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  14. Magnesium isotope fractionation in cation-exchange chromatography

    International Nuclear Information System (INIS)

    Oi, T.; Yanase, S.; Kakihana, H.

    1987-01-01

    Band displacement chromatography of magnesium has been carried out successfully for the purpose of magnesium isotope separation by using a strongly acidic cation-exchange resin and the strontium ion as the replacement ion. A small but definite accumulation of the heavier isotopes ( 25 Mg, 26 Mg) has been observed at the front parts of the magnesium chromatograms. The heavier isotopes have been fractionated preferentially into the solution phase. The single-stage separation factors have been calculated for the 25 Mg/ 24 Mg and 26 Mg/ 24 isotopic pairs at 25 0 C. The reduced partition function ratios of magnesium species involved in the present study have been estimated

  15. The effect of exchangeable cations in clinoptilolite and montmorillonite on the adsorption of aflatoxin B1

    Directory of Open Access Journals (Sweden)

    DRAGAN STOJSIC

    2001-08-01

    Full Text Available The adsorption of aflatoxin B1 (AFB1 by cation-exchanged clinoptilolite zeolitic tuff and montmorillonite was investigated at 37°C and pH 3.8 from an aqueous electrolyte having a composition similar to that of gastric juices of animals. Both minerals were exchanged from the natural form to the sodium form and then to the Cu2+, Zn2+ and Co2+-rich forms. The cation exchange was different for the different cations, but in all cases the exchanges were larger on montmorillonite than on clinoptilolite. The degree of exchange on montmorillonite was 76 % for copper (from a total of CEC 0.95 meq/g, Cu2+ –0.73 meq/g and 85 % for zinc and cobalt. Under the same conditions (concentration, temperature, pH, contact time, the degree of exchange on zeolitic tuff was 12 % for Cu2+ (from a total CEC of 1.46 meq/g, Cu2+ –0.17 meq/g, 8 % for Zn2+ and 10 % for Co2+. Both groups of mineral adsorbents showed high AFB1 chemisorption indexes (ca. For the montmorillonite forms, ca ranged from 0.75 for the Cu-exchanged montmorillonite to 0.89 for the natural Ca-form, 0.90 for the Zn-exchanged form and 0.93 for the Co-exchanged montmorillonite. The adsorption of AFB1 on the different exchanged forms of clinoptilolite gave similar values of ca for the Cu and Ca forms (0.90 and values of 0.94 and 0.95 for the Zn- and Co-exchanged form. The impact of the mineral adsorbents on the reduction of essential nutrients present in animal feed (Cu, Zn, Mn and Co showed that the Ca-rich montmorillonite had a higher capability for the reduction of the microelements than the Ca-rich clinoptilolite.

  16. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    Science.gov (United States)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  17. Infrared spectroscopy and thermal analysis of prepared cation exchangers from cellulosic materials

    International Nuclear Information System (INIS)

    Nada, A.M.A.; EI-Sherief, S.; Nasr, A.; Kamel, M.

    2005-01-01

    Different cation exchangers were prepared by incorporation of phosphate and sulfate groups into acid or alkali treated wood pulp. The molecular structure of these cation exchangers were followed by infrared spectroscopy and thermal degradation analysis technique. From infrared spectra, a new bands are seen at 1200 and 980 cm-1 in phosphorylated wood pulp due to the formation of C-O-P bond. Another bands were seen at 1400, 1200 and 980 cm-1 in phospho sulfonated wood pulp due to the formation of CO- P and C-O-S bonds. Also, it is seen from infrared spectra that the crystallinity index for acid treated wood pulp has a higher value than untreated and alkali treated wood pulp. On the other hand, the acid treated and phosphorylated acid treated wood pulp have a higher activation energy than untreated and phosphorylated alkali treated wood pulp

  18. Selective cation-exchange separation of cesium(I) on chromium ferricyanide gel

    International Nuclear Information System (INIS)

    Jain, A.K.; Agrawal, S.; Singh, R.P.

    1980-01-01

    The removal of 137 Cs from liquid streams of nuclear power plants and from processed radioactive waste of nuclear fission has received increasing attention from ion-exchange chemists. A desirable exchanger (adsorbent) for 137 Cs removal is one which can adsorb it significantly and selectively in the presence of appreciable amounts (approx. 2molL -1 ) of Na + , NH 4 + , and H + . This paper deals with the exchange properties of the inorganic exchanger, chromium ferricyanide gel (CFiC). The stability of the gel in both acid and salt solutions and its high specificity for cesium are responsible for its good scavanger properties in removing long lived 137 Cs from radioactive waste. The chromium ferricyanide exchanger is highly selective for monovalent cations, the order being Ag + >Tl + >Cs + >Rb + >K + >Na + . It does not adsorb any bivalent, trivalent, and tetravalent ions even when present in trace amounts. (2 figures, 3 tables)

  19. Effects of Cationic Pendant Groups on Ionic Conductivity for Anion Exchange Membranes: Structure Conductivity Relationships

    Science.gov (United States)

    Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo

    Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.

  20. Effect of anions and cations on liquid extraction of TcO{sub 4} - in ionic liquids; Vplyv anionov a kationov na kvapalinovu extrakciu TcO4 - v ionovych kvapalinach

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, P.; Galambos, M.; Meciarova, M.; Rajec, P [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2013-04-16

    An influence of monovalent and divalent cations and anions on an liquid extraction of pertechnetate anion from aqueous media using ionic liquids solubilized in various organic solvents has been studied. Suppression of extraction percentage was obtained with a divalent cations in a compare with monovalent cations showing almost no influence on extraction percentage. In a case of anions, perchlorate anion suppressed the extraction percentage in a highest degree. (authors)

  1. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  2. Exchange of interlayer cations in micaceous minerals. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Scott, A.D.

    1975-01-01

    Information pertaining to the sorption and exchange of interlayer cations in micaceous minerals was developed along several lines. Cs sorption experiments with different minerals and particle sizes established the periods required for maximum sorption at different temperatures and downgraded the impact anticipated from a contraction of particle edges by Cs. Added interlayer Cs in even highly charged minerals (degraded muscovite) proved to be very exchangeable in air-dry, clay size particles. Heat treatments greatly retarded the exchange of this sorbed Cs and by doing so have circumvented the commonly observed small particle effects. Structural Fe in micas was shown to be susceptible to oxidation by various Br 2 treatments but these treatments also removed a lot of K that must be accounted for in a determination of changes in interlayer K exchangeability. Changes in the rate of interlayer K exchange were induced in some micaceous minerals by adding H 2 O 2 but not in others. Specific effects of heat treatments on dioctahedral and trioctahedral micas were examined in great detail. Interlayer cation exchange experiments with different concentrations of Na and Al have produced predictable results. (U.S.)

  3. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  4. Case study II: application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance-using alternatives to sodium-based chemicals.

    Science.gov (United States)

    Higgins, Matthew J; Sobeck, David C; Owens, Steven J; Szabo, Lynn M

    2004-01-01

    The objective of this study was to investigate the application of the divalent cation bridging theory (DCBT) as a tool in the chemical selection process at an activated sludge plant to improve settling, dewatering, and effluent quality. According to the DCBT, to achieve improvements, the goal of chemical selection should be to reduce the ratio of monovalent-to-divalent (M/D) cations. A study was conducted to determine the effect of using magnesium hydroxide [Mg(OH)2] as an alternative to sodium hydroxide (NaOH) at a full-scale industrial wastewater treatment plant. Floc properties and treatment plant performance were measured for approximately one year during two periods of NaOH addition and Mg(OH)2 addition. A cost analysis of plant operation during NaOH and Mg(OH)2 use was also performed. During NaOH addition, the M/D ratio was 48, while, during Mg(OH)2 addition, this ratio was reduced to an average of approximately 0.1. During the Mg(OH)2 addition period, the sludge volume index, effluent total suspended solids, and effluent chemical oxygen demand were reduced by approximately 63, 31, and 50%, respectively, compared to the NaOH addition period. The alum and polymer dose used for clarification was reduced by approximately 50 and 60%, respectively, during Mg(OH)2 addition. The dewatering properties of the activated sludge improved dewatering as measured by decreased capillary suction time and specific resistance to filtration (SRF), along with an increase in cake solids from the SRF test. This corresponded to a reduction in the volume of solids thickened by centrifuges at the treatment plant, which reduced the disposal costs of solids. Considering the costs for chemicals and solids disposal, the annual cost of using Mg(OH)2 was approximately 30,000 dollars to 115,000 dollars less than using NaOH, depending on the pricing of NaOH. The results of this study confirm that the DCBT is a useful tool for assessing chemical-addition strategies and their potential effect

  5. Formation of ZnSe/Bi2Se3 QDs by surface cation exchange and high photothermal conversion

    Directory of Open Access Journals (Sweden)

    Guozhi Jia

    2015-08-01

    Full Text Available Water-dispersed core/shell structure ZnSe/Bi2Se3 quantum dots were synthesized by ultrasonicwave-assisted cation exchange reaction. Only surface Zn ion can be replaced by Bi ion in ZnSe quantum dots, which lead to the ultrathin Bi2Se3 shell layer formed. It is significance to find to change the crystal of QDs due to the acting of ultrasonicwave. Cation exchange mechanism and excellent photothermal conversion properties are discussed in detail.

  6. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  7. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M., E-mail: luismiguel.varela@usc.es [Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Cabeza, Oscar [Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, E-15008 A Coruña (Spain); Fedorov, Maxim [Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde, John Anderson Bldg., 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); Lynden-Bell, Ruth M. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2

  8. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    International Nuclear Information System (INIS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M.; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.

    2015-01-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF 6 ]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO 3 ] − and [PF 6 ] − anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca 2+ cations. No qualitative

  9. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  10. Approach to the surface characteristics of the H+ and H+-La3+ forms of cation-exchange resins by measurement of the heat of immersion

    International Nuclear Information System (INIS)

    Suzuki, T.; Uematsu, T.

    1985-01-01

    Surface characteristics of H + and its multivalent cation-exchanged resins, which have been used as catalysts, were probed by measurement of the heats of immersion in 1-nitropropane, n-hexane, and water. It was found that the electrostatic field strengths (F) calculated from the heats of immersion in 1-nitropropane and n-hexane increased with increasing ratios of the exchanged multivalent cation (La 3+ ) in the univalent form (H + ) cation-exchange resin. This tendency was also observed in the differences in F between the La 3+ exchanged resins and H + form of the resin by using the calorimetric data obtained from the heats of immersion in water. These results suggest that the exchanged La 3 μ ion does not homogeneously interact with three univalent anionic sites (SO 3 - ) of the cation-exchange resin, but interacts with only two SO 3 - ions, that is, the La 3+ ion is localized on the surface of the resin. The difference in F obtained from the heats of immersion into water was found to be useful as a simple and rapid criterion of the surface characteristics of the cation-exchange resins. 18 references, 4 figures, 1 table

  11. Cation-exchange membranes: comparison of homopolymer, block copolymer, and heterogeneous membranes

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Llanos, J.; Žitka, Jan; Hnát, J.; Bouzek, K.

    2012-01-01

    Roč. 124, SI 1 (2012), E66-E72 ISSN 0021-8995 R&D Projects: GA MŠk(CZ) 7E08005 EU Projects: European Commission(XE) 212903 - WELTEMP Institutional research plan: CEZ:AV0Z40500505 Keywords : cation-exchange membranes * poly(phenylene oxide) * poly(ether ketones ) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.395, year: 2012

  12. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu

    2009-01-01

    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  13. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  14. Improving the Performance of Lithium Manganese Phosphate Through Divalent Cation Substitution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guoying; Richardson, Thomas J.

    2008-03-03

    Highly crystalline samples of LiMnPO{sub 4} and its analogs with partial substitution of Mn by divalent Mg, Cu, Zn, and Ni were prepared by hydrothermal synthesis and characterized by x-ray diffraction and infrared spectroscopy. Chemical oxidation produced two-phase mixtures of the initial phases LiMn{sub (1-y)}M{sub y}PO{sub 4} and the delithiated forms, Li{sub y}Mn{sub (1-y)}M{sub y}PO{sub 4}, all with the olivine structure. The extent of oxidation depended upon the quantity of oxidizing agent used and on the identity of the substituent ions. Mg, Ni and Cu were found to increase the level of delithation relative to that in pure LiMnPO{sub 4}. Mg was also shown to reduce the tendency of the oxidized phase to absorb water.

  15. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions.

    Science.gov (United States)

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.

  16. Cation Exchange Efficiency Of Modified Bentonite Using In-Situ GAMMA Radiation Polymerization Of Acrylic Acid Or Acrylamide

    International Nuclear Information System (INIS)

    ISMAIL, S.A.; FALAZI, B.

    2009-01-01

    Modified bentonites as cation exchangers were prepared by treating raw bentonite with 3N NaOH at 95 0 C followed by in-situ polymerization using gamma irradiation as well as hydrogen peroxide initiation of acrylic acid or acrylamide in the matrix.Water swelling and acid capacity were determined and cation exchange capacity for Cu 2+ , Ni 2+ and Co 2+ was evaluated. It has been found that catiexchange capacity of treated bentonite was increased as result of formed polyacrylic acid and polyacrylamide in the matrix. In case of acrylic acid, the maximum cation exchange capacities of 3.5, 3.1 and 2.5 mg equivalent/g were determined for Cu 2+ , Ni 2+ and Co 2+ , respectively, and for acrylamide, the corresponding capacities were 2.9, 2.8 and 2.6 mg equivalent/g, respectively. Water swelling was found to be associated with holding large amounts of water, for instance, 49 g of water was sorbed per one gram of the sodium salt form of polyacrylic acid in bentonite matrix, in other words the degree of swelling in water achieved 4500%.

  17. Gonadotropin stimulates oocyte translation by increasing magnesium activity through intracellular potassium-magnesium exchange

    International Nuclear Information System (INIS)

    Horowitz, S.B.; Tluczek, L.J.

    1989-01-01

    We previously showed that gonadotropin increases the K + activity in Xenopus oocytes and that this is a signal for increased translation. However, K + need not act to control synthesis directly but may act through an unidentified downstream effector. Using microinjection to vary the salt content of oocytes and concomitantly measuring [ 3 H]leucine incorporation, we found that small changes in Mg 2+ greatly affect translation rates. (Ca 2+ had little influence.) By measuring intracellular ion activities, we found that oocyte cations existed in a buffer-like (ion-exchange) equilibrium in which K + and Mg 2+ are the preponderant monovalent and divalent cations. Hence, increasing cellular K + activity might increase translation by causing Mg 2+ activity to rise. If so, the increased translation rates produced by hormone treatment or K + injection would be prevented by EDTA, a Mg 2+ chelating agent. This prediction was tested and confirmed. We conclude that, when gonadotropin increases K + activity, the cell's internal ion-exchange equilibrium is altered thereby increasing Mg 2+ activity and this up-regulates translation

  18. Effect of divalent impurities on some physical properties of LiF and NaF

    International Nuclear Information System (INIS)

    Laj, C.

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn 2+ doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M ++ □+ → M ++ + □+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of γ-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn 0 isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH - ions, probably of the M(OH) 2 type, with the two OH - ions occupying a single fluorine site. (author) [fr

  19. Retention behavior of nickel, copper, cadmium and zinc ions from aqueous solutions on silico-titanate and silico-antimonate used as inorganic ion exchange materials

    International Nuclear Information System (INIS)

    Abou-Mesalam, M.M.

    2002-01-01

    Silico-titanate (SiTi) and silico-antimonate (SiSb) have been synthesized and characterized using X-ray diffraction patterns, infrared and thermal analysis techniques. Divalent cations such as Ni 2+ , Cd 2+ , Zn 2+ and Cu 2+ in the pH range 2 to 8 have been exchanged with the exchangeable active sites of the exchangers using a batch technique. From the results obtained, the equilibrium capacities and distribution coefficient values were calculated indicating high selectivity values for Ni 2+ , Cd 2+ , Zn 2+ and Cu 2+ ions on silico-titanate and silico-antimonate compared to other titanates and antimonates. Also SiTi and SiSb show high chemical stability in H 2 O, nitric and hydrochloric acids. All these results support the suitability of the prepared materials for the removal of the toxic metals concerned from waste waters. Based on the results obtained, practical separation experiments for the above mentioned cations on SiTi and SiSb columns from aqueous waste solutions were carried out. (author)

  20. Strongly reduced band gap in NiMn2O4 due to cation exchange

    International Nuclear Information System (INIS)

    Huang, Jhih-Rong; Hsu, Han; Cheng, Ching

    2014-01-01

    NiMn 2 O 4 is extensively used as a basis material for temperature sensors due to its negative temperature coefficient of resistance (NTCR), which is commonly attributed to the hopping mechanism involving coexisting octahedral-site Mn 4+ and Mn 3+ . Using density-functional theory + Hubbard U calculations, we identify a ferrimagnetic inverse spinel phase as the collinear ground state of NiMn 2 O 4 . By a 12.5% cation exchange, a mixed phase with slightly higher energy can be constructed, accompanied by the formation of an impurity-like band in the original 1 eV band gap. This impurity-like band reduces the gap to 0.35 eV, suggesting a possible source of NTCR. - Highlights: • Density functional based calculations were used to study collinear phase of NiMn 2 O 4 . • The ground-state structure is a ferrimagnetic inverse spinel phase. • The tetrahedral and octahedral Mn cations have ferromagnetic interactions. • A 12.5% cation exchange introduces an impurity-like band in the original 1 eV gap. • The 0.35 eV gap suggests a source of negative temperature coefficient of resistance

  1. Ion exchange removal of chromium (iii) from tannery wastes by using a strong acid cation exchange resin amberlite ir-120 h+ and its hybrids

    International Nuclear Information System (INIS)

    Ahmad, T.

    2014-01-01

    A strong acid cation exchange resin Amberlite IR-120 H+ and its hybrids with Mn(OH)/sub 2/, Cu(OH)/sub 2/ and Fe(OH)/sub 3/ are used for the removal of chromium (III) from spent tannery bath. The experimental data give good fits with the Langmuir sorption model. The thermodynamic parameters entropy (delta S), enthalpy (delta H) and free energy (delta G) changes are computed, which reveal that the chromium removal from tannery wastes by ion exchangers is an endothermic, physical sorption and entropically driven process. The rate of sorption is found to increase with the increase of resin dosage, stirring speed and temperature. Different kinetic models such as film diffusion, particle diffusion and Lagergren pseudo first order are used to evaluate the mechanism of the process. It is found that the hybrid ion exchange resins have better removal capacity as compared to the parent ion exchanger. The increase in the removal capacity is found to be in the order of the corresponding PZC values of the hybrid ion exchangers. Further, it is suggested that the higher exchange capacity is the result of Donnan effect and specific adsorption of chromium by the oxides / hydroxides present inside the matrix of the organic cation exchanger. (author)

  2. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    International Nuclear Information System (INIS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-01-01

    The location of extraframework cations in Sr 2+ and Ba 2+ ion-exchanged SAPO-34 was estimated by means of 1 H and 23 Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO 2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO 2 adsorption performance. Highlights: ► Location of extraframework Sr 2+ or Ba 2+ cations was estimated by means of 1 H and 23 Na MAS NMR. ► Level of Sr 2+ or Ba 2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr 2+ and Ba 2+ ion exchanged SAPOs are outstanding CO 2 adsorbents.

  3. Study of isotopic exchange of radioactive calcium and cerium cations with y zeolites in aqueous and alcoholic solution

    Energy Technology Data Exchange (ETDEWEB)

    Guilloux, M

    1974-12-31

    Thesis. The isotopic exchange of y zeolite cations with calcium and cerium was studied. The experimental work was carried out utilizing the heterogeneous isotopic exchange between aqueous and alcoholic solutions of the cation considered and a zeolite powder containing a corresponding radioisotope. Aqueous phase exchanges demonstrate that a complex diffusion phenomenon is taking place which is capable of being decomposed into at least two distinct phases: a very slowly occurring phase representing 25 to 30% of the total exchange at ordinary temperatures and a very rapidly occurring phase. In alcoholic solutions, a rapid phase is always observed together with a slow diffusion phase although the exchange rates and diffusion coefficients may vary considerably with the nature and composition of the solvent. The results enable a hypothesis to be advanced on the ion exchange mechanism. The migration of the ions requires the crossing of two types of barrier: the large windows of the supercages (8A); the windows of the sodalite cages (2A). The two stages of the exchange kinetics can be related to these two types of barrier. (FR)

  4. Effects of the spaces available for cations in strongly acidic cation-exchange resins on the exchange equilibria by quaternary ammonium ions and on the hydration states of metal ions.

    Science.gov (United States)

    Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio

    2011-10-01

    The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.

  5. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  6. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia

    2015-01-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  7. On the mechanism of boron transfer through the cation-exchange membrane MK-40

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Varvaruk, L.A.; Grebenyuk, V.D.; Trachevskij, V.V.

    1985-01-01

    Proceses of boron electromigration in solutions with different pH values are investigated. It is shown, that boron transfer through ion-exchange membranes is determined by pH of solution. Phenomenon of boron transfer (existing in the solution in the form of boric acid) through cation-exchange membrane MK-40 has been detected and described for the first time. The process of boron (3) complexing with sulfate groups of the membrane by means of competing reversible substitution of hydroxoligands is the basis of the phenomenon

  8. Influence of Sulfonated-Kaolin On Cationic Exchange Capacity Swelling Degree and Morphology of Chitosan/Kaolin Composites

    Directory of Open Access Journals (Sweden)

    Ozi Adi Saputra

    2016-06-01

    Full Text Available Preparation of sulfonated-kaolin (sKao has been conducted and used as filler on chitosan matrix via solution casting method, namely chitosan/sKao (Cs/sKao. Swelling degree, cationic exchange capacity and thermal stability were evaluated to determine chitosan/sKao membranes performance as proton exchange membrane in fuel cell. Functional group analysis of chitosan, sKao and synthesized products were studied using Fourier Transform Infra-Red (FTIR spectroscopy. In this study, swelling degree and swelling area of Cs/sKao are also studied to determine of membrane ability to swelling which compare to unmodified chitosan/kaolin (Cs/Kao. The presence of sKao in chitosan matrix was able to improve cationic exchange capacity (CEC which proved by morphological study of membrane surface after CEC test. Moreover, Thermal stability of Cs/sKao showed the membrane has meet requirement for PEM application.

  9. Measurements on cation exchange capacity of bentonite in the long-term test of buffer material (LOT)

    International Nuclear Information System (INIS)

    Muurinen, A.

    2011-01-01

    Determination of cation exchange capacity (CEC) of bentonite in the LOT experiment was the topic of this study. The measurements were performed using the complex of copper(II) ion with trietylenetetramine [Cu(trien)] 2+ as the index cation. Testing of the determination method suggested that (i) drying and wetting of the bentonite, and (ii) exchange time affect the obtained result. The real CEC measurements were carried out with the bentonite samples taken from the A2 parcel of the LOT experiment. The CEC values of the LOT samples were compared with those of the reference samples taken from the same bentonite batch before the compaction of the blocks for the experiment. The conclusions drawn have been made on the basis of the results determined with the wet bentonite samples using the direct exchange of two weeks with 0.01 M [Cu(trien)] 2+ solution because this method gave the most complete cation exchange in the CEC measurements. The differences between the samples taken from different places of the A2 parcel were quite small and close to the accuracy of the method. However, it seems that the CEC values of the field experiment are somewhat higher than the CEC of the reference samples and the values of the hot area are higher than those obtained from the low temperature area. It is also obvious that the variation of CEC increases with increasing temperature. (orig.)

  10. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers

    International Nuclear Information System (INIS)

    Uribe I, A.; Badillo A, V.E.; Monroy G, F.

    2005-01-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope 24 Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  11. A DFT-D study of the interaction of methane, carbon monoxide, and nitrogen with cation-exchanged SAPO-34

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael [Bremen Univ. (Germany). Fachgebiet Kristallographie; University College London (United Kingdom). Dept. of Chemistry; Bell, Robert G. [University College London (United Kingdom). Dept. of Chemistry

    2015-07-01

    Density-functional theory calculations including a semi-empirical dispersion correction (DFT-D) are employed to study the interaction of small guest molecules (CH{sub 4}, CO, N{sub 2}) with the cation sites in the silicoaluminophosphate SAPO-34. Eight different cations from three different groups (alkali cations, alkaline earth cations, transition metals) are included in the study. For each case, the total interaction energy as well as the non-dispersive contribution to the interaction are analysed. Electron density difference plots are used to investigate the nature of this non-dispersive contribution in more detail. Despite a non-negligible contribution of polarisation interactions, the total interaction remains moderate in systems containing main group cations. In SAPOs exchanged with transition metals, orbital interactions between the cations and CO and N{sub 2} lead to a very strong interaction, which makes these systems attractive as adsorbents for the selective adsorption of these species. A critical comparison with experimental heats of adsorption shows reasonable quantitative agreement for CO and N{sub 2}, but a pronounced overestimation of the interaction strength for methane. While this does not affect the conclusions regarding the suitability of TM-exchanged SAPO-34 materials for gas separations, more elaborate computational approaches may be needed to improve the quantitative accuracy for this guest molecule.

  12. A DFT-D study of the interaction of methane, carbon monoxide, and nitrogen with cation-exchanged SAPO-34

    International Nuclear Information System (INIS)

    Fischer, Michael; University College London; Bell, Robert G.

    2015-01-01

    Density-functional theory calculations including a semi-empirical dispersion correction (DFT-D) are employed to study the interaction of small guest molecules (CH 4 , CO, N 2 ) with the cation sites in the silicoaluminophosphate SAPO-34. Eight different cations from three different groups (alkali cations, alkaline earth cations, transition metals) are included in the study. For each case, the total interaction energy as well as the non-dispersive contribution to the interaction are analysed. Electron density difference plots are used to investigate the nature of this non-dispersive contribution in more detail. Despite a non-negligible contribution of polarisation interactions, the total interaction remains moderate in systems containing main group cations. In SAPOs exchanged with transition metals, orbital interactions between the cations and CO and N 2 lead to a very strong interaction, which makes these systems attractive as adsorbents for the selective adsorption of these species. A critical comparison with experimental heats of adsorption shows reasonable quantitative agreement for CO and N 2 , but a pronounced overestimation of the interaction strength for methane. While this does not affect the conclusions regarding the suitability of TM-exchanged SAPO-34 materials for gas separations, more elaborate computational approaches may be needed to improve the quantitative accuracy for this guest molecule.

  13. The effect of disorder and fluctuations on the magnetotransport of a double-exchange ferromagnet (abstract)

    International Nuclear Information System (INIS)

    Byers, J.M.

    1996-01-01

    The discovery of colossal magnetoresistance (CMR) in the doped perovskite manganites has reawakened interest in the double-exchange mechanism proposed to Zener. To account for the close relation between ferromagnetism and metallic transport in lanthanum manganites doped with divalent cation (Ca, Sr, Ba) Zener claimed that an electron could delocalize on lattice of spins and still conform to Hund close-quote s Rule if a ferromagnetic coupling between spins were mediated by that same electron. Thus, the onset of metallic behavior (delocalization) is intimately linked to ferromagnetic ordering of the spin lattice. Clearly, the double-exchange mechanism provides some necessary physics but is not sufficient in explaining the key mystery of the CMR materials: What causes the large peak in the resistivity vs. temperature and why is it removed by an applied magnetic field. The effect of disorder and fluctuations on the double-exchange mechanism may provide the answers. Several sources of disorder in these materials act to form a mobility edge via Anderson localization: intrinsic divalent/trivalent cation disorder, off-diagonal disorder caused by the spin lattice and oxygen vacancy disorder. A mean-field calculation reveals that below the Curie temperature those carriers aligned opposite to the magnetization experience a narrowing band as the temperature is reduced. Fermi glass behavior is induced in this minority carrier band by the Fermi level falling below the mobility edge. However, the mean-field result does not contain a peak in resistivity since the majority carrier band does not behave as a Fermi glass and effectively open-quote open-quote shorts out close-quote close-quote the more resistive minority conduction channel. The formation of the resistivity peak requires the inclusion of ferromagnetic fluctuations above the Curie temperature that tend to open-quote open-quote mix close-quote close-quote the two conduction channels. (Abstract Truncated)

  14. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    Science.gov (United States)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on

  15. Numerical simulation of cesium and strontium migration through sodium bentonite altered by cation exchange with groundwater components

    International Nuclear Information System (INIS)

    Jacobsen, J.S.; Carnahan, C.L.

    1988-10-01

    Numerical simulations have been used to investigate how spatial and temporal changes in the ion exchange properties of bentonite affect the migration of cationic fission products from high-level waste. Simulations in which fission products compete for exchange sites with ions present in groundwater diffusing into the bentonite are compared to simulations in which the exchange properties of bentonite are constant. 12 refs., 3 figs., 2 tabs

  16. Development of novel ion-exchange membranes for electrodialysis of seawater by electron-beam-induced graft polymerization (4). Polymeric structures of cation-exchange membranes based on nylon-6 film

    International Nuclear Information System (INIS)

    Miyazawa, Tadashi; Asari, Yuki; Miyoshi, Kazuyoshi; Umeno, Daisuke; Saito, Kyoichi; Nagatani, Takeshi; Yoshikawa, Naohito; Motokawa, Ryuhei; Koizumi, Satoshi

    2010-01-01

    Cation-exchange membranes containing a sulfonic acid group were prepared by electron-beam-induced graft polymerization of sodium styrene sulfonate (SSS) onto a nylon-6 film with a thickness of 25 μm. The lamella sizes and lamella-to-lamella intervals of the resultant cation-exchange membranes (SSS membranes) were evaluated by X-ray diffraction (XRD) analysis and small-angle neutron scattering (SANS), respectively. With increasing degrees of grafting, the lamella size decreased, whereas the lamella-to-lamella interval increased. This can be explained by that the poly-SSS chain grafted to the periphery of the lamella of nylon 6 partially destroys the lamella and invades the amorphous domain among the lamella. The SSS membrane with a degree of grafting of 150% exhibited a similar performance in the electrodialysis of 0.5 M sodium chloride as a current cation-exchange membrane and possessed the lamella sizes and lamella-to-lamella intervals of 7.6 and 13 nm, respectively. (author)

  17. Solid-State Properties of One-Dimensional Metals Based on bis(oxalato)platinate Anions with Divalent Cations

    DEFF Research Database (Denmark)

    Braude, A.; Carneiro, K.; Jacobsen, Claus Schelde

    1987-01-01

    The crystal structures, superstructures, dc conductivity, optical properties, and thermopower of six linear-chain conductors of the type M0.8[Pt(C2O4)2]⋅(M=Ni,Co,Zn,Fe,Mg,Mn), where M is a divalent metal (M=Ni,Co,Zn,Fe,Mg,Mn), have been studied. At high temperatures they form a common orthorhombi...

