WorldWideScience

Sample records for mono c-si years

  1. What's Mono?

    Science.gov (United States)

    ... es mono? Have you ever heard of the "kissing disease"? If you said that it's mono, you' ... But you don't get mono only from kissing. Infectious mononucleosis, called mono for short, is caused ...

  2. Fabrication of c-Si:H(p)/c-Si(n) Heterojunction Solar Cells with Microcrystalline Emitters

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bing-Qing; LIU Feng-Zhen; ZHANG Qun-Fang; XU Ying; ZHOU Yu-Qin; LIU Jin-Long; ZHU Mei-Fang

    2006-01-01

    The p-type microcrystalline silicon (fj,c-Si) on n-type crystalline silicon (c-Si) heterojunction solar cells is fabricated by radio-frequency plasma enhanced chemical vapour deposition (rf-PECVD). The effect of the pc-Si:H p-layers on the performance of the heterojunction solar cells is investigated. Optimum μcSi:H p-layer is obtained with hydrogen dilution ratio of 99.65%, rf-power of 0.08 W/cm2, gas phase doping ratio of 0.125%, and the p-layer thickness of 15 nm. We fabricate μc-Si:H(p)/c-Si(n) heterojunction solar cells without texturing and obtained an efficiency of 13.4%. The comparisons of the solar-cell performances using different surface passivation techniques are discussed.

  3. SiC-SiC and C-SiC Honeycomb for Advanced Flight Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project builds upon the work done in Phase I with the development of a C-SiC CMC honeycomb material that was successfully tested for mechanical...

  4. Permeating the Social Justice Ideals of Equality and Equity within the Context of Early Years: Challenges for Leadership in Multi-Cultural and Mono-Cultural Primary Schools

    Science.gov (United States)

    Mistry, Malini; Sood, Krishan

    2015-01-01

    This paper explores the ideology of social justice through links between equality and equity within Early Years and what remain the challenges for leadership. Questionnaires and interviews in English multi-cultural and mono-cultural schools with Early Years age phases were conducted. The findings showed that the ideology of social justice,…

  5. Investigation of an a-Si/c-Si interface on a c-Si(P) substrate by simulation

    Institute of Scientific and Technical Information of China (English)

    Wang Jianqiang; Gao Hua; Zhang Jian; Meng Fanying; Ye Qinghao

    2012-01-01

    We investigate the recombination mechanism in an a-Si/c-Si interface,and analyze the key factors that influence the interface passivation quality,such as Qs,δp/δn and Dit.The polarity of the dielectric film is very important to the illustration level dependent passivation quality; when nδn =pδp and the defect level Et equal to Ei (c-Si),the defect states are the most effective recombination center,AFORS-HET simulation and analysis indicate that emitter doping and a-Si/c-Si band offset modulation are effective in depleting or accumulating one charged carrier.Interface states (Dit) severely deteriorate Voc compared with Jsc for a-Si/c-Si HJ cell performance when Dit is over 1 × 1010 cm-2.eV-1.For a c-Si(P)/a-Si(P+) structure,ΦBSF in c-Si and Φo in a-Si have different performances in optimization contact resistance and c-Si(P)/a-Si(P+) interface recombination.

  6. C-SiC Honeycomb for Advanced Flight Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is to manufacture a C-SiC honeycomb structure to use as a high temperature material in advanced aircraft, spacecraft and industrial...

  7. ELECTRONIC STRUCTURE OF CLUSTER ASSEMBLED Al12C (Si) SOLID

    Institute of Scientific and Technical Information of China (English)

    QUAN HONG-JUN; GONG XIN-GAO

    2000-01-01

    The electronic structures of the cluster-assembled solid Al12C (Si) are studied by the ab initio method. We find that Al12C (Si) can solidify into a van der Waals solid. The electronic band structures show very weak dispersion. The main features in the electronic structure of cluster are retained in the solid, and an energy gap up to about 1.5 eV is observed for Al12C and Al12Si solids.

  8. Optical and optomechanical ultralightweight C/SiC components

    Science.gov (United States)

    Papenburg, Ulrich; Pfrang, Wilhelm; Kutter, G. S.; Mueller, Claus E.; Kunkel, Bernd P.; Deyerler, Michael; Bauereisen, Stefan

    1999-11-01

    Optical and optomechanical structures based on silicon carbide (SiC) ceramics are becoming increasingly important for ultra- lightweight optical systems that must work in adverse environments. At IABG and Dornier Satellite Systems (DSS) in Munich, a special form of SiC ceramics carbon fiber reinforced silicon carbide (C/SiCR) has been developed partly under ESA and NASA contracts. C/SiCR is a light-weight, high- strength engineering material that features tunable mechanical and thermal properties. It offers exceptional design freedom due to its reduced brittleness and negligible volume shrinkage during processing in comparison to traditional, powder-based ceramics. Furthermore, its rapid fabrication process produces near-net-shape components using conventional NC machining/milling equipment and, thus, provides substantial schedule, cost, and risk savings. These characteristics allow C/SiCR to overcome many of the problems associated with more traditional optical materials. To date, C/SiCR has been used to produce ultra-lightweight mirrors and reflectors, antennas, optical benches, and monolithic and integrated reference structures for a variety of space and terrestrial applications. This paper describes the material properties, optical system and structural design aspects, the forming and manufacturing process including high-temperature joining technology, precision grinding and cladding techniques, and the performance results of a number of C/SiCR optical components we have built.

  9. SiC-Si interfacial thermal and mechanical properties of reaction bonded SiC/Si ceramic composites

    Science.gov (United States)

    Hsu, Chun-Yen; Deng, Fei; Karandikar, Prashant; Ni, Chaoying

    Reaction bonded SiC/Si (RBSC) ceramic composites are broadly utilized in military, semiconductor and aerospace industries. RBSC affords advanced specific stiffness, hardness and thermal. Interface is a key region that has to be considered when working with any composites. Both thermal and mechanical behaviors of the RBSC are highly dependent on the SiC-Si interface. The SiC-Si interface had been found to act as a thermal barrier in restricting heat transferring at room temperature and to govern the energy absorption ability of the RBSC. However, up to present, the role of the SiC-Si interface to transport heat at higher temperatures and the interfacial properties in the nanoscale have not been established. This study focuses on these critically important subjects to explore scientific phenomena and underlying mechanisms. The RBSC thermal conductivity with volume percentages of SiC at 80 and 90 vol% was measured up to 1,200 °C, and was found to decrease for both samples with increasing environmental temperature. The RBSC with 90 vol% SiC has a higher thermal conductivity than that of the 80 vol%; however, is still significantly lower than that of the SiC. The interfacial thermal barrier effect was found to decrease at higher temperatures close 1200 °C. A custom-made in-situ tensile testing device which can be accommodated inside a ZEISS Auriga 60 FIB/SEM has been setup successfully. The SiC-Si interfacial bonding strength was measured at 98 MPa. The observation and analysis of crack propagation along the SiC-Si interface was achieved with in-situ TEM.

  10. Design of a creep experiment for SiC/SiC composites in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, S.L.; Hamilton, M.L.; Jones, R.H. [and others

    1997-08-01

    A new specimen was designed for performing in-reactor creep tests on composite materials, specifically on SiC/SiC composites. The design was tailored for irradiation at 800{degrees}C in a HFIR RB position. The specimen comprises a composite cylinder loaded by a pressurized internal bladder that is made of Nb1Zr. The experiment was designed for approximately a one year irradiation.

  11. Lightweight C/SiC mirrors for space application

    Science.gov (United States)

    Zhou, Hao; Zhang, Chang-rui; Cao, Ying-bin; Zhou, Xin-gui

    2006-02-01

    Challenges in high resolution space telescopes have led to the desire to create large primary mirror apertures. Ceramic mirrors and complex structures are becoming more important for high precision lightweight optical applications in adverse environments. Carbon-fiber reinforced silicon carbide (C/SiC) has shown great potential to be used as mirror substrate. This material has a high stiffness to weight ratio, dimensional stability from ambient to cryo temperatures, and thermal conductivity, low thermal expansion as well. These properties make C/SiC very attractive for a variety of applications in precision optical structures, especially when considering space-borne application. In this paper, lightweight C/SiC mirror prepared for a scan mirror of a high resolution camera is presented. The manufacturing of C/SiC mirror starts with a porous rigid felt made of short chopped carbon fibers. The fibers are molded with phenolic resin under pressure to form a carbon fiber reinforced plastic blank, followed by a pyrolization process by which the phenolic resin reacts to a carbon matrix. The C/C-felt can be machined by standard computer controlled milling techniques to any virtual shape. This is one of the most significant advantages of this material, as it drastically reduces the making costs and enables the manufacture of truly ultra-lightweight mirrors, reflectors and structures. Upon completion of milling, the C/C-felt preform is mounted in a high-temperature furnace together with silicon and heated under vacuum condition to 1500°C at which the silicon changes into liquid phase. Subsequently, the molten silicon is infiltrated into the porous preform under capillary forces to react with carbon matrix and the surfaces of the carbon fibers to form a density C/SiC substrate. The C/SiC material retains the preform shape to within a tight tolerance after sintering means the ceramization process is a nearly net shaping process. Reactive melt infiltrated C/SiC, followed by

  12. The ability of 3- to 6-years-old Persian-speaking children in production of consonant clusters in mono-syllable CVCC words

    Directory of Open Access Journals (Sweden)

    Nahid Jalilevand

    2014-08-01

    Full Text Available Background and Aim: During speech development in normal children, cluster reduction is one of the natural phonological processes. Children begin to produce some consonant clusters from the age of 2 years but ability to produce all consonant clusters continues up to 9. The main objective of this investigation was assessing the ability of Persian-speaking children in production of consonant clusters in mono-syllable CVCC words.Methods: In this cross-sectional and comparative study, production of 19 clusters with stop, fricative, affricate, nasal, and glide consonants in 38 words were tested in 200 Persian-speaking children at the age of 3 to 6 years in kindergartens of Tehran, Iran. Content validity indexes of 38 words were above 0.80 and Cronbach’s alpha of split half was 0.91.Results: More than 75% of 3-years-old children were able to produce /xl/, /bz/, /rs/, and /xm/ clusters. Age was positively correlated with correct production scores of words (p=0.001 and was negatively correlated with cluster reduction scores (p=0.001. Conclusion: Three-years-old normal Persian-speaking children may use cluster reduction in words with consonant clusters but this phonological process decreased by increasing of age; so, most of the 6-years-old children could produce consonant clusters correctly. Place of articulation more than manner of articulation affect on correct production of consonant clusters.

  13. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process

  14. Mono Lake Excursion Reviewed

    Science.gov (United States)

    Liddicoat, J. C.; Coe, R. S.

    2007-05-01

    The Mono Lake Excursion as recorded in the Mono Basin, CA, has an older part that is about negative 30 degrees inclination and about 300 degrees declination during low relative field intensity. Those paleomagnetic directions are closely followed by greater than 80 degrees positive inclination and east declination of about 100 degrees during higher relative field intensity. A path of the Virtual Geomagnetic Poles (VGPs) for the older part followed from old to young forms a large clockwise loop that reaches 35 degrees N latitude and is centered at about 35 degrees E longitude. That loop is followed by a smaller one that is counterclockwise and centered at about 70 degrees N latitude and 270 degrees E longitude (Denham & Cox, 1971; Denham, 1974; Liddicoat & Coe, 1979). The Mono Lake Excursion outside the Mono Basin in western North America is recorded as nearly the full excursion at Summer Lake, OR (Negrini et al., 1984), and as the younger portion of steep positive inclination/east declination in the Lahontan Basin, NV. The overall relative field intensity during the Mono Lake Excursion in the Lahontan Basin mirrors very closely the relative field intensity in the Mono Basin (Liddicoat, 1992, 1996; Coe & Liddicoat, 1994). Using 14C and 40Ar/39Ar dates (Kent et al., 2002) and paleoclimate and relative paleointensity records (Zimmerman et al., 2006) for the Mono Lake Excursion in the Mono Basin, it has been proposed that the Mono Lake Excursion might be older than originally believed and instead be the Laschamp Excursion at about 40,000 yrs B.P. (Guillou et al., 2004). On the contrary, we favor a younger age for the Mono Lake Excursion, about 32,000 yrs B.P., using the relative paleointensity in the Mono Basin and Lahontan Basin and 14C dates from the Lahontan Basin (Benson et al., 2002). The age of about 32,000 yrs B.P. is also in accord with the age (32,000- 34,000 yrs B.P.) reported by Channell (2006) for the Mono Lake Excursion at ODP Site 919 in the Irminger Basin

  15. Soil Organic Carbon Accumulation Increases Percentage of Soil Olsen-P to Total P at Two 15-Year Mono-Cropping Systems in Northern China

    Institute of Scientific and Technical Information of China (English)

    SHEN Pu; XIAO Hou-jun; HE Xin-hua; XU Ming-gang; ZHANG Hui-min; PENG Chang; GAO Hong-jun; LIU Hua; XU Yong-mei; QIN Song

    2014-01-01

    Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC and the percentage of soil Olsen-P to total P (PSOPTP) under six different 15-yr (1990-2004) long-term fertilizations at two cropping systems in northern China. These fertilization treatments were (1) unfertilized control (control);(2) chemical nitrogen (N);(3) N plus chemical P (NP);(4) NP plus chemical potassium (NPK);(5) NPK plus animal manure (NPKM) and (6) high NPKM (hNPKM). Compared with their initial values in 1989 at both sites, during the 11th to 15th fertilization years annual mean SOC contents were signiifcantly increased by 39.4-47.0%and 58.9-93.9%at Gongzhuling, Jilin Province, and Urumqi, Xinjiang, China, under the two NPKM fertilizations, respectively, while no signiifcant changes under the no-P or chemical P fertilization. During the 11th to 15th fertilization years, annual mean PSOPTP was respectively increased by 2.6-4.2 and 5.8-14.1 times over the initial values under the two chemical P fertilizations and the two NPKM fertilizations, but was unchanged in their initial levels under the two no-P fertilizations at both sites. Over the 15-yr long-term fertilization SOC signiifcantly positively correlated with PSOPTP (r2=0.55-0.79, P<0.01). We concluded that the combination of chemical P plus manure is an effective way to promote SOC accumulation and the percentage of soil Olsen-P to total P at the two mono-cropping system sites in northern China.

  16. Wide-Range Enhancement of Spectral Response by Highly Conductive and Transparent μc-SiOx:H Doped Layers in μc-Si:H and a-Si:H/μc-Si:H Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Pei-Ling Chen

    2016-01-01

    Full Text Available The enhancement of optical absorption of silicon thin-film solar cells by the p- and n-type μc-SiOx:H as doped and functional layers was presented. The effects of deposition conditions and oxygen content on optical, electrical, and structural properties of μc-SiOx:H films were also discussed. Regarding the doped μc-SiOx:H films, the wide optical band gap (E04 of 2.33 eV while maintaining a high conductivity of 0.2 S/cm could be obtained with oxygen incorporation of 20 at.%. Compared to the conventional μc-Si:H(p as window layer in μc-Si:H single-junction solar cells, the application of μc-SiOx:H(p increased the VOC and led to a significant enhancement in the short-wavelength spectral response. Meanwhile, the employment of μc-SiOx:H(n instead of conventional ITO as back reflecting layer (BRL enhanced the external quantum efficiency (EQE of μc-Si:H single-junction cell in the long-wavelength region, leading to a relative efficiency gain of 10%. Compared to the reference cell, the optimized a-Si:H/μc-Si:H tandem cell by applying p- and n-type μc-SiOx:H films achieved a VOC of 1.37 V, JSC of 10.55 mA/cm2, FF of 73.67%, and efficiency of 10.51%, which was a relative enhancement of 16%.

  17. Photoluminescence Properties of Nanocrystalline 3C-SiC Films

    Institute of Scientific and Technical Information of China (English)

    YU Wei; LU Xue-qin; LU Wan-bing; HAN Li; FU Guang-sheng

    2006-01-01

    Nanocrystalline (nc) 3C-SiC films on the Si substrate were prepared by the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. With the SiH4-CH4 gas flow ratio changing, the films exhibit different photoluminescence (PL) characteristics. Under the stoichiometric condition, the PL peak redshift from 470 nm to 515 nm is detected with the increase of excitation wavelength, which can be attributed to the quantum confinement effect radiation of 3C-SiC nanocrystals of different sizes. However, the appearance of an additional PL band at 436 nm in Si-rich film might be sourced back to the excess of Si defect centers in it. This is also the case for C-rich film for its PL band lying at 570 nm. The results above quoted indicate an important influence of gas flow ratio on the PL properties of the SiC films providing an effective guidance for analyzing the luminescence mechanism and exploring the high-efficiency light emission of the SiC films.

  18. Mafic replenishment of multiple felsic reservoirs at the Mono domes and Mono Lake islands, California

    Science.gov (United States)

    Bray, Brandon; Stix, John; Cousens, Brian

    2017-07-01

    The Mono Basin has been the site of frequent volcanic activity over the past 60,000 years, including the emplacement of the Mono domes and Mono Lake islands. The Mono Basin lavas are the youngest and most poorly understood products of the Long Valley Volcanic Field. We have undertaken a study of Mono Basin volcanism encompassing whole-rock major and trace element, Sr, Nd, Pb, and O isotopic, and electron microprobe glass, plagioclase, and amphibole analyses. Variations in major and trace elements suggest that fractional crystallization of feldspar (Sr, K2O), apatite (P2O5), titanomagnetite (V), zircon (Zr), and allanite (La, Ce) has influenced the evolution of the Mono Basin lavas. Field observations, petrography, and chemistry together demonstrate that injection of more mafic magma is a common process throughout the Mono Basin. Mafic enclaves of the Mono domes are stretched and rounded, with chilled margins between enclave and host rhyolite. Thin sections reveal millimeter-scale inclusions of rhyolite in the enclaves and vice versa along the host-enclave border. Paoha Island dacite has glass with 67-72 wt% SiO2 and contains microscopic clots of more mafic glasses, with SiO2 contents as low as 64 wt%. Isotopically, the June Lake and Black Point basalts and the Mono dome enclaves represent the least evolved material in the Long Valley Volcanic Field, with 87Sr/86Sri 0.5126. The silicic Mono Lake lavas and Mono dome rhyolites display a significant crustal component, with 87Sr/86Sri >0.7058 and 143Nd/144Nd 19 and δ18O >+6.5‰. The Mono Lake lavas generally are younger and less evolved than the Mono domes, with enrichment in trace elements including Ba and Sr accompanied by lower 143Nd/144Nd and higher 206Pb/204Pb. This implies that the Mono domes and the Mono Lake lavas are derived from different magma batches, if not from separate magma chambers. There is no systematic relationship between the degree of chemical evolution and the lava ages, indicating that several

  19. Comparison of Cyclic Hysteresis Behavior between Cross-Ply C/SiC and SiC/SiC Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2016-01-01

    Full Text Available In this paper, the comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites (CMCs has been investigated. The interface slip between fibers and the matrix existed in the matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in the 0° plies are considered as the major reason for hysteresis loops of cross-ply CMCs. The hysteresis loops of cross-ply C/SiC and SiC/SiC composites corresponding to different peak stresses have been predicted using present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing peak stress. The damage parameter and hysteresis dissipated energy of C/SiC composite under low peak stress are higher than that of SiC/SiC composite; However, at high peak stress, the damage extent inside of cross-ply SiC/SiC composite is higher than that of C/SiC composite as more transverse cracks and matrix cracks connect together.

  20. Concentration-dependent study of electronic and optical properties of c-Si and c-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Gonzalez, R. [Departamento de Matematicas, Universidad de Sonora, C.P. 83000, Hermosillo, Sonora (Mexico); Posada-Amarillas, A. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apdo. Postal 5-088 C.P. 83190, Hermosillo, Sonora (Mexico); Galvan, D.H.; Reyes-Serrato, A. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Ensenada, B. C. (Mexico)

    2011-07-15

    Electronic and optical properties of crystalline silicon (c-Si) and hydrogen-doped crystalline silicon (c-Si:H) were calculated using the full-potential linearized augmented plane waves (FLAPWs) method, within the density functional theory (DFT), and the supercell method to model different hydrogen concentrations. Hydrogen was introduced in both bond-centered (BC) and tetrahedral (Td) interstitial sites to find out the most favorable configuration by searching for the lowest energy structure. The Td interstitial site yields the most stable and lowest energy structure. For several hydrogen concentrations we found that the effect of interstitial hydrogen is to introduce electronic states at the silicon band gap, turning it into a metallic system. Analysis of the calculated energy-loss function of doped silicon shows the existence of a plasmon peak at low energy of the loss spectrum, and the position of this plasmon peak is highly dependent on hydrogen concentration into silicon. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Comparison of Fatigue Life Between C/SiC and SiC/SiC Ceramic-Matrix Composites at Room and Elevated Temperatures

    Science.gov (United States)

    Longbiao, Li

    2016-10-01

    In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.

  2. Thermodynamic assessment of the C-Si-Zr system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.M. [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Xiang, Y.; Wang, S. [Key Laboratory of Advanced Ceramic Fibres and Composites, National University of Defense Technology, Changsha 410073 (China); Zheng, F.; Liu, L.B. [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Jin, Z.P. [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China)], E-mail: jin@mail.csu.edu.cn

    2009-04-17

    The reaction between Zr and SiC at 1473 K in vacuum has been studied. A layer structure was observed after high-temperature reactions between Zr and SiC complex. ZrC{sub x} was formed next to the SiC. Thermodynamic description for the C-Si-Zr system was developed based on its constituent binaries and critically reviewed experimental data. The Si-Zr binary has been modified. The high-temperature Zr{sub 5}Si{sub 3} phase and the ternary compound Zr{sub 5}Si{sub 3}C{sub x} was described as one phase, using the model (Zr){sub 5}(Si){sub 3}(C, Va){sub 1}. The calculated results were in good agreement with available experimental data.

  3. Recycling of p-type mc-si Top Cuts into p-type mono c-Si Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bronsveld, P.C.P.; Manshanden, P.; Lenzmann, F.O. [ECN Solar Energy, Westerduinweg 3, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Gjerstad, O. [Si Pro Holding AS, Ornesveien 3, P.O. Box 37, 8161, Glomfjord (Norway); Oevrelid, E.J. [SINTEF, Alfred Getz Vei 2, 7465, Trondheim (Norway)

    2013-07-01

    Solar cell results and material analysis are presented of 2 p-type Czochralski (Cz) ingots pulled from a charge consisting of 100% and 50% recycled multicrystalline silicon top cuts. The top cuts were pre-cleaned with a dedicated low energy consuming technology. No structure loss was observed in the bodies of the ingots. The performance of solar cells made from the 100% recycled Si ingot decreases towards the seed end of the ingot, which could be related to a non-optimal pulling process. Solar cells from the tail end of this ingot and from the 50% recycled Si ingot demonstrated an average solar cell efficiency of 18.6%. This is only 0.1% absolute lower than the efficiency of higher resistivity reference solar cells from commercially available wafers that were co-processed.

  4. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  5. Oxidation Behavior of C/C-SiC Gradient Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Oxidation behavior of C/C-SiC gradient matrix composites and C/C composites were compared in stationary air. The results show that oxidation threshold of C-SiC materials increases with the amount of SiC particles in the codeposition matrix. Oxidation rate of C/C-SiC gradient matrix composites is significantly lower than that of C/C material. The micro-oxidation process was observed by SEM.

  6. Circumferential tensile test method for mechanical property evaluation of SiC/SiC tube

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ju-Hyeon, E-mail: 15096018@mmm.muroran-it.ac.jp [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Park, Joon-soo [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Nakazato, Naofumi [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE SiC/SiC cooling channel system to be a candidate of divertor system in future. • Hoop strength is one of the important factors for a tube. • This research studies the relationship between deformation and strain of SiC/SiC tube. - Abstract: SiC fiber reinforced/SiC matrix (SiC/SiC) composite is expected to be a candidate material for the first-wall, components in the blanket and divertor of fusion reactors in future. In such components, SiC/SiC composites need to be formed to be various shapes. SiC/SiC tubes has been expected to be employed for blanket and divertor after DEMO reactor, but there is not established mechanical investigation technique. Recent progress of SiC/SiC processing techniques is likely to realize strong, having gas tightness SiC/SiC tubes which will contribute for the development of fusion reactors. This research studies the relationship between deformation and strain of SiC/SiC tube using a circumferential tensile test method to establish a mechanical property investigation method of SiC/SiC tubes.

  7. Impact Resistance of Uncoated SiC/SiC Composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Choi, Sung R.; Cosgriff, Laura M.; Fox, Dennis S.; Lee, Kang N.

    2008-01-01

    Two-dimensional woven SiC/SiC composites fabricated by melt infiltration method were impact tested at room temperature and at 1316 C in air using 1.59-mm diameter steel-ball projectiles at velocities ranging from 115 to 400 m/s. The extent of substrate damage with increasing projectile velocity was imaged and analyzed using optical and scanning electron microscopy, and non-destructive evaluation (NDE) methods such as pulsed thermography, and computed tomography. The impacted specimens were tensile tested at room temperature to determine their residual mechanical properties. Results indicate that at 115 m/s projectile velocity, the composite showed no noticeable surface or internal damage and retained its as-fabricated mechanical properties. As the projectile velocity increased above this value, the internal damage increased and mechanical properties degraded: At velocities >300 m/s, the projectile penetrated through the composite, but the composite retained approx.50% of the ultimate tensile strength of the as-fabricated composite and exhibited non-brittle failure. Predominant internal damages are delamination of fiber plies, fiber fracture and matrix shearing.

  8. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond.

    Science.gov (United States)

    Fujii, Shinya; Hashimoto, Yuichi

    2017-04-01

    Application of silyl functionalities is one of the most promising strategies among various 'elements chemistry' approaches for the development of novel and distinctive drug candidates. Replacement of one or more carbon atoms of various biologically active compounds with silicon (so-called sila-substitution) has been intensively studied for decades, and is often effective for alteration of activity profile and improvement of metabolic profile. In addition to simple C/Si exchange, several novel approaches for utilizing silicon in medicinal chemistry have been suggested in recent years, focusing on the intrinsic differences between silicon and carbon. Sila-substitution offers great potential for enlarging the chemical space of medicinal chemistry, and provides many options for structural development of drug candidates.

  9. Band edge discontinuities and carrier transport in c-Si/porous silicon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md Nazrul [QAED-SRG, Space Applications Centre (ISRO), Ahmedabad - 380015 (India); Ram, Sanjay K [Department of Physics, Indian Institute of Technology, Kanpur - 208016 (India); Kumar, Satyendra [Department of Physics, Indian Institute of Technology, Kanpur - 208016 (India)

    2007-10-07

    We have prepared light emitting nanocrystallline porous silicon (PS) layers by electrochemical anodization of crystalline silicon (c-Si) wafer and characterized the c-Si/PS heterojunctions using temperature dependence of dark current-voltage (I-V) characteristics. The reverse bias I-V characteristics of c-Si/PS heterojunctions are found to behave like the Schottky junctions where carrier transport is mainly governed by the carrier generation-recombination in the depletion region formed on the PS side. Fermi level of c-Si gets pinned to the defect levels at the interface resulting in ln(I) {approx} V{sup 1/2}. The barrier height in the reverse bias condition is shown to be equal to the band offset at the conduction band edges. An energy band diagram for the c-Si/PS heterojunction is proposed.

  10. High thermal conductivity SiC/SiC composites for fusion applications -- 2

    Energy Technology Data Exchange (ETDEWEB)

    Kowbel, W.; Tsou, K.T.; Withers, J.C. [MER Corp., Tucson, AZ (United States); Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion Structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. An unirradiated SiC/SiC composite made with MER-developed CVR SiC fiber and a hybrid PIP/CVI SiC matrix exhibited room temperature transverse thermal conductivity of 45 W/mK. An unirradiated SiC/SiC composite made from C/C composite totally CVR-converted to a SiC/SiC composite exhibited transverse thermal conductivity values of 75 and 35 W/mK at 25 and 1000 C, respectively. Both types of SiC/SiC composites exhibited non-brittle failure in flexure testing.

  11. Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping

    Science.gov (United States)

    Shi, Dai; Zeng, Yang; Shen, Wenzhong

    2015-11-01

    Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs.

  12. Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping

    Science.gov (United States)

    Shi, Dai; Zeng, Yang; Shen, Wenzhong

    2015-01-01

    Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs. PMID:26566176

  13. Resonant mono Higgs at the LHC

    CERN Document Server

    Basso, Lorenzo

    2015-01-01

    In recent years, the production of a SM particle with large missing transverse momentum, dubbed mono-X searches, have gained increasing attention. After the discovery of the Higgs boson in 2012, the run-II of the LHC will now scrutinise its properties, looking for BSM physics. In particular, one could search for mono-Higgs signals, that are typically studied in models addressing dark matter. However, this signal can appear also in models addressing the neutrino masses, if additional heavier neutrinos with masses at the electroweak scale are present. The latter will couple to the SM neutrinos and the Higgs boson, yielding a type of mono-Higgs signal not considered for dark matter: the resonant production of a Higgs boson and missing energy. In this paper, we address the LHC exclusion power of the latter with dedicated detector simulations, and reinterpret it in a benchmark model for neutrino mass generation.

  14. Semipolar (202̅3) nitrides grown on 3C-SiC/(001) Si substrates

    Science.gov (United States)

    Dinh, Duc V.; Presa, S.; Akhter, M.; Maaskant, P. P.; Corbett, B.; Parbrook, P. J.

    2015-12-01

    Heteroepitaxial growth of GaN buffer layers on 3C-SiC/(001) Si templates (4°-offcut towards [110]) by metalorganic vapour phase epitaxy has been investigated. High-temperature grown Al0.5Ga0.5N/AlN interlayers were employed to produce a single (202̅3) GaN surface orientation. Specular crack-free GaN layers showed undulations along [11̅0]{}3{{C}-{SiC}/{Si}} with a root mean square roughness of about 13.5 nm (50 × 50 μm2). The orientation relationship determined by x-ray diffraction (XRD) was found to be [1̅21̅0]GaN ∥[11̅0]{}3{{C}-{SiC}/{Si}} and [3̅034]GaN ∥[110]3C - SiC/Si . Low-temperature photoluminescence (PL) and XRD measurements showed the presence of basal-plane stacking faults in the layers. PL measurements of (202̅3) multiple-quantum-well and light-emitting diode structures showed uniform luminescence at about 500 nm emission wavelength. A small peak shift of about 3 nm was observed in the electroluminescence when the current was increased from 5 to 50 mA (25-250 A cm-2).

  15. Fabrication and characteristics of the nc-Si/c-Si heterojunction MAGFET

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaofeng; Wen Dianzhong

    2009-01-01

    A MAGFET using an nc-Si/c-Si heterojunction as source and drain was fabricated by CMOS technology, using two ohm-contact electrodes as Hall outputs on double sides of the channel situated 0.7L from the source. The experimental results show that when V_(DS) = -7.0 V, the magnetic sensitivity of the single nc-Si/c-Si heterojunction magnetic metal oxide semiconductor field effect transistor (MAGFET) with an L : W ratio of 2 : 1 is 21.26 mV/T,and that with an L : W ratio of 4 : 1 is 13.88 mV/T. When the outputs of double nc-Si/c-Si heterojunction MAGFETs with an L : W ratio of 4 : 1 are in series, their magnetic sensitivity is 22.74 mV/T, which is an improvement of about 64% compared with that of a single nc-Si/c-Si heterojunction MAGFET.

  16. Minimum bar size for flexure testing of irradiated SiC/SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23-24, 1997. The minimum bar size for 4-point flexure testing of SiC/SiC composite recommended by PNNL for irradiation effects studies is 30 {times} 6 {times} 2 mm{sup 3} with a span-to-depth ratio of 10/1.

  17. 非晶硅/晶体硅(a-Si/c-Si)异质结%Property Investigation of a-Si/c-Si Hetero-Junction Structure

    Institute of Scientific and Technical Information of China (English)

    汪建强; 高华; 张剑; 张松; 李晨; 叶庆好; 孟凡英

    2011-01-01

    通过对非晶硅/晶体硅(a-Si/c-Si)异质结能带不连续、发射结掺杂以及界面态密度进行分析,研究它们对a-Si/c-Si异质结的界面特性,以及a-Si(N+)/c-Si(P)结构电池性能的影响.研究发现,能带不连续以及a-Si发射结高掺杂有利于实现界面复合机制由以悬挂键复合主导的复合机制向由少数载流子复合占主导的SRH(Shockly-Read-Hall)复合机制转变,有效降低界面复合速率.AFORS-HET软件模拟显示:在c-Si(P)衬底掺杂浓度为1.6×1016cm-3时,a-Si(N+)发射结掺杂浓度大于1.5×1020cm-3是获得高电池效率的必要条件;与短路电流密度相比,开路电压受a-Si/c-Si界面态密度影响更明显.%T his paper investigated the influence ot a-hi/c-bi band ottset, amorphous silicon emitter doping concentration and interface defects density on interface property of a-Si/c-Si structure. Band offset in a-Si(N+ )/c-Si(P) hetero-junction and a-Si emitter high level doping is very useful for the transformation of recombination mechanism from dangling bond to SRH (Shockly-Read-Hall). AFORS-HET simulation indicates that a-Si(N+ ) emitter doping level of over 1. 5X1020 cm~3 on c-Si(P) is an indispensable condition for achieving high efficiency. Comparing with density of short circuit current, open circuit voltage of a-Si/c-Si structure cell is much more susceptible to interface defect density.

  18. μc-Si:H(n)/c-Si(p)异质结太阳能电池性能的模拟研究%Simulation of the Performance of μc-Si: H(n)/c-Si(p) Heterojunction Solar Cell

    Institute of Scientific and Technical Information of China (English)

    吕雁文; 刘淑平; 聂慧军

    2015-01-01

    通过AFORS-HET软件分析了μc-Si:H(n)发射层,前后a-Si:H(i)本征层的厚度和带隙,对μc-Si:H(n)/a-Si:H (i)/c-Si(p)/a-Si:H(i)/μc-Si:H(p+)太阳能电池性能的影响.模拟得出a-Si:H(i)本征层通过钝化界面来提高太阳能电池的性能,同样μc-Si:H(p+)背场提高了电池的转换效率.μc-Si:H(n)发射层的厚度为6nm,带隙为1.6 eV;前后a-Si:H(i)本征层的厚度和带隙分别为3nm和1.6 eV,电池的性能达到最佳.此优化结果可以促进提高低成本高效率的太阳能电池技术.

  19. Doping and stability of 3C-SiC: from thinfilm to bulk growth

    DEFF Research Database (Denmark)

    Jokubavicius, V.; Sun, J.; Linnarsson, M. K.

    Cubic silicon carbide (3C-SiC) could pave the way for development of advanced electronic and optoelectronic devices. It could be an excellent substrate for growth of nitride and epitaxial graphene layers. Boron doped 3C-SiC films could reach up to 60% efficiency and pave the way for a new solar...... cell technology. Nitrogen and boron doped 3C-SiC layers can depict a new infrared LED. Hexagonal SiC is an excellent substrate for heteropeitaxial growth of 3C-SiC due to excellent compatibility in lattice constant and thermal expansion coefficient. However, the growth of 3C-SiC on such substrates...... is still being followed by a number of obstacles like polytype stabilization and high density of double positioning boundaries in the grown material. The polytype stability during epitaxial growth of doped 3C-SiC has not been explored. Consequently, the polytype stability during bulk growth of doped 3C...

  20. Carbonization and transition layer effects on 3C-SiC film residual stress

    Science.gov (United States)

    Anzalone, R.; Litrico, G.; Piluso, N.; Reitano, R.; Alberti, A.; Fiorenza, P.; Coffa, S.; La Via, F.

    2017-09-01

    In this work an extended study of the carbonization process of the silicon surface and of a low temperature transition layer in the temperature rump on the 3C-SiC epitaxial growth has been reported. It has been observed that increasing the C/H2 ratio the voids density decreases, the thickness of the carbonization layer and the density increase and the morphology improves. The low temperature transition layer, grown during the ramp between the carbonization step and the real growth process, produce a further reduction of the voids at the 3C-SiC/Si interface and a considerable reduction of the stress of the 3C-SiC film. This stress reduction is related to a large change of the film morphology. No effect of the interface silicon layer on the stress is observed. This study has shown the complex connection between the first steps of the 3C-SiC growth process and the properties of the film in term of stress and superficial morphology. The residual stress has important implications with regard to the processing (wafer bow) and quality of the epitaxy. Residual stress also changes the mechanical response and/or the resonant frequency of the thin-film structure and may degrade the performance in MEMS-based devices. Therefore, a better understanding of the stress relaxation mechanism could improve the performances of 3C-SiC devices and sensor technologies.

  1. How Long Is Mono Contagious?

    Science.gov (United States)

    ... it is contagious. Once someone gets mono, the virus stays in that person's body for life. That doesn't mean that you are always ... as long as 18 months. After that, the virus remains dormant (inactive) in the body for the rest of a person's life. If you've had mono, the virus can ...

  2. On the interplay between Si(110) epilayer atomic roughness and subsequent 3C-SiC growth direction

    Science.gov (United States)

    Khazaka, Rami; Michaud, Jean-François; Vennéguès, Philippe; Nguyen, Luan; Alquier, Daniel; Portail, Marc

    2016-11-01

    In this contribution, we performed the growth of a 3C-SiC/Si/3C-SiC layer stack on a Si(001) substrate by means of chemical vapor deposition. We show that, by tuning the growth conditions, the 3C-SiC epilayer can be grown along either the [111] direction or the [110] direction. The key parameter for the growth of the desired 3C-SiC orientation on the Si(110)/3C-SiC(001)/Si(001) heterostructure is highlighted and is linked to the Si epilayer surface morphology. The epitaxial relation between the layers has been identified using X-ray diffraction and transmission electron microscopy (TEM). We showed that, regardless of the top 3C-SiC epilayer orientation, domains rotated by 90° around the growth direction are present in the epilayer. Furthermore, the difference between the two 3C-SiC orientations was investigated by means of high magnification TEM. The results indicate that the faceted Si(110) epilayer surface morphology results in a (110)-oriented 3C-SiC epilayer, whereas a flat hetero-interface has been observed between 3C-SiC(111) and Si(110). The control of the top 3C-SiC growth direction can be advantageous for the development of new micro-electro-mechanical systems.

  3. 多孔C/SiC复合材料的制备及其性能%Fabrication and properties of porous C/SiC composites

    Institute of Scientific and Technical Information of China (English)

    吉洪亮; 张长瑞; 周新贵; 曹英斌

    2011-01-01

    Preforms made of carbon fibers and sacrificial tungsten fibers as a pore forming agent were repeatedly infiltrated with polycarbosilane and pyrolysed for 14 cycles, followed by aqua regia leaching to remove the tungsten fibers to form porous C/SiC composites. The pore structure, mechanical properties and permeability of the porous C/SiC composites to water and kerosene were respectively studied by a scanning electron microscope,a universal materials testing machine and home-made permeation equipment based on a fluid flow model in capillaries. Results showed that the pores of the porous C/SiC composites were mostly straight and that the open porosity can be controlled by the volume fraction of tungsten fibers used. The bend strength , Young's modulus and fracture toughness were 358 MPa, 124 GPa and 16. 7 MPa·m1/2 respectively when the open porosity of the composite was 23. 5% . The fluids permeated through the porous C/SiC composites by linear laminar flow( the osmosis rate value is 1. 02×10-3 mm2 ) . The composites exhibited tough fracture behavior and the presence of pores didn't lead to a significant deterioration of their mechanical properties.%以W丝作为成孔剂,采用孔隙预置技术制备了发汗多孔C/SiC复合材料,对其孔隙结构进行表征,研究了材料的力学性能和渗透行为.结果表明:采用孔隙预置技术能够有效的控制多孔C/SiC材料开孔率和孔隙结构,其孔隙主要由W丝去除后形成的直通孔组成,开孔率决定于W丝的体积含量,所制备的材料具有良好的力学性能和渗透性能.其弯曲强度达到358 MPa、弯曲模量达到124 GPa,断裂韧性达到16.7 MPa·m1/2,空隙率为23.5%,渗透率为1.02×10-3mm2,材料表现为韧性断裂模式,其孔隙的存在并没有对材料的力学性能产生明显的影响.

  4. 数值模拟提高μc-Si:H(n)/c-Si(p)异质结太阳能电池的界面载流子传输质量%Numerical Simulations for Improving the Interface Carries Transport Quality of μc-Si:H(n)/c-Si(p) Heterojunction Solar Cell

    Institute of Scientific and Technical Information of China (English)

    吕雁文; 刘淑平; 聂慧军

    2015-01-01

    通过使用AFORS-HET软件模拟透明导电膜(TCO)的功函数对能带结构的影响,以及能带失配的影响,载流子的运动和分布来分析和讨论界面处载流子传输性能.结果表明界面处的能带失配和透明导电膜的功函数强烈的影响载流子的传输质量和太阳能电池的性能.当导带失配在μc-Si:H(n)/c-Si(p)界面低于0.3eV,透明导电膜的功函数在TCO/μc-Si:H(n)界面低于4.3eV并且导带失配在c-Si(p)/BSF界面为0.25eV时,模拟具有纹理结构的TCO/μc-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/μc-Si: H(p+)/TCO太阳能电池的Voc为775mV,Jsc为42.03mA/cm2,FF为75%,而效率达到了24.43%.这说明进一步深入的理解太阳能电池的界面传输机理可以提高太阳能电池界面载流子传输质量和电池效率.

  5. Metastability of a-SiOx:H thin films for c-Si surface passivation

    Science.gov (United States)

    Serenelli, L.; Martini, L.; Imbimbo, L.; Asquini, R.; Menchini, F.; Izzi, M.; Tucci, M.

    2017-01-01

    The adoption of a-SiOx:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiNx on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiOx:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Sisbnd H and Sisbnd O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm2. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiOx:H/c-Si/a-SiOx:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiOx passivation properties, was furthermore considered. In particular we monitored the UV light soaking effect on c-Si wafers after a-SiOx:H coating by PECVD and after a thermal annealing treatment at 300 °C for 30 min, having selected these conditions on the basis of the study of the effect due to different temperatures and durations. We correlated the lifetime evolution and the metastability effect of thermal annealing to the a-SiOx:H/c-Si interface considering the evolution

  6. High thermal conductivity SiC/SiC composites for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Withers, J.C.; Kowbel, W.; Loutfy, R.O. [MER Corp., Tucson, AZ (United States)] [and others

    1997-04-01

    SiC/SiC composites are considered for fusion applications due to their neutron irradiation stability, low activation, and good mechanical properties at high temperatures. The projected magnetic fusion power plant first wall and the divertor will operate with surface heat flux ranges of 0.5 to 1 and 4 to 6 MW/m{sup 2}, respectively. To maintain high thermal performance at operating temperatures the first wall and divertor coolant channels must have transverse thermal conductivity values of 5 to 10 and 20 to 30 W/mK, respectively. For these components exposed to a high energy neutron flux and temperatures perhaps exceeding 1000{degrees}C, SiC/SiC composites potentially can meet these demanding requirements. The lack of high-purity SiC fiber and a low through-the-thickness (transverse) thermal conductivity are two key technical problems with currently available SiC/SiC. Such composites, for example produced from Nicalon{trademark} fiber with a chemical vapor infiltrated (CVI) matrix, typically exhibit a transverse conductivity value of less than 8 W/mK (unirradiated) and less than 3 W/mK after neutron irradiation at 800{degrees}C. A new SiC/SiC composite fabrication process has been developed at MER Corp. This paper describes this process, and the thermal and mechanical properties which are observed in this new composite material.

  7. Path-integral molecular dynamics simulation of 3C-SiC

    Science.gov (United States)

    Ramírez, Rafael; Herrero, Carlos P.; Hernández, Eduardo R.; Cardona, Manuel

    2008-01-01

    Molecular dynamics simulations of 3C-SiC have been performed as a function of pressure and temperature. These simulations treat both electrons and atomic nuclei by quantum mechanical methods. While the electronic structure of the solid is described by an efficient tight-binding Hamiltonian, the nuclei dynamics is treated by the path-integral formulation of statistical mechanics. To assess the relevance of nuclear quantum effects, the results of quantum simulations are compared to others where either the Si nuclei, the C nuclei, or both atomic nuclei are treated as classical particles. We find that the experimental thermal expansion of 3C-SiC is realistically reproduced by our simulations. The calculated bulk modulus of 3C-SiC and its pressure derivative at room temperature show also good agreement with the available experimental data. The effect of the electron-phonon interaction on the direct electronic gap of 3C-SiC has been calculated as a function of temperature and related to results obtained for bulk diamond and Si. Comparison to available experimental data shows satisfactory agreement, although we observe that the employed tight-binding model tends to overestimate the magnitude of the electron-phonon interaction. The effect of treating the atomic nuclei as classical particles on the direct gap of 3C-SiC has been assessed. We find that nonlinear quantum effects related to the atomic masses are particularly relevant at temperatures below 250K .

  8. Tuning the colors of c-Si solar cells by exploiting plasmonic effects

    Science.gov (United States)

    Peharz, G.; Grosschädl, B.; Prietl, C.; Waldhauser, W.; Wenzl, F. P.

    2016-09-01

    The color of a crystalline silicon (c-Si) solar cell is mainly determined by its anti-reflective coating. This is a lambda/4 coating made from a transparent dielectric material. The thickness of the anti-reflective coating is optimized for maximal photocurrent generation, resulting in the typical blue or black colors of c-Si solar cells. However, for building-integrated photovoltaic (BiPV) applications the color of the solar cells is demanded to be tunable - ideally by a cheap and flexible coating process on standard (low cost) c-Si solar cells. Such a coating can be realized by applying plasmonic coloring which is a rapidly growing technology for high-quality color filtering and rendering for different fields of application (displays, imaging,…). In this contribution, we present results of an approach for tuning the color of standard industrial c-Si solar cells that is based on coating them with metallic nano-particles. In particular, thin films (green and brownish/red. The position of the resonance peak in the reflection spectrum was found to be almost independent from the angle of incidence. This low angular sensitivity is a clear advantage compared to alternative color tuning methods, for which additional dielectric thin films are deposited on c-Si solar cells.

  9. Ab initioelectron paramagnetic resonance study of 3C-SiC/SiO2 interfaces in SiC-nanofiber based solar cells

    Science.gov (United States)

    Nugraha, Taufik Adi; Gerstmann, Uwe; Schmidt, Wolfgang Gero; Wippermann, Stefan

    Semiconducting nanocomposites, e. g. hybrid materials based on inorganic semiconducting 3C-SiC nanofibers and organic surfactants, provide genuinely novel pathways to exceed the Shockley-Queisser limit for solar energy conversion. The synthesis of such functionalized fibers can be performed completely using only inexpensive wet chemical solution processing. During synthesis a thin passivation layer is introduced between the SiC-fiber and surfactants, e. g. the native oxide, whose atomistic details are poorly understood. In this study, we utilize unpaired spins in interfacial defects to probe the local chemical environment with ab initio EPR (Electron Paramagnetic Resonance) calculations, which can be directly compared to experiment. Considering a wide variety of possible interfacial structures, a grand canonical approach is used to generate a phase diagram of the 3C-SiC/SiO2 interface as a function of the chemical potentials of Si, O and H, to provide favorable interfacial structures for g-tensor calculations. This study provides directions about specific types of interfacial defects and their impact on the electronic properties of the interface. The authors wish to thank S. Greulich-Weber for helpful discussions. S. W. acknowledges BMBF NanoMatFutur Grant No. 13N12972.

  10. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies are in progress to evaluate the stability of these materials.

  11. Advanced Environmental Barrier Coatings Developed for SiC/SiC Composite Vanes

    Science.gov (United States)

    Lee, Kang N.; Fox, Dennis S.; Eldridge, Jeffrey I.; Zhu, Dongming; Bansal, Narottam P.; Miller, Robert A.

    2003-01-01

    Ceramic components exhibit superior high-temperature strength and durability over conventional component materials in use today, signifying the potential to revolutionize gas turbine engine component technology. Silicon-carbide fiber-reinforced silicon carbide ceramic matrix composites (SiC/SiC CMCs) are prime candidates for the ceramic hotsection components of next-generation gas turbine engines. A key barrier to the realization of SiC/SiC CMC hot-section components is the environmental degradation of SiC/SiC CMCs in combustion environments. This is in the form of surface recession due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is a logical approach to achieve protection and long-term durability.

  12. Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires.

    Science.gov (United States)

    Liu, W F; Oh, J I; Shen, W Z

    2011-03-25

    We have carried out detailed investigations on the light absorption mechanism in single crystalline silicon (c-Si) (core)/amorphous Si (a-Si) (shell) coaxial nanowires (NWs). Based on the Lorenz-Mie light scattering theory, we have found that the light absorption in the coaxial NWs relies on the leaky mode resonances and that the light absorption can be optimized towards photovoltaic applications when the a-Si shell thickness is about twice the c-Si core radius. The photocurrent has been found to be enhanced up to ∼ 560% compared to c-Si NWs, and to be further enhanced up to ∼ 60% by coating the nonabsorbing dielectric shells.

  13. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.

    2017-04-11

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  14. Failure wave motion of 3D-C/SiC composites subjected to shock compression

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The response and failure behavior of 3D-C/SiC composites subjected to shock compression have been experimentally studied.With the help of a one-stage light gas gun,the 3D-C/SiC composite samples,which are subjected to the plane shock compression by LY-12 aluminum flyer sheets with different speeds become available.Based on the analysis of observation for the curve of pressure vs time,which has been measured from the tests as well as from the samples,it is found that when the shock speed is larger than a critical value,the material of 3D-C/SiC will be comminuted and the failure surface will move from the shock plane to its inward direction in the waveform.

  15. Elastic and anelastic properties of chemical vapor deposited epitaxial 3C-SiC

    Science.gov (United States)

    Su, C. M.; Wuttig, Manfred; Fekade, A.; Spencer, M.

    1995-06-01

    Chemical vapor deposited 3C-SiC films were micromachined into free standing cantilevers and their anelastic and elastic properties were determined by a vibrating reed technique. Despite a high density of defects, epitaxial 3C-SiC exhibits extremely high mechanical Q which is essential for resonator sensors and actuators. An anelastic relaxation peak was found with an associated activation energy of 0.94 eV. Doping caused splitting of this peak. The mechanism of the mechanical relaxation peak is discussed in relation to defect movement under stress. Young's modulus of epitaxial undoped 3C-SiC was found to be 694 GPa, p-doping reduced it to 474 Gpa.

  16. High-temperature protective coatings for C/SiC composites

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2014-12-01

    Full Text Available Carbon fiber-reinforced silicon carbide (C/SiC composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073 K or higher in water vapor.

  17. Effect of Environment on the Stress- Rupture Behavior of a C/SiC Composite Studied

    Science.gov (United States)

    Verrilli, Michael J.; Kiser, J. Douglas; Opila, Elizabeth J.; Calomino, Anthony M.

    2002-01-01

    Advanced reusable launch vehicles will likely incorporate fiber-reinforced ceramic matrix composites (CMC's) in critical propulsion and airframe components. The use of CMC's is highly desirable to save weight, improve reuse capability, and increase performance. One of the candidate CMC materials is carbon-fiber-reinforced silicon carbide (C/SiC). In potential propulsion applications, such as turbopump rotors and nozzle exit ramps, C/SiC components will be subjected to a service cycle that includes mechanical loading under complex, high-pressure environments containing hydrogen, oxygen, and steam. Degradation of both the C fibers and the SiC matrix are possible in these environments. The objective of this effort was to evaluate the mechanical behavior of C/SiC in various environments relevant to reusable launch vehicle applications. Stress-rupture testing was conducted at the NASA Glenn Research Center on C/SiC specimens in air and steam-containing environments. Also, the oxidation kinetics of the carbon fibers that reinforce the composite were monitored by thermogravimetric analysis in the same environments and temperatures used for the stress-rupture tests of the C/SiC composite specimens. The stress-rupture lives obtained for C/SiC tested in air and in steam/argon mixtures are shown in the following bar chart. As is typical for most materials, lives obtained at the lower temperature (600 C) are longer than for the higher temperature (1200 C). The effect of environment was most pronounced at the lower temperature, where the average test duration in steam at 600 C was at least 30 times longer than the lives obtained in air. The 1200 C data revealed little difference between the lives of specimens tested in air and steam at atmospheric pressure.

  18. Specimen size effect considerations for irradiation studies of SiC/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    For characterization of the irradiation performance of SiC/SiC, limited available irradiation volume generally dictates that tests be conducted on a small number of relatively small specimens. Flexure testing of two groups of bars with different sizes cut from the same SiC/SiC plate suggested the following lower limits for flexure specimen number and size: Six samples at a minimum for each condition and a minimum bar size of 30 x 6.0 x 2.0 mm{sup 3}.

  19. EFFECTS OF TEMPERATURE ON THE SPECTRAL EMISSIVITY OF C/SiC COMPOSITES

    OpenAIRE

    Yufeng Zhang; Jingmin Dai; Lu Xiaodong; Wu Yuanqing

    2016-01-01

    The effect of temperature on the infrared spectral emissivity of C/SiC composites as a thermal protection material has been studied, using a measurement system based on a FT-IR spectrometer. The spectral emissivity of C/SiC composites in the wavelength range 3-20 μm and in the temperature range from 1000 K to over 2000 K was measured. Based on the analysis of the measured spectral emissivity, variations of the spectral emissivity with temperature were studied. The relationship between emissiv...

  20. Evaluation of CVI SiC/SiC Composites for High Temperature Applications

    Science.gov (United States)

    Kiser, D.; Almansour, A.; Smith, C.; Gorican, D.; Phillips, R.; Bhatt, R.; McCue, T.

    2017-01-01

    Silicon carbide fiber reinforced silicon carbide (SiC/SiC) composites are candidate materials for various high temperature turbine engine applications because of their high specific strength and good creep resistance at temperatures of 1400 C (2552 F) and higher. Chemical vapor infiltration (CVI) SiC/SiC ceramic matrix composites (CMC) incorporating Sylramic-iBN SiC fiber were evaluated via fast fracture tensile tests (acoustic emission damage characterization to assess cracking behavior), tensile creep testing, and microscopy. The results of this testing and observed material behavior degradation mechanisms are reviewed.

  1. Mono pile foundation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyngesen, S.; Brendstrup, C.

    1997-02-01

    The use of mono piles as foundations for maritime structures has been developed during the last decades. The installation requirements within the offshore sector have resulted in equipment enabling driving of piles up to 3-4 m to large penetration depths. The availability of this equipment has made the use of large mono piles feasible as foundations for structures like wind turbines. The mono pile foundations consists of three parts; the bare pile, a conical transition and a boat landing. All parts are prefitted at the yard in order to minimise the installation work that has to be carried out offshore. The study of a mono pile foundations for a 1.5 MW wind turbine has been conducted for two locations, Horns Rev and Roedsand. Three different water depths: 5, 8 and 11 m have been investigated in the study. The on-site welding between pile and conical transition is performed by an automatic welding machine. Final testing and eventually repair of the weld are conducted at least 16 hours after welding. This is followed by final installation of J-tube, tie-in to subsea cables and installation of the impressed current system for corrosive protection of the mono pile. The total cost for procurement and installation of the mono pile using the welded connection is estimated. The price does not include procurement and installation of access platform and boat landing. These costs are estimated to 250.000 DKK. Depending on water depth the cost of the pile ranges from 2,2 to 2,7 million DKK. Procurement and fabrication of the pile are approx. 75% of the total costs. The remaining 25% are due to installation. The total costs are very sensitive to the unit price of pile steel. During the project it became obvious that ice load has a very large influence on the dimensions of the mono pile. (EG)

  2. COMPARISON OF FATIGUE AND CREEP BEHAVIOR BETWEEN 2D AND 3D-C/SiC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    D. Han; S.R. Qiao; M. Li; J.T. Hou; X.J. Wu

    2004-01-01

    The differences of tension-tension fatigue and tensile creep characters of 2D-C/SiCand 3D-C/SiC composites have been scrutinized to meet the engineering needs. Experiments of tension-tension fatigue and tensile creep are carried out under vacuum high temperature condition. All of the high temperature fatigue curves are flat; the fatigue curves of the 2D-C/SiC are flatter and even parallel to the horizontal axis. While the tension-tension fatigue limit of the 3D-C/SiC is higher than that of the 2D-C/SiC, the fiber pullout length of the fatigue fracture surface of the 3D-C/SiC is longer than that of the 2D-C/SiC, and fracture morphology of the 3D-C/SiC is rougher, and pullout length of the fiber tows is longer. At the same time the 3D-C/SiC has higher tensile creep resistance. The tensile curve and the tensile creep curve of both materials consist of a series of flat step. These phenomena can be explained by the non-continuity of the damage.

  3. Local traps as nanoscale reaction-diffusion probes: B clustering in c-Si

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, B. J., E-mail: bartekpawlak72@gmail.com [Globalfoundries, Kapeldreef 75, B-3001 Leuven (Belgium); Cowern, N. E. B.; Ahn, C. [School of Electrical and Electronic Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Vandervorst, W. [IMEC, Kapeldreef 75, B-3001 Leuven, Belgium and IKS, Department of Physics, KU Leuven, Leuven (Belgium); Gwilliam, R. [Surrey Ion Beam Centre, Nodus Laboratory, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Berkum, J. G. M. van [Philips CFT, Prof. Holstlaan 4, 5656 AA Eindhoven (Netherlands)

    2014-12-01

    A series of B implantation experiments into initially amorphized and not fully recrystallized Si, i.e., into an existing a/c-Si bi-layer material, have been conducted. We varied B dose, energy, and temperature during implantation process itself. Significant B migration has been observed within c-Si part near the a/c-interface and near the end-of-range region before any activation annealing. We propose a general concept of local trapping sites as experimental probes of nanoscale reaction-diffusion processes. Here, the a/c-Si interface acts as a trap, and the process itself is explored as the migration and clustering of mobile BI point defects in nearby c-Si during implantation at temperatures from 77 to 573 K. We find that at room temperature—even at B concentrations as high as 1.6 atomic %, the key B-B pairing step requires diffusion lengths of several nm owing to a small, ∼0.1 eV, pairing energy barrier. Thus, in nanostructures doped by ion implantation, the implant distribution can be strongly influenced by thermal migration to nearby impurities, defects, and interfaces.

  4. SiC/Si diode trigger circuit provides automatic range switching for log amplifier

    Science.gov (United States)

    1967-01-01

    SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.

  5. Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescopes

    CERN Document Server

    Enya, Keigo; Kaneda, Hidehiro; Onaka, Takashi; Ozaki, Tuyoshi; Kume, Masami

    2007-01-01

    We report on the microscopic surface structure of carbon-fiber-reinforced silicon carbide (C/SiC) composite mirrors that have been improved for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and other cooled telescopes. The C/SiC composite consists of carbon fiber, silicon carbide, and residual silicon. Specific microscopic structures are found on the surface of the bare C/SiC mirrors after polishing. These structures are considered to be caused by the different hardness of those materials. The roughness obtained for the bare mirrors is 20 nm rms for flat surfaces and 100 nm rms for curved surfaces. It was confirmed that a SiSiC slurry coating is effective in reducing the roughness to 2 nm rms. The scattering properties of the mirrors were measured at room temperature and also at 95 K. No significant change was found in the scattering properties through cooling, which suggests that the microscopic surface structure is stable with changes in temperature down to cryogenic values. The C/SiC ...

  6. Simulation and Optimization of β-FeSi2(n)/a-Si(i)/c-Si(p)/μc-Si(p+) Heterojunction Solar Cells%β-FeSi2(n)/a-Si(i)/c-Si(p)/μc-Si(p+)异质结太阳能电池的模拟与优化

    Institute of Scientific and Technical Information of China (English)

    刘振芳; 刘淑平; 聂慧军

    2016-01-01

    运用AFORS-HET软件对β-FeSi2(n)/a-Si(i)/c-Si(p)/μc-Si(p+)HIT型异质结太阳能电池的性能进行了模拟,并对各层参数进行了优化.模拟结果表明,在FeSi2(n)/c-si(p)结构上加上本征层和背场,能显著地提高电池的性能.加入缺陷并优化各项参数后,电池的最后参数为VoC=647.7 mV,JSC=42.29 mA·cm-2,FF=75.32%,EFF=20.63%,β-FeSi2(n)/c-Si(p)太阳能电池的效率提高了2.3%.

  7. Tribological characteristics of C/C-SiC braking composites under dry and wet conditions

    Institute of Scientific and Technical Information of China (English)

    LI Zhuan; XIAO Peng; XIONG Xiang; ZHU Su-hua

    2008-01-01

    C/C-SiC braking composites, based on reinforcement of carbon fibers and rnatrices of carbon and silicon carbide, were fabricated by warm compaction and in situ reaction process. The tribological characteristics of C/C-SiC braking composites under dry and wet conditions were investigated by means of MM-1000 type of friction testing machine. The influence of dry and wet conditions on the tribological characteristics of the C/C-SiC composites was ascertained. Under dry condition, C/C-SiC braking composites show superior tribological characteristics, including high coefficient of friction (0.38), good abrasive resistance (thickness loss is 1.10 μm per cycle) and steady breaking. The main wear mechanism is plastic deformation and abrasion caused by plough. Under wet condition, frictional films form on the worn surface. The coefficient of friction (0.35) could maintain mostly, and the thickness loss (0.70 μm per cycle) reduces to a certain extent. Furthermore, braking curves are steady and adhesion and oxidation are the main wear mechanisms.

  8. Characterization of a-Si:H/c-Si Heterojunctions by Time Resolved Microwave Conductivity Technique

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available In heterojunction solar cells, a-Si:H/c-Si heterointerface is of significant importance, since the heterointerface characteristics directly affect junction properties and thus solar cell efficiency. In this study, we have performed time resolved microwave conductivity (TRMC measurements on n-type c-Si wafers passivated on both sides with intrinsic and doped a-Si:H layers in order to investigate electrical property and passivation quality of the a-Si:H/c-Si heterojunctions. It was found that the TRMC decay time and decay curve shape varied with the laser wavelength and power intensity and also depended on sample structures. By using 1064 nm laser pulse with high excitation, differences in the decay curve shape between samples with and without p-n junction were observed. The samples containing p-n junction(s had unique slow decay mode, after the initial fast decay, which we ascribed to the release of carriers from the low-mobility amorphous layer into the high-mobility crystalline wafer as the built-in field of the junction was restored. Experimental results suggest that the TRMC is useful nondestructive technique which is suitable for primary check of the a-Si:H/c-Si heterojunctions during the solar cell fabrication process.

  9. Behaviors of hydrogen in C-SiC films with IR and SIMS analyses

    CERN Document Server

    Huang, N K; Xiong, Q; Liu, Y G; Wang, D Z; Lei, J R

    2002-01-01

    C-SiC films with different content of SiC were prepared with magnetron sputtering deposition followed by Ar sup + ion bombardment. Secondary ion mass spectroscopy depth profiles of hydrogen for the samples of C-SiC coated stainless steel and stainless steel substrate after H sup + ion implantation and thermal annealing show different hydrogen concentrations in C-SiC coatings and stainless steel. Infrared (IR) transmission measurement was selected to study the mechanism of hydrogen retention by C-SiC films. The vibrational spectra in the range between 400 and 3200 cm sup - sup 1 in IR transmission spectra show the Si-CH sub 3 , Si-CH sub 2 , Si-H, CH sub 2 , CH sub 3 etc. bonds, which are responsible for retaining hydrogen. Apart from the mode above, there also exist bonds related to carbon and silicon such as Si-C, C=C. The contamination of oxygen entered the film to form C=O and SiO sub 2 configurations and hydrogen contamination also formed Si-CH sub 2 mode in the films.

  10. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  11. Synthesis of Hybrid SiC/SiO2 Nanoparticles and Their Polymer Nanocomposites

    Science.gov (United States)

    Hassan, Tarig A.; Rangari, Vijaya K.; Baker, Fredric; Jeelani, Shaik

    2013-04-01

    In the present investigation, silicon carbide (β-SiC) nanoparticles ( 30 nm) were coated on silicon dioxide (SiO2) nanoparticles ( 200 nm) using sonochemical method. The resultant hybrid nanoparticles were then infused into SC-15 epoxy resin to enhance the thermal and mechanical properties of SC-15 epoxy for structural application. To fabricate an epoxy-based nanocomposite containing SiC/SiO2 hybrid nanoparticles, we have opted a two-step process. In the first step, the silica nanoparticles were coated with SiC nanoparticles using high intensity ultrasonic irradiation. In a second step, 1 wt.% of as-prepared SiC/SiO2 particles were dispersed in epoxy part-A (diglycidylether of bisphenol A) using a high intensity ultrasound for 30 min at 5°C. The part-B (cycloaliphatic amine hardener) of the epoxy was then mixed with part-A-SiC/SiO2 mixture using a high-speed mechanical stirrer for 10 min. The SiC/SiO2/epoxy resin mixture was cured at room temperature for 24 h. The SiC nanoparticles coating on SiO2 was characterized using X-ray diffraction (XRD) and high resolution transmission electron microscope (TEM). The as-prepared nanocomposite samples were characterized using thermo gravimetric analysis (TGA) and differential scanning calorimeter (DSC). Compression tests have been carried out for both nanocomposite and neat epoxy systems. The results indicated that 1 wt.% (SiC) + (SiO2) loading derived improvements in both thermal and mechanical properties when compared to the neat epoxy system.

  12. 3C-SiC nanocrystal growth on 10° miscut Si(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Deokar, Geetanjali, E-mail: gitudeo@gmail.com [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); D' Angelo, Marie; Demaille, Dominique [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Cavellin, Catherine Deville [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Faculté des Sciences et Technologie UPEC, 61 av. De Gaulle, Créteil F-94010 (France)

    2014-04-01

    The growth of 3C-SiC nano-crystal (NC) on 10° miscut Si(001) substrate by CO{sub 2} thermal treatment is investigated by scanning and high resolution transmission electron microscopies. The vicinal Si(001) surface was thermally oxidized prior to the annealing at 1100 °C under CO{sub 2} atmosphere. The influence of the atomic steps at the vicinal SiO{sub 2}/Si interface on the SiC NC growth is studied by comparison with the results obtained for fundamental Si(001) substrates in the same conditions. For Si miscut substrate, a substantial enhancement in the density of the SiC NCs and a tendency of preferential alignment of them along the atomic step edges is observed. The SiC/Si interface is abrupt, without any steps and epitaxial growth with full relaxation of 3C-SiC occurs by domain matching epitaxy. The CO{sub 2} pressure and annealing time effect on NC growth is analyzed. The as-prepared SiC NCs can be engineered further for potential application in optoelectronic devices and/or as a seed for homoepitaxial SiC or heteroepitaxial GaN film growth. - Highlights: • Synthesis of 3C-SiC nanocrystals epitaxied on miscut-Si using a simple technique • Evidence of domain matching epitaxy at the SiC/Si interface • SiC growth proceeds along the (001) plane of host Si. • Substantial enhancement of the SiC nanocrystal density due to the miscut • Effect of the process parameters (CO{sub 2} pressure and annealing duration)

  13. Effects of the gas feeding method on the properties of 3C-SiC/Si(111) grown by rapid thermal chemical vapor deposition

    CERN Document Server

    Shim, H W; Suh, E K

    1998-01-01

    High-quality crystalline 3C-SiC thin films are grown by rapid thermal chemical vapor deposition (RTCVD) on Si(111) by using two different growth processes. The films are grown along the [111] direction at 1200 .deg. C. The quality of the films are investigated by X-ray diffraction, transmission electron microscopy, and transmission electron diffraction. The SiC film grown by flowing the tetramethylsilane (TMS) gas before heating the substrate up to the growth temperature does not contain many voids at the SiC/Si interface, while the SiC grown by heating the substrate before supplying the TMS gas possesses many voids at the interface. The unintentionally doped SiC film grown by gas flow before heating the substrate appears to be n-type with a carrier concentration of 1.48 x 10 sup 1 sup 6 cm sup - sup 3 , a electron mobility of 884 cm sup 2 /V centre dot s, and a resistivity of 0.462 OMEGA centre dot cm. The physical properties, such as the electrical properties, the surface morphology, and the crystallinity, ...

  14. Application of C/SiC Composites in Space Optical System Abroad%C/SiC材料在国外空间光学系统上的应用

    Institute of Scientific and Technical Information of China (English)

    朱晓娟; 夏英伟

    2013-01-01

    Carbon fiber reinforced silicon carbide ceramic matrix composites (C/SiC) is a material that possess high specific stiffness,low sensitivity of thermal distortion and the adaptability in high and cryogenic temperatures,which make it a most promising space optical application material.The article summarizes the fabrication processes of C/SiC and the practical application of C/SiC to space technologies abroad.%C/SiC复合材料具有高的比强度、低的热变形敏感度以及在高低温环境下的适应性,这使其成为目前最具前途的空间光学系统应用材料.本文总结了国外一些国家C/SiC的制备方法及其在空间技术上的具体应用.

  15. Electrical activation of nitrogen heavily implanted 3C-SiC(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fan, E-mail: f.li.1@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Sharma, Yogesh; Shah, Vishal; Jennings, Mike [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Pérez-Tomás, Amador [ICN2 – Institut Catala de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Myronov, Maksym [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Fisher, Craig [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Leadley, David [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Mawby, Phil [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-10-30

    Highlights: • Nitrogen is fully activated by 1175 °C annealing for 1.5 × 10{sup 19} cm{sup −3} doped 3C-SiC. • Free donor concentration is found to readily saturate in 3C-SiC at ∼7 × 10{sup 19} cm{sup −3}. • 3C-SiC is found to have complete donor thermal ionization above 150 K. • Donor in 1.5 × 10{sup 19} cm{sup −3} nitrogen implanted 3C-SiC has an energy level ∼15 meV. • The SiO{sub 2} cap is found to have a bigger influence on low and medium doped samples. - Abstract: A degenerated wide bandgap semiconductor is a rare system. In general, implant levels lie deeper in the band-gap and carrier freeze-out usually takes place at room temperature. Nevertheless, we have observed that heavily doped n-type degenerated 3C-SiC films are achieved by nitrogen implantation level of ∼6 × 10{sup 20} cm{sup −3} at 20 K. According to temperature dependent Hall measurements, nitrogen activation rates decrease with the doping level from almost 100% (1.5 × 10{sup 19} cm{sup −3}, donor level 15 meV) to ∼12% for 6 × 10{sup 20} cm{sup −3}. Free donors are found to saturate in 3C-SiC at ∼7 × 10{sup 19} cm{sup −3}. The implanted film electrical performances are characterized as a function of the dopant doses and post implantation annealing (PIA) conditions by fabricating Van der Pauw structures. A deposited SiO{sub 2} layer was used as the surface capping layer during the PIA process to study its effect on the resultant film properties. From the device design point of view, the lowest sheet resistivity (∼1.4 mΩ cm) has been observed for medium doped (4 × 10{sup 19} cm{sup −3}) sample with PIA 1375 °C 2 h without a SiO{sub 2} cap.

  16. Methods of radiation effects evaluation of SiC/SiC composite and SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. Several methods for radiation effects evaluation of SiC fibers and fiber-reinforced SiC/SiC composite are presented.

  17. Festival nimega Mono / Ivar Sakk

    Index Scriptorium Estoniae

    Sakk, Ivar, 1962-

    2015-01-01

    Haapsalu graafilise disaini festival Haapsalu Linnagaleriis: sisaldab ülevaate- ja teemanäitust ning väikest sümpoosioni. Temaatilise aastanäituse motiiv on "MONO". Plakateid on ka välismaa tegijatelt. Kuraator Marko Kekishev

  18. Hot pressing of B{sub 4}C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O. [Ystanbul Technical University, Faculty of Chemistry and Metallurgy, Materials and Metallurgical Engineering Dept., Maslak-Ystanbul (Turkey)

    2005-07-01

    B{sub 4}C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B{sub 4}C/SiC composite samples were lower than monolithic B{sub 4}C in all experimental conditions. (authors)

  19. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c......-Si). The TiO2 films were deposited by thermal atomic layer deposition (ALD) at temperatures in the range of 80-300  ̊C using titanium tetrachloride (TiCl4) as Ti precursor and water as the oxidant. The influence of TiO2 thickness (5, 10, 20 nm), presence of additional tunneling interlayer (SiO2 or Al2O3...

  20. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    Science.gov (United States)

    Saucedo-Mora, L.; Lowe, T.; Zhao, S.; Lee, P. D.; Mummery, P. M.; Marrow, T. J.

    2016-12-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined.

  1. Incubation time for sub-critical crack propagation in SiC-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    El-Azab, A.; Ghoniem, N.M. [Univ. of California, Los Angeles, CA (United States)

    1995-04-01

    The objective of this work is to investigate the time for sub-critical crack propagation is SiC-SiC composites at high temperatures. The effects of fiber thermal creep on the relaxation of crack bridging tractions in SiC-SiC ceramic matrix composites (CMCs) is considered in the present work, with the objective of studying the time-to propagation of sub-critical matrix cracks in this material at high temperatures. Under the condition of fiber stress relaxation in the bridiging zone, it is found that the crack opening and the stress intensity factor increase with time for sub-critical matrix cracks. The time elapsed before the stress intensity reaches the critical value for crack propagation is calculated as a function of the initial crack length, applied stress and temperature. Stability domains for matrix cracks are defined, which provide guidelines for conducting high-temperature crack propagation experiments.

  2. 2D SiC/SiC composite for flow channel insert (FCI) application

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haijiao [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Zhou Xingui, E-mail: zhouxinguilmy@163.com [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Wang Honglei; Zhao Shuang [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Wu Yican; Huang Qunying; Zhu Zhiqiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Huang Zelan [Chongyi Zhangyuan Tungsten Co. Ltd., Chongyi 341300 (China)

    2010-12-15

    Two-dimensional (2D) silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) composite suiting for flow channel insert (FCI) application was successfully fabricated by stacking molding-precursor impregnation and pyrolysis (PIP) process. Plain-woven KD-I SiC fiber fabric was used as the reinforcement. SiC coating was deposited as the fiber/matrix interphase layer by chemical vapor deposition (CVD) technique. Mechanical, thermal and electrical properties of the 2D SiC/SiC composite were investigated. The results show that mechanical properties and through thickness thermal conductivity of the 2D KD-I/PIP SiC composite well meet the FCI application requirements; meanwhile, it seems that the electrical conductivity requirement will also be satisfied with a series of improvements.

  3. Characterization of SiC-SiC composites for accident tolerant fuel cladding

    Science.gov (United States)

    Deck, C. P.; Jacobsen, G. M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H. E.; Back, C. A.

    2015-11-01

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC-SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC-SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  4. Investigation of the chemical interaction in the TiC-Si3N4 system

    Directory of Open Access Journals (Sweden)

    Izhevskyi V.A.

    1999-01-01

    Full Text Available Chemical interaction in the TiCSi3N4 system was investigated. Thermodynamic calculations and kinetic analysis were carried out for a number of powder mixtures with various TiC:Si3N4 molar ratios in the temperature range 1300-1750 °C. Stability regions of the TiC-Si3N4 composites were defined. It was shown that the main reaction products are silicon carbide and titanium carbonitride. The overall chemical interaction is described in terms of chemical reaction between titanium carbide and silicon nitride, and the diffusion of carbon and nitrogen through the coherent reaction products layer after completion of the initial direct interaction of the components.

  5. Current Status and Recent Research Achievements in SiC/SiC Composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai; Snead, Lance L.; Henager, Charles H.; Nozawa, T.; Hinoki, Tetsuya; Ivekovic, Aljaz; Novak, Sasa; Gonzalez de Vicente, Sehila M.

    2014-12-01

    The development and maturation of the silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen the evolution from fundamental development and understanding of the material system and its behavior in a hostile irradiation environment to the current effort which essentially is a broad-based program of technology, directed at moving this material class from a laboratory curiosity to an engineering material. This paper lays out the recent international scientific and technological achievements in the development of SiC/SiC composite material technologies for fusion application and will discuss future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and for general engineering applications.

  6. Current status and recent research achievements in SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Y., E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Henager, C.H. [Pacific Northwest National Laboratory, Richland, WA (United States); Nozawa, T. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Iveković, A.; Novak, S. [Jožef Stefan Institute, Ljubljana (Slovenia); Gonzalez de Vicente, S.M. [EFDA Close Support Unit, Garching (Germany)

    2014-12-15

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  7. Detection of Potential Induced Degradation in c-Si PV Panels Using Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Spataru, Sergiu; Sera, Dezso

    This work, for the first time, investigates an Impedance Spectroscopy (IS) based method for detecting potential-induced degradation (PID) in crystalline silicon photovoltaic (c-Si PV) panels. The method has been experimentally tested on a set of panels that were confirmed to be affected by PID...... by using traditional current-voltage (I-V) characterization methods, as well as electroluminescence (EL) imaging. The results confirm the effectiveness of the new approach to detect PID in PV panels....

  8. Thermo-Oxidative Degradation Of SiC/Si3N4 Composites

    Science.gov (United States)

    Baaklini, George Y.; Batt, Ramakrishna T.; Rokhlin, Stanislav I.

    1995-01-01

    Experimental study conducted on thermo-oxidative degradation of composite-material specimens made of silicon carbide fibers in matrices of reaction-bonded silicon nitride. In SiC/Si3N4 composites of study, interphase is 3-micrometers-thick carbon-rich coat on surface of each SiC fiber. Thermo-oxidative degradation of these composites involves diffusion of oxygen through pores of composites to interphases damaged by oxidation. Nondestructive tests reveal critical exposure times.

  9. C/SiC Component & Material Analysis, Attachment Verification, & Blisk Turbopump Testing

    Science.gov (United States)

    Effinger, Michael R.; Genge, Gary; Gregg, Wayne; Jordan, William

    1999-01-01

    Ceramic composite blisk components constructed of carbon fibers & silicon carbide ceramic matrix have been fabricated and tested. Room and cryogenic torque testing have verified the attachment configuration. The polar and quasi-isotropic blisks have been proof spun, balanced, and tested in the Simplex turbopump. Foreign particle impact analysis was conducted for C/SiC. Data and manufacturing lessons learned are significantly benefiting the development of the Reusable Launch Vehicle's ceramic matrix composite integrally bladed disk.

  10. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  11. Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Hyun; Lee, Jeong Won; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Sihn, Ihn Cheol; Lim, Byung Joo [Dai-Yang Industries Co., Daejeon (Korea, Republic of)

    2016-11-15

    In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

  12. High-forward-bias transport mechanism in a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, T.F.; Korte, L.; Conrad, E.; Schmidt, M.; Rech, B. [Department of Silicon Photovoltaics, Helmholtz-Zentrum Berlin fuer Materialien und Energie, Kekulestrasse 5, 12489 Berlin (Germany)

    2010-03-15

    In order to elucidate the transport mechanism in a-Si:H/c-Si heterojunction solar cells under high forward bias (U > 0.5 V), we conducted temperature-dependent measurements of current-voltage (I-V) curves in the dark and under illumination. ZnO:Al/(p)a-Si:H/(n)c-Si/(n{sup +})a-Si:H cells are compared with inversely doped structures and the impact of thin undoped a-Si:H buffer layers on charge carrier transport is explored. The solar cell I-V curves are analyzed employing a generalized two-diode model which allows fitting I-V data for a broad range of samples. The fitting results are complemented with numerical simulations using AFORS-HET under consideration of microscopic a-Si:H parameters as determined by constant-final-state-yield photoelectron spectroscopy (CFSYS) to identify possible origins for a systematic increase of the high-forward-bias ideality factor along with the open-circuit voltage (V{sub oc}). It is further shown that also for a-Si:H/c-Si heterojunctions, dark I-V curve fit parameters can unequivocally be linked to V{sub oc} under illumination, which may prove helpful for device assessment. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites

    Science.gov (United States)

    Zhang, Lifeng; Ren, Chengzu; Ji, Chunhui; Wang, Zhiqiang; Chen, Guang

    2016-03-01

    The machining mechanism of woven ceramic matrix composites is one of the most challenging problems in composite application. To elucidate the grinding mechanism of the woven ceramic matrix composites, a new model material consisting of unidirectional CVI-C/SiC was prepared and ground. The composite was ground in three typical directions and the experimental investigation of the surface grinding process for this composite is described. In addition, the micro structural characteristics and grinding mechanism of the composite were analyzed. The result shows that brittle fracture is the dominant removal mechanism for grinding of the C/SiC composites, and the destroy form of the composites is mainly the syntheses of the matrix cracking, fiber fracture, and interfacial debonding. The grinding force follows the order: Normal > Longitudinal > Transverse, and the surface roughness follows: Longitudinal > Normal > Transverse. The grinding parameters (feed speed, cut depth, grinding speed) have great influence on the grinding force and surface roughness. Based on the findings, the grinding force and surface integrity of the woven ceramic matrix composites can be predicted. Furthermore, it is expected to provide a useful guideline for the design, evaluation and optimal application of the C/SiC composites.

  14. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    Science.gov (United States)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Chi, Dongzhi; Bhatia, Charanjit S.

    2014-06-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiOx) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiOx films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiOx films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiOx films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiOx has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiOx in the field of high-efficiency silicon wafer solar cells.

  15. C/C-SiC Composites for Nozzle of Solid Propellant Ramjet

    Directory of Open Access Journals (Sweden)

    WANG Lingling

    2017-01-01

    Full Text Available Carbon fiber reinforced carbon and silicon carbide matrix composites for nozzle inner of solid propellant ramjet were prepared by using the hybrid process of "chemical vapor infiltration + precursor impregnation pyrolysis (CVI+PIP". The microstructure, flexural and anti-ablation properties of the C/C-SiC composites and hydraulic test and rocket motor hot firing test for nozzle inner of solid propellant ramjet were comprehensively investigated. The results show that when the flexural strength of the composite reachs 197 MPa, the fracture damage behavior of the composites presents typical toughness mode.Also the composites has excellent anti-ablative property, i.e., linear ablation rate is only 0.0063 mm·s-1 after 200 s ablation. The C/C-SiC component have excellent integral bearing performance with the hydraulic bursting pressure of 6.5 MPa, and the high temperature combination property of the C/C-SiC composite nozzle inner is verified through motor hot firing of solid propellant ramjet.

  16. Machining parameter optimization of C/SiC composites using high power picosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruoheng; Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaannxi 710072 (China); Wang, Chunhui; Wang, Jing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaannxi 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Cheng, Laifei, E-mail: liuys99067@163.com [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaannxi 710072 (China)

    2015-03-01

    Highlights: • We found that the helical line width and the helical line spacing, machining time and the scanning speed on the surface morphology of machined holes had remarkable effects on the qualities of micro-holes such as shape and depth. • The debris consisted of C, Si and O was observed on the machined surface. The Si−C bonds of the SiC matrix transformed into Si−O bonds after machined. - Abstract: Picosecond laser is an important machining technology for high hardness materials. In this paper, high power picosecond laser was utilized to drill micro-holes in C/SiC composites, and the effects of different processing parameters including the helical line width and spacing, machining time and scanning speed were discussed. To characterize the qualities of machined holes, scanning electron microscope (SEM) was used to analyze the surface morphology, energy dispersive spectroscopy (EDS) and X-ray photoelectric spectroscopy (XPS) were employed to describe the element composition change between the untreated and laser-treated area. The experimental results indicated that all parameters mentioned above had remarkable effects on the qualities of micro-holes such as shape and depth. Additionally, the debris consisted of C, Si and O was observed on the machined surface. The Si−C bonds of the SiC matrix transformed into Si−O bonds after machined. Furthermore, the physical process responsible for the mechanism of debris formation was discussed as well.

  17. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation.

    Science.gov (United States)

    Zhang, Xisheng; Yang, Dong; Yang, Zhou; Guo, Xiaojia; Liu, Bin; Ren, Xiaodong; Liu, Shengzhong Frank

    2016-10-11

    The PEDOT:PSS is often used as the window layer in the normal structured PEDOT:PSS/c-Si hybrid solar cell (HSC), leading to significantly reduced response, especially in red and near-infrared region. By depositing the PEDOT:PSS on the rear side of the c-Si wafer, we developed an inverted structured HSC with much higher solar cell response in the red and near-infrared spectrum. Passivating the other side with hydrogenated amorphous silicon (a-Si:H) before electrode deposition, the minority carrier lifetime has been significantly increased and the power conversion efficiency (PCE) of the inverted HSC is improved to as high as 16.1% with an open-circuit voltage (Voc) of 634 mV, fill factor (FF) of 70.5%, and short-circuit current density (Jsc) of 36.2 mA cm(-2), an improvement of 33% over the control device. The improvements are ascribed to inverted configuration and a-Si:H passivation, which can increase photon carrier generation and reduce carrier recombination, respectively. Both of them will benefit the photovoltaic performance and should be considered as effective design strategies to improve the performance of organic/c-Si HSCs.

  18. Fiber creep rate and high-temperature properties of SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, C.A.; Jones, R.H.; Youngblood, G.E.; Henager, C.H. Jr. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Results of studies aimed at relating the fiber creep rate to the subcritical crack growth rate and fracture properties of SiC/SiC composites have demonstrated that the crack growth rate in a bulk composite is controlled by the fiber creep rate. This result was demonstrated for Nicalon-CG and Hi-Nicalon fiber reinforced material where a 50--75 c shift in the creep strength of the fiber resulted in a similar shift in the crack growth rate of the composite. Irradiation enhanced creep of SiC fibers and matrix must also be considered in the performance assessment of SiC/SiC composites. The shape of the displacement versus time curve for composites containing Hi-Nicalon fibers were similar to those of the previously tested materials, containing Ceramic-grade fibers, that exhibited subcritical crack growth controlled by time-dependent relaxation of the fiber-bridging stresses due to fiber creep. The crack velocity in the CG-C composites at 1100 C in argon was very close to that of the Hi-C materials at 1150--1175 C, this roughly corresponds to the temperature differential shown by DiCarlo et al. to obtain the same relaxation in 1 hour bend stress relaxation (BSR) tests in the two fibers. This supports the hypothesis that subcritical crack growth in SiC/SiC composites is controlled by fiber creep.

  19. Improvement of parameters in a-Si(p)/c-Si(n)/a-Si(n) solar cells

    Science.gov (United States)

    Moustafa Bouzaki, Mohammed; Aillerie, Michel; Ould Saad Hamady, Sidi; Chadel, Meriem; Benyoucef, Boumediene

    2016-10-01

    We analyzed and discussed the influence of thickness and doping concentration of the different layers in a-Si(p)/c-Si(n)/a-Si(n) photovoltaic (PV) cells with the aim of increasing its efficiency while decreasing its global cost. Compared to the efficiency of a standard marketed PV cell, elaborated with a ZnO transparent conductive oxide (TCO) layer but without Back Surface Field (BSF) layer, an optimization of the thickness and dopant concentration of both the emitter a-Si(p) and absorber c-Si(n) layers will gain about 3% in the global efficiency of the cell. The results also reveal that with introduction of the third layer, i.e. the BSF layer, the efficiency always achieves values above 20% and all other parameters of the cell, such as the open-circuit voltage, the short-circuit current and the fill-factor, are strongly affected by the thickness and dopant concentration of the layers. The values of all parameters are given and discussed in the paper. Thereby, the simulation results give for an optimized a-Si(p)/c-Si(n)/a-Si(n) PV cells the possibility to decrease the thickness of the absorber layer down to 50 μm which is lower than in the state-of-the-art. This structure of the cell achieves suitable properties for high efficiency, cost-effectiveness and reliable heterojunction (HJ) solar cell applications.

  20. Behavior of W-SiC/SiC dual layer tiles under LHD plasma exposure

    Science.gov (United States)

    Mohrez, Waleed A.; Kishimoto, Hirotatsu; Kohno, Yutaka; Hirotaki, S.; Kohyama, Akira

    2013-11-01

    Towards the early realization of fusion power reactors, high performance first wall and plasma facing components (PFCs) are essentially required. As one of the biggest challenges for this, high heat flux component (HHFC) design and R & D has been emphasized. This report provides the high performance HHFC materials R & D status and the first plasma exposure test result from large helical device (LHD). W-SiC/SiC dual layer tiles (hereafter, W-SiC/SiC) were developed by applied NITE process. This is the realistic concept of tungsten armor with ceramic composite substrates for fusion power reactors. The dual layer tiles were fabricated and tested their survival under the LHD divertor plasma exposure (Nominally 10 MW/m2 maximum heat load for 6 s operation cycle). The microstructure evolution, including crack and pore formation, was analyzed, besides the behavior of bonding layer between tungsten and SiC/SiC was evaluated by C-scanning images of ultrasonic method and Electron probe Micro-analyzer (EPMA). Thermal analysis was conducted by finite element method, where ANSYS code release 13.0 was used.

  1. Behavior of W–SiC/SiC dual layer tiles under LHD plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Mohrez, Waleed A., E-mail: dalywaleed@hotmail.com [Graduate School of Chemical and Materials Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); The nuclear materials authority, Cairo, Maadi (Egypt); Kishimoto, Hirotatsu; Kohno, Yutaka; Hirotaki, S. [College of Design and Manufacturing Technology, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); Kohyama, Akira [Organization of Advanced Sustainability Initiative for Energy System/Material (OASIS), Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)

    2013-11-15

    Towards the early realization of fusion power reactors, high performance first wall and plasma facing components (PFCs) are essentially required. As one of the biggest challenges for this, high heat flux component (HHFC) design and R and D has been emphasized. This report provides the high performance HHFC materials R and D status and the first plasma exposure test result from large helical device (LHD). W–SiC/SiC dual layer tiles (hereafter, W–SiC/SiC) were developed by applied NITE process. This is the realistic concept of tungsten armor with ceramic composite substrates for fusion power reactors. The dual layer tiles were fabricated and tested their survival under the LHD divertor plasma exposure (Nominally 10 MW/m{sup 2} maximum heat load for 6 s operation cycle). The microstructure evolution, including crack and pore formation, was analyzed, besides the behavior of bonding layer between tungsten and SiC/SiC was evaluated by C-scanning images of ultrasonic method and Electron probe Micro-analyzer (EPMA). Thermal analysis was conducted by finite element method, where ANSYS code release 13.0 was used.

  2. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation

    Science.gov (United States)

    Zhang, Xisheng; Yang, Dong; Yang, Zhou; Guo, Xiaojia; Liu, Bin; Ren, Xiaodong; Liu, Shengzhong (Frank)

    2016-10-01

    The PEDOT:PSS is often used as the window layer in the normal structured PEDOT:PSS/c-Si hybrid solar cell (HSC), leading to significantly reduced response, especially in red and near-infrared region. By depositing the PEDOT:PSS on the rear side of the c-Si wafer, we developed an inverted structured HSC with much higher solar cell response in the red and near-infrared spectrum. Passivating the other side with hydrogenated amorphous silicon (a-Si:H) before electrode deposition, the minority carrier lifetime has been significantly increased and the power conversion efficiency (PCE) of the inverted HSC is improved to as high as 16.1% with an open-circuit voltage (Voc) of 634 mV, fill factor (FF) of 70.5%, and short-circuit current density (Jsc) of 36.2 mA cm-2, an improvement of 33% over the control device. The improvements are ascribed to inverted configuration and a-Si:H passivation, which can increase photon carrier generation and reduce carrier recombination, respectively. Both of them will benefit the photovoltaic performance and should be considered as effective design strategies to improve the performance of organic/c-Si HSCs.

  3. Determination of material properties for short fibre reinforced C/C-SiC

    Directory of Open Access Journals (Sweden)

    Hausherr J.-M.

    2015-01-01

    Full Text Available Determining the mechanical properties of short fibre reinforced CMC using standard sized coupons has always been a challenge due to a high statistical scattering of the measured values. Although the random orientation of short fibres results in a quasi-isotropic material behavior of 2D-structures with a sufficiently large volume, the small volume typical for test coupons usually results in a non-isotropic fibre orientation in the tested volume. This paper describes a method for manufacturing unidirectional oriented short fibre reinforced CMC materials and presents material properties of UD-C/C-SiC. After verifying the fibre orientation of the CMC using micro-computed tomography, coupons were extracted to determine the orthotropic material properties. These orthotropic material properties were then used to predict the properties of C/C-SiC with randomly distributed short fibres. To validate the method, micro-computed tomography is used to quantitatively determine the fibre orientation within coupons extracted from randomly distributed short fibre C/C-SiC. After mechanical three-point-bending tests, the measured stiffness and bending strength is compared with the predicted properties. Finally, the data are used to devise a method suited for reducing the inherent large spread of material properties associated with the measurement of CMC materials with randomly distributed short fibres.

  4. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Baochen, E-mail: liaobaochen@nus.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); A*STAR Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602 (Singapore); Hoex, Bram [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Aberle, Armin G.; Bhatia, Charanjit S., E-mail: elebcs@nus.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Chi, Dongzhi [A*STAR Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602 (Singapore)

    2014-06-23

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO{sub x}) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO{sub x} films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO{sub x} films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiO{sub x} films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO{sub x} has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO{sub x} in the field of high-efficiency silicon wafer solar cells.

  5. Thickness effect on the formation of SiC nanoparticles in sandwiched Si/C/Si and C/Si multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K., E-mail: ckchung@mail.ncku.edu.t [Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, 701, Taiwan (China); Wu, B.H.; Chen, T.S.; Peng, C.C.; Lai, C.W. [Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, 701, Taiwan (China)

    2009-08-31

    The effect of carbon (C) and amorphous silicon (a-Si) thicknesses on the formation of SiC nanoparticles (np-SiC) in sandwiched Si/C/Si and C/Si multilayers on Si(100) substrates were investigated using ultra-high-vacuum ion beam sputtering system and vacuum thermal annealing at 500, 700, 900 {sup o}C for 1.0 h. Three-layer a-Si/C/a-Si structures with thicknesses of 50/200/50 nm and 75/150/75 nm and a two-layer C/a-Si structure of 200/50 nm were examined in this study. The size and density of np-SiC were strongly influenced by the annealing temperature, a-Si thickness and layer number. Many np-SiC appeared at 900 {sup o}C at a density order about 10{sup 8} cm{sup -2} in both three-layer structures while no particles formed in the two-layer structure. The thick a-Si structure (75/150/75 nm) produces a particle density approximately 1.8 times higher than thin structure (50/200/50 nm). This implies that thick a-Si structure had a lower activation energy of SiC formation compared to the thin a-Si structure. Few particles were found at 700 {sup o}C and no particles at 500 {sup o}C in both three-layer structures. The np-SiC formation is a thermally activated reaction. The higher temperature leads to higher particle density. A mechanism of np-SiC formation in thermodynamic and kinetic viewpoints is proposed.

  6. Damage buildup in Ar-ion-irradiated 3C-SiC at elevated temperatures

    Science.gov (United States)

    Wallace, J. B.; Bayu Aji, L. B.; Li, T. T.; Shao, L.; Kucheyev, S. O.

    2015-09-01

    Above room temperature, the accumulation of radiation damage in 3C-SiC is strongly influenced by dynamic defect interaction processes and remains poorly understood. Here, we use a combination of ion channeling and transmission electron microscopy to study lattice disorder in 3C-SiC irradiated with 500 keV Ar ions in the temperature range of 25-250 °C. Results reveal sigmoidal damage buildup for all the temperatures studied. For 150 °C and below, the damage level monotonically increases with ion dose up to amorphization. Starting at 200 °C, the shape of damage-depth profiles becomes anomalous, with the damage peak narrowing and moving to larger depths and an additional shoulder forming close to the ion end of range. As a result, damage buildup curves for 200 and 250 °C exhibit an anomalous two-step shape, with a damage saturation stage followed by rapid amorphization above a critical ion dose, suggesting a nucleation-limited amorphization behavior. Despite their complexity, all damage buildup curves are well described by a phenomenological model based on an assumption of a linear dependence of the effective amorphization cross section on ion dose. In contrast to the results of previous studies, 3C-SiC can be amorphized by bombardment with 500 keV Ar ions even at 250 °C with a relatively large dose rate of ˜2 ×1013 cm-2 s-1, revealing a dominant role of defect interaction dynamics at elevated temperatures.

  7. Physical Properties of C-Si Alloys in C2/m Structure

    Science.gov (United States)

    Wang, Qian-Kun; Chai, Chang-Chun; Fan, Qing-Yang; Yang, Yin-Tang

    2017-08-01

    Using the first principles calculations based on density functional theory, the crystal structure, elastic anisotropy, and electronic properties of carbon, silicon and their alloys (C 12 Si 4, C 8 Si 8, and C 4 Si 12 ) in a monoclinic structure (C2/m) are investigated. The calculated results such as lattice parameters, elastic constants, bulk modulus, and shear modulus of C 16 and Si 16 in C2/m structure are in good accord with previous work. The elastic constants show that C 16, Si 16, and their alloys in C2/m structure are mechanically stable. The calculated results of universal anisotropy index, compression and shear anisotropy percent factors indicate that C-Si alloys present elastic anisotropy, and C 8 Si 8 shows a greater anisotropy. The Poisson’s ratio and the B/G value show that C 8 Si 8 is ductile material and other four C-Si alloys are brittle materials. In addition, Debye temperature and average sound velocity are predicted utilizing elastic modulus and density of C-Si alloys. The band structure and the partial density of states imply that C 16 and Si 16 are indirect band gap semiconductors, while C 12 Si 4, C 8 Si 8, and C 4 Si 12 are semi-metallic alloys. Supported by the Natural Science Foundation of China under Grant No. 61474089, Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics under Grant No. 2015-0214. YY.K

  8. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres [Research School of Engineering, The Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  9. Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method

    Science.gov (United States)

    Huseynov, Elchin; Jazbec, Anze

    2017-07-01

    Silicon carbide (3C-SiC) nanoparticles have been irradiated by neutron flux (2×1013 n·cm-2·s-1) at TRIGA Mark II type research reactor. After neutron irradiation, the radioisotopes of trace elements in the nanocrystalline 3C-SiC were studied as time functions. The identification of isotopes which significantly increased the activity of the samples as a result of neutron radiation was carried out. Nanocrystalline 3C-SiC are synthesized by standard laser technique and the purity of samples was determined by the k0-based Instrumental Neutron Activation Analysis (k0-INAA) method. Trace elements concentration in the 3C-SiC nanoparticles were determined by the radionuclides of appropriate elements. The trace element isotopes concentration have been calculated in percentage according to k0-INAA method.

  10. Detection of Potential Induced Degradation in c-Si PV Panels Using Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Spataru, Sergiu; Sera, Dezso

    2016-01-01

    Impedance spectroscopy (IS) is an established characterization method in different electrical and chemical research areas, but not yet adopted as a commercial diagnostic tool for PV panels. This work, for the first time, proposes an IS based method for detecting potential-induced degradation (PID......) in c-Si PV panels. The method has been experimentally tested using an automated PID test bed, and the IS results were confirmed using traditional current-voltage characterization methods, as well as electroluminescence imaging. The corroborated results confirm the effectiveness of the new approach...... to identify PID in PV panels....

  11. Sequential C-Si Bond Formations from Diphenylsilane: Application to Silanediol Peptide Isostere Precursors

    DEFF Research Database (Denmark)

    Nielsen, Lone; Skrydstrup, Troels

    2008-01-01

    and the first new carbon-silicon bond. The next step is the reduction of this hydridosilane with lithium metal providing a silyl lithium reagent, which undergoes a highly diastereoselective addition to an optically active tert-butanesulfinimine, thus generating the second C-Si bond. This method allows......-step assembly of the carbon-silicon backbone of a silane-containing dipeptide fragment. The synthetic scheme is comprised of an alkene hydrosilylation step with the simple precursor, diphenylsilane, using either a radical initiator or RhCl(PPh3)3, Wilkinson's catalyst, for the creation of a hydridosilane...

  12. Application of ultrasonic inspection to characterization of advanced SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Nam, K.W., E-mail: namkw@pknu.ac.kr [Pukyong National University, 100 Yongdang, Nam, Busan 608-739 (Korea, Republic of); Kim, J.W., E-mail: jwkim@kims.re.kr [Korea Institute of Materials Science, 66 Sangnam, Changwon 641-831 (Korea, Republic of); Hinoki, T., E-mail: hinoki@iae.kyoto-u.ac.jp [Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kohyama, A., E-mail: kohyama@iae.kyoto-u.ac.jp [Muroran Institute of Technology, Mizumoto, Muroran 050-8585 (Japan); Murai, J., E-mail: jmurai@krautkramer.co.jp [Krautkramer Japan Co., Ltd., Sumida, Higasiosaka 578-0912 (Japan); Murakami, T., E-mail: tmurakami@krautkramer.co.jp [Krautkramer Japan Co., Ltd., Sumida, Higasiosaka 578-0912 (Japan)

    2011-10-01

    Nondestructive evaluation (NDE) of ceramic matrix composites is essential to develop reliable ceramics for industrial applications. In this work, C-scan image analysis has been used to nondestructively characterize surface cracks in SiC/SiC composite ceramics. The possibility of detecting surface cracks was evaluated experimentally using ultrasonic equipment of {mu}-SDS with a probe of 170 MHz. The defocus method could detect the shape of surface cracks. As a whole, when the defocus method for the probe was used, we conclude that there is a good possibility of detecting surface cracks.

  13. Low-Frequency Noise and Microplasma Analysis for c-Si Solar Cell Characterization

    Directory of Open Access Journals (Sweden)

    Jiří Vanek

    2012-01-01

    Full Text Available This paper brings the comparison of solar cell conversion efficiency and results from a noise spectroscopy and microplasma presence to evaluate the solar cell technology. Three sets of monocrystalline silicon solar cells (c-Si varying in front side phosphorus doped emitters were produced by standard screen-printing technique. From the measurements it follows that the noise spectral density related to defects is of 1/f type and its magnitude. It has been established that samples showing low noise feature high-conversion efficiency. The best results were reached for a group solar cells with selective emitter structure prepared by double-phosphorus diffusion process.

  14. Thermal conductivity/diffusivity of SiC-Mullite and SiC-SiC composites

    OpenAIRE

    1987-01-01

    The purposes of this study were to determine as a function of temperature the thermal diffusivity and/or thermal conductivity of SiC-Mullite and SiC-SiC, and to explain the observed behavior in terms of changes in temperature, microstructure, composition, and/or orientation. Materials used in the SiC-Mullite study consisted of single crystal SiC whiskers (prepared from rice hulls or by the vapor-liquid-solid process) dispersed within a polycrystalline mullite matrix. Dur...

  15. Investigation of the optoelectronic properties of {mu}c-Si:H pin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stiebig, H.; Brammer, T.; Zimmer, J.; Vetterl, O.; Wagner, H. [Forschungszentrum Juelich GmbH, ISI-PV, D-52425 Juelich (Germany)

    2000-05-01

    We have investigated microcrystalline silicon ({mu}c-Si:H) pin solar cells deposited at different silane concentrations in the gas phase varying from 2% to 7.2%. For these cells three features were found: the dark current of the cells decreased, the open circuit voltage increased and the blue response reduced with increasing silane concentration during deposition. To study the transport and recombination of these structures we have compared the experimentally determined optoelectronic properties with simulated data. The simulations reveal that the equilibrium carrier concentration of free carriers decreases and the affect of the nucleation region of the i-layer on the blue response increases with increasing silane concentration.

  16. Thermophysical and mechanical properties of SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    The key thermophysical and mechanical properties for SiC/SiC composites are summarized, including temperature-dependent tensile properties, elastic constants, thermal conductivity, thermal expansion, and specific heat. The effects of neutron irradiation on the thermal conductivity and dimensional stability (volumetric swelling, creep) of SiC is discussed. The estimated lower and upper temperatures limits for structural applications in high power density fusion applications are 400 and 1000 C due to thermal conductivity degradation and void swelling considerations, respectively. Further data are needed to more accurately determine these estimated temperature limits.

  17. Understanding 3C-SiC/SiO2 interfaces in SiC-nanofiber based solar cells from ab initio theory

    Science.gov (United States)

    Nugraha, Taufik Adi; Wippermann, Stefan

    2015-03-01

    Nanostructured materials - such as e. g. hybrid nanocomposites consisting of inorganic semiconducting nanofibers and organic surfactants - provide genuinely novel pathways to exceed the Shockley-Queisser limit for solar energy conversion. The synthesis of such functionalized nanofibers can be performed completely using only inexpensive wet chemical solution processing. However, the synthesis conditions often lead to complex interfacial structures involving thin oxide layers between the nanofiber and surfactants, whose atomistic details are poorly understood at best. Here we present a combined density functional theory and tight binding investigation of interfaces between 3C-SiC nanofiber surfaces and SiO2. Considering a wide variety of possible interfacial structures we utilize a grand canonical approach to generate a phase diagram and predict the structural details of the interface as a function of the chemical potentials of Si, O and H. This study provides directions about how the synthesis conditions lead to specific types of interfacial structures and their impact on the electronic properties of the interface. The authors wish to thank U. Gerstmann, S. Greulich-Weber and W. G. Schmidt for helpful discussions. S. W. acknowledges BMBF NanoMatFutur Grant No. 13N12972.

  18. Technique development for modulus, microcracking, hermeticity, and coating evaluation capability characterization of SiC/SiC tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ang, Caen K. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Driven by the need to enlarge the safety margins of nuclear fission reactors in accident scenarios, research and development of accident-tolerant fuel has become an important topic in the nuclear engineering and materials community. A continuous-fiber SiC/SiC composite is under consideration as a replacement for traditional zirconium alloy cladding owing to its high-temperature stability, chemical inertness, and exceptional irradiation resistance. An important task is the development of characterization techniques for SiC/SiC cladding, since traditional work using rectangular bars or disks cannot directly provide useful information on the properties of SiC/SiC composite tubes for fuel cladding applications. At Oak Ridge National Laboratory, experimental capabilities are under development to characterize the modulus, microcracking, and hermeticity of as-fabricated, as-irradiated SiC/SiC composite tubes. Resonant ultrasound spectroscopy has been validated as a promising technique to evaluate the elastic properties of SiC/SiC composite tubes and microcracking within the material. A similar technique, impulse excitation, is efficient in determining the basic mechanical properties of SiC bars prepared by chemical vapor deposition; it also has potential for application in studying the mechanical properties of SiC/SiC composite tubes. Complete evaluation of the quality of the developed coatings, a major mitigation strategy against gas permeation and hydrothermal corrosion, requires the deployment of various experimental techniques, such as scratch indentation, tensile pulling-off tests, and scanning electron microscopy. In addition, a comprehensive permeation test station is being established to assess the hermeticity of SiC/SiC composite tubes and to determine the H/D/He permeability of SiC/SiC composites. This report summarizes the current status of the development of these experimental capabilities.

  19. SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-02-15

    Highlights: • The CNTs were distributed uniformly on the SiC fibers in the fabric by CVD process. • The microstructural evolution of the CNTs interface coating was studied. • The closed porosity was investigated by X-ray tomography. • The liquid precursor LPVCS exhibited high densification efficiency. - Abstract: Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied as promising candidate materials for nuclear applications. Three-dimensional SiC/SiC composite was fabricated via polymer impregnation and pyrolysis (PIP) process using carbon nanotubes (CNTs) as the interface layer and LPVCS as the polymer precursor. The microstructural evolution of the fiber/matrix interface was studied. The porosity, mechanical properties, thermal and electrical conductivities of the SiC/SiC composite were investigated. The results indicated that the high densification efficiency of the liquid precursor LPVCS resulted in a low porosity of the SiC/SiC composite. The SiC/SiC composite exhibited non-brittle fracture behavior, however, bending strength and fracture toughness of the composite were relatively low because of the absence of CNTs as the interface layer. The thermal and electrical conductivities of the SiC/SiC composite were low enough to meet the requirements desired for flow channel insert (FCI) applications.

  20. Thermal Hysteresis of MEMS Packaged Capacitive Pressure Sensor (CPS) Based 3C-SiC

    Science.gov (United States)

    Marsi, N.; Majlis, B. Y.; Mohd-Yasin, F.; Hamzah, A. A.; Mohd Rus, A. Z.

    2016-11-01

    Presented herein are the effects of thermal hysteresis analyses of the MEMS packaged capacitive pressure sensor (CPS). The MEMS CPS was employed on Si-on-3C-SiC wafer that was performed using the hot wall low-pressure chemical vapour deposition (LPCVD) reactors at the Queensland Micro and Nanotechnology Center (QMNC), Griffith University and fabricated using the bulk-micromachining process. The MEMS CPS was operated at an extreme temperature up to 500°C and high external pressure at 5.0 MPa. The thermal hysteresis phenomenon that causes the deflection, strain and stress on the 3C-SiC diaphragm spontaneously influence the MEMS CPS performances. The differences of temperature, hysteresis, and repeatability test were presented to demonstrate the functionality of the MEMS packaged CPS. As expected, the output hysteresis has a low hysteresis (less than 0.05%) which has the hardness greater than the traditional silicon. By utilizing this low hysteresis, it was revealed that the MEMS packaged CPS has high repeatability and stability of the sensor.

  1. Ultrafast laser direct hard-mask writing for high efficiency c-Si texture designs

    Science.gov (United States)

    Kumar, Kitty; Lee, Kenneth K. C.; Nogami, Jun; Herman, Peter R.; Kherani, Nazir P.

    2013-03-01

    This study reports a high-resolution hard-mask laser writing technique to facilitate the selective etching of crystalline silicon (c-Si) into an inverted-pyramidal texture with feature size and periodicity on the order of the wavelength which, thus, provides for both anti-reflection and effective light-trapping of infrared and visible light. The process also enables engineered positional placement of the inverted-pyramid thereby providing another parameter for optimal design of an optically efficient pattern. The proposed technique, a non-cleanroom process, is scalable for large area micro-fabrication of high-efficiency thin c-Si photovoltaics. Optical wave simulations suggest the fabricated textured surface with 1.3 μm inverted-pyramids and a single anti-reflective coating increases the relative energy conversion efficiency by 11% compared to the PERL-cell texture with 9 μm inverted pyramids on a 400 μm thick wafer. This efficiency gain is anticipated to improve further for thinner wafers due to enhanced diffractive light trapping effects.

  2. Impact Resistance of Environmental Barrier Coated SiC/SiC Composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Choi, Sung R.; Cosgriff, Laura M.; Fox, Dennis S.; Lee, Kang N.

    2008-01-01

    Impact performance of 2D woven SiC/SiC composites coated with 225 and 525 microns thick environmental barrier coating (EBC) was investigated. The composites were fabricated by melt infiltration and the EBC was deposited by plasma spray. Impact tests were conducted at room temperature and at 1316 C in air using 1.59 mm diameter steel-balls at projectile velocities ranging from 110 to 375 m/s . Both microscopy and non-destructive evaluation (NDE) methods were used to determine the extent of damage in the substrate and coating with increasing projectile velocity. The impacted specimens were tensile tested at room temperature to determine their residual mechanical properties. At projectile velocities less than 125 m/s , no detectable internal damage was noticed in the MI SiC/SiC composites coated with 525 microns EBC. With increase in projectile velocity beyond this value, spallation of EBC layers, delamination of fiber plies, and fiber fracture were detected. At a fixed projectile velocity, the composites coated with 525 microns EBC showed less damage than those coated with 225 microns EBC. Both types of coated composites retained a large fraction of the baseline properties of the as-fabricated composites and exhibited non-brittle failure after impact testing. Furnace exposure of impacted specimens in a moisture environment at 1316 C for 500 h indicated that the through-the-thickness cracks in the coating and delamination cracks in the substrate generated after impact testing acted as conduits for internal oxidation.

  3. Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Sreeja, R. [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India); Swaminathan, B., E-mail: swami1423@gmail.co [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India); Painuly, Anil; Sebastian, T.V.; Packirisamy, S. [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India)

    2010-04-15

    In present study, partially allyl-substituted hydridopolycarbosilane (5 mol% allyl) [AHPCS] has been characterized by spectral techniques and thermal analysis. The DSC studies show that, the polymer is self-cross-linking at lower temperatures without any incorporation of cross-linking agents. The spectral and thermal characterizations carried out at different processing stages indicate the possibility of extensive structural rearrangement accompanied by the loss of hydrogen and other reactions of C and Si containing species resulting in the conversion of the branched chain segment into a 3D SiC network structure. AHPCS gave ceramic residue of 72% and 70% at 900 and 1500 deg. C respectively in argon atmosphere. XRD pattern of 1500 deg. C heat-treated AHPCS, indicates the formation of silicon carbide with the particle size of 3-4 nm. AHPCS was used as matrix resin for the preparation of C/SiC composite without any interfacial coating over the T-300 carbon fabric reinforcement. Flexural strength value of 74-86 MPa for C/SiC specimen with density of 1.7 g/cm{sup 3} was obtained after four infiltration and pyrolysis cycles.

  4. Ablation behavior and mechanism analysis of C/SiC composites

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-04-01

    Full Text Available Ablation is an erosive phenomenon with removal of material by a combination of thermo-mechanical, thermo-chemical, and thermo-physical factors with high temperature, pressure, and velocity of combustion flame. Materials with outstanding thermo-mechanical and thermo-chemical properties are required for future high-temperature components. C/SiC is a kind of great potential high-temperature structural material in aeronautics and astronautics with low specific weight, high specific strength, good thermal stability, oxidation resistance and excellent resistance to ablation. In this paper, the ablation phenomenon and mechanisms were summarized adequately. The ablated surface of C/SiC composites could be divided into three regions from center to external. In general, the higher the density, the lower the ablation rate; the lower the ablation temperature and less time, the lower the ablation rate, and the preparation methods also had a great influence on the ablation property. Thermo-physical and thermo-mechanical attacks were the main ablation behavior in the center region; oxidation was the main ablation behavior in the transition region and the border oxidation region.

  5. Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading

    Science.gov (United States)

    Cheng, Ron-Bin; Hsu, Su-Yuen

    2012-01-01

    Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.

  6. Grain growth of nanocrystalline 3C-SiC under Au ion irradiation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Limin; Jiang, Weilin; Dissanayake, Amila C.; Varga, Tamas; Zhang, Jiandong; Zhu, Zihua; Hu, Dehong; Wang, Haiyan; Henager, Charles H.; Wang, Tieshan

    2016-01-09

    Nanocrystalline silicon carbide (SiC) represents an excellent model system for a fundamental study of interfacial (grain boundary) processes under nuclear radiation, which are critical to the understanding of the response of nanostructured materials to high-dose irradiation. This study reports on a comparison of irradiation effects in cubic phase SiC (3C-SiC) grains of a few nanometers in size and single-crystal 3C-SiC films under identical Au ion irradiation to a range of doses at 700 K. In contrast to the latter, in which lattice disorder is accumulated to a saturation level without full amorphization, the average grain size of the former increases with dose following a power-law trend. In addition to coalescence, the grain grows through atomic jumps and mass transport, where irradiation induced vacancies at grain boundaries assist the processes. It is found that a higher irradiation temperature leads to slower grain growth and a faster approach to a saturation size of SiC nanograins. The results could potentially have a positive impact on structural components of advanced nuclear energy systems.

  7. Ultrafast laser direct hard-mask writing for high efficiency c-Si texture designs

    Directory of Open Access Journals (Sweden)

    Nogami Jun

    2013-03-01

    Full Text Available This study reports a high-resolution hard-mask laser writing technique to facilitate the selective etching of crystalline silicon (c-Si into an inverted-pyramidal texture with feature size and periodicity on the order of the wavelength which, thus, provides for both anti-reflection and effective light-trapping of infrared and visible light. The process also enables engineered positional placement of the inverted-pyramid thereby providing another parameter for optimal design of an optically efficient pattern. The proposed technique, a non-cleanroom process, is scalable for large area micro-fabrication of high-efficiency thin c-Si photovoltaics. Optical wave simulations suggest the fabricated textured surface with 1.3 μm inverted-pyramids and a single anti-reflective coating increases the relative energy conversion efficiency by 11% compared to the PERL-cell texture with 9 μm inverted pyramids on a 400 μm thick wafer. This efficiency gain is anticipated to improve further for thinner wafers due to enhanced diffractive light trapping effects.

  8. Spin-orbit coupling and magnetic interactions in Si(111):{C,Si,Sn,Pb}

    Science.gov (United States)

    Badrtdinov, D. I.; Nikolaev, S. A.; Katsnelson, M. I.; Mazurenko, V. V.

    2016-12-01

    We study the magnetic properties of the adatom systems on a semiconductor surface Si(111):{C,Si,Sn,Pb}-(√{3 }×√{3 }) . On the basis of all-electron density functional theory calculations we construct effective low-energy models taking into account spin-orbit coupling and electronic correlations. The Hartree-Fock simulations for the unit cell with nine correlated orbitals put forward insulating ground states with the noncollinear 120∘-Néel (for C, Si, Sn monolayer coverages) and 120∘-row-wise (for Pb adatom) antiferromagnetic orderings. The corresponding spin Hamiltonians with anisotropic exchange interactions are derived by means of the superexchange theory and the calculated Dzyaloshinskii-Moriya interactions in the systems with Sn and Pb adatoms are revealed to be very strong and compatible with the isotropic exchange couplings. To simulate the excited magnetic states we solve the constructed spin models by means of the Monte Carlo method, where at low temperatures and zero magnetic field we observe complex spin spiral patterns in Sn/Si(111) and Pb/Si(111). On this basis the formation of antiferromagnetic skyrmion lattice states at high magnetic fields in the adatom s p electron systems is discussed.

  9. Al2O3 Passivation on c-si Surfaces for Low Temperature Solar Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Saynova, D.S.; Janssen, G.J.M.; Burgers, A.R.; Mewe, A.A. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Cianci, E.; Seguini, G.; Perego, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2,I-20864 Agrate Brianza MB (Italy)

    2013-07-01

    Functional passivation of high resistivity p-type c-Si wafer surfaces was achieved using 10 nm Al2O3 layers and low temperatures for both the thermal ALD process and post-deposition anneal. Effective lifetime values higher than 1 ms were measured at excess carrier density {delta}n=1015 cm{sup -3}. This result was reached in combination with temperatures of 100C and 200C for the Al2O3 layer deposition and anneal, respectively. The Al2O3/c-Si interface was characterized using conductance-voltage and capacitance-voltage measurements. In particular, significantly reduced interface density of the electrically active defects Dit {approx} 2x1010 eV{sup -1}cm{sup -2} was detected, which enabled excellent chemical passivation. The measured density of fixed charges at the interface, Qf, after anneal were in the range +1x10{sup 12} to -1x10{sup 12} cm{sup -2} indicating that both inversion and accumulation conditions result in relevant field-effect passivation using Al2O3 layers and low temperature processes. Numerical simulations on representative test structures show that the uniform Qf effect can be understood in terms of a surface damage region (SDR) present near the interface in combination with asymmetry in the lifetime of holes and electrons in the SDR. The combination of low processing temperatures, thin layers and good passivation properties facilitate a technology for future low temperature solar cell applications.

  10. Tribological properties of C/C-SiC composites for brake discs

    Science.gov (United States)

    Jang, G. H.; Cho, K. H.; Park, S. B.; Lee, W. G.; Hong, U. S.; Jang, H.

    2010-02-01

    This study examines the friction and wear of ceramic matrix composites designed for use in automotive brake discs. The composites are produced by reinforcing a SiC matrix with carbon fibers using a liquid silicon infiltration method. C/C-SiC composites with two different compositions are fabricated to examine the compositional effect on the tribological properties. The tribological properties are evaluated using a scale dynamometer with a low-steel type friction material. The results show that the coefficient of friction is determined by the composition of the composite, which affects the propensity of friction film formation on the disc surface. A stable friction film on the disc surface also improves the wear resistance by diminishing the abrasive action of the disc. On the other hand, the friction film formation on the disc is affected by the applied pressure, and stable films are obtained at high pressures. This trend is prominent with discs with high Si content. However, both C/C/-SiC composites show superior performance in terms of the friction force oscillation, which is closely related to brake-induced vibration.

  11. Nanoscale triboactivity of functionalized c-Si surfaces by Fe+ ion implantation

    Science.gov (United States)

    Nunes, B.; Alves, E.; Colaço, R.