  18. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  19. Applications of pressurized cation exchange chromatography for fission yield determination

    International Nuclear Information System (INIS)

    Yan Shuheng; Lin Fa; Zhang Hongdi; Li Xueliang; Zhang Shulan

    1988-01-01

    In order to determine the fission yields of lanthanides precisely, lanthanides with carriers of 1-2 mg per element are separated from each other by means of pressurized cation exchange chromatography - αHIBA concentration gradient elution. The effect of initial loading technique, concentration gradient, flow rate, and temperature on separation were investigated in detail. Under the optimum conditions adapted according to the results given in this work, all the lanthanides can be completely separated within about 90 minutes with a recovery of more than 95% and purity higher than 99%. (author) 3 refs.; 6 figs

  20. Comparative sensing of aldehyde and ammonia vapours on synthetic polypyrrole-Sn(IVarsenotungstate nanocomposite cation exchange material

    Directory of Open Access Journals (Sweden)

    Asif Ali Khan

    2017-06-01

    Full Text Available Polypyrrole-Sn(IVarsenotungstate (PPy-SnAT conductive nanocomposite cation exchange have been synthesized by in-situ chemical oxidative polymerization of polypyrrole with Sn(IVarsenotungstate (SnAT. PPy-SnAT nanocomposite was characterized by Fourier transform infra-red spectroscopy (FTIR, X-Ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy-dispersive x-ray (EDX and thermogravimetric analysis (TGA. The ion exchange capacity (IEC and DC electrical conductivity of nanocomposite was found to be 2.50 meq/g and 5.05 × 10−1 S/cm respectively. The nanocomposite showed appreciable isothermal stability in terms of DC electrical conductivity retention under ambient condition up to 130 °C. The nanocomposite cation exchange based sensor for detection of formaldehyde and ammonia vapours were fabricated at room temperature. It was revealed that the resistivity of the nanocomposite increases on exposure to higher percent concentration of ammonia and lower concentration of formaldehyde at room temperature (25 °C.

  1. Evaluation of the field-scale cation exchange capacity of Hanford sediments

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.I.

    2003-02-01

    Three-dimensional simulations of unsaturated flow, transport, and multi-component, multi-site cation exchange in the vadose zone were used to analyze the migration of a plume resulting from a leak of the SX-115 tank at the Hanford site, USA. The match within about 0.5 meters of the positions of retarded sodium and potassium fronts suggests that the laboratory-derived parameters may be used in field-scale simulations of radionuclide migration at the Hanford site.

  2. Cation-exchanged SAPO-34 for adsorption-based hydrocarbon separations: predictions from dispersion-corrected DFT calculations.

    Science.gov (United States)

    Fischer, Michael; Bell, Robert G

    2014-10-21

    The influence of the nature of the cation on the interaction of the silicoaluminophosphate SAPO-34 with small hydrocarbons (ethane, ethylene, acetylene, propane, propylene) is investigated using periodic density-functional theory calculations including a semi-empirical dispersion correction (DFT-D). Initial calculations are used to evaluate which of the guest-accessible cation sites in the chabazite-type structure is energetically preferred for a set of ten cations, which comprises four alkali metals (Li(+), Na(+), K(+), Rb(+)), three alkaline earth metals (Mg(2+), Ca(2+), Sr(2+)), and three transition metals (Cu(+), Ag(+), Fe(2+)). All eight cations that are likely to be found at the SII site (centre of a six-ring) are then included in the following investigation, which studies the interaction with the hydrocarbon guest molecules. In addition to the interaction energies, some trends and peculiarities regarding the adsorption geometries are analysed, and electron density difference plots obtained from the calculations are used to gain insights into the dominant interaction types. In addition to dispersion interactions, electrostatic and polarisation effects dominate for the main group cations, whereas significant orbital interactions are observed for unsaturated hydrocarbons interacting with transition metal (TM) cations. The differences between the interaction energies obtained for pairs of hydrocarbons of interest (such as ethylene-ethane and propylene-propane) deliver some qualitative insights: if this energy difference is large, it can be expected that the material will exhibit a high selectivity in the adsorption-based separation of alkene-alkane mixtures, which constitutes a problem of considerable industrial relevance. While the calculations show that TM-exchanged SAPO-34 materials are likely to exhibit a very high preference for alkenes over alkanes, the strong interaction may render an application in industrial processes impractical due to the large amount

  3. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  4. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for

  5. Inhibition of filiform corrosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments

    International Nuclear Information System (INIS)

    Williams, G.; McMurray, H.N.

    2012-01-01

    Highlights: ► Filiform corrosion (FFC) inhibition by various smart-release pigments was evaluated by SKP. ► Rare earth cation-containing pigments were ineffective at halting FFC propagation. ► Metal oxo-anions and organic copper-specific agents were exchanged into hydrotalcite. ► Effective inhibition of FFC was demonstrated by anions which stopped copper re-plating. - Abstract: In-coating cation and anion exchange pigments are studied with respect to their ability to inhibit chloride-induced filiform corrosion (FFC) on organic-coated AA2024-T3 aluminium alloy substrates. In-situ scanning Kelvin probe potentiometry is used to quantify both underfilm potentials associated with populations of propagating corrosion filaments and the kinetics of coating disbondment. Smart-release bentonite pigments containing exchangeable cerium (III) and yttrium (III) cations are shown to be largely ineffective in reducing rates of FFC propagation. The reasons for this are discussed in terms of the chemistry of the electrolyte-filled corrosion filament head. In contrast, anion-exchange hydrotalcite (HT) based pigments are highly effective inhibitors of FFC. A comparison of the extent of FFC observed for various inorganic exchangeable anions is made with as-received HT comprising carbonate anions. Of the anions evaluated, exchangeable chromate unsurprisingly provides the highest FFC inhibition efficiency. It is also demonstrated that exchanging the native carbonate ions for certain organic species which act as complexing agents for copper ions, gives rise to an equivalent level of FFC inhibition. The implication of these findings with respect to the mechanism of FFC on copper containing aluminium alloys is considered.

  6. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Litovitz, T.A.; Simmons, C.J.; Simmons, J.H.; Macedo, P.B.

    1981-01-01

    A process for disposing of toxic materials such as radioactive waste comprises reacting a porous silicate glass or silica gel, having interconnected pores and alkali metal cations. Group 1b metal cations and/or ammonium cation bonded to silicon through divalent oxygen linkages on the internal surfaces of said pores, with a toxic material containing toxic cations as well as non-cationic portions. The toxic cations are capable of displacing the alkali metal cations, Group 1b metal cations and/or ammonium cations to provide a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. (author)

  7. Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals

    International Nuclear Information System (INIS)

    Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.; Nachshen, D.A.

    1987-01-01

    To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SER was Ca ≥ Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of 45 Ca, 133 Ba, 85 Sr, or 54 Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer

  8. Cation Exchange Capacity of Biochar: An urgent method modification

    Science.gov (United States)

    Munera, Jose; Martinsen, Vegard; Mulder, Jan; Tau Strand, Line; Cornelissen, Gerard

    2017-04-01

    A better understanding of the cation exchange capacity (CEC) values of biochar and its acid neutralizing capacity (ANC) is crucial when tailoring a single biochar for a particular soil and crop. Literature values for the CEC of biochar are surprisingly variable, commonly ranging from 5 to 50 cmol+/Kg even as high as 69 to 204 cmol+/Kg and often poorly reproducible, suggesting methodological problems. Ashes and very fine pores in biochar may complicate the analysis and thus compromise the results. Here, we modify and critically assess different steps in a common method for CEC determination in biochar and investigate how the measured CEC may be affected by slow cation diffusion from micro-pores. We modified the existing ammonium acetate (NH4-OAc) method (buffered at pH 7), based on displaced ammonium (NH4+) in potassium chloride (KCl) extracts after removing excess NH4-OAc with alcohol in batch mode. We used pigeon pea biochar (produced at 350 ˚C; particle size 0.5mm to 2mm) to develop the method and we tested its reproducibility in biochars with different ANC. The biochar sample (1.00g) was pH-adjusted to 7 after 2 days of equilibration, using hydrochloric acid (HCl), and washed with water until the conductivity of the water was modified method were highly reproducible and that 1 day shaking with NH4OAc and KCl is enough to saturate the exchange sites with NH4+ and subsequently with K+. The biochar to NH4OAc solution ratio did not affect the measured CEC. Three washings with at least 15 ml alcohol are required to remove excess NH4-OAc. We found the CEC of biochar with the displacement method from pigeon pea, corncob, rice husk and cacao shell to be 26.4(±0.3), 19.2(±0.5), 20.5(±0.4), 46.5±(0.2) cmol+/Kg, respectively. The selected batch experiment allows a large sample throughput, less laboratory equipment is needed and shaking ensures better contact between the extracting solution and the exchange sites.

  9. Adsorption behavior of cation-exchange resin-mixed polyethersulfone-based fibrous adsorbents with bovine serum albumin

    NARCIS (Netherlands)

    Zhang, Y.; Zhang, Yuzhong; Borneman, Zandrie; Koops, G.H.; Wessling, Matthias

    2006-01-01

    The cation-exchange resin-mixed polyethersulfone (PES)-based fibrous adsorbents were developed to study their adsorption behavior with bovine serum albumin (BSA). A fibrous adsorbent with an open pore surface had much better adsorption behavior with a higher adsorbing rate. The adsorption capacity

  10. Interactions of chlorphenesin and divalent metal ions with phosphodiesterase.

    Science.gov (United States)

    Edelson, J; McMullen, J P

    1976-09-01

    Chlorphenesin inhibition of the hydrolysis of cyclic AMP by guinea-pig lung phosphodiesterase was reversed by the addition of exogenous magnesium ions. Chlorphenesin and theophylline inhibition of this enzyme was shown to be noncompetitive when the substrate concentration was low. Kinetic studies of the inhibition of beef heart phosphodiesterase by chlorphenesin and theophylline indicated that the substrate concentration was a factor in determining whether inhibition was competitive or noncompetitive. Calcium, cobalt and copper ions were inhibitory to guinea-pig lung phosphodiesterase. The inhibition due to chlorphenesin was partially reversed by low (40 mM or less) concentrations of barium ions; high concentrations of barium ions, or manganese ions, were inhibitory. The concentration of the divalent cation did not affect the type of inhibition that was observed.

  11. Reversible CO binding enables tunable CO/H₂ and CO/N₂ separations in metal-organic frameworks with exposed divalent metal cations.

    Science.gov (United States)

    Bloch, Eric D; Hudson, Matthew R; Mason, Jarad A; Chavan, Sachin; Crocellà, Valentina; Howe, Joshua D; Lee, Kyuho; Dzubak, Allison L; Queen, Wendy L; Zadrozny, Joseph M; Geier, Stephen J; Lin, Li-Chiang; Gagliardi, Laura; Smit, Berend; Neaton, Jeffrey B; Bordiga, Silvia; Brown, Craig M; Long, Jeffrey R

    2014-07-30

    Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.09(2) Å for M = Ni to 2.49(1) Å for M = Zn and M-C-O angles ranging from 161.2(7)° for M = Mg to 176.9(6)° for M = Fe. Electronic structure calculations employing density functional theory (DFT) resulted in good agreement with the trends apparent in the infrared spectra and crystal structures. These results represent the first crystallographically characterized magnesium and zinc carbonyl compounds and the first high-spin manganese(II), iron(II), cobalt(II), and nickel(II) carbonyl species. Adsorption isotherms indicate reversible adsorption, with capacities for the Fe, Co, and Ni frameworks approaching one CO per metal cation site at 1 bar, corresponding to loadings as high as 6.0 mmol/g and 157 cm(3)/cm(3). The six frameworks display (negative) isosteric heats of CO adsorption ranging from 52.7 to 27.2 kJ/mol along the series Ni > Co > Fe > Mg > Mn > Zn, following the Irving-Williams stability order. The reversible CO binding suggests that these frameworks may be of utility for the separation of CO from various industrial gas mixtures, including CO/H2 and CO/N2. Selectivities determined from gas adsorption isotherm data using ideal adsorbed solution theory (IAST) over a range of gas compositions at 1 bar and 298 K indicate that all six M2(dobdc) frameworks could potentially be used as solid adsorbents to replace current cryogenic distillation technologies, with the choice of M dictating adsorbent regeneration energy and the level of purity of the resulting gases.

  12. Stability constants for some divalent metal ion/crown ether complexes in methanol determined by polarography and conductometry

    NARCIS (Netherlands)

    Chen, L.; Bos, M.; Grootenhuis, P.D.J.; Christenhusz, A.; Hoogendam, E.; Reinhoudt, David; van der Linden, W.E.

    1987-01-01

    Stability constants in methanol at 25.0°C were evaluated for the complexes of the divalent cations Ca2+, Ni2+, Zn2+, Pb2+, Mg2+, Co2+ and Cu2+ with the macrocyclic polyethers 15-crown-5 (15C5), 18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6) and dibenzo-24-crown-8 (DB24C8). The log K values of

  13. Cation mobility in H+/Na+ ion exchange products of acid tantalum and zirconium phosphates

    International Nuclear Information System (INIS)

    Tarnopol'skij, V.A.; Yaroslavtsev, A.B.

    2000-01-01

    Ionic conductivity of Na + /H + exchange products on acid zirconium phosphate with different substitution degree and on acid tantalum phosphate, where ion exchange occurs via formation of a continuous series of solid solutions, was studied by the method of conductometry. It was ascertained that ionic conductivity decreases monotonously with growth in substitution degree of H + for Na + in acid tantalum phosphate. Anomalous increase in ionic conductivity of ion exchange products on acid zirconium phosphate with a low substitution degree has been detected for the first time. Formation of a double electric layer with a high concentration of cationic defects on the interface surface is the reason for increase in ionic conductivity [ru

  14. Effect of charge of quaternary ammonium cations on lipophilicity and electroanalytical parameters : Task for ion transfer voltammetry

    NARCIS (Netherlands)

    Poltorak, L.; Sudholter, E.J.R.; de Smet, L.C.P.M.

    2017-01-01

    The electrochemical behavior of three differently charged drug molecules (zwitter-ionic acetylcarnitine, bi-cationic succinylcholine and tri-cationic gallamine) was studied at the interface between two immiscible electrolyte solutions. Tetramethylammonium was used as a model mono cationic

  15. Iridium containing honeycomb Delafossites by topotactic cation exchange.

    Science.gov (United States)

    Roudebush, John H; Ross, K A; Cava, R J

    2016-06-07

    We report the structure and magnetic properties of two new iridium-based honeycomb Delafossite compounds, Cu3NaIr2O6 and Cu3LiIr2O6, formed by a topotactic cation exchange reaction. The starting materials Na2IrO3 and Li2IrO3, which are based on layers of IrO6 octahedra in a honeycomb lattice separated by layers of alkali ions, are transformed to the title compounds by a topotactic exchange reaction through heating with CuCl below 450 °C; higher temperature reactions cause decomposition. The new compounds display dramatically different magnetic behavior from their parent compounds - Cu3NaIr2O6 has a ferromagnetic like magnetic transition at 10 K, while Cu3LiIr2O6 retains the antiferromagnetic transition temperature of its parent compound but displays significantly stronger dominance of antiferromagnetic coupling between spins. These results reveal that a surprising difference in the magnetic interactions between the magnetic Ir ions has been induced by a change in the non-magnetic interlayer species. A combination of neutron and X-ray powder diffraction is used for the structure refinement of Cu3NaIr2O6 and both compounds are compared to their parent materials.

  16. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    Science.gov (United States)

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  17. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Ion exchange centres of sorption of alkaline and alkaline-earth cations on hydrated titanium and tin dioxides

    International Nuclear Information System (INIS)

    Denisova, T.A.; Perekhozheva, T.N.; Sharigin, L.M.; Pletnev, R.N.

    1986-01-01

    The nature of exchange centres of one- and two-charged cations on hydrated titanium and tin dioxides by means of paramagnetic resonance method is studied. The sorption of cations of Na + , Cs + , Ca 2+ was carried out at 25 and 90 deg C at ph=5.0-10.4 on samples of hydrated titanium dioxide and hydrated tin dioxide, obtained by sol gel method and calcined at 150 deg C and 300 deg C accordingly.

  19. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  20. Influence of thermal treatment on bentonite used as adsorbent for Cd, Pb, Zn retention from mono-solute and poly-solute aqueous solutions

    Directory of Open Access Journals (Sweden)

    Susana Yamila Martinez Stagnaro

    2012-08-01

    Full Text Available The retentions of Zn, Cd and Pb cations by one treated bentonite up to 750 °C were analyzed. The retentions were evaluated by using mono-and poly-solute aqueous solutions of such cations. The adsorptions were carried out in batch system at room temperature. The solid/liquid ratio was 2% wt.v-1. The solids were characterized by X-ray diffraction, thermal and chemical analyses. The Zn cation from mono- or polysolute-solutions was retained in higher amount than Cd and Pb cations in similar solution types by bentonite. The retentions were effective up to 450 °C calcined bentonite, after that, the retention capacity decreased in concordance with dehydroxylation of the structure of clay minerals.

  1. Partial exchange of the Li+, Na+ and K+ alkaline cations in the HNi(PO4).H2O layered compound

    International Nuclear Information System (INIS)

    Escobal, Jaione; Mesa, Jose; Pizarro, Jose; Bazan, Begona; Arriortua, Maria; Rojo, Teofilo

    2006-01-01

    The exchange of the Li + (1), Na + (2) and K + (3) alkaline cations in the layered HNi(PO 4 ).H 2 O was carried out starting from a methanolic solution containing the Li(OH).H 2 O hydroxide for (1) and the M(OH) (M=Na and K) hydroxides together with the (C 6 H 13 NH 2 ) 0.75 HNiPO 4 .H 2 O phases for (2) and (3). The compounds are stable until, approximately, 280 o C for (1) and 400 deg. C for phases (2) and (3), respectively. The IR spectra show the bands belonging to the water molecule and the (PO 4 ) 3- oxoanion. The diffuse reflectance spectra indicate the existence of Ni(II), d 8 , cations in slightly distorted octahedral geometry. The calculated Dq and Racah (B and C) parameters have a mean value of Dq=765, B=905 and C=3895cm -1 , respectively, in accordance with the values obtained habitually for this octahedral Ni(II) cation. The study of the exchange process performed by X-ray powder diffraction indicates that the exchange of the Li + cation in the lamellar HNi(PO 4 ).H 2 O phase is the minor rapid reaction, whereas the exchange of the Na + and K + cations needs the presence of the intermediate (C 6 H 13 NH 2 ) 0.75 HNiPO 4 .H 2 O intercalate in order to obtain the required product with the sodium and potassium ions. The Scanning electronic microscopy (SEM) images show a mean size of particle of 5μm. The Li + exchanged compound exhibits small ionic conductivity (Ωcm -1 is in the 10 -8 -10 -9 range) probably restrained by the methanol solvent. Magnetic measurements carried out from 5K to room temperature indicate antiferromagnetic coupling as the major interaction in the three phases. Notwithstanding the Li and K phases show a weak ferromagnetism at low temperatures

  2. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    Science.gov (United States)

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  3. Radiochemical and thermal studies of the cation-exchanged forms of synthetic zeolite Linde sieve A

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S P [Saugar Univ. (India). Dept. of Chemistry

    1976-02-01

    The compositions of the cobalt and silver-exchanged forms of synthetic zeolite Sieve A have been determined by radiochemical and TGA studies and correspond to Co/sub 6/A.19.8H/sub 2/O and Ag/sub 12/..cap alpha... 20H/sub 2/O respectively (A=Al/sub 12/Si/sub 12/O/sub 48//sup 12/-). Heating of these zeolites inhibits their capacity for cation exchange and water absorption. No evidence of occluded NaAlO/sub 2/ has been found.

  4. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    Science.gov (United States)

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  5. Separation of macro-quantities of actinide elements at Savannah River by high-pressure cation exchange

    International Nuclear Information System (INIS)

    Burney, G.A.

    1980-01-01

    Large-scale separation of actinides from fission products and from each other by pressurized cation exchange chromatography at Savannah River is reviewed. Several kilograms of 244 Cm have been separated, with each run containing as much as 150 g of 244 Cm. Dowex 50W-X8 (Dow Chemical Co.) cation resin, graded to 30-70 micron size range, is used, and separation is made by eluting with 0.05M diethylenetriamine pentaacetic acid (DTPA) at a pH of 3. The effluent from the column is continuously monitored by a BF 3 detector, a NaI detector, and a lithium-drifted germanium detector and gamma spectrometer to guide collection of product fractions. Operating the columns at 300 to 1000 psi pressure eliminates resin bed disruption caused by radiolytically produced gases, and operating at increased flow rates decreases the radiolytic degradation of the resin per unit of product processed. A portion of the hot canyon of a production radiochemical separation plant was converted from a remote crane-operated facility to a master-slave manipulator-operated facility for separation and purification of actinide elements by pressurized cation exchange. It also contains an evaporator, furnaces, a calorimeter, and several precipitators and associated tanks. Actinide processing from target dissolution to packaging of purified product is planned in this facility

  6. Crystal structure and cation exchanging properties of a novel open framework phosphate of Ce (IV)

    Energy Technology Data Exchange (ETDEWEB)

    Bevara, Samatha; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Insitute, Anushakti Nagar, Mumbai 400094 (India); Patwe, S. J. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sinha, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Mishra, R. K.; Kumar, Amar; Kaushik, C. P. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-05-23

    Herein we report preparation, crystal structure and ion exchanging properties of a new phosphate of tetravalent cerium, K{sub 2}Ce(PO{sub 4}){sub 2}. A monoclinic structure having framework type arrangement of Ce(PO{sub 4}){sub 6} units formed by C2O{sub 8} square-antiprism and PO{sub 4} tetrahedra is assigned for K{sub C}e(PO{sub 4}){sub 2}. The K{sup +} ions are occupied in the channels formed by the Ce(PO{sub 4})6 and provide overall charge neutrality. The unique channel type arrangements of the K+ make them exchangeable with other cations. The ion exchanging properties of K2Ce(PO4)2 has been investigated by equilibrating with solution of 90Sr followed by radiometric analysis. In optimum conditions, significant exchange of K+ with Sr2+ with Kd ~ 8000 mL/g is observed. The details of crystal structure and ion exchange properties are explained and a plausible mechanism for ion exchange is presented.

  7. Effects of inorganic acids and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process.

    Science.gov (United States)

    Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2015-11-07

    In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

  8. Removal of radiocesium using cation exchange resin

    International Nuclear Information System (INIS)

    Morita-Murase, Yuko; Mizumura, Ryosuke; Tachibana, Yoshitaka; Kanazawa, Hideko

    2013-01-01

    Cation exchange resins (calcium polystyrene sulfonate, Ca-resin and sodium polystyrene sulfonate, Na-resin) have been used as agents to improve hyperkerlemia. For removing 137 Cs from the human body, the adsorption ability of the resin for 137 Cs was examined and evaluated. Resin (0.03 g) and 137 Cs (ca.1 kBq) were introduced into 3 mL of water, the Japanese Pharmacopoeia 1st fluid for a dissolution test (pH 1.2) and 2nd fluid (pH 6.8), respectively, and shaken. After 1-3 hours, the 137 Cs adsorption (%) of Na-resin was 99% in water, 60% in a pH 1.2 fluid and, 66% in a pH 6.8 fluid. By adding potassium, the 137 Cs adsorption (%) of Ca-resin was reduced. However, the 137 Cs adsorption (%) of Na-resin was almost unchanged. These results show that both resins have adsorption ability for 137 Cs in the stomach and the intestines. Therefore, the proposed method will be an effective means in the case of a radiological emergency due to 137 Cs. (author)

  9. Explosion of cation exchange column in americium recovery service, Hanford plant, August 30, 1976

    International Nuclear Information System (INIS)

    1976-01-01

    This document is a collection of thirty references related to the explosion of the cation exchange column in the Americium Recovery Service of the Hanford Atomic Products Operation, Richland, Washington, on August 30, 1976. Some of the documents are related to the design and safety studies, while others refer to the accident and resulting decontamination efforts, investigations, and legal consequences

  10. Methanosarcina acetivorans C2A topoisomerase IIIα, an archaeal enzyme with promiscuity in divalent cation dependence.

    Directory of Open Access Journals (Sweden)

    Raymond Morales

    Full Text Available Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30-35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg(2+, Ca(2+, Sr(2+, Ba(2+, Mn(2+, Fe(2+, Co(2+, Ni(2+, Cu(2+, Zn(2+ and Cd(2+. Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin and type II (etoposide, novobiocin and nalidixic acid inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1-586 and a C-terminal (587-752 fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn(2+ binding of the enzyme is also provided.

  11. Synthesis, purification, and time-dependent disposition studies of 9- or 10-mono-iodostearic acid and 9- and 10-mono-iodostearyl carnitine

    International Nuclear Information System (INIS)

    Reed, K.W.

    1985-01-01

    The purpose of this investigation was to evaluate the potential use of radiolabeled 9- or 10-mono-iodostearyl carnitine as a perfusion and metabolic imaging agent for the heart. Radiochemical purity was achieved and determined by the use of silica gel and/or anion exchange resin chromatography. Radiochemical yields of 45-63 and 4% were obtained for the fatty acid and carnitine ester, respectively. Male albino mice were sacrificed at 2, 5, 7, 10, 15, 20, 30, and 50 minutes post-injection with either 125 I 9- or 10-mono-iodostearic acid or 9- or 10-mono-iodostearyl (-) carnitine. The lungs, liver heart, kidney, spleen, pancreas, small intestine, stomach, thyroid, blood, fat, and skeletal muscle tissue were excised and assayed for levels of radioactivity in a NaI crystal well counter. The very low target-to-nontarget ratios obtained with 125 I 9- or 10-mono-iodostearyl carnitine in mice strongly suggest that radioiodinated 9- or 10-mono-iodostearyl carnitine is not suitable for use as a myocardial imaging agent. However, radioiodinated 9- or 10-mono-iodostearic acid showed promise as a myocardial imaging agent and may warrant further investigation

  12. Determination of Cation Distributions in Mineral Structures by use of the Rietveld Full-Profile Refinement Technique

    International Nuclear Information System (INIS)

    Nord, A.G.

    1986-01-01

    Use of the Rietveld full-profile refinement technique with X-ray or neutron powder diffraction data for the determination of divalent-metal cation distributions in three mineral structure types (farringtonite, grafonite, sarcopside) is demonstrated. The accuracy of the conventional cation distribution coefficient Ksub(D) is about 5-10 percent with 24-46 parameters to be refined, and the averaged metal-oxygen distances are reliable and well correlated to the observed cation distribution pattern. In particular the usefulness of the Rietveld technique in combination with Moessbauer spectroscopy is stressed. Some concluding remarks are also given

  13. An Investigation into the Effect of Cation-exchange on the Adsorption Performance of Indium-based Sodalite-ZMOF

    KAUST Repository

    Samin, Umer A.

    2016-04-13

    There is a pressing need for advanced solid-state materials that can be implemented in industrial gas separation processes to achieve separations with a significantly reduced energy input compared to what is typically required from current technologies. Although certain porous materials like zeolites bear some commercial significance for gas separation; their inherent lack of tunability limits the extent to which these materials may be exploited in industry. Zeolite-like Metal-Organic Frameworks (ZMOFs) are a sub-class of Metal-Organic Framework materials (MOFs) that show a structural semblance to zeolites while possessing the tunability advantages of MOF materials. ZMOFs which are topologically similar to certain zeolites can be functionalised and tuned in numerous ways to improve their gas separation properties. In this work, indium-based sod-ZMOF was tuned by cation-exchange and then characterised by different experimental tools such as single-crystal x-ray diffraction, elemental analysis and gas adsorption. It was found that various parameters like the choice of cation, the concentration of salt solution and the choice of solvent had a significant bearing on the cation-exchange of sod-ZMOF and its subsequent adsorption properties.

  14. U3O8 powder from uranyl-loaded cation exchange resin

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1985-01-01

    Large batches of U 3 O 8 , suitable for powder metallurgy fabrication of Al-U 3 O 8 cores for reactor fuel tubes, have been produced by deep-bed calcination of granular uranyl-loaded macroporous sulfonate cation exchange resin at 900 to 950 0 C in air. Deep-bed calcination is the backup process for the reference process of rotary calcination and sintering. These processes are to be used for recycling uranium, and to produce U 3 O 8 in the Fuel Production Facility to be built at the Savannah River Plant. 2 refs., 6 figs

  15. Characterization of expandable clay minerals in Lake Baikal sediments by thermal dehydration and cation exchange

    Czech Academy of Sciences Publication Activity Database

    Grygar, Tomáš; Bezdička, Petr; Hradil, David; Hrušková, Michaela; Novotná, Kateřina; Kadlec, Jaroslav; Pruner, Petr; Oberhansli, H.

    2005-01-01

    Roč. 53, č. 4 (2005), s. 389-400 ISSN 0009-8604 R&D Projects: GA AV ČR(CZ) IAA3032401 Grant - others:European Commission(XE) EVK2-2000-00057 Institutional research plan: CEZ:AV0Z40320502 Keywords : cation exchange capacity * Lake Baikal * Lake Sediments Subject RIV: CA - Inorganic Chemistry Impact factor: 1.364, year: 2005

  16. Assembly of multicomponent nanoframes via the synergistic actions of graphene oxide space confinement effect and oriented cation exchange

    International Nuclear Information System (INIS)

    Liu, Yanguo; Zhao, Yanyan; Sun, Hongyu; Zhang, Beibei; Cao, Sufeng; Xu, Xiaobin; Wang, Zhihong; Arandiyan, Hamidreza

    2015-01-01

    Multicomponent nanoframes (NFs) with a hollow structural character have shown the potential to be applied in many fields. Here we report a novel strategy to synthesize Zn_xCd_1_−_xS NFs via the synergistic actions of the graphene oxide (GO) confinement effect and oriented cation exchange. The obtained samples have been systematically characterized by x-ray diffractometry (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photospectroscopy (XPS) and Raman spectrometry. The results show that the two dimensional space confinement effect induced by GO and the oriented cation exchange reaction are responsible for the formation of the multicomponent NFs. The high photoelectrochemical activity and the low cost of the starting materials will make the multicomponent NFs applicable in photoelectronic and photoelectrocatalytic fields. (paper)

  17. Synthesis, characterization and applications of a new cation exchanger tamarind sulphonic acid (TSA) resin.

    Science.gov (United States)

    Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S

    2012-01-01

    A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.

  18. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2012-07-01

    Full Text Available Direct borohydride fuel cells (DBFC, which operate on sodium borohydride (NaBH4 as the fuel, and hydrogen peroxide (H2O2 as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S and a cation-exchange membrane (CMI-7000S, are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  19. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  20. Preliminary studies of the total cation exchange capacity of sediments from two North Atlantic study sites

    International Nuclear Information System (INIS)

    Hydes, D.J.; Hill, N.C.; Clarke, H.; Carpenter, M.S.N.