    2016-04-01

    In the present work, we present a study of the effect of Fe+ ion implantation on the tribological response at nanoscale contact lengths of crystalline silicon (c-Si) surfaces. (1 0 0) silicon wafers were implanted with Fe+ at a fluence of 2  ×  1017 cm-2, followed by annealing treatments at temperatures of 800 °C and 1000 °C. After microstructural characterization, nanoabrasive wear tests were performed with an atomic force microscope (AFM) using an AFM diamond tip with a stiff steel cantilever that enables the application of loads between 1 μN and 8 μN. After the nanowear tests, the same AFM was used to visualize and measure the worn craters. It was observed that the as-implanted samples present the poorest nanowear response, i.e. the highest wear rate, even higher than that of the unimplanted Si wafers used as a reference. Nevertheless, annealing treatments result in a measurable increase in the nanowear resistance. In this way we show that Fe+ ion implantation of c-Si, followed by the proper post-heat treatment, results in the formation of FeSi2 nanoprecipitates finely dispersed in a recrystallized matrix. This can be a valuable way of optimizing the nanotribological behavior of silicon.

  12. Influence of Constituents on Creep Properties of SiC/SiC Composites

    Science.gov (United States)

    Bhatt, R.; DiCarlo, J.

    2016-01-01

    SiC-SiC composites are being considered as potential candidate materials for next generation turbine components such as combustor liners, nozzle vanes and blades because of their low density, high temperature capability, and tailorable mechanical properties. These composites are essentially fabricated by infiltrating matrix into a stacked array of fibers or fiber preform by one or a combination of manufacturing methods such as, Melt Infiltration (MI) of molten silicon metal, Chemical Vapor Infiltration (CVI), Polymer Infiltration and Pyrolysis (PIP). To understand the influence of constituents, the SiC-SiC composites fabricated by MI, CVI, and PIP methods were creep tested in air between 12000 and 14500 degrees Centigrade for up to 500 hours. The failed specimens were analyzed under a scanning electron microscope to assess damage mechanisms. Also, knowing the creep deformation parameters of the fiber and the matrix under the testing conditions, the creep behavior of the composites was modeled and compared with the measured data. The implications of the results on the long term durability of these composites will be discussed.

  13. P-μc-Si1-xGex:H thin film by VHF-PECVD

    Institute of Scientific and Technical Information of China (English)

    SHANG Ze-ren; ZHANG jian-jun; ZHANG Li-ping; HU Zeng-xin; XUE Jun-ming; ZHAO Ying; GENG Xin-hua

    2008-01-01

    In this paper,a series of boron doped microcrystalline hydrogenated silicon-germanium(p-μc-Si1-xGex:H)was deposited by very high frequency plasma-enhanced chemical vapor deposition(VHF-PECVD)from SiH4 and GeF4 mixtures.The effect of GeF4concentration on films'composition.structure and electrical properties was studied.The resuIts show tllat with the increase of GeF4 concentration,the Ge fraction x increases.The dark conductivity and crystalline volume fraction increase first,and then decrease.When the GC is 4%,p-μc-Si1-xGex:H matefiai with high conductivity,low activation energy(σ=1.68 S/cm,Eg=0.047 eV),high crystalline volume fraction (60%)and with an average transmission coefficient over the long wave region reaching 0.9 at the thickness of 72 am was achieved.The experimental results were discussed in detail.

  14. Interaction between helium and intrinsic point defects in 3C-SiC single crystal

    Science.gov (United States)

    Sun, Dan; Li, Ruihuan; Ding, Jianhua; Zhang, Pengbo; Wang, Yuanyuan; Zhao, Jijun

    2017-06-01

    Silicon carbide (SiC) is a candidate structural material for fission and fusion reactors as well as an important wide band-gap semiconductor for electronic devices. Using first-principles calculations, we systemically investigate the energetics and stability of helium (He) atoms and intrinsic point defects inside single-crystalline 3C-SiC. We find that the formation energy of interstitial He is lower than those of point defects. Inside 3C-SiC, the He-C interaction is stronger than He-Si. Hence, the interstitial He atom in the Si tetrahedral site has a stronger interaction with the six C atoms in the second nearest neighbor than the four nearest neighboring Si atoms. For interstitial He atoms, the equilibrium He-He distance is about 1.81 Å with a weak attraction of 0.09 eV. According to the binding energies of Hen (n = 2-4) clusters, He interstitials can form He bubbles without involving other types of structural defects. Moreover, a Si (C) monovacancy can accommodate up to 11 (9) He atoms. The Hen clusters trapped in the Si or C monovacancy induce large internal pressure in the order of magnitude of GPa and thus facilitate the creation of a new vacancy at the nearby lattice site.

  15. Decoupling and ordering of multilayer graphene on C-face 3C-SiC(111)

    Science.gov (United States)

    Bouhafs, C.; Stanishev, V.; Zakharov, A. A.; Hofmann, T.; Kühne, P.; Iakimov, T.; Yakimova, R.; Schubert, M.; Darakchieva, V.

    2016-11-01

    We show experimentally that few layer graphene (FLG) grown on the carbon terminated surface (C-face) of 3C-SiC(111) is composed of decoupled graphene sheets. Landau level spectroscopy on FLG graphene is performed using the infrared optical Hall effect. We find that Landau level transitions in the FLG exhibit polarization preserving selection rules and the transition energies obey a square-root dependence on the magnetic field strength. These results show that FLG on C-face 3C-SiC(111) behave effectively as a single layer graphene with linearly dispersing bands (Dirac cones) at the graphene K point. We estimate from the Landau level spectroscopy an upper limit of the Fermi energy of about 60 meV in the FLG, which corresponds to a carrier density below 2.5 × 1011 cm-2. Low-energy electron diffraction μ-LEED) reveals the presence of azimuthally rotated graphene domains with a typical size of ≤200 nm. μ-LEED mapping suggests that the azimuth rotation occurs between adjacent domains within the same sheet rather than vertically in the stack.

  16. Fabrication of laminated ZrC-SiC composite by vacuum hot-pressing sintering

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2015-03-01

    Full Text Available Laminated ZrC-SiC ceramic was prepared through tape casting and hot pressing. The green tapes of ZrC and SiC were prepared at room temperature. In order to improve the density of composite, the binder of green tapes were removed at 550 °C for 1 h. The laminated structure and the cracks propagation path, which is not a straight line, are observed by optical metalloscope. The compact laminated ZrC-SiC composite sintered by vacuum hot-pressing at 1650 °C for 90 min under pressure of 20 MPa was researched by X-ray diffraction and scanning electron microscopy (SEM equipped with energy dispersive X-ray analysis. The results showed that interlayer bonding is tight, and no disordered phase has formed in the interlayers of ZrC or SiC, and the combination mode is physical mechanism.

  17. a-Si/c-Si heterojunction solar cells on SiSiC ceramic substrates

    Institute of Scientific and Technical Information of China (English)

    LI Xudong; XU Ying; CHE Xiaoqi

    2006-01-01

    Silicon thin-film solar cells are considered to be one of the most promising cells in the future for their potential advantages, such as low cost, high efficiency, great stability, simple processing, and none-pollution. In this paper, latest progress on poly-crystalline silicon solar cells on ceramic substrates achieved by our group was reported. Rapid thermal chemical vapor deposition (RTCVD) was used to deposited poly-crystalline silicon thin films, and the grains of as-grown film were enlarged by Zone-melting Recrystallization (ZMR). As a great changein cell's structure, traditional diffused pn homojunction was replaced by a-Si/c-Si heterojunction, which lead is to distinct improvement in cell's efficiency.A conversion efficiency of 3.42% has been achieved on 1cm2 a-Si/c-Si heterojunction solar cell ( Isc =16.93 mA, Voc =310.9 mV, FF =06493, AM =1.5 G,24 ℃), while the cell with diffused homojunction only gotan efficiency of 0.6%. It indicates that a-Si emitter formed at low temperature might be more suitable for thin film cell on ceramics.

  18. SEMICONDUCTOR MATERIALS Photoelectric conversion characteristics of ZnO/SiC/Si heterojunctions

    Science.gov (United States)

    Xiaopeng, Wu; Xiaoqing, Chen; Lijie, Sun; Shun, Mao; Zhuxi, Fu

    2010-10-01

    A series of n-ZnO/n-SiC/p-Si and n-ZnO/p-Si heterojunctions were prepared by DC sputtering. Their structural properties, I—V curves, photovoltaic effects and photo-response spectra were studied. The photoelectric conversion characteristics of n-ZnO/n-SiC/p-Si and n-ZnO/p-Si heterojunctions were investigated. It is found that the photoelectric conversion efficiency of the n-ZnO/n-SiC/p-Si heterojunction is about four times higher than that of the n-ZnO/p-Si heterojunction. The photovoltaic response spectrum indicated that the photoresponse curve of n-ZnO/n-SiC/p-Si increased more strongly than that of n-ZnO/p-Si with the wavelength increasing. It shows that the photoresponse of n-ZnO/p-Si can be enhanced when inserting a 3C-SiC layer between ZnO and Si. There is one inflexion in the photocurrent response curve of the n-ZnO/p-Si heterojunction and two inflexions in that of the n-ZnO/n-SiC/p-Si heterojunction. It is clear that the 3C-SiC plays an important role in the photoelectric conversion of the n-ZnO/n-SiC/p-Si heterojunction.

  19. Impact Resistance of Environmental Barrier Coated SiC/SiC Composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Choi, Sung R.; Cosgriff, Laura M.; Fox, Dennis S.; Lee, Kang N.

    2008-01-01

    Impact performance of 2D woven SiC/SiC composites coated with 225 and 525 microns thick environmental barrier coating (EBC) was investigated. The composites were fabricated by melt infiltration and the EBC was deposited by plasma spray. Impact tests were conducted at room temperature and at 1316 C in air using 1.59 mm diameter steel-balls at projectile velocities ranging from 110 to 375 m/s . Both microscopy and non-destructive evaluation (NDE) methods were used to determine the extent of damage in the substrate and coating with increasing projectile velocity. The impacted specimens were tensile tested at room temperature to determine their residual mechanical properties. At projectile velocities less than 125 m/s , no detectable internal damage was noticed in the MI SiC/SiC composites coated with 525 microns EBC. With increase in projectile velocity beyond this value, spallation of EBC layers, delamination of fiber plies, and fiber fracture were detected. At a fixed projectile velocity, the composites coated with 525 microns EBC showed less damage than those coated with 225 microns EBC. Both types of coated composites retained a large fraction of the baseline properties of the as-fabricated composites and exhibited non-brittle failure after impact testing. Furnace exposure of impacted specimens in a moisture environment at 1316 C for 500 h indicated that the through-the-thickness cracks in the coating and delamination cracks in the substrate generated after impact testing acted as conduits for internal oxidation.

  20. Machining parameter optimization of C/SiC composites using high power picosecond laser

    Science.gov (United States)

    Zhang, Ruoheng; Li, Weinan; Liu, Yongsheng; Wang, Chunhui; Wang, Jing; Yang, Xiaojun; Cheng, Laifei

    2015-03-01

    Picosecond laser is an important machining technology for high hardness materials. In this paper, high power picosecond laser was utilized to drill micro-holes in C/SiC composites, and the effects of different processing parameters including the helical line width and spacing, machining time and scanning speed were discussed. To characterize the qualities of machined holes, scanning electron microscope (SEM) was used to analyze the surface morphology, energy dispersive spectroscopy (EDS) and X-ray photoelectric spectroscopy (XPS) were employed to describe the element composition change between the untreated and laser-treated area. The experimental results indicated that all parameters mentioned above had remarkable effects on the qualities of micro-holes such as shape and depth. Additionally, the debris consisted of C, Si and O was observed on the machined surface. The Sisbnd C bonds of the SiC matrix transformed into Sisbnd O bonds after machined. Furthermore, the physical process responsible for the mechanism of debris formation was discussed as well.

  1. Structural investigation of the amorphous/crystalline interface by means of quantitative high-resolution transmission electron microscopy on the systems a-Si/c-Si and a-Ge/c-Si; Strukturelle Untersuchung der amorph/kristallinen Grenzflaeche mittels quantitativer hochaufloesender Transmissionselektronenmikroskopie an den Systemen a-Si/c-Si und a-Ge/c-Si

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, K.

    2006-11-02

    In this Thesis the interfaces between covalently bonded crystalline and amorphous materials were studied with regard to the induced ordering in the amorphous material in the interfacial region by means of high-resolution transmission electron microscopy (HREM). The interface between amorphous germanium and crystalline silicon and the interface between amorphous and crystalline silicon served as material system. In order to quantify the influence of the crystalline order on the amorphous material, the HREM images were periodically averaged along the interface. The intensity components, which are correlated with the period of the lattice image, could thus be separated from the statistical intensity fluctuations, which are characteristic for images of amorphous materials. Since amorphous materials can only be described meaningful by statistical distribution functions, for the induced order a three-dimensional distribution function {rho}{sub 3D}(r) was taken as a basis, which describes the probability to find an atom in the amorphous material, if r=0 is the position of an atom in the crystal. Its two-dimensional projection, {rho}, can be determined using iterative image matching techniques on averaged experimental and simulated interface images. For the analyzed material systems {rho} exhibits lateral ordering as well as a pronounced layering in the vicinity of the interface. In the case of the a-Si/c-Si sample the mean orientation of bonds was 70.5 , as is in the case of the undistorted diamond lattice, while for the a-Ge/c-Si sample 65 resulted. The standard deviation for the distribution of the deviations from the mean bond angle yields for the a-Ge/c-Si sample in the first atomic layer a value of 11.3 and for the a-Si/c-Si sample 1.9 . These results suggest the conclusion, that the differences in these values are to be interpreted as the reaction of the amorphous material to the volume misfit. Although for both material systems 1.4 nm was calculated for the width

  2. The tensile damage and strength of 2.5D self-healing C/SiC composite%2.5维自愈合C/SiC复合材料的拉伸损伤及强度

    Institute of Scientific and Technical Information of China (English)

    梁仕飞; 矫桂琼

    2016-01-01

    试验研究了2.5维自愈合C/SiC复合材料的单轴拉伸损伤特征,发现拉应力小于50 MPa时经向和纬向模量基本无变化,50 MPa后残余应变逐渐增大。根据主裂纹面受力情况,建立了单向增强自愈合C/SiC复合材料的脆性断裂模型和韧性断裂模型,并利用其预测了2.5维自愈合C/SiC复合材料的经向和纬向强度。结果表明,2.5维自愈合C/SiC复合材料的经向和纬向拉伸发生脆性断裂,脆性断裂模型预测值与试验值吻合较好。%The tensile damage behaviors of 2.5D self-healing C/SiC composite were studied by experi⁃ments. And the results show that the modulus of weft and warp directions almost have no change until the tensile stress reaches 50 MPa. After that, the residual strain increases with the tensile stress gradually. Based on the stress distribution of the major crack plane, two strength models (brittle fracture model and ductile fracture model) of unidirectional reinforced self-healing C/SiC composite were built, and the strength of 2.5D self-healing C/SiC composite in weft and warp directions were predicted. The results show that the failure mode is brittle fracture and the predicted result of brittle fracture agrees well with the experi⁃ment result.

  3. Epitaxial growth of 3C-SiC by using C{sub 60} as a carbon source; Untersuchungen zum epitaktischen Wachstum von 3C-SiC bei Verwendung einer C{sub 60}-Kohlenstoffquelle

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Sascha

    2006-01-15

    Within this work epitaxial 3C-SiC-films were grown on Si(001) substrates and on ion beam synthesized 3C-SiC(001) pseudo substrates. A rather new process was used which is based on the simultaneous deposition of C60 and Si. In order to set up the necessary experimental conditions an ultra-high vacuum chamber has been designed and built. A RHEED system was used to examine SiC film growth in-situ. Using the described technique 3C-SiC films were grown void-free on Si(001) substrates. Deposition rates of C60 and Si were chosen adequately to maintain a Si:C ratio of approximately one during the deposition process. It was shown that stoichiometric and epitaxial 3C-SiC growth with the characteristic relationship (001)[110]Si(001)[110]3C-SiC could be achieved. TEM investigations revealed that the grown 3C-SiC films consist of individual grains that extend from the Si substrate to the film surface. Two characteristic grain types could be identified. The correlation between structure and texture of void-free grown 3C-SiC films and film thickness was studied by X-ray diffraction (XRD). Pole figure measurements showed that thin films only contain first-order 3C-SiC twins. With higher film thickness also second-order twins are found which are located as twin lamellae in grain type 2. Improvement of polar texture with increasing film thickness couldn't be observed in the investigated range of up to 550 nm. On ion beam synthesized 3C-SiC pseudo substrates homoepitaxial 3C-SiC growth could be demonstrated for the first time by using a C{sub 60} carbon source. In respect to the crystalline quality of the grown films the surface quality of the used substrates was identified as a crucial factor. Furthermore a correlation between the ratio of deposition rates of C{sub 60} and Si and 3C-SiC film quality could be found. Under silicon-rich conditions, i.e. with a Si:C ratio of slightly greater one, homoepitaxial 3C-SiC layer-by-layer growth can be achieved. Films grown under these

  4. 微量Al掺杂对2D C/SiC性能的影响%Effects of Adding a Small Amount of Al on Properties of 2D C/SiC

    Institute of Scientific and Technical Information of China (English)

    孙静; 王一光; 罗磊; 成来飞; 张立同

    2012-01-01

    Two-dimensional (2D) C/SiC composites were fabricated by chemical vapor infiltration (CVI) combined with polymer impregnation and pyrolysis ( PIP) using polyaluminocarbosilane ( PACS) as precursor. Properties including microstructure, mechanical properties and thermal expansion of the composites were investigated. The ablation properties of C/SiC composites were investigated by the oxyacetylene torch flame. The results show that adding a small amount of Al has little effect on microstructure, coefficient of thermal expansion ( CTE) , flexural strength and toughness of composites. However,the addition of a small amount of Al into C/SiC composite effectively enhances its ablation resistance. SiC reacts with oxygen to form a silica film,which causes Al melt into silica. Al doping can not only increase the viscosity of silica,but also reduce the activity of silica. Compare with the no addition of Al into C/SiC composites,the linear ablation rate decreased by 26%.%以二维编织碳纤维碳布为预制体,采用聚铝碳硅烷(PACS)为聚合物前驱体,应用化学气相渗透(CVI)结合聚合物浸渗-裂解(PIP)工艺制备微量Al掺杂2D C/SiC复合材料.研究微量Al掺杂对C/SiC微观结构、力学、热膨胀和氧-乙炔焰烧蚀性能的影响.结果表明:掺杂微量Al未改变C/SiC的微观结构和热膨胀性能,也未降低其韧性和强度;但微量Al掺杂提高了C/SiC的抗烧蚀性能,含微量Al的SiC氧化形成微量Al熔于SiO2的固熔体,微量Al提高了SiO2的黏度和致密度,减小SiO2挥发,较未掺杂Al的C/SiC相比,线烧蚀率降低了26%.

  5. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  6. 纤维增强C/SiC复合陶瓷材料小螺纹孔攻丝工艺研究%Study on Small Screw Hole Tapping Technology of Fiber Reinforced C/SiC Ceramic Composites

    Institute of Scientific and Technical Information of China (English)

    王振来; 刘迎春; 周大华

    2015-01-01

    针对C/SiC复合陶瓷材料加工过程中掉渣严重、螺牙成型困难、加工合格率较低等问题,通过大量的工艺试验,摸索出非金属材料小螺纹攻丝螺牙成型的变化规律,从工艺方案的确定、钻头材质的选择、丝锥材质的选择、丝锥攻丝受力等方面总结出在非金属纤维增强C/SiC陶瓷材料上的小螺纹孔攻丝的工艺加工方法.提高了非金属材料小螺纹孔攻丝的合格率.%Focusing on the problems of serious scaling-off,screw tooth forming difficulty,and low qualified rate in the machining process of C/SiC composite ceramics,massive experiments were conducted.Forming rules of small screw tooth of C/SiC composite ceramic material were found and processing technology of small screw hole tapping for the material was summarized from aspects of scheme,drill and tap material,and tap force.The qualified rate of small screw hole tapping of C/SiC composite ceramics was improved.

  7. Ion beam synthesis and characterization of large area 3C-SiC pseudo substrates for homo- and heteroepitaxy; Ionenstrahlsynthese und Charakterisierung grossflaechiger 3C-SiC-Pseudosubstrate fuer die Homo- und Heteroepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlen, Maik

    2006-12-15

    In this work, large area epitaxial 3C-SiC films on Si(100) and Si(111) were formed by ion beam synthesis and subsequently characterized for their structural and crystalline properties. These SiC/Si structures are meant to be used as SiC pseudosubstrates for the homo- and heteroepitaxial growth of other compound semiconductors. The suitability of these pseudosubstrates for this purpose was tested using various epitaxial systems and thin film growth methods. For this the homoepitaxial growth of 3C-SiC employing C{sub 60}-MBE and the heteroepitaxial growth of hexagonal GaN films grown by MOCVD and IBAMBA was studied in detail. The comparison of the structural and crystalline properties with data from literature enabled a qualified judgement of the potential of the 3C-SiC pseudosubstrates as an alternative substrate for the epitaxial growth of such films. These new 3C-SiC pseudosubstrates also enabled studies of other little known epitaxial systems: For the first time hexagonal ZnO films on (111) oriented pseudosubstrates were grown using PLD. The method if IBAMBE enabled the growth of cubic GaN layers on (100)-oriented pseudosubstrates. (orig.)

  8. Effect of underlying silicon layer on microstructure and photoluminescence of rapid-thermal-annealed carbon and C/Si nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan, ROC (China); Lai, C.W. [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC (China); Wu, B.H. [Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan, ROC (China)

    2013-09-15

    Highlights: •Photoluminescence (PL) of carbon films originated from recombination of confined electron–hole pairs. •Broad PL was an interesting topic using varied methods for Si and C reaction. •Asymmetrical broad PL of two-layer Si/C and three-layer Si/C/Si was demonstrated previously. •Here, another C/Si (underlying Si layer) films have further investigated for enhancement of symmetry-like PL. •The effect and mechanism of underlying Si layer thickness on microstructure and PL evolution of two-layer C/Si was studied. -- Abstract: A composite material for broad photoluminescence (PL) from asymmetry to more symmetry-like was proposed by the formation of Si nanocrystals (nc-Si), SiC nanoparticles (np-SiC) and sp{sup 2} carbon cluster which were made from the two-layer C/Si on Si(1 0 0) using rapid-thermal-annealing at 750 °C for 1 min. The effect of underlying Si layer thickness on the microstructure and broad PL of the annealed carbon and two-layer C/Si films has been investigated. Fourier-transform-infrared-absorption spectra indicated that very weak Si–C bonding peak was observed for the annealed single-C film and the enhanced intensity occurred at two-layer C/Si films with underlying thickness of 10–25 nm. Compared to the single-C film, the two-layer C/Si film was beneficial for formation of SiC which increased with Si thickness. A more symmetry-like broad PL band around 400–700 nm was observed at the annealed C/Si films with higher Si thickness of 25 nm while the annealed C film has weak and narrow band. Also, the enhanced symmetry-like PL band was attributed to more amount of np-SiC formation at the bottom of C/Si film together with reduced C thickness which can be potentially applied into white light emission material. The detailed mechanism of broad PL was proposed in terms of microstructure evolution.

  9. High-performance a -Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution

    KAUST Repository

    Wang, Hsin Ping

    2015-05-13

    Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm2 at the equilibrium water oxidation potential. The SiHJ photocathode with 2 nm sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes. © 2015 American Chemical Society.

  10. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W.; Lowden, R.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  11. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  12. Computer simulations of 3C-SiC under hydrostatic and non-hydrostatic stresses.

    Science.gov (United States)

    Guedda, H Z; Ouahrani, T; Morales-García, A; Franco, R; Salvadó, M A; Pertierra, P; Recio, J M

    2016-03-21

    The response of 3C-SiC to hydrostatic pressure and to several uni- and bi-axial stress conditions is thoroughly investigated using first principles calculations. A topological interpretation of the chemical bonding reveals that the so-called non-covalent interactions enhance only at high pressure while the nature of the covalent Si-C bonding network keeps essentially with the same pattern. The calculated low compressibility agrees well with experimental values and is in concordance with the high structural stability of this polymorph under hydrostatic pressure. Under uniaxial [001] stress, the c/a ratio shows a noticeable drop inducing a closure of the band gap and the emergence of a metallic state around 40 GPa. This behavior correlates with a plateau of the electron localization function exhibiting a roughly constant and non-negligible value surrounding CSi4 and SiC4 covalent bonded units.

  13. Diffuse X-ray scattering from partially transformed 3C-SiC single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dompoint, D., E-mail: deborah.dompoint@etu.unilim.fr [Science des Procedes Ceramiques et de Traitements de Surface (SPCTS), CNRS UMR 6638, Centre Europeen de la Ceramique, 12 rue atlantis, 87068 Limoges (France); Boulle, A. [Science des Procedes Ceramiques et de Traitements de Surface (SPCTS), CNRS UMR 6638, Centre Europeen de la Ceramique, 12 rue atlantis, 87068 Limoges (France); Galben-Sandulache, I.G.; Chaussende, D. [Laboratoire des Materiaux et du Genie Physique (LMGP), CNRS UMR 5628, Grenoble INP, Minatec, 3 parvis Louis Neel, BP 257, 38016 Grenoble Cedex 01 (France)

    2012-08-01

    The 3C-6H polytypic transition in 3C-SiC single crystals is studied by means of diffuse X-ray scattering (DXS) coupled with numerical simulations. It is shown that the presence of spatially correlated stacking faults (characteristic of this type of re-stacking transition) gives rise to extended diffuse scattering in the reciprocal space perpendicularly to the fault plane. The simulation of the diffuse intensity allows to determine both the volume fraction of transformed material and the transformation level within these regions. It is further shown that the evolution with time and temperature of the transition implies the multiplication and glide of partial dislocations, the kinetics of which are quantified by means of DXS.

  14. CVD growth and characterization of 3C-SiC thin films

    Indian Academy of Sciences (India)

    A Gupta; D Paramanik; S Varma; C Jacob

    2004-10-01

    Cubic silicon carbide (3C-SiC) thin films were grown on (100) and (111) Si substrates by CVD technique using hexamethyldisilane (HMDS) as the source material in a resistance heated furnace. HMDS was used as the single source for both Si and C though propane was available for the preliminary carbonization. For selective epitaxial growth, patterned Si (100) substrates were used. The effect of different growth parameters such as substrate orientation, growth temperature, precursor concentration, etc on growth was examined to improve the film quality. The surface morphology, microstructure and crystallinity of grown films were studied using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and X-ray photoelectron spectroscopy (XPS).

  15. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W. [and others

    1996-06-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  16. Evaporated erbium oxide as an antireflective layer for C-Si solar cells

    Science.gov (United States)

    Alizadeh, Hossein; Bahardoust, Barzin; Gougam, Adel; Kherani, Nazir P.; Zukotynski, Stefan

    2009-08-01

    We report on the optical properties of erbium oxide thin films prepared by physical vapor deposition. The films were subjected to various rapid thermal annealing (RTA) treatments. The best result was obtained for samples annealed at 500 °C, where the ramp rate was 200 °C/s, zero soak time, and a cooling rate of 25 °C/s. The average reflection from this erbium oxide coated c-Si substrate, measured over a wavelength range of 300nm to 1100nm, is around 18% and 8% before and after annealing, respectively. The average transmission of erbium oxide on glass is 50 % and 90 % before and after annealing, respectively. Using this antireflection coating the short circuit current of a silicon base photovoltaic device increases by more than 40 %.

  17. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy

    Science.gov (United States)

    Rossi, F.; Bedogni, E.; Bigi, F.; Rimoldi, T.; Cristofolini, L.; Pinelli, S.; Alinovi, R.; Negri, M.; Dhanabalan, S. C.; Attolini, G.; Fabbri, F.; Goldoni, M.; Mutti, A.; Benecchi, G.; Ghetti, C.; Iannotta, S.; Salviati, G.

    2015-01-01

    The development of innovative nanosystems opens new perspectives for multidisciplinary applications at the frontier between materials science and nanomedicine. Here we present a novel hybrid nanosystem based on cytocompatible inorganic SiC/SiOx core/shell nanowires conjugated via click-chemistry procedures with an organic photosensitizer, a tetracarboxyphenyl porphyrin derivative. We show that this nanosystem is an efficient source of singlet oxygen for cell oxidative stress when irradiated with 6 MV X-Rays at low doses (0.4–2 Gy). The in-vitro clonogenic survival assay on lung adenocarcinoma cells shows that 12 days after irradiation at a dose of 2 Gy, the cell population is reduced by about 75% with respect to control cells. These results demonstrate that our approach is very efficient to enhance radiation therapy effects for cancer treatments. PMID:25556299

  18. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method has the potential to facilitate the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent efforts have focused on transferring the joining technology to industry. Several industrial partners have been identified and collaborative research projects are in progress. Investigations are focusing on applying the joining method to sintered a-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  19. Characterization on C/SiC Ceramic Matrix Composites with Novel Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne; Kiser, J. Douglas; McCue, Terry; Verrilli, Michael

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate materials in the aerospace industry due to their high specific strength, low density and higher temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites offer high- strength carbon fibers and a high modulus, oxidation-resistant matrix. For comparison, two types of carbon fibers were processed with novel types of interface coatings (multilayer and pseudoporous). For RLV propulsion applications, environmental durability will be critical. The coatings show promise of protecting the carbon fibers from the oxidizing environment. The strengths and microstructures of these composite materials are presented.

  20. Growth of ternary and quaternary cubic III-nitrides on 3C-SiC substrates

    Science.gov (United States)

    Schörmann, J.; Potthast, S.; Schnietz, M.; Li, S. F.; As, D. J.; Lischka, K.

    2006-06-01

    Cubic GaN, AlxGa1-xN/GaN multiple quantum wells and quaternary AlxGayIn1-x-yN layers were grown by plasma assisted molecular beam epitaxy on 3C-SiC substrates. Using the intensity of a reflected high energy electron beam as a probe optimum growth conditions of c-III nitrides were found, when a 1 monolayer Ga coverage is formed at the growing surface. Clear RHEED oscillations during the initial growth of AlxGa1-xN/GaN quantum wells were observed. X-ray diffraction measurements of these quantum well structures show clear satellite peaks indicating smooth interfaces. Growth of quaternary AlxGayIn1-x-yN lattice matched to GaN were demonstrated.

  1. mc-Si:H/c-Si solar cell prepared by PECVD

    Institute of Scientific and Technical Information of China (English)

    XU Ying; LIAO Xianbo; DIAO Hongwei; Li Xudong; ZENG Xiangbo; LIU Xiaoping; WANG Minhua; WANG Wenjing

    2006-01-01

    Hetero-junction solar cells with an mc-Si:H window layer were achieved. The open voltage is increased while short current is decreased with increasing the mc-Si:H layer's thickness of emitter layer. The highest of V oc of 597 mV has obtained. When fixed the thickness of 30 nm, changing the N type from amorphous silicon layer to micro-crystalline layer, the efficiency of the hetero-junction solar cells is increased. Although the hydrogen etching before deposition enables the c-Si substrates to become rough by AFM images, it enhances the formation of epitaxial-like micro-crystalline silicon and better parameters of solar cell can be obtained by implying this process. The best result of efficiency is 13.86% with the V oc of 549.8 mV, J sc of 32.19 mA·cm-2 and the cell's area of 1cm2.

  2. Control of epitaxial growth at a-Si:H/c-Si heterointerface by the working pressure in PECVD

    Science.gov (United States)

    Shen, Yanjiao; Chen, Jianhui; Yang, Jing; Chen, Bingbing; Chen, Jingwei; Li, Feng; Dai, Xiuhong; Liu, Haixu; Xu, Ying; Mai, Yaohua

    2016-11-01

    The epitaxial-Si (epi-Si) growth on the crystalline Si (c-Si) wafer could be tailored by the working pressure in plasma-enhanced chemical vapor deposition (PECVD). It has been systematically confirmed that the epitaxial growth at the hydrogenated amorphous silicon (a-Si:H)/c-Si interface is suppressed at high pressure (hp) and occurs at low pressure (lp). The hp a-Si:H, as a purely amorphous layer, is incorporated in the lp-epi-Si/c-Si interface. We find that: (i) the epitaxial growth can also occur at a-Si:H coated c-Si wafer as long as this amorphous layer is thin enough; (ii) with the increase of the inserted hp layer thickness, lp epi-Si at the interface is suppressed, and the fraction of a-Si:H in the thin films increases and that of c-Si decreases, corresponding to the increasing minority carrier lifetime of the sample. Not only the epitaxial results, but also the quality of the thin films at hp also surpasses that at lp, leading to the longer minority carrier lifetime of the hp sample than the lp one although they have the same amorphous phase. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2015201203) and the International Society for Theoretical Chemical Physics of China (Grant No. 2015DFE62900).

  3. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-02-21

    In the current report, we have demonstrated that the high-efficient production of SiC/SiO2 core-shell nanowires can be achieved through the introduction of trace of water vapor during the chemical vapor deposition process. The yield of the SiC/SiO2 core-shell nanowires is dramatically improved due to the introduction of water vapor. The SiC/SiO2 core-shell nanowires exhibit an excellent microwave absorption property in the frequency range of 2.0–18.0GHz with a very low weight percentage of 0.50wt.% in the absorbers. A minimum reflection loss value of −32.72dB (>99.99% attenuation) at 13.84GHz has been observed with the absorber thickness of 3.0mm. Moreover, the SiC/SiO2 core-shell nanowires based absorber can reach an effective absorption bandwidth (<−10dB) of 5.32GHz with the absorber thickness of 3.5mm. Furthermore, a possible absorption mechanism is also proposed in detail for such effective attenuation of microwave which can be attributed to the dielectric loss and magnetic loss of SiC/SiO2 core-shell nanowires.

  4. High-Temperature (1200-1400°C) Dry Oxidation of 3C-SiC on Silicon

    Science.gov (United States)

    Sharma, Y. K.; Li, F.; Jennings, M. R.; Fisher, C. A.; Pérez-Tomás, A.; Thomas, S.; Hamilton, D. P.; Russell, S. A. O.; Mawby, P. A.

    2015-11-01

    In a novel approach, high temperatures (1200-1400°C) were used to oxidize cubic silicon carbide (3C-SiC) grown on silicon substrate. High-temperature oxidation does not significantly affect 3C-SiC doping concentration, 3C-SiC structural composition, or the final morphology of the SiO2 layer, which remains unaffected even at 1400°C (the melting point of silicon is 1414°C). Metal-oxide-semiconductor capacitors (MOS-C) and lateral channel metal-oxide-semiconductor field-effect-transistors (MOSFET) were fabricated by use of the high-temperature oxidation process to study 3C-SiC/SiO2 interfaces. Unlike 4H-SiC MOSFET, there is no extra benefit of increasing the oxidation temperature from 1200°C to 1400°C. All the MOSFET resulted in a maximum field-effect mobility of approximately 70 cm2/V s.

  5. Neutron irradiation and frequency effects on the electrical conductivity of nanocrystalline silicon carbide (3C-SiC)

    Science.gov (United States)

    Huseynov, Elchin

    2016-09-01

    In this present work nanocrystalline silicon carbide (3C-SiC) has been irradiated with neutron flux (∼ 2 ×1013 ncm-2s-1) up to 20 hours at different periods. Electrical conductivity of nanocrystalline 3C-SiC particles (∼18 nm) is comparatively analyzed before and after neutron irradiation. The frequency dependencies of electrical conductivity of 3C-SiC nanoparticles is reviewed at 100 K-400 K temperature range before and after irradiation. The measurements were carried out at 0.1 Hz-2.5 MHz frequency ranges and at different temperatures. Radiation-induced conductivity (RIC) was observed in the nanocrystalline 3C-SiC particles after neutron irradiation and this conductivity study as a function of frequency are presented. The type of conductivity has been defined based on the interdependence between real and imaginary parts of electrical conductivity function. Based on the obtained results the mechanism behind the electrical conductivity of nanocrystalline 3C-SiC particles is explained in detail.

  6. Triple Layer Antireflection Design Concept for the Front Side of c-Si Heterojunction Solar Cell Based on the Antireflective Effect of nc-3C-SiC:H Emitter Layer

    Directory of Open Access Journals (Sweden)

    Erick Omondi Ateto

    2016-01-01

    Full Text Available We investigated the antireflective (AR effect of hydrogenated nanocrystalline cubic silicon carbide (nc-3C-SiC:H emitter and its application in the triple layer AR design for the front side of silicon heterojunction (SHJ solar cell. We found that the nc-3C-SiC:H emitter can serve both as an emitter and antireflective coating for SHJ solar cell, which enables us to realize the triple AR design by adding one additional dielectric layer to normally used SHJ structure with a transparent conductive oxide (TCO and an emitter layer. The optimized SHJ structure with the triple layer AR coating (LiF/ITO/nc-3C-SiC:H exhibit a short circuit current density (Jsc of 38.65 mA/cm2 and lower reflectivity of about 3.42% at wavelength range of 300 nm–1000 nm.

  7. Electronic properties of {mu}c-Si:H layers investigated with Hall measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bronger, T.

    2007-02-28

    In the present work, the electronic properties of thin layers of PECVD-grown {mu}c-Si:H have been examined using the Hall effect. The main focus was on the mobility of the carriers because this is a crucial limiting factor for the electronic quality of this material, however, the density of free carriers as well as the conductivity were also determined. In order to get a picture as comprehensive as possible, a sample matrix was studied consisting of samples with different n-type doping levels and different crystallinities. Additionally, doped samples with artificially implanted defects which could be annealed gradually were investigated. All measurements have been made temperature-dependently. During the work, a new computer control and analysis program was developed from scratch for the Hall setup. It allows for high automation as well as comprehensive error estimation, both of which being very important for high ohmic samples. All samples showed a thermally activated mobility and carrier concentration, however, there is no single activation energy. Instead, all Arrhenius plots exhibited a more or less pronounced convex curvature. This curvature was identified with the parallel connection of a broad distribution of barriers in the material, which are limiting to the transport and are overcome by thermoionic emission. From this, the model of normally distributed barriers (NDB) was derived, mathematically investigated, and successfully applied to the experimental data of this work and (for not too highly doped samples) of other works. As a significant validation of the NDB model, the relative room-temperature mobility values could be calculated just from the Arrhenius slopes and curvatures. A very important dependence turned out to be mobility versus carrier concentration. In particular the annealed sample showed a clear {mu} {proportional_to} n{sup 1/2} behaviour, which could be backed with the sample matrix. Additionally, Hall measurements on HWCVD-grown {mu}c-Si

  8. Impact Resistance of EBC Coated SiC/SiC Composites

    Science.gov (United States)

    Fox, Dennis S.; Bhatt, Ramakrishna T.; Choi, Sung R.; Cosgriff, Laura M.; Fox, Dennis s.; Lee, Kang N.

    2008-01-01

    Impact performance of 2-D woven SiC/SiC composites coated with 225 and 525 m thick environmental barrier coating (EBC) was investigated. The composites were fabricated by melt infiltration and the EBC was deposited by plasma spray. Impact tests were conducted at room temperature and at 1316 C in air using 1.59-mm diameter steel-balls at projectile velocities ranging from 110 to 375 m/s. Both microscopy and nondestructive evaluation (NDE) methods were used to determine the extent of damage in the substrate and coating with increasing projectile velocity. The impacted specimens were tensile tested at room temperature to determine their residual mechanical properties. At projectile velocities less than 125 m/s, no detectable damage was noticed in the MI SiC/SiC composites coated with 525 m EBC. With increase in projectile velocity beyond this value, spallation of EBC layers, delamination of fiber plies, and fiber fracture were detected. At a fixed projectile velocity, the composites coated with 525 m EBC showed less damage than the composite coated with 225 m EBC. Both types of EBC coated composites retained a large fraction of the baseline properties of as-fabricated composites and exhibited non-brittle failure after impact testing at projectile velocities up to 375 m/s. Exposure of impact tested specimens in a moisture environment at 1316 C for 500 hr indicated that the through-the-thickness cracks in the EBC coating and delamination cracks in the substrate generated after impact testing acted as conduits for internal oxidation.

  9. Electron paramagnetic resonance study on n-type electron-irradiated 3C-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, P; Rabia, K; Son, N T; Janzen, E [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Ohshima, T; Morishita, N; Itoh, H [Japan Atomic Energy Research Institute, Takasaki 370-1292 (Japan); Isoya, J [University of Tsukuba, Tsukuba 305-8550 (Japan)], E-mail: paca@ifm.liu.se

    2008-03-15

    Electron Paramagnetic Resonance (EPR) was used to study defects in n-type 3C-SiC films irradiated by 3-MeV electrons at room temperature with a dose of 2x10{sup 18} cm{sup -2}. After electron irradiation, two new EPR spectra with an effective spin S = 1, labeled L5 and L6, were observed. The L5 center has C{sub 3v} symmetry with g = 2.004 and a fine-structure parameter D = 436.5x10{sup -4} cm{sup -1}. The L5 spectrum was only detected under light illumination and it could not be detected after annealing at {approx}550{sup 0}C. The principal z-axis of the D tensor is parallel to the <111>-directions, indicating the location of spins along the Si-C bonds. Judging from the symmetry and the fact that the signal was detected under illumination in n-type material, the L5 center may be related to the divacancy in the neutral charge state. The L6 center has a C{sub 2v}-symmetry with an isotropic g-value of g = 2.003 and the fine structure parameters D = 547.7x10{sup -4} cm{sup -1} and E = 56.2x10{sup -4} cm{sup -1}. The L6 center disappeared after annealing at a rather low temperature ({approx}200 deg. C), which is substantially lower than the known annealing temperatures for vacancy-related defects in 3C-SiC. This highly mobile defect may be related to carbon interstitials.

  10. Overview of C/C-SiC Composite Development for the Orion Launch Abort System

    Science.gov (United States)

    Allen, Lee R.; Valentine, Peter G.; Schofield, Elizabeth S.; Beshears, Ronald D.; Coston, James E.

    2012-01-01

    Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design.

  11. Low temperature characteristic of ITO/SiO x /c-Si heterojunction solar cell

    Science.gov (United States)

    Du, H. W.; Yang, J.; Li, Y.; Gao, M.; Chen, S. M.; Yu, Z. S.; Xu, F.; Ma, Z. Q.

    2015-09-01

    Based on the temperature-dependent measurements and the numerical calculation, the temperature response of the photovoltaic parameters for a ITO/SiO x /c-Si heterojunction solar cell have been investigated in the ascending sorting of 10-300 K. Under unique energy concentrated photon irradiation with the wavelength of 405 nm and power density of 667 mW cm-2, it was found that the short-circuit current (I SC) was nonlinearly increased and the open-circuit voltage (V OC) decreased with temperature. The good passivation of the ITO/c-Si interface by a concomitant SiO x buffer layer leads to the rare recombination of carriers in the intermediate region. The inversion layer model indicated that the band gap of c-silicon was narrowed and the Fermi level of n-type silicon (E\\text{F}n ) tended to that of the intrinsic Fermi level (E\\text{F}i ) (in the middle of band gap) with the increase of the temperature, which lessened the built-in voltage (V D) and thus the V OC. However, the reduction by 90% of V OC is attributed to the shift of E\\text{F}n in c-silicon rather than the energy band narrowing. Through the analysis of the current-voltage relationship and the data fitting, we infer that the series resistance (R s) is not responsible for the increase of I SC, but the absorption coefficient and the depletion-width of c-silicon are the causes of the enhancing I SC. Mostly, the interaction of the photon-generated excess ‘cold hole’ and the acoustic phonon in n-Si would influence the variation of I ph or I SC with temperature.

  12. Mechanical Behavior and Analytical Modeling of Melt-Infiltrated SiC/SiC Woven Composite

    Science.gov (United States)

    Lang, J.; Sankar, J.; Kelkar, A. D.; Bhatt, R. T.; Baaklini, G.; Lua, J.

    1998-01-01

    The desirable properties in ceramic matrix composites (CMCs), such as high temperature strength, corrosion resistance, high toughness, low density, or good creep resistance have led to increased use of CMCs in high-speed engine structural components and structures that operate in extreme temperature and hostile aero-thermo-chemical environments. Ceramic matrix composites have been chosen for turbine material in the design of 21st century civil propulsion systems to achieve high fuel economy, improved reliability, extended life, and reduced cost. Most commercial CMCs are manufactured using a chemical vapor infiltration (CVI) process. However, a lower cost fabrication known as melt-infiltration process is also providing CMCs marked for use in hot sections of high-speed civil transports. Limited samples of a SiC/SiC melt-infiltrated woven composites are being investigated at room and elevated temperature below and above matrix cracking. These samples show graceful failure and toughness at room temperature with a reduction in strength and modulus at elevated temperatures. A generic finite element model is also being developed to predict monotonic and cyclic loading behavior of the woven composite. Use of the initial test data from the woven composite is being used for the development of the analytical model. This model is the first of a iterative process leading towards the development the model's capability to predict behavior at room and elevated temperature for monotonic and cyclic loading. The purpose of this paper is to report on the material and mechanical findings of the SiC/SiC melt-infiltrated woven composite and progress on the development of the finite element model.

  13. 2D-C/SiC高速深磨磨削特性及去除机制%Investigation of grinding characteristics and removal mechanisms of 2D-C/SiC in high speed deep grinding

    Institute of Scientific and Technical Information of China (English)

    刘杰; 李海滨; 张小彦; 洪智亮; 何宗倍; 张毅; 刘小瀛

    2012-01-01

    The grinding experiments were conducted on 2D-C/SiC composites by using resin bond diamond wheel in this work.The ground surface/subsurface damages were observed.The theory expression of grinding force for the friction layer(surface) of 2D-C/SiC was proposed,and the effect of grinding machining process amount on grinding force and force ratio was also discussed.The result indicates that the removal mechanisms involved in the grinding process for 2D-C/SiC composites are dominated by their brittleness fractures and related to their microstructures,which are different from those of ordinary plastic and brittle materials.%采用树脂结合剂金刚石砂轮,通过对2D-C/SiC复合材料高速深磨磨削加工,并对磨削表面形貌和亚表面损伤进行了观察。提出了2D-C/SiC摩擦层(表面)的磨削力理论公式,讨论了磨削加工用量对磨削力和磨削力比的影响。实验结果表明,2D-C/SiC复合材料的高速深磨材料去除机制与其自身的微观结构相关,既不同于塑性材料,也不同于普通脆性材料,而是以脆性断裂去除为主。

  14. Comparisons of Damage Evolution between 2D C/SiC and SiC/SiC Ceramic-Matrix Composites under Tension-Tension Cyclic Fatigue Loading at Room and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2016-10-01

    Full Text Available In this paper, comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites (CMCs under tension–tension cyclic fatigue loading at room and elevated temperatures have been investigated. Fatigue hysteresis loops models considering multiple matrix cracking modes in 2D CMCs have been developed based on the damage mechanism of fiber sliding relative to the matrix in the interface debonded region. The relationships between the fatigue hysteresis loops, fatigue hysteresis dissipated energy, fatigue peak stress, matrix multiple cracking modes, and interface shear stress have been established. The effects of fiber volume fraction, fatigue peak stress and matrix cracking mode proportion on fatigue hysteresis dissipated energy and interface debonding and sliding have been analyzed. The experimental fatigue hysteresis dissipated energy of 2D C/SiC and SiC/SiC composites at room temperature, 550 °C, 800 °C, and 1100 °C in air, and 1200 °C in vacuum corresponding to different fatigue peak stresses and cycle numbers have been analyzed. The interface shear stress degradation rate has been obtained through comparing the experimental fatigue hysteresis dissipated energy with theoretical values. Fatigue damage evolution in C/SiC and SiC/SiC composites has been compared using damage parameters of fatigue hysteresis dissipated energy and interface shear stress degradation rate. It was found that the interface shear stress degradation rate increases at elevated temperature in air compared with that at room temperature, decreases with increasing loading frequency at room temperature, and increases with increasing fatigue peak stress at room and elevated temperatures.

  15. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  16. Bragg reflector and laser fired back contact in a-Si:H/c-Si heterostructure solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tucci, M. [ENEA, Research Center Casaccia, via Anguillarese 301, S. Maria di Galeria 00123, Rome (Italy)], E-mail: mario.tucci@casaccia.enea.it; Serenelli, L.; Salza, E.; Pirozzi, L. [ENEA, Research Center Casaccia, via Anguillarese 301, S. Maria di Galeria 00123, Rome (Italy); De Cesare, G.; Caputo, D.; Ceccarelli, M. [Department of Electronic Engineering, University ' Sapienza' , via Eudossiana 18 00184, Rome (Italy)

    2009-03-15

    The amorphous/crystalline silicon (a-Si/c-Si) heterostructure has recently attracted new interest due to higher open circuit voltage V{sub oc} and low temperature fabrication processes. By reducing the wafer thickness all these characteristics become a necessity, together with the requirement of a back reflecting mirror, to obtain an effective optical confinement. To this aim dielectric mirrors can be adopted in the rear side of the solar cells, together with a local process of laser fired back Al contact. Taking advantage of a-Si/SiN{sub x} passivation properties of c-Si surface a Bragg reflector configuration can be formed on the rear side of the c-Si wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD) alternating several couples of a-Si/SiN{sub x} and choosing their thicknesses to maximize the reflectance inward the c-Si wafer in the NIR spectrum. In this work we have adopted this mirror on the rear side of an n-a-Si/i-a-Si/p-c-Si heterostructure solar cell to obtain a full low temperature process. The cell back contact has been ensured by an Al diffusion into the c-Si wafer promoted by Nd-YAG pulsed laser. The front cell contact has been enhanced by chromium silicide CrSi formation on top of the n-a-Si layer and ITO deposition followed by an Ag grid. A V{sub oc} of 681 mV and 94% of IQE at 1000 nm have been reached.

  17. PIE of nuclear grade SiC/SiC flexural coupons irradiated to 10 dpa at LWR temperature

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Silicon carbide fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230–340°C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials are chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC)-coated Hi-NicalonTM Type-S (HNS), TyrannoTM SA3 (SA3), and SCS-UltraTM (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexural behavior, dynamic Young’s modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young’s moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.

  18. Characterization of a SiC/SiC composite by X-ray diffraction, atomic force microscopy and positron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf e.V., PF 510119, D-01314 Dresden (Germany)]. E-mail: g.brauer@fz-rossendorf.de; Anwand, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf e.V., PF 510119, D-01314 Dresden (Germany); Eichhorn, F. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf e.V., PF 510119, D-01314 Dresden (Germany); Skorupa, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf e.V., PF 510119, D-01314 Dresden (Germany); Hofer, C. [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Str. 18, A-8700 Leoben (Austria); Teichert, C. [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Str. 18, A-8700 Leoben (Austria); Kuriplach, J. [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, CZ-180 00 Prague (Czech Republic); Cizek, J. [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, CZ-180 00 Prague (Czech Republic); Prochazka, I. [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, CZ-180 00 Prague (Czech Republic); Coleman, P.G. [Department of Physics, University of Bath, Bath BA2 7 AY (United Kingdom); Nozawa, T. [Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6151, Oak Ridge, TN 37831-6151 (United States); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2006-02-28

    A SiC/SiC composite is characterized by X-ray diffraction, atomic force microscopy and various positron spectroscopies (slow positron implantation, positron lifetime and re-emission). It is found that besides its main constituent 3C-SiC the composite still must contain some graphite. In order to better interpret the experimental findings of the composite, a pyrolytic graphite sample was also investigated by slow positron implantation and positron lifetime spectroscopies. In addition, theoretical calculations of positron properties of graphite are presented.

  19. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  20. The Present Status of SiC/SiC R and D for Nuclear Application in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kohyama, Akira, E-mail: kohyama@mmm.muroran-it.ac.jp [OASIS, Muroran Institute of Technology 27-1 Mizumoto-cho, Muroran 050-8585 (Japan)

    2011-10-29

    SiC/SiC R and D for nuclear application in Japan is quite active under the coordinated activities of Atomic Energy Society of Japan's committee on 'Applications of Ceramic Materials for Advanced Nuclear Power Systems' and mainly government funded nuclear engineering/materials activities collaborating academia and industries. Start with the brief introduction of those activities, representing research activities are introduced. ITER and BA related SiC/SiC activities are emphasized, followed by introductions of extensive OASIS, Muroran Institute of Technology activities. The importance of international collaboration and strategic planning is mentioned.

  1. Quaternary Eruptions of the Mono-Inyo Craters, California

    Science.gov (United States)

    Bursik, M. I.; Pouget, S.; Mangan, M.; Marcaida, M.; Vazquez, J. A.

    2013-12-01

    The eruptive products of the Mono-Inyo Craters volcanic chain include the tephra and associated volcanic rocks of Black Point, islands of Mono Lake, Mono Craters, Inyo Craters, late eruptions of Mammoth Mountain and Red Cones. Most of the eruptions were explosive, and generated numerous pyroclastic flows, surges and falls as well as the prominent domes and lava flows that now cover vents. The eruptions range in age from several hundred years to at least 60,000 yr BP. The Mono-Inyo tephras are dispersed throughout the Sierra Nevada and Basin and Range, providing key time-stratigraphic marker layers. Recent work has not only resulted in high-precision radiometric dating of many of the tephras, but also detailed geochemical data that for the first time provides fingerprinting sufficiently precise to discriminate among the tephras. Lithostratigraphy of many of the layers is herein described for the first time, based on careful sampling and description in the field, and laboratory grain size, grain shape and componentry analyses of the late Pleistocene tephras of the Wilson Creek Formation. Most of the Wilson Creek volcanic layers are fall deposits accumulated within paleolake Russell, which were generated by eruptions of variable intensity and influenced by paleowinds of different orientation. Prevailing winds were generally to the North and East, but often the Pleistocene layers less than 25 ka were dispersed to the West. Many of the fall layers show evidence of wave reworking, generally near the top, although in some cases it is pervasive. Only near the vent do some layers of apparent debris flow origin occur. Maximum pumice sizes range up to nearly 3 cm, and lithics range up to 1 cm in the rhyolitic fall beds, while thicknesses range up to c. 30 cm. These data are consistent with relatively low volume, subplinian style eruptive behavior for most of the life of the Mono-Inyo Craters.

  2. Effects of process parameters on μc - Si1 − XGeX:H solar cells performance and material properties

    Directory of Open Access Journals (Sweden)

    Reininghaus Nies

    2015-01-01

    Full Text Available On our way to develop a very thin and highly efficient triple-junction thin-film solar cell in a-Si:H/μc-Si:H/μc-SiGe:H configuration and μc-SiGe:H single cell samples were prepared and characterized using an industrial relevant 13.56 MHz 0.5 nm/s process on an industrial like 30 × 30 cm2 PECVD tool. To attain a better understanding of the μc-SiGe:H absorber we varied process pressure, germane flow, dilution and silane flow while looking at the electrical and material properties. By realizing a total absorber thickness less than 2 μm for high efficiency cell concepts in triple technology, our intention is to develop an industrial relevant process with attractive fabrication times by benefiting from the enhanced absorption of μc-SiGe:H compared to μc-Si:H.

  3. First principle study on B-Al co-doped 3C-SiC%B-Al共掺杂3C-SiC的第一性原理研究

    Institute of Scientific and Technical Information of China (English)

    周鹏力; 史茹倩; 何静芳; 郑树凯

    2013-01-01

    The lattice parameters, band structure, density of states, effective mass, carrier concentration and electrical resistivity of 3C-SiC in different doped forms (undoped, B-doped, Al-doped and B-Al co-doped) are calculated using the plane wave ultrasoft pseudopotential based on density functional theory. Calculations indicate that as the B or Al replaces Si atoms, both the conduction band and valence band shift to higher energy level. The top of valence band shifts quicker, resulting in the decrease of the band gap. B-Al co-doped 3C-SiC shows the narrowest bandgap while the pure one has the widest. Effective mass of B-doped 3C-SiC decreases but that of Al-doped 3C-SiC increases;while B-Al co-doped 3C-SiC effective mass, whose value approaches to the undoped, can be understood in terms of different compensation. As the acceptor impurities, B and Al will greatly increase the carrier density of valence band top, and the carrier density of the co-doped is three times as Large as the B-doped or Al-doped 3C-SiC. In addition, B-Al co-doping has the lowest resistivity among the four doping forms displaying its significant advantages in electrical property.%采用基于密度泛函理论的第一性原理平面波超软赝势法,计算了未掺杂, B, Al单掺杂和B-Al共掺杂的3C-SiC的晶格参数、能带结构、态密度、有效质量、载流子浓度和电阻率.计算结果表明:掺杂后导带和价带都向高能端移动,价带移动速度更快一些,使得禁带宽度都有一定程度的减小,其中B-Al共掺杂的禁带宽度最窄,纯净3C-SiC的禁带宽度最宽;B掺杂会减小价带顶空穴的有效质量, Al掺杂则反之, B-Al共掺杂补偿了二者的差异,和未掺杂的3C-SiC价带顶空穴的有效质量很接近. B和Al作为受主杂质,会极大地提高价带顶空穴载流子的浓度,而且B-Al共掺杂的3C-SiC的价带空穴浓度是B, Al单掺杂时的3倍.4种体系中, B-Al共掺杂得到的电阻率是最低的,同单掺杂

  4. Monitoring the Recovery of c-Si Modules from Potential-Induced Degradation Using Suns-Voc Curves

    Energy Technology Data Exchange (ETDEWEB)

    Wilterdink, Harrison; Sinton, Ronald; Hacke, Peter; Terwilliger, Kent; Meydbray, Jenya

    2016-11-21

    Potential-induced degradation (PID) has recently been shown as an important failure mode in c-Si modules. We demonstrate the utility of Suns-Voc analysis for measuring shunt effects caused by PID at the module level. Our results show module shunt resistance increasing in step with module power during recovery from the degraded state.

  5. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3

    Science.gov (United States)

    Hoex, B.; Gielis, J. J. H.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2008-12-01

    Al2O3 is a versatile high-κ dielectric that has excellent surface passivation properties on crystalline Si (c-Si), which are of vital importance for devices such as light emitting diodes and high-efficiency solar cells. We demonstrate both experimentally and by simulations that the surface passivation can be related to a satisfactory low interface defect density in combination with a strong field-effect passivation induced by a negative fixed charge density Qf of up to 1013 cm-2 present in the Al2O3 film at the interface with the underlying Si substrate. The negative polarity of Qf in Al2O3 is especially beneficial for the passivation of p-type c-Si as the bulk minority carriers are shielded from the c-Si surface. As the level of field-effect passivation is shown to scale with Qf2, the high Qf in Al2O3 tolerates a higher interface defect density on c-Si compared to alternative surface passivation schemes.

  6. Effective Passivation of C-Si by Intrinsic A-Si:h Layer for hit Solar Cells

    Directory of Open Access Journals (Sweden)

    Shahaji More

    2011-01-01

    Full Text Available The influence of HF solution etching on surface roughness of c-Si wafer was investigated using AFM. Ultra thin(2-3 nm intrinsic a-Si:H is necessary to achieve high VOC and Fill factor, as it effectively passivates the defects on the surface of c-Si and increase tunneling probability of minority charge carriers. However, to achieve control over ultra-thin intrinsic a-Si:H layer thickness and passivation properties, the films were deposited by Hot-wire CVD. We used tantalum filament and silane (SiH4 as a precursor gas, where as the deposition parameter such as filament temperature temperature was varied. The deposition rate, Dark and Photoconductivity were measured for all the films. The optimized intrinsic a-Si:H layer was inserted between p typed doped layers and n type c-Si wafers to fabricate HIT solar cells. The Current-Voltage characteristics were studied to understand the passivation effect of intrinsic layer on c-Si surface. The high saturation current density (Jsat > 10–7 A/cm2 and Ideality factor (n > 2 were observed. We achieved the efficiency of 3.28 % with the optimized intrinsic and doped a-Si:H layers using HWCVD technique.