    1983-01-01

    Initially four different methods of measuring total cation exchange capacity were compared. There were two chemical methods (ammonium saturation with displacement into seawater, and barium saturation followed by replacement with magnesium) and two radiochemical methods (sodium-22 and caesium-134 saturation). The barium-magnesium and sodium-22 methods were then applied to sediment samples from Core D10164Pound1K from the Nares Fracture Valley, and Core D10554Pound11K from the eastern flank of the Great Meteor Rise. The material at site 10164 is a pelagic clay whereas at site 10554 it is carbonate ooze. The total cation exchange capacities (T.C.E.C.) of samples from the two sites are similar when measured by the sodium-22 method, the mean for Core 10164 was 21.7 meq/100g and 24.4 meq/100g for Core 10554. However for Core 10554 the barium-magnesium method gives a mean of 42.8 meq/100g. The difference in T.C.E.C. measured by the two methods appears to be due to the high calcite content of core 10554 sediment. Measured exchange capacities are lower than in coastal sediments. In deep sea sediments organic matter either makes a very small contribution to the T.C.E.C. (core 10164) or actually blocks exchange sites (Core 10554). Amorphous oxides of iron and manganese contribute between 20 and 50% of the T.C.E.C. (author)

  1. High Br- Content CsPb(Cl yBr1- y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering.

    Science.gov (United States)

    Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z

    2018-04-11

    The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.

  2. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems

    Science.gov (United States)

    Mysen, Bjorn O.

    2008-10-01

    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  3. Quantitative electrochromatography of uranium and platinum on papers impregnated with thorium and antimony based cation exchanger

    International Nuclear Information System (INIS)

    Misra, A.K.

    1992-01-01

    Electrochromatography of 32 metal ions have been studied on papers impregnated with thorium antimonate cation exchanger in aq. organic acids, aq. nitric acid as well as in EDTA buffers. On the basis of differential migration which depends on the ion exchange properties of thorium antimonate and nature of complexes formed with the electrolytes, some useful qualitative and quantitative separations of synthetic mixtures of metal ions have been achieved. The effect of some other physical parameter has also been discussed. Quantitative separation of platinum and uranium has been developed. (author). 13 refs., 2 figs., 5 tabs

  4. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Science.gov (United States)

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.

  5. Extraction and derivatization of chemical weapons convention relevant aminoalcohols on magnetic cation-exchange resins.

    Science.gov (United States)

    Singh, Varoon; Garg, Prabhat; Chinthakindi, Sridhar; Tak, Vijay; Dubey, Devendra Kumar

    2014-02-14

    Analysis and identification of nitrogen containing aminoalcohols is an integral part of the verification analysis of chemical weapons convention (CWC). This study was aimed to develop extraction and derivatization of aminoalcohols of CWC relevance by using magnetic dispersive solid-phase extraction (MDSPE) in combination with on-resin derivatization (ORD). For this purpose, sulfonated magnetic cation-exchange resins (SMRs) were prepared using magnetite nanoparticles as core, styrene and divinylbenzene as polymer coat and sulfonic acid as acidic cation exchanger. SMRs were successfully employed as extractant for targeted basic analytes. Adsorbed analytes were derivatized with hexamethyldisilazane (HMDS) on the surface of extractant. Derivatized (silylated) compounds were analyzed by GC-MS in SIM and full scan mode. The linearity of the method ranged from 5 to 200ngmL(-1). The LOD and LOQ ranged from 2 to 6ngmL(-1) and 5 to 19ngmL(-1) respectively. The relative standard deviation for intra-day repeatability and inter-day intermediate precision ranged from 5.1% to 6.6% and 0.2% to 7.6% respectively. Recoveries of analytes from spiked water samples from different sources varied from 28.4% to 89.3%. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of multi-component ions exchange on low salinity EOR: Coupled geochemical simulation study

    Directory of Open Access Journals (Sweden)

    Ehsan Pouryousefy

    2016-09-01

    Upon combining the simulation and experimental results, we concluded that the multi-component ion exchange is not the sole mechanism behind low salinity effect for two reasons. First, almost 10% additional oil recovery was observed from the experiments by injecting the 2000 ppm CaCl2 compared with 50,000 ppm CaCl2 solutions. Even though in both cases the surface is expected to be fully saturated with Ca2+ according to the geochemical modelling. Second, 6% incremental oil recovery was achieved from the experiments by injecting 2000 ppm NaCl solution compared with that of 50,000 ppm NaCl. Although 25% incremental adsorption of divalent cations (Ca2+ were presented during the flooding of the 2000 ppm NaCl solution. Therefore, it is worth noting that the electrical double layer expansion due to the ion exchange needs to be taken into account to pinpoint the mechanism(s of low-salinity water effect.

  7. [Time-evolution study on the cation exchange in the process of reinforcing slip soil by laser-induced breakdown spectroscopy].

    Science.gov (United States)

    Liu, Lu-Wen; Zeng, Wei-Li; Zhu, Xiang-Fei; Wu, Jin-Quan; Lin, Zhao-Xiang

    2014-03-01

    In the present paper, the time evolution study on slip soils treated by different proportions of ionic soil stabilizer (ISS) water solution was conducted by the LIBS system and the relationship between the cation exchange and such engineering properties of reinforcing soil as plasticity index, cohesive force and coefficient of compressibility were analyzed. The results showed that the cation exchange velocity of the proportion of 1:200 ISS reinforcing soil is the fastest among the three proportions (1:100, 1:200 and 1:300) and the modification effect of engineering performance index is quite obvious. These studies provide an experimental basis for the ISS applied to curing project, and monitoring geotechnical engineering performance by LIBS technology also provides a new way of thinking for the curing project monitoring.

  8. Kinetics of solid-phase in ion exchange on tin hydrogen phosphate

    International Nuclear Information System (INIS)

    Kislitsyn, M.N.; Ketsko, V.A.; Yaroslavtsev, A.B.

    2004-01-01

    Solid state reactions in mixture of tin hydrogen phosphate and alkali metal (M=Na, K, Cs) chlorides have been studied both in the mode of polythermal heating and at a fixed temperature, using data of X-ray phase and thermogravimetric analyses. In the range 400-750 Deg C solid state ion exchange reactions occur in the systems studied and yield mono-- and dialkali phosphates MHSn(PO 4 ) 2 and M 2 Sn(PO 4 ) 2 . Counter diffusion coefficients for alkali metal cations and protons in the matrices of compositions MHSn(PO 4 ) 2 and M 2 Sn(PO 4 ) 2 have been determined [ru

  9. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients.

    Science.gov (United States)

    Koneczny, Inga; Stevens, Jo A A; De Rosa, Anna; Huda, Saif; Huijbers, Maartje G; Saxena, Abhishek; Maestri, Michelangelo; Lazaridis, Konstantinos; Zisimopoulou, Paraskevi; Tzartos, Socrates; Verschuuren, Jan; van der Maarel, Silvère M; van Damme, Philip; De Baets, Marc H; Molenaar, Peter C; Vincent, Angela; Ricciardi, Roberta; Martinez-Martinez, Pilar; Losen, Mario

    2017-02-01

    Autoimmunity mediated by IgG4 subclass autoantibodies is an expanding field of research. Due to their structural characteristics a key feature of IgG4 antibodies is the ability to exchange Fab-arms with other, unrelated, IgG4 molecules, making the IgG4 molecule potentially monovalent for the specific antigen. However, whether those disease-associated antigen-specific IgG4 are mono- or divalent for their antigens is unknown. Myasthenia gravis (MG) with antibodies to muscle specific kinase (MuSK-MG) is a well-recognized disease in which the predominant pathogenic IgG4 antibody binds to extracellular epitopes on MuSK at the neuromuscular junction; this inhibits a pathway that clusters the acetylcholine (neurotransmitter) receptors and leads to failure of neuromuscular transmission. In vitro Fab-arm exchange-inducing conditions were applied to MuSK antibodies in sera, purified IgG4 and IgG1-3 sub-fractions. Solid-phase cross-linking assays were established to determine the extent of pre-existing and inducible Fab-arm exchange. Functional effects of the resulting populations of IgG4 antibodies were determined by measuring inhibition of agrin-induced AChR clustering in C2C12 cells. To confirm the results, κ/κ, λ/λ and hybrid κ/λ IgG4s were isolated and tested for MuSK antibodies. At least fifty percent of patients had IgG4, but not IgG1-3, MuSK antibodies that could undergo Fab-arm exchange in vitro under reducing conditions. Also MuSK antibodies were found in vivo that were divalent (monospecific for MuSK). Fab-arm exchange with normal human IgG4 did not prevent the inhibitory effect of serum derived MuSK antibodies on AChR clustering in C2C12 mouse myotubes. The results suggest that a considerable proportion of MuSK IgG4 could already be Fab-arm exchanged in vivo. This was confirmed by isolating endogenous IgG4 MuSK antibodies containing both κ and λ light chains, i.e. hybrid IgG4 molecules. These new findings demonstrate that Fab-arm exchanged antibodies

  10. What's Mono?

    Science.gov (United States)

    ... mono? Have you ever heard of the "kissing disease"? If you said that it's mono, you're absolutely correct. But you don't get mono only from kissing. Infectious mononucleosis, called mono for short, is caused by the Epstein-Barr virus (EBV), which is a type of herpes ...

  11. Near-Infrared Emitting CuInSe2/CuInS2 Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange

    Science.gov (United States)

    2015-01-01

    The direct synthesis of heteronanocrystals (HNCs) combining different ternary semiconductors is challenging and has not yet been successful. Here, we report a sequential topotactic cation exchange (CE) pathway that yields CuInSe2/CuInS2 dot core/rod shell nanorods with near-infrared luminescence. In our approach, the Cu+ extraction rate is coupled to the In3+ incorporation rate by the use of a stoichiometric trioctylphosphine-InCl3 complex, which fulfills the roles of both In-source and Cu-extracting agent. In this way, Cu+ ions can be extracted by trioctylphosphine ligands only when the In–P bond is broken. This results in readily available In3+ ions at the same surface site from which the Cu+ is extracted, making the process a direct place exchange reaction and shifting the overall energy balance in favor of the CE. Consequently, controlled cation exchange can occur even in large and anisotropic heterostructured nanocrystals with preservation of the size, shape, and heterostructuring of the template NCs into the product NCs. The cation exchange is self-limited, stopping when the ternary core/shell CuInSe2/CuInS2 composition is reached. The method is very versatile, successfully yielding a variety of luminescent CuInX2 (X = S, Se, and Te) quantum dots, nanorods, and HNCs, by using Cd-chalcogenide NCs and HNCs as templates. The approach reported here thus opens up routes toward materials with unprecedented properties, which would otherwise remain inaccessible. PMID:26449673

  12. EPR of divalent manganese in non-Kramers hosts

    Energy Technology Data Exchange (ETDEWEB)

    Lech, J.; Slezak, A. [Institute of Physics, Technical University of Czestochowa, Czestochowa (Poland)

    1997-12-31

    Various interactions which lead to the observation of sharp EPR spectra of the high half-integer spin impurity Mn{sup 2+} (S=5/2) in paramagnetic hosts with integer spins S=1 and S=2 have been studied. Studies have been carried out on the basis of data extracted from experimental EPR spectra of Mn{sup 2+} in single crystal of divalent nickel Ni{sup 2+} (S=1) and Fe{sup 2+} (S=1) perchlorate hexahydrates. It has been shown that dipolar host-host and host-guest couplings broaden resonance lines of Mn{sup 2+}. Narrowing of the lines in the both crystals can be mainly attributed to the host-guest exchange interactions and quenching of the host spins. 19 refs, 3 figs, 1 tab.

  13. Ergot alkaloids in rye flour determined by solid-phase cation-exchange and high-pressure liquid chromatography with fluorescence detection

    DEFF Research Database (Denmark)

    Storm, Ida Marie Lindhardt Drejer; Rasmussen, Peter Have; Strobel, B.W.

    2008-01-01

    Ergot alkaloids are mycotoxins that are undesirable contaminants of cereal products, particularly rye. A method was developed employing clean-up by cation-exchange solid-phase extraction, separation by high-performance liquid chromatography under alkaline conditions and fluorescence detection...

  14. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Directory of Open Access Journals (Sweden)

    Yamuna Kunhi Mouvenchery

    Full Text Available It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM molecules via cation bridges (CaB. The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+, Ca(2+ or Na(+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h than deprotonation of functional groups (<2 h and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB and molecular mobility of water (NMR analysis suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is

  15. Synthesis and Characterization of Silicon Titanate as Cation Exchanger and Their Use in the Treatment of Radioactive Liquid Waste

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Belacy, N.; Mohamed, D.A.; Abou-Mesalam, M.M.

    1999-01-01

    Anew class of inorganic ion exchanger called crystalline silicon titanates has excellent chemical and radiation stability. The materials exhibited high selectivity for the ion exchange of cesium, strontium and several other radionuclides from highly acidic solutions. The ion exchange capacity was determined for Na +, Cs +, Co 2+ and Sr 2+ ions and found to be 1.17 , 1.9, 1.38 and 1.52 meq./g, respectively. Besides, the drying temperature of silicon titanates have a profound effect on the ion exchange capacities and distribution coefficient values of the above mentioned cations. Moreover, the studied results of distribution coefficient indicating the ability of separation of these radionuclides from radwaste solutions

  16. Ph responsive permeability and Ion- exchange characteristics of (PE/EPDM)-g-PMAA membranes

    International Nuclear Information System (INIS)

    El- Awady, M.M.; El-Awady, N.I.; Eissa, A.M.

    2005-01-01

    Chemical grafting of methacrylic acid (MAA) on low density exchange membranes for recovery of different cations from their solutions was investigated. When the dialysis permeability of two solutes (glucose + urea) through the membrane were tested at different ph values and compared, glucose was found to be less efficient than urea for permeation through the membrane. The permeability response of such solute was noticed only at higher ph value (ph 8). The grafted film (membrane) with graft yield of 185% is experimentally adequate to permeate all molecules with radius of lower than 4.3 x 10 polyethylene blended with EPDM with a ratio (90/10) films was carried out using sodium bisulphite as initiator. Factors affecting grafting and the properties of the grafted films were studied in details and showed improved hydrophilic properties, good thermal stability and nearly unaffected strength properties which make them acceptable for practical uses.In the present work, the possibility of practical uses of such grafted films as ph-responsive membranes in a dialysis process and as ion--7 mm. Grafted membranes in different forms (COOH-form), (Na-methacrylate form) and (K methacrylate- form) were prepared to evaluate the membranes uptake selectivity to different mono, di-and trivalent cations from their solutions. The results obtained showed very good efficiency of the prepared membranes as compared with the values obtained for the commercial cation exchange resin (Dowex)

  17. Ion exchange equilibrium for some uni-univalent and uni-divalent

    African Journals Online (AJOL)

    a

    KEY WORDS: Duolite A-102 D ion exchange resin, Equilibrium constant, Endothermic ion exchange reaction,. Enthalpy, Thermodynamic study. INTRODUCTION. For proper selection of ion exchange resin in a particular technical application, it is essential to have adequate knowledge regarding their physical and chemical ...

  18. Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives

    Science.gov (United States)

    Edelmann, Mariola J.

    2011-01-01

    Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558

  19. Effect of ionic strength, cation exchanger and inoculum age on the performance of Microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Yama; Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-15

    Power generation in Microbial fuel cells (MFCs) is a function of various physico-chemical as well as biological parameters. In this study, we have examined the effect of ionic strength, cation exchanger and inoculum age on power generation in a mediator MFC with methylene blue as electron mediator using Enterobacter cloacae IIT-BT08. The effect of ionic strength was studied using NaCl in the anode chamber of a two chambered salt-bridge MFC at concentrations of 5 mM, 10 mM and 15 mM. Maximum power density of 12.8 mW/m{sup 2} was observed when 10 mM NaCl was used. Corresponding current density was noted to be 35.5 mA/m{sup 2}. Effect of cation exchanger was observed by replacing salt-bridge with a proton exchange membrane of equal surface area. When the salt-bridge was replaced by a proton exchange membrane, a 3-fold increase in the power density was observed. Power density and current density of 37.8 mW/m{sup 2} and 110.3 mA/m{sup 2} respectively were detected. The influence of the pre-inoculum on the MFC was studied using E. cloacae IIT-BT08 grown for 12, 14, 16 and 18 h. It was observed that 16 h grown culture when inoculated in the anode chamber gave the maximum power output. Power density and current density of 68 mW/m{sup 2} and 168 mA/m{sup 2} respectively were obtained. We demonstrate from these results that both physico-chemical as well as biological parameters need to be optimized for improving the power generation in MFCs. (author)

  20. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.

    2015-01-01

    As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...... that is preserved as banded iron formations (BIFs) today. Here we show that Ca2+, Mg2+, and silica in seawater control phosphorus sorption onto iron oxides, influencing the record of seawater phosphorus preserved in BIFs. Using a model for seawater cation chemistry through time, combined with the phosphorus...... waters shifted from phosphorus to iron limiting....

  1. Effect of efficient microorganisms on cation exchange capacity in acacia seedlings (Acacia melanoxylon) for soil recovery in Mondonedo, Cundinamarca

    International Nuclear Information System (INIS)

    Diaz Barragan Olga Angelica; Montero Robayo Diana Mercedes; Lagos Caballero Jesus Alberto

    2009-01-01

    We determined the effect of efficient microorganisms (EM) on the cation exchange capacity for soil recovery in the municipality of Mondonedo, Cundinamarca. A greenhouse unit was installed in order to maintain stable conditions. After harvesting, sifted and homogenization of the soil sample, initial physical and chemical analyses were made. For the experimental units we used Acacia melanoxylon seedlings from Zabrinsky. A completely randomized design was done with eight treatments and three repetitions. For the maintenance and monitoring of the seedlings behaviour, a frequency of irrigation of three times per week was found. The application of the EM was done during three months: in the first month, it was applied four times (once a week); during the second month, it was applied twice (biweekly), and during the third month there was only one application. Additionally, every 15 days morphological analyses were made (number of leaves, branches and stem diameter). In the end, soil samples were taken from each plant pot. In the laboratory we analysed the cation exchange capacity, alkali ion exchange, saturation alkali, relations between elements and plant tissue. These were done using an atomic absorption spectrophotometer. Statistical analyses consisted on multiple comparisons test and variance tests, in order to find whether or not treatments exhibited significant differences. In that way, the best alternative for improving environmental quality of eroded soils as the Zabrinsky desert is the efficient microorganisms in 5% doses in irrigation water. Additionally, the cation exchange capacity must be enhanced using organic fertilizers (compost, mulch and gallinaza) in one pound doses, and chemical fertilizers: electrolytic Mn (0.0002 g), Cu (0.0002 g), Zn (0.0001 g), URFOS 44 (166.66 g) and klip-boro (5 g).

  2. Persorption of 35S-labelled cation exchangers in mammals

    International Nuclear Information System (INIS)

    Dedek, W.; Grahl, R.; Mothes, B.; Reuter, H.; Sabrowski, E.; Moehring, M.

    1983-01-01

    Persorption rates were determined of 35 S-labelled cation exchangers (sulphonated polystyrene-divinyl benzene copolymerisate) in two particle sizes, between 80μm and 125μm and smaller than 45μm in diameter, following oral administration to pigs of one single dose of 5 g / 25 kg body weight. Maximum persorption rates were 5 x 10 -3 after 51 hours and 7 x 10 -4 after 35 days for the larger particle size. For the fine grain sample the persorption rate showed already after 51 hours a lower value of 2 x 10 -3 , after 35 days it reached with 5 x 10 -4 approximately the same value as it was observed with the large grain sample. About 80 per cent of all substance recorded had been absorbed by muscles. Only less than 1 x 10 -4 of water-soluble 35 S activity and less than 2 x 10 -5 of solid particles were recordable from urine and could be, as well, identified directly by means of autoradiography. The number of particles absorbed by fine grain samples was roughly a hundred times higher than that in large grain samples. However, absorbed amounts were approximately the same after 35 days, related to the SO 3 H group active in ion exchange. The conclusion was drawn that no dependence of persorption rates on particle size was any longer detectable, when 35 days had passed. (author)

  3. Phenolic cation exchange resin material for recovery of cesium and strontium

    Science.gov (United States)

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  4. Recovery of Some Radioactive Nuclides from Radioactive Waste Solution Using Silicon(IV) Antimonate as a Cation Exchanger

    International Nuclear Information System (INIS)

    Aly, H.F.; Zakaria, E.S.; El-Shorbagy, M.M.; El-Naggar, I.M.

    1999-01-01

    A new inorganic ion exchanger, silicon(IV) antimonate was prepared by dropwise addition of antimony pentachloride and sodium silicate and shows excellent thermal and chemical stability. Ion exchange selectivities of cations Na +, Cs +, Sr 2+ and Co 2+ in nitric acid media have been exchanged with protons of silicon antimonate using batch technique, from these results, distribution coefficient, selectivity was found in the order Co 2+ > Sr 2+ > Na +> Cs +. The effective separation of Cs +, Na +, Sr 2+ and Co 2+ have been achieved with column technique from nitric acid media. The values of diffusion coefficient, energy and entropy of activation of Cs +, Na +, Sr 2+ and Co 2+ on silicon antimonate matrix were determined as a particle diffusion mechanism only and the values of diffusion inside the exchanger take the order Na +> Cs +> Co 2+ > Sr 2+

  5. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  6. Calcium depletion in rabbit myocardium. Calcium paradox protection by hypothermia and cation substitution.

    Science.gov (United States)

    Rich, T L; Langer, G A

    1982-08-01

    The purpose of this study was to define further the basis of control of myocardial membrane permeability by further examination of the "calcium paradox." To this end, the protective effect of hypothermia and addition of micromolar amounts of divalent cations during the Ca-free perfusion period were studied. Damage during Ca++ repletion to the isolated arterially perfused, interventricular rabbit septum was assessed by contracture development, loss of developed tension, and loss of 42K and creatine kinase. Progressive hypothermia prolongs the time of Ca-free perfusion needed to cause similar 42K, creatine kinase and developed tension losses upon Ca++ repletion. Complete protection against the Ca-paradox after 30-60 minutes Ca-free perfusion is seen at 18 degree C. The inclusion of 50 microM Ca++ during 30 minutes "Ca-free" perfusion also provides complete protection during Ca++ repletion i.e., there was full mechanical recovery with no 42K or creatine kinase loss. Other divalent cations perfused in 50 microM concentrations during the Ca-free period exhibited variable ability to protect when Ca++ was reperfused. The order of effectiveness (Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Mg++) was related to the crystal ionic radius, with those cations whose radii are closest to that of Ca++ (0.99 A) exerting the greatest protective effect. The cation sequence for effectiveness in Ca-paradox protection is the same sequence for potency of excitation-contraction uncoupling. The mechanism of hypothermic protection is likely a phase transition in the membrane lipids (from a more liquid to a less liquid state) which stabilizes membrane structure and preserves Ca++ permeability characteristics during the Ca-free period. The mechanism of protection via cation addition is perhaps a cation's ability to substitute for Ca++ (dependent on unhydrated crystal ionic radius) at critical sarcolemmal binding sites to preserve control of Ca++ permability during

  7. Chemistry of sustainability-Part I: Carbon dioxide as an organic synthon and Part II: Study of thermodynamics of cation exchange reactions in semiconductor nanocrystals

    Science.gov (United States)

    Sathe, Ajay A.

    Sustainability is an important part of the design and development of new chemical and energy conversion processes. Simply put sustainability is the ability to meet our needs without sacrificing the ability of the next generations to meet theirs. This thesis describes our efforts in developing two orthogonal strategies for the fixation of CO2 by utilizing high energy intermediates which are generated via oxidative or reductive processes on common organic substrates and of thermochemical measurements of cation exchange reactions which will aid the development of new materials relevant for energy conversion and storage. The first chapter lays a background for the challenges and opportunities for the use of CO2 in organic synthesis. The rapidly growing field of continuous flow processing in organic synthesis is introduced, and its importance in the development of sustainable chemical conversions is highlighted. The second chapter describes the development of a novel route to alpha-amino acids via reductive carboxylation of imines. A mechanistic proposal is presented and the reaction is shown to proceed through the intermediacy of alpha-amino alkyl metal species. Possible strategies for designing catalytic and enantioselective variants of the reaction are presented. The third chapter describes the development of a catalytic oxidative carboxylation of olefins to yield cyclic carbonates. The importance of flow chemistry and membrane separation is demonstrated by allowing the combination of mutually incompatible reagents in a single reaction sequence. While the use of carbon dioxide for synthesis of organic fine chemicals is not expected to help reduce the atmospheric carbon dioxide levels, or tackle climate change, it certainly has the potential to reduce our dependence on non-sustainable carbon feedstocks, and help achieve a carbon neutral chemical life cycle. Having described the use of carbon dioxide and flow chemistry for sustainable chemical conversion, the fourth

  8. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface

    OpenAIRE

    Szundi, I.; Stoeckenius, W.

    1989-01-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lowe...

  9. Comparative analysis of cation/proton antiporter superfamily in plants.

    Science.gov (United States)

    Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-06-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite

    International Nuclear Information System (INIS)

    Wang Yifei; Lin Feng

    2009-01-01

    The Chinese natural zeolite, in which clinoptilolite coexists with quartz was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P, Na-Y and analcime were identified as the reacted products, depending on the reaction conditions such as NaOH concentration, reaction time and hydrothermal temperature. The products were identified by X-ray diffraction, and characterized by Fourier transform IR and ICP. With hydrothermal treatment after fusion of natural zeolite with NaOH, high purity of zeolite Na-Y and Na-P can be selectively formed, their cation exchange capacity (CEC) are 275 and 355 meq/100 g respectively, which are greatly higher than that of the natural zeolite (97 meq/100 g). Furthermore, the ammonium removal by the synthetic zeolite Na-P in aqueous solution was also studied. The equilibrium isotherms have been got and the influence of other cations present in water upon the ammonia uptake suggested an order of preference Ca 2+ > K + > Mg 2+ .

  11. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.

    Science.gov (United States)

    Lee, Ju-Young; Kim, Jae-Hun; Lee, Ju-Hyuk; Kim, Seok; Moon, Seung-Hyeon

    2015-07-21

    A low-resistance ion-exchange membrane is essential to achieve the high-performance energy conversion or storage systems. The formation methods for low-resistance membranes are various; one of the methods is the ion channel alignment of an ion-exchange membrane under a direct current (DC) electric field. In this study, we suggest a more effective alignment method than the process with the DC electric field. First, an ion-exchange membrane was prepared under a pulsed electric field [alternating current (AC) mode] to enhance the effectiveness of the alignment. The membrane properties and the performance in reverse electrodialysis (RED) were then examined to assess the membrane resistance and ion selectivity. The results show that the membrane electrical resistance (MER) had a lower value of 0.86 Ω cm(2) for the AC membrane than 2.13 Ω cm(2) observed for the DC membrane and 4.30 Ω cm(2) observed for the pristine membrane. Furthermore, RED achieved 1.34 W/m(2) of maximum power density for the AC membrane, whereas that for the DC membrane was found to be 1.14 W/m(2) [a RED stack assembled with CMX, used as a commercial cation-exchange membrane (CEM), showed 1.07 W/m(2)]. Thereby, the novel preparation process for a remarkable low-resistance membrane with high ion selectivity was demonstrated.

  12. Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce; Alivisatos, A. Paul

    2009-07-06

    Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.

  13. Cation exchange separation of 16 rare earth metals by microscale high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Ishii, D.; Hirose, A.; Iwasaki, Y.

    1978-01-01

    The separation of rare earth metals has been studied with a microcolumn of 0.5 mm i.d. and 75 mm length, packed with TSK LS-212 high-performance cation exchange resin. A micro-feeder (Model MF-2, from Azumadenki Kogyo) was used to drive carrier and sample solutions through the ion exchange column and detection cell. By combining a 250 μl syringe and a 0.5 mm i.d. sampling tube the micro-feeder, 0.1-1.0 μl rare earth metals were separated within 38 min, using only 304 μl of 0.4M α-hydroxy-isobutyric acid solution adjusted to pH 3.1-6.0 with ammonia solution as gradient carrier solution. The gradient elution was successfully performed by applying a new technique developed for microscale liquid chromatography. (author)

  14. Ion-exclusion/cation-exchange chromatography with dual detection of the conductivity and spectrophotometry for the simultaneous determination of common inorganic anionic species and cations in river and wastewater.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2011-01-01

    Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.

  15. Impact of A cation size of double perovskite A2AlTaO6 (A = Ca, Sr, Ba) on dielectric and catalytic properties

    International Nuclear Information System (INIS)

    Gorodea, I.; Goanta, M.; Toma, M.

    2015-01-01

    Highlights: • Synthesis by solid state reaction of the double perovskite A 2 AlTaO 6 , where A = Ca, Sr and Ba. • The role of different A-site cations on their synthesis and structures was investigated. • The influence of the divalent A-site cations on the dielectric properties was evaluated by resistivity measurements. • Catalytic properties were evaluated in water splitting process, under gamma-rays irradiation emitted by a 60 Co source, for the first time. - Abstract: Double perovskite-type oxide A 2 AlTaO 6 materials, where A = Ca, Sr and Ba, were prepared using conventional solid state reaction. The role of different A-site cations on their synthesis, structures, dielectric and catalytic properties was investigated. Double perovskite oxide structures were evaluated using X-ray diffraction (XRD). As the average cation size decreases, the crystallographic structure at room temperature evolves from cubic to monoclinic. The influence of the nature of the divalent A-site cations on the dielectric properties was evaluated by resistivity measurements in the frequency range of 10–10 6 Hz. It can be found that relative permittivity and dielectric loss regularly changed with A cation size. Catalytic properties of the obtained compounds were evaluated in water splitting process, under gamma-rays irradiation emitted by a 60 Co source for the first time. From experimental data it was noticed that the double perovskite Ca 2 AlTaO 6 had a higher catalytic effect

  16. Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption.

    Science.gov (United States)

    An, Byungryul; Lee, Healim; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo

    2015-11-15

    To investigate the competitive sorption of divalent metal ions such as Ca(2+), Cu(2+), Ni(2+), and Pb(2+) on alginate hydrogel beads, batch and column tests were conducted. The concentration of carboxyl group was found to be limited in the preparation of spherical hydrogel beads. From kinetic test results, 80% of sorption was observed within 4h, and equilibrium was attained in 48 h. According to the comparison of the total uptake and release, divalent metal ions were found to stoichiometrically interact with the carboxyl group in the alginate polymer chain. From the Langmuir equation, the maximum capacities of Pb(2+), Cu(2+), and Ni(2+) were calculated to be 1.1, 0.48, and 0.13 mmol/g, respectively. The separation factor (α) values for αPb/Cu, αPb/Ni, and αCu/Ni were 14.0, 98.9, and 7.1, respectively. The sorption capacity of Pb(2+) was not affected by the solution pH; however, the sorption capacities of Cu(2+) and Ni(2+) decreased with increasing solution pH, caused by competition with hydrogen. According to the result from the fixed column test, Pb(2+) exhibited the highest affinity, followed by Cu(2+) and Ni(2+), which is in exact agreement with those of kinetic and isotherm tests. The sorbent could be regenerated using 4% HCl, and the regenerated sorbent exhibited 90% capacity upto 9 cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    Science.gov (United States)

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  18. Highly reversible open framework nanoscale electrodes for divalent ion batteries.

    Science.gov (United States)

    Wang, Richard Y; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2013-01-01

    The reversible insertion of monovalent ions such as lithium into electrode materials has enabled the development of rechargeable batteries with high energy density. Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. Here we report that nanomaterials in the Prussian Blue family of open framework materials, such as nickel hexacyanoferrate, allow for the reversible insertion of aqueous alkaline earth divalent ions, including Mg(2+), Ca(2+), Sr(2+), and Ba(2+). We show unprecedented long cycle life and high rate performance for divalent ion insertion. Our results represent a step forward and pave the way for future development in divalent batteries.

  19. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    Science.gov (United States)

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  20. Effects of Cations on the Hydrogen Bond Network of Liquid Water: New Results from X-ray Absorption Spectroscopy of Liquid Microjets

    International Nuclear Information System (INIS)

    Cappa, Christopher D.; Smith, Jared D.; Messer, Benjamin M.; Cohen, Ronald C.; Saykally, Richard J.

    2005-01-01

    The oxygen K-edge absorption spectra (XAS) of aqueous chloride solutions are measured for Li + , Na + , K + , NH + , C(NH2) 3 + , Mg 2+ and Ca 2+ and 4 M cation concentrations. Density functional theory calculation have indicated that the ion-specific spectral variations arise from direct electronic perturbation of the unoccupied orbitals due to the presence of the ions, as a result of differences in charge transfer from the water molecules onto the divalent cations

  1. Uranium adsorption from the sulphuric acid leach liquor containing more chlorides with cation-exchange resin SL-406

    International Nuclear Information System (INIS)

    Hu Jun; Wang Zhaoguo; Chi Renqing; Niu Xuejun

    1994-01-01

    The feasibility of uranium adsorption was studied from the sulphuric acid leach liquor of a uranium ore containing more chlorides with cation-exchange resin SL-406. The influence of some factors on uranium adsorption was investigated. It was shown that the resin possesses better selectivity, stability and higher capacity. It can be effectively used to recovery uranium from leach liquors of uranium ores containing more chlorides

  2. Chemical reactivity of cation-exchanged zeolites

    NARCIS (Netherlands)

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed

  3. Mechanism of protodesorption—exchange of heavy metal cations for protons in a heterophase system of H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}—cellulose sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V.A.; Nikiforova, T.E., E-mail: tatianaenik@mail.ru; Loginova, V.A.; Koifman, O.I.

    2015-12-15

    Highlights: • Protodesorption takes place with participation of anions. • The interphase indicator MSO{sub 4} is used in ion exchange investigation. • In ion exchange process salt and acid participate in equivalent proportions. • In a protodesorption process proton acts in degree of ½. • M{sup 2+}/2Na{sup +} and M{sup 2+}/2H{sup +} exchanges take place in ion and molecular forms. - Abstract: The influence of pH on the distribution of metal cations [Cd(II), Cu(II), Fe(II), Ni(II), Zn(II)] in a four-component heterophase system (H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}–cellulose sorbent) was studied. Protodesorption of metal cations was studied with indicator and constant quantities of [MSO{sub 4}] salts and constant solvent–sorbent ratio. Linear dependence lgK{sub DM2+} = f(pH) with tgα = 1/2 of the K{sub DM2+} metal ions distribution coefficients from the acidity of the aqueous phase is observed in logarithmic coordinates. Depression of the exponent corresponding to proton involvement in protodesorption from 2 (theory) to 0.5 (experiment) indicates that anions of the aqueous phase are involved in the process of exchange of metal cation for proton on the anionic centers of the sorbent, which corresponds to participation of the salt and acid components of the system in molecular non-dissociated form in an equivalent proportion H{sub 2}SO{sub 4}/MSO{sub 4} = 1/1. Different behavior of the salt and acid components in ion exchange of cations for cations and cations for protons is due to the differences in the constraint coefficients of their molecular and ionic forms which must be taken into consideration in equations describing thermodynamics of the interphase exchange.

  4. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  5. Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant.

    Science.gov (United States)

    Laird, Brian D; Peak, Derek; Siciliano, Steven D

    2011-05-01

    Site-specific risk assessments often incorporate the concepts of bioaccessibility (i.e., contaminant fraction released into gastrointestinal fluids) or bioavailability (i.e., contaminant fraction absorbed into systemic circulation) into the calculation of ingestion exposure. We evaluated total and bioaccessible metal concentrations for 19 soil samples under simulated stomach and duodenal conditions using an in vitro gastrointestinal model. We demonstrated that the median bioaccessibility of 23 metals ranged between exchange rates of metal cations (k(H₂O)) indicated that desorption kinetics may influence if not control metal bioaccessibility.

  6. Studies of cation exchange for the isolation and concentration of trace level components of complex aqueous mixtures

    International Nuclear Information System (INIS)

    Kaczvinsky, J.R. Jr.

    1984-01-01

    Trace level organic bases are concentrated from aqueous solution by cation exchange on a column of sulfonated macroreticular XAD-4 resin. Washing of the column with organic solvents removes neutrals and acids. Ammonia gas is introduced into the column prior to elution of the basic organics with either methanol or ether containing ammonia. After solvent evaporation, the concentrated sample is analyzed by gas chromatography. Recoveries of over 85% are found with at least one of the eluents for over 50 bases tested at levels < 1 ppm. Improved recoveries and reproducibility are seen over a simple ether extraction procedure. Samples of river water, shale oil process water, and supernatant from an agricultural chemical disposal pit are analyzed. Preliminary studies of functionalized poly(styrene-divinylbenzene)s, coated exchangers, and liquid ion exchangers as possible approaches to nuclear waste decontamination are performed

  7. Cationic Polymers Inhibit the Conductance of Lysenin Channels

    Directory of Open Access Journals (Sweden)

    Daniel Fologea

    2013-01-01

    Full Text Available The pore-forming toxin lysenin self-assembles large and stable conductance channels in natural and artificial lipid membranes. The lysenin channels exhibit unique regulation capabilities, which open unexplored possibilities to control the transport of ions and molecules through artificial and natural lipid membranes. Our investigations demonstrate that the positively charged polymers polyethyleneimine and chitosan inhibit the conducting properties of lysenin channels inserted into planar lipid membranes. The preservation of the inhibitory effect following addition of charged polymers on either side of the supporting membrane suggests the presence of multiple binding sites within the channel's structure and a multistep inhibition mechanism that involves binding and trapping. Complete blockage of the binding sites with divalent cations prevents further inhibition in conductance induced by the addition of cationic polymers and supports the hypothesis that the binding sites are identical for both multivalent metal cations and charged polymers. The investigation at the single-channel level has shown distinct complete blockages of each of the inserted channels. These findings reveal key structural characteristics which may provide insight into lysenin’s functionality while opening innovative approaches for the development of applications such as transient cell permeabilization and advanced drug delivery systems.

  8. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    Science.gov (United States)

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  9. Kinetics of transesterification of methyl acetate and n-octanol catalyzed by cation exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong; Gao, Li; Li, Xiying; Mao, Liqun [Henan University, Kaifeng (China); Wei, Min [Henan University of Technology, Zhengzhou (China)

    2013-05-15

    The transesterification kinetics of methyl acetate with n-octanol to octyl acetate and methanol were studied using Amberlyst 15 as catalyst in a batch stirred reactor. The influence of the agitation speed, particle size, temperature, catalyst loading, and initial reactants molar ratio was investigated in detail. A pseudo-homogeneous (PH) kinetic model was applied to correlate the experimental data in the temperature range of 313.15 K to 328.15 K. The estimated kinetic parameters made the calculated results in good agreement with the experimental data. A kinetic model describing the transesterification reaction catalyzed by cation exchange resins was developed.

  10. Conformations of cationized linear oligosaccharides revealed by FTMS combined with in-ESI H/D exchange.

    Science.gov (United States)

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2015-10-01

    Previously (Kostyukevich et al. Anal Chem 2014, 86, 2595), we have reported that oligosaccharides anions are produced in the electrospray in two different conformations, which differ by the rate of gas phase hydrogen/deuterium (H/D) exchange reaction. In the present paper, we apply the in-electrospray ionization (ESI) source H/D exchange approach for the investigation of the oligosaccharides cations formed by attaching of metal ions (Na, K) to the molecule. It was observed that the formation of different conformers can be manipulated by varying the temperature of the desolvating capillary of the ESI interphase. Separation of the conformers was performed using gas phase H/D approach. Because the conformers have different rates of the H/D exchange reaction, the deuterium distribution spectrum becomes bimodal. It was found that the conformation corresponding to the slow H/D exchange rate dominates in the spectrum when the capillary temperature is low (~200 °C), and the conformation corresponding to the fast H/D exchange rate dominates at high (~400 °C) temperatures. In the intermediate temperature region, two conformers are present simultaneously. It was also observed that large oligosaccharide requires higher temperature for the formation of another conformer. It was found that the presence of the conformers considerably depends on the solvent used for ESI and the pH. We have compared these results with the previously performed in-ESI source H/D exchange experiments with peptides and proteins. Copyright © 2015 John Wiley & Sons, Ltd.

  11. A method for determination of cadmium species in solid waste leachates

    DEFF Research Database (Denmark)

    Christensen, Thomas H.; Xu Ze Lun

    1989-01-01

    A procedure has been developed for determination of cadmium (Cd) species in solid waste leachates employing a cation exchange resin (Chelex 100) in a batch-column-batch sequence. The procedure allows for determination of free divalent Cd (Cd2+), labile Cd complexes, slowly labile Cd complexes...

  12. Ultrathin Sicopion Composite Cation-Exchange Membranes: Characteristics and Electrodialytic Performance following a Conditioning Procedure

    Directory of Open Access Journals (Sweden)

    Erik Ayala-Bribiesca

    2012-01-01

    Full Text Available The aim of this work was to investigate the properties of Sicopion membranes: an ultrathin (≈20 μm composite cation-exchange membrane (CEM made from sulphonated poly(ether-ether-ketone (SPEEK containing different levels of sulphonic-functionalized silica particles (SFSPs. Sicopion membranes were conditioned according to the French Normalization Association procedure, consisting in a series of acid and alkaline washes, and their electrodialytic characteristics were compared to an existent commercial food-grade membrane (CMX-SB. Electrical conductivity of Sicopion membranes was higher than that of CMX-SB membranes (9.92 versus 6.98 mS/cm, as well as their water content (34.0 versus 27.6%. As the SFSP level was reduced, the ion-exchange capacity (IEC of Sicopion membranes increased. Concerning their electrodialytic performances, Sicopion membranes presented a lower demineralization rate than CMX-SB membranes (35.9 versus 45.5%, due to an OH− leakage through the pores created by dislodging the SFSP particles during the conditioning procedure.

  13. Organic anion and cation transport in vitro by dog choroid plexus: Effects of neuroleptics and tricyclic antidepressants

    Energy Technology Data Exchange (ETDEWEB)

    Barany, E H [Uppsala Univ. (Sweden)

    1979-01-01

    Dog lateral choroid plexus accumulates the cation /sup 14/C-emepronium and the divalent anion /sup 125/I-iodipamide in vitro. At 10 ..mu..M, high potency neuroleptics with a substituted piperazine side chain and also haloperidol depress only the uptake of the cation and even stimulate the uptake of the anion. In contrast, at 1-10..mu..M, the accumulation of both test substances is inhibited by neuroleptics and tricyclic antidepresssants with an aliphatic side chain. Such unspecific effects on seemingly unrelated transport systems at concentrations reached clinically in the CSF might explain some side actions of low potency neuroleptics and antidepressants.

  14. Comparison of gaseous oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange membranes.

    Science.gov (United States)

    Huang, Jiaoyan; Miller, Matthieu B; Weiss-Penzias, Peter; Gustin, Mae Sexauer

    2013-07-02

    The chemical compounds that make up gaseous oxidized mercury (GOM) in the atmosphere, and the reactions responsible for their formation, are not well understood. The limitations and uncertainties associated with the current method applied to measure these compounds, the KCl-coated denuder, are not known due to lack of calibration and testing. This study systematically compared the uptake of specific GOM compounds by KCl-coated denuders with that collected using nylon and cation exchange membranes in the laboratory and field. In addition, a new method for identifying different GOM compounds using thermal desorption is presented. Different GOM compounds (HgCl2, HgBr2, and HgO) were found to have different affinities for the denuder surface and the denuder underestimated each of these compounds. Membranes measured 1.3 to 3.7 times higher GOM than denuders in laboratory and field experiments. Cation exchange membranes had the highest collection efficiency. Thermodesorption profiles for the release of GOM compounds from the nylon membrane were different for HgO versus HgBr2 and HgCl2. Application of the new field method for collection and identification of GOM compounds demonstrated these vary as a function of location and time of year. Understanding the chemistry of GOM across space and time has important implications for those developing policy regarding this environmental contaminant.

  15. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d-5f uranyl(v)-cobalt(ii) cation-cation complexes.

    Science.gov (United States)

    Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella

    2017-05-02

    Trinuclear versus dinuclear heterodimetallic U V O 2 + Co 2+ complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.

  16. Study on the use of macroporous cation exchange resins for the separation and purification of uranium from thorium

    International Nuclear Information System (INIS)

    Rastogi, R.K.; Mahajan, M.A.; Chaudhuri, N.K.

    1992-01-01

    The possibility of using macroporous cation exchange resins for the purification of uranium from thorium relevant to the final purification of uranium after reprocessing thorium breeder fuel was explored. Two macroporous cation exchange resins were studied and compared with a commonly used gel type resin. Batch experiments and column experiments were performed to generate equilibrium data and to optimise the procedure for the separation of U from Th under process condition. Under the same condition Tulsion T-42 gave product U containing 0.1% of Th, while Amberlyst-15 gave the product U containing 1% of Th. Loading and washing rates were much higher (120 ml/hr) than those used for gel type resins (40 ml/hr). Though the volume of wash required for >90% recovery of U is more than that required with the gel type resin the disadvantage due to that is more than compensated by the use of high flow rate of loading and washing to give higher throughput. Thus there is a definite advantage of U purification with macroporous resins as compared to usual gel type resins. (author). 23 refs., 3 figs., 10 tabs

  17. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences.

    Science.gov (United States)

    Huang, Jiaoyan; Gustin, Mae Sexauer

    2015-05-19

    Quantifying the concentration of gaseous oxidized mercury (GOM) and identifying the chemical compounds in the atmosphere are important for developing accurate local, regional, and global biogeochemical cycles. The major hypothesis driving this work was that relative humidity affects collection of GOM on KCl-coated denuders and nylon membranes, both currently being applied to measure GOM. Using a laboratory manifold system and ambient air, GOM capture efficiency on 3 different collection surfaces, including KCl-coated denuders, nylon membranes, and cation-exchange membranes, was investigated at relative humidity ranging from 25 to 75%. Recovery of permeated HgBr2 on KCl-coated denuders declined by 4-60% during spikes of relative humidity (25 to 75%). When spikes were turned off GOM recoveries returned to 60 ± 19% of permeated levels. In some cases, KCl-coated denuders were gradually passivated over time after additional humidity was applied. In this study, GOM recovery on nylon membranes decreased with high humidity and ozone concentrations. However, additional humidity enhanced GOM recovery on cation-exchange membranes. In addition, reduction and oxidation of elemental mercury during experiments was observed. The findings in this study can help to explain field observations in previous studies.

  18. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    Science.gov (United States)

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  19. A determination method of Ru, Rh and Pd in high-level liquid waste (HLLW) by cation exchange separation and ICP-AES measurement

    International Nuclear Information System (INIS)

    Cao Desheng; Duan Shirong; Qin Fengzhou; Li Jinying; Zhang Huaili

    1992-01-01

    The authors describe a determination method of Ru, Rh and Pd in HLLW with cation-exchange separation and ICP-AES measurement. A sample of HLLW was treated with the hydrochloride acid containing enough sodium chloride, then passed through a strongly acidic cation-exchange resin column, the Ru, Rh and Pd as chloro-complexes go to the eluate while the interference elements are absorbed on the resins in the column. The Ru, Rh and Pd are collected and determined by ICP-AES. The obtained results show that the recovery is 90% and the relative standard deviation is 6% as the Ru content within the range (35-230) x 10 -6 ; the recovery is 106% and RSD is 10% as the Rh content within (2-20) x 10 -6 ; and the recovery of Pd is 72% as its content less than 2 x 10 -6

  20. Thermodynamics of ion exchange equilibrium for some uni ...

    African Journals Online (AJOL)

    The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Indion FF-IP. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as ...

  1. Use of new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.

    1998-01-01

    In this paper we describe the first application of our simple and inexpensive post-elution tandem cation/anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical-scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine-type (QMA SepPak TM ) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume ( 500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator. (author)

  2. Combined cation-exchange and extraction chromatographic method of pre-concentration and concomitant separation of Cu(II) with high molecular mass liquid cation exchanger after its online detection.

    Science.gov (United States)

    Mandal, B; Roy, U S; Datta, D; Ghosh, N

    2011-08-19

    A selective method has been developed for the extraction chromatographic trace level separation of Cu(II) with Versatic 10 (liquid cation exchanger) coated on silanised silica gel (SSG-V10). Cu(II) has been extracted from 0.1M acetate buffer at the range of pH 4.0-5.5. The effects of foreign ions, pH, flow-rate, stripping agents on extraction and elution have been investigated. Exchange capacity of the prepared exchanger at different temperatures with respect to Cu(II) has been determined. The extraction equilibrium constant (K(ex)) and different standard thermodynamic parameters have also been calculated by temperature variation method. Positive value of ΔH (7.98 kJ mol⁻¹) and ΔS (0.1916 kJ mol⁻¹) and negative value of ΔG (-49.16 kJ mol⁻¹) indicated that the process was endothermic, entropy gaining and spontaneous. Preconcentration factor was optimized at 74.7 ± 0.2 and the desorption constants K(desorption)¹(1.4 × 10⁻²) and K(desorption)²(9.8 × 10⁻²) were determined. The effect of pH on R(f) values in ion exchange paper chromatography has been investigated. In order to investigate the sorption isotherm, two equilibrium models, the Freundlich and Langmuir isotherms, were analyzed. Cu(II) has been separated from synthetic binary and multi-component mixtures containing various metal ions associated with it in ores and alloy samples. The method effectively permits sequential separation of Cu(II) from synthetic quaternary mixture containing its congeners Bi(III), Sn(II), Hg(II) and Cu(II), Cd(II), Pb(II) of same analytical group. The method was found effective for the selective detection, removal and recovery of Cu(II) from industrial waste and standard alloy samples following its preconcentration on the column. A plausible mechanism for the extraction of Cu(II) has been suggested. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Comparative study of the ionic exchange of Ca++, Sr++, and Ba++ cations on resins and inorganic exchangers

    International Nuclear Information System (INIS)

    Sanchez Batanero, P.

    1969-03-01

    With a view to applying the results to certain problems related to chemical separations in activation analysis, a study has been made, of the possibilities of separating the alkaline-earth elements Ca, Sr and Ba on organic resins and inorganic exchangers using the radioactive indicator method. The partition coefficients of the cations Ca 2+ , Sr 2+ and Ba 2+ have been measured on Dowex 50 W (NH 4 + ) x 8 resin in the presence of EDTA - NTA - EGTA and DCTA as complexing agents, and on zirconium phosphate, tungstate and molybdate in the presence of HCl and NH 4 Cl. Methods have been developed for separating mixtures of alkaline-earth elements using DCTA-NH 4 + followed by elution on Dowex 50 W (NH 4 + ) x 8 resin columns and on zirconium phosphate. Amongst the complexing agents used on the ion-exchange resins the most promising appears to be DCTA which leads to partition coefficients Ca, Sr and Ba which are very different. The results of measurements of partition coefficients on zirconium phosphate (NH 4 + form) using DCTA-NH 4 + show the interesting possibilities of separations on columns. The separation of the alkaline-earth elements on zirconium phosphate seems to be less quantitative than on Dowex 50 resin; it is however much faster in the former case and this can be useful for treating short half-life radioisotopes in activation analysis. (author) [fr

  4. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  5. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  6. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    Science.gov (United States)

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  7. Chromatographic cation exchange separation of decigram quantities of californium and other transplutonium elements

    Energy Technology Data Exchange (ETDEWEB)

    Benker, D.E.; Chattin, F.R.; Collins, E.D.; Knauer, J.B.; Orr, P.B.; Ross, R.G.; Wiggins, J.T.

    1980-01-01

    Decigram quantities of highly radioactive transplutonium elements are routinely partitioned at TRU by chromatographic elution from cation resin using AHIB eluent. By using two high-pressure ion exchange columns, a small one for the initial loading of the feed and a large one for the elution, batch runs containing up to 200 mg of /sup 252/Cf can be made in about 5 hours (2 hours to load the feed and 3 hours for the elution). The number of effluent product fractions and the amount of actinides that must be collected in intermediate fractions are minimized by monitoring response from a flow-through alpha-detector. This process has been reliable and relatively easy to operate, and will continue to be used for partitioning transplutonium elements at TRU.

  8. Specific ion effects on the properties of cationic Gemini surfactant monolayers

    International Nuclear Information System (INIS)

    Alejo, T.; Merchan, M.D.; Velazquez, M.M.

    2011-01-01

    The effects of some anions of the Hofmeister series and different divalent cations of alkaline earth metals on the properties of Langmuir monolayers of the cationic Gemini surfactant ethyl-bis (dimethyl octadecylammonium bromide) have been investigated. Surface pressure and potential isotherms at the air-water interface were obtained on aqueous subphases containing sodium salts with several anions of the Hofmeister series (Cl - , NO 3 - , Br - , I - , ClO 4 - , and SCN - ). The influence of the investigated anions on the monolayer properties can be ordered according to the Hofmeister series with a change in the order between bromide and nitrate anions. On the other hand, for a given anion, the cation of the salt also influences the surface properties of the Langmuir films. The monolayers can be transferred onto mica by the Langmuir-Blodgett technique and then the Langmuir-Blodgett films were characterized by atomic force microscopy (AFM). The AFM images show that the molecules become more closely packed and nearly vertical to the surface when anions screen the electric charge of the surfactant molecules.

  9. Specific ion effects on the properties of cationic Gemini surfactant monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T.; Merchan, M.D.; Velazquez, M.M., E-mail: mvsal@usal.es

    2011-06-01

    The effects of some anions of the Hofmeister series and different divalent cations of alkaline earth metals on the properties of Langmuir monolayers of the cationic Gemini surfactant ethyl-bis (dimethyl octadecylammonium bromide) have been investigated. Surface pressure and potential isotherms at the air-water interface were obtained on aqueous subphases containing sodium salts with several anions of the Hofmeister series (Cl{sup -}, NO{sub 3}{sup -}, Br{sup -}, I{sup -}, ClO{sub 4}{sup -}, and SCN{sup -}). The influence of the investigated anions on the monolayer properties can be ordered according to the Hofmeister series with a change in the order between bromide and nitrate anions. On the other hand, for a given anion, the cation of the salt also influences the surface properties of the Langmuir films. The monolayers can be transferred onto mica by the Langmuir-Blodgett technique and then the Langmuir-Blodgett films were characterized by atomic force microscopy (AFM). The AFM images show that the molecules become more closely packed and nearly vertical to the surface when anions screen the electric charge of the surfactant molecules.

  10. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    Vitart, X.

    1991-01-01

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified [fr

  11. Tritium enrichment from aqueous solutions using cryosublimation of mono- and polysaccharides

    International Nuclear Information System (INIS)

    Wierczinski, B.; Muellen, G.; Rosenhauer, S.

    2008-01-01

    Cryosublimation is one technique, which allows the accumulation of tritium from aqueous solutions using certain chemical compounds. After studying several inorganic compounds such as zeolites and metal salts, as well as some humic substances, we have now investigated several mono- and polysaccharides, such as glucose, maltose, galactose, starch, agar, and gelatine. Except for starch all of the above mentioned compounds showed a clear enrichment of tritium. The highest value was reached for Agartine, which gave an enrichment factor of 6.2. Since mono- and polysaccharides form weak hydrogen bonds, these results prove again our theory that tritium is preferably accumulated in exchangeable hydrogen bonds. (author)

  12. Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction.

    Science.gov (United States)

    Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo

    2018-06-01

    Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    Knapp, F.R. Jr.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.; Univ. of Bonn

    1998-03-01

    In this paper the authors describe the first application of a simple and inexpensive post elution tandem cation-anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine type (QMA SepPak trademark) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume ( 500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator

  14. A computational study of adsorption of divalent metal ions on graphene oxide

    Directory of Open Access Journals (Sweden)

    Somphob Thompho

    2017-12-01

    Full Text Available Adsorption of divalent metal ions (Pb2+,Cd2+, Zn2+,Cu2+ on graphene oxide (GO was studied using density functional theory (DFT. Adsorption geometries and energies, as well as the nature of the binding energy, were calculated for the interaction of divalent metal ions with oxygen-containing groups on the surface of GO. The configurations of the complexes were modeled by placing the divalent metal ions above the center and perpendicular to the surface. Binding of Cu2+ to the GO sheet was predicted to be much stronger than that for other divalent metal ions. Calculated results show good agreement with experimental observations and provide useful information for environmental pollution cleanup.

  15. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 6

    International Nuclear Information System (INIS)

    Plicka, J.; Stamberg, K.; Cabicar, J.; Gosman, A.

    1986-01-01

    The description of kinetics of ion exchange in ternary system was based upon three Nernst-Planck equations, each of them describing the particle diffusion flux of a given counterion as an independent process. For experimental verification, the strongly acidic cation exchanger OSTION KS 08 the shallow-bed technique, and 0.2 mol x dm -3 aqueous nitrate solutions were chosen. The kinetics of ion exchange in the system of cations Na + - Mg 2+ - UO 2 2+ was studied. The values of diffusion coefficients obtained by evaluating of kinetics of isotope exchange and binary ion exchange were used for calculation. The comparison of calculated exchange rate curves with the experimental ones was made. It was found that the exchanging counterions were affected by each other. (author)

  16. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  17. Thermodynamics of the extraction of scandium(III) by the liquid cation exchangers dinonylnaphthalenesulfonic acid and bis(2-ethylhexyl) phosphoric acid

    International Nuclear Information System (INIS)

    Raieh, M.A.; Zakareia, N.; Aly, H.F.

    1979-01-01

    The thermodynamic functions for the extraction of Sc 3+ by liquid cation exchangers HD and HDEHP are determined radiometrically by the temperature coefficient method. The role of the diluent dielectric constant on the extraction of Sc 3+ by HD is also studied. The thermodynamic parameters determined indicated that the free energy variation for the extraction of Sc 3+ by HD is mainly determined by the entropic terms arising from the hydration-dehydration process of the exchanged ions. In the case of HDEHP as extractant, the free energy variations are determined mainly by the entalpic terms of the system. (author)

  18. Comparison between methods using copper, lanthanum, and colorimetry for the determination of the cation exchange capacity of plant cell walls.

    Science.gov (United States)

    Wehr, J Bernhard; Blamey, F Pax C; Menzies, Neal W

    2010-04-28

    The determination of the cation exchange capacity (CEC) of plant cell walls is important for many physiological studies. We describe the determination of cell wall CEC by cation binding, using either copper (Cu) or lanthanum (La) ions, and by colorimetry. Both cations are strongly bound by cell walls, permitting fast and reproducible determinations of the CEC of small samples. However, the dye binding methods using two cationic dyes, Methylene Blue and Toluidine Blue, overestimated the CEC several-fold. Column and centrifugation methods are proposed for CEC determination by Cu or La binding; both provide similar results. The column method involves packing plant material (2-10 mg dry mass) in a chromatography column (10 mL) and percolating with 20 bed volumes of 1 mM La or Cu solution, followed by washing with deionized water. The centrifugation method uses a suspension of plant material (1-2 mL) that is centrifuged, and the pellet is mixed three times with 10 pellet volumes of 1 mM La or Cu solution followed by centrifugation and final washing with deionized water. In both methods the amount of La or Cu bound to the material was determined by spectroscopic methods.

  19. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  20. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  1. How Is Mono Spread?

    Science.gov (United States)

    ... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...

  2. How Cations Can Assist DNase I in DNA Binding and Hydrolysis

    Science.gov (United States)

    Guéroult, Marc; Picot, Daniel; Abi-Ghanem, Joséphine; Hartmann, Brigitte; Baaden, Marc

    2010-01-01

    DNase I requires Ca2+ and Mg2+ for hydrolyzing double-stranded DNA. However, the number and the location of DNase I ion-binding sites remain unclear, as well as the role of these counter-ions. Using molecular dynamics simulations, we show that bovine pancreatic (bp) DNase I contains four ion-binding pockets. Two of them strongly bind Ca2+ while the other two sites coordinate Mg2+. These theoretical results are strongly supported by revisiting crystallographic structures that contain bpDNase I. One Ca2+ stabilizes the functional DNase I structure. The presence of Mg2+ in close vicinity to the catalytic pocket of bpDNase I reinforces the idea of a cation-assisted hydrolytic mechanism. Importantly, Poisson-Boltzmann-type electrostatic potential calculations demonstrate that the divalent cations collectively control the electrostatic fit between bpDNase I and DNA. These results improve our understanding of the essential role of cations in the biological function of bpDNase I. The high degree of conservation of the amino acids involved in the identified cation-binding sites across DNase I and DNase I-like proteins from various species suggests that our findings generally apply to all DNase I-DNA interactions. PMID:21124947

  3. Ion exchange in sphagnum and its relation to bog ecology

    Energy Technology Data Exchange (ETDEWEB)

    Clymo, R S

    1963-01-01

    In sphagnum cuspidatum unesterified polyuronic acids form 12 percent of the dry weight; in S. acutifolium 25 percent of the dry weight. A good correlation has been found for sphagna between the content of unesterified polyuronic acid and the cation exchange ability, and between cation exchange ability and height of normal habitat above the water table. Anion exchange ability in sphagna is less than 0.0026 m.eq./g. d.w. compared with about 1.2 m.eq./g. d.w. for cations at pH values above 7. In natural conditions the exchange sites are, however, only partly dissociated. The production of new plant material in a bog dependent on rainwater for nurients can be sufficient to maintain the pH below 4.5, but on other than H/sup +/ could be retained in exchangeable form. A greater proportion of polyvalent cations could be retained. The kinetics of cation exchange are consistent with a heterogeneous exchange phase containing regions of high charge density and regions with lower charge density. At equilibrium the proportions of different cations in the exchange phase are largely explicable by a Donnan distribution, but there are notable exceptions. Two estimates based on donnan distribution suggest that with low external pH and/or low cation concentration the apparent concentration of exchange sites may be 2-3 eq./l., falling with rise in pH and/or increase in cation concentration to 0.9 -1.5 eq./l. The apparent dissociation coefficient also varies in these conditions from 2 x 10/sup -3/ to 1 x 10/sup -4/.