  7. Effect of heat treatment on microstructure and mechanical properties of PIP-SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-01-01

    Continuous SiC fibre reinforced SiC matrix composites (SiC/SiC) have been studied as materials for heat resistant and nuclear applications. Thermal stability is one of the key issues for SiC/SiC composites. In this study, 3D SiC/SiC composites are fabricated via the polymer impregnation and pyrolysis (PIP) process, and then heat treated at 1400 Degree-Sign C, 1600 Degree-Sign C and 1800 Degree-Sign C in an inert atmosphere for 1 h, respectively. The effect of heat treatment on microstructure and mechanical properties of the composites is investigated. The results indicate that the mechanical properties of the SiC/SiC composites are significantly improved after heat treatment at 1400 Degree-Sign C mainly because the mechanical properties of the matrix are greatly improved due to crystallisation. With the increasing of heat treatment temperature, the properties of the composites are conversely decreased because of severe damage of the fibres and the matrix.

  8. Electrical and thermal conductivities of porous SiC/SiO2/C composites with different morphology from carbonized wood

    NARCIS (Netherlands)

    Sulistyo, Joko; Hata, Toshimitsu; Kitagawa, Hiroyuki; Bronsveld, Paul; Fujisawa, Masashi; Hashimoto, Kozo; Imamura, Yuji

    2010-01-01

    Porous SiC/SiO2/C composites exhibiting a wide range of high thermal and electrical conductivities were developed from carbonized wood infiltrated with SiO2. As a pre-treatment, the samples were either heated at 100 A degrees C or kept at room temperature followed by sintering in the temperature ran

  9. Modelling on c-Si/a-Si:H wire solar cells: some key parameters to optimize the photovoltaic performance

    Directory of Open Access Journals (Sweden)

    Alvarez J.

    2012-07-01

    Full Text Available Solar cells based on silicon nano- or micro-wires have attracted much attention as a promising path for low cost photovoltaic technology. The key point of this structure is the decoupling of the light absorption from the carriers collection. In order to predict and optimize the performance potential of p- (or n- doped c-Si/ n-(or p- doped a-Si:H nanowire-based solar cells, we have used the Silvaco-Atlas software to model a single-wire device. In particular, we have noticed a drastic decrease of the open-circuit voltage (Voc when increasing the doping density of the silicon core beyond an optimum value. We present here a detailed study of the parameters that can alter the Voc of c-Si(p/a-Si:H (n wires according to the doping density in c-Si. A comparison with simulation results obtained on planar c-Si/a-Si:H heterojunctions shows that the drop in Voc, linked to an increase of the dark current in both structures, is more pronounced for radial junctions due to geometric criteria. These numerical modelling results have lead to a better understanding of transport phenomena within the wire.

  10. Electrical and thermal conductivities of porous SiC/SiO2/C composites with different morphology from carbonized wood

    NARCIS (Netherlands)

    Sulistyo, Joko; Hata, Toshimitsu; Kitagawa, Hiroyuki; Bronsveld, Paul; Fujisawa, Masashi; Hashimoto, Kozo; Imamura, Yuji

    Porous SiC/SiO2/C composites exhibiting a wide range of high thermal and electrical conductivities were developed from carbonized wood infiltrated with SiO2. As a pre-treatment, the samples were either heated at 100 A degrees C or kept at room temperature followed by sintering in the temperature

  11. Improvement of anti-oxidation properties of carbon fibers by SiC/SiO2 ceramic coating.

    Science.gov (United States)

    Kim, Bo-Hye; Yang, Kap Seung; Woo, Hee-Gweon; Kim, Su Yeun

    2011-08-01

    To improve the anti-oxidation properties of carbon fibers (CFs), the sol-gel method followed by pyrolysis was used to coat CFs with SiC/SiO2 ceramic coatings. The SiO2 sol-gel coating was performed by dip coating a PAN(polyacrylonitrile)-based stabilized fiber (PSF) in a silica sol prepared by the polycondensation of tetraethylorthosilicate (TEOS) in the presence of an acidic catalyst. The PSF coated with SiO2 sol then underwent heat treatments at high temperatures in an inert atmosphere to deposit the SiC/SiO2 and carbonize the deposited fibers. The surface morphology of the CFs deposited with SiC/SiO2 was characterized using a scanning electron microscope (SEM). The relative oxidation resistance of the SiC/SiO2 layer deposited on the CFs was determined by the weight loss due to the use of a thermogravimetric analyzer (TGA) under flowing air, and the data were used to calculate the activation energies through an Arrhenius plot.

  12. The effect of grain size and phosphorous-doping of polycrystalline 3C-SiC on infrared reflectance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: Isabella.vanRooyen@inl.gov [Fuel Performance and Design Department, Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Engelbrecht, J.A.A. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A.; Janzen, E. [Department of Physics, Chemistry and Biology, Semiconductor Materials, Linkoeping University, Linkoeping 58183 (Sweden); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Rooyen, P.M. van [Philip M van Rooyen Network Consultants, Midlands Estates (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer IR is investigated as a technique to measure grain size and P-doping of polycrystalline SiC. Black-Right-Pointing-Pointer Infrared plasma minima can be used to determine doping levels in 3C-SiC for doping levels greater than 5 Multiplication-Sign 10{sup 17} cm{sup -3}. Black-Right-Pointing-Pointer A linear relationship is found between FWHM and the inverse of grain size of 3C-SiC irrespective of P-doping level. Black-Right-Pointing-Pointer It is further found that {omega}{sub p} is not influenced by the grain size. Black-Right-Pointing-Pointer P-doping level has no significant effect on the linear relationship between grain size and surface roughness. - Abstract: The effect of P-doping and grain size of polycrystalline 3C-SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behavior of the 3C-SiC with the highest phosphorous doping level (of 1.2 Multiplication-Sign 10{sup 19} at. cm{sup -3}) is different from those with lower doping levels (<6.6 Multiplication-Sign 10{sup 18} at. cm{sup -3}). It is also further demonstrated that the plasma resonance frequency ({omega}{sub p}) is not influenced by the grain size.

  13. NbC/Si multilayer mirror for next generation EUV light sources.

    Science.gov (United States)

    Modi, Mohammed H; Rai, S K; Idir, Mourad; Schaefers, F; Lodha, G S

    2012-07-02

    In the present study we report a new multilayer combination comprised of refracting layers of niobium carbide and spacer layers of silicon as a more stable and high reflecting combination for the 10 - 20 nm wavelength region. The reflectivity of the new combination is comparable to Mo/Si conventional mirrors. Annealing experiments carried out with NbC/Si multilayer at 600°C temperature showed a ~2.5% drop in the soft x-ray reflectivity along with a marginal contraction in the multilayer period length. The multilayer structure is found stable after the heat treatment. Crystallization of the niobium carbide and silicon layers is responsible for the compaction in the period length as revealed by the grazing incidence x-ray diffraction measurements. No signature of silicide formation or any other chemical species could be detected. The multilayer structures were grown by ion beam sputtering technique using a compound target of niobium carbide. Soft x-ray reflectivity measurements performed at the Indus-1 and BESSY-II synchrotron radiation sources are found in good agreement with the simulations.

  14. Understanding Light-Induced Degradation of c-Si Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.; Basnyat, P.; Devayajanam, S.; Shet, S.; Mehta, V.; Binns, J.; Appel, J.

    2012-06-01

    We discuss results of our investigations toward understanding bulk and surface components of light-induced degradation (LID) in low-Fe c-Si solar cells. The bulk effects, arising from boron-oxygen defects, are determined by comparing degradation of cell parameters and their thermal recovery, with that of the minority-carrier lifetime (964;) in sister wafers. We found that the recovery of 964; in wafers takes a much longer annealing time compared to that of the cell. We also show that cells having SiN:H coating experience a surface degradation (ascribed to surface recombination). The surface LID is seen as an increase in the q/2kT component of the dark saturation current (J02). The surface LID does not recover fully upon annealing and is attributed to degradation of the SiN:H-Si interface. This behavior is also exhibited by mc-Si cells that have very low oxygen content and do not show any bulk degradation.

  15. MBE growth of cubic AlN on 3C-SiC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Schupp, Thorsten; Lischka, Klaus; As, Donat Josef [Department of Physics, University of Paderborn, Warburger Str. 100, 33095 Paderborn (Germany); Rossbach, Georg; Schley, Pascal; Goldhahn, Ruediger [Institut fuer Physik, Technische Universitaet Ilmenau, PF 100565, 98684 Ilmenau (Germany); Roeppischer, Marcus; Esser, Norbert; Cobet, Christoph [Department Berlin, ISAS - Institute for Analytical Sciences, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2010-06-15

    We present our recent results on the growth of cubic AlN (001) layers by plasma assisted molecular beam epitaxy (PAMBE) using freestanding 3C-SiC (001) substrate. For high-quality c-AlN layers reflection high-electron energy diffraction (RHEED) patterns in all azimuths show RHEED patterns of the cubic lattice, hexagonal reflections are absent. High-resolution X-ray diffraction (HRXRD) measurements confirm the cubic structure of the c-AlN layers with a lattice parameter of 4.373A. Atomic force microscopy (AFM) scans show an atomically smooth surface with a roughness of 0.2 nm RMS. Ellipsometry studies yield the dielectric function (DF) of c-AlN from 1 to 10 eV. The direct gap is determined with 5.93 eV at room temperature, while the indirect one is below 5.3 eV (onset of adsorption). The high-energy part of the DF is dominated by two transitions at 7.20 and 7.95 eV attributed to critical points of the band structure. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Optimization of self-interstitial clusters in 3C-SiC with genetic algorithm

    Science.gov (United States)

    Ko, Hyunseok; Kaczmarowski, Amy; Szlufarska, Izabela; Morgan, Dane

    2017-08-01

    Under irradiation, SiC develops damage commonly referred to as black spot defects, which are speculated to be self-interstitial atom clusters. To understand the evolution of these defect clusters and their impacts (e.g., through radiation induced swelling) on the performance of SiC in nuclear applications, it is important to identify the cluster composition, structure, and shape. In this work the genetic algorithm code StructOpt was utilized to identify groundstate cluster structures in 3C-SiC. The genetic algorithm was used to explore clusters of up to ∼30 interstitials of C-only, Si-only, and Si-C mixtures embedded in the SiC lattice. We performed the structure search using Hamiltonians from both density functional theory and empirical potentials. The thermodynamic stability of clusters was investigated in terms of their composition (with a focus on Si-only, C-only, and stoichiometric) and shape (spherical vs. planar), as a function of the cluster size (n). Our results suggest that large Si-only clusters are likely unstable, and clusters are predominantly C-only for n ≤ 10 and stoichiometric for n > 10. The results imply that there is an evolution of the shape of the most stable clusters, where small clusters are stable in more spherical geometries while larger clusters are stable in more planar configurations. We also provide an estimated energy vs. size relationship, E(n), for use in future analysis.

  17. FRACTURE RESISTANCE OF 3D-C/SiC COMPOSITES AT 1300℃

    Institute of Scientific and Technical Information of China (English)

    G.C.Ji; S.R.Qiao; S.M.Du; M.Li; D.Han; J.N.Wei

    2004-01-01

    Based on the energy conservation, the elastic energy linked to the compliance change,non-elastic energy dissipated by irreversible deformation and the resistance for crack propagation were quantitatively characterized by evaluation the load/load point displacement curves tested by three points bend experiment with single notch beam at 1300℃. The cracks length was determined by compliance calibration curves. It is shown by experimental results that the compliance of 3D-C/SiC composites changes with the cracks can be described by third order polynomial. The variation of crack advancing resistance with non-dimensional equivalent crack length presents a convex curve. The crack advancing resistance increases firstly and then decreases with the non-dimensional equivalent crack length, finally is in comparatively low level. The maximum values of crack advancing resistance are 269.73k J/m2 for nondimensional equivalent crack length of 0.318 and original notch length of 0.35mm,and 138.65k J/m2 for non-dimensional equivalent crack length of 0.381 and original notch length of 2.06mm, respectively.

  18. Network structure and its effects on the strength of Fe-C-Si-Mn alloy castings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ding-fei; PENG Jian; XU Xing-zhi

    2004-01-01

    Fe-C-Si-Mn alloy castings used as blades in hydroelectric generators are studied and found to contain network structures after some heat treatments. Castings after annealing and normalizing were analyzed by microscope and transmission electron microscopy (TEM). The network formed during annealing was proved by TEM to be pearlite with very fine slices, while that formed during normalizing was proved by TEM and micro-hardness to be martensite or bainite. A theoretical analysis together with experimental studies has proved that the pearlite network is caused by carbon content increase in the interdendritic regions to which carbon atoms transfered from dendritic arms due to lower manganese content there during annealing, while the martensite or bainite network results from the higher hardenability of interdendritic regions where manganese content is higher.Experiments reveal that higher heating temperature or longer heating time enlarges the network size due to manganese homogenization. The network structure has a strengthening function like reinforcing rib, and the smaller the network size, the greater its strengthening capability.

  19. Lattice location of implanted transition metals in 3C-SiC

    Science.gov (United States)

    Costa, A. R. G.; Wahl, U.; Correia, J. G.; Bosne, E.; Amorim, L. M.; Augustyns, V.; Silva, D. J.; da Silva, M. R.; Bharuth-Ram, K.; Pereira, L. M. C.

    2017-06-01

    We have investigated the lattice location of implanted transition metal (TM) 56Mn, 59Fe and 65Ni ions in undoped single-crystalline cubic 3C-SiC by means of the emission channeling technique using radioactive isotopes produced at the CERN-ISOLDE facility. We find that in the room temperature as-implanted state, most Mn, Fe and Ni atoms occupy carbon-coordinated tetrahedral interstitial sites (T C). Smaller TM fractions were also found on Si substitutional (S Si) sites. The TM atoms partially disappear from ideal-T C positions during annealing at temperatures between 500 °C and 700 °C, which is accompanied by an increase in the TM fraction occupying both S Si sites and random sites. An explanation is given according to what is known about the annealing mechanisms of silicon vacancies in silicon carbide. The origin of the observed lattice sites and their changes with thermal annealing are discussed and compared to the case of Si, highlighting the feature that the interstitial migration of TMs in SiC is much slower than in Si.

  20. High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes

    CERN Document Server

    Enya, K; Imai, T; Tange, Y; Kaneda, H; Katayama, H; Kotani, M; Maruyama, K; Naitoh, M; Nakagawa, T; Onaka, T; Suganuma, M; Ozaki, T; Kume, M; Krodel, M R

    2011-01-01

    This paper presents highly precise measurements of thermal expansion of a "hybrid" carbon-fiber reinforced silicon carbide composite, HB-Cesic\\textregistered - a trademark of ECM, in the temperature region of \\sim310-10K. Whilst C/SiC composites have been considered to be promising for the mirrors and other structures of space-borne cryogenic telescopes, the anisotropic thermal expansion has been a potential disadvantage of this material. HB-Cesic\\textregistered is a newly developed composite using a mixture of different types of chopped, short carbon-fiber, in which one of the important aims of the development was to reduce the anisotropy. The measurements indicate that the anisotropy was much reduced down to 4% as a result of hybridization. The thermal expansion data obtained are presented as functions of temperature using eighth-order polynomials separately for the horizontal (XY-) and vertical (Z-) directions of the fabrication process. The average CTEs and their dispersion (1{\\sigma}) in the range 293-10...

  1. Growth of ternary and quaternary cubic III-nitrides on 3C-SiC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Schoermann, J.; Potthast, S.; Schnietz, M.; Li, S.F.; As, D.J.; Lischka, K. [Department of Physics, University of Paderborn, Warburger Str. 100, 33095 Paderborn (Germany)

    2006-06-15

    Cubic GaN, Al{sub x}Ga{sub 1-x}N/GaN multiple quantum wells and quaternary Al{sub x}Ga{sub y}In{sub 1-x-y}N layers were grown by plasma assisted molecular beam epitaxy on 3C-SiC substrates. Using the intensity of a reflected high energy electron beam as a probe optimum growth conditions of c-III nitrides were found, when a 1 monolayer Ga coverage is formed at the growing surface. Clear RHEED oscillations during the initial growth of Al{sub x}Ga{sub 1-x}N/GaN quantum wells were observed. X-ray diffraction measurements of these quantum well structures show clear satellite peaks indicating smooth interfaces. Growth of quaternary Al{sub x}Ga{sub y}In{sub 1-x-y}N lattice matched to GaN were demonstrated. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Packaging Technologies for 500C SiC Electronics and Sensors

    Science.gov (United States)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  3. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  4. The Mechanical and Electrical Effects of MEMS Capacitive Pressure Sensor Based 3C-SiC for Extreme Temperature

    Directory of Open Access Journals (Sweden)

    N. Marsi

    2014-01-01

    Full Text Available This paper discusses the mechanical and electrical effects on 3C-SiC and Si thin film as a diaphragm for MEMS capacitive pressure sensor operating for extreme temperature which is 1000 K. This work compares the design of a diaphragm based MEMS capacitive pressure sensor employing 3C-SiC and Si thin films. A 3C-SiC diaphragm was bonded with a thickness of 380 μm Si substrate, and a cavity gap of 2.2 μm is formed between the wafers. The MEMS capacitive pressure sensor designs were simulated using COMSOL ver 4.3 software to compare the diaphragm deflection, capacitive performance analysis, von Mises stress, and total electrical energy performance. Both materials are designed with the same layout dimensional with different thicknesses of the diaphragm which are 1.0 μm, 1.6 μm, and 2.2 μm. It is observed that the 3C-SiC thin film is far superior materials to Si thin film mechanically in withstanding higher applied pressures and temperatures. For 3C-SiC and Si, the maximum von Mises stress achieved is 148.32 MPa and 125.48 MPa corresponding to capacitance value which is 1.93 pF and 1.22 pF, respectively. In terms of electrical performance, the maximum output capacitance of 1.93 pF is obtained with less total energy of 5.87 × 10−13 J, thus having a 50% saving as compared to Si.

  5. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    Science.gov (United States)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  6. Compressive Strength of 2D-C/SiC Composite at High Temperature in Air%2D-C/SiC复合材料在空气中的高温压缩强度研究

    Institute of Scientific and Technical Information of China (English)

    牛学宝; 张程煜; 乔生儒; 韩栋; 李玫

    2011-01-01

    研究了二维碳纤维增强碳化硅基复合材料(2 D-C/SiC)在空气介质中的高温压缩强度.材料采用1K T300碳纤维平纹布经叠层和缝合制成预制体为增强体,经等温化学气相浸渗制备而成.试样表面用化学气相沉积工艺沉积SiC涂层.测试方向为垂直于炭布叠层方向,测试温度为室温,700℃,1100℃和1300℃.使用扫描电子显微镜观察了材料的断口.结果表明:室温~700℃,2D-C/SiC的压缩强度随温度升高逐渐增大,温度高于700℃后,材料的压缩强度缓慢降低.导致2D-C/SiC的压缩强度随温度变化的主要原因为纤维和基体热膨胀系数不同引起的残余应力随温度升高逐渐变小和高温下材料的氧化损伤.%The compressive strength of a two dimensional carbon fiber reinforced silicon carbide composite (2D-C/SiC) at elevated temperature in air was studied. The plain weaved carbon cloth was applied as reinforcement, made of stacked and seamed 1K T300 carbon fiber cloth. The 2D-C/SiC was prepared by isothermal chemical vapor infiltration. The specimens were coated with SiC by chemical vapor deposition. The tests were conducted at room temperature, 700°C , 1100°C and 1300°C respectively, and the loading direction was perpendicular to 2D-C/SiC plane. The fractured surface of the specimens was observed by a scanning electron microscope. The results show that the compressive strength increases gradually with increasing the temperature from room temperature to 700°C , while it decreases gradually when the temperature was above 700°C. The residual stress caused by the mismatch between the thermal expansion coefficients of the fiber and matrix, and the oxidation products play important roles in determining the compressive strength.

  7. Mono- versus polydrug abuse patterns among publicly funded clients

    Directory of Open Access Journals (Sweden)

    Relyea George

    2007-11-01

    Full Text Available Abstract To examine patterns of mono- versus polydrug abuse, data were obtained from intake records of 69,891 admissions to publicly funded treatment programs in Tennessee between 1998 and 2004. While descriptive statistics were employed to report frequency and patterns of mono- and polydrug abuse by demographic variables and by study years, bivariate logistic regression was applied to assess the probability of being a mono- or polydrug abuser for a number of demographic variables. The researchers found that during the study period 51.3% of admissions reported monodrug abuse and 48.7% reported polydrug abuse. Alcohol, cocaine, and marijuana were the most commonly abused substances, both alone and in combination. Odds ratio favored polydrug abuse for all but one drug category–other drugs. Gender did not affect drug abuse patterns; however, admissions for African Americans and those living in urban areas exhibited higher probabilities of polydrug abuse. Age group also appeared to affect drug abuse patterns, with higher odds of monodrug abuse among minors and adults over 45 years old. The discernable prevalence of polydrug abuse suggests a need for developing effective prevention strategies and treatment plans specific to polydrug abuse.

  8. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Science.gov (United States)

    López, G.; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiCx/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al2O3) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J-V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  9. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    López, G., E-mail: gema.lopez@upc.edu; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    Highlights: • We use laser doping technique to create highly-doped regions. • Dielectric layers are used as both passivating layer and dopant source. • The high quality of the junctions makes laser doping technique using dielectric layers as dopant source suitable for solar cells applications. - Abstract: In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiC{sub x}/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al{sub 2}O{sub 3}) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J–V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  10. Electroluminescence of a-Si/c-Si heterojunction solar cells after high energy irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Manuela

    2009-11-24

    The crystalline silicon as absorber material will certainly continue to dominate the market for space applications of solar cells. In the contribution under consideration the applicability of a-Si:H/c-Si heterojunction solar cells in space has been tested by the investigation of the cell modification by high energy protons and comparing the results to the degradation of homojunction crystalline silicon reference cells. The investigated solar cells have been irradiated with protons of different energies and doses. For all investigated solar cells the maximum damage happens for an energy of about 1.7 MeV and is mainly due to the decrease of the effective minority carrier diffusion length in the crystalline silicon absorber. Simulations carried out by AFORS-HET, a heterojunction simulation program, also confirmed this result. The main degradation mechanism for all types of devices is the monotonically decreasing charge carrier diffusion length in the p-type monocrystalline silicon absorber layer. For the heterojunction solar cell an enhancement of the photocurrent in the blue wavelength region has been observed but only in the case of heterojunction solar cell with intrinsic a-Si:H buffer layer. Additionally to the traditional characterization techniques the electroluminescence technique used for monitoring the modifications of the heteroluminescence technique used for monitoring the modifications of the heterointerface between amorphous silicon and crystalline silicon in solar cells after proton irradiation. A direct relation between minority carrier diffusion length and electroluminescence quantum efficiency has been observed but also details of the interface modification could be monitored by this technique.

  11. Dielectric passivation schemes for high efficiency n-type c-si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saynova, D.S.; Romijn, I.G.; Cesar, I.; Lamers, M.W.P.E.; Gutjahr, A. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Dingemans, G. [ASM, Kapeldreef 75, B-3001 Leuven (Belgium); Knoops, H.C.M.; Van de Loo, B.W.H.; Kessels, W.M.M. [Eindhoven University of Technology, Department of Appl. Physics, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Siarheyeva, O.; Granneman, E. [Levitech BV, Versterkerstraat 10, 1322AP Almere (Netherlands); Venema, P.R.; Vlooswijk, A.H.G. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands); Gautero, L.; Borsa, D.M.

    2013-10-15

    We investigate the impact of different dielectric layers and stacks on the passivation properties of boron doped p{sup ++}-emitters and phosphorous doped n{sup +}-BSFs which are relevant for competitive n-type cell conversion efficiencies. The applied passivation schemes are associated with specific properties at c-Si/dielectric interface and functional mechanisms. In this way we aim to gain a deeper understanding of the passivation mechanism of the differently doped fields within the n-type cells and identify options to further improve the efficiency. The deposition technologies in our study comprise industrial PECVD systems and/or ALD both in industrial and lab scale configurations. In case of p{sup ++}-emitters the best results were achieved by combining field effect and chemical passivation using stacks of low temperature wet chemical oxide and thin ALD-AlOx capped with PECVD-SiNx. The corresponding Implied Voc values were of about (673{+-}2) mV and J{sub 0} of (68{+-}2) fA/cm{sup 2}. For the n{sup +}-BSF passivation the passivation scheme based on SiOx with or without additional AlOx film deposited by a lab scale temporal ALD processes and capped with PECVD-SiNx layer yielded a comparable Implied Voc of (673{+-}2) mV, but then corresponding to J{sub 0} value of (80{+-}15) fA/cm{sup 2}. This passivation scheme is mainly based on the chemical passivation and was also suitable for p{sup ++} surface. This means that we have demonstrated that for n-Pasha cells both the emitter and BSF can be passivated with the same type of passivation that should lead to > 20% cell efficiency. This offers the possibility for transfer this passivation scheme to advanced cell architectures, such as IBC.

  12. Intelligent MONitoring System for antiviral pharmacotherapy in patients with chronic hepatitis C (SiMON-VC

    Directory of Open Access Journals (Sweden)

    Luis Margusino-Framiñán

    2017-01-01

    Full Text Available Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy.

  13. Intelligent MONitoring System for antiviral pharmacotherapy in patients with chronic hepatitis C (SiMON-VC).

    Science.gov (United States)

    Margusino-Framiñán, Luis; Cid-Silva, Purificación; Mena-de-Cea, Álvaro; Sanclaudio-Luhía, Ana Isabel; Castro-Castro, José Antonio; Vázquez-González, Guillermo; Martín-Herranz, Isabel

    2017-01-01

    Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. C-SiC陶瓷基复合材料磨削参数优化研究%Research of Grinding Parameters about C-SiC Ceramic Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    池宪; 吴凡; 锁小红

    2012-01-01

    Based on the orthogonal grinding tests of C-SiC ceramic matrix composite, the effects of grinding parameters on inner-cone surface roughness is analyzed. The improvement principle of grinding parameters is proposed, the optimized grinding parameters are obtained. The results show that the quality of the ceramic inner-cone surface is advanced.%通过C-SiC陶瓷基复合材料的正交磨削试验进行磨削参数优化研究,探讨磨削参数对内锥体表面粗糙度的影响规律,提出了磨削参数的优化原则,获得了优化的磨削参数,提高了陶瓷基复合材料内锥体精密磨削的表面加工质量.

  15. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  16. C/SiC陶瓷基复合材料与铌合金钎焊机理研究%Study on brazing mechanism of C/SiC ceramic matrix composite to Nb alloy

    Institute of Scientific and Technical Information of China (English)

    张枝梅; 张权明

    2012-01-01

    阐述了C/SiC陶瓷基复合材料与铌合金的活性钎焊连接方式,通过扫描电镜、金相分析等手段,研究了钛基和铜基活性钎焊料分别在C/SiC陶瓷基复合材料和铌合金上的润湿性,并分析了两种材料的钎焊连接界面的微观元素扩散特征。研究结果表明,陶瓷基复合材料与铌合金的活性钎焊机理主要是通过钎焊料中的活性元素分别向陶瓷和铌合金中扩散并发生化学反应,从而实现三者之间的良好键合。%The active brazing method of C/SiC ceramic matrix composite to Nb alloy is discussed.The wettability of Ti-and Cu-based brazing alloys respective on C/SiC ceramic matrix composite and Nb alloy is studied,and the diffusion features of microcosmic elements on brazing connection interfaces of the two brazing alloys are investigated by the aid of scanning electron microscope(SEM) and metallographic phase analysis.The research results show that the active brazing mechanism of ceramic matrix composites to Nb alloy is that the active elements in brazing alloys are diffused to ceramics and Nb alloy respectively and chemically reacted with each other to realize the perfect bonding among them.

  17. Preparation and Properties of ZrC-SiC Multi-phase Ceramic Precursors%ZrC-SiC复相陶瓷先驱体的制备与性能

    Institute of Scientific and Technical Information of China (English)

    黄传进; 王明存; 韩伟健; 邱文丰; 赵彤

    2015-01-01

    以聚锆氧烷(PNZ)为锆源树脂、炔基聚硅烷(PEPSI)为硅源树脂、双酚A型苯并噁嗪(BOZ)为碳源树脂,制备一种低成本高效率ZrC-SiC复相陶瓷先驱体.ZrC-SiC复相陶瓷先驱体适合陶瓷基复合材料的循环浸渍-裂解工艺,通过炔基的催化聚合、苯并噁嗪的开环聚合和锆氧烷与酚羟基、硅氢键的缩合聚合,在200~350℃热固化.N2气氛,优化配方中PNZ、PEPSI、BOZ的质量比为1.00∶0.30∶0.30).在1 000、1 200、1 400和1 600℃高温裂解陶瓷的产率分别为64%、62%、62%和37%.通过1 600℃碳热还原反应,得到高度结晶和分布均匀的ZrC-SiC复相陶瓷.ZrC-SiC先驱体是理想的低成本超高温陶瓷基体树脂.

  18. Optimization of μc-Si1−xGex:H Single-Junction Solar Cells with Enhanced Spectral Response and Improved Film Quality

    Directory of Open Access Journals (Sweden)

    Yen-Tang Huang

    2015-01-01

    Full Text Available Effects of RF power on optical, electrical, and structural properties of μc-Si1−xGex:H films was reported. Raman and FTIR spectra from μc-Si1−xGex:H films reflected the variation in microstructure and bonding configuration. Unlike increasing the germane concentration for Ge incorporation, low RF power enhanced Ge incorporation efficiency in μc-Si1−xGex:H alloy. By decreasing RF power from 100 to 50 W at a fixed reactant gas ratio, the optical bandgap of μc-Si1−xGex:H was reduced owing to the increase in Ge content from 11.2 to 23.8 at.%, while Ge-related defects and amorphous phase were increased. Consequently, photo conductivity of 1.62 × 10−5 S/cm was obtained for the μc-Si1−xGex:H film deposited at 60 W. By applying 0.9 μm thick μc-Si1−xGex:H absorber with XC of 48% and [Ge] of 16.4 at.% in the single-junction cell, efficiency of 6.18% was obtained. The long-wavelength response of μc-Si1−xGex:H cell was significantly enhanced compared with the μc-Si:H cell. In the case of tandem cells, 0.24 μm a-Si:H/0.9 μm μc-Si1−xGex:H tandem cell exhibited a comparable spectral response as 0.24 μm a-Si:H/1.4 μm μc-Si:H tandem cell and achieved an efficiency of 9.44%.

  19. Monotonic tensile behavior analysis of three-dimensional needle-punched woven C/SiC composites by acoustic emission

    Institute of Scientific and Technical Information of China (English)

    Peng Fang; Laifei Cheng; Litong Zhang; Jingjiang Nie

    2008-01-01

    High toughness and reliable three-dimensional needled C/SiC composites were fabricated by chemical vapor infiltration (CVI). An approach to analyze the tensile behaviors at room temperature and the damage accumulation of the composites by means of acoustic emission was researched. Also the fracture morphology was examined by S-4700 SEM after tensile tests to prove the damage mechanism. The results indicate that the cumulative energy of acoustic emission (AE) signals can be used to monitor and evaluate the damage evolution in ceramic-matrix composites. The initiation of room-temperature tensile damage in C/SiC composites occurred with the growth of micro-cracks in the matrix at the stress level about 40% of the ultimate fracture stress. The level 70% of the fracture stress could be defined as the critical damage strength.

  20. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  1. Apparent activation energy of subcritical crack growth of SiC/SiC composites at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y.S.; Stackpoole, M.M.; Bordia, R. [Univ. of Washington, Seattle, WA (United States)] [and others

    1995-04-01

    The purpose of this study is to investigate the environmental effect of oxygen-containing gases on the subcritical crack growth of continuous fiber (Nicalon {open_quotes}SiC{close_quotes}) reinforced ceramic matrix (SiC) composites at elevated temperatures. This is a continuing project and the primary goal for this time period is to obtain an apparent activation energy for SiC/SiC materials with two different interfaces: carbon and boron nitride coatings. In the past six months, the authors have conducted studies of subcritical crack growth on SiC/SiC composite materials in a corrosive (O{sub 2}) as well as an inert (Ar) atmosphere for temperatures ranging from 800 to 1100{degree}C.

  2. Optical properties of hybrid T3Pyr/SiO2/3C-SiC nanowires.

    Science.gov (United States)

    Fabbri, Filippo; Rossi, Francesca; Melucci, Manuela; Manet, Ilse; Attolini, Giovanni; Favaretto, Laura; Zambianchi, Massimo; Salviati, Giancarlo

    2012-12-17

    A new class of nanostructured hybrid materials is developed by direct grafting of a model thiophene-based organic dye on the surface of 3C-SiC/SiO2 core/shell nanowires. TEM-EDX analysis reveals that the carbon distribution is more spread than it would be, considering only the SiC core size, suggesting a main contribution from C of the oligothiophene framework. Further, the sulfur signal found along the treated wires is not detected in the as-grown samples. In addition, the fluorescent spectra are similar for the functionalized nanostructures and T3Pyr in solution, confirming homogeneous molecule grafting on the nanowire surface. Chemical and luminescence characterizations confirm a homogeneous functionalization of the nanowires. In particular, the fluorophore retains its optical properties after functionalization.

  3. Influnce of exposure with Xe radiation on heterojunction solar cell a-SiC/c-Si studied by impedance spectroscopy

    Science.gov (United States)

    Perný, M.; Šály, V.; Packa, J.; Mikolášek, M.; Váry, M.; Huran, J.; Hrubčín, L.; Skuratov, V. A.; Arbet, J.

    2017-04-01

    The photovoltaic efficiency of heterostructures a-SiC/c-Si may be the same or even better in comparison with conventional silicon structures when suitable adjustment of technological parameters is realized. The main advantage of heterojunction formed amorphous SiC thin film and crystalline silicon compared to standard crystalline solar cell lies in high build-in voltage and thus a high open-circuit voltage. Solar cells can be exposed to various influences of hard environment. A deterioration of properties of heterostructures (a-SiC/c-Si) due to irradiation is examined in our paper using impedance spectroscopy method. Xe ions induced damage is reflected in changes of proposed AC equivalent circuit elements. AC equivalent circuit was proposed and verified using numerical simulations. Impedance spectra were also measured at different DC bias voltages due to a more detailed understanding correlation between Xe ions induced damage and transport phenomenon in the heterostructure.

  4. Single- and Multilayered Inter-phases in SiC/SiC Composites Exposed to Severe Environmental Conditions: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Naslain, R.R.; Pailler, R.J.F.; Lamon, J.L. [Univ Bordeaux, LCTS, F-33600 Pessac (France)

    2010-07-01

    Pyrocarbon (PyC), the common interphase for SiC/SiC, is not stable under severe environmental conditions. It could be replaced by boron nitride more resistant to oxidation but poorly compatible with nuclear applications. Other materials, such as ternary carbides seem promising but their use in SiC/SiC has not been demonstrated. The most efficient way to improve the behavior of PyC interphase in severe environments is to replace part of PyC by a material displaying a better compatibility, such as SiC itself. Issues related to the design and behavior of layered inter-phases are reviewed with a view to demonstrate their interest in high-temperature nuclear reactors. (authors)

  5. Densification, microstructure, and fracture behavior of TiC/Si3N4 composites by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    BAI Ling; GE Changchun; SHEN Weiping; MAO Xiaodong; ZHANG Ke

    2008-01-01

    TiC/Si3N4 composites were prepared using the β-Si3N4 powder synthesized by self-propagating high-temperature synthesis (SHS) and 35 wt.% TiC by spark plasma sintering. Y2O3 and A12O3 were added as sintering additives. The almost full sintered density and the highest fracture toughness (8.48 MPa·m1/2) values of Si3N4-based ceramics could be achieved at 1550℃. No interfacial interactions were noticeable between TiC and Si3N4. The toughening mechanisms in TiC/Si3N4 composites were attributed to crack deflection, microcrack toughening, and crack impedance by the periodic compressive stress in the Si3N4 matrix. However, increasing microcracks easily led to excessive connection of microcracks, which would not be beneficial to the strength.

  6. Near-ultraviolet lateral photovoltaic effect in Fe3O4/3C-SiC Schottky junctions.

    Science.gov (United States)

    Song, Bingqian; Wang, Xianjie; Li, Bo; Zhang, Lingli; Lv, Zhe; Zhang, Yu; Wang, Yang; Tang, Jinke; Xu, Ping; Li, Bingsheng; Yang, Yanqiang; Sui, Yu; Song, Bo

    2016-10-17

    In this paper, we report a sensitive lateral photovoltaic effect (LPE) in Fe3O4/3C-SiC Schottky junctions with a fast relaxation time at near-ultraviolet wavelengths. The rectifying behavior suggests that the large build-in electric field was formed in the Schottky junctions. This device has excellent position sensitivity as high as 67.8 mV mm-1 illuminated by a 405 nm laser. The optical relaxation time of the LPE is about 30 μs. The fast relaxation and high positional sensitivity of the LPE make the Fe3O4/3C-SiC junction a promising candidate for a wide range of ultraviolet/near-ultraviolet optoelectronic applications.

  7. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  8. PREDICTION OF ELASTIC PROPERTIES OF 2.5D SELF-HEALING C/SiC COMPOSITE%2.5维自愈合C/SiC复合材料弹性性能预测

    Institute of Scientific and Technical Information of China (English)

    梁仕飞; 矫桂琼

    2013-01-01

    The in-plane elastic properties of self-healing 2. 5D-C/SiC composite were obtained by experiment and then a model based on the micro-structure was built to predict the elastic properties of 2. 5D-C/SiC composite. The results showed that the prediction results were in good agreement with the experimental values. As the number of fibers in fiber bundles increases, the volume fraction of fiber and elastic modulus in warp direction increase, the in-plane shear modulus almost keeps constant, but the volume fraction of fiber in weft direction and the other modulus decrease. With the knit angle of warp increasing, the volume fraction of fiber and elastic modulus in warp direction decrease, the in-plane shear modulus almost keeps constant, but the volume fraction of fiber in weft direction and the other modulus increase. If the total volume fraction of silicon carbide and boron carbide keep constants, respectively, all the elastic properties decrease slightly with the ratio of boron carbide and silicon carbide increasing.%通过试验研究了2.5维自愈合C/SiC复合材料(2.5D-C/SiC)的面内弹性性能.基于复合材料的细观结构,建立了2.5D-C/SiC的弹性模量预测模型.预测结果与试验值吻合较好,证明了模型及计算方法的正确性.研究发现,随着纤维束中纤维数的增大,经纱方向纤维的体积含量和拉压模量均增大,面内剪切模量几乎无变化,纬纱方向纤维的体积含量和其余模量均降低.随着经纱编织角度的增加,经纱方向纤维的体积含量和拉压模量均降低,面内剪切模量变化很小,纬纱方向纤维的体积含量和其余模量均增大.保持碳化硅与碳化硼体积分数的总和不变,随着碳化硼与碳化硅体积比的增加,弹性模量均逐渐降低,降低幅度很小.

  9. Ablation behavior and mechanism of 3D Cf/ZrC-SiC composites in a plasma wind tunnel environment

    Directory of Open Access Journals (Sweden)

    Qinggang Li

    2015-12-01

    Full Text Available Three-dimensional needle-like Cf/ZrC-SiC composites were successfully fabricated by polymer infiltration and pyrolysis combined with ZrC precursor impregnation. The ablation properties of the composites were tested in a plasma wind tunnel environment at different temperatures and different times. The microstructure and morphology of the composites were examined after ablation by scanning electron microscopy, and their composition was confirmed by energy dispersive spectroscopy. The composites exhibited good configurational stability with a surface temperature of greater than 2273 K over a 300–1000 s period. The formation of ZrSiO4 and SiO2 melts on the surface of the 3D Cf/ZrC-SiC composites contributed significantly to improvement in their ablation properties. However, these composites exhibited serious ablation when the temperature was increased to 2800 K. The 3D Cf/ZrC-SiC composites obtained after ablation showed three different layers attributed to the temperature and pressure gradients: the ablation central region, the ablation transition region, and the unablation region.

  10. T300HoneySiC: a new near-zero CTE molded C/SiC material

    Science.gov (United States)

    Goodman, William A.; Ghasemi Nejhad, Mehrdad N.; Wright, Stan; Welson, Darren

    2015-09-01

    Using an Additive Manufacturing process, Trex Enterprises and teammates were successful in producing a 12-inch by 12-inch by 0.5-inch vented, lightweight, Honeycomb C/SiC ceramic matrix composite (CMC) panel which had a density relative to bulk silicon carbide of 11% (89% lightweighting). The so-called T300HoneySiC™ panel and facesheet stock material were fabricated into ASTM standard coupons and tested at Southern Research Institute to obtain basic materials properties data. The material properties data showed that we had made a near-zero coefficient of thermal expansion (CTE= -0.22 ppm/°C from -196°C to +24°C) CMC C/SiC material with good strength. This material will be ideal for space opto-mechanical structures and optical benches due to its near-zero CTE and light weight. The material is initially molded and then converted to a C/SiC ceramic matrix composite, thus the fabrication time can be less than 3 weeks from start to finish, resulting in low cost.

  11. Multi-scale Model of Residual Strength of 2D Plain Weave C/SiC Composites in Oxidation Atmosphere

    Science.gov (United States)

    Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong

    2016-06-01

    Multi-scale models play an important role in capturing the nonlinear response of woven carbon fiber reinforced ceramic matrix composites. In plain weave carbon fiber/silicon carbon (C/SiC) composites, the carbon fibers and interphases will be oxidized at elevated temperature and the strength of the composite will be degraded when oxygen enters micro-cracks formed in the as-produced parts due to the mismatch in thermal properties between constituents. As a result of the oxidation on fiber surface, fiber shows a notch-like morphology. In this paper, the change rule of fiber notch depth is fitted by circular function. And a multi-scale model based upon the change rule of fiber notch depth is developed to simulate the residual strength and post-oxidation stress-strain curves of the composite. The multi-scale model is able to accurately predict the residual strength and post-oxidation stress-strain curves of the composite. Besides, the simulated residual strength and post-oxidation stress-strain curves of 2D plain weave C/SiC composites in oxidation atmosphere show good agreements with experimental results. Furthermore, the oxidation time and temperature of the composite are investigated to show their influences upon the residual strength and post-oxidation stress-strain curves of plain weave C/SiC composites.

  12. Thermal Shock Properties of a 2D-C/SiC Composite Prepared by Chemical Vapor Infiltration

    Science.gov (United States)

    Zhang, Chengyu; Wang, Xuanwei; Wang, Bo; Liu, Yongsheng; Han, Dong; Qiao, Shengru; Guo, Yong

    2013-06-01

    The thermal shock properties of a two-dimensional carbon fiber-reinforced silicon carbide composite with a multilayered self-healing coating (2D-C/SiC) were investigated in air. The composite was prepared by low-pressure chemical vapor infiltration. 2D-C/SiC specimens were thermally shocked for different cycles between 900 and 300 °C. The thermal shock resistance was characterized by residual tensile properties and mass variation. The change of the surface morphology and microstructural evolution of the composite were examined by a scanning electron microscope. In addition, the phase evolution on the surfaces was identified using an X-ray diffractometer. It is found that the composite retains its tensile strength within 20 thermal shock cycles. However, the modulus of 2D-C/SiC decreases gradually with increasing thermal shock cycles. Extensive pullout of fibers on the fractured surface and peeling off of the coating suggest that the damage caused by the thermal shock involves weakening of the bonding strength of coating/composite and fiber/matrix. In addition, the carbon fibers in the near-surface zone were oxidized through the matrix cracks, and the fiber/matrix interfaces delaminated when the composite was subjected to a larger number of thermal shock cycles.

  13. Doped Polycrystalline 3C-SiC Films Deposited by LPCVD for Radio-Frequency MEMS Applications

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-Mei; SUN Guo-Sheng; NING Jin; LIU Xing-Fang; ZHAO Wan-Shun; WANG Lei; LI Jin-Min

    2008-01-01

    Polycrystalline 3C-SiC films are deposited on SiO2 coated Si substrates by low pressure chemical vapour deposition (LPCVD) with C3H8 and SiH4 as precursors. Controlled nitrogen doping is performed by adding NH3 during SiC growth to obtain the low resistivity 3C-SiC films. X-ray diffraction (XRD) patterns indicate that the deposited films are highly textured (111) orientation. The surface morphology and roughness are determined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface features are spherulitic texture with average grain size of 100nm, and the rms roughness is 20nm (AFM 5 × 5μm images). Polycrysta/line 3C-SiC films with highly orientational texture and good surface morphology deposited on SiO2 coated Si substrates could be used to fabricate rf microelectromechanical systems (MEMS) devices such as SiC based filters.

  14. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating.

    Science.gov (United States)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-28

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  15. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    Science.gov (United States)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  16. Paramagnetic surface-states in {mu}c-3C-SiC as efficient acceptor in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, Andre; Greulich-Weber, Siegmund; Gerstmann, Uwe; Rauls, Eva; Schmidt, Wolf Gero [Physics, University of Paderborn, Paderborn (Germany)

    2011-07-01

    Microcrystalline silicon carbide ({mu}c-SiC) have become an attractive new class of advanced microstructured materials for heterojunction photovoltaic (PV) devices due to their wide band gap and lower absorption in the visible region while retaining their higher conductivity. We use a sol-gel process for growing {mu}c-SiC with sizes up to several 100 {mu}m allowing arbitrary doping. The initial material is insulating, indicating that the resulting sol-gel SiC is almost free from usually unavoidable nitrogen donors. As an analytic tool for the control of doping success we used electron paramagnetic resonance (EPR). The spectra obtained are clearly different from those known for usual shallow donors and acceptors in bulk SiC. Obviously, in microcrystals at least some of the defects seen by EPR are no longer bulk-like, but are surface-related. PV measurements support our finding that the required acceptor behavior of {mu}c-SiC is caused by surface-related defects in combination with an appropriate position of the Fermi level, which is determined by donor or acceptor doping. Based on this knowledge, the microscopic structure of the responsible defect structure at the clean surface of the microcrystallites is discussed with the help of total energy calculations in the framework of density functional theory. For possible dangling-bond related structures the elements of the electronic g-tensor are calculated and compared with the experimental values.

  17. Ti-Ni ohmic contacts on 3C-SiC doped by nitrogen or phosphorus implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, A.E., E-mail: anne-elisabeth.bazin@st.com [Universite Francois Rabelais, Tours, Laboratoire de Microelectronique de Puissance, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Michaud, J.F. [Universite Francois Rabelais, Tours, Laboratoire de Microelectronique de Puissance, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Autret-Lambert, C. [Universite Francois Rabelais, Tours, Laboratoire d' Electrodynamique des Materiaux Avances CNRS-CEA-UMR6157, Parc de Grandmont, 37200 Tours (France); Cayrel, F. [Universite Francois Rabelais, Tours, Laboratoire de Microelectronique de Puissance, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP 267, 73375 Le Bourget du Lac Cedex (France); Portail, M. [Centre de Recherche sur l' Hetero-Epitaxie et ses Applications CNRS-UPR10, Rue Bernard Gregory, 06560 Valbonne (France); Zielinski, M. [NOVASiC, Savoie Technolac, Arche Bat 4, BP 267, 73375 Le Bourget du Lac Cedex (France); Collard, E. [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Alquier, D. [Universite Francois Rabelais, Tours, Laboratoire de Microelectronique de Puissance, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France)

    2010-07-25

    For electronic devices, good ohmic contacts are required. To achieve such contacts, the semiconductor layer has to be highly doped. The only method available to locally dope the SiC is to implant dopants in the epilayer through a mask. In this work, non-intentionally doped 3C-SiC epilayers were implanted using nitrogen or phosphorus at different energies and subsequently annealed at temperatures between 1150 deg. C and 1350 deg. C in order to form n{sup +} implanted layers. Different techniques such as Fourier Transformed InfraRed spectroscopy (FTIR), Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM) were used to characterize implanted 3C-SiC epilayers subsequently to the different annealing steps. Then, Ti-Ni contacts were carried out and the specific contact resistance ({rho}{sub C}) was determined by using circular Transfer Length Method (c-TLM) patterns. {rho}{sub C} values were investigated as a function of implanted species and contact annealing conditions, and compared to those obtained for highly doped 3C-SiC epilayers. As expected, {rho}{sub C} value is highly sensitive to post-implantation annealing. This work demonstrates that low resistance values can be achieved using nitrogen or phosphorus implantation at room temperature hence enabling device processing.

  18. Influence of etching parameters on optoelectronic properties of c-Si/porous silicon heterojunction - application to solar cells

    Science.gov (United States)

    Bechiri, Fatiha; Zerdali, Mokhtar; Rahmoun, Ilham; Hamzaoui, Saad; Adnane, Mohamed; Sahraoui, Taoufik

    2013-03-01

    Thin layers of nanoporous silicon PS were synthesized by anodic etching, in order to develop photovoltaic cells. We proposed a diluted concentration of hydrofluoric acid with different etching current densities (1, 3, 5 mA/cm2) on a fairly short time anodization. Observations by scanning electron microscope, electrical measurements and optical measurements revealed that the structural properties of PS layers depended on strong conditions of prints. The reverse and forward component of the I-V characteristics showed an appropriate method to explore and extract the parameters of the diode ideality factor n. The optimum conditions of formation of PS were: HF concentration of 1% and an etching current density of mA/cm2. Unlike silicon, which has a low absorption of short visible wavelengths, it was shown that the PS had wide energy gap of ≈ 2 eV, and a marked improvement in the absorption between 400 and 600 nm. This property has been used to optimize the response of the solar cell Ni/PS/c-Si. Efficiency performance close to 4.2% was obtained with a Voc of 400 mV, and fill factor of 46%. The solar cell exhibited better response than the reference cell Ni/c-Si. These results show that PS/c-Si heterojunction has a potential for photovoltaic applications.

  19. Fabrication Technology and Characteristics of a Magnetic Sensitive Transistor with nc-Si:H/c-Si Heterojunction.

    Science.gov (United States)

    Zhao, Xiaofeng; Li, Baozeng; Wen, Dianzhong

    2017-01-22

    This paper presents a magnetically sensitive transistor using a nc-Si:H/c-Si heterojunction as an emitter junction. By adopting micro electro-mechanical systems (MEMS) technology and chemical vapor deposition (CVD) method, the nc-Si:H/c-Si heterojunction silicon magnetically sensitive transistor (HSMST) chips were designed and fabricated on a p-type orientation double-side polished silicon wafer with high resistivity. In addition, a collector load resistor ( R L ) was integrated on the chip, and the resistor converted the collector current ( I C ) to a collector output voltage ( V out ). When I B = 8.0 mA, V DD = 10.0 V, and R L = 4.1 kΩ, the magnetic sensitivity ( S V ) at room temperature and temperature coefficient ( α C ) of the collector current for HSMST were 181 mV/T and -0.11%/°C, respectively. The experimental results show that the magnetic sensitivity and temperature characteristics of the proposed transistor can be obviously improved by the use of a nc-Si:H/c-Si heterojunction as an emitter junction.

  20. Formation of a Positive Fixed Charge at c -Si (111 )/a -Si3N3.5:H Interfaces

    Science.gov (United States)

    Hintzsche, L. E.; Fang, C. M.; Marsman, M.; Lamers, M. W. P. E.; Weeber, A. W.; Kresse, G.

    2015-06-01

    Modern electronic devices are unthinkable without the well-controlled formation of interfaces at heterostructures. These structures often involve at least one amorphous material. Modeling such interfaces poses a significant challenge, since a meaningful result can be expected only by using huge models or by drawing from many statistically independent samples. Here we report on the results of high-throughput calculations for interfaces between crystalline silicon (c -Si ) and amorphous silicon nitride (a -Si3N3.5:H ), which are omnipresent in commercially available solar cells. The findings reconcile only partly understood key features. At the interface, threefold-coordinated Si atoms are present. These are caused by the structural mismatch between the amorphous and crystalline parts. The local Fermi level of undoped c -Si lies well below that of a -Si N :H . To align the Fermi levels in the device, charge is transferred from the a -Si N :H part to the c -Si part resulting in an abundance of positively charged, threefold-coordinated Si atoms at the interface. This explains the existence of a positive, fixed charge at the interface that repels holes.

  1. Critical Temperature Programs for Surface Carbonization of Si(111) and Their Effects on 3C-SiC Film Growth

    Science.gov (United States)

    Giang Nguyen, Nam; Liu, Chie-Sheng; Hu, Ming-Shien; Hong, Lu-Sheng

    2013-08-01

    We have studies of the changes in the surface states of carbonized Si(111) substrates treated under various temperature programs prior to high-temperature 3C-SiC film growth in a low pressure chemical vapor deposition system using SiH4, C2H2, and H2 as reactant gases. The carbonized Si surface underwent a change in bonding from SiC to disordered graphite, together with the formation of etch pits, when heated directly from the carbonization temperature of 1343 K to the growth temperature of 1523 K under a H2 flow over a period of 5 min; this transformation deteriorated the quality of the subsequent 3C-SiC growth. In contrast, a void-free stoichiometric SiC surface was preserved when we inserted a rapid cooling step, to near room temperature, under a H2 flow of 352 sccm within a period of 15 min after shutting off the C2H2 gas flow at the end of the surface carbonization process. The sharp temperature decrease in this program sealed off the carbonized substrate surface and, thus, led to a high film quality for subsequent 3C-SiC(111) growth.

  2. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    Science.gov (United States)

    Jin, Enze; Du, Shiyu; Li, Mian; Liu, Chen; He, Shihong; He, Jian; He, Heming

    2016-10-01

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  3. Structural and electrical characterizations of n-type implanted layers and ohmic contacts on 3C-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Song, X., E-mail: xi.song@st.com [Universite Francois Rabelais, Tours, LMP, 16, rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); STMicroelectronics, 16, rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Biscarrat, J. [Universite Francois Rabelais, Tours, LMP, 16, rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); STMicroelectronics, 16, rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Michaud, J.-F.; Cayrel, F. [Universite Francois Rabelais, Tours, LMP, 16, rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche bat 4, BP 267, 73375 Le Bourget du Lac Cedex (France); Portail, M. [Centre de Recherche sur l' Hetero-Epitaxie et ses Applications CNRS, rue Bernard Gregory, 06560 Valbonne (France); Collard, E. [STMicroelectronics, 16, rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Alquier, D. [Universite Francois Rabelais, Tours, LMP, 16, rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France)

    2011-09-15

    Highlights: {yields} N, P and N and P co-implantation in 3C-SiC. {yields} Closed to 100% of activation for N implanted/annealed sample at 1400 {sup o}C. {yields} Low surface roughness (<5 nm) after annealing by using carbon protective layer. {yields} Ultra-low SCR (2.6 x 10{sup -6} {Omega} cm{sup 2}) with Ti/Ni contact on N implanted/annealed sample. - Abstract: In this work, non-intentionally doped cubic silicon carbide (3C-SiC) epilayers grown on (1 0 0) silicon substrates were implanted using nitrogen (N), phosphorus (P) implantations or their co-implantation (N and P). After annealing from 1150 to 1400 {sup o}C, Secondary Ion Mass Spectroscopy (SIMS), Atomic Force Microscopy (AFM), Fourier Transformed InfraRed spectroscopy (FTIR), Scanning Spreading Resistance Microscopy (SSRM) and Scanning Transmission Electron Microscopy (STEM) analysis were performed. Specific contact resistances ({rho}{sub c}) of Ti/Ni ohmic contacts were determined using Circular Transfer Length Method (c-TLM) patterns. Our work shows that co-implantation, experimentally investigated for the first time in 3C-SiC, is not beneficial for the doping efficiency. According to the silicon substrate, the post-implantation annealing is limited to 1400 {sup o}C. Consecutively to this limit, the total recovering of the lattice does not seem to be possible, whatever are the implanted species. Moreover, as the crystal damages increase when increasing the atomic mass of the implanted species, a comparative study using SSRM measurements proved that, for the same post-implantation annealing treatment, the resistivity of implanted layers depend on the doping species. As a consequence, the lowest {rho}{sub c} value (2.8 x 10{sup -6} {Omega} cm{sup 2}) has been obtained (using Ti/Ni 25/100 nm pattern) for a 1400 {sup o}C-30 min annealing consecutively to the nitrogen implantation. This value is among the best values obtained on implanted 3C-SiC layers in the literature. Furthermore, for this annealing

  4. The Window Layer of μc-si(p)/c-si(n)/μc-si(n+) Heterojunction Solar Cell in Simulation and Optimization%微晶硅/晶体硅/微晶硅异质结太阳能电池窗口层的模拟计算与优化

    Institute of Scientific and Technical Information of China (English)

    杨大洋; 刘淑平; 张棚; 彭艳艳; 李德利

    2014-01-01

    采用Afors-het太阳能电池异质结模拟软件,模拟了不同工作温度下,微晶硅窗口层对μc-si(p)/c-si(n)/μc-si(p+)异质结太阳能电池性能的影响,结果表明:随着微晶硅窗口层带隙的增加,转化效率先增加后下降、开路电压不断增加;掺杂浓度的增加,电池性能整体呈现先上升后小幅下降的趋势;厚度的增加,电池的性能整体上呈现下降的趋势.随着工作温度的增加,微晶硅窗口层对应的最佳厚度和掺杂浓度值都有明显的减小趋势;但其对应的最佳带隙有明显的增加的趋势.该实验结果为在不同温度下工作的电池提供了商业化生产的实验参数.

  5. Si-B-C陶瓷涂敷2D C/SiC复合材料的抗氧化性能%Oxidation resistance of two dimensional C/SiC composite coated with Si-B-C ceramic

    Institute of Scientific and Technical Information of China (English)

    左新章; 张立同; 刘永胜; 成来飞; 龚慧灵

    2013-01-01

    Two dimensional C/SiC composite coated with Si-B-C ceramic was prepared via chemical vapor deposition (CVD).Properties and structure evolution and self-healing mechanisms of the C/SiC composite were studied after oxidation for 10 h during 700-1200 ℃.At the same time,the evolution of morphologies,composition and phase for Si-B-C ceramic were also investigated.The experimental results show that the oxidation of Si-B-C ceramic accelerates with the temperature increasing,however,the oxidation scale is shallow and no more than 7 μm.With the temperature increasing,viscosity of borosilicate glass oxidized from Si-B-C ceramic reduces but volatilization accelerates.When the temperature increases to 1200 ℃,SiO2 crystallizes from borosilicate glass.C/SiC composite coated with Si-B-C ceramic shows an excellent oxidation resistance.Mass loss increases with temperature increasing,which is only 0.47% after oxidation for 10 h at 1200 ℃.Furthermore,the strength retention ratio is 91.6% at 1000 ℃,higher than that at other temperatures.The main mechanisms for excellent oxidation resistance of C/SiC composite is that borosilicatc glass oxidized from Si-B-C ceramic can seal cracks in composite effectively.%利用化学气相沉积(CVD)法制备了Si-B-C陶瓷涂敷改性的2D C/SiC复合材料,研究了其在700~1200℃氧化10 h性能和结构的演变规律以及自愈合机制,同时获得了Si-B-C涂层在不同温度氧化后的形貌、组分和物相转变规律.结果表明:涂敷在复合材料表面的Si-B-C陶瓷随温度的升高氧化加快,但氧化程度较低,不深于7μm;随温度的升高,氧化形成的硅硼玻璃黏度降低,挥发增强;当温度达到1200℃时,硅硼玻璃析出SiO2晶体;Si-B-C陶瓷涂敷改性的C/SiC具有优良的抗氧化性能,随氧化温度的升高,复合材料失重率增加,但在1200℃氧化10h后失重率仅为0.47%;此外材料在1000℃氧化后的强度保持率最高,达到91.6%,Si-B-C陶瓷氧化形

  6. Search for Exotic mono-jet and mono-photon signatures with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Rezvani Reyhaneh

    2013-05-01

    Full Text Available Mono-jet and mono-photon signatures are final states in a variety of scenarios beyond the Standard Model, such as the Large Extra Dimension models, gauge-mediated SUSY breaking scenarios, and models with pair production of Weakly Interacting Massive Particles considered as dark matter candidates. The produced exotic particles do not interact with the detector, resulting in missing transverse energy. The results of searches, performed in the ATLAS experiment at the LHC, for new physics in final states with an energetic jet or photon and large missing transverse energy are presented. The mono-jet search is performed using both 4.6 fb−1 of 7 TeV and 10.5 fb−1 of 8 TeV data, while the mono-photon results correspond to 4.6 fb−1 of 7 TeV data.

  7. Interlaminar Shear Strength of Z Direction Reinforced Plain-woven C/SiC Composite%Z向增强平纹编织C/SiC复合材料层间剪切强度

    Institute of Scientific and Technical Information of China (English)

    刘(韦华); 矫桂琼

    2009-01-01

    碳纤维平纹编织物和穿透厚度的碳纤维Z-pins制作的预成型体,通过化学气相渗透工艺制备了Z-pins增强平纹编织C/SiC复合材料.采用双缺口剪切压缩试验测定了Z-pins增强平纹编织C/SiC复合材料的层间剪切强度,通过断口的电镜照片分析了层间剪切的破坏机理.研究了Z-pins个数对层间剪切强度的影响.结果表明:与未增强陶瓷基复合材料相比较,当Z-pins个数达到一定数量时,Z-pins插入能够提高层间剪切强度,层问剪切强度随Z-pins个数的增多而增加.Z-pins插入改变了陶瓷基复合材料的层间破坏机理,使层间织物与基体的脱离变为Z-pins的剪切破坏和层间织物与基体脱离的双重破坏机制.%A preform consisting of plain-woven carbon fabric and Z-pins made of through-thickness carbon fiber bundles was prepared and then the Z-pin reinforced plain-woven C/SiC composite was fabricated by a chemical vapor infiltration. Double-notched shear compression tests and scanning electron microscopy were used on Z-pin reinforced plain-woven C/SiC ceramic matrix composite to measure interlaminar shear strength and to analyze fracture mechanism of the interlaminar shear, respectively. Effect of the number of Z-pins on interlaminar shear strength was studied. The results show that the insertion of Z-pins improves interlaminar shear strength when the number of Z-pins reached a certain quantity comparing with the ceramic matrix composites without Z-pins, and interlaminar shear strength increases as the number of Z-pins increases. Z-pins change the interlaminar fracture mechanism of the ceramic matrix composites into a double fracture mechanism of Z-pin shear fracture and debonding of fabric and matrix of interlaminar.

  8. Prevalence, Risk Factors, and Treatment Outcomes of Isoniazid- and Rifampicin-Mono-Resistant Pulmonary Tuberculosis in Lima, Peru.

    Directory of Open Access Journals (Sweden)

    Leonela Villegas

    Full Text Available Isoniazid and rifampicin are the two most efficacious first-line agents for tuberculosis (TB treatment. We assessed the prevalence of isoniazid and rifampicin mono-resistance, associated risk factors, and the association of mono-resistance on treatment outcomes.A prospective, observational cohort study enrolled adults with a first episode of smear-positive pulmonary TB from 34 health facilities in a northern district of Lima, Peru, from March 2010 through December 2011. Participants were interviewed and a sputum sample was cultured on Löwenstein-Jensen (LJ media. Drug susceptibility testing was performed using the proportion method. Medication regimens were documented for each patient. Our primary outcomes were treatment outcome at the end of treatment. The secondary outcome included recurrent episodes among cured patients within two years after completion of the treatment.Of 1292 patients enrolled, 1039 (80% were culture-positive. From this subpopulation, isoniazid mono-resistance was present in 85 (8% patients and rifampicin mono-resistance was present in 24 (2% patients. In the multivariate logistic regression model, isoniazid mono-resistance was associated with illicit drug use (adjusted odds ratio (aOR = 2.10; 95% confidence interval (CI: 1.1-4.1, and rifampicin mono-resistance was associated with HIV infection (aOR = 9.43; 95%CI: 1.9-47.8. Isoniazid mono-resistant patients had a higher risk of poor treatment outcomes including treatment failure (2/85, 2%, p-value<0.01 and death (4/85, 5%, p<0.02. Rifampicin mono-resistant patients had a higher risk of death (2/24, 8%, p<0.01.A high prevalence of isoniazid and rifampicin mono-resistance was found among TB patients in our low HIV burden setting which were similar to regions with high HIV burden. Patients with isoniazid and rifampicin mono-resistance had an increased risk of poor treatment outcomes.

  9. Effectiveness of Diffusion Barrier Coatings for Mo-Re Embedded in C/SiC and C/C

    Science.gov (United States)

    Glass, David E.; Shenoy, Ravi N.; Wang, Zeng-Mei; Halbig, Michael C.

    2001-01-01

    Advanced high-temperature cooling applications may often require the elevated-temperature capability of carbon/silicon carbide or carbon/carbon composites in combination with the hermetic capability of metallic tubes. In this paper, the effects of C/SiC and C/C on tubes fabricated from several different refractory metals were evaluated. Though Mo, Nb, and Re were evaluated in the present study, the primary effort was directed toward two alloys of Mo-Re, namely, arc cast Mo-41Re and powder metallurgy Mo-47.5Re. Samples of these refractory metals were subjected to either the PyC/SiC deposition or embedding in C/C. MoSi2(Ge), R512E, and TiB2 coatings were included on several of the samples as potential diffusion barriers. The effects of the processing and thermal exposure on the samples were evaluated by conducting burst tests, microhardness surveys, and scanning electron microscopic examination (using either secondary electron or back scattered electron imaging and energy dispersive spectroscopy). The results showed that a layer of brittle Mo-carbide formed on the substrates of both the uncoated Mo-41Re and the uncoated Mo-47.5Re, subsequent to the C/C or the PyC/SiC processing. Both the R512E and the MoSi2(Ge) coatings were effective in preventing not only the diffusion of C into the Mo-Re substrate, but also the formation of the Mo-carbides. However, none of the coatings were effective at preventing both C and Si diffusion without some degradation of the substrate.

  10. Effect of different parameters on machining of SiC/SiC composites via pico-second laser

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weinan; Zhang, Ruoheng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Wang, Chunhui; Wang, Jing [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Cheng, Laifei [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2016-02-28

    Graphical abstract: - Highlights: • The highlights of the manuscript include the following two aspects. • First, we found that the different machining modes (helical line scanning and single ring line scanning) and processing power of machining have remarkable effect on the surface morphology of the machined area, such as the shape, depth and the formation of different surface structures. • Secondly, we investigated that the debris consisted of C, Si and O was observed on the machined surface. • Some of the Si–C bonds of the SiC matrix and fibers would be transformed into Si–O bonds after machined, depending on the processing power. - Abstract: Pico-second laser plays an important role in modern machining technology, especially in machining high hardness materials. In this article, pico-second laser was utilized for irradiation on SiC/SiC composites, and effects of different processing parameters including the machining modes and laser power were discussed in detail. The results indicated that the machining modes and laser power had great effect on machining of SiC/SiC composites. Different types of surface morphology and structure were observed under helical line scanning and single ring line scanning, and the analysis of their formulation was discussed in detail. It was believed that the machining modes would be responsible to the different shapes of machining results at the same parameters. The processing power shall also influence the surface morphology and quality of machining results. In micro-hole drilling process, large amount of debris and fragments were observed within the micro-holes, and XPS analysis showed that there existed Si–O bonds and Si–C bonds, indicating that the oxidation during processing was incomplete. Other surface morphology, such as pores and pits were discussed as well.

  11. Effects of Preform Density on Structure and Property of C/C-SiC Composites Fabricated by Gaseous Silicon Infiltration

    Directory of Open Access Journals (Sweden)

    CAO Yu

    2016-07-01

    Full Text Available The 3-D needled C/C preforms with different densities deposited by chemical vapor infiltration (CVI method were used to fabricate C/C-SiC composites by gaseous silicon infiltration (GSI. The porosity and CVI C thickness of the preforms were studied, and the effects of preform density on the mechanical and thermal properties of C/C-SiC composites were analyzed. The results show that with the increase of preform density, the preform porosity decreases and the CVI C thickness increases from several hundred nanometers to several microns. For the C/C-SiC composites, as the preform density increases, the residual C content increases while the density and residual Si content decreases. The SiC content first keeps at a high level of about 40% (volume fraction, which then quickly reduces. Meanwhile, the mechanical properties increase to the highest values when the preform density is 1.085g/cm3, with the flexure strength up to 308.31MP and fracture toughness up to 11.36MPa·m1/2, which then decrease as the preform density further increases. The thermal conductivity and CTE of the composites, however, decrease with the increase of preform density. It is found that when the preform porosity is too high, sufficient infiltration channels lead to more residual Si, and thinner CVI C thickness results in the severe corrosion of the reinforcing fibers by Si and lower mechanical properties. When the preform porosity is relatively low, the contents of Si and SiC quickly reduce since the infiltration channels are rapidly blocked, resulting in the formation of large closed pores and not high mechanical properties.

  12. 21 CFR 172.834 - Ethoxylated mono- and diglycerides.

    Science.gov (United States)

    2010-04-01

    ... ethoxylated mono-and diglycerides (polyoxyethylene (20) mono- and diglycerides of fatty acids) (polyglycerate... labeling it shall be followed by either “polyoxyethylene (20) mono-and diglycerides of fatty acids” or... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD...

  13. C/SiC复合材料推力室应用研究%Applied research of rocket engine thrusters made of ceramic matrix composite

    Institute of Scientific and Technical Information of China (English)

    刘志泉; 马武军

    2011-01-01

    C/SiC复合材料密度低、耐高温、抗氧化、抗烧蚀,并且具有非常好的高温力学性能,是制备高性能液体火箭发动机推力室的理想材料.本文从C/SiC复合材料燃烧室结构计算、无损探伤及C/SiC与金属连接等方面,论述了上海空间研究所在C/SiC复合材料应用于液体火箭发动机推力室方面的基础研究及应用进展.

  14. Identification of Second Shell Coordination in Transition Metal Species Using Theoretical XANES: Example of Ti-O-(C, Si, Ge) Complexes.

    Science.gov (United States)

    Spanjers, Charles S; Guillo, Pascal; Tilley, T Don; Janik, Michael J; Rioux, Robert M

    2017-01-12

    X-ray absorption near-edge structure (XANES) is a common technique for elucidating oxidation state and first shell coordination geometry in transition metal complexes, among many other materials. However, the structural information obtained from XANES is often limited to the first coordination sphere. In this study, we show how XANES can be used to differentiate between C, Si, and Ge in the second coordination shell of Ti-O-(C, Si, Ge) molecular complexes based on differences in their Ti K-edge XANES spectra. Experimental spectra were compared with theoretical spectra calculated using density functional theory structural optimization and ab initio XANES calculations. The unique features for second shell C, Si, and Ge present in the Ti K pre-edge XANES are attributed to the interaction between the Ti center and the O-X (X = C, Si, or Ge) antibonding orbitals.

  15. Simulation analysis of the effects of a back surface field on a p-a-Si:H/n-c-Si/n+-a-Si:H heterojunction solar cell

    Institute of Scientific and Technical Information of China (English)

    Hu Yuehui; Zhang Xiangwen; Qu Minghao; Wang Lifu; Zeng Tao; Xie Yaojiang

    2009-01-01

    In order to investigate the effects of a back surface field (BSF) on the performance of a p-doped amorphous silicon (p-a-Si:H)/n-doped crystalline silicon (n-c-Si) solar cell, a heterojunction solar cell with a p-a-Si:H/nc-Si/n+-a-Si:H structure was designed. An n+-a-Si:H film was deposited on the back of an n-c-Si wafer as the BSF.The photovoltaic performance of p-a-Si:H/n-c-Si/n+-a-Si:H solar cells were simulated. It was shown that the BSF of the p-a-Si:H/n-c-Si/n+-a-Si:H solar cells could effectively inhibit the decrease of the cell performance caused by interface states.

  16. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  17. Synthesis of β-SiC/SiO_2 core-shell nanowires with the assistance of cerium oxide

    Institute of Scientific and Technical Information of China (English)

    于伟鹏; 郑瑛; 杨娥; 邱健斌; 兰瑞芳

    2010-01-01

    The β-SiC/SiO2 core-shell nanowires with the "stem-and-node" structure were synthesized in the presence of cerium oxide by the carbothermal reduction of the starch-SiO2 hybrids gel.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM) and energy-dispersed X-ray(EDX).The results showed that the nanowires consisted of a 20-35 nm diameter crystalline β-SiC core wrapped with a 2-5 n...

  18. EFFECTS OF HIGH TEMPERATURE PRETREATMENTS ON HIGH TEMPERATURE FRACTURE BEHAVIOR OF SiC-C/SiC

    Institute of Scientific and Technical Information of China (English)

    X.G. Luan; L.F. Cheng; S.R. Qiao; J. Zhang

    2004-01-01

    The samples made from a SiC-C/SiC composite were pretreated in Ar under creep,fatigue, creep and fatigue interaction, as well as in dry oxygen and wet oxygen under fatigue at 1300℃ for 15 hours. The fracture behaviors of the pretreated samples were investigated at 1300℃. The loading-strain curves and the microstructures of the sample were compared with each other. The various of high temperature tensile behaviors was attributed to the different microstructures resulted from different high temperature pretreatments.

  19. Surface passivation of c-Si for silicon heterojunction solar cells using high-pressure hydrogen diluted plasmas

    Directory of Open Access Journals (Sweden)

    Dimitrios Deligiannis

    2015-09-01

    Full Text Available In this work we demonstrate excellent c-Si surface passivation by depositing a-Si:H in the high-pressure and high hydrogen dilution regime. By using high hydrogen dilution of the precursor gases during deposition the hydrogen content of the layers is sufficiently increased, while the void fraction is reduced, resulting in dense material. Results show a strong dependence of the lifetime on the substrate temperature and a weaker dependence on the hydrogen dilution. After applying a post-deposition annealing step on the samples equilibration of the lifetime occurs independent of the initial nanostructure.

  20. Effect of wet-chemical substrate pretreatment on electronic interface properties and recombination losses of a -Si:H/c -Si and a -SiN{sub x}:H/c -Si hetero-interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike; Conrad, Erhard; Korte, Lars; Schmidt, Manfred [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institut fuer Silizium-Photovoltaik, Berlin (Germany); Wuensch, Frank; Kunst, Marinus [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institut Solare Brennstoffe und Energiespeichermaterialien, Berlin (Germany); Laades, Abdelazize; Stuerzebecher, Uta [CiS Institut fuer Mikrosensorik GmbH, SolarZentrum Erfurt (Germany)

    2011-03-15

    Surface charge, surface state density and interface recombination behavior on polished float zone (FZ) solar cell substrates were investigated after various wet-chemical pre-cleaning procedures and deposition of amorphous silicon (a-Si:H) or silicon nitride (a-SiNx:H). Applying surface photo voltage (SPV), microwave detected photo conductance decay ({mu}W-PCD) and transient microwave conduction (TRMC) measurements, electronic interface properties were monitored repeatedly during the preparation processes. As shown for an inverted a-Si:H/c-Si hetero-junction structure, with front side passivation by a-SiN{sub x}:H and a p-type a-Si:H emitter on the rear side, the effect of optimised wet-chemical pre-treatment can be preserved during the subsequent soft plasma enhanced chemical vapour deposition of a-Si:H or a-SiN{sub x}:H. This leads to hetero-interfaces with low interface recombination velocities. These results were compared to previously reported findings, obtained on textured Czochralski (CZ) single crystalline substrates. a-SiN{sub x}:H is known to result in a field effect passivation. Nevertheless a strong influence of wet-chemical treatments on surface charge and recombination losses was observed on both flat and textured a-SiN{sub x}:H/c-Si interfaces. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Review of the recording and age of the Mono Lake Excursion

    Science.gov (United States)

    Coe, R.; Liddicoat, J.

    2009-04-01

    Among the brief departures from gradual, long-term behaviour of the palaeomagnetic field in the Brunhes Normal Chron that reached opposite polarity or have a Virtual Geomagnetic Pole deep in the southern hemisphere, the first to be reported is the Laschamp Excursion (LE) in volcanic rocks in the Massif Central in France (Bonhommet and Zahringer, 1969). They originally believed it occurred between about 9,000 to 20,000 years before present, but it is now assigned an age of about 40,000 years B.P. (Guillou et al., 2004). Denham and Cox (1971) unsuccessfully sought the LE in exposed lake sediments that seemed to span that interval in the Mono Basin in the western Great Basin of the U.S., but instead encountered anomalous field behaviour that is called the Mono Lake Excursion (MLE)(Liddicoat and Coe, 1979). As a tribute to Norbert Bonhommet, who assisted us in our initial field work in the Mono Basin and shared a long-standing interest in the LE and MLE, we will review the palaeomagnetic behaviour and age of the MLE in the Mono Basin and elsewhere, for which there are nearly 20 reports of its occurrence globally, and evaluate the recent suggestion that the excursion at Mono Lake and the LE are the same.

  2. Wide-Gap p-μc-Si1-xOx:H Films and Their Application to Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2013-01-01

    Full Text Available Optimization of p-type hydrogenated microcrystalline silicon oxide thin films (p-μc-Si1-xOx:H by very high frequency plasma enhanced chemical vapor deposition 40 MHz method for use as a p-layer of a-Si:H solar cells was performed. The properties of p-μc-Si1-xOx:H films were characterized by conductivity, Raman scattering spectroscopy, and spectroscopic ellipsometry. The wide optical band gap p-μc-Si1-xOx:H films were optimized by CO2/SiH4 ratio and H2/SiH4 dilution. Besides, the effects of wide-gap p-μc-Si1-xOx:H layer on the performance of a-Si:H solar cells with various optical band gaps of p-layer were also investigated. Furthermore, improvements of open circuit voltage, short circuit current, and performance of the solar cells by using the effective wide-gap p-μc-Si1-xOx:H were observed in this study. These results indicate that wide-gap p-μc-Si1-xOx:H is promising to use as window layer in a-Si:H solar cells.

  3. Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction

    Science.gov (United States)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2009-01-01

    Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.

  4. Effect of different parameters on machining of SiC/SiC composites via pico-second laser

    Science.gov (United States)

    Li, Weinan; Zhang, Ruoheng; Liu, Yongsheng; Wang, Chunhui; Wang, Jing; Yang, Xiaojun; Cheng, Laifei

    2016-02-01

    Pico-second laser plays an important role in modern machining technology, especially in machining high hardness materials. In this article, pico-second laser was utilized for irradiation on SiC/SiC composites, and effects of different processing parameters including the machining modes and laser power were discussed in detail. The results indicated that the machining modes and laser power had great effect on machining of SiC/SiC composites. Different types of surface morphology and structure were observed under helical line scanning and single ring line scanning, and the analysis of their formulation was discussed in detail. It was believed that the machining modes would be responsible to the different shapes of machining results at the same parameters. The processing power shall also influence the surface morphology and quality of machining results. In micro-hole drilling process, large amount of debris and fragments were observed within the micro-holes, and XPS analysis showed that there existed Si-O bonds and Si-C bonds, indicating that the oxidation during processing was incomplete. Other surface morphology, such as pores and pits were discussed as well.

  5. ProTEK PSB as Biotechnology Photosensitive Protection Mask on 3C-SiC-on-Si in MEMS Sensor

    Science.gov (United States)

    Marsi, N.; Majlis, B. Y.; Mohd-Yasin, F.; Hamzah, A. A.; Mohd Rus, A. Z.

    2016-11-01

    This project presents the fabrication of MEMS employing a cubic silicon carbide (3C- SiC) on silicon wafer using newly developed ProTEK PSB as biotechnology photosensitive protection mask. This new biotechnology can reduce the number of processes and simplify the process flow with minimal impact on overall undercut performance. The 680 pm thick wafer is back-etched, leaving the 3C-SiC thin film with a thickness of 1.0 μm as the flexible diaphragm to detect pressure. The effect of the new coating of ProTEK PSB on different KOH solvents were investigated depending on various factors such as development time, final cure temperature and the thickness of the ProTEK PSB deposited layer. It is found that 6.174 μm thickness of ProTEK PSB offers some possibility of reducing the processing time compared to silicon nitride etch masks in KOH (55%wt, 80°C). The new ProTEK PSB biotechnology photosensitive protection mask indicates good stability and sustains its performance in different treatments under KOH and IPA for 8 hours. This work also revealed that the fabrication of MEMS sensors using the new biotechnology photosensitive protection mask provides a simple assembly approach and reduces manufacturing costs. The MEMS sensor can operate up to 500 °C as indicated under the sensitivity of 0.826 pF/MPa with nonlinearity and hysteresis of 0.61% and 3.13%, respectively.

  6. On the c-Si/SiO2 interface recombination parameters from photo-conductance decay measurements

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2017-04-01

    The recombination of electric charge carriers at semiconductor surfaces continues to be a limiting factor in achieving high performance optoelectronic devices, including solar cells, laser diodes, and photodetectors. The theoretical model and a solution algorithm for surface recombination have been previously reported. However, their successful application to experimental data for a wide range of both minority excess carrier concentrations and dielectric fixed charge densities has not previously been shown. Here, a parametrisation for the semiconductor-dielectric interface charge Q i t is used in a Shockley-Read-Hall extended formalism to describe recombination at the c-Si/SiO2 interface, and estimate the physical parameters relating to the interface trap density D i t , and the electron and hole capture cross-sections σ n and σ p . This approach gives an excellent description of the experimental data without the need to invoke a surface damage region in the c-Si/SiO2 system. Band-gap tail states have been observed to limit strongly the effectiveness of field effect passivation. This approach provides a methodology to determine interface recombination parameters in any semiconductor-insulator system using macro scale measuring techniques.

  7. Study of optical sensors of the form Al/a-SiC:H/c-Si(n with high sensitivity.

    Directory of Open Access Journals (Sweden)

    L. Magafas

    2008-06-01

    Full Text Available In the present work optical sensors of the form Al/a-SiC:H/c-Si(n, for different thickness of a-SiC:H thin films are stud-ied. More specifically, a-SiC:H thin films were deposited by rf sputtering technique on c-Si(n substrates for different thickness of the amorphous semiconductor and, subsequently, the samples were annealed in the temperature range from 300oC up to 675 oC. Experimental measurements of the optical response of these sensors showed that for thicknesses of a-SiC:H greater than a critical value, which depends on annealing temperature, a mechanism of losses is appeared in the region of wavelengths from 525nm up to 625nm. This behaviour is attributed to the recombination of photo-generated electrons-hole pairs in the neutral region of a-SiC:H, when this exceeds the diffusion length of minority carries, Lp. Also, the value of the reverse bias voltage appears to influence considerably the optical response of these sensors when d > Lp in the case where the a-SiC: H thin films were annealed at 600oC.

  8. Oxidation mechanisms and kinetics of 1D-SiC/C/SiC composite materials; 1: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Filipuzzi, L.; Camus, G.; Naslain, R. (Domaine Univ., Pessac (France). Lab. des Composites Thermostructuraux); Thebault, J. (Societe Europeenne de Propulsion, Saint Medard en Jalles (France))

    1994-02-01

    The oxidation of unidirectional SiC/C/SiC model composites has been investigated through thermogravimetric analysis, optical/electron microscopy, and electrical measurements. The influence of temperature and carbon interphase thickness on the oxidation of the composites is discussed. The oxidation involves three phenomena: (1) reaction of oxygen with the carbon interphase resulting in pores around the fibers, (2) diffusion of oxygen and carbon oxides along the pores, and (3) reaction of oxygen with the pore walls leading to the growth of silica layers on both the fibers and matrix. In composites with a thin carbon interphase treated at T > 1,000 C the pores are rapidly sealed by silica. Under such conditions, the oxidation damages are limited to the vicinity of the external surface and the materials exhibit a self-healing character. Conversely, long exposures at 900 C give rise to the formation of microcracks in the matrix related to mechanical stresses arising from the in situ SiC/SiO[sub 2] conversion. Finally, the self-heating character is not observed in composites with a thick interphase since carbon is totally consumed before silica can seal the pores.

  9. Modeling Forced Flow Chemical Vapor Infiltration Fabrication of SiC-SiC Composites for Advanced Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Christian P. Deck

    2013-01-01

    Full Text Available Silicon carbide fiber/silicon carbide matrix (SiC-SiC composites exhibit remarkable material properties, including high temperature strength and stability under irradiation. These qualities have made SiC-SiC composites extremely desirable for use in advanced nuclear reactor concepts, where higher operating temperatures and longer lives require performance improvements over conventional metal alloys. However, fabrication efficiency advances need to be achieved. SiC composites are typically produced using chemical vapor infiltration (CVI, where gas phase precursors flow into the fiber preform and react to form a solid SiC matrix. Forced flow CVI utilizes a pressure gradient to more effectively transport reactants into the composite, reducing fabrication time. The fabrication parameters must be well understood to ensure that the resulting composite has a high density and good performance. To help optimize this process, a computer model was developed. This model simulates the transport of the SiC precursors, the deposition of SiC matrix on the fiber surfaces, and the effects of byproducts on the process. Critical process parameters, such as the temperature and reactant concentration, were simulated to identify infiltration conditions which maximize composite density while minimizing the fabrication time.

  10. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  11. The structures, stability, and photoelectron spectroscopy of GaPX - (X = C, Si, Ge; O, S; P and Ga) clusters

    Science.gov (United States)

    Zhang, Congjie; Jia, Wenhong

    2006-08-01

    The equilibrium geometries and vibrational frequencies of GaPX - and GaPX (X = C, Si, Ge; O, S; P and Ga) have been studied by hybrid B3LYP functional at cc-PVTZ and aug-cc-PVTZ levels. The results predict that the most stable structure of GaPC - is linear while the others are trigonal. As for GaPX (X = C, Si, Ge; O, S; P and Ga), the ground structures of GaPC and GaPO are linear while the others are trigonal. The adiabatic electron affinities (AEAs) and vertical detachment energies (VDEs) of GaPX - are calculated at B3LYP/aug-cc-PVTZ level. And the order of the AEAs and VDEs of GaPX - are C < O < Ge ≈ Si < P < S < Ga and C < Ge ≈ Si < P < O < S < Ga, respectively. GaPC exhibits the lowest adiabatic electron affinities of all the clusters studied, indicating a particularly stable neutral species.

  12. Performance improvement of n-i-p μc-Si:H solar cells by gradient hydrogen dilution technique

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High pressure radio frequency plasma enhanced chemical vapor deposition(RF-PECVD)process was adopted to investigate the effect of constant hydrogen dilution technique and gradient hydrogen dilu-tion technique on the structural evolution of intrinsic films and the performance of n-i-p microcrystal-line silicon solar cells.The experiment results demonstrated that the grain size and crystalline volume fraction along the growth direction of intrinsic films can be controlled and the performance of solar cells can be greatly improved by gradient hydrogen dilution technique.An initial active-area efficiency of 5.7%(Voc=0.47V,Jsc=20.2mA/cm2,FF=60%)for the μc-Si:H single-junction n-i-p solar cells and an initial active-area efficiency of 10.12%(Voc=1.2V,Jsc=12.05mA/cm2,FF=70%)for the a-Si:H/μc-Si:H tandem n-i-p solar cells has been achieved.

  13. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.

    Science.gov (United States)

    Liu, Baodan; Yang, Bing; Yuan, Fang; Liu, Qingyun; Shi, Dan; Jiang, Chunhai; Zhang, Jinsong; Staedler, Thorsten; Jiang, Xin

    2015-12-01

    In this work, we demonstrate a new strategy to create WZ-GaN/3C-SiC heterostructure nanowires, which feature controllable morphologies. The latter is realized by exploiting the stacking faults in 3C-SiC as preferential nucleation sites for the growth of WZ-GaN. Initially, cubic SiC nanowires with an average diameter of ∼100 nm, which display periodic stacking fault sections, are synthesized in a chemical vapor deposition (CVD) process to serve as the core of the heterostructure. Subsequently, hexagonal wurtzite-type GaN shells with different shapes are grown on the surface of 3C-SiC wire core. In this context, it is possible to obtain two types of WZ-GaN/3C-SiC heterostructure nanowires by means of carefully controlling the corresponding CVD reactions. Here, the stacking faults, initially formed in 3C-SiC nanowires, play a key role in guiding the epitaxial growth of WZ-GaN as they represent surface areas of the 3C-SiC nanowires that feature a higher surface energy. A dedicated structural analysis of the interfacial region by means of high-resolution transmission electron microscopy (HRTEM) revealed that the disordering of the atom arrangements in the SiC defect area promotes a lattice-matching with respect to the WZ-GaN phase, which results in a preferential nucleation. All WZ-GaN crystal domains exhibit an epitaxial growth on 3C-SiC featuring a crystallographic relationship of [12̅10](WZ-GaN) //[011̅](3C-SiC), (0001)(WZ-GaN)//(111)(3C-SiC), and d(WZ-GaN(0001)) ≈ 2d(3C-SiC(111)). The approach to utilize structural defects of a nanowire core to induce a preferential nucleation of foreign shells generally opens up a number of opportunities for the epitaxial growth of a wide range of semiconductor nanostructures which are otherwise impossible to acquire. Consequently, this concept possesses tremendous potential for the applications of semiconductor heterostructures in various fields such as optics, electrics, electronics, and photocatalysis for energy harvesting

  14. Water Resources Data for California, water year 1981: Vol. 1. Colorado River basin, Southern Great basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River

    Science.gov (United States)

    ,

    1982-01-01

    Water-resources data for the 1981 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 169 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 42 streams and 21 wells; water levels for 169 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  15. Back Surface Field of Mc-Si(n)/c-Si(p)Heterojunction Solar Cells by Simulation and Optimization%μc-Si(n)/c-Si(p)异质结太阳电池微晶硅背场的模拟与优化

    Institute of Scientific and Technical Information of China (English)

    李力猛; 周炳卿; 陈霞; 韩兵; 郝丽媛

    2009-01-01

    采用AFORS-HET软件模拟了微晶硅背场对μc-si(n)/c-si(p)异质结太阳电池性能的影响.结果显示:微晶硅背场的厚度对电池性能影响较小;而随着背场掺杂浓度的提高,短路电流和填充因子都逐渐提高,太阳电池效率随之增大;随着带隙的增大,短路电流和效率均是先增大,当带隙超过1.55ev时逐渐变小.当微晶硅背场的厚度为10nm,掺杂浓度为3×1018/cm3,带隙为1.55ev时,太阳电池的转化效率最高,达到21.8%.

  16. Effect of C, Si and P on intergranular corrosion susceptibility of type 316 stainless steel; 316 kei stainless ko no ryuiaki fushokusei ni oyobosu kochu C, Si oyobi P no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M.; Abe, S. [Nippon Steel Corp., Tokyo (Japan)

    1995-07-15

    The effect of C, Si and P on intergranular corrosion (IGC) susceptibility of Type 316 painless steels (SS) has been studied in terms of the composition dependent IGC and the impound dependent IGC. The results obtained are as follows; (1) C increases the IGC existence of Type 316 SS in Huey and Coriou tests by suppressing the precipitation of Laves phase. However, severe IGC occurs in HNO3 + HF and Huey tests when the Cr depleted one is continuously formed at grainboundaries (GB). (2) Si raises the IGC susceptibility both in Huey and Coriou tests. It is considered that Si enhances the precipitation of Laves phase at GB. (3) p also increases the IGC susceptibility both in Huey and Coriou tests by decapitating as Ni-P phosphides at GB. 10 refs., 12 figs., 2 tabs.

  17. Au/(C/SiO2)/p-Si结构中的电流输运机理研究%Study on the current transport mechanisms of the structure Au/(C/SiO2 )/p-Si

    Institute of Scientific and Technical Information of China (English)

    张汉谋; 马书懿

    2006-01-01

    采用射频磁控溅射方法制备了镶嵌纳米碳粒的SiO2薄膜,利用Au/(C/SiO2)/p-Si结构的Ⅰ-Ⅴ特性曲线,对其电流输运机理进行了分析.结果表明,正向偏压较小时,薄膜中的电流符合欧姆电流输运机制;正向偏压较大时,薄膜中的电流主要是Schottky发射和Frenkel-Poole发射2种电流输运机制的共同作用结果.这一结论与样品的EL(electroluminescence)是由SiO2中的发光中心引起的结论相一致.

  18. Use of the Materials Genome Initiative (MGI approach in the design of improved-performance fiber-reinforced SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-07-01

    Full Text Available New materials are traditionally developed using costly and time-consuming trial-and-error experimental efforts. This is followed by an even lengthier material-certification process. Consequently, it takes 10 to 20 years before a newly-discovered material is commercially employed. An alternative approach to the development of new materials is the so-called materials-by-design approach within which a material is treated as a complex hierarchical system, and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools and available material databases. In the present work, the materials-by-design approach is utilized to design a grade of fiber-reinforced (FR SiC/SiC ceramic matrix composites (CMCs, the type of materials which are currently being used in stationary components, and are considered for use in rotating components, of the hot sections of gas-turbine engines. Towards that end, a number of mathematical functions and numerical models are developed which relate CMC constituents’ (fibers, fiber coating and matrix microstructure and their properties to the properties and performance of the CMC as a whole. To validate the newly-developed materials-by-design approach, comparisons are made between experimentally measured and computationally predicted selected CMC mechanical properties. Then an optimization procedure is employed to determine the chemical makeup and processing routes for the CMC constituents so that the selected mechanical properties of the CMCs are increased to a preset target level.

  19. ArF-excimer-laser annealing of 3C-SiC films—diode characteristics and numerical simulation

    Science.gov (United States)

    Mizunami, T.; Toyama, N.

    2003-09-01

    We fabricated Schottky barrier diodes using 3C-SiC films deposited on Si(1 1 1) by lamp-assisted thermal chemical vapor deposition and annealed with an ArF excimer laser. Improvement in both the reverse current and the ideality factor was obtained with 1-3 pulses with energy densities of 1.4- 1.6 J/cm2 per pulse. We solved a heat equation numerically assuming a transient liquid phase of SiC. The calculated threshold energy density for melting the surface was 0.9 J/cm2. The thermal effects of Si substrate on SiC film were also discussed. The experimental optimum condition was consistent the numerical simulation.

  20. Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures.

    Science.gov (United States)

    Xu, Jie; Xu, Jun; Wang, Yuefei; Cao, Yunqing; Li, Wei; Yu, Linwei; Chen, Kunji

    2014-02-07

    Microscopic charge injection into the SiC/Si nanocrystals/SiC sandwiched structures through a biased conductive AFM tip is subsequently characterized by both electrostatic force microscopy and Kelvin probe force microscopy (KPFM). The charge injection and retention characteristics are found to be affected by not only the band offset at the Si nanocrystals/SiC interface but also the doping type of the Si substrate. On the other hand, capacitance-voltage (C-V) measurements investigate the macroscopic charging effect of the sandwiched structures with a thicker SiC capping layer, where the charges are injected from the Si substrates. The calculated macroscopic charging density is 3-4 times that of the microscopic one, and the possible reason is the underestimation of the microscopic charging density caused by the averaging effect and detection delay in the KPFM measurements.

  1. In-situ Observation of Fracture Behavior on Nano Structure in NITE SiC/SiC Composite by HVEM

    Energy Technology Data Exchange (ETDEWEB)

    Shibayama, Tamaki; Hamada, Kouichi; Watanabe, Seiichi [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Matsuo, Genichiro [Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Kishimoto, Hirotatsu, E-mail: shiba@ufml.caret.hokudai.ac.jp [Muroran Institute of Techniology, Muroran, Hokkaido 050-8585 (Japan)

    2011-10-29

    We have been successfully done in situ observation on the sequence of fracture event at the interface of NITE SiC/SiC composite examined by using miniaturized double notched shear specimen for TEM prepared by Focused Ion Beam method. In this study, we used nano-mechanics TEM experimental apparatus to investigate not only microstructure evolution and but also load and displacement curve at once in High Voltage Electron Microscope. Our results summarize as follows. Cracks were initiated at the interface between carbon coating layer on the SiC fiber and SiC matrices, and propagated along the interface. Load drop in the load and displacement curve during in-situ TEM was clearly observed at the crack initiation. The shear strength by using the miniaturized specimen is about ten times higher than that obtained by the standard testing.

  2. Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lohrmann, A.; Klein, J. R.; Prawer, S.; McCallum, J. C. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Castelletto, S. [School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia); Ohshima, T. [SemiConductor Analysis and Radiation Effects Group, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Bosi, M.; Negri, M. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Lau, D. W. M.; Gibson, B. C. [ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria 3001 (Australia); Johnson, B. C. [ARC Centre of Excellence for Quantum Computing and Communication Technology, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2016-01-11

    In this work, we present the creation and characterisation of single photon emitters at the surface of 4H- and 6H-SiC, and of 3C-SiC epitaxially grown on silicon. These emitters can be created by annealing in an oxygen atmosphere at temperatures above 550 °C. By using standard confocal microscopy techniques, we find characteristic spectral signatures in the visible region. The excited state lifetimes are found to be in the nanosecond regime in all three polytypes, and the emission dipoles are aligned with the lattice. HF-etching is shown to effectively annihilate the defects and to restore an optically clean surface. The defects described in this work have ideal characteristics for broadband single photon generation in the visible spectral region at room temperature and for integration into nanophotonic devices.

  3. Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices.

    Science.gov (United States)

    Aristov, Victor Yu; Urbanik, Grzegorz; Kummer, Kurt; Vyalikh, Denis V; Molodtsova, Olga V; Preobrajenski, Alexei B; Zakharov, Alexei A; Hess, Christian; Hänke, Torben; Büchner, Bernd; Vobornik, Ivana; Fujii, Jun; Panaccione, Giancarlo; Ossipyan, Yuri A; Knupfer, Martin

    2010-03-10

    The outstanding properties of graphene, a single graphite layer, render it a top candidate for substituting silicon in future electronic devices. The so far exploited synthesis approaches, however, require conditions typically achieved in specialized laboratories and result in graphene sheets whose electronic properties are often altered by interactions with substrate materials. The development of graphene-based technologies requires an economical fabrication method compatible with mass production. Here we demonstrate for the fist time the feasibility of graphene synthesis on commercially available cubic SiC/Si substrates of >300 mm in diameter, which result in graphene flakes electronically decoupled from the substrate. After optimization of the preparation procedure, the proposed synthesis method can represent a further big step toward graphene-based electronic technologies.

  4. From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth

    Directory of Open Access Journals (Sweden)

    Vikrant A. Chaudhari

    2009-01-01

    Full Text Available Use of a solar cell in concentrator PV technology requires reduction in its series resistance in order to minimize the resistive power losses. The present paper discusses a methodology of reducing the series resistance of a commercial c-Si solar cell for concentrator applications, in the range of 2 to 10 suns. Step by step optimization of commercial cell in terms of grid geometry, junction depth, and electroplating of the front metal contacts is proposed. A model of resistance network of solar cell is developed and used for the optimization. Efficiency of unoptimized commercial cell at 10 suns drops by 30% of its 1 sun value corresponding to resistive power loss of about 42%. The optimized cell with grid optimization, junction optimization, electroplating, and junction optimized with electroplated contacts cell gives resistive power loss of 20%, 16%, 11%, and 8%, respectively. An efficiency gain of 3% at 10 suns for fully optimized cell is estimated.

  5. Manufacturing metrology for c-Si photovoltaic module reliability and durability, Part I: Feedstock, crystallization and wafering

    Energy Technology Data Exchange (ETDEWEB)

    Seigneur, Hubert; Mohajeri, Nahid; Brooker, R. Paul; Davis, Kristopher O.; Schneller, Eric J.; Dhere, Neelkanth G.; Rodgers, Marianne P.; Wohlgemuth, John; Shiradkar, Narendra S.; Scardera, Giuseppe; Rudack, Andrew C.; Schoenfeld, Winston V.

    2016-06-01

    This article is the first in a three-part series of manufacturing metrology for c-Si photovoltaic (PV) module reliability and durability. Here in Part 1 we focus on the three primary process steps for making silicon substrates for PV cells: (1) feedstock production; (2) ingot and brick production; and (3) wafer production. Each of these steps can affect the final reliability/durability of PV modules in the field with manufacturing metrology potentially playing a significant role. This article provides a comprehensive overview of historical and current processes in each of these three steps, followed by a discussion of associated reliability challenges and metrology strategies that can be employed for increased reliability and durability in resultant modules. Gaps in the current state of understanding in connective metrology data during processing to reliability/durability in the field are then identified along with suggested improvements that should be considered by the PV community.

  6. Fabrication of nc-Si/c-Si solar cells using hot-wire chemical vapor deposition and laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bing-Rui; Wuu, Dong-Sing; Mao, Hsin-Yuan [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227 (China); Wan, Meng-Shen; Huang, Wei-Hao; Horng, Ray-Hua [Institute of Precision Engineering, National Chung Hsing University, Taichung 40227 (China)

    2009-06-15

    In this paper, we present the performance of Si heterojunction solar cells prepared by hot-wire chemical vapor deposition and laser annealing. Under high hydrogen-dilution-ratio conditions, the crystallinity of the phosphorous-doped emitter layers was greatly improved due to hydrogen-induced crystallization. The grain boundary defects of the nano-crystalline emitter layer were further promoted using a laser (355 nm) crystallization technique. It was found that both the short-circuit current density and fill factor of the Si heterojunction solar cells were mainly dependent on the energy density of the laser beam. An efficiency of 14.2% is achieved for the n-nc-Si/p-c-Si heterojunction solar cell under a laser irradiation density of 382 mW/cm{sup 2}. (author)

  7. Fabrication of double barrier structures in single layer c-Si-QDs/a-SiOx films for realization of energy selective contacts for hot carrier solar cells

    Science.gov (United States)

    Kar, Debjit; Das, Debajyoti

    2017-01-01

    Thin films of c-Si-QDs embedded in an a-SiOx dielectric matrix forming arrays of double barrier structures have been fabricated by reactive rf-magnetron sputtering at ˜400 °C, without post-deposition annealing. The formation of larger size c-Si-QDs of reduced number density in homogeneous distribution within a less oxygenated a-SiOx matrix at higher plasma pressure introduces systematic widening of the average periodic distance between the adjacent `c-Si-QDs in a-SiOx', as obtained by X-ray reflectivity and transmission electron microscopy studies. A wave-like pattern in the J-E characteristics identifies the formation of periodic double-barrier structures along the path of the movement of charge carriers across the QDs and that those are originated by the a-SiOx dielectric matrix around the c-Si-QDs. A finite distribution of the size of c-Si-QDs introduces a broadening of the current density peak and simultaneously originates the negative differential resistance-like characteristics, which have suitable applications in the energy selective contacts that act as energy filters for hot carrier solar cells. A simple yet effective process technology has been demonstrated. Further initiative on tuning the energy selectivity by reducing the size and narrowing the size-distribution of Si-QDs can emerge superior energy selective contacts for hot carrier solar cells, paving ground for accomplishing all-Si solar cells.

  8. Preparation and characterization of SiC/C/SiC composites by hybrid wet/vapour processing

    Energy Technology Data Exchange (ETDEWEB)

    Licciulli, A. [Centro Nazionale Ricerca e Sviluppo Materiali, Brindisi (Italy). PASTIS; De Riccardis, F. [Centro Nazionale Ricerca e Sviluppo Materiali, Brindisi (Italy). PASTIS; Quirini, A. [Centro Nazionale Ricerca e Sviluppo Materiali, Brindisi (Italy). PASTIS; Nannetti, C.A. [ENEA-INN-NUMA C.R. Casaccia, Roma (Italy); Filacchioni, G. [ENEA-INN-NUMA C.R. Casaccia, Roma (Italy); Pilloni, L. [ENEA-INN-NUMA C.R. Casaccia, Roma (Italy); Botti, S. [ENEA-INN-FIS C.R. Frascati, Roma (Italy); Ortona, A. [INTERNOVA, Milano (Italy); Cammarota, A. [INTERNOVA, Milano (Italy)

    1997-06-01

    In this work the preparation of ceramic matrix composites with improved mechanical properties and reduced process time and cost has been investigated. A combination of liquid and vapour infiltration processes has been developed for producing SiC(fibers)/C/SiC composites. 2D-woven Nicalon fibers were coated with pyrolitic carbon and stacked to form flat panel preforms. Chemical vapour infiltration was achieved using methyltrichlorosilane (MTS) as SiC precursor in a hot wall reactor under isothermal (1050 C) and isobaric (20torr) conditions. The solution infiltration was achieved using polycarbosilane (PCS) as SiC precursor along with laser formed SiC nanopowders. Pyrolysis was performed in inert atmosphere up to 1100 C. Various combinations of the two routes were tested in order to optimise the composite properties. A short vapour infiltration run was used to form a uniform SiC deposit on the fibers that were subsequently filled by several cycles of liquid infiltration/pyrolysis. CVI was also effective to fill the submicron porosity resulting from PCS to SiC transformation. Scanning electron microscopy (SEM) is presented for the description of the morphology of the composites. Mercury porosimetry along with SEM, was used to evaluate the infiltration yield and the quality of the deposit in the various steps of the process. The mechanical behavior of the composites was investigated by flexural tests. Fibers push-in by microindentation measurements were performed to characterize the fiber/matrix interface and to investigate how it is affected by the pyrocarbon coating on the fibers. On the basis of the obtained results, a preparative process for SiC/SiC composites can be optimized by the proper use of both liquid and vapour infiltration. (orig.)

  9. Scour properties of mono bucket foundation

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Frigaard, Peter Bak

    2016-01-01

    Field experience proved that the Mono Bucket Foundations (MBFs) have good response against scour development. Moreover, the ratio between large diameter (bucket lid) and the small diameter (shaft tower) is the driving parameter for the process of erosion/backfill, like scour protection diameter...... in the case of scour protected monopiles. However, the structural design to reduce the scour development for MBFs is still open to optimization. The influences of parameters that generate backfill and scour, the transfer load webs and the misalignment with seabed, have not been systematically studied until...

  10. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  11. On mono-W signatures in spin-1 simplified models

    Energy Technology Data Exchange (ETDEWEB)

    Haisch, Ulrich [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; CERN, Geneva (Switzerland). Theory Div.; Kahlhoefer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tait, Tim M.P. [California Univ., Irvine, CA (United States). Dept. of Physics and Astronomy

    2016-03-15

    The potential sensitivity to isospin-breaking effects makes LHC searches for mono-W signatures promising probes of the coupling structure between the Standard Model and dark matter. It has been shown, however, that the strong sensitivity of the mono-W channel to the relative magnitude and sign of the up-type and down-type quark couplings to dark matter is an artefact of unitarity violation. We provide three different solutions to this mono-W problem in the context of spin-1 simplified models and briefly discuss the impact that our findings have on the prospects of mono-W searches at future LHC runs.

  12. On mono-W signatures in spin-1 simplified models

    Directory of Open Access Journals (Sweden)

    Ulrich Haisch

    2016-09-01

    Full Text Available The potential sensitivity to isospin-breaking effects makes LHC searches for mono-W signatures promising probes of the coupling structure between the Standard Model and dark matter. It has been shown, however, that the strong sensitivity of the mono-W channel to the relative magnitude and sign of the up-type and down-type quark couplings to dark matter is an artifact of unitarity violation. We provide three different solutions to this mono-W problem in the context of spin-1 simplified models and briefly discuss the impact that our findings have on the prospects of mono-W searches at future LHC runs.

  13. C/SiC舵结构热试验瞬态温度场预示技术%Prediction techniques of transient temperature distribution during thermal tests for C/SiC rudder

    Institute of Scientific and Technical Information of China (English)

    刘宝瑞; 孔凡金; 张伟; 吴振强; 郭静

    2015-01-01

    Aerocraft will be exposed to extreme aerothermal load during hypersonic flight in atmosphere. High-temperature composites such as C/SiC and C/C are widely used in the hot structures of aerocraft because of their high temperature resistance, high specific stiffness and high specific modulus. In order to evaluate the performance and integration of the hot structures, ground thermal tests are routinely conducted, and quartz lamp radiation heaters are considered as an important mean to simulate instantaneous aerothermal environment. Since the ground tests are costly, unrepeatable and difficult, simulation technology of structure thermal test is developed. A simulation method of the experimental transient radiation heating dynamic control process is established. Instantaneous temperature distribution of the aerocraft rudder is obtained based on the thermal network theory and the Monte-Carlo theory. The accuracy of the method is proved by comparing with the test results. This paper provides technical support for optimal design of thermal test plan and validity evaluation of test results.%航天飞行器在大气层中高马赫数飞行时,会面临严酷的气动加热环境,C/SiC、C/C 等高温复合材料由于具有耐高温、高比强、高比模等优点,在飞行器热结构设计中得到大量应用。为了考核热结构服役过程中的高温力学性能和完整性,需要根据飞行时序进行地面结构热环境试验,其中石英灯辐射加热装置是模拟瞬态气动热环境的一种重要手段。地面结构热试验具有不可重复、技术难度大等特点,发展结构热试验辐射热环境预示技术可以有效支撑飞行器结构地面试验验证。针对采用石英灯辐射方式加热的C/SiC复合材料舵结构热试验,建立了辐射加热动态控制过程模拟方法,基于热网络法和蒙特卡罗法获得了结构瞬态温度场分布,通过与试验数据的对比分析,验证了方法的可行性

  14. 碳布铺层方式对C/C-SiC薄壁喉衬性能的影响%Effect of Carbon Cloth Spreading Means on Performance of C/C-SiC Thin-Wall Throat

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 嵇阿琳; 纪伶伶; 闫联生; 韩明

    2014-01-01

    通过CVI+PIP制备了准三维针刺C/C-SiC薄壁喉衬,预制体碳布铺层方式分别采用与喉衬内型面形状相同的仿形铺层以及与喉衬入口端角度相同30°铺层.研究了两种铺层方式对最终构件层间弯曲性能、整体承压性能以及抗烧蚀抗冲刷的影响.结果表明,构件的弯曲强度分别为205和152 MPa;水压爆破压力分别为6.5和4.9 MPa.用与材料表面夹角为30°的氧乙炔气流考查材料的抗烧蚀及冲刷性能,同角度铺层成型材料抗冲刷能力明显较好,200 s其线烧蚀率为仿形铺层成型材料的70%.

  15. Simulation of a-Si(p)/c-Si(n) heterojunction solar cells with AFORS-HET%a-Si(p)/c-Si(n)异质结太阳电池的AFORS-HET模拟优化

    Institute of Scientific and Technical Information of China (English)

    卢超; 丁建宁; 程广贵; 郭立强; 林爱国

    2013-01-01

    采用限定变量的方法,运用AFORS-HET(Automat FOR Simulation of HETerostructures)软件计算模拟了不同厚度、掺杂浓度和禁带宽度的非晶硅薄膜背场以及不同厚度、禁带宽度的非晶硅本征层对a-Si(p)/c-Si(n)异质结太阳电池的影响.结果表明,在其它参数不变的情况下,增加较薄的背场和中间本征层,可以提高太阳电池的整体性能,其光电转换有很大程度提高,其最高转换效率可达20.75%;其中,中间本征层在厚度不超过20 nm时,对电池的短路电流影响不大,而其它性能则相对下降;当非晶硅薄膜背场的掺杂浓度为1019 cm-3以上,带隙为1.7 eV,厚度为5 nm时,电池性能最佳.

  16. Effects of bainitic transformation temperature on microstructure and tensile properties of 0.6C-Si-Mn steel; 0.6C-Si-Mn ko no bisai soshiki to hippari tokusei ni oyobosu benaito hentai ondo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Y. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1995-06-15

    To acquire excellent mechanical properties of Si-Mn steel by using an austempering treatment to have the steel undergo a bainitic transformation, it is important to identify the effect of its transformation temperature. This paper describes a transformation of 0.6% C-Si-Mn steel at temperatures ranging from 593 K to 673 K, and discussions on the effect of the transformation temperature on the microstructure and tensile properties. The following results were obtained: bainitic ferrite containing very little carbon is produced in layers at any transformation temperature, but a trend was shown that the bainitic ferrite is produced with its width grown larger and denser as the transformation temperature rises; the {gamma}R amount increases remarkably with increasing transformation temperature, and at the same time massive {gamma}R begins to remain in addition to thin film {gamma}R that exists between individual bainitic ferrites; and the result of this experiment revealed that when the transformation temperature is sufficiently high, the fracture elongation increases notably because of the transformation induced plasticity (TRIP) effect of the {gamma}R that occurs effectively during the transformation. 12 refs., 7 figs., 4 tabs.

  17. Effect of Cooling Method on Microstructure and Mechanical Properties of Hot-Rolled C-Si-Mn TRIP Steel%Effect of Cooling Method on Microstructure and Mechanical Properties of Hot-Rolled C-Si-Mn TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-yuan; ZHANG Zi-cheng; ZHU Fu-xian; LI Yan-mei; Manabe Ken-ichi

    2012-01-01

    The controlled cooling technology following hot rolling process is a vital factor that affects the final micro- structure and mechanical properties of the hot-rolled transformation induced plasticity (TRIP) steels. In the present study, low alloy C-Si-Mn TRIP steel was successfully fabricated by hot rolling process with a 4450 hot roiling mill. To maximize the volume fraction and stability of retained austenite of the steel, two different cooling methods (aircooling and ultra-fast cooling "AC-UFC" and ultrmfast cooling, air cooling and ultra-fast cooling "UFC-AC-UFC") were conducted. The effects of the cooling method on the microstructure of hot-rolled TRIP steel were investigated via optical microscope, transmission electron microscope and conversion electron Mossbauer spectroscope. The mechanical properties of the steel were also evaluated by conventional tensile test. The results indicated that ferrite and bainite in the microstructure were refined with the cooling method of UFC-AC-UFC. The morphology of retained austenite was also changed from small islands distributing in bainite district (obtained with AC-UFC) to granular shape locating at the triple junction of the ferrite grain boundaries (obtained with UFC-AC-UFC). As a result, the TRIP steel with a content of retained austenite of 11. 52%, total elongation of 32% and product of tensile strength and total elongation of 27 552 MPa·% was obtained.

  18. Time and dose-dependent deformation of SiC/SiC composites With off-axis fiber alignment

    Energy Technology Data Exchange (ETDEWEB)

    Henager, C.H. [Pacific Northwest National Laboratory, Richland WA (United States)

    2007-07-01

    Full text of publication follows: The use of SiC-reinforced composites for fusion reactors or other nuclear applications will not be restricted to 0/90 aligned fiber architecture in all cases. It is important to understand the role of fiber orientation in the strength, toughness, and time-dependent properties for such materials. The use of high-strength ceramic fibers for composites is predicated on optimizing the strength, fracture resistance, and retained strength in aggressive environments, which argues for the best use of fiber strengths, namely on-axis loading for full load transfer to the high-strength fibers. Relatively few researchers have systematically studied the effects of fiber orientation on composite properties, and none have, to the best of our knowledge, performed any time-dependent testing of composites with off-axis fiber orientations. We have performed mechanical property tests on Hi-Nicalon Type-S fiber SiC/SiC composites as a function of fiber orientation. The mechanical testing consisted of 4- point bend strength, 4-point single-edge notched bend fracture toughness, and 4-point bend slow crack growth testing on two composite architectures from ambient to 1600 deg. C (1873 K). The two composite materials that were tested included a {+-}55 deg.-braided-weave composite with Type-S fibers inclined at 55 deg. to the principal composite axes to simulate a tubular-weave architecture and a Type-S 0/90 satin-weave composite as a reference material. A time-dependent fiber-bridging model that accounts for fiber orientation has been developed and its predictions are compared to the strength and crack growth data. The level of agreement suggests that existing models of off-axis bridging fibers are adequate for fusion reactor designs using SiC/SiC composites in off-axis orientations. However, the strength data suggests that off-axis orientations are much weaker than aligned fiber orientations and, thus, care must be taken to ensure that some fraction of

  19. Was Mono Lake a 14C dump?

    Science.gov (United States)

    Maggs, William Ward

    This is a scientific story without an explanation, called a “mystery” and an “enigma” in articles by the people who discovered it. Confounded by evidence they cannot explain by natural processes, these scientists implicate human beings.One month ago in Eos, (June 7, 1988, p. 633), Wallace Broecker and Scott Stine reported abnormally high levels of radiogenic 14C in California's Mono Lake, now a National Historic Site. The only logical explanation, they proposed, is that someone secretly dumped a total of about 20 curies of 14C into the lake in two doses, sometime between 1952 and 1958 and again between 1966 and 1977. Broecker and Stine, geologists at Lamont-Doherty Geological Observatory in Palisades, N.Y., called on readers for information on the source of the 14C.

  20. Plasma etching on large-area mono-, multi- and quasi-mono crystalline silicon

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    We use plasma etched Black Si (BS)[1][2] nanostructures to achieve low reflectance due to the resulting graded refractive index at the Si-air interface. The goal of this investigation is to develop a suitable texturing method for Si solar cells. Branz et al. [3]report below 3% average reflectance...... advantages such as; (i) excellent light trapping, (ii) dry, single-sided and scalable process method and (iii) etch independence on crystallinity of Si, RIE-texturing has so far not been proven superior to standard wet texturing, primarily as a result of lower power conversion efficiency due to increased...... using maskless RIE in a O2 and SF6 plasma, and the surface topology was optimized for solar cell applications by varying gas flows, pressure, power and process time. The starting substrates were 156x156 mm p-type, CZ mono-, multi- and quasi-mono crystalline Si wafers, respectively, with a thickness...

  1. Paleomagnetic Excursion Recorded in Exposed Lacustrine Sediments on Paoha Island in Mono Lake, CA.

    Science.gov (United States)

    Liddicoat, J. C.; Coe, R. S.

    2016-12-01

    Paleomagnetic secular variation (PSV) in the Wilson Creek Formation that was deposited in Pleistocene Lake Russell in the Mono Basin, CA, has been known for nearly 50 years. The research began in the late 1960s during a search for the Laschamp Excursion (LE) believed then to have occurred between about 20,000 and 9,000 years ago (Bonhommet and Zahringer, 1969). Although that investigation was unsuccessful in locating the LE in the eroded bank of Wilson Creek on the northwest side of Mono Lake, which is the remnant of Lake Russell, anomalous field behavior was documented that is the Mono Lake Excursion (MLE)(Denham and Cox, 1971; Liddicoat and Coe, 1979). We did a PSV investigation of a portion of the Wilson Creek Formation where it is exposed on Paoha Island in the center of Mono Lake. Using volcanic ash layers from the nearby Mono Craters as stratigraphc marker beds and the tephrochronology of Lajoie (1993), we located anomalous field behavior that is similar to the field behavior during the MLE with some exceptions. One is the onset of negative inclination 45 cm beneath a 7-cm rhyolitic ash bed. That position is four times lower in the formation than negative inclination beneath Ash 15 that is midway in the MLE at three localities in the basin - Wilson Creek, Mill Creek, and Warm Springs (Liddicoat, 1992). Declination, inclination, and relative field intensity (RFI) where we sampled on Paoha Island are different enough from the paleomagnetic field behavior during the MLE that the possibility exists that a second excursion is recorded in the Wilson Creek Formation. We will present the paleomagnetic directions and RFI that are recorded on Paoha Island for that field behavior.

  2. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    Directory of Open Access Journals (Sweden)

    Stöcklein Walter

    2007-08-01

    Full Text Available Abstract Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method.

  3. Structural characteristics and formation mechanisms of crack-free multilayer TaC/SiC coatings on carbon-carbon composites

    Institute of Scientific and Technical Information of China (English)

    LI Guo-dong; XIONG Xiang; HUANG Bai-yun; HUANG Ke-long

    2008-01-01

    In order to improve high temperature (over 2 273 K) ablation resistance, TaC and TaC/SiC composite coatings were deposited on carbon-carbon composites by CVD method utilizing reactive TaCl5-C3H6-H2-Ar and TaCl5-C3H6-CH3SiCl3-H2-Ar systems respectively. The structure and morphology of these coatings were analyzed by XRD and SEM. The results show that the double carbide coatings have good chemical compatibility during preparation. Two distinctive composition gradients are developed and used to produce multilayer TaC/SiC coatings with low internal stress, free crack and good resistant to thermal shock. A transition layer consisting of either C-TaC or C-SiC formed between the coating and the C/C matrix can reduce the residual stress effectively. The processing parameters were optimized and the possible growth mechanisms for these coatings were proposed. A designing methodology to prepare high performance multilayer TaC/SiC composite coatings was developed.