  4. Behavior of cationic, anionic and colloidal species of titanium, zirconium and thorium in presence of ion exchange resins

    International Nuclear Information System (INIS)

    Souza Filho, G. de; Abrao, A.

    1976-01-01

    The distribution of titanium, zirconium and thorium is aqueous and resin phases has been studied using strong cationic resin in the R-NH 4 form. Solutions of the above elements in perchloric, nitric, hydrochloric and suphuric media were used. Each set of experiments was made by separately varying one of the five parameters - type of anion present, acidity of solution, temperature of percolation, age of solution and concentration of the element. It was found that, depending on the particular balance of these parameters, the elements investigated may be found in acidic solutions either as cationic, anionic or colloidal species. It is emphasized that the colloidal species of titanium, zirconium or thorium are not retained by the ion exchangers, and from this property a method for the separation and purification of the above elements has been outlined [pt

  5. Phosphate barrier on pore-filled cation-exchange membrane for blocking complexing ions in presence of non-complexing ions

    Science.gov (United States)

    Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.

    2018-06-01

    In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.

  6. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  7. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  8. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  9. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    Science.gov (United States)

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-05

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution.

  10. Quantification of the Pyrrolizidine Alkaloid Jacobine in Crassocephalum crepidioides by Cation Exchange High-Performance Liquid Chromatography.

    Science.gov (United States)

    Rozhon, Wilfried; Kammermeier, Lukas; Schramm, Sebastian; Towfique, Nayeem; Adebimpe Adedeji, N; Adesola Ajayi, S; Poppenberger, Brigitte

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are secondary plant metabolites with considerable hepatoxic, tumorigenic and genotoxic potential. For separation, reversed phase chromatography is commonly used because of its excellent compatibility with detection by mass spectrometry. However, reversed phase chromatography has a low selectivity for PAs. The objective of this work was to investigate the suitability of cation exchange chromatography for separation of PAs and to develop a rapid method for quantification of jacobine in Crassocephalum crepidioides that is suitable for analysis of huge sample numbers as required for mutant screening procedures. We demonstrate that cation exchange chromatography offers excellent selectivity for PAs allowing their separation from most other plant metabolites. Due to the high selectivity, plant extracts can be directly analysed after simple sample preparation. Detection with UV at 200 nm instead of mass spectrometry can be applied, which makes the method very simple and cost-effective. The recovery rate of the method exceeded 95%, the intra-day and inter-day standard deviations were below 7% and the limit of detection and quantification were 1 mg/kg and 3 mg/kg, respectively. The developed method is sufficiently sensitive for reproducible detection of jacobine in C. crepidioides. Simple sample preparation and rapid separation allows for quantification of jacobine in plant material in a high-throughput manner. Thus, the method is suitable for genetic screenings and may be applicable for other plant species, for instance Jacobaea maritima. In addition, our results show that C. crepidioides cannot be considered safe for human consumption. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme.

    Science.gov (United States)

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup

    2015-05-15

    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Impact of cationic diffusion on properties of iron-bearing glass fibres

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Yue, Yuanzheng; Deubener, Joachim

    2010-01-01

    A silica-rich surface layer of Fe3+-containing aluminosilicate glass fibres is created by means of an inward diffusion process of divalent network modifying cations. The latter is caused by the reduction of Fe3+ to Fe2+ when the fibres undergo a heat treatment at temperatures around the glass...... transition temperature (Tg) in a reducing H2/N2 atmosphere. The thickness of the surface layer can be adjusted by varying the temperature or the duration of the heat treatment. The reduction process has a significant impact on the glass transition and crystallization behaviour, high temperature stability...

  13. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunfang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Lu, Shaoyou [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Wu, Yan; Chen, Dazhi; Huang, Liyan [Institute of Engineering Technology of Guangdong Province, Key Laboratory of Water Environmental Pollution Control of Guangdong Province, Guangzhou 510440 (China); Xu, Weicheng; Zhu, Ximiao [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Zhanqiang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  14. Formation, cationic site exchange and surface structure of mechanosynthesized EuCrO{sub 3} nanocrystalline particles

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H M; Al-Harthi, S H; Gismelseed, A M; Al-Rawas, A D [Department of Physics, Sultan Qaboos University, PO Box 36, 123, Muscat (Oman); Johnson, C; Moore, E A [School of Chemistry and Analytical Sciences, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Klencsar, Z [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest (Hungary); Wynter, C I [Nassau Community College, Garden City, NY 11530-6793 (United States); Brown, D E, E-mail: hishammw@squ.edu.om, E-mail: hisham@ictp.it [Department of Physics, Northern Illinois University, De Kalb, IL 60115 (United States)

    2011-07-06

    Nanocrystalline EuCrO{sub 3} particles ({approx}25 nm) have been prepared by pre-milling a 1 : 1 molar mixture of Eu{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} for 60 h followed by sintering at 700 {sup 0}C (12 h). This temperature is {approx}500-600 {sup 0}C lower than those at which the material, in bulk form, is conventionally prepared. Rietveld analysis of the x-ray powder diffraction pattern of the EuCrO{sub 3} nanoparticles favours a structural model involving a slight degree of cationic exchange where {approx}11% of the Eu{sup 3+} and Cr{sup 3+} ions exchange their normal dodecahedral A- and octahedral B-sites, respectively, in the perovskite-related structure. This cationic site exchange, which is unusual in a perovskite structure, has been well supported by the corresponding room-temperature {sup 151}Eu Moessbauer spectrum of the nanoparticles that in addition to displaying a distribution in the principal component of the EFG tensor (V{sub zz}) at the usual A-sites of the {sup 151}Eu nuclei, also revealed the presence of a subcomponent with {approx}11% area fraction and a considerably increased |V{sub zz}| value that was associated with Eu{sup 3+} ions at octahedral B-sites. X-ray photoelectron and Auger electron spectroscopic techniques reveal a complex surface structure where extremely thin layers of un-reacted Eu{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} cover most of the EuCrO{sub 3} nanoparticles' surfaces together with some traces of elemental Cr. The binding energies associated with Eu{sup 3+} 3d{sub 5/2}, Eu{sup 3+} 4d{sub 3/2}, Cr{sup 3+} 2p{sub 3/2} and O{sup 2-} 1s core-level electrons in EuCrO{sub 3} are estimated from the x-ray photoelectron data for the first time.

  15. Effect of divalent impurities on some physical properties of LiF and NaF; Influence des impuretes divalentes sur quelques proprietes physiques du LiF et du NaF

    Energy Technology Data Exchange (ETDEWEB)

    Laj, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn{sup 2+} doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M{sup ++} {open_square}+ {yields} M{sup ++} + {open_square}+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of {gamma}-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn{sup 0} isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH{sup -} ions, probably of the M(OH){sub 2} type, with the two OH{sup -} ions occupying a single fluorine site. (author) [French] La technique des thermocourants ioniques est appliquee a l'etude des dipoles lacune-impurete dans LiF et NaF dopes avec plusieurs cations divalents. Dans LiF on met en evidence un seul pic de thermocourant quelle que soit l'impurete consideree. Dans NaF au contraire deux pics de thermocourants sont presents, l'un correspondant a celui observe dans LiF, l'autre, dominant dans le cas des impuretes de petite taille, a plus basse temperature. Une etude parallelle

  16. Effect of divalent impurities on some physical properties of LiF and NaF; Influence des impuretes divalentes sur quelques proprietes physiques du LiF et du NaF

    Energy Technology Data Exchange (ETDEWEB)

    Laj, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn{sup 2+} doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M{sup ++} {open_square}+ {yields} M{sup ++} + {open_square}+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of {gamma}-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn{sup 0} isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH{sup -} ions, probably of the M(OH){sub 2} type, with the two OH{sup -} ions occupying a single fluorine site. (author) [French] La technique des thermocourants ioniques est appliquee a l'etude des dipoles lacune-impurete dans LiF et NaF dopes avec plusieurs cations divalents. Dans LiF on met en evidence un seul pic de thermocourant quelle que soit l'impurete consideree. Dans NaF au contraire deux pics de thermocourants sont presents, l'un correspondant a celui observe dans LiF, l'autre, dominant dans le cas des impuretes de petite taille, a plus basse temperature

  17. E. P. R. spectroscopic study of nitroxide mono- and bi-radicals

    International Nuclear Information System (INIS)

    Lemaire, H.

    1966-09-01

    A nitroxide is a molecule containing the group N-O where the oxygen atom made only one bond instead of the usual two. The main advantage of these radicals is their exceptional stability; this allows the study of well defined chemical structures while varying at will the experimental conditions. Studies by electron paramagnetic resonance of nitroxide mono-radicals have given the principal directions and the principal values of the electron-nitrogen nucleus hyperfine tensor and of the anisotropic g-factor tensor. The results were then related to the electronic structure of radicals. An understanding was obtained of the influence of the solvent on the principal values of the tensors, and the marked differences observed in the broadening of hyperfine lines when the medium become viscous. In the nitroxide biradicals, the hyperfine spectra depends not only on the magnetic interactions relative to each monomer, but also on the magnitude of the exchange interaction between the singlet and the triplet states of the dimer; the biradicals studied here are the first organic compounds which show clearly the influence of this exchange on the hyperfine structure. The two unpaired electrons also interact by a magnetic dipolar interaction: in the intermediate case, this can be used to derive the sign of the exchange interaction if the bi-radical is studied in a liquid crystal. Just as for mono-radicals, the hyperfine spectra of bi-radicals show selective broadening in viscous media, which is caused by an overall motional modulation of the anisotropic tensors. This gives another way to determine the sign of the exchange interaction. (author) [fr

  18. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model.

    Science.gov (United States)

    Wittkopp, Felix; Peeck, Lars; Hafner, Mathias; Frech, Christian

    2018-04-13

    Process development and characterization based on mathematic modeling provides several advantages and has been applied more frequently over the last few years. In this work, a Donnan equilibrium ion exchange (DIX) model is applied for modelling and simulation of ion exchange chromatography of a monoclonal antibody in linear chromatography. Four different cation exchange resin prototypes consisting of weak, strong and mixed ligands are characterized using pH and salt gradient elution experiments applying the extended DIX model. The modelling results are compared with the results using a classic stoichiometric displacement model. The Donnan equilibrium model is able to describe all four prototype resins while the stoichiometric displacement model fails for the weak and mixed weak/strong ligands. Finally, in silico chromatogram simulations of pH and pH/salt dual gradients are performed to verify the results and to show the consistency of the developed model. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    Science.gov (United States)

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  20. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shirani, Hossein, E-mail: shiranihossein@gmail.com [Young Researchers Club, Islamic Azad University, Toyserkan Branch, Toyserkan (Iran, Islamic Republic of); Jameh-Bozorghi, Saeed [Department of Chemistry, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Yousefi, Ali [Department of Computer Engineering, Islamic Azad University, Hamedan Branch, Hamedan (Iran, Islamic Republic of)

    2015-01-22

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  1. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits

    Science.gov (United States)

    2016-01-01

    Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the “stiffness site” affects filament mechanical properties. Incorporating a magnesium ion in the “polymerization site” does not seem to require any large-scale change to an actin subunit’s conformation. Binding of a magnesium ion in the “stiffness site” adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246

  2. Complexes of natural carbohydrates with metal cations

    International Nuclear Information System (INIS)

    Alekseev, Yurii E; Garnovskii, Alexander D; Zhdanov, Yu A

    1998-01-01

    Data on the interaction of natural carbohydrates (mono-, oligo-, and poly-saccharides, amino sugars, and natural organic acids of carbohydrate origin) with metal cations are surveyed and described systematically. The structural diversity of carbohydrate metal complexes, caused by some specific features of carbohydrates as ligands, is demonstrated. The influence of complex formation on the chemical properties of carbohydrates is discussed. It is shown that the formation of metal complexes plays an important role in the configurational and conformational analysis of carbohydrates. The practical significance of the coordination interaction in the series of carbohydrate ligands is demonstrated. The bibliography includes 571 references.

  3. Cation-exchange high-performance liquid chromatography for variant hemoglobins and HbF/A2: What must hematopathologists know about methodology?

    OpenAIRE

    Sharma, Prashant; Das, Reena

    2016-01-01

    Cation-exchange high-performance liquid chromatography (CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It’s versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in spec...

  4. Role of Competitive Cation Exchange on Chromatographic Displacement of Cesium in the Vadose Zone beneath the Hanford S/SX Tank Farm

    International Nuclear Information System (INIS)

    Lichtner, Peter C.; Yabusaki, Steven B.; Pruess, Karsten; Steefel, Carl

    2004-01-01

    Migration of radionuclides under the SX-tank farm at the Hanford nuclear waste complex involves interaction of variably water saturated sediments with concentrated NaOH-NaNO 3 -NaNO 2 solutions that have leaked from the tanks. Constant K d models for describing radionuclide retardation are not valid under these conditions because of strong competition for sorption sites by abundant Na + ions, and because of dramatically changing solution compositions with time as the highly concentrated tank fluid becomes diluted as it mixes with infiltrating rainwater. A mechanistic multicomponent sorption model is required that can account for effects of competition and spatially and temporally variable solution compositions. To investigate the influence of the high ionic strength tank fluids on Cs + migration, numerical calculations are performed using the multiphase-multicomponent reactive transport code FLOTRAN. The computer model describes reactive transport in nonisothermal, variably saturated porous media including both liquid and gas phases. Pitzer activity coefficient corrections are used to describe the high ionic strength solutions. The calculations take into account multicomponent cation exchange based on measured selectivity coefficients specific to the Hanford sediments. Solution composition data obtained from Well 299-W23-19, documenting a moderately concentrated leak from the SX-115 tank, are used to calibrate the model. In addition to exchange of cations Na + , K + , Ca 2+ , and Cs + , aqueous complexing and a kinetic description of precipitation and dissolution of calcite are also included in the calculations. The fitted infiltration rate of 0.08 m yr -1 , and fitted cation exchange capacity of 0.05 mol kg -1 are consistent with measured values for the Hanford sediments. A sensitivity analysis is performed for Na + concentrations ranging from 5 to 20 m to investigate the mobility of Cs + interacting with a highly concentrated background electrolyte solution

  5. Sorption of 226Ra from oil effluents onto synthetic cation exchangers

    International Nuclear Information System (INIS)

    Attar, L.; Safia, M.

    2014-01-01

    Increasing environmental awareness is being urged for the safe disposal of 226 Ra-contaminated production water generated in the oil industry. Brainiest, antimony silicate and their cationic derivatives were studied for the take-up of 226 Ra using the batch-type method under experimentally determined parameters, viz. contact time, solution-solid ratio and 226 Ra concentration. Data was expressed in terms of distribution coefficients. Sorption experiments were performed in different concentrations of nitric acid in order to speculate the mechanism of 226 Ra uptake. Variation in the magnitude of sorption efficiency of the materials in the presence of the major components of waste streams, i.e. Na + , K + and Ca 2+ , revealed that K + was the greatest competitor and Na + the least. The application of the materials to sorb 226 Ra from actual oil co-production water samples, collected from Der Ezzor and Al Fourat petroleum companies (DEZPC and AFPC), was interpreted in terms of the exchange properties of the materials and water characterisation. Of the parameters studied, the selectivity of materials was shown to be greatly dependent on the pH of wastewater to be treated. (author)

  6. Ion exchange kinetics of alkaline earths on Zr(IV) arsenosilicate cation exchanger

    International Nuclear Information System (INIS)

    Varshney, K.G.; Agrawal, S.; Varshney, K.

    1984-01-01

    A new approach based on the Nernst-Planck equations was applied to study the ion exchange kinetics for the exchange reactions of Mg(II), Ca(II), Sr(II) and Ba(II) with H + -ions at various temperatures on the zirconium(IV) arsenosilicate phase. Under the conditions of particle diffusion, the rate of exchange was found to be independent of the metal ion concentration at and above 0.1 M in aqueous medium. Energy and entropy of activation were determined and found to vary linearly with the ionic radii and mobilities of alkaline earths, a unique feature observed for an inorganic ion exchanger. The results are useful for predicting the ion exchange processes occurring on the surface of an inorganic material of the type studied. (author)

  7. The role of nonmagnetic d{sup 0} vs. d{sup 10}B-type cations on the magnetic exchange interactions in osmium double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hai L., E-mail: Hai.Feng@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Yamaura, Kazunari [Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Jansen, Martin, E-mail: M.Jansen@fkf.mpg.de [Max Planck Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Max Planck Institute for Solid State Research, Stuttgart 70569 (Germany)

    2016-11-15

    Polycrystalline samples of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were synthesized by solid state reactions. They adopt the cubic double perovskite structures (space group, Fm-3m) with ordered B and Os arrangements. Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) show antiferromagnetic transitions at 93 K, 69 K, and 28 K, respectively. The Weiss-temperatures are −590 K for Ba{sub 2}ScOsO{sub 6}, −571 K for Ba{sub 2}YOsO{sub 6}, and −155 K for Ba{sub 2}InOsO{sub 6}. Sc{sup 3+} and Y{sup 3+} have the open-shell d{sup 0} electronic configuration, while In{sup 3+} has the closed-shell d{sup 10}. This indicates that a d{sup 0} B-type cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. Comparison of Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) to their Sr and Ca analogues shows that the structural distortions weaken the overall magnetic exchange interactions. - Graphical abstract: Magnetic properties of osmium double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. Comparison of Ba{sub 2}BOsO{sub 6}indicates that a d{sup 0} B-type cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. - Highlights: • Magnetic properties of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. • A d{sup 0}B-type cation induces stronger magnetic interactions than a d{sup 10}. • Structural distortions weaken the overall Os{sup 5+}-Os{sup 5+} magnetic interactions.

  8. Homoleptic mono- and dinuclear cationic alkoxydiphosphazane derivatives of rhodium

    International Nuclear Information System (INIS)

    Edwards, K.J.; Haines, R.J.; Meintjies, E.; Sigwarth, B.

    1990-01-01

    Treatment of the solvento species [Rh(C 8 H 12 )(solvent) 2 ][SbF 6 ] (solvent = methanol, ethanol, or tetrahydrofuran) with a twice-molar amount of the diphosphazane ligands (RO) 2 PN(R') P(OR) 2 (R' = Me or Et; R = Me, Et, or Pr i ) in the appropriate solvent leads to the ready formation of monocationic [Rh{(RO) 2 PN(R')P(OR) 2 } 2 ] + and/or dicationic [Rh 2 {μ-(RO) 2 PN(R')P(OR) 2 } 2 {(RO) 2 PN(R')P(OR) 2 } 2 ] 2+ hexafluoroantimonate salts, with the tendency to afford dinuclear derivatives decreasing along the series Me>Et>Pr i . Carbon monoxide readily forms addition products with these ionic species, giving rise to five-coordinate derivatives of the type [Rh(CO){(RO) 2 PN(R')P (OR) 2 } 2 ][SbF 6 ] in the case of the mononuclear derivatives, and inserting across the two rhodium atoms to afford [Rh 2 (μ-CO){μ-(MeO) 2 PN(Et)P(OMe) 2 } 2 {(MeO) 2 PN(Et)P(OMe) 2 } 2 ][SbF 6 ] 2 in the case of [Rh 2 {μ-(MeO) 2 PN (Et)P(OMe) 2 } 2 {(MeO) 2 PN(Et)P(OMe) 2 } 2 ][SbF 6 ] 2 . These mono- and dicationic derivatives also react readily with iodine affording [RhI 2 {(RO) 2 PN(R')P(OR) 2 } 2 ][SbF 6 ] and [Rh 2 (μ-I){μ-(MeO) 2 PN(Et)P(OMe) 2 } 2 {(MeO) 2 PN(Et)P(OMe) 2 } 2 ][SbF 6 ] n (n = 2 or 3) respectively. The coordination behaviour of the diphosphorus ligands (MeO) 2 PCH 2 P(OMe) 2 and Me 2 PCH 2 PMe 2 towards [Rh(C 8 H 12 )(solvent) 2 ][SbF 6 ] has also been investigated. 1 fig., 1 tab., 19 refs

  9. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    International Nuclear Information System (INIS)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan; Madaeni, Sayed Siavash

    2016-01-01

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  10. CO hydrogenation on zeolite-supported Ru: Effect of neutralizing cations

    International Nuclear Information System (INIS)

    Oukaci, R.; Wu, J.C.S.; Goodwin, J.G. Jr.

    1986-01-01

    Previous results for zeolite-supported Ru prepared by ion exchange suggested a possible effect of the nature and concentration of the neutralizing cations in the zeolite on the catalytic properties of the metal. However, the interpretation of these results was complicated by the fact that a series of zeolites with different Si/Al ratios was used. The present study was undertaken to investigate systematically the influence of the nature of alkali neutralizing cations on CO hydrogenation over ion-exchanged Y-zeolite-supported ruthenium catalysts

  11. Synthesis and crystal structure of Mg{sub 0.5}NbO{sub 2}: An ion-exchange reaction with Mg{sup 2+} between trigonal [NbO{sub 2}]{sup -} layers

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akira, E-mail: amiura@yamanashi.ac.jp [Center for Crystal Science and Technology, University of Yamanashi (Japan); Takei, Takahiro; Kumada, Nobuhiro [Center for Crystal Science and Technology, University of Yamanashi (Japan)

    2013-01-15

    A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2} through a cation-exchange reaction with Mg{sup 2+} at 450-550 Degree-Sign C. This is the first example of a topotactic reaction with an aliovalent cation between trigonal [NbO{sub 2}]{sup -} layers. It is proposed to be isostructural with LiNbO{sub 2} (space group; P6{sub 3}/mmc) with lattice parameters of a=2.9052(6) A, c=10.625(15) A. The lattice parameters and formation energy of Mg{sub 0.5}NbO{sub 2} crystallized in LiNbO{sub 2} form and other layered CaNb{sub 2}O{sub 4} one were calculated by density functional theory. - Graphical abstract: A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2} through a cation-exchange reaction with Mg{sup 2+} at 450-550 Degree-Sign C. It is isostructural with LiNbO{sub 2} with lattice parameters of a=2.9052(6) A, c=10.625(15) A. Mg{sup 2+} are described in spheres located between [NbO{sub 2}]{sup -} trigonal layers and its occupancy is 0.5. Highlights: Black-Right-Pointing-Pointer A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2}. Black-Right-Pointing-Pointer Cation-exchange reaction converted two monovalent Li{sup +} into one divalent Mg{sup 2+} at 450-550 Degree-Sign C. Black-Right-Pointing-Pointer Mg{sub 0.5}NbO{sub 2} was isostructural with LiNbO{sub 2} (space group; P6{sub 3}/mmc). Black-Right-Pointing-Pointer Its lattice parameters were a=2.9052(6) A and c=10.625(15) A. Black-Right-Pointing-Pointer Synthesized Mg{sub 0.5}NbO{sub 2} was calculated to be thermodynamically more favorable.

  12. Synthesis of 1, 4-Dioxan-2-one from 1, 3-Dioxolane and Carbon Monoxide over Cation-exchange Resin Catalyst

    OpenAIRE

    Takagi, Hiroyuki; Oumi, Yasunori; Uozumi, Toshiya; Masuda, Takashi; Sano, Tsuneji

    2001-01-01

    The possibility of the synthesis of 1, 4-dioxan-2-one (p-dioxanon) by carbonylation of 1, 3-dioxolane (cyclic ether) over Nafion® NR-50 cation-exchange resin catalyst was investigated. 1, 4-Dioxan-2-one, one of the cyclic esterethers used as a monomer of polyester, was obtained by depolymerization of polyester oligomers. The maximum yield (40%) of 1, 4-dioxan-2-one was achieved under reaction conditions of 25MPa initial PCO, 120°C reaction temperature and 4h reaction time.

  13. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  14. Composition of the sheath produced by the green alga Chlorella sorokiniana.

    Science.gov (United States)

    Watanabe, K; Imase, M; Sasaki, K; Ohmura, N; Saiki, H; Tanaka, H

    2006-05-01

    To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.

  15. Effect of diuretics on renal tubular transport of calcium and magnesium.

    Science.gov (United States)

    Alexander, R Todd; Dimke, Henrik

    2017-06-01

    Calcium (Ca 2+ ) and Magnesium (Mg 2+ ) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca 2+ and Mg 2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca 2+ and Mg 2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca 2+ and Mg 2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na + ) transport, but also indirectly affect renal Ca 2+ and Mg 2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca 2+ and Mg 2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca 2+ and Mg 2+ transport. Acetazolamide, osmotic diuretics, Na + /H + exchanger (NHE3) inhibitors, and antidiabetic Na + /glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca 2+ transport predominates. Loop diuretics and renal outer medullary K + (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca 2+ and Mg 2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na + transport at distal sites, can also affect divalent cation transport. Copyright © 2017 the American Physiological Society.

  16. Effect of cation exchange on the subsequent reactivity of lignite chars to steam. [108 references

    Energy Technology Data Exchange (ETDEWEB)

    Hippo, E. J.; Walker, Jr., P. L.

    1977-03-01

    The purpose of this investigation is to determine the role which cations in coal play in the subsequent reactivity of chars. It is hoped that this investigation will aid in an understanding of the catalytic nature of inorganic constituents in coal during its gasification. It was found that increased heat treatment temperature decreased reactivity. The decrease in reactivity was shown to be due, at least in part, to the changes in the nature of the cation with increased heat treatment temperature. Reactivity was found to be a linear function of the amount of Ca(++) exchange on the demineralized coal. The constant utilization factor over the wide range of loadings employed indicated that below 800/sup 0/C the calcium did not markedly sinter. Potassium, sodium, and calcium-containing chars were found to be much more reactive than the iron and magnesium-containing chars. However, the iron and magnesium containing chars were more reactive than chars produced from the demineralized coal. The iron char was highly active at first but the iron phase was quickly oxidized to a comparatively unreactive ..gamma..Fe/sub 2/O/sub 3/-Fe/sub 3/O/sub 4/ phase. The state of magnesium was found to be MgO. Sodium and calcium were equally active as catalysts but not as active as potassium.

  17. Drivers of Tree Species Effects on Phosphorus and Cation Cycling in Plantations at La Selva Biological Station, Costa Rica

    Science.gov (United States)

    Russell, A. E.

    2014-12-01

    Fast-growing trees in secondary forests and plantations in the humid tropics play an important role in the atmospheric CO2 balance owing to their high rates of carbon sequestration. Because plants require nutrients to sustain high CO2 uptake, differences among tree species in traits related to nutrient uptake, retention and recycling could influence ecosystem-scale carbon cycling. A better understanding of the relationships among plant traits, nutrient and carbon cycling will thus improve ecosystem- to global scale modeling of effects of vegetation change on carbon cycling. In an experimental setting in which state factors were similar among four species of tropical trees situated on an Oxisol in replicated, 25-yr-old, mono-dominant plantations, I evaluated various drivers of aboveground storage of phosphorus (P) and cations, measuring nutrient fluxes in litterfall and fine-root growth and storage in biomass and soil to 1-m depth. Because fine roots increase the capacity to scavenge nutrients already on exchange sites within the soil environment, I hypothesized that P and cation uptake would be correlated directly with fine-root growth. The four tree species in this experiment, Hieronyma alchorneoides, Pentaclethra macroloba, Virola koschnyi, and Vochysia guatemalensis differed significantly in net cation uptake over the first 25 years of growth (P = 0.013, Ca; P >0.0001, Mg, Mn, K, Al, Fe, and Sr). For all cations, aboveground tree biomass was highly correlated with fine-root ingrowth length, with P values >0.0001 for all cations except Ca (P = 0.013). In contrast for P, differences among species were only marginally significant (P = 0.062). Similarly, P in aboveground tree biomass was marginally correlated with fine-root ingrowth (P = 0.068). Neither cation nor P uptake was correlated with measures of available P and cations, organic or total P in surface soil. For P, the less significant correlation with fine-root growth suggests that some other mechanism, such

  18. Solidification of ion-exchange resins by hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Kaneko, M.

    1993-01-01

    The solidification reaction which easily occurs while continuously keeping the mixture of cation and anion exchange resins compressed under hydrothermal conditions has been demonstrated. Dehydration was considered to occur between sulphonic acid (-SO 3 H) from the cation exchange resin and quaternary ammonium [-CH 2 -N(CH 3 ) 3 OH] from anion-exchange resin-on terminal groups. The cation-and anion-exchange resins were mixed in a 1:1 weight ratio, put in a hot-pressing autoclave and compressed between pistons from the top and bottom at 600 kg cm -2 pressure. The material was continuously compressed during hydrothermal treatment at 200 kg cm -2 by a hydraulic jack and heated to a desired temperature with an induction heater. This system could be used for rapid temperature increasing up to 30 o c min -1 . The pressure and temperature were kept constant for 10 min. The autoclave was cooled to room temperature after the hydrothermal treatment. After the specimen was taken out, the ion-exchange radical reactions were estimated and the product structures were examined. The cation- and anion-exchange resin mixture was solidified. The resultant solidified body at a 300 o C reaction condition for 10 min had a 1.0 g cm -3 density and 700 kg cm -2 compressive strength, and the weight loss did not change in distilled water for 2 weeks. On the other hand, a solidification reaction did not occur at below 250 o C when only the cation or anion was solidified, but they were decomposed. These results suggest that a mixture of cation- and anion-exchange resins causes a solidification reaction under hydrothermal hot-pressing conditions at 300 o C. (author)

  19. Mixed matrix microporous hollow fibers with ion-exchange functionality

    NARCIS (Netherlands)

    Kiyono, R.; Kiyono, R.; Koops, G.H.; Wessling, Matthias; Strathmann, H.

    2004-01-01

    Heterogeneous hollow fiber membranes with cation exchange functionality are prepared using a wet spinning technique. The spinning dope solutions are prepared by dispersing finely ground cation ion-exchange resin (CER) particles in an N-methyl pyrrolidone solution of polysulfone (PSF). The polymer

  20. Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds

    International Nuclear Information System (INIS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-01-01

    Ten AInM′S 4 (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS 4 (1-β), RbInGeS 4 (2), CsInGeS 4 (3-β), TlInGeS 4 (4-β), RbInSnS 4 (8-β) and CsInSnS 4 (9) compounds with three-dimensional BaGa 2 S 4 structure and CsInGeS 4 (3-α) and TlInGeS 4 (4-α) compounds with a layered TlInSiS 4 structure have tetrahedral [InM′S 4 ] − frameworks. On the other hand, LiInSnS 4 (5) with spinel structure and NaInSnS 4 (6), KInSnS 4 (7), RbInSnS 4 (8-α) and TlInSnS 4 (10) compounds with layered structure have octahedral [InM′S 4 ] − frameworks. NaInSnS 4 (6) and KInSnS 4 (7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS 4 and KInSnS 4 compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S 4 compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS 4 and KInSnS 4 compounds undergo facile topotactic ion-exchange at room temperature.