  4. Creep/Stress Rupture Behavior and Failure Mechanisms of Full CVI and Full PIP SiC/SiC Composites at Elevated Temperatures in Air

    Science.gov (United States)

    Bhatt, R. T.; Kiser, J. D.

    2017-01-01

    SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.

  5. Synthesis and optical characterization of C-SiO2 and C-NiO sol-gel composite films for use as selective solar absorbers

    CSIR Research Space (South Africa)

    Makiwa, G

    2008-08-01

    Full Text Available The authors present a cheaper and environmentally friendly method to fabricate efficient spectrally selective solar absorber materials. The sol-gel technique was used to fabricate carbon-silica (C-SiO2) and carbon-nickel oxide (C-NiO) composite...

  6. Microstructural investigation of Si-ion-irradiated single crystal 3C-SiC and SA-Tyrannohex SiC fiber-bonded composite at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Chun-Yu [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Tsai, Shuo-Cheng [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Lin, Hua-Tay [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chen, Fu-Rong [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Kai, Ji-Jung, E-mail: ceer0001@gmail.com [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China)

    2013-11-15

    Silicon carbides (SiCs) are considered as one of the promising candidates for structural and core materials used in fusion reactor and high temperature gas-cooled reactor (HTGR) due to its high thermal stability, and good resistance to irradiation and chemical attack. Single crystal 3C-SiC with less intrinsic defects was used to precisely characterize the radiation-induced defects in 3C-SiC. In addition, there are limited discussions related to radiation effect of SA-Tyrannohex fiber-bonded composite at high temperatures. Therefore, in this study, single crystal 3C-SiC thin film and SA-Tyrannohex SiC fiber-bonded composite were irradiated at 1000–1350 °C with 7 MeV Si{sup 3+} ion to simulate the neutron irradiation in reactors. The microstructure of the irradiated SiC was examined by using high resolution transmission electron microscope (HRTEM). In irradiated single crystal 3C-SiC, high resolution images showed that the planar defects were extrinsic stacking faulted loop with changing atomic sequences and intrinsic stacking faulted loop, i.e. vacancy loop. In addition, dislocation loops, voids, and edge dislocations in SA-Tyrannohex SiC fiber-bonded composite after irradiation were investigated. Besides, larger voids (with diameter 10–40 nm) formed in alumina with preferred orientation after irradiation perhaps resulting in degradation of strength of the SA-Tyrannohex SiC fiber-bonded composite.

  7. Variation in the Optical Properties of the SiC-SiO2 Composite Antireflection Layer in Crystalline Silicon Solar Cells by Annealing

    Science.gov (United States)

    Jannat, Azmira; Li, Zhen Yu; Akhter, M. Shaheer; Yang, O.-Bong

    2017-07-01

    This study showed the effects of annealing on a sol-gel-derived SiC-SiO2 composite antireflection (AR) layer and investigated the optical and photovoltaic properties of crystalline silicon (Si) solar cells. The SiC-SiO2 composite AR coating showed a considerable decrease in reflectance from 7.18% to 3.23% at varying annealing temperatures of 450-800°C. The refractive indices of the SiC-SiO2 composite AR layer were tuned from 2.06 to 2.45 with the increase in annealing temperature. The analysis of the current density-voltage characteristics indicated that the energy conversion efficiencies of the fabricated Si solar cells gradually increased from 16.99% to 17.73% with increasing annealing temperatures of 450-800°C. The annealing of the SiC-SiO2 composite AR layer in Si solar cells was crucial to improving the optical, morphological, and photovoltaic properties.

  8. Radicals and ions controlling by adjusting the antenna-substrate distance in a-Si:H deposition using a planar ICP for c-Si surface passivation

    Science.gov (United States)

    Zhou, H. P.; Xu, S.; Xu, M.; Xu, L. X.; Wei, D. Y.; Xiang, Y.; Xiao, S. Q.

    2017-02-01

    Being a key issue in the research and fabrication of silicon heterojunction (SHJ) solar cells, crystalline silicon (c-Si) surface passivation is theoretically and technologically intricate due to its complicate dependence on plasma characteristics, material properties, and plasma-material interactions. Here amorphous silicon (a-Si:H) grown by a planar inductively coupled plasma (ICP) reactor working under different antenna-substrate distances of d was used for the surface passivation of low-resistivity p-type c-Si. It is found that the microstructures (i.e., the crystallinity, Si-H bonding configuration etc.) and passivation function on c-Si of the deposited a-Si:H were profoundly influenced by the parameter of d, which primarily determines the types of growing precursors of SiHn/H contributing to the film growth and the interaction between the plasma and growing surface. c-Si surface passivation is analyzed in terms of the d-dependent a-Si:H properties and plasma characteristics. The controlling of radical types and ion bombardment on the growing surface through adjusting parameter d is emphasized.

  9. Synthesis, characterization, and wear and friction properties of variably structured SiC/Si elements made from wood by molten Si impregnation

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Rana, Kuldeep; Bengu, Erman

    2012-01-01

    We have synthesized pre-shaped SiC/Si ceramic material elements from charcoal (obtained from wood) by impregnation with molten silicon, which takes place in a two-stage process. In the first process, a porous structure of connected micro-crystals of β-SiC is formed, while, in the second process, ...

  10. Spin-orbit corrections to the indirect nuclear spin-spin coupling constants in XH4 (X=C, Si, Ge, and Sn)

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Jensen, Hans Jørgen Aagaard; Oddershede, Jens

    1997-01-01

    Using the quadratic response function at the ab initio SCF level of approximation we have calculated the relativistic corrections from the spin-orbit Hamiltonian, HSO, to the indirect nuclear spin-spin coupling constants of XH4 (X = C, Si, Ge, and Sn). We find that the spin-orbit contributions to...

  11. Metal organic vapor phase epitaxy growth of (Al)GaN heterostructures on SiC/Si(111) templates synthesized by topochemical method of atoms substitution

    DEFF Research Database (Denmark)

    Rozhavskaia, Mariia M.; Kukushkin, Sergey A.; Osipov, Andrey

    2017-01-01

    crystalline interfaces with epitaxial relationship between SiC/Si and AlN/SiC layers. Optimization of SiC morphology and AlN seed layer thickness facilitates the growth of GaN layers free of pits (v-defects). It is also found that Si doping eliminates these defects in the case of growth on SiC templates...

  12. In-situ determination of the effective absorbance of thin μc-Si:H layers growing on rough ZnO:Al

    Directory of Open Access Journals (Sweden)

    Meier Matthias

    2013-10-01

    Full Text Available In this study optical transmission measurements were performed in-situ during the growth of microcrystalline silicon (μc-Si:H layers by plasma enhanced chemical vapor deposition (PECVD. The stable plasma emission was used as light source. The effective absorption coefficient of the thin μc-Si:H layers which were deposited on rough transparent conductive oxide (TCO surfaces was calculated from the transient transmission signal. It was observed that by increasing the surface roughness of the TCO, the effective absorption coefficient increases which can be correlated to the increased light scattering effect and thus the enhanced light paths inside the silicon. A correlation between the in-situ determined effective absorbance of the μc-Si:H absorber layer and the short-circuit current density of μc-Si:H thin-film silicon solar cells was found. Hence, an attractive technique is demonstrated to study, on the one hand, the absorbance and the light trapping in thin films depending on the roughness of the substrate and, on the other hand, to estimate the short-circuit current density of thin-film solar cells in-situ, which makes the method interesting as a process control tool.

  13. The influences of the properties of impurities and defects on the dark I-V characteristic curve and output parameters of c-Si solar cells

    Science.gov (United States)

    Lu, Xiaodong; Song, Yang; Gao, Jie; Wang, Xinxin; Zhang, Yufeng

    2017-09-01

    The influences of the coating ratio of electrode, doping concentration of substrate and type of impurities and defects on the dark I-V characteristic curves and output parameters of c-Si solar cells are studied by finite difference method and the dark I-V characteristic curves under different conditions are analyzed by their ideal factors, the results show that: the dark current values under the same bias voltage will increase with the increasing of the coating ratio of electrode or doping concentration of substrate; the influences of donor-like, acceptor-like and recombination-center-like impurities and defects on the dark I-V characteristic curves have threshold effects; the parameters of the impurities and defects smaller than their corresponding threshold will have no obvious influences on dark I-V characteristic curves; the acceptor-like impurities and defects on the surface of c-Si solar cells have no influences on their dark I-V characteristic curve, but the donor-like and recombination-center-like impurities and defects have strong influences on their dark I-V characteristic curve; the variations of the output parameters of c-Si solar cells are analyzed in detail under the different properties of the impurities and defects inside and on the surfaces of c-Si solar cells.

  14. Boron-doped hydrogenated microcrystalline silicon oxide (μc-SiOx:H) for application in thin-film silicon solar cells

    NARCIS (Netherlands)

    Lambertz, A.; Finger, F.; Holländer, B.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    We report on the development of p-type μc-SiOx:H material, in particular the relationship between the deposition parameters and the material properties like band gap, electrical conductivity, and crystalline volume fraction. The material was deposited from gas mixtures of silane, carbon dioxide and

  15. Influence of wavelength on laser doping and laser-fired contact processes for c-Si solar cells

    Science.gov (United States)

    Molpeceres, Carlos; Sánchez-Aniorte, María. Isabel; Morales, Miguel; Muñoz, David; Martín, Isidro; Ortega, Pablo; Colina, Mónica; Voz, Cristóbal; Alcubilla, Ramón

    2012-10-01

    This work investigates the influence of the laser wavelength on laser doping (LD) and laser-fired contact (LFC) formation in solar cell structures. We compare the results obtained using the three first harmonics (corresponding to wavelengths of 1064 nm, 532 nm and 355 nm) of fully commercial solid state laser sources with pulse width in the ns range. The discussion is based on the impact on the morphology and electrical characteristics of test structures. In the case of LFC the study includes the influence of different passivation layers and the assessment of the process quality through electrical resistance measurements of an aluminium single LFC point for the different wavelengths. Values for the normalized LFC resistance far below 1.0 mΩcm2 have been obtained, with better results at shorter wavelengths. To assess the influence of the laser wavelength on LD we have created n+ regions into p-type c-Si wafers, using a dry LD approach to define punctual emitters. J-V characteristics show exponential trends at mid-injection for a broad parametric window in all wavelengths, with local ideality factors well below 1.5. In both processes the best results have been obtained using green (532 nm) and, specially, UV (355 nm). This indicates that to minimize the thermal damage in the material is a clear requisite to obtain the best electrical performance, thus indicating that UV laser shows better potential to be used in high efficiency solar cells.

  16. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates.

    Science.gov (United States)

    López, Gema; Ortega, Pablo R; Voz, Cristóbal; Martín, Isidro; Colina, Mónica; Morales, Anna B; Orpella, Albert; Alcubilla, Ramón

    2013-01-01

    The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300-1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450-1000 nm.

  17. Time-dependent bridging and life prediction of SiC/SiC in a hypothetical fusion environment

    Energy Technology Data Exchange (ETDEWEB)

    Henager, C.H. Jr.; Lewinsohn, C.A.; Windisch, C.F. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Growth of subcritical cracks in SiC/SiC composites of CG-Nicalon fibers with a {approximately}1 {mu}m C-interphase has been measured on a related Basic Energy Sciences program using environments of purified argon and mixtures of argon and oxygen at 1073K to 1373K. Companion thermo-gravimetric (TGA) testing measured mass loss in identical environments. The TGA mass loss was from C-interphase oxidation to CO and CO{sub 2}, which was undetectable in argon and linear with oxygen concentration in argon-oxygen mixtures, and was converted into an interphase linear recession rate. Crack growth in pure argon indicated that fiber creep was causing time-dependent crack bridging to occur, while crack growth in argon-oxygen mixtures indicated that time-dependent C-interphase recession was also causing time-dependent bridging with different kinetics. A model of time-dependent bridging was used to compute crack growth rates in argon and in argon-oxygen mixtures and gave an estimate of useable life of about 230 days at 1073K in a He + 1.01 Pa O{sub 2} (10 ppm) environment.

  18. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part I – Experiment and analysis

    Directory of Open Access Journals (Sweden)

    Li Jun

    2014-12-01

    Full Text Available This paper reports an experimental investigation on the macroscopic mechanical behaviors and damage mechanisms of the plain-woven (2D C/SiC composite under in-plane on- and off-axis loading conditions. Specimens with 15°, 30°, and 45° off-axis angles were prepared and tested under monotonic and incremental cyclic tension and compression loads. The obtained results were compared with those of uniaxial tension, compression, and shear specimens. The relationships between the damage modes and the stress state were analyzed based on scanning electronic microscopy (SEM observations and acoustic emission (AE data. The test results reveal the remarkable axial anisotropy and unilateral behavior of the material. The off-axis tension test results show that the material is fiber-dominant and the evolution rate of damage and inelastic strain is accelerated under the corresponding combined biaxial tension and shear loads. Due to the damage impediment effect of compression stress, compression specimens show higher mechanical properties and lower damage evolution rates than tension specimens with the same off-axis angle. Under cyclic tension–compression loadings, both on-axis and off-axis specimens exhibit progressive damage deactivation behaviors in the compression range, but with different deactivation rates.

  19. Effect of TCO/μc-Si:H Interface Modification on Hydrogenated Microcrystalline Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Shin-Wei Liang

    2013-01-01

    Full Text Available The effects of H2 plasma exposure on optical, electrical, and structural properties of fluorine-doped tin oxide (FTO and AZO/FTO substrates have been investigated. With increasing the time of H2-plasma exposure, the hydrogen radical and ions penetrated through the FTO surface to form more suboxides such as SnO and metallic Sn, which was confirmed by the XPS analysis. The Sn reduction on the FTO surface can be effectively eliminated by capping the FTO with a very thin layer of sputtered aluminum-doped zinc oxide (AZO, as confirmed by the XPS analysis. By using the AZO/FTO as front TCO with the subsequent annealing, the p-i-n μc-Si:H cell exhibited a significantly enhanced JSC from 15.97 to 19.40 mA/cm2 and an increased conversion efficiency from 5.69% to 7.09%. This significant enhancement was ascribed to the effective elimination of the Sn reduction on the FTO surface by the thin AZO layer during the Si-based thin-film deposition with hydrogen-rich plasma exposure. Moreover, the subsequent annealing of the sputtered AZO could lead to less defects as well as a better interface of AZO/FTO.

  20. Kinetics and mechanisms of oxidation of 2D woven C/SiC composites; 1: Experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Lamouroux, F.; Camus, G. (UMR 47, Pessac (France). Lab. des Composites Thermostructuraux); Thebault, J. (Societe Europeenne de Propulsion, Saint Medard-en-Jalles (France))

    1994-08-01

    The oxidation behavior of a 2D woven C/SiC composite partly protected with a SiC seal coating and heat-treated (stabilized) at 1,600 C in inert gas has been investigated through an experimental approach based on thermogravimetric analyses and optical/electron microscopy. Results of the tests, performed under flowing oxygen, have shown that the oxidation behavior of the composite material in terms of oxidation kinetics and morphological evolutions is related to the presence of thermal microcracks in the seal coating as well as in the matrix. Three different temperature domains exist. At low temperatures (< 800 C), the mechanisms of reaction between carbon and oxygen control the oxidation kinetics and are associated with a uniform degradation of the carbon reinforcement. At intermediate temperatures, (between 800 and 1,100 C), the oxidation kinetics are controlled by the gas-phase diffusion through a network of microcracks in the SiC coatings, resulting in a nonuniform degradation of the carbon phases. At high temperatures (> 1,100 C), such diffusion mechanisms are limited by sealing of the microcracks by silica; therefore, the degradation of the composite remains superficial. The study of the oxidation behavior of (i) the heat-treated composite in a lower oxygen content environment (dry air) and (ii) the as-processed (unstabilized) composite in dry oxygen confirms the different mechanisms proposed to explain the oxidation behavior of the composite material.

  1. Novel Fe@C-TiO2 and Fe@C-SiO2 water-dispersible magnetic nanocomposites

    Science.gov (United States)

    Fleaca, Claudiu Teodor; Dumitrache, Florian; Morjan, Ion; Alexandrescu, Rodica; Luculescu, Catalin; Niculescu, Ana; Vasile, Eugeniu; Kuncser, Victor

    2013-08-01

    We report the synthesis of novel nanocomposites based on Fe@C nanoparticles obtained from Fe(CO)5 and C2H4/H2 by laser pyrolysis technique using a three nozzles injector. The αFe-FexCy@C particles (below 24 nm diameter) were first functionalized with hydrophilic groups using Na carboxymethylcellulose. Oxidic precursors (Si(OC2H5)4 or Ti(OC2H5)4) dissolved in ethanol were mixed with ethanolic suspensions of hydrophilized Fe@C nanoparticles using strong ultrasonication, then with water (at different pH values) and finally the Fe-containing composites were recovered by magnetic separation. The SiO2 and TiO2-coated powders were characterized by XRD, FT-IR and TEM techniques and their magnetic hysteresis curves were recorded at different temperatures. Both composites contain submicron aggregates of Fe@C nanoparticles embedded in/surrounded by a disordered porous oxidic matrix/shell. Near superparamagnetic behavior and room temperature and 26 A m2/kg (for Fe@C/SiO2) or 57 A m2/kg (for Fe@C/TiO2) saturation magnetization values were recorded and a blocking temperature around 500 K was extrapolated.

  2. Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, George [General Atomics, San Diego, CA (United States); Back, Christina [General Atomics, San Diego, CA (United States)

    2015-10-30

    As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called the endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.

  3. Reduction of interface states by hydrogen treatment at the aluminum oxide/4H-SiC Si-face interface

    Directory of Open Access Journals (Sweden)

    Hironori Yoshioka

    2016-10-01

    Full Text Available Processes to form aluminum oxide as a gate insulator on the 4H-SiC Si-face are investigated to eliminate the interface state density (DIT and improve the mobility. Processes that do not involve the insertion or formation of SiO2 at the interface are preferential to eliminate traps that may be present in SiO2. Aluminum oxide was formed by atomic layer deposition with hydrogen plasma pretreatment followed by annealing in forming gas. Hydrogen treatment was effective to reduce DIT at the interface of aluminum oxide and SiC without a SiO2 interlayer. Optimization of the process conditions resulted in DIT for the metal oxide semiconductor (MOS capacitor of 1.7×1012 cm−2eV−1 at 0.2 eV, and the peak field-effect mobility of the MOS field-effect transistor (MOSFET was approximately 57 cm2V−1s−1.

  4. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates

    Directory of Open Access Journals (Sweden)

    Gema López

    2013-11-01

    Full Text Available The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx stacks on both p-type and n-type crystalline silicon (c-Si substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD to form anti-reflection coating (ARC stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300–1200 nm without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (Seff,max was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450–1000 nm.

  5. Intercultural Interactions of Mono-Cultural, Mono-Lingual Local Students in Small Group Learning Activities: A Bourdieusian Analysis

    Science.gov (United States)

    Colvin, Cassandra; Fozdar, Farida; Volet, Simone

    2015-01-01

    This research examines the understandings and experiences of mono-cultural, mono-lingual local students in relation to intercultural interactions within small group learning activities at university. Bourdieu's concepts of field, habitus and capital are employed to illuminate a number of barriers to intercultural interaction. Using qualitative…

  6. Intercultural Interactions of Mono-Cultural, Mono-Lingual Local Students in Small Group Learning Activities: A Bourdieusian Analysis

    Science.gov (United States)

    Colvin, Cassandra; Fozdar, Farida; Volet, Simone

    2015-01-01

    This research examines the understandings and experiences of mono-cultural, mono-lingual local students in relation to intercultural interactions within small group learning activities at university. Bourdieu's concepts of field, habitus and capital are employed to illuminate a number of barriers to intercultural interaction. Using qualitative…

  7. Investigation on the Behaviours of TiB2 Reinforced B4C-SiC Composites Against Co-60 Gamma Radioisotope Source

    Directory of Open Access Journals (Sweden)

    Bülent Büyük

    2015-02-01

    Full Text Available In the present study, the gamma attenuation behaviours of the Titanium diboride (TiB2 reinforced boron carbide (B4C-silicon carbide (SiC composite materials were investigated against Co-60 gamma radioisotope source. In the experiments TiB2 unreinforced and 2% and 4% TiB2 (by volume reinforced B4C-SiC composite materials were used. In the composite materials B4C/SiC ratio has been realized as 6/4 by volume. The linear and mass attenuation coefficients of the samples were carried out for Co60 gamma radioisotope source which has two energy peaks (1.17 and 1.33 MeV. Then mass attenuation coefficients and half-value thicknesses (HVT of the materials were calculated. Experimental mass attenuation coefficients were compared with the theoretical values which were calculated from XCOM computer code. Furthermore HVTs of the samples were evaluated and compared each other. It has been seen that the experimental and theoretical mass attenuation coefficients are closed to each other and differences are under 10 percent. In addition, TiB2 reinforced B4C-SiC composites have smaller HVTs than unreinforced one. Moreover 4% TiB2 reinforced B4C-SiC composite has smaller HVT than the 2% reinforced sample. Reinforcing TiB2 and increasing TiB2 ratio increase the gamma attenuation property of the B4C-SiC composites against Co-60 gamma radioisotope source.

  8. CVD growth of (001) and (111)3C-SiC epilayers and their interface reactivity with pradeodymium oxide dielectric layers

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, R.

    2006-07-24

    In this work, growth and characterisation of 3C-SiC thin films, investigation of oxidation of thus prepared layers and Pr-silicate and AlON based interface with SiC have been studied. Chemical vapor deposition of 3C-SiC thin films on Si(001) and Si(111) substrates has been investigated. Prior to the actual SiC growth, preparation of initial buffer layers of SiC was done. Using such a buffer layer, epitaxial growth of 3C-SiC has been achieved on Si(111) and Si(001) substrates. The temperature of 1100 C and 1150 C has been determined to be the optimal temperature for 3C-SiC growth on Si (111) and Si(001) substrates respectively. The oxidation studies on SiC revealed that a slow oxidation process at moderate temperatures in steps was useful in reducing and suppressing the g-C at the SiO{sub 2}/SiC interface. Clean, graphite-free SiO{sub 2} has been successfully grown on 3C-SiC by silicon evaporation and UHV anneal. For the application of high-k Pr{sub 2}O{sub 3} on silicon carbide, plausible interlayer, Pr-Silicate and AlON, have been investigated. Praseodymium silicate has been prepared successfully completely consuming the SiO2 and simultaneously suppressing the graphitic carbon formation. A comparatively more stable interlayer using AlON has been achieved. This interlayer mainly consists of stable phases of AlN along with some amount of Pr-aluminates and CN. Such layers act as a reaction barrier between Pr{sub 2}O{sub 3} and SiC, and simultaneously provide higher band offsets. (orig.)

  9. Prevalence, Risk Factors, and Treatment Outcomes of Isoniazid- and Rifampicin- Mono-Resistant Pulmonary Tuberculosis in Lima, Peru

    Science.gov (United States)

    Villegas, Leonela; Huaman, Moises A.; Van der Stuyft, Patrick; Gotuzzo, Eduardo; Seas, Carlos

    2016-01-01

    Background Isoniazid and rifampicin are the two most efficacious first-line agents for tuberculosis (TB) treatment. We assessed the prevalence of isoniazid and rifampicin mono-resistance, associated risk factors, and the association of mono-resistance on treatment outcomes. Methods A prospective, observational cohort study enrolled adults with a first episode of smear-positive pulmonary TB from 34 health facilities in a northern district of Lima, Peru, from March 2010 through December 2011. Participants were interviewed and a sputum sample was cultured on Löwenstein-Jensen (LJ) media. Drug susceptibility testing was performed using the proportion method. Medication regimens were documented for each patient. Our primary outcomes were treatment outcome at the end of treatment. The secondary outcome included recurrent episodes among cured patients within two years after completion of the treatment. Results Of 1292 patients enrolled, 1039 (80%) were culture-positive. From this subpopulation, isoniazid mono-resistance was present in 85 (8%) patients and rifampicin mono-resistance was present in 24 (2%) patients. In the multivariate logistic regression model, isoniazid mono-resistance was associated with illicit drug use (adjusted odds ratio (aOR) = 2.10; 95% confidence interval (CI): 1.1–4.1), and rifampicin mono-resistance was associated with HIV infection (aOR = 9.43; 95%CI: 1.9–47.8). Isoniazid mono-resistant patients had a higher risk of poor treatment outcomes including treatment failure (2/85, 2%, p-value<0.01) and death (4/85, 5%, p<0.02). Rifampicin mono-resistant patients had a higher risk of death (2/24, 8%, p<0.01). Conclusion A high prevalence of isoniazid and rifampicin mono-resistance was found among TB patients in our low HIV burden setting which were similar to regions with high HIV burden. Patients with isoniazid and rifampicin mono-resistance had an increased risk of poor treatment outcomes. PMID:27045684

  10. Growing GaN LEDs on amorphous SiC buffer with variable C/Si compositions.

    Science.gov (United States)

    Cheng, Chih-Hsien; Tzou, An-Jye; Chang, Jung-Hung; Chi, Yu-Chieh; Lin, Yung-Hsiang; Shih, Min-Hsiung; Lee, Chao-Kuei; Wu, Chih-I; Kuo, Hao-Chung; Chang, Chun-Yen; Lin, Gong-Ru

    2016-01-22

    The epitaxy of high-power gallium nitride (GaN) light-emitting diode (LED) on amorphous silicon carbide (a-SixC(1-x)) buffer is demonstrated. The a-SixC(1-x) buffers with different nonstoichiometric C/Si composition ratios are synthesized on SiO2/Si substrate by using a low-temperature plasma enhanced chemical vapor deposition. The GaN LEDs on different SixC(1-x) buffers exhibit different EL and C-V characteristics because of the extended strain induced interfacial defects. The EL power decays when increasing the Si content of SixC(1-x) buffer. The C-rich SixC(1-x) favors the GaN epitaxy and enables the strain relaxation to suppress the probability of Auger recombination. When the SixC(1-x) buffer changes from Si-rich to C-rich condition, the EL peak wavelengh shifts from 446 nm to 450 nm. Moreover, the uniform distribution contour of EL intensity spreads between the anode and the cathode because the traping density of the interfacial defect gradually reduces. In comparison with the GaN LED grown on Si-rich SixC(1-x) buffer, the device deposited on C-rich SixC(1-x) buffer shows a lower turn-on voltage, a higher output power, an external quantum efficiency, and an efficiency droop of 2.48 V, 106 mW, 42.3%, and 7%, respectively.

  11. Study of multi-carbide B4C-SiC/(Al, Si) reaction infiltrated composites by SEM with EBSD

    Science.gov (United States)

    Almeida, B. A.; Ferro, M. C.; Ravanan, A.; Grave, P. M. F.; Wu, H.-Y.; Gao, M.-X.; Pan, Y.; Oliveira, F. J.; Lopes, A. B.; Vieira, J. M.

    2014-03-01

    In the definition of conceptual developments and design of new materials with singular or unique properties, characterisation takes a key role in clarifying the relationships of composition, properties and processing that define the new material. B4C has a rare combination of properties that makes it suitable for a wide range of applications in engineering: high refractoriness, thermal stability, high hardness and abrasion resistance coupled to low density. However, the low self-diffusion coefficient of B4C limits full densification by sintering. A way to overturn this constraint is by using an alloy, for example Al-Si, forming composites with B4C. Multi-carbide B4C-SiC/(Al, Si) composites were produced by the reactive melt infiltration technique at 1200 - 1350 °C with up to 1 hour of isothermal temperature holds. Pressed preforms made from C-containing B4C were spontaneously infiltrated with Al-Si alloys of composition varying from 25 to 50 wt% Si. The present study involves the characterisation of the microstructure and crystalline phases in the alloys and in the composites by X-ray diffraction and SEM/EDS with EBSD. Electron backscatter diffraction is used in detail to look for segregation and spatial distribution of Si and Al containing phases during solidification of the metallic infiltrate inside the channels of the ceramic matrix when the composite cools down to the eutectic temperature (577 °C). It complements elemental maps of the SEM/EDS. The production of a flat surface by polishing is intrinsically difficult and the problems inherent to the preparation of EBSD qualified finishing in polished samples of such type of composites are further discussed.

  12. Professional Android Programming with Mono for Android and NETC#

    CERN Document Server

    McClure, Wallace B; Croft, John J; Dick, Jonathan; Hardy, Chris

    2012-01-01

    A one-of-a-kind book on Android application development with Mono for Android The wait is over! For the millions of .NET/C# developers who have been eagerly awaiting the book that will guide them through the white-hot field of Android application programming, this is the book. As the first guide to focus on Mono for Android, this must-have resource dives into writing applications against Mono with C# and compiling executables that run on the Android family of devices. Putting the proven Wrox Professional format into practice, the authors provide you with the knowledge you need to become a succ

  13. Effect of the CO2/SiH4 Ratio in the p-[mu]c-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    National Research Council Canada - National Science Library

    Jaran Sritharathikhun; Taweewat Krajangsang; Apichan Moollakorn; Sorapong Inthisang; Amornrat Limmanee; Aswin Hongsingtong; Nattaphong Boriraksantikul; Tianchai Taratiwat; Nirod Akarapanjavit; Kobsak Sriprapha

    2014-01-01

    .... The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μ c-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ) solar cells. A p-μ c...

  14. Improvement of μc-Si:H n–i–p cell efficiency with an i-layer made by hot-wire CVD by reverse H2-profiling

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    The technique of maintaining a proper crystalline ratio in microcrystalline silicon (μc-Si:H) layers along the thickness direction by decreasing the H2 dilution ratio during deposition (H2 profiling) was introduced by several laboratories while optimizing either n–i–p or p–i–n μc-Si:H cells made by

  15. Improvement of μc-Si:H n–i–p cell efficiency with an i-layer made by hot-wire CVD by reverse H2-profiling

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    The technique of maintaining a proper crystalline ratio in microcrystalline silicon (μc-Si:H) layers along the thickness direction by decreasing the H2 dilution ratio during deposition (H2 profiling) was introduced by several laboratories while optimizing either n–i–p or p–i–n μc-Si:H cells made by

  16. Thermodynamic Analysis of a New CVD Process for Preparation of Nano-sized SiC/Si3N4 Composite Powder%一种用于制备纳米SiC/Si3N4复合粉体的CVD新工艺的热力学分析

    Institute of Scientific and Technical Information of China (English)

    全学军

    2000-01-01

    综述了SiC/Si3N4复合粉体的力学性能和制备方法,提出了一种制备纳米级SiC/Si3N4复合粉体的新方法,并通过热力学分析提出了合成条件.%The mechanical properties and synthesis methods of silicon carbide and silicon nitride composite powders are reviewed.A new idea is put forward for the preparation of nano-sized SiC/Si3N4 composite powders and a thermodynamic analysis is made to predict the synthesis conditions.

  17. Greater Sage-grouse Telemetry - Mono Co. [ds68

    Data.gov (United States)

    California Department of Resources — Combined telemetry locations for sage grouse in Mono County which were fitted with radio-transmitters for the USGS Greater sage-grouse project. Contains spatial and...

  18. 涂敷含硼硅玻璃SiC涂层的C/SiC复合材料空气氧化行为%Oxidation behaviors of C/SiC composites coated with SiC coatings containing borosilicate glass

    Institute of Scientific and Technical Information of China (English)

    曹素; 刘永胜; 左新章; 张立同; 成来飞

    2011-01-01

    以2D C/SiC复合材料为基底,采用聚合物裂解工艺(Polymer plyen)制备了含硼硅玻璃SiC自愈合涂层.利用扫描电镜对含硼硅玻璃SiC涂层的2D C/SiC复合材料氧化前后的微结构形貌进行了分析.研究了含硼硅玻璃SiC涂层的C/SiC复合材料在静态空气中700℃、1000℃和1200℃下的氧化行为,并分析了涂层层数对C/SiC复合材料氧化行为的影响.结果表明:含硼硅玻璃SiC涂层在该温度下形成的玻璃相可以较好地封填表面缺陷(裂纹和孔洞);并且随温度升高及涂层层数增加,试样在氧化过程中质量减少率降低,氧化后的强度保持率提高.%SiC self-healing coatings containing borosilicate glass were prepared by polymer plyen on the 2D C/SiC composites. The microstructure morphologies of the 2D C/SiC composites with SiC coating containing borosilicate glass before and after oxidation were analyzed by SEM. The oxidation behaviors of the C/SiC composites with SiC coating containing borosilicate glass were studied at 700 ℃, 1000 ℃ and 1200 ℃ in static air and the oxidation behaviors resulted by different layers were analyzed. The results show that the glass phase produced by the SiC coating containing borosilicate glass can seal the defections (cracks and pores) existed in the coating, and with increasing the temperature and number of the coating layers, the C/SiC composites have lower mass loss during the oxidation and higher strength retention after oxidized.

  19. Mechanical Properties and Real-Time Damage Evaluations of Environmental Barrier Coated SiC/SiC CMCs Subjected to Tensile Loading Under Thermal Gradients

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    SiC/SiC ceramic matrix composites (CMCs) require new state-of-the art environmental barrier coatings (EBCs) to withstand increased temperature requirements and high velocity combustion corrosive combustion gasses. The present work compares the response of coated and uncoated SiC/SiC CMC substrates subjected to simulated engine environments followed by high temperature mechanical testing to asses retained properties and damage mechanisms. Our focus is to explore the capabilities of electrical resistance (ER) measurements as an NDE technique for testing of retained properties under combined high heat-flux and mechanical loading conditions. Furthermore, Acoustic Emission (AE) measurements and Digital Image Correlation (DIC) were performed to determine material damage onset and accumulation.

  20. Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, Elchin M., E-mail: elchin.h@yahoo.com [Department of Nanotechnology and Radiation Material Science, National Nuclear Research Center, Inshaatchilar pr. 4, AZ 1073 Baku (Azerbaijan); Institute of Radiation Problems of Azerbaijan National Academy of Sciences, B.Vahabzade 9, AZ 1143 Baku (Azerbaijan)

    2017-04-01

    Nanocrystalline 3C-SiC particles irradiated by neutron flux during 20 h in TRIGA Mark II light water pool type research reactor. Silicon carbide nanoparticles were analyzed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) devices before and after neutron irradiation. The agglomeration of nanoparticles was studied comparatively before and after neutron irradiation. After neutron irradiation the amorphous layer surrounding the nanoparticles was analyzed in TEM device. Neutron irradiation defects in the 3C-SiC nanoparticles and other effects investigated by TEM device. The effect of irradiation on the crystal structure of the nanomaterial was studied by selected area electron diffraction (SAED) and electron diffraction patterns (EDP) analysis.

  1. Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods

    Science.gov (United States)

    Huseynov, Elchin M.

    2017-04-01

    Nanocrystalline 3C-SiC particles irradiated by neutron flux during 20 h in TRIGA Mark II light water pool type research reactor. Silicon carbide nanoparticles were analyzed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) devices before and after neutron irradiation. The agglomeration of nanoparticles was studied comparatively before and after neutron irradiation. After neutron irradiation the amorphous layer surrounding the nanoparticles was analyzed in TEM device. Neutron irradiation defects in the 3C-SiC nanoparticles and other effects investigated by TEM device. The effect of irradiation on the crystal structure of the nanomaterial was studied by selected area electron diffraction (SAED) and electron diffraction patterns (EDP) analysis.

  2. Fabrication of SiC Composites with Synergistic Toughening of Carbon Whisker and In Situ 3C-SiC Nanowire

    Directory of Open Access Journals (Sweden)

    Zhang Yunlong

    2016-01-01

    Full Text Available The SiC composites with synergistic toughening of carbon whisker and in situ 3C-SiC nanowire have been fabricated by hot press sinter technology and annealed treatment technology. Effect of annealed time on the morphology of SiC nanowires and mechanical properties of the Cw/SiC composites was surveyed in detail. The appropriate annealed time improved mechanical properties of the Cw/SiC composites. The synergistic effect of carbon whisker and SiC nanowire can improve the fracture toughness for Cw/SiC composites. The vapor-liquid-solid growth (VLS mechanism was proposed. TEM photo showed that 3C-SiC nanowire can be obtained with preferential growth plane ({111}, which corresponded to interplanar spacing about 0.25 nm.

  3. Micro-Raman Mapping of 3C-SiC Thin Films Grown by Solid–Gas Phase Epitaxy on Si (111

    Directory of Open Access Journals (Sweden)

    Kukushkin SA

    2010-01-01

    Full Text Available Abstract A series of 3C-SiC films have been grown by a novel method of solid–gas phase epitaxy and studied by Raman scattering and scanning electron microscopy (SEM. It is shown that during the epitaxial growth in an atmosphere of CO, 3C-SiC films of high crystalline quality, with a thickness of 20 nm up to few hundreds nanometers can be formed on a (111 Si wafer, with a simultaneous growth of voids in the silicon substrate under the SiC film. The presence of these voids has been confirmed by SEM and micro-Raman line-mapping experiments. A significant enhancement of the Raman signal was observed in SiC films grown above the voids, and the mechanisms responsible for this enhancement are discussed.

  4. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3

    Science.gov (United States)

    Terlinden, N. M.; Dingemans, G.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2010-03-01

    Al2O3 synthesized by plasma-assisted atomic layer deposition yields excellent surface passivation of crystalline silicon (c-Si) for films down to ˜5 nm in thickness. Optical second-harmonic generation was employed to distinguish between the influence of field-effect passivation and chemical passivation through the measurement of the electric field in the c-Si space-charge region. It is demonstrated that this electric field—and hence the negative fixed charge density—is virtually unaffected by the Al2O3 thickness between 2 and 20 nm indicating that a decrease in chemical passivation causes the reduced passivation performance for <5 nm thick Al2O3 films.

  5. Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: Homogeneous synthesis, synergistic growth mechanism, and their luminescence properties

    Science.gov (United States)

    Zhang, Meng; Zhao, Jian; Li, Zhenjiang; Yu, Hongyuan; Wang, Yaqi; Meng, Alan; Li, Qingdang

    2016-11-01

    Herein, bamboo-like 3C-SiC nanowires have been successfully fabricated on homogeneous 6H-SiC substrate by a simple chemical vapor reaction (CVR) approach. The obtained 3C-SiC nanostructure with periodical fluctuating diameter, is composed of two alternating structure units, the typical normal-sized stem segment with perfect crystallinity and obvious projecting nodes segment having high-density stacking faults. The formation of the interesting morphology is significantly subjected to the peculiar growth condition provided by the homogeneous substrate as well as the varying growth elastic energy. Furthermore, the photoluminescence (PL) performance measured on the bamboo-like SiC nanowire shows an intensive emission peaks centered at 451 nm and 467 nm, which has been expected to make a positive progress toward the optical application of the SiC-based one-dimensional (1D) nanostructures, such as light emission diode (LED).

  6. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  7. Synthesis, characterization, and wear and friction properties of variably structured SiC/Si elements made from wood by molten Si impregnation

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Rana, Kuldeep; Bengu, Erman

    2012-01-01

    ceramic material can be achieved, thus suggesting new industrial applications. The structure and composition of numerous as-synthesized samples were characterized in detail by using a wide range of techniques. Wear and friction properties were also investigated, with polished samples. The properties found......We have synthesized pre-shaped SiC/Si ceramic material elements from charcoal (obtained from wood) by impregnation with molten silicon, which takes place in a two-stage process. In the first process, a porous structure of connected micro-crystals of β-SiC is formed, while, in the second process......, molten Si totally or partly infiltrates the remaining open regions. This process forms a dense material with cubic (β-)SiC crystallites, of which the majority is imbedded in amorphous Si. The synthesis of preshaped “sprocket” elements demonstrates that desired shapes of such a dense SiC/Si composite...

  8. Temperature dependence of pin solar cell parameters with intrinsic layers made of pm-Si:H and low crystalline volume fraction {mu}c-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Hamadeh, H. [AECS, Physics Department, P.O. Box 6091, Damascus (Syria)

    2010-07-15

    A comparison of the temperature dependence of the IV characteristics parameters of hydrogenated silicon pin solar cells with intrinsic layers made of polymorphous silicon (pm-Si:H) and of {mu}c-Si:H with low crystalline volume fraction has been performed. When using pm-Si:H, higher efficiency and higher filling factors are achieved over a wide temperature range. Diode quality factors of both types of cells show similar temperature dependence. Recombination processes over the whole intrinsic layer dominates the forward current. A change of the cell parameters under illumination is also observed. The transport mechanism of both cells is similar in the temperature range that is important for most applications. Due to its optical and transport properties, pm-Si:H poses a very interesting alternative to {mu}c-Si:H and a-Si:H in the temperature range of normal terrestrial applications. (author)

  9. New mono-organotin (IV) dithiocarbamate complexes

    Science.gov (United States)

    Muthalib, Amirah Faizah Abdul; Baba, Ibrahim

    2014-09-01

    Eighteen new mono-organotin dithiocarbamate compounds derived each nine from methyltin(IV) and phenyltin(IV) reacted using in-situ method with various type of N-dialkylamine together with carbon disulphide with the ratio of 1:3:3. Elemental and gravimetric analysis showed that the general formula of these compounds were RSnCl[S2CNR'R″]2 (R= Ph, CH3, R' = CH3, C2H5, C7H7 and R″ = C2H5, C6H11, iC3H7, C7H7). These compounds had been characterized by infrared spectroscopy, ultraviolet spectroscopy, 1H, 13C NMR spectroscopy and single crystal X-ray crystallography. The infrared spectra of these compounds showed three important peaks indicating the formation of dithiocarbamate compounds, ν(CN), ν(CS) and ν(Sn-S) band which present in the region of 1444-1519, 954-1098 and 318-349 cm-1 respectively. The ultraviolet-visible spectra showed an absorption band for the π - π* transition of NCS group in the range of 253 - 259 nm due to the intramolecular charge transfer of the ligand. The 13C NMR spectra showed an important shift for δ(N13CS2) in the range of 196.8 - 201.9 ppm.. Single crystal X-ray diffraction studies showed three new structures with the general formula of PhSnCl[S2CN(Et)(i-Pr)]2, MeSnCl[S2CN(Me)(Cy)]2 and MeSnCl[S2CN(i-Pr)(CH2Ph)]2. All structures having a distorted octahedral geometry set by CClS4 donor atom from the two chelating dithiocarbamate ligands.

  10. Structural and photovoltaic properties of a-Si (SNc)/c-Si heterojunction fabricated by EBPVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Demiroğlu, D.; Kazmanli, K.; Urgen, M. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Ayazağa 34469, Istanbul (Turkey); Tatar, B. [Faculty of Arts and Sciences, Department of Physics, Namık Kemal University, Değirmenaltı, Tekirdağ (Turkey)

    2013-12-16

    In last two decades sculptured thin films are very attractive for researches. Some properties of these thin films, like high porosity correspondingly high large surface area, controlled morphology; bring into prominence on them. Sculptured thin films have wide application areas as electronics, optics, mechanics, magnetic and chemistry. Slanted nano-columnar (SnC) thin films are a type of sculptured thin films. In this investigation SnC thin films were growth on n-type crystalline Si(100) and p-type crystalline Si(111) via ultra-high vacuum electron beam evaporation technique. The structural and morphological properties of the amorphous silicon thin films were investigated by XRD, Raman and FE-SEM analysis. According to the XRD and Raman analysis the structure of thin film was amorphous and FE-SEM analysis indicated slanted nano-columns were formed smoothly. Slanted nano-columns a-Si/c-Si heterojunction were prepared as using a photovoltaic device. In this regard we were researched photovoltaic properties of these heterojunction with current-voltage characterization under dark and illumination conditions. Electrical parameters were determined from the current-voltage characteristic in the dark conditions zero-bias barrier height Φ{sub B0} = 0.83−1.00eV; diode ideality factor η = 11.71−10.73; series resistance R{sub s} = 260−31.1 kΩ and shunt resistance R{sub sh} = 25.71−63.5 MΩ SnC a-Si/n-Si and SnC a-Si/p-Si heterojunctions shows a pretty good photovoltaic behavior about 10{sup 3}- 10{sup 4} times. The obtained photovoltaic parameters are such as short circuit current density J{sub sc} 83-40 mA/m{sup 2}, open circuit voltage V{sub oc} 900-831 mV.

  11. H2-Ar dilution for improved c-Si quantum dots in P-doped SiNx:H thin film matrix

    Science.gov (United States)

    Liu, Jia; Zhang, Weijia; Liu, Shengzhong (Frank)

    2017-02-01

    Phosphorus-doped hydrogenated silicon nitride (SiNx:H) thin films containing crystalline silicon quantum dot (c-Si QD) was prepared by plasma enhanced chemical vapor deposition (PECVD) using hydrogen-argon mixed dilution. The effects of H2/Ar flow ratio on the structural, electrical and optical characteristics of as-grown P-doped SiNx:H thin films were systematically investigated. Experimental results show that crystallization is promoted by increasing the H2/Ar flow ratio in dilution, while the N/Si atomic ratio is higher for thin film deposited with argon-rich dilution. As the H2/Ar flow ratio varies from 100/100 to 200/0, the samples exhibit excellent conductivity owing to the large volume fraction of c-Si QDs and effective P-doping. By adjusting the H2/Ar ratio to 100/100, P-doped SiNx:H thin film containing tiny and densely distributed c-Si QDs can be obtained. It simultaneously possesses wide optical band gap and high dark conductivity. Finally, detailed discussion has been made to analyze the influence of H2-Ar mixed dilution on the properties of P-doped SiNx:H thin films.

  12. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Song, P. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, J.Y., E-mail: ljywlj@hit.edu.cn [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China); Yuan, H.M.; Oliullah, Md.; Wang, F. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Y., E-mail: songpengkevin@126.com [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China)

    2016-09-15

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I–V characteristics. The theoretically predicted short-circuit current density (J{sub sc}), and open-circuit voltage (V{sub oc}) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of J{sub sc} and V{sub oc} of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  13. Effect of 3C-SiC intermediate layer in GaN—based light emitting diodes grown on Si(111) substrate

    Science.gov (United States)

    Zhu, Youhua; Wang, Meiyu; Li, Yi; Tan, Shuxin; Deng, Honghai; Guo, Xinglong; Yin, Haihong; Egawa, Takashi

    2017-03-01

    GaN-based light emitting diodes (LEDs) have been grown by metalorganic chemical vapor deposition on Si(111) substrate with and without 3C-SiC intermediate layer (IL). Structural property has been characterized by means of atomic force microscope, X-ray diffraction, and transmission electron microscope measurements. It has been revealed that a significant improvement in crystalline quality of GaN and superlattice epitaxial layers can be achieved by using 3C-SiC as IL. Regarding of electrical and optical characteristics, it is clearly observed that the LEDs with its IL have a smaller leakage current and higher light output power comparing with the LEDs without IL. The better performance of LEDs using 3C-SiC IL can be contributed to both of the improvements in epitaxial layers quality and light extraction efficiency. As a consequence, in terms of optical property, a double enhancement of the light output power and external quantum efficiency has been realized.

  14. The fabrication of stable superhydrophobic surfaces using a thin Au/Pd coating over a hydrophilic 3C-SiC nanorod network

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Afzal [Materials Science Centre, IIT Kharagpur, West Bengal 721302 (India); Sohail, Shiraz [Department of Electrical Engineering, IIT Kharagpur, West Bengal 721302 (India); Jacob, Chacko, E-mail: cxj14_holiday@yahoo.com [Materials Science Centre, IIT Kharagpur, West Bengal 721302 (India)

    2015-10-30

    Graphical abstract: - Highlights: • Superhydrophobicity achieved using a metallic coating on a nanorod surface of 3C-SiC. • Hierarchical nanostructures made up of nanorod network with thin Au/Pd coating. • Surface adsorbed organic contaminants further lowered the surface energy. • High water contact angle (160°) and very low sliding angle (<5°) of a water droplet. • Reproducibility of the results was checked over a period of 14 months. - Abstract: In this work, it has been demonstrated that for hydrophilic materials, like SiC, etc., superhydrophobicity can be achieved by coating them with a material like Au/Pd with surface adsorbed organic contaminants, rather than modifying them by fluoropolymers as is usually done. Dense and randomly aligned 3C-SiC nanorods were grown in a cold-wall APCVD reactor using Ni as a catalyst which formed a network of micro/nano air pockets and exhibited superhydrophobic behavior when modified by an Au/Pd metal alloy coating by forming hierarchical nanostructures with surface adsorbed organic contaminants. A high water contact angle (160°), very low sliding angle (<5°), rebounding and a rubber ball-like behavior of a water droplet were observed on such a metal (Au/Pd) modified surface of 3C-SiC nanorods. The durability of the surface and reproducibility of the results was checked over a period of about 14 months under ambient atmosphere at room temperature, which demonstrates the long term stability of these superhydrophobic surfaces.

  15. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, Takashi, E-mail: nozawa.takashi67@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Ozawa, Kazumi [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Asakura, Yuuki; Kohyama, Akira [Muroran Institute of Technology, Muroran, Hokkaido (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)

    2014-12-15

    Understanding the cracking process of the composites is essential to establish the design basis for practical applications. This study aims to investigate the damage accumulation process and its anisotropy for nano-infiltration transient eutectic sintered (NITE) SiC/SiC composites by various characterization techniques such as the acoustic emission (AE), digital image correlation (DIC) and electrical resistivity (ER) measurements. Cracking behavior below the proportional limit stress (PLS) was specifically addressed. Similar to the other generic SiC/SiC composites, the 1st AE event was identified below the PLS for NITE SiC/SiC composites with a dependency of fabric orientation. The DIC results support that the primary failure mode depending on fiber orientation affected more than the other minor modes did. Detailed AE waveform analysis by wavelet shows a potential to classify the failure behavior depending on architecture. Cracking below the PLS is a potential concern in component deign but the preliminary ER measurements imply that the impact of cracking below the PLS on composite function was limited.

  16. The formation of the positive, fixed charge at c-Si(111)/a-Si$_3$N$_{3.5}$:H interfaces

    CERN Document Server

    Hintzsche, L E; Marsman, M; Lamers, M W P E; Weeber, A W; Kresse, G

    2015-01-01

    Modern electronic devices are unthinkable without the well-controlled formation of interfaces at heterostructures. These often involve at least one amorphous material. Modeling such interfaces poses a significant challenge, since a meaningful result can only be expected by using huge models or by drawing from many statistically independent samples. Here we report on the results of high throughput calculations for interfaces between crystalline silicon (c-Si) and amorphous silicon nitride (a-Si$_3$N$_{3.5}$:H), which are omnipresent in commercially available solar cells. The findings reconcile only partly understood key features. At the interface, threefold coordinated Si atoms are present. These are caused by the structural mismatch between the amorphous and crystalline part. The local Fermi level of undoped c-Si lies well below that of a-SiN:H. To align the Fermi levels in the device, charge is transferred from the a-SiN:H part to the c-Si part resulting in an abundance of positively charged, threefold coord...

  17. InSitu SEM Investigation of Microstructural Damage Evolution and Strain Relaxation in a Melt Infiltrated SiC/SiC Composite

    Science.gov (United States)

    Sevener, Kathy; Chen, Zhe; Daly, Sam; Tracy, Jared; Kiser, Doug

    2016-01-01

    With CMC components poised to complete flight certification in turbine engines on commercial aircraft within the near future, there are many efforts within the aerospace community to model the mechanical and environmental degradation of CMCs. Direct observations of damage evolution are needed to support these modeling efforts and provide quantitative measures of damage parameters used in the various models. This study was performed to characterize the damage evolution during tensile loading of a melt infiltrated (MI) silicon carbide reinforced silicon carbide (SiC/SiC) composite. A SiC/SiC tensile coupon was loaded to a maximum global stress of 30 ksi in a tensile fixture within an SEM while observations were made at 5 ksi increments. Both traditional image analysis and DIC (digital image correlation) were used to quantify damage evolution. With the DIC analysis, microscale damage was observed at the fiber-matrix interfaces at stresses as low as 5 ksi. First matrix cracking took place between 20 and 25 ksi, accompanied by an observable relaxation in strain near matrix cracks. Matrix crack opening measurements at the maximum load ranged from 200 nm to 1.5 m. Crack opening along the fiber-matrix interface was also characterized as a function of load and angular position relative to the loading axis. This characterization was funded by NASA GRC and was performed to support NASA GRC modeling of SiC/SiC environmental degradation

  18. Decoupling crystalline volume fraction and V{sub OC} in microcrystalline silicon pin solar cells by using a {mu}c-Si:F:H intrinsic layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Johnson, E.V.; Djeridane, Y.; Abramov, A.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, Palaiseau (France)

    2008-08-15

    Microcrystalline silicon thin film pin solar cells with a highly crystallized intrinsic {mu}c-Si:F:H absorber were prepared by RF-plasma enhanced chemical vapour deposition using SiF{sub 4} as the gas precursor. The cells were produced with a vacuum break between the doped layer and intrinsic layer depositions, and the effect of different subsequent interface treatment processes was studied. The use of an intrinsic {mu}c-Si:H p/i buffer layer before the first air break increased the short circuit current density from 22.3 mA/cm{sup 2} to 24.7 mA/cm{sup 2}. However, the use of a hydrogen-plasma treatment after both air breaks without an interface buffer layer improved both the open circuit voltage and the fill factor. Although the material used for the absorber layer showed a very high crystalline fraction and thus an increased spectral response at long wavelengths, an open-circuit voltage (V{sub OC}) of 0.523 V was nevertheless observed. Such a value of V{sub OC} is higher than is typically obtained in devices that employ a highly crystallized absorber as reported in the literature (see abstract figure). Using a hydrogen-plasma treatment, a single junction {mu}c-Si:F:H pin solar cell with an efficiency of 8.3% was achieved. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. 碳纤维增强碳与碳化硅双基体陶瓷基复合材料作为口腔种植体材料的细胞毒性%Cytotoxicity of Carbon Fiber-reinforced C-SiC Binary Matrix Composite (C/C-SiC) for Dental Implant Materials

    Institute of Scientific and Technical Information of China (English)

    方铁钧; 周群; 狄丽莎; 谭兆军; 邓景屹

    2011-01-01

    目的 通过体外细胞培养法评价碳纤维增强碳与碳化硅双基体陶瓷基复合材料(C/C-SiC)对细胞生长和凋亡的影响.方法 用实验材料不同浓度浸提液培养小鼠成纤维细胞L929,采用MTT法检测细胞的相对增殖度;采用急性溶血试验检测材料对血细胞的溶血作用,计算溶血率;采用流式细胞仪、Annexin V-FITC/PI双染法检测阴性对照组、100%C/C-SiC组、纯钛组、阳性对照组的细胞散点图,计算正常细胞、早期凋亡、晚期凋亡和坏死细胞的比例.结果 C/C-SiC复合材料的细胞毒性为1级,溶血率为0.156%,无明显溶血反应,与阴性对照组和纯钛组的差异无统计学意义(P>0.05).C/C-SiC组4个象限细胞比例与纯钛组和阴性对照组比较差异无统计学意义(P>0.05),阳性对照组的早期凋亡、正常细胞比例与其他任一组比较差异均有统计学意义(P<0.05).结论 C/C-SiC复合材料有生物安全性基础,无细胞毒性,无溶血反应.%Objective To evaluate the effect of C/C-SiC composite on the growth and apoptosis of mouse fibroblast cells. Methods Mouse fibroblasts (L929) were cultured in a series of elution of specimen, MTT assay was performed to investigate the relative growth rates;Hemolytic reaction of specimen to blood cells was detected by acute hemolysis test; Cell scatter diagrams of elutes of negative control group,100%C/C-SiC group,ti tanium group,positive control group was detected by Annexin V-FITC/PI double staining,the viable,early apoptotic,late apoptotic and necrosis cells were calculated. Results The cytotoxicity of C/C-SiC composite was grade 1,acute hemolysis rate was 0.156%. There were no significant differences between the negative control group and C/C-SiC group or between the titanium group and C/CSiC group (P > 0.05 );The FACS images showed that the proportions of cells in four quadrants of titanium group,negative control group were not statistically different from C/C-Si

  20. Rotavirus infection in children: mono-and combines forms, especially clinics and course

    Directory of Open Access Journals (Sweden)

    N. B. Denisyuk

    2012-01-01

    Full Text Available Analyzed 74 case histories of children under one year with rotavirus infection. The most commonly detected rotavirus gastroenteritis in the form of mono-and combined forms. Mono-infection in 78.3% of cases occurred in the moderate form with a leading syndrome in the form of gastroenteritis, severe dehydration proceeded with symptoms of varying severity. Mixed variants in 98.7% of cases are in the unfavorable premorbid background, in 42.8% of children were registered in the severe forms, and children younger than 6 months were erased within. The diagnosis of intestinal infection was confirmed by PCR, bacteriological and immunological methods.

  1. Splitting of type-I (N-B, P-Al) and type-II (N-Al, N-Ga) donor-acceptor pair spectra in 3C-SiC

    Science.gov (United States)

    Sun, J. W.; Ivanov, I. G.; Juillaguet, S.; Camassel, J.

    2011-05-01

    Discrete series of lines have been observed for many years in donor-acceptor pair (DAP) spectra in 3C-SiC. In this work, the splitting of both type-I (N-B, P-Al) and type-II (N-Al, N-Ga) DAP spectra in 3C-SiC has been systematically investigated by considering the multipole terms. For type-I spectra, in which either N or B substitutes on C sites or P and Al replace Si, the splitting energy of the substructure for a given shell is almost the same for both pairs. For type-II spectra, in which N is on the C site while Al and Ga acceptors replace Si, we find that, when compared with literature data, the splitting energy for a given shell is almost independent of the identity of the acceptor. For both type-I and type-II spectra, this splitting energy can be successfully explained by the octupole term V3 alone with k3 = -2 × 105 Å4 meV. Comparing the experimental donor and acceptor binding energies with the values calculated by the effective-mass model, this suggests that the shallow donor (N,P) ions can be treated as point charges while the charge distribution of the acceptor ions (Al,Ga,B) is distorted in accord with the Td point group symmetry, resulting in a considerable value for k3. This gives a reasonable explanation for the observed splitting energies for both type-I and type-II DAP spectra.

  2. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    Science.gov (United States)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  3. Activation of the Solid Silica Layer of Aerosol-Based C/SiO₂ Particles for Preparation of Various Functional Multishelled Hollow Microspheres.

    Science.gov (United States)

    Li, Xiangcun; Luo, Fan; He, Gaohong

    2015-05-12

    Double-shelled C/SiO2 hollow microspheres with an outer nanosheet-like silica shell and an inner carbon shell were reported. C/SiO2 aerosol particles were synthesized first by a one-step rapid aerosol process. Then the solid silica layer of the aerosol particles was dissolved and regrown on the carbon surface to obtain novel C/SiO2 double-shelled hollow microspheres. The new microspheres prepared by the facile approach possess high surface area and pore volume (226.3 m(2) g(-1), 0.51 cm(3) g(-1)) compared with the original aerosol particles (64.3 m(2) g(-1), 0.176 cm(3) g(-1)), providing its enhanced enzyme loading capacity. The nanosheet-like silica shell of the hollow microspheres favors the fixation of Au NPs (C/SiO2/Au) and prevents them from growing and migrating at 500 °C. Novel C/C and C/Au/C (C/Pt/C) hollow microspheres were also prepared based on the hollow nanostructure. C/C microspheres (482.0 m(2) g(-1), 0.92 cm(3) g(-1)) were ideal electrode materials. In particular, the Au NPs embedded into the two carbon layers (C/Au/C, 431.2 m(2) g(-1), 0.774 cm(3) g(-1)) show a high catalytic activity and extremely chemical stability even at 850 °C. Moreover, C/SiO2/Au, C/Au/C microspheres can be easily recycled and reused by an external magnetic field because of the presence of Fe3O4 species in the inner carbon shell. The synthetic route reported here is expected to simplify the fabrication process of double-shelled or yolk-shell microspheres, which usually entails multiple steps and a previously synthesized hard template. Such a capability can facilitate the preparation of various functional hollow microspheres by interfacial design.

  4. New mono-organotin (IV) dithiocarbamate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Muthalib, Amirah Faizah Abdul; Baba, Ibrahim [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-09-03

    Eighteen new mono-organotin dithiocarbamate compounds derived each nine from methyltin(IV) and phenyltin(IV) reacted using in-situ method with various type of N-dialkylamine together with carbon disulphide with the ratio of 1:3:3. Elemental and gravimetric analysis showed that the general formula of these compounds were RSnCl[S{sub 2}CNR′R″]{sub 2} (R= Ph, CH{sub 3}, R′ = CH{sub 3}, C{sub 2}H{sub 5}, C{sub 7}H{sub 7} and R″ = C{sub 2}H{sub 5}, C{sub 6}H{sub 11}, iC{sub 3}H{sub 7}, C{sub 7}H{sub 7}). These compounds had been characterized by infrared spectroscopy, ultraviolet spectroscopy, {sup 1}H, {sup 13}C NMR spectroscopy and single crystal X-ray crystallography. The infrared spectra of these compounds showed three important peaks indicating the formation of dithiocarbamate compounds, ν(CN), ν(CS) and ν(Sn-S) band which present in the region of 1444–1519, 954–1098 and 318–349 cm{sup −1} respectively. The ultraviolet-visible spectra showed an absorption band for the π - π* transition of NCS group in the range of 253 – 259 nm due to the intramolecular charge transfer of the ligand. The {sup 13}C NMR spectra showed an important shift for δ(N{sup 13}CS{sub 2}) in the range of 196.8 – 201.9 ppm.. Single crystal X-ray diffraction studies showed three new structures with the general formula of PhSnCl[S{sub 2}CN(Et)(i−Pr)]{sub 2}, MeSnCl[S{sub 2}CN(Me)(Cy)]{sub 2} and MeSnCl[S{sub 2}CN(i−Pr)(CH{sub 2}Ph)]{sub 2}. All structures having a distorted octahedral geometry set by CClS{sub 4} donor atom from the two

  5. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation.

    Science.gov (United States)

    Zhang, Qiang; Zhang, Ruiting; Zhao, Ying; Li, HuanHuan; Gao, Yi Qin; Zhuang, Wei

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significant deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.

  6. Degenerate gaugino mass region and mono-boson collider signatures

    CERN Document Server

    Anandakrishnan, Archana; Raby, Stuart

    2014-01-01

    In this paper we discuss search strategies at the LHC for light electroweak gauginos which are mostly Wino-like, Higgsino-like or an admixture. These states are typically degenerate with decay products that are less energetic and hence difficult to detect. In addition, their production cross-sections at a hadron collider are suppressed compared to colored states such as the gluinos. In order to detect these states one needs to trigger on initial or final state radiation. Many previous analyses have focussed on mono-jet and mono-photon triggers. In the paper we argue and show that these triggers are unlikely to succeed, due to the large background from QCD backgrounds for the mono-jet searches and the fact that the $p_T$ distribution of the mono-photons are rapidly decreasing functions of $p_T$. We show this with both an analytic calculation of photons in the initial state radiation and also a detailed numerical analysis. We then argue that mono-Z triggers, from Z decaying into charged leptons may well provide...

  7. Fatigue Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress Spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...

  8. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...

  9. Extraction of mono- and dicarboxylic acids from a curative water.

    Science.gov (United States)

    Franke, C; Weil, L; Niessner, R

    1995-09-01

    A method for the analysis of mono- and dicarboxylic acids from water is presented. For this purpose two techniques, a C(18) solid phase extraction (SPE) and a combination method of liquid-liquid extraction (LLE) and aminopropyl SPE, were tested. With the combination method all analytes, short-chain mono- and long-chain dicarboxylic acids, could be analysed in one approach. The C(18) SPE was not suitable for short-chain mono- but for dicarboxylic acids. Concentrations in the investigated water ranged from 315 mg/l (butanoic acid) to 2.9 mg/l (octanoic acid). Dicarboxylic acids were found from 5 mg/l (octanedioic acid) to 0.5 mg/l (dodecanedioic acid).

  10. Mono Lake Excursion in Cored Sediment from the Eastern Tyrrhenian Sea

    Science.gov (United States)

    Liddicoat, Joseph; Iorio, Marina; Sagnotti, Leonardo; Incoronato, Alberto

    2013-04-01

    A search for the Laschamp and Mono Lake excursions in cored marine and lacustrine sediment younger than 50,000 years resulted in the discovery of both excursions in the Greenland Sea (73.3˚ N, 351.0˚ E, Nowaczyk and Antanow, 1997), in the North Atlantic Ocean (62.7˚ N, 222.5˚ E, Channell, 2006), in Pyramid Lake in the Lahontan Basin, NV, USA (40.1˚ N, 240.2˚ E, Benson et al., 2008), and in the Black Sea (43.2˚ N, 36.5˚ E, Nowaczyk et al., 2012). The inclination, declination, and relative field intensity during the Mono Lake Excursion (MLE) in the Black Sea sediment matches well the behaviour of the excursion in the Mono Basin, CA, in that a reduction in inclination during westerly declination is soon followed by steep positive inclination when declination is easterly, and relative field intensity increases after a low at the commencement of the excursion (Liddicoat and Coe, 1979). A large clockwise loop of Virtual Geomagnetic Poles (VGPs) at the Black Sea when followed from old to young patterns very well the VGP loop formed by the older portion of the MLE in the Mono Basin (Liddicoat and Coe, 1979). We also searched for the MLE in cored sediment from the eastern Tyrrhenian Sea (40.1˚ N, 14.7˚ E) where the age of the sediment is believed to be about 32,000 years when comparing the susceptibility in the core with the susceptibility in a nearby one that is dated by palaeomagnetic secular variation records, Carbon-14, and numerous tephra layers in the Tyrrhenian Sea sediment (Iorio et al., 2011). In the Tyrrhenian Sea core, called C1067, closely spaced samples demagnetized in an alternating field to100 mT record a shallowing of positive inclination to 48˚ that is followed by steep positive inclination of 82˚ when declination moves rapidly to the southeast. The old to young path of the VGPs in C1067 forms a narrow counter-clockwise loop that reaches 30.3˚ N, 30.8˚ E and that is centered at about 55˚ N, 15˚ E. Although descending to a latitude that is

  11. Derivation, parameterization and validation of a creep deformation/rupture material constitutive model for SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Mica Grujicic

    2016-05-01

    Full Text Available The present work deals with the development of material constitutive models for creep-deformation and creep-rupture of SiC/SiC ceramic-matrix composites (CMCs under general three-dimensional stress states. The models derived are aimed for use in finite element analyses of the performance, durability and reliability of CMC turbine blades used in gas-turbine engines. Towards that end, one set of available experimental data pertaining to the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture, available in the open literature, is used to derive and parameterize material constitutive models for creep-deformation and creep-rupture. The two models derived are validated by using additional experimental data, also available in the open literature. To enable the use of the newly-developed CMC creep-deformation and creep-rupture models within a structural finite-element framework, the models are implemented in a user-material subroutine which can be readily linked with a finite-element program/solver. In this way, the performance and reliability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines can be investigated computationally. Results of a preliminary finite-element analysis concerning the creep-deformation-induced contact between a gas-turbine engine blade and the shroud are presented and briefly discussed in the last portion of the paper. In this analysis, it is assumed that: (a the blade is made of the SiC/SiC CMC; and (b the creep-deformation behavior of the SiC/SiC CMC can be represented by the creep-deformation model developed in the present work.

  12. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  13. Electron transition pathways of photoluminescence from 3C-SiC nanocrystals unraveled by steady-state, blinking and time-resolved photoluminescence measurements

    Science.gov (United States)

    Gan, Zhixing; Wu, Xinglong; Xu, Hao; Zhang, Ning; Nie, Shouping; Fu, Ying

    2016-07-01

    The cubic phase SiC nanocrystals (3C-SiC NCs) have been extensively studied for electronics and photonics applications. In this work we study the electron transition pathways of photoluminescence (PL) from 3C-SiC NCs. It is found through measuring the steady-state, blinking and time-resolved PL spectra that surface passivation by glycerol improved the steady-state PL intensity (it does not modify the emission wavelength) and the NCs fluoresced more steadily. The PL decay lifetimes are shown to be the same when the detection wavelength is modified to scan the broad PL peak, implying that the broad PL peak is originated from the distribution of NCs’ sizes. Furthermore, the PL decay lifetimes are not modified by the surface passivation. It is concluded that for PL, the electron is photoexcited from the ground state in the NC to a high-energy excited state, relaxes to the first excited state then radiatively recombines to the ground state to emit a photon. The photoexcited electron at the high-energy excited state could transit to the surface state, resulting in a reduced PL intensity and a decreased on-state dwell time in the blinking trajectory. The PL decay lifetime data implies that the two principal electron transition pathways of (a) high-energy excited state \\Rightarrow the first excited state \\Rightarrow the ground state, and (b) high-energy excited state \\Rightarrow surface state \\Rightarrow the ground state are independent from each other. We strongly believe that such a deep knowledge about 3C-SiC NCs will open new doors to harness them for novel applications.

  14. Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Enevoldsen, I.; Sørensen, John Dalsgaard;

    In this paper a reliability analysis of a Mono-tower platform is presented. The failure modes, considered, are yelding in the tube cross-sections, and fatigue failure in the butt welds. The fatigue failure mode is investigated with a fatigue model, where the fatigue strength is expressed through SN...... for the fatigue limit state is a significant failure mode for the Mono.tower platform. Further, it is shown for the fatigue failure mode the the largest contributions to the overall uncertainty are due to the damping ratio, the inertia coefficient, the stress concentration factor, the model uncertainties...

  15. Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Enevoldsen, I.; Sørensen, John Dalsgaard;

    1990-01-01

    In this paper, a reliability analysis of a Mono-tower platform is presented. Te failure modes considered are yielding in the tube cross sections and fatigue failure in the butts welds. The fatigue failrue mode is investigated with a fatigue model, where the fatigue strength is expressed through SN...... that the fatigue limit state is a significant failure mode for the Mono-tower platform. Further, it is shown for the fatigue failure mode that the largest contributions to the overall uncertainty are due to the damping ratio, the inertia coefficient, the stress concentration factor, the model uncertainties...

  16. Cost-Effective Mass Production of Mono Bucket Foundations

    DEFF Research Database (Denmark)

    Gres, Szymon; Nielsen, Søren Andreas; Fejerskov, Morten

    2015-01-01

    No recognized procedures exist for the Mono Bucket Foundation design, which is an obstruction for mass customization/production and industrialization in relation to certifying authorities. This paper presents the outcome of on-going research and development program that provides solution for inno......No recognized procedures exist for the Mono Bucket Foundation design, which is an obstruction for mass customization/production and industrialization in relation to certifying authorities. This paper presents the outcome of on-going research and development program that provides solution...

  17. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  18. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  19. The Influence of the Hot Wire Temperature on the Crystallization of μc-Si:H Films Prepared by Hot Wire-Assisted-ECR-CVD

    OpenAIRE

    Li, Ying; Li, Zhi Zhong; Chen, Guang hua; Kumeda, Minoru

    2007-01-01

    We have constructed a hot-wire-assisted ECR-CVD system to prepare a-Si:H and μc-Si:H films. The effect of hot wire (HW) temperature on crystallization of a-Si:H films is studied in the films prepared by this system. At low HW temperature, about 20 at.% hydrogen is included in the film. With increasing the HW temperature, the contents of the total hydrogen, SiH2 and SiH decrease, and the microcrystalline phase appears. It is found from the area of the TO peak of the Raman scattering spectra th...

  20. Photo-induced density-of-states variation measured by DLTS method in intrinsic micro-crystalline silicon (i-μc-Si:H) films

    Science.gov (United States)

    Wang, J.; Sun, Q. S.; Liu, H. N.; He, Y. L.

    1987-06-01

    This paper advances a measurement and two calculations of a high-frequency DLTS method for the density-of-states g(E) of intrinsic micro-crystalline and amorphous silicon film. The method surmounts the difficulties of DLTS measurement of i-a-Si:H or i-μc-Si:H samples and applies the common high-frequency DLTS to it, while the temperature of measurement is extended below 77K. Following the method, we successfully observed the obvious increase of density-of-states produced by illumination.

  1. SEMICONDUCTOR MATERIALS Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell

    Science.gov (United States)

    Qingwen, Deng; Xiaoliang, Wang; Hongling, Xiao; Zeyu, Ma; Xiaobin, Zhang; Qifeng, Hou; Jinmin, Li; Zhanguo, Wang

    2010-10-01

    A solar cell with a novel structure is investigated by means of the analysis of microelectronic and photonic structure (AMPS). The power conversion efficiency is investigated with the variations in interface recombination velocity, thicknesses of p-type layer, intrinsic layer, n-type layer, and doping density. Results show that it is available and preferable in theory to employ a-SiC:H as a window layer in p-a-SiC:H/i-a-Si:H/n-μc-Si solar cells, and provide a new approach to improving the power conversion efficiency of amorphous silicon solar cells.

  2. Effect of Interphase on Mechanical Properties of C/SiC Composites Fabricated by Liquid Silicon Infiltration%界面涂层对液相硅浸渗制备C/SiC复合材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘伟; 刘荣军; 曹英斌; 杨会永

    2012-01-01

    采用化学气相沉积工艺对短切碳纤维毡体进行界面涂层改性处理后树脂浸渍裂解得到了多孔C/C预制体,再将预制体液相硅浸渗制备了C/SiC复合材料.对比了纤维有无界面涂层对C/SiC复合材料力学性能的影响,并分析了其断裂机制.结果表明,与无界面涂层改性相比,碳毡经化学气相沉积SiC涂层改性处理后制备的C/SiC复合材料的力学性能更好,强度和模量分别提高了192%和36%.界面涂层增强了纤维的抗硅化效果是C/SiC复合材料力学性能提高的主要原因,但同时复合材料也呈现出脆性断裂模式.%The chemical vapor deposition technique was adopted to fulfill the pre-treatment of chopped fiber felt, and then the C/SiC composite was fabricated by liquid silicon infiltration process from the porous C/C perform which was made by PIP process. The effects of interphase on mechanical properties of C/SiC composites and the fracture mechanism were studied. The results showed the composite derived from the C/C preform without interphase melioration exhibited poor mechanical properties. While after CVD SiC pre-treatment, the bend strength and elastic modulus increased 192% and 36% individually. CVD SiC coating enhanced the anti-siliconization of carbon fibers, which was the main reason for the excellent mechanical properties, and brittle fracture was observed in this kind of composite.

  3. Effect of Direction of Fibers in the Non-woven Cloth in 3D Needled C/SiC Composites on the Mechanical Performance%三维针刺C/SiC复合材料无纬布纤维方向对材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    邓娟利; 范尚武; 成来飞; 张立同

    2012-01-01

    The 3D needled C/SiC composites were fabricated by chemical vapor infiltration combined with liquid melt infiltration. The microstructure of the materials was investigated by scanning election microscope. And the effect of direction of fibers in the non-woven cloth in 3D needled C/SiC composites on the mechanical performance was investigated. The results indicated that the 3D needled C/SiC composites were composed of the layers of 0°non-woven fiber cloth, short fiber web, 90° non-woven fiber cloth, and needle fibers. Effects of direction of fibers in the non-woven cloth in 3D needled C/SiC composites on the mechanical performance were significant. The tensile and flexural strength of the test samples were decreased with increasing the value of 0 (045°) that is the angle between the direction of fibers in the non-woven cloth and the direction along the length of the samples. The in-plane shear strength and impact-toughness were increased with increasing the value of θ.%通过化学气相渗透法结合反应熔体浸渗法制备了三维针刺C/SiC复合材料,采用扫描电子显微镜观察材料的显微结构,并研究了无纬布纤维方向对材料力学性能的影响.结果表明,三维针刺C/SiC复合材料由O°无纬布层、短纤维胎网层、90°无纬布层以及针刺纤维束组成,无纬布层纤维方向对材料性能有显著影响.试样的拉伸强度和弯曲强度随着无纬布纤维方向与试样长度方向的夹角θ(0 ~45°)值的增大而减小,面内剪切强度和冲击韧性随θ角的增大而增大.

  4. Effect of short fiber content on mechanical properties of C/C-SiC composites prepared by WP-LSI%短碳纤维含量对温压-熔渗工艺制备C/C-SiC复合材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    李金伟; 肖鹏; 李专; 曾志伟

    2014-01-01

    以短切碳纤维为增强体,采用温压-熔渗工艺(WP-LSI)制备纤维体积分数分别为20%、25%和30%的C/C-SiC复合材料,研究纤维含量对C/C-SiC复合材料力学性能的影响,并与国外同类产品进行对比。结果表明:随碳纤维含量增加,复合材料的开孔率降低,抗弯强度和抗压强度均提高,纤维体积分数为30%的复合材料密度达2.00 g/cm3,开孔率仅2.88%,其抗弯和垂直抗压强度分别为104.63 MPa和167.99 MPa,比纤维体积分数为20%的材料分别提高86.04%和44.76%,比国外同类产品分别提高2.03%和11.99%;随碳纤维含量增加,复合材料的破坏形式由假塑性破坏向脆性破坏转变。%C/C-SiC composite strengthened with short carbon fiber of volume fraction of 20%, 25% and 30%respectively were prepared by Warm Compressing-Liquid Silicon Infiltration (WC-LSI). The effect of fiber content on the mechanical properties of C/C-SiC was studied and compared with similar product on the market. The results show that, with increasing the carbon fiber content from 20% to 30%, the open porosity decreases, flexure strength and compressive strength of the composite increase. The density and open porosity of the C/C-SiC composite with carbon fiber content of 30%are 2.00 g/cm3 and 2.88%, respectively, the bending and vertical compressive strength are 104.63 MPa and 167.99 MPa, which are 86.04% and 44.76% higher than that of the C/C-SiC composite with carbon fiber of 20%, and are 2.03% and 11.99% higher than that of foreign sample. The failure process changes from pseudo plastic destruction to brittle failure with increasing carbon fiber content.

  5. Possible Recording of the Hilina Pali Excursion in the Mono Basin, California

    Science.gov (United States)

    Coe, R.; Liddicoat, J.

    2012-04-01

    Inclination of about negative 40˚ in basalt from Kilauea volcano, Hawaii (Teanby et al., 2002), that is assigned an age of about 18,000 radiocarbon years (uncorrected)(Coe et al., 1978, after Rubin and Berthold, 1961) and an excursion in northeastern China at Changbaishan Volcano of similar age from Ar40/Ar39 dates (Singer et al., 2011) that was interpreted to be the Blake Subchron (Zhu et al., 2000) using K/Ar (Liu, 1987) and Ar40/39 dates (Lin, 1999), might be recorded as shallow positive inclination in lacustrine siltstone in the bank of Wilson Creek in the Mono Basin, CA. The siltstone was deposited in Pleistocene Lake Russell, of which Mono Lake is the remnant, and was exposed when Wilson Creek was incised as the shoreline of Mono Lake receded (Lajoie, 1968). Basaltic and rhyolitic volcanic ash layers exposed in the bank of the creek are stratigraphic markers that have been important for studies of the Mono Lake Excursion (Denham and Cox, 1971; Liddicoat and Coe, 1979; Liddicoat, 1992; Coe and Liddicoat, 1994) and Pleistocene climate in the U.S. Great Basin (Zimmerman et al., 2006). Those ash layers likewise are useful for locating paleomagnetic directions along strike that might be the negative inclination in Hawaii named the Hilina Pali Excursion (Teanby et al., 2002). The portion of the lacustine section exposed along Wilson Creek that is of interest records waveform Delta in Lund et al. (1988) in Subunit E of Lajoie (1993) that is bracketed by ash layers 12 and 13; in Lajoie (1968), those ash layers are numbered 8 and 7, respectively. About midway in Subunit E, which has a thickness of 1.1 m, the inclination is about 15˚ in four back-to-back horizons that span 8 cm. The subsamples, each 2 cm thick, were treated by either alternating field or thermal demagnetization. The Virtual Geomagnetic Pole (VGP) for the horizon with the shallowest inclination (14.9˚) is 53.8˚ N, 22.7˚ E (n = 6, Alpha-95 = 2.3˚), and the VGPs within waveform Delta when followed

  6. Plasma etching on large-area mono-, multi- and quasi-mono crystalline silicon

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    We use plasma etched Black Si (BS)[1][2] nanostructures to achieve low reflectance due to the resulting graded refractive index at the Si-air interface. The goal of this investigation is to develop a suitable texturing method for Si solar cells. Branz et al. [3]report below 3% average reflectance...... for their 16.8% efficient black Si cell using a metal-assisted, chemical etching method on FZ mono-crystalline Si substrates. Yoo et al. [4] use RIE similar to this work on large-area, multi-crystalline Si cells and achieve a 16.1% efficiency despite a relatively high reflectance of 13.3%. Despite several...... advantages such as; (i) excellent light trapping, (ii) dry, single-sided and scalable process method and (iii) etch independence on crystallinity of Si, RIE-texturing has so far not been proven superior to standard wet texturing, primarily as a result of lower power conversion efficiency due to increased...

  7. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  8. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  9. 21 CFR 184.1505 - Mono- and diglycerides.

    Science.gov (United States)

    2010-04-01

    ... prepared from fats or oils or fat-forming acids that are derived from edible sources. The most prevalent fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in...

  10. Tagging a mono-top signature in Natural SUSY

    CERN Document Server

    Goncalves, Dorival; Takeuchi, Michihisa

    2016-01-01

    We study the feasibility of probing a region of Natural Supersymmetry where the stop and higgsino masses are compressed. Although this region is most effectively searched for in the mono-jet channel, this signature is present in many other non-supersymmetric frameworks. Therefore, another channel that carries orthogonal information is required to confirm the existence of the light stop and higgsinos. We show that a supersymmetric version of the $t \\bar t H$ process, $pp \\to t \\tilde t_1 \\tilde \\chi^0_{1(2)}$, can have observably large rate when both the stop and higgsinos are significantly light, and it leads to a distinctive mono-top signature in the compressed mass region. We demonstrate that the hadronic channel of the mono-top signature can effectively discriminate the signal from backgrounds by tagging a hadronic top-jet. We show that the hadronic channel of mono-top signature offers a significant improvement over the leptonic channel and the sensitivity reaches $m_{\\tilde t_1} \\simeq 420$ GeV at the 13 ...

  11. Spin, Charge, and Bonding in Transition Metal Mono Silicides

    NARCIS (Netherlands)

    Marel, D. van der; Damascelli, A.; Schulte, K.; Menovsky, A. A.

    1997-01-01

    Published in: Physica B 244 (1998) 138-147 citations recorded in [Science Citation Index] Abstract: We review some of the relevant physical properties of the transition metal mono-silicides with the FeSi structure (CrSi, MnSi, FeSi, CoSi, NiSi, etc) and explore the relation between their structural

  12. IRIS Toxicological Review of Ethylene Glycol Mono Butyl ...

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. N/A

  13. Transient Monotonic and Cyclic Load Effects on Mono Bucket Foundations

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam

    and when hitting the foundation they induce high impact loads with a short duration. It is important that the foundation is able to resists these huge loads. Fortunately, the conducted research showed that the capacity of the mono bucket foundation is high to impact loads. When exposed to a huge wave load...

  14. Temperature dependence of atomic vibrations in mono-layer graphene

    NARCIS (Netherlands)

    Allen, C.S.; Liberti, E.; Kim, J.S.; Xu, Q.; Fan, Y.; He, K.; Robertson, A.W.; Zandbergen, H.W.; Warner, J.H.; Kirkland, A.I.

    2015-01-01

    We have measured the mean square amplitude of both in- and out-of-plane lattice vibrations for mono-layer graphene at temperatures ranging from ∼100 K to 1300 K. The amplitude of lattice vibrations was calculated from data extracted from selected area electron diffraction patterns recorded across a

  15. Growth of 3C-SiC on 150-mm Si(100) substrates by alternating supply epitaxy at 1000 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li, E-mail: l.wang@griffith.edu.au; Dimitrijev, Sima; Han, Jisheng; Iacopi, Alan; Hold, Leonie; Tanner, Philip; Harrison, H. Barry

    2011-07-29

    To lower deposition temperature and reduce thermal mismatch induced stress, heteroepitaxial growth of single-crystalline 3C-SiC on 150 mm Si wafers was investigated at 1000 deg. C using alternating supply epitaxy. The growth was performed in a hot-wall low-pressure chemical vapor deposition reactor, with silane and acetylene being employed as precursors. To avoid contamination of Si substrate, the reactor was filled in with oxygen to grow silicon dioxide, and then this thin oxide layer was etched away by silane, followed by a carbonization step performed at 750 deg. C before the temperature was ramped up to 1000 deg. C to start the growth of SiC. Microstructure analyses demonstrated that single-crystalline 3C-SiC is epitaxially grown on Si substrate and the film quality is improved as thickness increases. The growth rate varied from 0.44 to 0.76 {+-} 0.02 nm/cycle by adjusting the supply volume of SiH{sub 4} and C{sub 2}H{sub 2}. The thickness nonuniformity across wafer was controlled with {+-} 1%. For a prime grade 150 mm virgin Si(100) wafer, the bow increased from 2.1 to 3.1 {mu}m after 960 nm SiC film was deposited. The SiC films are naturally n type conductivity as characterized by the hot-probe technique.

  16. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique

    Science.gov (United States)

    Zhang, Lifeng; Ren, Chengzu; Zhou, Changling; Xu, Hongzhao; Jin, Xinmin

    2015-12-01

    The characterization of interfaces in woven ceramic matrix composites is one of the most challenging problems in composite application. In this investigation, a new model material consisting of the chemical vapor infiltration unidirectional C/SiC composites with PyC fiber coating were prepared and evaluated to predict the interfacial mechanic properties of woven composites. Single fiber push-out/push-back tests with the Berkovich indenter were conducted on the thin sliced specimens using nano-indentation technique. To give a detailed illustration of the interfacial crack propagation and failure mechanism, each sector during the push-out process was analyzed at length. The test results show that there is no detectable difference between testing a fiber in a direct vicinity to an already tested fiber and testing a fiber in vicinity to not-pushed fibers. Moreover, the interface debonding and fiber sliding mainly occur at the PyC coating, and both the fiber and surrounding matrix have no plastic deformation throughout the process. Obtained from the load-displacement curve, the interfacial debonding strength (IDS) and friction stress (IFS) amount to, respectively, 35 ± 5 MPa and 10 ± 1 MPa. Based on the findings, the interfacial properties with PyC fiber coating can be predicted. Furthermore, it is expected to provide a useful guideline for the design, evaluation and optimal application of CVI-C/SiC.

  17. Double Core-Shell Si@C@SiO2 for Anode Material of Lithium-Ion Batteries with Excellent Cycling Stability.

    Science.gov (United States)

    Yang, Tao; Tian, Xiaodong; Li, Xiao; Wang, Kai; Liu, Zhanjun; Guo, Quangui; Song, Yan

    2017-02-10

    Lithium-ion batteries (LIBs) composed of silicon (Si) anodes suffer from severe capacity decay because of the volume expansion deriving from the formation of Li15 Si4 alloy. In this study, we prepared a double core-shell Si@C@SiO2 nanostructure by the modified Stöber method. In the process of Si lithiation, the carbon layer alleviates the large pressure slightly then the silica shell restricts the lithiation degree of Si. The combination of carbon interlayer and silica shell guarantees structural integrity and avoids further decay of capacity because of the formation of stable solid-electrolyte interphase (SEI) films. The resultant Si@C@SiO2 presents remarkable cycling stability with capacity decay of averagely 0.03 % per cycle over 305 cycles at 200 mA g(-1) , an improvement on Si@C (0.22 %) by more than a factor of 7. This encouraging result demonstrates that the designation involved in this work is effective for mitigating the capacity decay of Si-based anodes for LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A sandwich structured SiO(2)/cytochrome c/SiO(2) on a boron-doped diamond film electrode as an electrochemical nitrite biosensor.

    Science.gov (United States)

    Geng, Rong; Zhao, Guohua; Liu, Meichuan; Li, Mingfang

    2008-06-01

    A novel sandwich structured SiO(2) gel/cytochrome c (Cyt c)/SiO(2) gel was designed and constructed on conductive boron-doped diamond (BDD) film substrate. A SiO(2) gel membrane was first in situ deposited on the pretreated positive charged H-terminated BDD electrode with a simple and artful surface vapor sol-gel method. Cyt c was subsequently immobilized onto the SiO(2) membranes by electrostatic attraction, followed by another SiO(2) gel layer in situ depositing on it. The SiO(2) interlayer was conceived to play an important role in the resultant sandwich structured SiO(2)/Cyt c/SiO(2)/BDD electrode as a selective "semi-open" medium, which guaranteed the immobilized Cyt c to maintain high stability and perform good electrochemistry and biocatalysis responses. The bioactivity of Cyt c was well protected and the immobilized biomolecule even didn't denature at extremely high or low pH condition. More attractively, Cyt c in the sandwich structured electrode could be further oxidized into highly reactive Cyt c pi-cation by two-step electrochemical oxidation, which could oxidize NO(2)(-) into NO(3)(-) in the solution. A sensitive determination approach of nitrite was accordingly built up based on this biocatalytic oxidative interaction for the first time and a possible mechanism of the interaction was herein proposed.

  19. Improved efficiency for nanopillar array of c-Si photovoltaic by down-conversion and anti-reflection of quantum dots

    Science.gov (United States)

    Lin, Chien-chung; Chen, Hsin-Chu; Han, Hau-Vei; Tsai, Yu-Lin; Chang, Chia-Hua; Tsai, Min-An; Kuo, Hao-Chung; Yu, Peichen

    2012-02-01

    Improvement of efficiency for crystalline silicon (c-Si) with nanopillar arrays (NPAs) solar cell was demonstrated by deployment of CdS quantum dots (QDs). The NPAs was fabricated by colloidal lithography of self-assembled polystyrene (PS) nanospheres with a 600 nm in size and reactive-ion etching techniques, and then a colloidal CdS QDs with a concentration of 5 mg/mL was spun on the surface of c-Si with NPAs solar cell. Under a simulated one-sun condition, the device with CdS QDs shows a 33% improvement of power conversion efficiency, compared with the one without QDs. Additionally, we also found that the device with CdS QDs shows a 32% reduction in electrical resistance, compared with the one without QDs solar cell, under an ultraviolet (UV) light of 355nm illumination. This reduced electrical resistance can directly contribute to our fill-factor (FF) enhancement. For further investigation, the excitation spectrum of photoluminescence (PL), absorbance spectrum, current-voltage (I-V) characteristics, reflectance and external quantum efficiency (EQE) of the device were measured and analyzed. Based on the spectral response and optical measurement, we believe that CdS QDs not only have the capability for photon down-conversion in ultraviolet region, but also provide extra antireflection capability.

  20. Theory of Si and C Pb Centers on the (111) Interfaces of the β-SiC-SiO2 System.

    Science.gov (United States)

    Fowler, W. Beall; Edwards, Arthur H.

    1997-03-01

    We report theoretical calculations on the Si and C Pb centers on the (111) interfaces of the β-SiC-SiO2 system. Our atomic cluster sizes are such that our results apply equally to (0001) 6H and 4H SiC-SiO2 interfaces. Using semiempirical quantum mechanical (MOPAC 6.0)(J. J. P. Stewart, MOPAC 6.0, QCPE 455) (1990). and ab-initio (GAMESS)(M. W. Schmidt et) al., J. Comput. C hem. 14, 1347 (1993). codes, we have calculated equilibrium geometries and have predicted ^29Si and ^14C hyperfine parameters and electrical level positions. We have also used a modified(W. B. Fowler and R. J. El liott, Phys. Rev. B34), 5525 (1986). Haldane-Anderson approach to estimate level positions and defect charge s. Compared with the Pb center on the (111) Si-SiO2 interface, we predict greater atomic relaxations for the Si Pb and smaller atomic relaxations for the C P_b. Furthermore, we predict a large increase in hyperfine constants for the Si Pb as compared with that on the Si-SiO2 interface. For the Si P_b, both -/0 and 0/+ levels are predicted to lie in the upper half of the SiC gap; for the C Pb the -/0 level is predicted to lie in the upper half and the 0/+ level in the lower half of the gap.

  1. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    Science.gov (United States)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  2. Vacancy effects on the formation of He and Kr cavities in 3C-SiC irradiated and annealed at elevated temperatures

    Science.gov (United States)

    Zang, Hang; Jiang, Weilin; Liu, Wenbo; Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J.; Li, Tao; He, Chaohui; Yun, Di; Wang, Zhiguang

    2016-12-01

    Polycrystalline 3C-SiC was sequentially irradiated at 400 and 750 °C with 120 keV He2+ and 4 MeV Kr15+ ions to 1017 and 4 × 1016 cm-2, respectively. The Kr15+ ions penetrated the entire depth region of the He2+ ion implantation. Three areas of He2+, Kr15+ and He2+ + Kr15+ ion implanted SiC were created through masked overlapping irradiation. The sample was subsequently annealed at 1600 °C in vacuum and characterized using cross-sectional transmission electron microscopy and energy-dispersive X-ray spectroscopy. Compared to the He2+ ion only implanted SiC, He cavities show a smaller size and higher density in the co-implanted SiC. At 25 dpa, presence of He in the co-implanted 3C-SiC significantly promotes cavity growth; much smaller voids are formed in the Kr15+ ion only irradiated SiC at the same dose. In addition, local Kr migration and trapping at cavities occurs, but long-range Kr diffusion in SiC is not observed up to 1600 °C.

  3. Influence of p-layer on the performance of n-i-p μc-Si:H thin film solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The high pressure radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process was adopted to prepare the n-i-p microcrystalline silicon solar cells,the influence of p-type layers on the performance of the solar cells was investigated,and the optimum p layer suited to the n-i-p microcrystalline silicon solar cells was obtained.The experimental results demonstrate that the performance of the solar cells can be highly affected by the structural and optical properties of the p-layers,and the performance of solar cells can be greatly improved by optimizing p layers.We have achieved an initial active-area efficiency of 8.17% (V oc =0.49 V,J sc =24.9 mA/cm 2 ,FF=67%) for the μc-Si:H single-junction n-i-p solar cells and an initial active-area efficiency of 10.93% (V oc =1.31 V,J sc =13.09 mA/cm 2 ,FF=64%) for the a-Si:H/μc-Si:H tandem n-i-p solar cells.

  4. Flexible SiC/Si3N4 Composite Nanofibers with in Situ Embedded Graphite for Highly Efficient Electromagnetic Wave Absorption.

    Science.gov (United States)

    Wang, Peng; Cheng, Laifei; Zhang, Yani; Zhang, Litong

    2017-08-30

    SiC/Si3N4 composite nanofibers with in situ embedded graphite, which show highly efficient electromagnetic (EM) wave absorption performance in gigahertz frequency, were prepared by electrospinning with subsequent polymer pyrolysis and annealing. By means of incorporating graphite and Si3N4 into SiC, the EM wave absorption properties of the nanofibers were improved. The relationship among processing, fiber microstructure, and their superior EM wave absorption performance was systematically investigated. The EM wave absorption capability and effective absorption bandwidth (EAB) of nanofibers can be simply controlled by adjusting annealing atmosphere and temperature. The nanofibers after annealing at 1300 °C in Ar present a minimum reflection loss (RL) of -57.8 dB at 14.6 with 5.5 GHz EAB. The nanofibers annealed in N2 at 1300 °C exhibit a minimum RL value of -32.3 dB at a thickness of 2.5 mm, and the EAB reaches 6.4 GHz over the range of 11.3-17.7 GHz. The highly efficient EM wave absorption performance of nanofibers are closely related to dielectric loss, which originated from interfacial polarization and dipole polarization. The excellent absorbing performance together with wider EAB endows the composite nanofibers potential to be used as reinforcements in polymers and ceramics (SiC, Si3N4, SiO2, Al2O3, etc.) to improve their EM wave absorption performance.

  5. MonoMax Suture: A New Long-Term Absorbable Monofilament Suture Made from Poly-4-Hydroxybutyrate

    Directory of Open Access Journals (Sweden)

    Erich K. Odermatt

    2012-01-01

    Full Text Available A long-term absorbable monofilament suture was developed using poly-4-hydroxybutyrate (P4HB made from a biosynthetically produced homopolymer of the natural metabolite 4-hydroxybutyrate. The suture, called MonoMax, has prolonged strength retention. At 12 weeks, a size 3-0 MonoMax suture retains approximately 50% of its initial tensile strength in vivo and is substantially degraded in one year with minimal tissue reaction. In contrast, PDS II monofilament suture (Ethicon, Inc., Somerville, NJ has no residual strength in vivo after 12 weeks. In vivo, the MonoMax suture is hydrolyzed primarily by bulk hydrolysis, and is then degraded via the Krebs cycle. MonoMax is substantially more compliant than other monofilament sutures, and incorporates an element of elasticity. Its tensile modulus of 0.48 GPa is approximately one-third of the value of the PDS II fiber providing an exceptionally flexible and pliable fiber with excellent knot strength and security. These features are further enhanced by the fiber's elasticity, which also improves knot security and may help prevent wound dehiscence. Because of its performance advantages, this suture may find clinical utility in applications where prolonged strength retention, and greater flexibility are required, particularly in procedures like abdominal wall closure where wound dehiscence is still a significant post-surgical complication.

  6. Co2Ti1-xMxAl(x=0,1/4;M=C,Si)晶体的电子结构的第一性原理研究%Investigations into the Electronic Structure of Co2Ti1-xMxAl(X=0, 1/4; M=C, Si):An Initio Calculations

    Institute of Scientific and Technical Information of China (English)

    付宏志; 滕敏; 洪新华

    2009-01-01

    用广义梯度近似密度泛函和全势能线性缀加平面波方法研究了晶体Co2Ti1-xMxAl(x=0,1/4;M=C,Si)的电子结构.为了更好的了解杂质元素对晶体AlCo2Ti结构的影响,对杂质元素M(M=C,Si)替代晶体AlCo2Ti中的Ti(1/2,1/2,1/2)位进行了对比研究.同时,对杂质元素M(M=C,Si)对晶体AlCo2的晶格常数、体弹模量和原子之间的化学键产生的作用进行了探讨.%The electronic structures of the ternary (Hume-Rothery) L21-phase compound Co2Ti1-xMxAl(X=0, 1/4; M=C, Si) are calculated by first-principles using full potential linearized augmented plane wave (FLAPW) method with the generalized gradient approximation (GGA). For comparison the doping Si and C substituting Ti (1/2,1/2,1/2) in AlCo2Ti alloy are studied in order to give an insight in the understanding of hardening with the presence of small radius atoms. The effects of these defects on lattice parameters, bulk modulus and chemical bindings are studied.

  7. Mono Lake Excursion as a Chronologic Marker in the U.S. Great Basin

    Science.gov (United States)

    Liddicoat, J. C.; Coe, R. S.; Knott, J. R.

    2008-05-01

    Nevada, Utah, and California east of the Sierra Nevada are in the Great Basin physiographic province of western North America. During periods of the Pleistocene, Lake Bonneville and Lake Lahontan covered valleys in Utah and Nevada, respectively, and other lakes such as Lake Russell in east-central California did likewise (Feth, 1964). Now dry except for its remnant, Mono Lake, Lake Russell provides an opportunity to study behavior of Earth's past magnetic field in lacustrine sediments that are exposed in natural outcrops. The sediments record at least 30,000 years of paleomagnetic secular variation (Liddicoat, 1976; Zimmerman et al., 2006) and have been of particular interest since the discovery of the Mono Lake Excursion (MLE) by Denham and Cox (1971) because the field behavior can be documented at numerous sites around Mono Lake (Liddicoat and Coe, 1979, Liddicoat, 1992; Coe and Liddicoat, 1994) and on Paoha Island in the lake. Moreover, there have been recent attempts to date the excursion (Kent et al., 2002, Benson et al., 2003) more accurately and use the age and relative field intensity in paleoclimate research (Zimmerman et al., 2006). It has been proposed that the excursion in the Mono Basin might be older than originally believed (Denham and Cox, 1971; Liddicoat and Coe, 1979) and instead be the Laschamp Excursion (LE), ~ 40,000 yrs B.P. (Guillou et al., 2004), on the basis of 14C and 40Ar/39Ar dates (Kent et al., 2002) and the relative paleointensity record (Zimmerman et al., 2006) for the excursion in the Mono Basin. On the contrary, we favor a younger age for the excursion, ~ 32,000 yrs B.P., using the relative paleointensity at the Mono and Lahontan basins and 14C dates from the Lahontan Basin (Benson et al., 2003). The age of ~ 32,000 yrs B.P. is in accord with the age (32,000-34,000 yrs B.P.) reported by Channell (2006) for the MLE at Ocean Drilling Program (ODP) Site 919 in the Irminger Basin in the North Atlantic Ocean, which contains as well an

  8. Pyrogen testing of lipid-based TPN using Mono Mac 6 monocyte cell line and DELFIA

    DEFF Research Database (Denmark)

    Moesby, Lise; Hansen, E W; Christensen, J D

    1997-01-01

    Measurement of lipopolysaccharide (LPS) induced interleukin-6 (IL-6) secretion in Mono Mac 6 cells.......Measurement of lipopolysaccharide (LPS) induced interleukin-6 (IL-6) secretion in Mono Mac 6 cells....

  9. Oxidation Resistance of C/Si-C-N Composite with Si-O-C Interlayer%含Si–O–C界面层的C/Si–C–N复合材料的抗氧化性能(英文)

    Institute of Scientific and Technical Information of China (English)

    卢国锋

    2012-01-01

    为了研究利用Si–O–C界面层来提高碳纤维增强陶瓷基复合材料的抗氧化性能,利用化学气相浸渗和聚合物浸渗裂解工艺制备了以Si–O–C为界面的碳纤维增强Si–C–N陶瓷基复合材料(C/Si–O–C/Si–C–N)和无界面层的碳纤维增强Si–C–N陶瓷基复合材料(C/Si–C–N)。研究了C/Si–O–C/Si–C–N和C/Si–C–N在600、900℃和1 200℃空气环境中的氧化行为。结果表明:采用Si–O–C界面层后可提高复合材料的抗氧化性能;Si–O–C界面层较高的氧化抗力是碳纤维增强Si–C–N复合材料抗氧化性能提高的主要原因。%In order to improve oxidation resistance of carbon fiber reinfbrced ceramic matrix composites, a carbon fiber reinforced Si-C-N matrix composite with a Si-O-C interlayer (C/Si-O-C/Si-C-N) was fabricated via chemical vapor infiltration and polymer impregnation and pyrolysis process. The oxidation behaviors of the C/Si-O-C/Si-C-N and the carbon fiber reinforced Si-C-N com- posite without interphase (C/Si-C-N) were investigated in air at 600, 900 and 1 200℃, respectively. The results indicate that the oxidation resistance of C/Si-O-C/Si-C-N is improved by Si-O-C interphase compared to C/Si-C-N. The higher oxidation resistance of C/Si-O-C/Si-C-N is attributed to the higher inoxidizability of Si-O-C interlayer.

  10. 受拉载荷下C/SiC铆接接头应力的数值模拟与实验验证%Numerical stimulation and experimental validation of stress in C/SiC riveting joints under tensile load

    Institute of Scientific and Technical Information of China (English)

    刘永胜; 胡成浩; 汪清; 成来飞; 张立同

    2013-01-01

    The stress concentration,inhere relationship between geometrical structure parameters and fracture forms in C/SiC riveting joints were investigated by FEM and experimental validation.The results show that the cone angle has little influence on the stress concentration,but it has important influence on stress value.The suitable cone angle range is 2°-10°.The critical radius of C/SiC rivet is 2.2016 mm by simulations.The rivet will break when the radius of C/SiC rivet is smaller than 2.2016 mm.Otherwise,the rivet will be pulled out of SiC.The critical radius of C/SiC rivet is 2.25 mm by experiment.The error between simulation result and experimental result is 2.2 %,which validates the established FEM models for analyzing the stress concentration and fracture forms and the stimulation results.%利用有限元模拟和实验验证研究了拉伸载荷下C/SiC铆接接头的应力分布及几何参数与破坏方式的固有关系.结果表明:接头的锥度变化对接头中的应力分布影响不大,但对应力值的影响较为明显,锥度控制在2°~10°比较合适.模拟计算的铆钉临界半径为2.2016 mm,小于2.2016 mm时,铆钉被拉断,反之,铆钉被拔出.实验得到的临界半径为2.25 mm,与计算结果的误差为2.2%,说明提出的铆接接头几何结构参数与接头破坏形式关系的模型是正确的.

  11. 21 CFR 184.1101 - Diacetyl tartaric acid esters of mono- and diglycerides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Diacetyl tartaric acid esters of mono- and... acid esters of mono- and diglycerides. (a) Diacetyl tartaric acid esters of mono- and diglycerides, also know as DATEM, are composed of mixed esters of glycerin in which one or more of the hydroxyl...

  12. 40 CFR 721.8340 - Mono esters from 2- propenoic acid (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mono esters from 2- propenoic acid... Specific Chemical Substances § 721.8340 Mono esters from 2- propenoic acid (generic). (a) Chemical... as mono esters from 2-propenoic acid (PMN P-01-85) is subject to reporting under this section for the...

  13. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propylene glycol mono- and diesters of fats and... DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.856 Propylene glycol mono- and diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be...

  14. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  15. Materiales compuestos C/SiC para aplicaciones estructurales de alta temperatura. Parte I: estabilidad termodinámica y química

    Directory of Open Access Journals (Sweden)

    Aparicio, M.

    2000-12-01

    Full Text Available The development of aero-engine and aircraft industry is aimed to hypersonic technology, efficiency enhancements and pollutant emission reductions. This objective can only be reached by increasing the operating temperatures, utilising new materials which mechanical properties are retained up to high temperatures. SiC matrix composites reinforced with carbon fibres (C/SiC are good examples with very good bending and thermal shock resistance at temperatures up to 1600ºC as well as low density. However, the fact which currently inhibits the application of these materials is the high oxidation rate of carbon fibres at temperatures above 450ºC. In the first part of the paper, a review of the most important properties and oxidation mechanisms of C and SiC has been carried out. The influence of each material disposition, individually and as composite, has been analysed.

    El desarrollo de la industria aeroespacial se orienta actualmente hacia la tecnología hipersónica, el incremento en el rendimiento de las reacciones de combustión y la reducción de la emisión de contaminantes. Estos objetivos sólo pueden alcanzarse aumentando la temperatura de combustión, para lo cual es necesario desarrollar nuevos materiales que conserven sus propiedades mecánicas hasta temperaturas muy elevadas. Entre ellos se encuentran los materiales compuestos de matriz de SiC reforzada con fibra continua de carbono (C/SiC, cuyas propiedades más importantes son una elevada resistencia a flexión y al choque térmico desde temperatura ambiente hasta 1600ºCy su reducido peso específico. Sin embargo, el principal problema que acompaña a los materiales compuestos C/SiC es la elevada velocidad de oxidación de la fibra de carbono a partir de 450ºC. En la primera parte del trabajo se realiza una revisión de las características más relevantes del carbono y SiC, y de su comportamiento frente a la oxidación, tanto por separado como formando parte de materiales

  16. Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers

    NARCIS (Netherlands)

    Patelli, A.; Rigato, V.; Salmaso, G.; Carvalho, N. J. M.; De Hosson, J. Th. M.; Bontempi, E.; Depero, L. E.

    2006-01-01

    Over recent years, the introduction of Mo/Si multilayers mirrors with different barrier layers for the interfaces has allowed increasing mirror reflectance, life and temperature stability. The effects of these very thin barrier layers on multilayer growth, such as interlayer formation and Mo crystal

  17. Vibrationally high-resolved electronic spectra of MCl2 (M = C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2-

    Science.gov (United States)

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M = C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group.

  18. Lamb waves propagation along 3C-SiC/AlN membranes for application in temperature-compensated, high-sensitivity gravimetric sensors.

    Science.gov (United States)

    Caliendo, Cinzia; D'Amico, Arnaldo; Lo Castro, Fabio

    2013-01-02

    The propagation of the fundamental quasi-symmetric Lamb mode S(0) travelling along 3C-SiC/c-AlN composite plates is theoretically studied with respect to the AlN and SiC film thickness, the acoustic wave propagation direction and the electrical boundary conditions. The temperature effects on the phase velocity have been considered for four AlN/SiC-based electroacoustic coupling configurations, specifically addressing the design of temperature-compensated, enhanced-coupling, GHz-range electroacoustic devices. The gravimetric sensitivity and resolution of the four temperature-stable SiC/AlN composite structures are theoretically investigated with respect to both the AlN and SiC sensing surface. The SiC/AlN-based sensor performances are compared to those of surface acoustic waves and Lamb S(0) mode mass sensors implemented on bulk conventional piezoelectric materials and on thin suspended membranes.

  19. Computer Aided Multi-scale Design of SiC-Si3N4 Nanoceramic Composites for High-Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vikas Tomer; John Renaud

    2010-08-31

    It is estimated that by using better and improved high temperature structural materials, the power generation efficiency of the power plants can be increased by 15% resulting in significant cost savings. One such promising material system for future high-temperature structural applications in power plants is Silicon Carbide-Silicon Nitride (SiC-Si{sub 3}N{sub 4}) nanoceramic matrix composites. The described research work focuses on multiscale simulation-based design of these SiC-Si{sub 3}N{sub 4} nanoceramic matrix composites. There were two primary objectives of the research: (1) Development of a multiscale simulation tool and corresponding multiscale analyses of the high-temperature creep and fracture resistance properties of the SiC-Si{sub 3}N{sub 4} nanocomposites at nano-, meso- and continuum length- and timescales; and (2) Development of a simulation-based robust design optimization methodology for application to the multiscale simulations to predict the range of the most suitable phase morphologies for the desired high-temperature properties of the SiC-Si{sub 3}N{sub 4} nanocomposites. The multiscale simulation tool is based on a combination of molecular dynamics (MD), cohesive finite element method (CFEM), and continuum level modeling for characterizing time-dependent material deformation behavior. The material simulation tool is incorporated in a variable fidelity model management based design optimization framework. Material modeling includes development of an experimental verification framework. Using material models based on multiscaling, it was found using molecular simulations that clustering of the SiC particles near Si{sub 3}N{sub 4} grain boundaries leads to significant nanocomposite strengthening and significant rise in fracture resistance. It was found that a control of grain boundary thicknesses by dispersing non-stoichiometric carbide or nitride phases can lead to reduction in strength however significant rise in fracture strength. The

  20. Lamb Waves Propagation along 3C-SiC/AlN Membranes for Application in Temperature-Compensated, High-Sensitivity Gravimetric Sensors

    Science.gov (United States)

    Caliendo, Cinzia; D'Amico, Arnaldo; Castro, Fabio Lo

    2013-01-01

    The propagation of the fundamental quasi-symmetric Lamb mode S0 travelling along 3C-SiC/c-AlN composite plates is theoretically studied with respect to the AlN and SiC film thickness, the acoustic wave propagation direction and the electrical boundary conditions. The temperature effects on the phase velocity have been considered for four AlN/SiC-based electroacoustic coupling configurations, specifically addressing the design of temperature-compensated, enhanced-coupling, GHz-range electroacoustic devices. The gravimetric sensitivity and resolution of the four temperature-stable SiC/AlN composite structures are theoretically investigated with respect to both the AlN and SiC sensing surface. The SiC/AlN-based sensor performances are compared to those of surface acoustic waves and Lamb S0 mode mass sensors implemented on bulk conventional piezoelectric materials and on thin suspended membranes. PMID:23282585

  1. Materiales compuestos C/SiC para aplicaciones estructurales de alta temperatura. Parte II: Sistemas de protección contra la oxidación

    Directory of Open Access Journals (Sweden)

    Aparicio, M.

    2001-02-01

    Full Text Available The fact which currently excludes the use of C/SiC composites in high temperature structural applications is the high oxidation rate of carbon fibres at temperatures higher than 450ºC. In this second part of the paper, a review of the different oxidation protection systems, including inhibitors, surface modification of composites, coatings and previous infiltration of the substrates, has been carried out. The addition of inhibitors reduces the oxidation rate, but only up to 850ºC, while the surface modification of composites leads to thin coatings with poor thermal shock resistance. On the other hand, the external layers are the most usual method employed because allows combining different compositions and thicknesses. The multilayer coatings are especially interesting in applications with wide temperature range and thermal shocks requirements. The infiltration of substrate porosity improves slightly the oxidation resistance of C/SiC composites reducing the oxygen accessibility to carbon fibres. However, the infiltration complements very well the oxidation protection performance of a coating system at low temperature, since these normally present open cracks due to mismatch between coating and substrate thermal expansion coefficients.

    La utilización de los materiales compuestos C/SiC en aplicaciones estructurales a alta temperatura está limitada por la elevada velocidad de oxidación de la fibra de carbono a temperaturas superiores de 450ºC. En esta segunda parte del trabajo se realiza una revisión de las posibilidades de protección contra la oxidación de estos materiales, incluyendo inhibidores, modificación superficial del material compuesto, recubrimientos e infiltración previa del sustrato. La eficacia de los inhibidores de la reacción de oxidación esta restringida a temperaturas de hasta 850ºC, mientras que la modificación superficial del material compuesto da lugar a capas delgadas y poco resistentes a los ciclos t

  2. Lamb Waves Propagation along 3C-SiC/AlN Membranes for Application in Temperature-Compensated, High-Sensitivity Gravimetric Sensors

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2013-01-01

    Full Text Available The propagation of the fundamental quasi-symmetric Lamb mode S0 travelling along 3C-SiC/c-AlN composite plates is theoretically studied with respect to the AlN and SiC film thickness, the acoustic wave propagation direction and the electrical boundary conditions. The temperature effects on the phase velocity have been considered for four AlN/SiC-based electroacoustic coupling configurations, specifically addressing the design of temperature-compensated, enhanced-coupling, GHz-range electroacoustic devices. The gravimetric sensitivity and resolution of the four temperature-stable SiC/AlN composite structures are theoretically investigated with respect to both the AlN and SiC sensing surface. The SiC/AlN-based sensor performances are compared to those of surface acoustic waves and Lamb S0 mode mass sensors implemented on bulk conventional piezoelectric materials and on thin suspended membranes.

  3. High quality epitaxial graphene by hydrogen-etching of 3C-SiC(111) thin-film on Si(111).

    Science.gov (United States)

    Mondelli, Pierluigi; Gupta, Bharati; Betti, Maria Grazia; Mariani, Carlo; Duffin, Josh Lipton; Motta, Nunzio

    2017-03-17

    Etching with atomic hydrogen, as a preparation step before the high-temperature growth process of graphene onto a thin 3C-SiC film grown on Si(111), greatly improves the structural quality of topmost graphene layers. Pit formation and island coalescence, which are typical of graphene growth by SiC graphitization, are quenched and accompanied by widening of the graphene domain sizes to hundreds of nanometers, and by a significant reduction in surface roughness down to a single substrate bilayer. The surface reconstructions expected for graphene and the underlying layer are shown with atomic resolution by scanning tunnelling microscopy. Spectroscopic features typical of graphene are measured by core-level photoemission and Raman spectroscopy.

  4. The design and optimization of two low frequency energy harvesters employing 3C-SiC/AlN/Mo composite layers

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Abid, E-mail: abid.iqbal@griffithuni.edu.au; Mohd-Yasin, Faisal, E-mail: abid.iqbal@griffithuni.edu.au; Dimitrijev, Sima, E-mail: abid.iqbal@griffithuni.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111 (Australia)

    2014-10-24

    This paper presents the design and simulation of twocantilever-based energy harvesters that employs cubic silicon carbide on silicon (3C-SiC-on-Si) wafer as the base material and bottom electrode. Aluminum Nitride (AlN) is employed as the piezoelectric/middle layer due to its excellent material properties and high stability in varying temperature and harsh environment. Molybdenum (Mo) serves as the top layer/electrode. The thickness of the structural layers are optimized through MATLAB and also analyzed via Finite Element Analysis using Intellisuite. Two designs are proposed at low resonant frequency, one with conventional cantilever beam, the other being a T-shaped cantilever beam. Both structures are simulated and their performances are compared.

  5. High quality epitaxial graphene by hydrogen-etching of 3C-SiC(111) thin-film on Si(111)

    Science.gov (United States)

    Mondelli, Pierluigi; Gupta, Bharati; Grazia Betti, Maria; Mariani, Carlo; Lipton Duffin, Josh; Motta, Nunzio

    2017-03-01

    Etching with atomic hydrogen, as a preparation step before the high-temperature growth process of graphene onto a thin 3C-SiC film grown on Si(111), greatly improves the structural quality of topmost graphene layers. Pit formation and island coalescence, which are typical of graphene growth by SiC graphitization, are quenched and accompanied by widening of the graphene domain sizes to hundreds of nanometers, and by a significant reduction in surface roughness down to a single substrate bilayer. The surface reconstructions expected for graphene and the underlying layer are shown with atomic resolution by scanning tunnelling microscopy. Spectroscopic features typical of graphene are measured by core-level photoemission and Raman spectroscopy.

  6. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  7. Structures and electron affinities of triatomic molecules consisting of Al, P and X (X = B, Al, Ga; C, Si, Ge; N, P, As; O, S and Se).

    Science.gov (United States)

    Hu, Tuoping; Zhang, Congjie; Ren, Fude; Ren, Jun; Jia, Wenhong

    2009-02-01

    The structures and electronic properties of the triatomic molecules containing Al, P, X atoms (X = B, Al, Ga; C, Si, Ge; N, P, As; O, S and Se) and their anions are investigated at the B3LYP/cc-PVTZ and the B3LYP/aug-cc-PVTZ levels. The results show that the most stable structures of the anions are AlXP(-) (X = B, C, N) and PAlX(-) (X = S, Se), while for the neutral molecules, the most stable structures are PXAl (X = C, N and O). The order of the VDEs of the anions molecules and the AEAs of the neutral species are C < N < O < Si approximately Ge < P approximately As < Al = Ga < B < S approximately Se and C < O < N < Si approximately Ge < P approximately As < B < Al approximately Ga < S approximately Se, respectively.

  8. Permeability of mono- and bi-dispersed porous media

    Directory of Open Access Journals (Sweden)

    Kim S.J.

    2013-04-01

    Full Text Available In this study, the permeability of mono- and bi-dispersed porous media is considered. The effects of the particle size distribution and the packing structure of particles on the permeability are investigated experimentally and analytically. Both experimental and analytic results suggest that the particlesize distribution is close to the log-normal distribution, and the permeability of the mono-dispersed porous media quasi-linearly decreases as the range of the particle size distribution increases. On the other hand, the effect of packing structure of particles on the permeability is shown to be negligible.The permeability of the bidispersed porous media quasi-linearly decreases as the range of cluster size increases, and nearly independent of the particle size distribution. The present model is valid over the range of parameters typically found in heat transfer applications.

  9. Mono Lake Analog Mars Sample Return Expedition for AMASE

    Science.gov (United States)

    Conrad, P. G.; Steele, A.; Younse, P.; DiCicco, M.; Morgan, A. R.; Backes, P.; Eigenbrode, J. E.; Marquardt, D.; Amundsen, H. E. F.

    2011-01-01

    We explored the performance of one robotic prototype for sample acquisition and caching of martian materials that has been developed at the Jet Propulsion Laboratory for potential use in the proposed MAX-C Mars Sample Return architecture in an environment, rich in chemical diversity with a variety of mineralogical textures. Mono Lake State Tufa Reserve in Mono County, CA possesses a variety of minerals including a variety of evaporites, volcanic glass and lava, and sand and mudstones. The lake itself is an interesting chemical system: the water is highly alkaline (pH is approximately 10) and contains concentrations of Cl, K, B, with lesser amounts of S Ca Mg, F, As, Li, I and Wand generally enriched HREEs. There are also traces of radioactive elements U, Th, Pl.