  1. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid

    International Nuclear Information System (INIS)

    Amer Amezaga, S.

    1963-01-01

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs

  2. Ion-exchange properties of natural mordenite

    International Nuclear Information System (INIS)

    Chelishchev, N.F.; Volodin, V.F.

    1977-01-01

    Ion exchange properties are studied of natural mordenite Si(Al=4.75) exhibiting adequate mechanical characteristics and sufficient resistance to high temperature acids. Consideration is given to the pattern of exchange ions distribution among mordenite and chloride solutions of K, Cs, Rb, Sr. Mordenite shows sharp selectivity towards large alkali metal cations, particularly Cs + . In these processes the exchange isotherms are characterized by the constant selectivity towards a counterion. For the Sr 2+ -2Na + exchange the isotherm shows a change of selectivity after a definite counterion concentration has been reached in the solution. Correlation between the exchange thermodynamic constants makes it possible to propose the following range of mordenite selectivity towards the cations under study: Cs>Rb>K>Na>Sr

  3. Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Ieropoulos, Ioannis

    2013-11-01

    The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional polarisation methods, CEM exhibited power overshoot during the forward sweep followed by significant power decline over the reverse sweep (38%). The porous membranes displayed no power overshoot with comparably smaller drops in power during the reverse sweep (ceramic 8%, BioBag 5.5%). The total internal resistance at maximum power increased by 64% for CEM compared to 4% (ceramic) and 6% (BioBag). Under fixed external resistive loads, CEM exhibited steeper pH reductions than the porous membranes. Despite its limited lifetime, the BioBag proved an efficient material for a stable microbial environment until failing after 8 months, due to natural degradation. These findings highlight porous separators as ideal candidates for advancing MFC technology in terms of cost and operation stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Ion exchange properties of zeolite-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chuk, L V; Takhtarova, G N; Topchieva, K V [Moskovskii Gosudarstvennyi Univ. (USSR). Kafedra Fizicheskoi Khimii

    1975-03-01

    In the paper the reaction of sodium ion exchange for ammonium cations, cations of calcium and lanthanum in the amorphous aluminium silicate Na/sub 0,856/(AlO/sub 2/)(SiO/sub 2/)/sub 9,831/, zeolite Na/sub 1/(AlO/sub 2/)(SiO/sub 2/)/sub 2,33/ and zeolite containing catalyst Na/sub 1,09/(AlO/sub 2/)(SiOsub(2))/sub 7,93/ were studied; exchange isotherms of sodium for ammonium, calcium and lanthanium are presented. Results received in the study indicate high selectivity of zeolite for calcium and lanthanum cations in comparison with amorphous aluminium silicate and also display electroselectivity effect. The highest separation coefficient takes place for lanthanum in the sodium exchange in zeolite.

  5. [3H]WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    International Nuclear Information System (INIS)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-01-01

    In the presence of a 30 nM prazosin mask, [ 3 H]-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ([ 3 H]WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for [ 3 H] WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at [ 3 H]WB4101-binding sites in the presence of 30 nM prazosin and [ 3 H] lysergic acid diethylamide ([ 3 H]LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of [ 3 H]WB4101 is significantly lower than the Bmax of [ 3 H]LSD in various brain regions. WB4101 competition for [ 3 H] LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of [ 3 H]WB4101 binding derived from saturation experiments. This suggests that [ 3 H]WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by [ 3 H]LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for [ 3 H]WB4101 but compete for multiple [ 3 H]LSD 5-HT1 binding sites. These data indicate that [ 3 H]WB4101 selectively labels the 5-HT1A serotonin receptor, whereas [ 3 H] LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of [ 3 H]WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of [ 3 H]WB4101 binding

  6. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    Science.gov (United States)

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  7. Reactive transport modelling of groundwater-bentonite interaction: Effects on exchangeable cations in an alternative buffer material in-situ test

    International Nuclear Information System (INIS)

    Wallis, I.; Idiart, A.; Dohrmann, R.; Post, V.

    2016-01-01

    Bentonite clays are regarded a promising material for engineered barrier systems for the encapsulation of hazardous wastes because of their low hydraulic permeability, swelling potential, ability to self-seal cracks in contact with water and their high sorption potential. SKB (Svensk Kärnbränslehantering) has been conducting long term field scale experiments on potential buffer materials at the Äspö Hard Rock Laboratory for radioactive waste disposal in Sweden. The Alternative Buffer Material (ABM) test examined buffer properties of eleven different clay materials under the influence of groundwater and at temperatures reaching up to 135 °C, replicating the heat pulse after waste emplacement. Clay materials were emplaced into holes drilled in fractured granite as compacted rings around a central heater element and subsequently brought into contact with groundwater for 880 days. After test termination, and against expectations, all clay materials were found to have undergone large scale alterations in the cation exchange population. A reactive-diffusive transport model was developed to aid the interpretation of the observed large-scale porewater chemistry changes. It was found, that the interaction between Äspö groundwater and the clay blocks, together with the geochemical nature of the clays (Na vs Ca-dominated clays) exerted the strongest control on the porewater chemistry. A pronounced exchange of Na by Ca was observed and simulated, driven by large Ca concentrations in the contacting groundwater. The model was able to link the porewater alterations to the fracture network in the deposition hole. The speed of alterations was in turn linked to high diffusion coefficients under the applied temperatures, which facilitated the propagation of hydrochemical changes into the clays. With diffusion coefficients increased by up to one order of magnitude at the maximum temperatures, the study was able to demonstrate the importance of considering temperature

  8. Modification and performance evaluation of a mono-valve engine

    Science.gov (United States)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  9. Research of thermal stability of ion exchangers

    International Nuclear Information System (INIS)

    Stuchlik, S.; Srnkova, J.

    1983-01-01

    Prior to the fixation of radioactive ion exchangers into bitumen these exchangers have to be dried. The resulting gaseous products may generate explosive mixtures. An analysis was made of the thermal stability of two types of ion exchangers, the cation exchanger KU-2-8 cS and the anion exchanger AV-17-8 cS which are used in the V-1 nuclear power plant at Jaslovske Bohunice. The thermal stability of the anion exchangers was monitored using gas chromatography at temperatures of 100, 120, 140, 160 and 180 degC and by measuring weight loss by kiln-drying at temperatures of 120, 140, 160 and 180 degC. The ion exchanger was heated for 6 hours and samples were taken continuously at one hour intervals. The thermal stability of the cation exchanger was monitored by measuring the weight loss. Gas chromatography showed the release of trimethylamine from the anion exchanger in direct dependence on temperature. The measurement of weight losses, however, only showed higher losses of released products which are explained by the release of other thermally unstable products. The analysis of the thermal stability of the cation exchanger showed the release of SO 2 and the weight loss (following correction for water content) was found only after the fourth hour of decomposition. The experiment showed that the drying of anion exchanger AV-17-8 cS may cause the formation of explosive mixtures. (J.P.)

  10. Distribution of 14 elements from two solutions simulating Hanford HLW Tank 102-SY (acid-dissolved sludge and acidified supernate) on four cation exchange resins and five anion exchange resins having different functional groups

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    As part of the Tank Waste Remediation System program at Los Alamos, we evaluated a series of cation exchange and anion exchange resins for their ability to remove hazardous components from radioactive high-level waste (HLW). The anion exchangers were Reillex TM HPQ, a polyvinyl pyridine resin, and four strong-base polystyrene resins having trimethyl, tri ethyl, tri propyl, and tributyl amine as their respective functional groups. The cation exchange resins included Amberlyst TM 15 and Amberlyst tM XN-1010 with sulfonic acid functionality, Duolite TM C-467 with phosphonic acid functionality, and poly functional Diphonix TM with di phosphonic acid, sulfonic acid, and carboxylic acid functionalities. We measured the distributions of 14 elements on these resins from solutions simulating acid-dissolved sludge (pH 0.6) and acidified supernate (pH 3.5) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington, USA. To these simulants, we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of the 252 element/resin/solution combinations, distribution coefficients (Kds) were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to obtain information about sorption kinetics from these complex media. Because we measured the sorption of many different elements, the tabulated results indicate which unwanted elements are most likely to interfere with the sorption of elements of special interest. On the basis of these 756 measured Kd values, we conclude that some of the tested resins appear suitable for partitioning hazardous components from Hanford HLW. (author). 10 refs., 11 tabs

  11. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    Science.gov (United States)

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  12. Common Ion Effects In Zeoponic Substrates: Dissolution And Cation Exchange Variations Due to Additions of Calcite, Dolomite and Wollastonite

    Science.gov (United States)

    Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.

    2003-01-01

    c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite

  13. A Study of Complexation-ability of Neutral Schiff Bases to Some Metal Cations

    OpenAIRE

    Topal, Giray; Tümerdem, Recep; Basaran, Ismet; Gümüş, Arzu; Cakir, Umit

    2007-01-01

    The constants of the extraction equilibrium and the distribution for dichloromethane as an organic solvent having low dielectric constant of metal cations with chiral Schiff bases, benzaldehydene-(S)-2-amino-3-phenylpropanol (I), ohydroxybenzaldehydene-( S)-2-amino-3-phenyl-propanol (II), benzaldehydene-(S)-2- amino-3-methylbutanol (III) with anionic dyes [4-(2-pyridylazo)-resorcinol mono sodium monohydrate (NaPar), sodium picrat (NaPic) and potassium picrat (KPic)] and some heavy metal chlor...

  14. Evolutionary and Structural Perspectives of Plant Cyclic Nucleotide Gated Cation Channels

    Directory of Open Access Journals (Sweden)

    Alice Kira Zelman

    2012-05-01

    Full Text Available Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs. CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide binding domain (CNBD and a calmodulin binding domain (CaMBD as well as a 6 transmembrane/1 pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments.

  15. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels

    KAUST Repository

    Zelman, Alice K.

    2012-05-29

    Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments. 2012 Zelman, Dawe, Gehring and Berkowitz.

  16. New system applying image processor to automatically separate cation exchange resin and anion exchange resin for condensate demineralizer

    International Nuclear Information System (INIS)

    Adachi, Tsuneyasu; Nagao, Nobuaki; Yoshimori, Yasuhide; Inoue, Takashi; Yoda, Shuji

    2014-01-01

    In PWR plant, condensate demineralizer is equipped to remove corrosive ion in condensate water. Mixed bed packing cation exchange resin (CER) and anion exchange resin (AER) is generally applied, and these are regenerated after separation to each layer periodically. Since the AER particle is slightly lighter than the CER particle, the AER layer is brought up onto the CER layer by feeding water upward from the bottom of column (backwashing). The separation performance is affected by flow rate and temperature of water for backwashing, so normally operators set the proper condition parameters regarding separation manually every time for regeneration. The authors have developed the new separation system applying CCD camera and image processor. The system is comprised of CCD camera, LED lamp, image processor, controller, flow control valves and background color panel. Blue color of the panel, which is corresponding to the complementary color against both ivory color of AER and brown color of CER, is key to secure the system precision. At first the color image of the CER via the CCD camera is digitized and memorized by the image processor. The color of CER in the field of vision of the camera is scanned by the image processor, and the position where the maximum difference of digitized color index is indicated is judged as the interface. The detected interface is able to make the accordance with the set point by adjusting the flow rate of backwashing. By adopting the blue background panel, it is also possible to draw the AER out of the column since detecting the interface of the CER clearly. The system has provided the reduction of instability factor concerning separation of resin during regeneration process. The system has been adopted in two PWR plants in Japan, it has been demonstrating its stable and precise performance. (author)

  17. An unusual mono-substituted Keggin anion-chain based 3D framework with 24-membered macrocycles as linker units

    International Nuclear Information System (INIS)

    Pang Haijun; Ma Huiyuan; Yu Yan; Yang Ming; Xun Ye; Liu Bo

    2012-01-01

    A new compound, [Cu I (H 2 O)(Hbpp) 2 ]⊂{[Cu I (bpp)] 2 [PW 11 Cu II O 39 ]} (1) (bpp=1,3-bis(4-pyridyl)propane), has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. In compound 1, the unusual –A–B–A–B– array mono-substituted Keggin anion-chains and 24-membered (Cubpp) 2 cation-macrocycles are linked together to form a (2, 4) connected 3D framework with channels of ca. 9.784×7.771 Å 2 along two directions, in which the [Cu(H 2 O)(Hbpp) 2 ] coordination fragments as guest components are trapped. The photocatalytic experiments of compound 1 were performed, which show a good catalytic activity of compound 1 for photodegradation of RhB. Furthermore, the IR, TGA and electrochemical properties of compound 1 were investigated. - Graphical abstract: An unusual example of mono-substituted Keggin anion-chain based hybrid compound that possesses a 3D structure has been synthesized, which offers a feasible route for synthesis of such compounds. Highlights: ► The first example of –A–B–A–B– array mono-substituted Keggin chain is observed. ► An unusual three dimensional structure based mono-substituted Keggin anion-chains. ► The photocatalysis and electrochemical properties of the title compound were studied.

  18. Effects of ionizing radiation on modern ion exchange materials

    International Nuclear Information System (INIS)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included

  19. Use of combined ion exchangers on the basis of KU-23 and KM-2p cation exchangers for purification of ammonium molybdate and tungstate solutions from phosphate, arsenate, and silicate impurities

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Majorov, D.Yu.; Kopyrin, A.A.; Taushkanov, V.P.

    2002-01-01

    Using the Tracer technique ( 32 P) and elementary analysis, potentiality of using combined ionites on the basis of macroporous cation-exchange resins KU-23 or KM-2p and hydrated zirconium oxide for purification of concentrated solutions of ammonium molybdate and tungstate from phosphate-, arsenate-, and silicate-ions impurities was studied. High selectivity of the combined ionites towards impurity ions was ascertained, which permits reducing the content of impurities by a factor of 50-100 compared with the initial one [ru

  20. System for processing ion exchange resin regeneration waste liquid in atomic power plant

    International Nuclear Information System (INIS)

    Onaka, Noriyuki; Tanno, Kazuo; Shoji, Saburo.

    1976-01-01

    Object: To reduce the quantity of radioactive waste to be solidified by recovering and repeatedly using sulfuric acid and sodium hydroxide which constitute the ion exchange resin regeneration waste liquid. Structure: Cation exchange resin regeneration waste liquid is supplied to an anion exchange film electrolytic dialyzer for recovering sulfuric acid through separation from impurity cations, while at the same time anion exchange resin regeneration waste liquid is supplied to a cation exchange film electrolytic dialyzer for recovering sodium hydroxide through separation from impurity anions. The sulfuric acid and sodium hydroxide thus recovered are condensed by a thermal condenser and then, after density adjustment, repeatedly used for the regeneration of the ion exchange resin. (Aizawa, K.)

  1. Ion chromatography of transition metals: specific alteration of retention by complexation reactions in the mobile and on the stationary phase

    International Nuclear Information System (INIS)

    Baumgartner, S.

    1992-05-01

    Ion chromatography of mono- and bivalent cations was performed on a conventional cation exchanger. The pH influence of an ethylene-diamine/citrate eluent was significant for the retention of alkaline earth and transition metals, but negligible for alkali ions. This was dealt with from a mechanistic point of view. Mobile phase optimization allowed fast isocratic analysis of mono- and bivalent cations and the separation of the radionuclides Cs-137 and Sr-90. A newly synthesized stationary phase containing iminodiacetate (IDA) function was investigated for cation chromatography using ethylenediamine/citrate eluents, polyhydroxy acid and dipicolinic acid. The column's high selectivity for transition metal ions in comparison to alkali and alkaline earth metals may be governed by the choice of complexing ability and pH of the eluent. Applications verified by atomic absorption spectroscopy include alkaline earth metals in beverages and the determination of Co, Cd and Zn in solutions containing more than 10 14 -fold excess of Na and Mg, such as sea water

  2. Effect of divalent versus monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters.

    Science.gov (United States)

    Bartels, J; Hildebrand, N; Nawrocki, M; Kroll, S; Maas, M; Colombi Ciacchi, L; Rezwan, K

    2018-04-25

    Ceramic capillary membranes conditioned for virus filtration via functionalization with n-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) are analyzed with respect to their virus retention capacity when using feed solutions based on monovalent and divalent salts (NaCl, MgCl2). The log reduction value (LRV) by operating in dead-end mode using the model bacteriophage MS2 with a diameter of 25 nm and an IEP of 3.9 is as high as 9.6 when using feeds containing MgCl2. In contrast, a lesser LRV of 6.4 is observed for feed solutions based on NaCl. The TPDA functionalized surface is simulated at the atomistic scale using explicit-solvent molecular dynamics in the presence of either Na+ or Mg2+ ions. Computational prediction of the binding free energy reveals that the Mg2+ ions remain preferentially adsorbed at the surface, whereas Na+ ions form a weakly bound dissolved ionic layer. The charge shielding between surface and amino groups by the adsorbed Mg2+ ions leads to an upright orientation of the TPDA molecules as opposed to a more tilted orientation in the presence of Na+ ions. The resulting better accessibility of the TPDA molecules is very likely responsible for the enhanced virus retention capacity using a feed solution with Mg2+ ions.

  3. Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography.

    Science.gov (United States)

    Raweerith, Rutai; Ratanabanangkoon, Kavi

    2003-11-01

    A combined process of caprylic acid (CA) precipitation and ion-exchange chromatography on SP-Sepharose was studied as a means to fractionate pepsin-digested horse antivenom F(ab')(2) antibody. In the CA precipitation, the optimal concentration for fractionation of F(ab')(2) from pepsin-digested horse plasma was 2%, in which 89.61% of F(ab')(2) antibody activity was recovered in the supernatant with 1.5-fold purification. A significant amount of pepsin was not precipitated and remained active under these conditions. An analytical cation exchanger Protein-Pak SP 8HR HPLC column was tested to establish optimal conditions for the effective separation of IgG, albumin, pepsin and CA from the F(ab')(2) product. From these results, the supernatant from CA precipitation of pepsin-digested plasma was subjected to a SP-Sepharose column chromatography using a linear salt gradient. With stepwise elution, a peak containing F(ab')(2) antibody could be obtained by elution with 0.25 M NaCl. The total recovery of antibody was 65.56% with 2.91-fold purification, which was higher than that achieved by ammonium sulfate precipitation. This process simultaneously and effectively removed residual pepsin, high molecular weight aggregates and CA in the final F(ab')(2) product, and should be suitable for large-scale fractionation of therapeutic equine antivenoms.

  4. How Long Is Mono Contagious?

    Science.gov (United States)

    ... Here's how it works: Mono is short for mononucleosis . It's usually caused by an infection with the ... May 2018 More on this topic for: Teens Mononucleosis How Do Doctors Test for Mono? Can a ...

  5. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1996-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  6. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1997-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  7. Influence of divalent metal ions on degradation of dimethylsulphide ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... Dimethylsulphide degradation by intact cells of Thiobacillus thioparus TK-m was stimulated by the addition of divalent .... plastic vials in ice-cooled water. .... tization of authotrophic sulphur bacteria oxidizing dimethyldisulphide.

  8. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers; Obtencion de la capacidad de intercambio cationico de una kaolinita natural con trazadores radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Uribe I, A.; Badillo A, V.E. [Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Monroy G, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: Adrya81@hotmail.com

    2005-07-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope {sup 24} Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  9. Standardization of method for determining glycosylated hemoglobin (Hb A1c by cation exchange high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Marina Venzon Antunes

    2009-12-01

    Full Text Available Hemoblobin A1c is the most important parameter for the monitoring of metabolic control of patients with diabetes mellitus. The purpose of this study was to adapt the Mono S method to a conventional HPLC system, allowing highly selective HbA1c determination without the acquisition of kits or the use of dedicated systems The results obtained were compared to the Tinaquant® immune turbidimetric method and the Bio-Rad Variant® chromatographic method. The developed method presented intra-study precision (C.V. % of 1.39-3.65 and inter-study precision (C.V. % of 2.80-3.02%. The determination coefficients among methods were: HPLC Mono S x Tinaquant®: r²: 0.9856 (n=60 and HPLC Mono S x HPLC Bio-Rad Variant®: r²: 0.9806 (n=16. A conversion equation between HPLC Mono S and Bio-Rad Variant® was calculated allowing yielding comparable and interchangeable values. The HPLC Mono-S is a precise, low-cost method which yields similar values to the Bio-Rad Variant® method on conventional HPLC equipment.A hemoglobina A1c é o parâmetro laboratorial mais importante no monitoramento do controle metabólico de pacientes portadores de diabetes melito. Dentre as metodologias existentes para a quantificação desta fração de hemoglobina, a cromatografia líquida de alta eficiência (CLAE baseada em troca catiônica apresenta a melhor precisão, sendo o método de escolha. O objetivo deste trabalho foi adaptar o método Mono S a um sistema de CLAE convencional permitindo a disponibilidade da determinação altamente seletiva de Hb A1c sem a aquisição de kits e comparar os resultados obtidos com o método imunoturbidimétrico Tinaquant® (Roche® e com o método de cromatografia líquida Bio-Rad Variant®. O método desenvolvido apresentou precisão intra-ensaio de 1,39-3,65% e inter-ensaio de 2,80-3,02%. Os coeficientes de determinação entre os métodos foram: CLAE Mono S x Tinaquant®: r² = 0,9856 (n=60 e CLAE Mono S x Bio-Rad Variant®: r² = 0,9806 (n=16

  10. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Science.gov (United States)

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  11. Ion exchange fiber by radiation grafting, 1

    International Nuclear Information System (INIS)

    Fujiwara, Kunio

    1990-01-01

    Radiation grafting is gaining attention as a method for producing high performance materials. This method can be applied to add functions to existing polymer plastics. The author participated in the research program on the production of ion exchange fiber by radiation grafting and its applicability at the Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment. Consequently, it was clarified that it was possible to introduce the cation exchange group, represented by sulfonic and carboxyl groups, and the anion exchange group, represented by the quarternary ammonium group, to polypropylene fiber available on the market. The ion exchange capacity was able to be controlled by the degree of grafting, i.e. approximately up to 3 meq/g in both strong acid and strong base and approximately up to 5 meq/g in weak acid were obtained. The adsorption performance of ammonia, a representative malodorous substance, was also studied using test cation exchange fiber. The adsorption rate of H type strong acid cation exchange fiber was great, due to the H type having neutral reaction, and the adsorption capacity matched the ion exchange capacity. Although the Cu and Ni types features coordinated adsorption and their adsorption rates were from 1/2 to 1/3 of that of the H type, their adsorption capacities showed increase along with the metal adsorbed. (author)

  12. Lysine purification with cation exchange resin

    International Nuclear Information System (INIS)

    Khayati, GH.; Mottaghi Talab, M.; Hamooni Hagheeghat, M.; Fatemi, M.

    2003-01-01

    L-lysine is an essential amino acid for the growth most of animal species and the number one limiting amino acid for poultry. After production and biomass removal by filtration and centrifugation, the essential next step is the lysine purification and recovery. There are different methods for lysine purification. The ion exchange process is one of the most commonly used purification methods. Lysine recovery was done from broth by ion exchange resin in three different ways: repeated passing, resin soaking and the usual method. Impurities were isolated from the column by repeated wash with distilled water. Recovery and purification was done with NH 4 OH and different alcohol volumes respectively. The results showed that repeated passing is the best method for lysine absorption (maximum range 86.21 %). Washing with alkali solution revealed that most of lysine is obtained in the first step of washing. The highest degree of lysine purification was achieved with the use of 4 volumes of alcohol

  13. Development of ion exchanging membranes synthesized by means of radiation grafting coplolymerization

    International Nuclear Information System (INIS)

    Xiong Jie; Xu Yunshu; Huang Wei

    2006-01-01

    Separation material is an important type of functional materials. In this paper, the development of cation- exchange membranes was reviewed, the synthesis of fluoropolymer based sulfonic acid type membranes and other polymers based cation-exchange membranes were selectively introduced. (authors)

  14. Divalent thulium triflate. A structural and spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Xemard, Mathieu; Jaoul, Arnaud; Cordier, Marie; Nocton, Gregory [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Molton, Florian; Duboc, Carole [Grenoble Univ., Saint Martin d' Heres (France). Dept. de Chimie Moleculaire; Cador, Olivier; Le Guennic, Boris [Univ. de Rennes 1 (France). Inst. des Sciences Chimique de Rennes, UMR 6226 CNRS; Maury, Olivier [Univ. Claude Bernard Lyon 1 (France). Lab. de Chimie; Clavaguera, Carine [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Univ. Paris Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Chimie Physique, CNRS

    2017-04-03

    The first molecular Tm{sup II} luminescence measurements are reported along with rare magnetic, X and Q bands EPR studies. Access to simple and soluble molecular divalent lanthanide complexes is highly sought for small-molecule activation studies and organic transformations using single-electron transfer processes. However, owing to their low stability and propensity to disproportionate, these complexes are hard to synthetize and their electronic properties are therefore almost unexplored. Herein we present the synthesis of [Tm(μ-OTf){sub 2}(dme){sub 2}]{sub n}, a rare and simple coordination compound of divalent thulium that can be seen as a promising starting material for the synthesis of more elaborated complexes. This reactive complex was structurally characterized by X-ray diffraction analysis and its electronic structure has been compared with that of its halide cousin TmI{sub 2}(dme){sub 3}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Rapid Two-Step Procedure for Large-Scale Purification of Pediocin-Like Bacteriocins and Other Cationic Antimicrobial Peptides from Complex Culture Medium

    OpenAIRE

    Uteng, Marianne; Hauge, Håvard Hildeng; Brondz, Ilia; Nissen-Meyer, Jon; Fimland, Gunnar

    2002-01-01

    A rapid and simple two-step procedure suitable for both small- and large-scale purification of pediocin-like bacteriocins and other cationic peptides has been developed. In the first step, the bacterial culture was applied directly on a cation-exchange column (1-ml cation exchanger per 100-ml cell culture). Bacteria and anionic compounds passed through the column, and cationic bacteriocins were subsequently eluted with 1 M NaCl. In the second step, the bacteriocin fraction was applied on a lo...

  16. Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, J.; Campillo, M.C. del; Barrón, V.

    2015-07-01

    Soil cation exchange capacity (CEC) depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM) in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH) of 43% (HM43). Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg). Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC. (Author)

  17. Evaluation of bi-functionalized mesoporous silicas as reversed phase/cation-exchange mixed-mode sorbents for multi-residue solid phase extraction of veterinary drug residues in meat samples.

    Science.gov (United States)

    Casado, Natalia; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2017-04-01

    A SBA-15 type mesoporous silica was synthesized and bi-functionalized with octadecylsilane (C18) or octylsilane (C8), and sulfonic acid (SO 3 - ) groups in order to obtain materials with reversed-phase/strong cation-exchange mixed-mode retention mechanism. The resulting hybrid materials (SBA-15-C18-SO 3 - and SBA-15-C8-SO 3 - ) were comprehensively characterized. They showed high surface area, high pore volume and controlled porous size. Elemental analysis of the materials revealed differences in the amount of C18 and C8. SBA-15-C18-SO 3 - contained 0.19mmol/g of C18, while SBA-15-C8-SO 3 - presented 0.54mmol/g of C8. The SO 3 - groups anchored to the silica surface of the pore walls were 0.20 and 0.09mmol/g, respectively. The bi-functionalized materials were evaluated as SPE sorbents for the multi-residue extraction of 26 veterinary drug residues in meat samples using ultra-high-performance liquid chromatography coupled to mass spectrometry detector (UHPLC-MS/MS). Different sorbent amounts (100 and 200mg) and organic solvents were tested to optimize the extraction procedure. Both silicas showed big extraction potential and were successful in the extraction of the target analytes. The mixed-mode retention mechanism was confirmed by comparing both silicas with SBA-15 mesoporous silica mono-functionalized with C18 and C8. Best results were achieved with 200mg of SBA-15-C18-SO 3 - obtaining recoveries higher than 70% for the majority of analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Identification of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H+ exchanger CAX1.

    Science.gov (United States)

    Shigaki, Toshiro; Barkla, Bronwyn J; Miranda-Vergara, Maria Cristina; Zhao, Jian; Pantoja, Omar; Hirschi, Kendal D

    2005-08-26

    In plants, yeast, and bacteria, cation/H+ exchangers (CAXs) have been shown to translocate Ca2+ and other metal ions utilizing the H+ gradient. The best characterized of these related transporters is the plant vacuolar localized CAX1. We have used site-directed mutagenesis to assess the impact of altering the seven histidine residues to alanine within Arabidopsis CAX1. The mutants were expressed in a Saccharomyces cerevisiae strain that is sensitive to Ca2+ and other metals. By utilizing a yeast growth assay, the H338A mutant was the only mutation that appeared to alter Ca2+ transport activity. The CAX1 His338 residue is conserved among various CAX transporters and may be located within a filter for cation selection. We proceeded to mutate His338 to every other amino acid residue and utilized yeast growth assays to estimate the transport properties of the 19 CAX mutants. Expression of 16 of these His338 mutants could not rescue any of the metal sensitivities. However, expression of H338N, H338Q, and H338K allowed for some growth on media containing Ca2+. Most interestingly, H338N exhibited increased tolerance to Cd2+ and Zn2+. Endomembrane fractions from yeast cells were used to measure directly the transport of H338N. Although the H338N mutant demonstrated 25% of the wild type Ca2+/H+ transport, it showed an increase in transport for both Cd2+ and Zn2+ reflected in a decrease in the Km for these substrates. This study provides insights into the CAX cation filter and novel mechanisms by which metals may be partitioned across membranes.

  19. Variation in whole DNA methylation in red maple (Acer rubrum) populations from a mining region: association with metal contamination and cation exchange capacity (CEC) in podzolic soils.

    Science.gov (United States)

    Kalubi, K N; Mehes-Smith, M; Spiers, G; Omri, A

    2017-04-01

    Although a number of publications have provided convincing evidence that abiotic stresses such as drought and high salinity are involved in DNA methylation reports on the effects of metal contamination, pH, and cation exchange on DNA modifications are limited. The main objective of the present study is to determine the relationship between metal contamination and Cation exchange capacity (CEC) on whole DNA modifications. Metal analysis confirms that nickel and copper are the main contaminants in sampled sites within the Greater Sudbury Region (Ontario, Canada) and liming has increased soil pH significantly even after 30 years following dolomitic limestone applications. The estimated CEC values varied significantly among sites, ranging between 1.8 and 10.5 cmol(+) kg -1 , with a strong relationship being observed between CEC and pH (r = 0.96**). Cation exchange capacity, significantly lower in highly metal contaminated sites compared to both reference and less contaminated sites, was higher in the higher organic matter limed compared to unlimed sites. There was a significant variation in the level of cytosine methylation among the metal-contaminated sites. Significant and strong negative correlations between [5mdC]/[dG] and bioavailable nickel (r = -0.71**) or copper (r = -0.72**) contents were observed. The analysis of genomic DNA for adenine methylation in this study showed a very low level of [6N-mdA]/dT] in Acer rubrum plants analyzed ranging from 0 to 0.08%. Significant and very strong positive correlation was observed between [6N-mdA]/dT] and soil bioavailable nickel (r = 0.78**) and copper (r = 0.88**) content. This suggests that the increased bioavailable metal levels associated with contamination by nickel and copper particulates are associated with cytosine and adenine methylation.

  20. Cation exchange and CaCO 3 dissolution during artificial recharge of effluent to a calcareous sandstone aquifer

    Science.gov (United States)

    Goren, Orly; Gavrieli, Ittai; Burg, Avihu; Lazar, Boaz

    2011-03-01

    SummaryThis research describes a field study and laboratory simulations of the geochemical evolution of groundwater following a recharge of effluent into aquifers. The study was conducted in the soil aquifer treatment (SAT) system of the Shafdan sewage reclamation plant, Israel. The SAT system recharges secondary effluent into the calcareous sandstone sediments of the Israeli Coastal Aquifer as a tertiary treatment. The reclaimed effluent is recovered ca. 500 m off the recharge basin and is used for unlimited irrigation. The laboratory simulations in which effluent was pumped through experimental columns packed with pristine Shafdan sediment showed that the chemical composition of the outflowing water was controlled mainly by cation exchange and CaCO 3 dissolution. Na +, K + and Mg 2+ were adsorbed and Ca 2+ was desorbed during the initial stage of recharge. The equilibrium distribution of the adsorbed cations was: Ca 2+ ˜ 60%, Mg 2+ ˜ 20%, and Na + and K + ˜ 10% each. The Ca 2+ in the Shafdan production wells and in the experimental columns outflow (˜5 meq L -1) was always higher than the Ca 2+ in the recharged effluent (˜3.5 meq L -1), indicating continuous CaCO 3 dissolution. This study demonstrates that besides mixing, a suite of geochemical processes should be considered when assessing groundwater quality following artificial recharge of aquifers.

  1. Cation exchange capacity of an oxisol amended with an effluent from domestic sewage treatment Capacidade de troca catiônica de um latossolo tratado com efluente de tratamento de esgoto doméstico

    Directory of Open Access Journals (Sweden)

    Adriel Ferreira da Fonseca

    2005-12-01

    Full Text Available The addition of Na-rich anthropogenic residues to tropical soils has stimulated the scientific community to study the role of sodium in both the soil solution and the exchange complex. In this study, several different methods were used to calculate the concentration of exchangeable and soluble cations and this data was then used to establish correlations between the level of these cations and both the accumulation of various elements and the dry weight of maize grown in a greenhouse under different conditions. In the closed environments of the pots, the most suitable method for calculating the effective cation exchange capacity (ECEC was the cation exchange capacity calculated by cations removed with barium chloride solution (CEC S. Then again, the actual cation exchange capacity (CEC A should be measured by using Mg adsorption to prevent ionic force from influencing electric charges. A strong positive correlation was obtained between the concentrations of Na in the 1:2 soil:water extracts and the accumulation of Na in the maize plants, indicating saline or double acid extractors are not needed when monitoring the Na concentration only.A disposição de resíduos antropogênicos ricos em sódio nos solos tropicais tem despertado o interesse da comunidade científica em estudar a participação deste elemento no complexo de troca, bem como na solução no solo. Objetivou-se neste trabalho estabelecer correlações entre as concentrações de cátions trocáveis e de cátions solúveis, obtidos por diferentes métodos, com o acúmulo de elementos e com a massa seca no milho. O experimento foi conduzido em casa de vegetação, sob diferentes condições. Para experimentos em ambiente fechado (vasos, o método mais indicado para o cálculo da capacidade de troca catiônica efetiva (CTCe é a capacidade de troca catiônica calculada a partir dos cátions removidos com solução de cloreto de bário. Ainda, a capacidade de troca catiônica atual deve

  2. Effect of Aging, Antioxidant, and Mono- and Divalent Ions at High Temperature on the Rheology of New Polyacrylamide-Based Co-Polymers

    Directory of Open Access Journals (Sweden)

    Saeed Akbari

    2017-10-01

    Full Text Available The viscosity of four new polymers was investigated for the effect of aging at high temperature, with varying degrees of salinity and hardness. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; AN132 VHM; SUPERPUSHER SAV55; and THERMOASSOCIATIF copolymers. All polymer samples were aged at 80 °C for varying times (from zero to at least 90 days with and without isobutyl alcohol (IBA as an antioxidant. To see the effect of divalent ions on the polymer solution viscosity, parallel experiments were performed in a mixture of CaCl2-NaCl of the same ionic strength as 5 wt % NaCl. The polymers without IBA showed severe viscosity reduction after aging for 90 days in both types of preparation (5 wt % NaCl or CaCl2-NaCl. In the presence of IBA, viscosity was increased when aging time was increased for 5 wt % NaCl. In CaCl2-NaCl, on the other hand, a viscosity reduction was observed as aging time was increased. This behavior was observed for all polymers except AN132 VHM.

  3. Development of a new generation of ion exchange resin for nuclear and fossil power plant

    International Nuclear Information System (INIS)

    Tsuzuki, Shintaro; Tagawa, Hidemi; Yamashita, Futoshi; Okamoto, Ryutaro

    2008-01-01

    It is required to maintain water quality supplied to steam generator to the water designed based on its water chemistry in order to keep the sound operation of nuclear power plants or fossil power plants. Condensate Polishing Plant (CPP) is installed for removing ions in the water which uses a mixed bed of cation exchange resin and anion exchange resin. We have developed new generation of CPP resin. The product is a unique combination of super high exchange capacity cation exchange resin and high fouling resistant anion exchange resin. The CPP resin has been used in many power plants. Amberjet 1006 was developed as a cation exchange resin with high oxidative stability, high operational capacity and New IRA900CP was developed as an anion exchange resin with high fouling resistant to leachables released out of cation exchange resin by oxidative degradation over the service period. The novel CPP resin was first used in 2000 and has now been used in many power plants in Japan. The CPP resin has been giving excellent quality of water. (author)

  4. Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.

    Science.gov (United States)

    Yan, Wei; Hu, Shan; Jing, Chuanyong

    2012-04-15

    Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Cs

  5. chemical studies and sorption behavior of some hazardous metal ions on polyacrylamide stannic (IV) molybdophosphate as 'organic - inorganic' composite cation - exchanger

    International Nuclear Information System (INIS)

    Abdel-Galil, E.A.M.

    2010-01-01

    compsite materials formed by the combination of multivalent metal acid salts and organic polymers provide a new class of (organic-inorganic) hypride ion exchangers with better mechanical and granulometric properties, good ion-exchange capacity, higher chemical and radiation stabilites, reproducibility and selectivity for heavy metals. this material was characterized using X-ray (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. on the basis of distribution studies, the material has been found to be highly selective for pb(II). thermodynamic parameters (i.e δG 0 , δ S 0 and δH 0 ) have also been calculated for the adsorption of Pb 2+ , Cs + , Fe 3+ , Cd 2+ , Cu +2 , Zn 2+ , Co 2+ and Eu 3+ ions on polyacrylamide Sn(IV) molybdophosphate showing that the overall adsorption process is spontaneous endothermic. the mechanism of diffusion of Fe 3+ , Co 2+ , Cu +2 , Zn 2+ , Cd 2+ , Cs + , Pb 2+ and Eu 3+ in the H-form of polyacrylamide Sn(IV) molybdophosphate composite as cation exchanger was studied as a function of particle size, concentration of the exchanging ions, reaction temperature, dring temperature and pH. the exchange rate was controlled by particle diffusion mechanism as a limited batch techneque and is confirmed from straight lines of B versus 1/r 2 polts. the values of diffusion coefficients, activation energy and entropy of activation were calculated and their significance was discussed. the data obtained have been comared with that reported for other organic and inorganic exchangers.

  6. Mono pile foundation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyngesen, S.; Brendstrup, C.

    1997-02-01

    The use of mono piles as foundations for maritime structures has been developed during the last decades. The installation requirements within the offshore sector have resulted in equipment enabling driving of piles up to 3-4 m to large penetration depths. The availability of this equipment has made the use of large mono piles feasible as foundations for structures like wind turbines. The mono pile foundations consists of three parts; the bare pile, a conical transition and a boat landing. All parts are prefitted at the yard in order to minimise the installation work that has to be carried out offshore. The study of a mono pile foundations for a 1.5 MW wind turbine has been conducted for two locations, Horns Rev and Roedsand. Three different water depths: 5, 8 and 11 m have been investigated in the study. The on-site welding between pile and conical transition is performed by an automatic welding machine. Final testing and eventually repair of the weld are conducted at least 16 hours after welding. This is followed by final installation of J-tube, tie-in to subsea cables and installation of the impressed current system for corrosive protection of the mono pile. The total cost for procurement and installation of the mono pile using the welded connection is estimated. The price does not include procurement and installation of access platform and boat landing. These costs are estimated to 250.000 DKK. Depending on water depth the cost of the pile ranges from 2,2 to 2,7 million DKK. Procurement and fabrication of the pile are approx. 75% of the total costs. The remaining 25% are due to installation. The total costs are very sensitive to the unit price of pile steel. During the project it became obvious that ice load has a very large influence on the dimensions of the mono pile. (EG)

  7. Protein Phylogenetic Analysis of Ca2+/cation Antiporters and Insights into their Evolution in Plants

    Science.gov (United States)

    Emery, Laura; Whelan, Simon; Hirschi, Kendal D.; Pittman, Jon K.

    2012-01-01

    Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca2+/cation antiporter (CaCA) superfamily are involved in the transport of Ca2+ and/or other cations using the counter exchange of another ion such as H+ or Na+. The CaCA superfamily has been previously divided into five transporter families: the YRBG, Na+/Ca2+ exchanger (NCX), Na+/Ca2+, K+ exchanger (NCKX), H+/cation exchanger (CAX), and cation/Ca2+ exchanger (CCX) families, which include the well-characterized NCX and CAX transporters. To examine the evolution of CaCA transporters within higher plants and the green plant lineage, CaCA genes were identified from the genomes of sequenced flowering plants, a bryophyte, lycophyte, and freshwater and marine algae, and compared with those from non-plant species. We found evidence of the expansion and increased diversity of flowering plant genes within the CAX and CCX families. Genes related to the NCX family are present in land plant though they encode distinct MHX homologs which probably have an altered transport function. In contrast, the NCX and NCKX genes which are absent in land plants have been retained in many species of algae, especially the marine algae, indicating that these organisms may share “animal-like” characteristics of Ca2+ homeostasis and signaling. A group of genes encoding novel CAX-like proteins containing an EF-hand domain were identified from plants and selected algae but appeared to be lacking in any other species. Lack of functional data for most of the CaCA proteins make it impossible to reliably predict substrate specificity and function for many of the groups or individual proteins. The abundance and diversity of CaCA genes throughout all branches of life indicates the importance of this class of cation transporter, and that many transporters with novel functions are waiting to be discovered. PMID:22645563

  8. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    Science.gov (United States)

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ion exchange and hydrolysis reactions in zeolites

    International Nuclear Information System (INIS)

    Harjula, Risto.

    1993-09-01

    Among other uses, zeolites are efficient cation exchangers for aquatic pollution control. At present they they are mainly used in nuclear waste effluent treatment and in detergency. In the thesis, several ion exchange equilibria, important in these main fields of zeolite applications, were studied, with special emphasis on the formulation and calculation of the equilibria. The main interest was the development of thermodynamic formulations for the calculation of zeolite ion exchange equilibria in solutions of low or very low (trace) ion concentration, which are relevant for the removal of trace pollutants, such as radionuclides, from waste waters. Two groups of zeolite-cation systems were studied. First, binary Ca 2+ /Na + exchange in zeolites X and Y, which are of interest for detergency applications. Second, binary Cs + /Na + and Cs + /K + exchanges, and ternary Cs + /Na + /K + exchange in mordenite, which are important in nuclear waste effluent treatment. The thesis is based on five previous publications by author. (100 refs., 7 figs.)

  10. Uranium isotopic effect studies on cation and anion exchange resins

    International Nuclear Information System (INIS)

    Sarpal, S.K.; Gupta, A.R.

    1975-01-01

    Uranium isotope effects in exchange reactions involving hexavalent and tetravalent uranium, on ion exchange resins, have been re-examined. The earlier work on uranium isotope effects in electron exchange reactions involving hexavalent and tetravalent uranium, has been critically reviewed. New experimental data on these systems in hydrochloric acid medium, has been obtained, using break-through technique on anion-exchange columns. The isotope effects in these break-through experiments have been reinterpreted in a way which is consistent with the anion exchange behaviour of the various uranium species in these systems. (author)

  11. Selective transport of metal ions through cation exchange membrane in the presence of a complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Tingchia Huang; Jaukai Wang (National Cheng Kung Univ., Tainan (Taiwan, Province of China))

    1993-01-01

    Selective transport of metal ions through a cation exchange membrane was studied in stirred batch dialyzer for the systems Ni[sup 2+]-Cu[sup 2+] and Cu[sup 2+]-Fe[sup 3+]. Oxalic acid, malonic acid, citric acid, glycine, and ethylenediaminetetraacetic acid were employed as the complexing agents added in the feed solution in order to increase the permselectivity of metal ions. The experimental results show that the selective transport behavior of metal ions depends on the valence and the concentration of metal ions, the stoichiometric ratio of complexing agent to metal ions, and the pH value of the feed solution, but is independent of the concentration of counterion in the stripping phase. A theoretical approach was formulated on the basis of the Nernst-Planck equation and interface quasi-equilibrium. Theoretical solutions obtained from numerical calculation were in agreement with the experimental data.

  12. Ion exchange reactions of major inorganic cations (H+, Na+, Ca2+, Mg2+ and K+) on beidellite: Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments

    International Nuclear Information System (INIS)

    Robin, Valentin; Tertre, Emmanuel; Beaufort, Daniel; Regnault, Olivier; Sardini, Paul; Descostes, Michael

    2015-01-01

    Highlights: • Multi-site ion exchange model for beidellite for Na + , Ca 2+ , Mg 2+ , K + and H + . • Validity over the 1–7 pH range and total normality >5 × 10 −3 mol/L. • Application to equilibrium between smectite and acidic solution from mining sites. • Impact of crystal chemistry of smectites on their sorption properties. - Abstract: To our knowledge, no thermodynamic database is available in the literature concerning ion-exchange reactions occurring in low-charge smectite with tetrahedral charge (beidellite). The lack of this information makes it difficult to predict the mobility of contaminants in environments where beidellite and major cations, which act as competitors with contaminants for sorption on the clay phase, are present. The present study proposes a multi-site ion exchange model able to describe experimental data obtained for H + and the four major cations (Na + , Ca 2+ , Mg 2+ and K + ) found in natural waters interacting with a <0.3 μm size fraction of Na-beidellite. The nature of the sites involved in the sorption processes is assessed using qualitative structural data. Moreover, the effect of the charge location in the smectite on the selectivity coefficient values is discussed by comparison with the results reported in the literature for smectite characterized by octahedral charge (montmorillonite). The new thermodynamic database proposed in this study is based on the same total sorption site density and distribution of sites regardless of the cations investigated. This database is valid for a large range of physico-chemical conditions: a [1–7] pH range, a total normality higher than 5 × 10 −3 mol/L corresponding to a flocculated state for water/clay systems, and when sorption of ions pairs can be neglected. Note that this study provides evidence that a thermodynamic database describing ion exchange reactions between H + and the four major cations of natural water for smectite cannot be valid irrespective of the total

  13. Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment

    International Nuclear Information System (INIS)

    Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki

    2010-01-01

    Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca 2+ in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.

  14. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    Science.gov (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  15. Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.

    Science.gov (United States)

    Haddadi, Sakineh; Nabi-Bidhendi, Gholamreza; Mehrdadi, Nasser

    2014-02-17

    Vulnerability of water resources to nutrients led to progressively stricter standards for wastewater effluents. Modification of the conventional procedures to meet the new standards is inevitable. New technologies should give a priority to nitrogen removal. In this paper, ammonium chloride and urine as nitrogen sources were used to investigate the capacity of a microbial electrolysis cell (MEC) configured by cation exchange membrane (CEM) for electrochemical removal of nitrogen over open-and closed-circuit potentials (OCP and CCP) during biodegradation of organic matter. Results obtained from this study indicated that CEM was permeable to both organic and ammonium nitrogen over OCP. Power substantially mediated ammonium migration from anodic wastewater to the cathode, as well. With a urine rich wastewater in the anode, the maximum rate of ammonium intake into the cathode varied from 34.2 to 40.6 mg/L.h over CCP compared to 10.5-14.9 mg/L.h over OCP. Ammonium separation over CCP was directly related to current. For 1.46-2.12 mmol electron produced, 20.5-29.7 mg-N ammonium was removed. Current also increased cathodic pH up to 12, a desirable pH for changing ammonium ion to ammonia gas. Results emphasized the potential for MEC in control of ammonium through ammonium separation and ammonia volatilization provided that membrane characteristic is considered in their development.

  16. Kinetics of electrophilic substitution of erbium (3) for ytterbium (3) in aqueous solution of ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.; Spitsyn, V.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1983-08-01

    The results obtained while studing the exchange kinetics in the ErA/sup -/ - Yb/sup 3 +/ system are compared with the kinetic regularities found for the NdA/sup -/ - Yb/sup 3 +/ system. Electrophilic substitution in ethylenediamine tetraacetates of rare earths (3) independently of the nature of a departing cation is realized through two competitive mechanisms: acid dissociation and associative mechanisms. Exchange through the acid dissociation mechanisms is catalized by protons while, depending on the medium acidity, mono- and biprotonated intermediate complexes are formed. The associative mechanism predominates in less acid media and is realized through the formation of intermediate binuclear complexes. The limiting exchange stage is a break in the metal-nitrogen bond formed by the departing cation and ligand in the intermediate binuclear complex.

  17. Kinetics of electrophilic substitution of erbium (3) for ytterbium (3) in aqueous solution of ethylenediaminetetraacetate

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.; Spitsyn, V.I.

    1983-01-01

    The results obtained while stUdying the exchange kinetics in the ErA - - Yb 3+ system are compared with the kinetic regularities found for the NdA - - Yb 3+ system. Electrophilic substitution in ethylenediamine tetraacetates of rare earths (3) independently of the nature of a departing cation is realized through two competitive mechanisms: acid dissociation and associatiVe mechanisms. Exchange through the acid dissociation mechanisms is catalized by protons while, depending on the medium acidity, mono- and biprotonated intermediate complexes are formed. The associative mechanism predominates in less acid media and is realized through the formation of intermediate binOclear compleXes. The limiting exchange stage is a break in the metal-nitrogen bond formed by the departing cation and ligand in the intermediate binUclear complex

  18. Measurements of the streaming potential of clay soils from tropical and subtropical regions using self-made apparatus.

    Science.gov (United States)

    Li, Zhong-Yi; Li, Jiu-Yu; Liu, Yuan; Xu, Ren-Kou

    2014-09-01

    The streaming potential has been wildly used in charged parallel plates, capillaries, and porous media. However, there have been few studies involving the ζ potential of clay soils based on streaming potential measurements. A laboratory apparatus was developed in this study to measure the streaming potential (ΔE) of bulk clay soils' coupling coefficient (C) and cell resistance (R) of saturated granular soil samples. Excellent linearity of ΔE versus liquid pressure (ΔP) ensured the validity of measurements. The obtained parameters of C and R can be used to calculate the ζ potential of bulk soils. The results indicated that the ζ potentials measured by streaming potential method were significantly correlated with the ζ potentials of soil colloids determined by electrophoresis (r (2) = 0.960**). Therefore, the streaming potential method can be used to study the ζ potentials of bulk clay soils. The absolute values of the ζ potentials of four soils followed the order: Ultisol from Jiangxi > Ultisol from Anhui > Oxisol from Guangdong > Oxisol from Hainan, and this was consistent with the cation exchange capacities of these soils. The type and concentration of electrolytes affected soil ζ potentials. The ζ potential became less negative with increased electrolyte concentration. The ζ potentials were more negative in monovalent than in divalent cationic electrolyte solutions because more divalent cations were distributed in the shear plane of the diffuse layer as counter-cations on the soil surfaces than monovalent cations at the same electrolyte concentration.

  19. UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations

    International Nuclear Information System (INIS)

    Amthor, Stephan; Noller, Bastian; Lambert, Christoph

    2005-01-01

    The one-electron oxidation potential of 10 triarylamines 1-10 with all permutations of chloro-, methoxy- and methyl-substituents in the three para-positions were determined by cyclic voltammetry. The half wave potential E 1/2 (I) of the first oxidation wave correlates linearly with the number of chloro- and methoxy-substituents. A high long-term stability of the first oxidation wave for all triarylamines was observed by multi-cycle thin-layer measurements. AM1-CISD derived values of the absorption energies are in good agreement with the experiments but differ strongly for the oscillator strengths as well as for neutral compounds 1-10 and their corresponding mono radical cations. The small solvent dependence of the experimental UV/Vis spectra in CH 2 Cl 2 and MeCN reflects a minor charge transfer (CT) character of the electronic transitions of neutral and cationic compounds

  20. Adsorption of dissymmetric cationic gemini surfactants at silica/water interface

    Science.gov (United States)

    Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi

    2007-05-01

    Adsorption of a series of cationic gemini surfactants 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini surfactants in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini surfactants adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini surfactants were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of surfactant molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini surfactants on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini surfactants are closely related to the dissymmetry of gemini molecules.

  1. Exchangers of inorganic ions in the administration of radioactive wastes; Intercambiadores de iones inorganicos en la gestion de desechos radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Badillo A, V. E.; Lopez R, C., E-mail: veronica.badillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The prediction of the radionuclide migration in geologic mean requires of a quantitative knowledge of the physiochemical phenomenon of retention in the surface of mineral phases. With this purpose, is necessary the study of the radionuclides retention in solids named model solids are the oxides and phosphates of polyvalent cations. This work presents experimental evidence of the convenience of using two exchangers of inorganic ions, alumina and apatite, in the administration of radioactive wastes due to its selectivity for the main products of divalent fission, Pd and Sr with regard to the anion species represented by Tc. The retention of Sr(III), Pd(II) and Tc(-I) in hydroxyapatite and alumina, in NaCl O.02 M in function of the ph is studied. The likeness of retention of the solids for the fission products is expressed in terms of the distribution coefficient kD which is obtained using the homologous radionuclides {sup 109}Pd and {sup 87m}Sr as well as the {sup 99m}Tc. The retention of Pd was of 100% and the Tc near to 0%. (Author)

  2. Effect of water molecule distribution on the quantitative XRD analysis in the case of Na-montmorillonite exchanged Cu2+

    International Nuclear Information System (INIS)

    Oueslati, W.; Meftah, M.; Ben Rhaiem, H.; Ben Haj Amara, A.

    2010-01-01

    Document available in extended abstract form only. Several theoretical models are proposed to describe hydration process for Wyoming-montmorillonite clay exchanged Na + or Cu 2+ . They propose some theoretical distribution and disposition for water molecule in the inter-lamellar space in the case of homogeneous and inter-stratified hydration states. For example, Ben Brahim et al. (1983a) studied the interlayer structure (atomic positions of interlayer cations) and associated H 2 O molecules of Na-saturated montmorillonite and beidellite samples. Moore and Hower (1986) studied ordered structures composed of mono-hydrated and collapsed interlayers in montmorillonite, and Cuadros (1996) estimated the H 2 O content of smectite as a function of the interlayer cation. Using similar approach, Ferrage et al (2005b) proposed a discreet distribution of water molecule layer in the same z coordinate of the exchangeable cation with inhomogeneous distribution. This heterogeneity was attributed to the surface charge. The main objective of this study is to characterize the structural changes in the theoretical XRD profile, induced by different water molecule distribution, used to simulate experimental XRD patterns in the case of Na-montmorillonite exchanged Cu 2+ . This problem was achieved by quantitative XRD analysis using an indirect method based on the comparison of the experimental 001 reflections obtained from oriented films patterns with those calculated from structural models. The starting materials were Ca-montmorillonite originated from bentonites of Wyoming (USA). The XRD patterns were obtained by reflection setting with a D8 ADVANCE Bruker installation using Cu-Kα radiation and equipped with solid state detector. Intensities were measured at an interval of 2Θ 0.04 deg. and 40-50 s counting time per step. The diffracted intensity was calculated according to the matrix formalism detailed by Drits and Tchoubar, (1990). The fitting strategies was detailed by Ferrage et

  3. Ion exchange resins as high-dose radiation dosimeters

    International Nuclear Information System (INIS)

    Alian, A.; Dessouki, A.; El-Assay, N.B.

    1984-01-01

    This paper reports on the possibility of using various types of ion exchange resins as high-dose radiation dosimeters, by analysis of the decrease in exchange capacity with absorbed dose. The resins studied are Sojuzchim-export-Moscow Cation Exchanger KU-2 and Anion Exchanger AV-17 and Merck Cation Exchanger I, and Merck Anion Exchangers II and III. Over the dose range 1 to 100 kGy, the systems show linearity between log absorbed dose and decrease in resin ion exchange capacity. The slope of this response function differs for the different resins, depending on their ionic form and degree of cross-linking. The radiation sensitivity increases in the order KU-2; Exchanger I; AV-17; Exchanger II; Exchanger III. Merck resins with moisture content of 21% showed considerably higher radiation sensitivity than those with 2 to 3% moisture content. The mechanism of radiation-induced denaturing of the ion exchanger resins involves cleavage and decomposition of functional substituents, with crosslinking playing a stabilizing role, with water and its radiolytic products serving to inhibit radical recombination and interfering with the protection cage effect of crosslinking. (author)

  4. Synthesis and ion-exchange properties of cerium(IV) molybdate

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S K; Singh, Raj Pal; Agrawal, Sushma; Kumar, Satish [Roorkee Univ. (India). Dept. of Chemistry

    1977-01-01

    The synthesis, ion exchange properties, and the separation of a number of cation pairs on the columns of cerium (IV) molybdate is discussed. In order to obtain the product in gel form showing a high exchange capacity and suitable for column operation, preliminary experiments were performed to determine the optimum conditions of precipitation, i.e., the concentration of ceric and molybdate solutions, mixing ratio, pH of precipitation and the order of mixing. Cerium (IV) molybdate, prepared under the optimum conditions of concentration, acidity etc., shows exchange capacity of 0.96 meg per g of exchanger. The sorption of a large number of metal ions has been investigated and the compound shows promising behaviour as cation exchanger. Numerous separations of analytical and radiochemical interest have been performed on the column of this exchanger with great efficiency.

  5. Synthesis and ion-exchange properties of cerium(IV) molybdate

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Raj Pal Singh; Sushma Agrawal; Satish Kumar

    1977-01-01

    The synthesis, ion exchange properties, and the separation of a number of cation pairs on the columns of cerium (IV) molybdate is discussed. In order to obtain the product in gel form showing a high exchange capacity and suitable for column operation, preliminary experiments were performed to determine the optimum conditions of precipitation, i.e., the concentration of ceric and molybdate solutions, mixing ratio, pH of precipitation and the order of mixing. Cerium (IV) molybdate, prepared under the optimum conditions of concentration, acidity etc., shows exchange capacity of 0.96 meg per g of exchanger. The sorption of a large number of metal ions has been investigated and the compound shows promising behaviour as cation exchanger. Numerous separations of analytical and radiochemical interest have been performed on the column of this exchanger with great efficiency. (T.G.)

  6. Effect of rare earth cations on activity of type Y zeolites in ethylene transformations

    International Nuclear Information System (INIS)

    Amezhnova, G.N.; Zhavoronkov, M.N.; Dorogochinskij, A.Z.; Proskurin, A.L.; Shmailova, V.I.

    1984-01-01

    The ethylene transformations on type Y rare earth zeolites with high degrees of sodium exchange are studied. It is shown that rare earth cations increase zeolites activity with growth of electronoacceptor capacity. The ethylene oligomerization occurs on polyvalent cations while subsequent oligomer transformations - on hydroxyl groups of zeolites

  7. Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals.

    Science.gov (United States)

    Buckeridge, J; Catlow, C R A; Scanlon, D O; Keal, T W; Sherwood, P; Miskufova, M; Walsh, A; Woodley, S M; Sokol, A A

    2015-01-09

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p-type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  8. Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals

    Science.gov (United States)

    Buckeridge, J.; Catlow, C. R. A.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Miskufova, M.; Walsh, A.; Woodley, S. M.; Sokol, A. A.

    2015-01-01

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p -type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  9. Radioanalytical determination of plutonium and americium using ion exchange and extraction chromatography technique in urine

    International Nuclear Information System (INIS)

    Santhanakrishnan, V.; Sreedevi, K.R.; Rajaram, S.; Ravi, P.M.

    2011-01-01

    The use of anion exchange chromatography for the separation of Pu and extraction chromatography technique for the separation of Am from urine samples was studied. In the earlier method, Pu separation was carried out by anion exchange chromatography followed by Am separation by cation exchange chromatography. The chemical recovery of Am obtained by cation exchange separation method was inconsistent and low in the range 30-70%. In this study, the average Pu recovery obtained using anion exchange chromatography was 89.2 with standard deviation of 10.4 and the average Am recovery obtained using extraction chromatography with TRU resin was 77.4 with standard deviation of 14.8. Moreover, Am separation could be completed within three hours using the TRU column compared to two days that were required for the cation exchange chromatography. (author)

  10. Biopolymer Production Kinetics of Mixed Culture Using Wastewater Sludge as a Raw Material and the Effect of Different Cations on Biopolymer Applications in Water and Wastewater Treatment.

    Science.gov (United States)

    More, T T; Yan, S; Tyagi, R D; Surampalli, R Y

    2016-05-01

    Thirteen extracellular polymeric substances (EPS) producing bacterial strains were cultivated (as mixed culture) in the sterilized sludge (suspended solids of 25 g/L) and the batch fermentation was carried out. Mixed culture revealed a high specific growth rate of 0.35/hr. The EPS production rate was higher up to 24 hours, which gradually decreased with further incubation. The kinetic estimates demonstrated growth-associated EPS production. Broth EPS revealed higher flocculation activity when combined with different cations (Ca(2+), Mg(2+), Fe(3+), and Al(3+)) in river water (≥90%), municipal wastewater (≥90%), and brewery wastewater (≥80%), respectively. A low dose (5 to 40 mg/L) of trivalent cations was required to achieve higher flocculation compared to the divalent cations (50 to 250 mg/L). Flocculation performance of EPS was comparable to Magnafloc-155 (chemical polymer) and, hence, it could be used as a flocculant.

  11. Analyte-Size-Dependent Ionization and Quantification of Monosaccharides in Human Plasma Using Cation-Exchanged Smectite Layers.

    Science.gov (United States)

    Ding, Yuqi; Kawakita, Kento; Xu, Jiawei; Akiyama, Kazuhiko; Fujino, Tatsuya

    2015-08-04

    Smectite, a synthetic inorganic polymer with a saponite structure, was subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Typical organic matrix molecules 2,4,6-trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHBA) were intercalated into the layer spacing of cation-exchanged smectite, and the complex was used as a new matrix for laser desorption/ionization mass spectrometry. Because of layer spacing limitations, only a small analyte that could enter the layer and bind to THAP or DHBA could be ionized. This was confirmed by examining different analyte/matrix preparation methods and by measuring saccharides with different molecular sizes. Because of the homogeneous distribution of THAP molecules in the smectite layer spacing, high reproducibility of the analyte peak intensity was achieved. By using isotope-labeled (13)C6-d-glucose as the internal standard, quantitative analysis of monosaccharides in pretreated human plasma sample was performed, and the value of 8.6 ± 0.3 μg/mg was estimated.

  12. Syntheses, structural variants and characterization of AInM′S{sub 4} (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS{sub 4} and KInSnS{sub 4} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Ten AInM′S{sub 4} (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS{sub 4}(1-β), RbInGeS{sub 4}(2), CsInGeS{sub 4}(3-β), TlInGeS{sub 4}(4-β), RbInSnS{sub 4}(8-β) and CsInSnS{sub 4}(9) compounds with three-dimensional BaGa{sub 2}S{sub 4} structure and CsInGeS{sub 4}(3-α) and TlInGeS{sub 4}(4-α) compounds with a layered TlInSiS{sub 4} structure have tetrahedral [InM′S{sub 4}]{sup −} frameworks. On the other hand, LiInSnS{sub 4}(5) with spinel structure and NaInSnS{sub 4}(6), KInSnS{sub 4}(7), RbInSnS{sub 4}(8-α) and TlInSnS{sub 4}(10) compounds with layered structure have octahedral [InM′S{sub 4}]{sup −} frameworks. NaInSnS{sub 4}(6) and KInSnS{sub 4}(7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S{sub 4} compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo facile topotactic ion-exchange at room temperature.

  13. Searching for Dark Matter in the Mono-Jet and Mono-Photon Channels with the ATLAS Detector

    CERN Document Server

    Ratti, Maria Giulia; Carminati, Leonardo

    This work presents searches for dark matter particles in the mono-jet and mono-photon final states using the data collected by the ATLAS experiment during 2015 and 2016. The thesis starts with an introduction to the basic concepts of the Standard Model, followed by a discussion of the dark matter problem and the WIMP hypothesis. The focus then shifts to the description of the experimental facilities to collect the data and reconstruct the collision events. Particular focus is put on the reconstruction and performance of the missing transverse momentum. After characterizing a few theoretical models predicting dark matter particles in the mono-photon and mono-jet final states, the searches in these two signatures are thoroughly discussed, with particular focus on the background estimation techniques. While no significant deviations from the Standard Model predictions are found, the results obtained by these searches further restrict the phase-space where the dark matter particles can lie.

  14. The mechanism of ion exchange on ammonium 12-molybdophosphate (AMP)

    International Nuclear Information System (INIS)

    Boeyens, J.C.A.; McDougall, G.J.; Smit, J. van R.

    1987-01-01

    This paper reviews some published and unpublished data on the ion-exchange properties of AMP. The three NH 4 + ions are only partially exchanged for large monovalent ions. In the case of NH 4 + /K + exchange, the energy lost by the breaking of H bonds between the NH 4 + ions and anionic cage oxygen atoms beyond the point of maximum exchange is no longer compensated for by bond strengthening in the anion due to contraction of the cage. With Rb + , Cs + and T1 + , limited convertibility results from the lattice expansion required to accommodate these larger ions. During exchange, part of the cations pass through the anionic cages, thereby causing considerable lattice disorder. The maximum exchange capacity of AMP for the alkali metal ions is not a simple function of cation radius. (author)

  15. Studies on the adsorption behaviour of heavy rare earths with a strong cation exchanger DOWEX 50W-2X8

    International Nuclear Information System (INIS)

    Vijayalakshmi, R.; Singh, D.K.; Anitha, M.; Kotekar, M.K.; Dasgupta, K.; Singh, H.

    2014-01-01

    Rare earths have been a very fascinating area of research since long due to its wide applicability's in many field including superconductors, lasers, phosphors, medical, electronics, magnet, optics etc. Separation of rare earths is a challenging task and over the years many separation schemes based on solvent extraction, ion exchange, membrane etc have been developed and deployed. In the present work, we have investigated the adsorption behavior of heavy rare earths from a crude concentrate analyzing ∼ 80% Y 2 O 3 , ∼12% Dy 2 O 3 , ∼4% Er 2 O 3 etc., with a strong cationic exchanger namely Dowex 50W-2X8 in order to separate them in pure form. To start with, Y was selected as a representative of heavy rare earths and the conditions were optimized in batch experiments and later were applied to the feed solution containing Dy, Er, Ho etc. in a column study. Effects of experimental variables such as contact time, pH, weight of resin, concentration of the feed metal, temperature, desorption agents, on adsorption of Y was studied

  16. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    Science.gov (United States)

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  17. Simultaneous determination of platinum group elements and rhenium in rock samples using isotope dilution inductively coupled plasma mass spectrometry after cation exchange separation followed by solvent extraction

    International Nuclear Information System (INIS)

    Shinotsuka, Kazunori; Suzuki, Katsuhiko

    2007-01-01

    A simple and precise determination method for platinum group elements (PGEs) and Re in rock samples was developed using isotope dilution coupled with inductively coupled plasma mass spectrometry (ID-ICP-MS). Cation exchange separation was employed for simplicity, because it is applicable to group separation and simultaneous isotopic measurement in contrast with the widely used anion exchange separation which entails separate elution. However, its application to ID-ICP-MS has been limited due to spectral interferences from impurities retained in the PGE fraction even after ion chromatography. To overcome this limitation, solvent extraction using N-benzoyl-N-phenylhydroxylamine (BPHA) in chloroform was successfully applied for further purification. After the examination of optimum experimental parameters in cation exchange separation and solvent extraction using synthetic PGE solution, the established procedure was applied to the determination of PGEs and Re in some geochemical reference materials. The obtained results agreed well with the literature data determined using the different digestion methods (NiS fire assay and the use of a high-pressure asher) within the analytical uncertainties of each other. Significant difference in reproducibility between Ru, Ir, Pt and Os group, and Pd and Re group was observed in the results for BHVO-2 and JA-2. By considering the error factors affecting analytical reproducibility, we concluded that the difference is ascribed to the sample heterogeneity of minor minerals enriched in Ru, Ir, Pt and Os

  18. A computational study of anion-modulated cation-π interactions.

    Science.gov (United States)

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  19. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  20. Use of the cation exchange equilibrium method for the determination of stability constants of Co(II) with soil humic and fulvic acids

    International Nuclear Information System (INIS)

    Du, J.Z.; Zhou, C.Y.; Dong, W.M.; Tao, Z.Y.

    1999-01-01

    The stability constants for tracer concentrations of Co(II) complexes with both the red earth humic and fulvic acids were determined at pH 5.9 and ionic strength 0.010 mol/l by using the ARDAKANI-STEVENSON cation exchange equilibrium method and the radiotracer 60 Co. It was found that the 1:1 complexes of Co(II) with the red earth humic and fulvic acids were formed and that the average values of logβ (stability constant) of humic and fulvic acid complexes were 5.76±0.19 and 4.42±0.03, respectively. (author)

  1. Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Lin, Zekai; Boures, Dean; An, Bing; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)

    2016-08-10

    Mono(phosphine)–M (M–PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

  2. Effect of divalent ions on the optical emission behavior of protein thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhowal, Ashim Chandra, E-mail: ashimbhowal111@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-06

    Photoluminescence behaviors of proteinthin film, bovine serum albumin (BSA) have been studied in the presence of three divalent ions (Mg{sup 2+}, Ca{sup 2+} and Ba{sup 2+}) at different temperatures using fluorescence spectroscopy. Film thickness and morphology have been studied using atomic force microscopy. Variation of different physicochemical parameters like temperature, solvent polarity, pH, ionic strength, substrate binding etc. can make conformational changes in the protein structure and hence influences the emission behavior.In thin film conformation of BSA, dynamic quenching behavior has beenidentified in the presence of all the three divalent ions at pH≈ 5.5. Depending upon the charge density of the divalent ions interaction with protein molecules modifies and as a result quenching efficiency varies. Also after heat treatment, conformation of the protein molecules changes and as a result the quenching efficiency enhances than that of the unheated films. Studies on such protein-ion interactions and conformational variation may explore various functions of protein when it will adsorb on soft surfaces like membranes, vesicles, etc.

  3. Synthetic inorganic ion-exchange materials

    International Nuclear Information System (INIS)

    Abe, M.

    1979-01-01

    Exchange isotherms for hydrogen ion/alkali metal ions have been measured at 20 and 40 0 C, with a solution ionic strength of 0.1, in crystalline antimonic(V) acid as a cation-exchanger. The isotherms showed S-shaped curves for the systems of H + /Na + , H + /K + , H + /Rb + and H + /Cs + , but not for H + /Li + exchange. The selectivity coefficients (logarithm scale) vs equivalent fraction of alkali metal ions in the exchanger give linear functions for all systems studied. The selectivity sequences are shown. Overall and hypothetical (zero loading) thermodynamic equilibrium constants were evaluated for these ion-exchange reactions. (author)

  4. Leaching of 60 Co and 137 Cs from spent ion exchange resins in ...

    Indian Academy of Sciences (India)

    Cement; radioactive waste; composite; waste management. Abstract. The leaching rate of 60Co and 137Cs from the spent cation exchange resins in cement–bentonite matrix has been studied. The solidification matrix was a standard Portland cement mixed with 290–350 (kg/m3) spent cation exchange resins, with or ...

  5. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.

    Science.gov (United States)

    Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing

    2017-05-01

    Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The structure of actinide ions exchanged into native and modified zeolites and clays

    International Nuclear Information System (INIS)

    Wasserman, S. R.; Soderholm, L.; Giaquinta, D. M.

    2000-01-01

    X-ray absorption spectroscopy (XAS) has been used to investigate the structure and valence of thorium (Th 4+ ) and uranyl (UO 2 2+ ) cations exchanged into two classes of microporous aluminosilicate minerals: zeolites and smectite clays. XAS is also employed to examine the fate of the exchanged cations after modification of the mineral surface using self-assembled organic films and/or exposure to hydrothermal conditions. These treatments serve as models for the forces that ultimately determine the chemical fate of the actinide cations in the environment. The speciation of the cations depends on the pore size of the aluminosilicate, which is fixed for the zeolites and variable for the smectites

  7. Competition and enhancement effect in coremoval of atenolol and copper by an easily regenerative magnetic cation exchange resin.

    Science.gov (United States)

    Li, Qimeng; Wang, Zheng; Li, Qiang; Shuang, Chendong; Zhou, Qing; Li, Aimin; Gao, Canzhu

    2017-07-01

    This paper aimed to investigate the removal of combined Cu 2+ and atenolol (ATL) in aqueous solution by using a newly synthesized magnetic cation exchange resin (MCER) as the adsorbent. The MCER exhibited efficient removal performance in sole, binary, pre-loading and saline systems. The adsorption kinetics of Cu 2+ and ATL fitted both pseudo-first-order and pseudo-second order model, while better described by pseudo-second order model in binary system. In mixed Cu 2+ and ATL solution, the adsorption of ATL was suppressed due to direct competition of carboxylic groups, while Cu 2+ adsorption was enhanced because of the formation of surface complexes. This increasing in heterogeneity was demonstrated by adsorption isotherms, which were more suitable for Freundlich model in binary system, while better described by Langmuir model in sole system. As proved by FTIR and XPS spectra, both amino and hydroxyl groups of ATL could form complexes with Cu 2+ . Decomplexing-bridging interaction was elucidated as the leading mechanism in coremoval of Cu 2+ and ATL, which involved [Cu-ATL] decomplexing and newly created Cu- or ATL sites for additional bridging. For saline system, the resulting competition and enhancement effects in mixed solution were amplified with the addition of co-existing cations. Moreover, the MCER could be effectively regenerated by 0.01 M HCl solution and maintain high stability over 5 adsorption-desorption cycles, which render it great potential for practical applications. Copyright © 2017. Published by Elsevier Ltd.

  8. Catalytic reduction of nitric oxide with ammonia over transition metal ion-exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sciyama, T; Arakawa, T; Matsuda, T; Yamazoe, N; Takita, Y

    1975-01-01

    The catalytic reduction of nitric oxide with ammonia was studied over transition metal ion-exchanged Y zeolite (Me-Y) catalysts. The reaction products are nitrogen, nitrous oxide, and water in all cases. Selectivities to N/sub 2/ are 60 to 80% on all the cation exchanged zeolite catalysts exhibiting a relatively minor variation with the cationic species exchanged. The copper (II)-Y catalyst exhibits low temperature activity and has an unusual catalytic activity-temperature profile with a maximum at 120/sup 0/C. The catalytic activity is enhanced considerably when a second cation, especially cobalt (II) or iron (III) is coexchanged together with Cu (II) in Y zeolite.

  9. Characterization of UO22+ exchanged Y zeolite

    International Nuclear Information System (INIS)

    Olguin, M.T.; Bosch, P.; Bulbulian, S.; Duque, J.; Pomes, R.; Villafuerte-Castrejon, M.E.; Sansores, L.E.; Bosch, P.

    1997-01-01

    The present study discusses the incorporation of uranyl ion into Y-zeolite framework. The UO 2 2+ sorption was measured by neutron activation analyses. The Y-zeolite framework distorts in response to the cations present in the structure. Hence, depending on the amount and the location of the exchanged cations, the features of the X-ray diffraction pattern may vary. From the Rietveld analysis of these patterns, the positions occupied by the UO 2 2 + cations in the zeolite network were determined. (author)

  10. Application of cation-exchange solid-phase extraction for the analysis of amino alcohols from water and human plasma for verification of Chemical Weapons Convention.

    Science.gov (United States)

    Kanaujia, Pankaj K; Tak, Vijay; Pardasani, Deepak; Gupta, A K; Dubey, D K

    2008-03-28

    The analysis of nitrogen containing amino alcohols, which are the precursors and degradation products of nitrogen mustards and nerve agent VX, constitutes an important aspect for verifying the compliance to the CWC (Chemical Weapons Convention). This work devotes on the development of solid-phase extraction method using silica- and polymer-based SCX (strong cation-exchange) and MCX (mixed-mode strong cation-exchange) cartridges for N,N-dialkylaminoethane-2-ols and alkyl N,N-diethanolamines, from water. The extracted analytes were analyzed by GC-MS (gas chromatography-mass spectrometry) in the full scan and selected ion monitoring modes. The extraction efficiencies of SCX and MCX cartridges were compared, and results revealed that SCX performed better. Extraction parameters, such as loading capacity, extraction solvent, its volume, and washing solvent were optimized. Best recoveries were obtained using 2 mL methanol containing 10% NH(4)OH and limits of detection could be achieved up to 5 x 10(-3) microg mL(-1) in the selected ion monitoring mode and 0.01 microg mL(-1) in full scan mode. The method was successfully employed for the detection and identification of amino alcohol present in water sample sent by Organization for Prohibition of Chemical Weapons (OPCW) in the official proficiency tests. The method was also applied to extract the analytes from human plasma. The SCX cartridge showed good recoveries of amino alcohols from human plasma after protein precipitation.

  11. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography.

    Science.gov (United States)

    Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming

    2008-07-15

    A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.

  12. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  13. Interaction of divalent minerals with liposoluble nutrients and phytochemicals during digestion and influences on their bioavailability - a review.

    Science.gov (United States)

    Corte-Real, Joana; Bohn, Torsten

    2018-06-30

    Several divalent minerals, including the macroelements calcium and magnesium, are essential nutrients for humans. However, their intake, especially via high-dose supplements, has been suspected to reduce the availability of lipophilic dietary constituents, including lipids, liposoluble vitamins, and several phytochemicals such as carotenoids. These constituents require emulsification in order to be bioavailable, and high divalent mineral concentrations may perturb this process, due to precipitations of free fatty acids or bile salt complexation, both pivotal for mixed micelle formation. Though in part based on in vitro or indirect evidence, it appears likely that high-dose supplements of divalent minerals around or even below their recommended dietary allowance perturb the availability of certain liposoluble miroconstituents, in addition to reducing absorption of dietary lipids/cholesterol. In this review, we investigate possible negative influences of divalent minerals, including trace elements (iron, zinc), on the digestion and intestinal uptake of lipophilic dietary constituents, with a focus on carotenoids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  15. Extracellular ATP4- promotes cation fluxes in the J774 mouse macrophage cell line

    International Nuclear Information System (INIS)

    Steinberg, T.H.; Silverstein, S.C.

    1987-01-01

    Extracellular ATP stimulates transmembrane ion fluxes in the mouse macrophage cell line J774. In the presence of Mg2+, nonhydrolyzable ATP analogs and other purine and pyrimidine nucleotides do not elicit this response, suggesting the presence of a specific receptor for ATP on the macrophage plasma membrane. One candidate for such a receptor is the ecto-ATPase expressed on these cells. We, therefore, investigated the role of this enzyme in ATP-induced 86 Rb+ efflux in J774 cells. The ecto-ATPase had a broad nucleotide specificity and did not hydrolyze extracellular ATP in the absence of divalent cations. 86 Rb+ efflux was not blocked by inhibition of the ecto-ATPase and did not require Ca2+ or Mg2+. In fact, ATP-stimulated 86 Rb+ efflux was inhibited by Mg2+ and correlated with the availability of ATP4- in the medium. In the absence of divalent cations, the slowly hydrolyzable ATP analogs adenosine 5'-(beta, gamma-imido)triphosphate (AMP-PNP) and adenosine 5'-O-(3-thio)triphosphate (ATP-gamma-S) also stimulated 86 Rb+ efflux, albeit at higher concentrations than that required for ATP4-. Exposure of J774 cells to 10 mM ATP for 45 min caused death of 95% of cells. By this means we selected variant J774 cells that did not exhibit 86 Rb+ efflux in the presence of extracellular ATP but retained ecto-ATPase activity. These results show that the ecto-ATPase of J774 cells does not mediate the effects of ATP on these cells; that ATP4- and not MgATP2- promotes 86 Rb+ efflux from these cells; and that hydrolysis of ATP is not required to effect this change in membrane permeability. These findings suggest that J774 cells possess a plasma membrane receptor which binds ATP4-, AMP-PNP, and ATP-gamma-S, and that the ecto-ATPase limits the effects of ATP on these cells by hydrolyzing Mg-ATP2-

  16. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 4

    International Nuclear Information System (INIS)

    Stamberg, K.; Plicka, J.; Calibar, J.; Gosman, A.

    1985-01-01

    The kinetics of ion exchange in the Nasup(+)-Mgsup(2+)-strongly acidic cation exchanger system in a batch stirred reactor was studied. The samples of exchangers OSTION KS (containing DVB in the range of 1.5 - 12%) and AMBERLITE IR 120 for experimental work were used; the concentration of the aqueous nitrate solution was always 0.2M. The Nernst-Planck equation for description of diffusion of ions in a particle was used. The values of diffusion coefficients of magnesium ions in the exchangers and their dependence on the content of DVB were obtained by evaluating the experimental data and using the self-diffusion coefficients of sodium. (author)

  17. Zn2+, not Ca2+, is the most effective cation for activation of dolichol kinase of mammalian brain.

    Science.gov (United States)

    Sakakihara, Y; Volpe, J J

    1985-12-15

    The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.

  18. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.

    Science.gov (United States)

    Tsonev, Latchezar I; Hirsh, Allen G

    2008-07-25

    pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.

  19. Short communication: Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

    Directory of Open Access Journals (Sweden)

    José Torrent

    2015-12-01

    Full Text Available Soil cation exchange capacity (CEC depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH of 43% (HM43. Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg. Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC.

  20. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    Dye, J.L.

    1979-01-01

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M + with crown-ethers and cryptands and of the alkali metal anion, M - , were made. The first crystalline salt of an alkali metal anion, Na + Cryptand [2.2.2]Na - was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  1. Characterization of the cation-binding capacity of a potassium-adsorption filter used in red blood cell transfusion.

    Science.gov (United States)

    Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji

    2015-06-01

    A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  2. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation.

    Science.gov (United States)

    Felcmanova, Kristina; Neveceralova, Petra; Sychrova, Hana; Zimmermannova, Olga

    2017-08-01

    The Kch1 and Kch2 plasma-membrane proteins were identified in Saccharomyces cerevisiae as being essential for the activation of a high-affinity Ca2+ influx system. We searched for Kch proteins roles in the maintenance of cation homeostasis and tested the effect of kch1 and/or kch2 deletions on various physiological parameters. Compared to wild-type, kch1 kch2 mutant cells were smaller, relatively hyperpolarised, grew better under limited K+ conditions and exhibited altered growth in the presence of monovalent cations. The absence of Kch1 and Kch2 did not change the intracellular pH in cells growing at low potassium or the tolerance of cells to divalent cations, high concentration of sorbitol or extreme external pH. The overexpression of KCH1 only increased the intracellular pH in the presence of elevated K+ in media. None of the phenotypes associated with the deletion of KCH1 and KCH2 in wild type were observed in a strain lacking KCH genes and main K+ uptake systems Trk1 and Trk2. The role of the Kch homologue in cation homeostasis was also tested in Candida albicans cells. Our data demonstrate that Kch proteins significantly contribute to the maintenance of optimal cation homeostasis and membrane potential in S. cerevisiae but not in C. albicans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Timossi, Chris

    2006-01-01

    Mono is an independent implementation of the .NET Framework by Novell that runs on multiple operating systems (including Windows, Linux and Macintosh) and allows any .NET compatible application to run unmodified. For instance Mono can run programs with graphical user interfaces (GUI) developed with the C(number s ign) language on Windows with Visual Studio (a full port of WinForm for Mono is in progress). We present the results of tests we performed to evaluate the portability of our controls system .NET applications from MS Windows to Linux

  4. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    Science.gov (United States)

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  5. Increasing Base Cations in Streams: Another Legacy of Deicing Salts?

    Science.gov (United States)

    Helton, A. M.; Barclay, J. R.; Bellucci, C.; Rittenhouse, C.

    2017-12-01

    Elevated use of deicing salts directly increases sodium chloride inputs to watersheds. Sodium can accumulate in soils over time and has the potential to leach other cations (e.g., calcium, magnesium, and potassium) from the soil through cation exchange. We hypothesize that increased use of deicing salts results in a legacy of soils depleted in non-sodium base cations with loss of cations to receiving waters. The goal of this project is to quantify temporal trends in base cations and chloride in streams and rivers across the United States. We used Weighted Regressions on Time, Discharge, and Season (WRTDS) to analyze trends in base cations. Our preliminary analysis of 10 rivers in Connecticut with chemical periods of record ranging from 24 - 64 years (median = 55 years), shows that the flux of base cations is increasing in all sites (25 - 366 103 meq ha-1 yr-1 yr-1), driven largely by increases in sodium (23 - 222 103 meq ha-1 yr-1 yr-1), the dominant cation in 7 of the sites. Chloride is also increasing at all sites (26 - 261 103 meq ha-1 yr-1 yr-1), which, in combination with salt use trends, suggests a road salt source for the increased sodium. Non-sodium cations are also increasing in 9 of the sites (8 - 54 103 meq ha-1 yr-1 yr-1), though they are not directly added with most deicing salts. We will compare these trends to other long-term sites across the United States, and quantify relationships between cation trends and land cover, road density, and snowfall.

  6. 3.5 Radiation stability of ion exchangers

    International Nuclear Information System (INIS)

    Marhol, M.

    1976-01-01

    The main knowledge is summed up of the radiation stability of ion exchangers. No basic changes occur in inorganic ion exchangers with the exception of the exchange capacity at doses of up to 10 9 rad. This also applies to coal-based ion exchangers. Tables are given showing the changes in specific volume, exchange capacity and weight of different types of organic ion exchangers in dependence on the radiation dose. The effects are discussed of the structure of organic cation and anion exchangers, polymeric strong basic anion exchangers, polycondensate anion exchangers and ion exchange membranes on their radiation stability. General experimental procedures are given for laboratory tests of the radiation stability of exchangers. (L.K.)

  7. On the swelling behavior of cationic exchange resins saturated with Na+ ions in a C3S paste

    International Nuclear Information System (INIS)

    Lafond, E.; Cau Dit Coumes, C.; Chartier, D.; Gauffinet, S.; Le Bescop, P.; Stefan, L.

    2015-01-01

    Ion exchange resins (IERs) are widely used in the nuclear industry to decontaminate radioactive effluents. Spent resins are usually encapsulated in cementitious materials. However, the solidified waste form can exhibit strong expansion, possibly leading to cracking, if the appropriate binder is not used. In this work, the interactions between cationic resins in the Na + form and tricalcium silicate are investigated during the early stages of hydration in order to gain a better understanding of the expansion process. It is shown that the IERs exhibit a transient swelling of small magnitude due to the decrease in the osmotic pressure of the external solution. This expansion, which occurs just after setting, is sufficient to damage the material which is poorly consolidated for several reasons: low degree of hydration, precipitation of poorly cohesive sodium-bearing C-S-H, and very heterogeneous microstructure with zones of high porosity. (authors)

  8. Respiratory adaptations in carp blood. Influences of hypoxia, red cell organic phosphates, divalent cations and CO2 on hemoglobin-oxygen affinity

    DEFF Research Database (Denmark)

    Weber, Roy E.; Lykkeboe, G.

    1978-01-01

    This study concerns the adaptation of oxygen transporting function of carp blood to environment hypoxia, tracing the roles played by erythrocytic cofactors, inorganic cations, carbon dioxide and hemoglobin multiplicity. Carp acclimated to hypoxia ( 30 mmHg) display striking increases in blood oxy...

  9. Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin.

    Science.gov (United States)

    Zavyalova, Elena; Tagiltsev, Grigory; Reshetnikov, Roman; Arutyunyan, Alexander; Kopylov, Alexey

    2016-10-01

    Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K + , Na + , NH 4 + , Ba 2+ , and Sr 2+ ; on the contrary, Mn 2+ was coordinated in the grooves, outside the G-quadruplex. K + or Na + coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K + coordination provided the well-known high inhibitory activity of the aptamer, whereas Na + coordination supported low activity. Although NH 4 + coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba 2+ and Sr 2+ coordination. Mn 2+ coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a different

  10. Continuous desalting of refolded protein solution improves capturing in ion exchange chromatography: A seamless process.

    Science.gov (United States)

    Walch, Nicole; Jungbauer, Alois

    2017-06-01

    Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    OpenAIRE

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic ...

  12. Kinetics of ethylenediaminetetraacetate exchange of americium (3) with copper (2) in aqueous solution

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.

    1985-01-01

    By the method of spectrophotometry exchange kinetics in the AmA - -Cu 2+ , where A 4- -ethylenediaminetetraacetate, is studied. The values of exchange rate constants and thermodynamic activation parameters have been found. It is shown that exchange of central ions is rialized according to the dissociative mechanism with formation of intermediate protonated complexes and according to the associative mechanism with formation of binuclear intermediates. The exchange mechanisms identity for AmA - and LnA - , where Ln 3+ -RE cations of cerium subgroup is proved. It is assumed that values of activation entropy in exchange processes are determined by the radius of the leaving cation and of activation enthalpy - by the peculiarities of the electronic structure

  13. Natural zeolite reactivity towards ozone: the role of compensating cations.

    Science.gov (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Possibility of ion-exchange column studies using stabilised montmorillonite-H aggregates

    International Nuclear Information System (INIS)

    Platzer, R.; Bittel, R.

    1959-01-01

    The conditions necessary for obtaining stable aggregates of montmorillonite-H, prepared without addition of organic flocculant, is discussed. These aggregates possess the same general ion-exchange properties as montmorillonite-H suspensions, about which many papers have been written. Their insolubility and their stable physical form enable them to be used in columns in exactly the same way as the usual organic ion exchangers. The examples of cation fixation and separation described in this report emphasize the similarities between the properties of this exchanger and those of organic cation-exchange resins, and open up possibilities for the extrapolation of the many investigations carried out on organic exchangers to mineral exchangers of this type. Amongst the essential differences to be remarked, we have shown that the properties of physical stability and chemical exchange remain the same at temperatures up to 300 deg. C, to a first approximation, under very intense γ irradiation. (author) [fr

  15. A New Alkali-Stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms.

    Science.gov (United States)

    Zhang, Bingzi; Kaspar, Robert B; Gu, Shuang; Wang, Junhua; Zhuang, Zhongbin; Yan, Yushan

    2016-09-08

    Highly alkali-stable cationic groups are a critical component of hydroxide exchange membranes (HEMs). To search for such cations, we studied the degradation kinetics and mechanisms of a series of quaternary phosphonium (QP) cations. Benzyl tris(2,4,6-trimethoxyphenyl)phosphonium [BTPP-(2,4,6-MeO)] was determined to have higher alkaline stability than the benchmark cation, benzyl trimethylammonium (BTMA). A multi-step methoxy-triggered degradation mechanism for BTPP-(2,4,6-MeO) was proposed and verified. By replacing methoxy substituents with methyl groups, a superior QP cation, methyl tris(2,4,6-trimethylphenyl)phosphonium [MTPP-(2,4,6-Me)] was developed. MTPP-(2,4,6-Me) is one of the most stable cations reported to date, with <20 % degradation after 5000 h at 80 °C in a 1 m KOD in CD3 OD/D2 O (5:1 v/v) solution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis, characterization and analytical application of hybrid; Acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Syed A. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)], E-mail: sanabi@rediffmail.com; Shalla, Aabid H. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2009-04-30

    A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na{sup +} ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 deg. C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb{sup 2+} ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb{sup 2+} has been selectively removed from synthetic mixtures containing Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, Zn{sup 2+} and Cu{sup 2+}, Al{sup 3+}, Ni{sup 2+}, Fe{sup 3+}. In order to demonstrate practical utility of the material quantitative separation of the Cu{sup 2+} and Zn{sup 2+} in brass sample has been achieved on its columns.

  17. Purification of phospholipase A2 from Bothrops atrox venom

    Directory of Open Access Journals (Sweden)

    B. Quevedo

    1999-01-01

    Full Text Available Phospholipase A2 (PLA2 from Bothrops atrox (Sensu lato venom, from Chiriguaná (Colombia was purified using exclusión chromatography on Sephadex G-75, obtaining five fractions one of which showed phospholipase A2 activity. After further purification on Mono S cationic exchange column, eight fractions with PLA2 activity, measured using the hemolytic method, were obtained.

  18. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    Science.gov (United States)

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors

    Science.gov (United States)

    Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-11-01

    The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.

  20. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.