  10. Raman inspection for the annealing induced evolution of sp{sup 2} and sp{sup 3} bonding behavior in sandwiched Si/C/Si multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K. [Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China)], E-mail: ckchung@mail.ncku.edu.tw; Lai, C.W.; Peng, C.C.; Wu, B.H. [Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2008-12-01

    The effect of annealing on the sandwiched Si/C/Si multilayer on a Si(100) substrate using ion beam sputtering (IBS) system under ultra-high vacuum (UHV) was investigated. Carbon layer thickness was fixed at 100 nm and a-Si ranged from 10 nm to 25 nm. Rapid thermal annealing was performed to investigate the evolution of sp{sup 2}-sp{sup 3} bonding at annealing temperature from room temperature (RT) to 750 deg. C and annealing time from 0.5 to 2 min. Raman spectroscopy was utilized to characterize bonding behavior of Si/C/Si multilayers for the variation of graphite peak (G-peak), disorder-induced peak (D-peak) of carbon film at specific wavenumbers shift. The higher the integrated intensity ratio (I{sub D}/I{sub G}), the more the sp{sup 2} bonds is. From experimental results, I{sub D}/I{sub G} ratio increases with annealing temperature from RT to 750 deg. C due to graphitization effect for the increased sp{sup 2} bonds. However, I{sub D}/I{sub G} ratio reduces a little with annealing time from 0.5 to 2 min. It implies that a little increase of sp{sup 3} bonds of carbon, which is primarily from the sp{sup 3} Si-C bonds, can be an index of the formation of SiC. Comparing the effect of both annealing temperature and time on the evolution of sp{sup 2}-sp{sup 3} bonds, the annealing temperature dominates more on the sp{sup 2}-sp{sup 3} evolution of a-Si/C/a-Si on the Si(100) under rapid thermal annealing than the annealing time. Also, AES depth profile was used to examine the interdiffusion and reaction between a-Si and C for SiC formation and had a consistent result with Raman.

  11. Vacancy effects on the formation of He and Kr cavities in 3C-SiC irradiated and annealed at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Hang; Jiang, Weilin; Liu, Wenbo; Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J.; Li, Tao; He, Chaohui; Yun, Di; Wang, Zhiguang

    2016-12-01

    Polycrystalline 3C-SiC was sequentially irradiated at 400 and 750°C with 120 keV He2+ and 4 MeV Kr15+ ions to E21 and 4E20 ions/m2 with profiles of the implanted species peaked at 450 and 1500 nm, respectively. The masked overlapping irradiation created three study areas of He2+, Kr15+ and He2+ + Kr15+ implanted SiC. The doses at the depth of the peak He concentration in He2+ and He2+ + Kr15+ implanted SiC correspond to 4 and 25 dpa. The sample was subsequently annealed at 1600°C for 3 h in vacuum and characterized using cross-sectional transmission electron microscopy and energy-dispersive x-ray spectroscopy. Compared to the He2+ implanted SiC, He cavities show a smaller size and higher density in the co-implanted SiC. At 25 dpa, He presence in the co-implanted 3C-SiC significantly promotes He cavity growth, as contrasted to the smaller voids formed without He in the Kr15+ irradiated SiC at the same dose. In addition, local Kr migration and trapping at cavities occur, but long-range Kr diffusion in SiC is not observed up to 1600°C.

  12. Single-Crystalline 3C-SiC anodically Bonded onto Glass: An Excellent Platform for High-Temperature Electronics and Bioapplications.

    Science.gov (United States)

    Phan, Hoang-Phuong; Cheng, Han-Hao; Dinh, Toan; Wood, Barry; Nguyen, Tuan-Khoa; Mu, Fengwen; Kamble, Harshad; Vadivelu, Raja; Walker, Glenn; Hold, Leonie; Iacopi, Alan; Haylock, Ben; Dao, Dzung Viet; Lobino, Mirko; Suga, Tadatomo; Nguyen, Nam-Trung

    2017-08-23

    Single-crystal cubic silicon carbide has attracted great attention for MEMS and electronic devices. However, current leakage at the SiC/Si junction at high temperatures and visible-light absorption of the Si substrate are main obstacles hindering the use of the platform in a broad range of applications. To solve these bottlenecks, we present a new platform of single crystal SiC on an electrically insulating and transparent substrate using an anodic bonding process. The SiC thin film was prepared on a 150 mm Si with a surface roughness of 7 nm using LPCVD. The SiC/Si wafer was bonded to a glass substrate and then the Si layer was completely removed through wafer polishing and wet etching. The bonded SiC/glass samples show a sharp bonding interface of less than 15 nm characterized using deep profile X-ray photoelectron spectroscopy, a strong bonding strength of approximately 20 MPa measured from the pulling test, and relatively high optical transparency in the visible range. The transferred SiC film also exhibited good conductivity and a relatively high temperature coefficient of resistance varying from -12 000 to -20 000 ppm/K, which is desirable for thermal sensors. The biocompatibility of SiC/glass was also confirmed through mouse 3T3 fibroblasts cell-culturing experiments. Taking advantage of the superior electrical properties and biocompatibility of SiC, the developed SiC-on-glass platform offers unprecedented potentials for high-temperature electronics as well as bioapplications.

  13. Material Constitutive Models for Creep and Rupture of SiC/SiC Ceramic-Matrix Composites (CMCs) Under Multiaxial Loading

    Science.gov (United States)

    Grujicic, Mica; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-05-01

    Material constitutive models for creep deformation and creep rupture of the SiC/SiC ceramic-matrix composites (CMCs) under general three-dimensional stress states have been developed and parameterized using one set of available experimental data for the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture. To validate the models developed, another set of available experimental data was utilized for each model. The models were subsequently implemented in a user-material subroutine and coupled with a commercial finite element package in order to enable computational analysis of the performance and durability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines. In the last portion of the work, the problem of creep-controlled contact of a gas-turbine engine blade with the shroud is investigated computationally. It is assumed that the blade is made of the SiC/SiC CMC, and that the creep behavior of this material can be accounted for using the material constitutive models developed in the present work. The results clearly show that the blade-tip/shroud clearance decreases and ultimately becomes zero (the condition which must be avoided) as a function of time. In addition, the analysis revealed that if the blade is trimmed at its tip to enable additional creep deformation before blade-tip/shroud contact, creep-rupture conditions can develop in the region of the blade adjacent to its attachment to the high-rotational-speed hub.

  14. Modification and performance evaluation of a mono-valve engine

    Science.gov (United States)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  15. Age of the Mono Lake excursion and associated tephra

    Science.gov (United States)

    Benson, L.; Liddicoat, J.; Smoot, J.; Sarna-Wojcicki, A.; Negrini, R.; Lund, S.

    2003-01-01

    The Mono Lake excursion (MLE) is an important time marker that has been found in lake and marine sediments across much of the Northern Hemisphere. Dating of this event at its type locality, the Mono Basin of California, has yielded controversial results with the most recent effort concluding that the MLE may actually be the Laschamp excursion (Earth Planet. Sci. Lett. 197 (2002) 151). We show that a volcanic tephra (Ash #15) that occurs near the midpoint of the MLE has a date (not corrected for reservoir effect) of 28,620 ?? 300 14C yr BP (??? 32,400 GISP2 yr BP) in the Pyramid Lake Basin of Nevada. Given the location of Ash #15 and the duration of the MLE in the Mono Basin, the event occurred between 31,500 and 33,300 GISP2 yr BP, an age range consistent with the position and age of the uppermost of two paleointensity minima in the NAPIS-75 stack that has been associated with the MLE (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009). The lower paleointensity minimum in the NAPIS-75 stack is considered to be the Laschamp excursion (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009).

  16. 炭纤维表面SiC/SiO2抗氧化涂层的溶胶凝胶法制备%Preparation of an anti-oxidative SiC/SiO2 coating on carbon fibers by a sol-gel method

    Institute of Scientific and Technical Information of China (English)

    夏克东; 吕春祥; 杨禹

    2013-01-01

    A SiC/SiO2 ceramic coating on carbon fibers was prepared by a sol-gel method followed by heat treatment at high temperature.The structure and the morphology of the SiC/SiO2 coating were characterized by X-ray photoelectron spectroscopy,X-ray diffraction and scanning electron microscopy.The oxidation resistant properties of the carbon fibers with and without the coating were compared by thermogravimetric analysis.Results indicate that a uniform and continuous coating can improve the oxidation resistance of carbon fibers.The oxidation resistance of the coated carbon fibers increased with increases in the sol concentration and heat treatment temperature.A coating of thickness 300 nm increased the onset oxidation temperature by about 200℃ and the single fiber tensile strength was decreased by 37.7% compared with the pristine carbon fibers.After isothermal oxidation at 700℃ for 90min,the single fiber tensile strength of the coated carbon fibers was decreased to 1.37 GPa.The oxidation resistance of the fibers was decreased when the coating thickness exceeded 400 nm due to the spallation of the coating.%采用溶胶凝胶法,并经高温热处理在炭纤维表面制备SiC/SiO2陶瓷涂层.通过X-射线光电子能谱、X-射线衍射、扫描电镜等分析SiC/SiO2涂层的结构与形貌.通过热重分析研究炭纤维涂层前后的抗氧化性能.结果表明,均匀、无裂纹的SiC/SiO2涂层可改善炭纤维的抗氧化性能,而且涂层炭纤维的抗氧化性能随着溶胶浓度和热处理温度的升高而增加.与原始炭纤维相比,具有300nm涂层厚度的炭纤维起始氧化温度提高了200℃.但是当涂层超过一定厚度时,涂层开裂脱落,炭纤维的抗氧化性能降低.SiC/SiO2涂层炭纤维的拉伸强度与原始纤维相比降低了37.7%,在700℃等温氧化90 min,涂层纤维的拉伸强度为1.37 GPa,仍保留一定的强度.

  17. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Directory of Open Access Journals (Sweden)

    Chunping Liu

    Full Text Available Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE, whereas it has a scattered and patchy distribution in South China (SC. In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM. Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278 among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  18. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Science.gov (United States)

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  19. Gamma spectra pictures using a digital plotter. Program MONO; Representacion de Espectros directos mediante un trazado digital. Prograa MONO

    Energy Technology Data Exchange (ETDEWEB)

    Los Arcos, J. M.

    1978-07-01

    The program MONO has been written for a CALCOMP-936 digital plotter operating off- -line with a UMI VAC 1106 computer, to obtain graphic representations of single gamma spectra stored on magnetic tape. It allows to plot the whole spectrum or only a part, as well as to draw a given spectrum on the same or different picture than the previous one. Ten representation scales are available and at up nine comment lines can be written in a graphic. (Author) 4 refs.

  20. 透明导电氧化膜的功函数对μc-Si∶H(n)/c-Si(p)异质结太阳能电池性能影响的数值模拟%Numerical Simulation of Influence of Work Function of Transparent Conductive Oxide on Performance of μc-Si∶H(n)/c-Si(p) Heterojunction Solar Cell

    Institute of Scientific and Technical Information of China (English)

    吕雁文; 刘淑平; 聂慧军

    2015-01-01

    用AFORS-HET软件分析了透明导电氧化膜(Transparent Conductive Oxide,TCO)的功函数对μc-Si∶H(n)/c-Si(p)异质结太阳能电池性能的影响.模拟结果表明,透明导电氧化膜的功函数会强烈影响太阳能电池的性能如Voc和FF.当透明导电氧化膜的功函数在TCO/μc-Si∶H(n)界面小于4.4 eV、μc-Si∶H(n)发射层的厚度为6 nm,透明导电氧化膜的功函数在μc-Si∶H(p+)/TCO界面大于5.2 eV且透明导电氧化膜为ZnO时,模拟的具有纹理结构的TCO/μc-Si∶H(n)/a-Si∶H(i)/c-Si(p)/a-Si∶H(i)/μc-Si∶H (p+)/TCO太阳能电池的转换效率达到了23.78%(Voc:758.6 mV,Jsc:40.94mA/cm2,FF:76.58%).这表明μc-Si∶H(n)/c-Si(p)异质结太阳能电池的性能与透明导电氧化膜的功函数紧密相关,通过透明导电氧化膜的功函数可以提高太阳能电池的效率.

  1. ZrB2-SiC as a protective coating for C/SiC composites: Effect of high temperature oxidation on thermal shock property and protection mechanism

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2016-06-01

    Full Text Available ZrB2-SiC coating was prepared on C/SiC composites surface by slurry method, and then the thermal fatigue behavior of ZrB2-SiC coated C/SiC composites was studied. The composition of the coating layers was characterized by XRD, SEM and EDS. With the thickness was 200 μm, the coating was ZrB2 and SiC. During thermal cycle between 1773 K in air and 373 K in boiling water, the weight of the ZrB2-SiC coated composites decreased lightly. The decrease of the flexural strength during the thermal cycle was primarily due to the debonding of the fiber–matrix interfaces and the oxidation of the coated samples. Compared with the uncoated C/SiC composites, the coating played an important role in enhancing the resistance to the thermal shock.

  2. The relationship between mono-abundance and mono-age stellar populations in the Milky Way disk

    CERN Document Server

    Minchev, I; Chiappini, C; Martig, M; Anders, F; Matijevic, G; de Jong, R S

    2016-01-01

    Studying the Milky Way disk structure using stars in narrow bins of [Fe/H] and [alpha/Fe] has recently been proposed as a powerful method to understand the Galactic thick and thin disk formation. It has been assumed so far that these mono-abundance populations (MAPs) are also coeval, or mono-age, populations. Here we study this relationship for a Milky Way chemo-dynamical model and show that equivalence between MAPs and mono-age populations exists only for the high-[alpha/Fe] tail, where the chemical evolution curves of different Galactic radii are far apart. At lower [alpha/Fe]-values a MAP is composed of stars with a range in ages, even for small observational uncertainties and a small MAP bin size. Due to the disk inside-out formation, for these MAPs younger stars are typically located at larger radii, which results in negative radial age gradients that can be as large as 2 Gyr/kpc. Positive radial age gradients can result for MAPs at the lowest [alpha/Fe] and highest [Fe/H] end. Such variations with age p...

  3. Detection of Degradation Effects in Field-Aged c-Si Solar Cells through IR Thermography and Digital Image Processing

    Directory of Open Access Journals (Sweden)

    E. Kaplani

    2012-01-01

    Full Text Available Due to the vast expansion of photovoltaic (PV module production nowadays, a great interest is shown in factors affecting PV performance and efficiency under real conditions. Particular attention is being given to degradation effects of PV cells and modules, which during the last decade are seen to be responsible for significant power losses observed in PV systems. This paper presents and analyses degradation effects observed in severely EVA discoloured PV cells from field-aged modules operating already for 18–22 years. Temperature degradation effects are identified through IR thermography in bus bars, contact solder bonds, blisters, hot spots, and hot areas. I-V curve analysis results showed an agreement between the source of electrical performance degradation and the degradation effects in the defected cell identified by the IR thermography. Finally, an algorithm was developed to automatically detect EVA discoloration in PV cells through processing of the digital image alone in a way closely imitating human perception of color. This nondestructive and noncostly solution could be applied in the detection of EVA discoloration in existing PV installations and the automatic monitoring and remote inspection of PV systems.

  4. Creep/Stress Rupture Behavior of 3D Woven SiC/SiC Composites with Sylramic-iBN, Super Sylramic-iBN and Hi-Nicalon-S Fibers at 2700F in Air

    Science.gov (United States)

    Bhatt, R. T.

    2017-01-01

    To determine the influence of fiber types on creep durability, 3D SiC/SiC CMCs were fabricated with Sylramic-iBN, super Sylramic-iBN and Hi-Nicalon-S fibers and the composite specimens were then tested under isothermal tensile creep at 14820C at 69, 103 and 138 MPa for up to 300hrs in air. The failed specimens were examined by scanning electron microscopy (SEM) and computed tomography (CT) for fracture mode analysis. The creep data of these composites are compared with those of other SiC/SiC composites in the literature. The results of this study will be presented.

  5. Investigations of the Origin of the Magnetic Remanence in Late Pleistocene Lacustrine Sediments in the Mono Basin, CA

    Science.gov (United States)

    Vasquez, N.; Corley, A. D.

    2015-12-01

    In the Mono Basin, CA, fine sand, silt, and volcanic ash deposited in Pleistocene Lake Russell is exposed on the margin of Mono Lake, and on Paoha Island in the lake. The silt records the Mono Lake Excursion (MLE: Denham and Cox, 1971) and several tens of thousands of years of paleomagnetic secular variation (PSV: Denham and Cox, 1971; Liddicoat, 1976; Lund et al., 1988). The sediment is believed to be an accurate recorder of PSV because the MLE has the same signal at widely separated localities in the basin (Denham, 1974; Liddicoat and Coe, 1979; Liddicoat, 1992) with the exception at wave-cut cliffs on the southeast side of the lake (Coe and Liddicoat, 1994). Magnetite, titanomagnetite, and titanomaghemite are present in the sediment (Denham and Cox, 1971; Liddicoat, 1976; Liddicoat and Coe, 1979), which is glacial flour from the adjacent Sierra Nevada (Lajoie, 1968). X-rays of the sediment and lineation measurements show patterns of normal bedding with layers aligned such that the minimum axes are within 5-10 degrees of normal bedding, with 10 percent foliation and 1 percent lineation (Coe and Liddicoat, 1994). We explore reasons for the difference in part of the PSV record at the wave-cut cliffs beyond the interpretation of Coe and Liddicoat (1994) that paleomagnetic field strength is a controlling factor. Possibilities include the sedimentation rate - at localities on the margin of Mono Lake the rate is about 60 percent less than at the wave-cut cliffs - and lithology of the sediment. At Mill Creek on the northwest side of Mono Lake, the non-magnetic sediment fraction is coarser-grained than at the wave-cut cliffs by a factor of about two, and there is a similar difference in the total inorganic carbon (TIC) percentage by weight for the two localities. (Spokowski et al., 2011) Studies of the sediment at two localities in the basin where the Hilina Pali Excursion (Teanby et al., 2002) might be recorded (Wilson Creek and South Shore Cliffs; Liddicoat and Coe

  6. Possible recording of the Mono Lake Excursion in cored sediment from Clear Lake, California

    Science.gov (United States)

    Liddicoat, Joseph; Verosub, Kenneth

    2010-05-01

    We report the possible recording of the Mono Lake Excursion (MLE) in cored sediment from Clear Lake, CA. The locality (39.0˚N, 237.3˚E) is about 120 km north of San Francisco, CA, and 320 km northwest of the Mono Basin, CA, where the MLE first was discovered in North America (Denham and Cox, 1971). The field behaviour at Clear Lake that might be the MLE is recorded in clay and peaty clay about 50 cm below the top of the lowermost 80-cm core slug of a 21.6-m core. The coring was done by the wire-line method (Sims and Rymer, 1975) and the samples (rectangular solids 21 mm on a side and 15 mm high) were measured in a cryogenic magnetometer after demagnetization in an alternating field to 35 milliTesla (Verosub, 1977). The continuously-spaced samples record negative inclination of nearly 20˚ and northerly declination when unnormalized relative field intensity was reduced by an order of magnitude from the mean value. Those palaeomagnetic directions are followed immediately by positive inclination to about 50˚ and easterly declination of about 60˚ when the field intensity is at a relative high. That pattern of behaviour is recorded at three localities (Wilson Creek, Mill Creek, and Warm Springs) in the Mono Basin at the MLE (Liddicoat and Coe, 1979; Liddicoat, 1992). A path of the Virtual Geomagnetic Poles (VGPs) at Clear Lake form a clockwise-trending loop that is centered at 65˚N, 20˚E in the hemisphere away from the locality. The VGP that is farthest from the North Geographic Pole is at 29.3˚N, 337.1˚E, which is close to the path formed by the VGPs in the older portion of the MLE (Liddicoat and Coe, 1979; Liddicoat, 1992). The age of the sediment recording the anomalous palaeomagnetic directions in Clear Lake is about 30,000 years B.P. (Verosub, 1977). That age was determined from six (uncalibrated) radiocarbon dates, three of which are from near the base of the core (Sims and Rymer, 1975) where there are the anomalous palaeomagnetic directions, and linear

  7. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation%a-Si(n)/c-Si(P)异质结太阳电池薄膜硅背场的模拟优化

    Institute of Scientific and Technical Information of China (English)

    赵雷; 周春兰; 李海玲; 刁宏伟; 王文静

    2008-01-01

    采用AFORS-HET数值模拟软件,对不同带隙的薄膜硅材料在a-Si(n)/c-Si(p)异质结太阳电池上的背场效果进行了模拟,分析了影响背场效果的原因,得到了薄膜硅背场在a-Si(n)/c-Si(p)异质结太阳电池上的适用条件为薄膜硅材料是带隙1.6eV,硼掺杂浓度在1018cm-3以上的微晶硅材料,其最佳厚度在5nm左右.这种背场从工艺上易于实现,并且,与常用的Al扩散背场相比,在相同的掺杂浓度下,电池效率可以大大提高.

  8. iOS Development using MonoTouch Cookbook

    CERN Document Server

    Tavlikos, Dimitris

    2011-01-01

    The book is written in a cookbook style, presenting examples in the style of recipes, allowing you to go directly to your topic of interest, or follow topics throughout a chapter to gain in-depth knowledge. This book is essential for C# and .NET developers with no previous experience in iOS development and Objective-C developers that want to make a transition to the benefits of MonoTouch and the C# language, for creating complete, compelling iPhone, iPod and iPad applications and deploying them to the App Store.

  9. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.

  10. Crystal growth of 50 cm square mono-like Si by directional solidification and its characterization

    Science.gov (United States)

    Miyamura, Y.; Harada, H.; Jiptner, K.; Chen, J.; Prakash, R. R.; Nakano, S.; Gao, B.; Kakimoto, K.; Sekiguchi, T.

    2014-09-01

    Seed-assisted growth of mono crystalline-like Silicon (mono-like Si) ingots of 50 cm square has been performed. By controlling the shape of the liquid-solid interface, a mono-like crystal was grown from a small seed of 20 cm diameter. Several developments to reduce the carbon incorporation have been realized as can be seen from the shiny ingot surfaces. The dislocation density is reduced to the order of 104 cm-2.

  11. Magnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles.

    Science.gov (United States)

    Zhu, Yangzhi; Li, Xiangcun; He, Gaohong; Qi, Xinhong

    2015-02-18

    Magnetic C-C@Fe3O4 hollow microspheres were prepared by using aerosol-based Fe3O4@C-SiO2 core-shell particles as templates. The magnetic double-shelled microspheres efficiently worked as carriers to load Pt nanoparticles, thus making the catalyst recyclable and reusable.

  12. Quantum chemical calculations on the structure and stability of Mg2+XH3OH complexes in the gas phase (X = C, Si, and Ge)

    Science.gov (United States)

    El-Nahas, Ahmed M.; El-Demerdash, Safinaz H.; El-Shereefy, El-Sayed E.

    2007-06-01

    The structure and stability of Mg2+XH3OH complexes in gas phase (X = C, Si and Ge) have been studied using the B3LYP/6-31 + G(d) and CBS-QB3 levels of theory. Several dissociation pathways for Mg2+XH3OH complexes have been investigated. The complexes are thermodynamically stable with respect to the loss of H+, OH+, XH3, XH4, and XH4+ but thermodynamically unstable toward the loss of XH3+, XH3OH+, and XH3O+ ions. The presence of sizable kinetic energy barriers (25-81 kcal/mol) for unimolecular dissociation hinders the exothermic processes. This indicates that Mg2+XH3OH complexes can form metastable species and is likely observed under appropriate experimental conditions. On the other hand, endothermic channels are unlikely occurred under mild experimental conditions. Binding energies in the investigated complexes parallel charge transfer from ligands to the Mg2+ ion. Comparison between B3LYP and CBS-QB3 results is also presented.

  13. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part II – Material model and numerical implementation

    Directory of Open Access Journals (Sweden)

    Li Jun

    2015-02-01

    Full Text Available In this work, a macroscopic non-linear constitutive model accounting for damage, inelastic strain and unilateral behavior is proposed for the 2D plain-woven C/SiC composite. A set of scalar damage variables and a new thermodynamic potential expression are introduced in the framework of continuum damage mechanics. In the deduced constitutive equations, the material’s progressive damage deactivation behavior during the compression loading is described by a continuous function, and different deactivation rates under uniaxial and biaxial compression loadings are also considered. In damage evolution laws, the coupling effect among the damage modes and impediment effect of compression stress on the development of shear damage in different plane stress states are taken into account. Besides, the general plasticity theory is applied to describing the evolution of inelastic strain in tension and/or shear stress state. The Tsai–Wu failure criterion is adopted for strength analysis. Additionally, the material model is implemented as a user-defined material subroutine (UMAT and linked to the ABAQUS finite element software, and its performance is demonstrated through several numerical examples.

  14. Tuning the optical properties of RF-PECVD grown μc-Si:H thin films using different hydrogen flow rate

    Science.gov (United States)

    Dushaq, Ghada; Nayfeh, Ammar; Rasras, Mahmoud

    2017-07-01

    In this paper we study the effect of H2/SiH4 dilution ratio (R) on the structural and optical properties of hydrogenated microcrystalline silicon embedded in amorphous matrix thin films. The thin films are prepared using standard RF-PECVD process at substrate temperature of 200 °C. The effect of hydrogen dilution ratio on the optical index of refraction and the absorption coefficient were investigated. It was observed that by incorporating higher hydrogen flow rate in the films with low SiH4 concentration, the optical index of refraction can be tuned over a broad range of wavelengths due to the variation of crystalline properties of the produced films. By varying the hydrogen flow of μc-Si:H samples, ∼8% and 12% reduction in the index of refraction at 400 nm and at 1500 nm can be achieved, respectively. In addition a 78% reduction in surface roughness is obtained when 60sccm of H2 is used in the deposition compared to the sample without any H2 incorporation.

  15. C@SiNW/TiO2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting.

    Science.gov (United States)

    Devarapalli, Rami Reddy; Debgupta, Joyashish; Pillai, Vijayamohanan K; Shelke, Manjusha V

    2014-05-09

    One-dimensional heterostructure nanoarrays are efficiently promising as high performance electrodes for photo electrochemical (PEC) water splitting applications, wherein it is highly desirable for the electrode to have a broad light absorption, efficient charge separation and redox properties as well as defect free surface with high area suitable for fast interfacial charge transfer. We present highly active and unique photoelectrode for solar H2 production, consisting of silicon nanowires (SiNWs)/TiO2 core-shell structures. SiNWs are passivated to reduce defect sites and protected against oxidation in air or water by forming very thin carbon layer sandwiched between SiNW and TiO2 surfaces. This carbon layer decreases recombination rates and also enhances the interfacial charge transfer between the silicon and TiO2. A systematic investigation of the role of SiNW length and TiO2 thickness on photocurrent reveals enhanced photocurrent density up to 5.97 mA/cm(2) at 1.0 V vs.NHE by using C@SiNW/TiO2 nanoarrays with photo electrochemical efficiency of 1.17%.

  16. Design and Testing of a C/C-SiC Nozzle Extension Manufactured via Filament Winding Technique and Adapted Liquid Silicon Infiltration

    Science.gov (United States)

    Breede, F.; Koch, D.; Frieß, M.

    2014-06-01

    Nozzle extensions made of ceramic matrix composites (CMC) have the potential to improve the performance of liquid fueled rocket engines. Gas permeability and delamination have been reported to be still critical aspects in the manufacture of CMC nozzle structures. This work shows the development and manufacture of a radiation cooled C/C-SiC nozzle for a full ceramic thrust chamber. The green body was produced via advanced wet filament winding technique using multi-angle fiber architectures which were adapted to reduce the affinity of delamination during subsequent high temperature processing steps. In order to improve the final gas-tightness additional efforts were made to adjust the carbon matrix by re-infiltration for complete conversion to a dense SiC matrix with reduced amount of residual silicon after liquid silicon infiltration process. Microstructural characterization and flaw detection were performed by CT and REM analysis. Prototype nozzle extensions were manufactured and preliminary results of the structural characterization before the hot firing tests are presented.

  17. Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction

    Science.gov (United States)

    Liu, Mingxiu; Li, Qingzhong; Cheng, Jianbo; Li, Wenzuo; Li, Hai-Bei

    2016-12-01

    The complexes of XH3F⋯ N3-/OCN-/SCN- (X = C, Si, Ge, and Sn) have been investigated at the MP2/aug-cc-pVTZ(PP) level. The σ-hole of X atom in XH3F acts as a Lewis acid forming a tetrel bond with pseudohalide anions. Interaction energies of these complexes vary from -8 to -50 kcal/mol, mainly depending on the nature of X and pseudohalide anions. Charge transfer from N/O/S lone pair to X-F and X-H σ* orbitals results in the stabilization of these complexes, and the former orbital interaction is responsible for the large elongation of X-F bond length and the remarkable red shift of its stretch vibration. The tetrel bond in the complexes of XH3F (X = Si, Ge, and Sn) exhibits a significant degree of covalency with XH3F distorted significantly in these complexes. A breakdown of the individual forces involved attributes the stability of the interaction to mainly electrostatic energy, with a relatively large contribution from polarization. The transition state structures that connect the two minima for CH3Br⋯ N3-complexhave been localized and characterized. The energetic, geometrical, and topological parameters of the complexes were analyzed in the different stages of the SN2 reaction N3- + CH3Br → Br- + CH3N3.

  18. Processing and Structural Advantages of the Sylramic-iBN SiC Fiber for SiC/SiC Components

    Science.gov (United States)

    Yun, H. M.; Dicarlo, J. A.; Bhatt, R. T.; Hurst, J. B.

    2008-01-01

    The successful high-temperature application of complex-shaped SiC/SiC components will depend on achieving as high a fraction of the as-produced fiber strength as possible during component fabrication and service. Key issues center on a variety of component architecture, processing, and service-related factors that can reduce fiber strength, such as fiber-fiber abrasion during architecture shaping, surface chemical attack during interphase deposition and service, and intrinsic flaw growth during high-temperature matrix formation and composite creep. The objective of this paper is to show that the NASA-developed Sylramic-iBN SiC fiber minimizes many of these issues for state-of-the-art melt-infiltrated (MI) SiC/BN/SiC composites. To accomplish this, data from various mechanical tests are presented that compare how different high performance SiC fiber types retain strength during formation of complex architectures, during processing of BN interphases and MI matrices, and during simulated composite service at high temperatures.

  19. Modulating the field-effect passivation at the SiO2/c-Si interface: Analysis and verification of the photoluminescence imaging under applied bias method

    Science.gov (United States)

    Haug, Halvard; Olibet, Sara; Nordseth, Ørnulf; Stensrud Marstein, Erik

    2013-11-01

    In this paper, we study the surface passivation properties of thermally oxidized silicon wafers with controlled surface band bending, using a recently developed characterization technique combining calibrated photoluminescence imaging with the application of an external voltage over the rear side passivation layer. Various aspects of the technique and possible errors in the determination of the effective surface recombination velocity are discussed, including lateral carrier diffusion, leakage currents, and optical effects related to the presence of metal electrodes on the investigated samples. In order to quantitatively describe the recombination activity at the SiO2/c-Si interface and the effect of fixed charges in the oxide layer, the measured effective carrier lifetime vs. voltage curves have been analyzed in the framework of an extended Shockley-Read Hall recombination model. Furthermore, the results have been compared with corresponding results from microwave detected photoconductance decay measurements after depositing corona charges. We find an excellent agreement between the two techniques and between complementary measurements of the oxide charge density. Photoluminescence imaging under applied bias gives fast and repeatable measurements and allows for simultaneous data collection from multiple areas on the sample, and has thus been proven to be powerful tool for quantitative characterization of surface passivation layers.

  20. Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF3 and furanTF3 (T = C, Si, and Ge) with NH3.

    Science.gov (United States)

    Liu, Mingxiu; Li, Qingzhong; Scheiner, Steve

    2017-02-15

    Ab initio calculations have been performed for the complexes H(+)-PyTX3NH3 and H(+)-furanTF3NH3 (T = C, Si, and Ge; X = F and Cl) with focus on geometries, energies, orbital interactions, and electron densities to study the influence of protonation on the strength of tetrel bonding. The primary interaction mode between α/β-furanCF3/p-PyCF3 and NH3 changes from an FH hydrogen bond to a CN tetrel bond as a result of protonation. Importantly, the protonation has a prominent enhancing effect on the strength of tetrel bonding with an increase in binding energy from 14 to 30 kcal mol(-1). The tetrel bonding becomes stronger in the order H(+)-p-PySiF3NH3 < H(+)-m-PySiF3NH3 < H(+)-o-PySiF3NH3, showing a reverse trend from that of the neutral analogues. In addition, there is competition between the tetrel and hydrogen bonds in the protonated complexes, in which the hydrogen bond is favored in the complexes of H(+)-p-PyCF3 but the tetrel bond is preferred in the complexes of H(+)-p-PyTX3 (T = Si, Ge; X = F, Cl) and H(+)-o/m-PySiF3.

  1. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD

    Science.gov (United States)

    Xin, Bin; Jia, Ren-Xu; Hu, Ji-Chao; Tsai, Cheng-Ying; Lin, Hao-Hsiung; Zhang, Yu-Ming

    2015-12-01

    To investigate the growth mechanism of hetero-epitaxial SiC, a step-by-step experiment of 3C-SiC epitaxial layers grown on 4H-SiC on-axis substrates by the CVD method are reported in this paper. Four step experiments with four one-quarter 4H-SiC wafers were performed. Optical microscopy and atomic force microscopy (AFM) were used to characterize the morphology of the epitaxial layers. It was previously found that the main factor affecting the epilayer morphology was double-positioning boundary (DPB) defects, which normally were in high density with shallow grooves. However, a protrusive regular "hill" morphology with a much lower density was shown in our experiment in high-temperature growth conditions. The anisotropic migration of adatoms is regarded as forming the morphology of DPB defects, and a new "DPB defects assist epitaxy" growth mode has been proposed based on the Frank-van der Merwe growth mode. Raman spectroscopy and X-ray diffraction were used to examine the polytypes and the quality of the epitaxial layers.

  2. Correlation of microstructure with hardness and wear resistance in (TiC, SiC)/stainless steel surface composites fabricated by high-energy electron-beam irradiation

    Science.gov (United States)

    Yun, Eunsub; Kim, Yong Chan; Lee, Sunghak; Kim, Nack J.

    2004-03-01

    Stainless-steel-based surface composites reinforced with TiC and SiC carbides were fabricated by high-energy electron beam irradiation. Four types of powder/flux mixtures, i.e., TiC, (Ti + C), SiC, and (Ti + SiC) powders with 40 wt. pct of CaF2 flux, were deposited evenly on an AISI 304 stainless steel substrate, which was then irradiated with an electron beam. TiC agglomerates and pores were found in the surface composite layer fabricated with TiC powders because of insufficient melting of TiC powders. In the composite layer fabricated with Ti and C powders having lower melting points than TiC powders, a number of primary TiC carbides were precipitated while very few TiC agglomerates or pores were formed. This indicated that more effective TiC precipitation was obtained from the melting of Ti and C powders than of TiC powders. A large amount of precipitates such as TiC and Cr7C3 improved the hardness, high-temperature hardness, and wear resistance of the surface composite layer two to three times greater than that of the stainless steel substrate. In particular, the surface composite fabricated with SiC powders had the highest volume fraction of Cr7C3 distributed along solidification cell boundaries, and thus showed the best hardness, high-temperature hardness, and wear resistance.

  3. The Effect of Nanosized Carbon Black on the Physical and Thermomechanical Properties of Al2O3-SiC-SiO2-C Composite

    Directory of Open Access Journals (Sweden)

    Mohamad Hassan Amin

    2009-01-01

    Full Text Available The effects of using nanosized carbon black in the range of 0–10 weight percentages on the physical and thermomechanical properties of Al2O3-SiC-SiO2–graphite refractory composites were investigated. Nanosized carbon black addition improved the relative heat resistance and oxidation resistance of composites. The bulk density of the composites is reduced with increasing carbon black (CB content. Increase in CB content first causes an increase in the apparent porosity, but at more than 3 wt% amount of CB, a decrease of apparent porosity was observed. The cold crushing strength (CCS increased with increasing CB content in samples fired at 800∘C and in samples fired at 1500∘C when the content is increased to 3 wt%, but the CCS decreased with increasing CB content in samples fired at 1500∘C when the CB content was less than 3 wt%. The composite without CB exhibits the highest value of CCS at firing temperature of 1500∘C.

  4. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    Science.gov (United States)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-02-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.

  5. Crustal structure between Lake Mead, Nevada, and Mono Lake, California

    Science.gov (United States)

    Johnson, Lane R.

    1964-01-01

    Interpretation of a reversed seismic-refraction profile between Lake Mead, Nevada, and Mono Lake, California, indicates velocities of 6.15 km/sec for the upper layer of the crust, 7.10 km/sec for an intermediate layer, and 7.80 km/sec for the uppermost mantle. Phases interpreted to be reflections from the top of the intermediate layer and the Mohorovicic discontinuity were used with the refraction data to calculate depths. The depth to the Moho increases from about 30 km near Lake Mead to about 40 km near Mono Lake. Variations in arrival times provide evidence for fairly sharp flexures in the Moho. Offsets in the Moho of 4 km at one point and 2 1/2 km at another correspond to large faults at the surface, and it is suggested that fracture zones in the upper crust may displace the Moho and extend into the upper mantle. The phase P appears to be an extension of the reflection from the top of the intermediate layer beyond the critical angle. Bouguer gravity, computed for the seismic model of the crust, is in good agreement with the measured Bouguer gravity. Thus a model of the crustal structure is presented which is consistent with three semi-independent sources of geophysical data: seismic-refraction, seismic-reflection, and gravity.

  6. Mono(ADP-ribosylation) in rat liver mitochondria.

    Science.gov (United States)

    Frei, B; Richter, C

    1988-01-26

    This paper investigates protein mono(ADP-ribosylation) in rat liver mitochondria. In isolated inner mitochondrial membranes, in the presence of both ADP-ribose and NAD+, a protein is mono-(ADP-ribosylated) with high specificity. The reaction apparently consists of enzymatic NAD+ glycohydrolysis and subsequent binding of free ADP-ribose to the acceptor protein. In terms of chemical stability, the resulting bond is unique among the ADP-ribose linkages thus far characterized. Formation of a Schiff base adduct between free ADP-ribose and the acceptor protein is excluded. In intact mitochondria at least three classes of proteins are ADP-ribosylated in vivo. One ADP-ribose-protein linkage is of the carboxylate ester type as indicated by its lability in neutral buffer. Another class of ADP-ribosylated proteins requires hydroxylamine for release of ADP-ribose. The third class is stable in hydroxylamine but labile to alkali, similar to the ADP-ribose-cysteine linkage in transducin formed by pertussis toxin.

  7. Leptonic mono-top from single stop production at LHC

    CERN Document Server

    Duan, Guang Hua; Wu, Lei; Yang, Jin Min; Zhang, Mengchao

    2016-01-01

    Top squark (stop) can be produced via QCD interaction but also the electroweak interaction at the LHC. In this paper, we investigate the observability of the associated production of stop and chargino, $pp \\to \\tilde{t}_1\\tilde{\\chi}^-_1$, in compressed electroweakino scenario at the 14 TeV LHC. Due to the small mass-splitting between the lightest neutralino ($\\tilde{\\chi}^0_1$) and chargino ($\\tilde{\\chi}^-_1$), such a single stop production can give a mono-top signature through the stop decay $\\tilde{t}_1 \\to t \\tilde{\\chi}^0_1$. Focusing on the leptonic mono-top channel, we propose a lab-frame observable $\\cos\\theta_{b\\ell}$ to reduce the SM backgrounds in virtue of a boosted top quark from the stop decay. We find that the single stop production can be probed at $2\\sigma$ level at the HL-LHC for $m_{\\tilde{t}_1}<760$ GeV and $m_{\\tilde{\\chi}^0_1}<150$ GeV.

  8. Mono-W Dark Matter Signals at the LHC: Simplified Model Analysis

    CERN Document Server

    Bell, Nicole F; Leane, Rebecca K

    2015-01-01

    We study mono-W signals of dark matter (DM) production at the LHC, in the context of gauge invariant renormalizable models. We analyze two simplified models, one involving an s-channel Z' mediator and the other a t-channel colored scalar mediator, and consider examples in which the DM-quark couplings are either isospin conserving or isospin violating after electroweak symmetry breaking. While previous work on mono-W signals have focused on isospin violating EFTs, obtaining very strong limits, we find that isospin violating effects are small once such physics is embedded into a gauge invariant simplified model. We thus find that the 8 TeV mono-W results are much less constraining than those arising from mono-jet searches. Considering both the leptonic (mono-lepton) and hadronic (mono fat jet) decays of the W, we determine the 14 TeV LHC reach of the mono-W searches with 3000 fb$^{-1}$ of data. While a mono-W signal would provide an important complement to a mono-jet discovery channel, existing constraints on t...

  9. Dispersão e comportamento reológico de concretos refratários ultra-baixo teor de cimento no sistema Al2O3-SiC-SiO2-C Dispersion and setting control of ultra-low cement refractory castables in the Al2O3-SiC-SiO2-C system

    Directory of Open Access Journals (Sweden)

    I. R. de Oliveira

    2003-03-01

    Full Text Available Concretos refratários no sistema Al2O3-SiC-SiO2-C vêm sendo amplamente utilizados em indústrias siderúrgicas como revestimento de canais de corrida de altos-fornos, em virtude principalmente da sua elevada refratariedade aliada a altas resistências ao choque térmico e ao ataque por escória e metal fundido. Neste trabalho, investigou-se a influência de diferentes tipos de aditivos na trabalhabilidade e dispersão de concretos refratários de ultra-baixo teor de cimento nesse sistema. Apesar da sua alta capacidade de complexar íons de cálcio, moléculas de citrato não foram capazes de controlar adequadamente o tempo de pega do concreto estudado, contradizendo a idéia geral de que os íons de citrato devem ser utilizados para controlar a sua trabalhabilidade. Por outro lado, o aditivo polimetacrilato de sódio mostrou-se eficiente na otimização simultânea da dispersão e da trabalhabilidade do concreto devido provavelmente ao retardamento da dissolução dos íons advindos do cimento.Refractory castables in the Al2O3-SiC-SiO2-C system have been extensively used as linings for blast furnace runners, due mainly to their improved resistance to thermal shock damage and to slag and metal corrosion, respectively. In this work, ULC refractory castables in the Al2O3-SiC-SiO2-C system were prepared in order to evaluate the efficiency of different sort of additives on their dispersion and setting behavior. Although citrate ions are known to be efficient chelating agents, they were not able to properly control the working time of the castable studied, contradicting the general idea that citrate ions are necessary for controlling castable setting. On the other hand, the sodium polymethacrylate additive was found to be more efficient for the simultaneous optimization of the castable dispersion state and working time. This may be attributed to a retardation effect imparted by polymethacrylate molecules on the dissolution of ions from the surface

  10. 2D-C/[SiC-(B-C)]复合材料在航空发动机燃烧室中的自愈合行为研究%Self-healing Behavior of 2D-C/[SiC-(B-C)] Composite in Aero-engine Combustion Chamber

    Institute of Scientific and Technical Information of China (English)

    刘光海; 成来飞; 栾新刚; 刘永胜

    2011-01-01

    采用以B-C陶瓷为基体自愈合改性组元的2D-C/[SiC-(B-C)]以及经过硅硼玻璃改性的2D-C/[SiC-(B-C)]制备浮壁瓦片,分别在1000、1200、1350℃下对其进行发动机燃烧室环境考核.对考核后的浮壁瓦片进行取样,并在室温下进行拉伸强度以及三点弯曲强度测试.结果发现:经过环境考核试样的力学性能都有不同程度的提高,拉伸强度和三点弯曲强度随着考核温度的升高而提高,其中三点弯曲强度的升高速率更快.通过SEM观察,B-C自愈合组元氧化生成的玻璃相以及改性硅硼玻璃相在考核过程中有效地封填了试样的孔隙和裂纹.最后通过力学性能测试结合SEM观察,初步分析了两种复合材料在航空发动机燃烧室中的愈合机制.%2D-C/[SiC-(B-C)] samples modified by B-C ceramic as self-healing component and boron-silicon glass phase were assessed by environmental engine experiments at 1000℃, 1200℃, 1350℃. Furthermore, tensile strength and three point bending strength of the samples were tested at room temperature after assessment. The results showed that the tensile strength and three point bending strength increased with the increase of assessment temperature, however, three point bending mechanical properties increased at a higher rate. SEM results showed that the glass phase generated by oxidization of B-C self-healing component and the boron oxide glass phase filled pores and cracks effectively. According to the experiments results, the self-healing mechanisms in aero-engine combustion chamber of such two samples were discussed.

  11. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface

    Science.gov (United States)

    Pawlak, Rémy; Kisiel, Marcin; Klinovaja, Jelena; Meier, Tobias; Kawai, Shigeki; Glatzel, Thilo; Loss, Daniel; Meyer, Ernst

    2016-11-01

    Motivated by the striking promise of quantum computation, Majorana bound states (MBSs) in solid-state systems have attracted wide attention in recent years. In particular, the wavefunction localisation of MBSs is a key feature and is crucial for their future implementation as qubits. Here we investigate the spatial and electronic characteristics of topological superconducting chains of iron atoms on the surface of Pb(110) by combining scanning tunnelling microscopy and atomic force microscopy. We demonstrate that the Fe chains are mono-atomic, structured in a linear manner and exhibit zero-bias conductance peaks at their ends, which we interpret as signature for a MBS. Spatially resolved conductance maps of the atomic chains reveal that the MBSs are well localised at the chain ends (≲25 nm), with two localisation lengths as predicted by theory. Our observation lends strong support to use MBSs in Fe chains as qubits for quantum-computing devices.

  12. Mono- and combined antimicrobial agents efficiency in experimental wound infection

    Directory of Open Access Journals (Sweden)

    Наталія Ігорівна Філімонова

    2015-10-01

    Full Text Available Modern problems of antibiotic therapy are shown by wide range of side effects, both on organism and microbiological levels: the spread of allergies, toxic for organ systems reactions, dysbiosis development, and resistant pathogens formation and dissemination. Therefore the necessity of search for new effective drugs with significant antimicrobial activity applied for the wounds treatment arises. Development of combined remedies on the background of different origin antimicrobial agents’ derivatives is one of the fight directions against infectious diseases in the skin pathology. Recently among the existing antimicrobial agents one should focus on antiseptic drugs, due to degenerative and dysfunctional effect on microbial cell.Aim of research. The comparison of mono- and combined antimicrobial agents chemotherapeutic efficiency in the treatment of localized purulent infection under experimental conditions.Metods. The study of chemotherapeutic efficiency was carried out on the model of localized purulent Staphylococcus infection on albino mice weighting 14 – 16 g. S.aureus ATCC 25923 strains were used as infectious agents. The contamination was performed subcutaneously to the right side of mice’s skin after depilation. The animals were randomly divided into 4 groups: the 1st group – infected mice without treatment (control; the 2nd group – infected mice treated with a ciprofloxacin; the 3rd group – infected mice treated with a Ciprofloxacin and Decamethoxin combination; the 4th group – infected mice treated with a combined drug on the base of mutual prodrugs (Hexamethylenetetramine and Phenyl salicylate.Results. The efficiency of mono- and combined antimicrobial agents under experimental Staphylococcus wound infection conditions was studied. It was found that localized purulent staph center was formed more slowly in comparison with control and mono preparation use (2nd group of animals. The average index of skin lesions in comparison

  13. Mono-jet signatures of gluphilic scalar dark matter

    Science.gov (United States)

    Godbole, Rohini M.; Mendiratta, Gaurav; Shivaji, Ambresh; Tait, Tim M. P.

    2017-09-01

    A gluphilic scalar dark matter (GSDM) model has recently been proposed as an interesting vision for WIMP dark matter communicating dominantly with the Standard Model via gluons. We discuss the collider signature of a hard jet recoiling against missing momentum (;mono-jet;) in such a construction, whose leading contribution is at one-loop. We compare the full one-loop computation with an effective field theory (EFT) treatment, and find (as expected) that EFT does not accurately describe regions of parameter space where mass of the colored mediator particles are comparable to the experimental cuts on the missing energy. We determine bounds (for several choices of SU(3) representation of the mediator) from the √{ s} = 8 TeV data, and show the expected reach of the √{ s} = 13 TeV LHC and a future 100 TeV pp collider to constrain or discover GSDM models.

  14. Aryl hydrocarbon mono-oxygenase activity in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Schuresko, D.D.

    1981-06-01

    Aryl hydrocarbon mono-oxygenase (AHM), an enzyme of key importance in metabolism of xenobiotic chemicals such as polynuclear aromatic hydrocarbons (PNA), is present in human lymphocytes. Studies investing the relation of activity of AHM in human lymphocytes to parameters such as disease state, PNA exposure, in vitro mitogen stimulation, etc. have been summarized in this report. Some studies have demonstrated increased AHM activity in lymphocytes from cigarette smokers (compared to nonsmokers), and in lung cancer patients when compared to appropriate control groups. These observations are confused by extreme variability in human lymphocyte AHM activities, such variability arising from factors such as genetic variation in AHM activity, variation in in vitro culture conditions which affect AHM activity, and the problematical relationship of common AHM assays to actual PNA metabolism taking place in lymphocytes. If some of the foregoing problems can be adequately addressed, lymphocyte AHM activity could hold the promise of being a useful biomarker system for human PNA exposure.

  15. Mono-jet Signatures of Gluphilic Scalar Dark Matter

    CERN Document Server

    Godbole, Rohini M; Shivaji, Ambresh; Tait, Tim M P

    2016-01-01

    A gluphilic scalar dark matter (GSDM) model has recently been proposed as an interesting vision for WIMP dark matter communicating dominantly with the Standard Model via gluons. We discuss the collider signature of a hard jet recoiling against missing momentum ("mono-jet") in such a construction, whose leading contribution is at one-loop. We compare the full one-loop computation with an effective field theory (EFT) treatment, and find (as expected) that EFT does not accurately describe regions of parameter space where mass of the colored mediator particles are comparable to the experimental cuts on the missing energy. We determine bounds (for several choices of SU(3) representation of the mediator) from the $\\sqrt{s}=$ 8 TeV data, and show the expected reach of the $\\sqrt{s}=$ 13 TeV LHC and a future 100 TeV $pp$ collider to constrain or discover GSDM models.

  16. Mechanically flexible optically transparent porous mono-crystalline silicon substrate

    KAUST Repository

    Rojas, Jhonathan Prieto

    2012-01-01

    For the first time, we present a simple process to fabricate a thin (≥5μm), mechanically flexible, optically transparent, porous mono-crystalline silicon substrate. Relying only on reactive ion etching steps, we are able to controllably peel off a thin layer of the original substrate. This scheme is cost favorable as it uses a low-cost silicon <100> wafer and furthermore it has the potential for recycling the remaining part of the wafer that otherwise would be lost and wasted during conventional back-grinding process. Due to its porosity, it shows see-through transparency and potential for flexible membrane applications, neural probing and such. Our process can offer flexible, transparent silicon from post high-thermal budget processed device wafer to retain the high performance electronics on flexible substrates. © 2012 IEEE.

  17. Mono-jet signatures of gluphilic scalar dark matter

    Directory of Open Access Journals (Sweden)

    Rohini M. Godbole

    2017-09-01

    Full Text Available A gluphilic scalar dark matter (GSDM model has recently been proposed as an interesting vision for WIMP dark matter communicating dominantly with the Standard Model via gluons. We discuss the collider signature of a hard jet recoiling against missing momentum (“mono-jet” in such a construction, whose leading contribution is at one-loop. We compare the full one-loop computation with an effective field theory (EFT treatment, and find (as expected that EFT does not accurately describe regions of parameter space where mass of the colored mediator particles are comparable to the experimental cuts on the missing energy. We determine bounds (for several choices of SU(3 representation of the mediator from the s=8 TeV data, and show the expected reach of the s=13 TeV LHC and a future 100 TeV pp collider to constrain or discover GSDM models.

  18. State of humoral link of immune system in children with mono- and mixed-variants of rotavirus infection

    Directory of Open Access Journals (Sweden)

    Катерина Олександрівна Сміян-Горбунова

    2015-09-01

    Full Text Available Connection of an immune system with infection agents defines the further development of infectious diseases especially rotavirus infection (RVI. The state of immune system before the beginning of disease and an adequacy of immune answer to causative agent defines the possibility of disease and its heaviness, duration of an acute period, cyclicity, time of pathogens elimination and period of reconvalescence. The humoral link is one of important components of immune system.Methods. 96 children 1 month-5 years old with acute intestinal infections of rotavirus etiology were under observation. 51 children with mono-variant of rotavirus infection formed the 1 group. The 11 group included 45 patients with mixed-variant of rotavirus infection. The control group included 32 practically healthy children. The research was carried out at the high point of disease (1–3 day and in period of reconvalescence. (5–6 day. The study of humoral link of immunity was carried out using the method of radial immunodiffusion in agar on Mancini G.Results. At comparison of indicators of the humoral link of immune system in children with mono- and mixed-variants of RVI at admission to hospital it was established that Ig М concentration in children of the 1 group was higher (р<0,05, and Ig G level in blood serum lower(р<0,05 than in the 11 group. So the study of the humoral immunity in blood serum in children with rotavirus infection revealed changes that were presented as an increase of Ig М and IgG indicators and also decrease of IgА. An assessment of an immune system after treatment within this research is characterized with an increase of IgА and IgG and decrease of IgМ.Conclusions. In blood serum of children with mono- and mixed-variants of rotavirus infection in an acute period of disease there was observed decrease of Ig А concentration and increase of Ig М і IgG. In the period of reconvalescence in children with mono- and mixed-variants of an acute

  19. Synthesis and Photocytotoxicity of Mono-functionalised Porphyrin with Valine Moiety

    Institute of Scientific and Technical Information of China (English)

    Wei Min SHI; Jian WU; Yi Feng WU; Kai Xian QIAN

    2004-01-01

    A mono-funtionalised tetraphenylporphyrin (TPP) bearing valine moiety at the phenyl ring was synthesized for photocytotoxicity examination in four steps, starting from regiospecific mono-nitration of TPP at the phenyl ring. The in vitro photocytotoxicitic effect against SPC-A1 adenocarcinona cell line was tested.

  20. Magnetic and gravity studies of Mono Lake, east-central, California

    Science.gov (United States)

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  1. Enantioselective recognition of mono-demethylated methoxychlor metabolites by the estrogen receptor.

    Science.gov (United States)

    Miyashita, Masahiro; Shimada, Takahiro; Nakagami, Shizuka; Kurihara, Norio; Miyagawa, Hisashi; Akamatsu, Miki

    2004-02-01

    Metabolites of methoxychlor such as 2-(p-hydroxyphenyl)-2-(p-methoxyphenyl)-1,1,1-trichloroethane (mono-OH-MXC) and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (bis-OH-MXC), have estrogenic activity. Mono-OH-MXC is a chiral compound in which the carbon atom bridging two benzene rings is the chiral centre. In previous studies the estrogenic activity of racemic mono-OH-MXC has been measured, and the activity of each enantiomer of this compound has not yet been elucidated. In this study, we evaluated the estrogen receptor-binding activity of each enantiomer of mono-OH-MXC to clarify the enantioselective recognition by the estrogen receptor. (S)-mono-OH-MXC showed 3-fold higher binding activity than that of the (R) enantiomer. The activity of bis-OH-MXC was only 1.7-fold higher than that of (S)-mono-OH-MXC. This result suggests that the one hydroxy group and the orientation of the CCl3 group of mono- and bis-OH-MXCs are important for the interaction with the estrogen receptor. The result also points out the estrogenic activity of methoxychlor after metabolic activation in vivo, which predominantly produces the (S)-mono-OH-MXC, may be higher than estimated from the in vitro activity of racemic mixtures.

  2. Collide and Conquer: Constraints on Simplified Dark Matter Models using Mono-X Collider Searches

    CERN Document Server

    Brennan, A J; Gramling, J; Jacques, T D

    2016-01-01

    The use of simplified models as a tool for interpreting dark matter collider searches has become increasingly prevalent, and while early Run II results are beginning to appear, we look to see what further information can be extracted from the Run I dataset. We consider three `standard' simplified models that couple quarks to fermionic singlet dark matter: an $s$-channel vector mediator with vector or axial-vector couplings, and a $t$-channel scalar mediator. Upper limits on the couplings are calculated and compared across three alternate channels, namely mono-jet, mono-$Z$ (leptonic) and mono-$W/Z$ (hadronic). The strongest limits are observed in the mono-jet channel, however the computational simplicity and absence of significant $t$-channel model width effects in the mono-boson channels make these a straightforward and competitive alternative. We also include a comparison with relic density and direct detection constraints.

  3. Al2O3/SiON stack layers for effective surface passivation and anti-reflection of high efficiency n-type c-Si solar cells

    Science.gov (United States)

    Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin

    2017-02-01

    Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.

  4. Influence of solar spectrum and climate on the performance of c-SI, a-Si and CdTe modules

    Science.gov (United States)

    Weihs, Philipp; Jochen, Wagner; Marcus, Rennhofer; Zamini, Shokufeh; Fallent, Gerhard; Brence, Florian

    2010-05-01

    Within the scope of the project PV-SPEC we investigate the performance of different types of photovoltaic (PV) modules as a function of the regional climate of Austria. Three types of modules were chosen for the present study: monocrystalline silicon cells (c-SI), amorphous silicon cells (a-Si) and cadmium telluride cells (CdTe). The criteria for the selection of the cells is on the one hand their different spectral sensitivity and on the other hand the need of research in the domain of thin film technology. The aim of the project is the exact estimation of the potential energy yield of these three module types in the different climatic regions of Austria. Thereby the effects of the very inhomogeneous and structured topography in Austria need to be fully taken into account. As a first step the characteristics of the PV modules as well as their spectral sensitivity were determined in the laboratory. In a second step routine measurements of the module performance were performed at Observatory Kanzelhoehe (1600 m altitude), and in Vienna (170 m altitude). In order to investigate the influence of temperature, wind, cloudiness and solar spectrum some additional measurements of these quantities were performed. In order to investigate the influence of the orientation of the modules, we performed for each module type the measurement of the performance of three modules with different orientations: one module oriented towards south, one towards east and one towards west. In a third step we then analyse the performance as a function of time of the day, as a function of the season, as a function of the meteorological parameters (temperature, wind and cloudiness) and as a function of the spectral distribution of the solar radiation. The meteorological influence on the PV module performance is quantified using one array type function for each module type. Using this function and a radiative transfer model we may in a last step calculate the energy yield potential of the three PV

  5. 21 CFR 582.4505 - Mono- and diglycerides of edible fats or oils, or edible fat-forming acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Mono- and diglycerides of edible fats or oils, or... GENERALLY RECOGNIZED AS SAFE Emulsifying Agents § 582.4505 Mono- and diglycerides of edible fats or oils, or edible fat-forming acids. (a) Product. Mono- and diglycerides of edible fats or oils, or edible...

  6. C/C复合材料SiC-SiO2/ZrO2-SiC复合抗氧化涂层%Preparation and performance of SiC-SiO2/ZrO2-SiC multilayer on carbon/carbon composites

    Institute of Scientific and Technical Information of China (English)

    姜林; 迟伟东; 刘辉; 刘禺; 于建民

    2014-01-01

    In order to improve the anti-oxidation property of carbon/carbon composites at high temperature, CVD and sol-gel ab-sorption methods were used to prepare a SiC-SiO2/ZrO2-SiC multilayer on C/C composites. Scanning electron microscopy (SEM), En-ergy Dispersive X-ray Spectroscopy(EDS) and X-ray diffraction (XRD) were applied to analyze the surface of each layer. The results show that intermediate layer prepared by sol-gel absorption process exhibits self-healing function, which could fill the crack and buffer stress of the SiC coating at high temperature. The mass ablation rate of C/C composites with this layer is only 4 g/(m2·s) at 1 800℃after 120 s adsorption. The multilayer shows outstanding erosion resistance.%为了提高C/C复合材料在高温有氧环境的抗氧化性,在SiC抗氧化涂层防护的基础上,采用气相沉积法及溶胶凝胶吸附冷凝热蒸汽法在C/C复合材料表面制备出了SiC-SiO2/ZrO2-SiC复合涂层。利用扫描电镜、能谱质谱测试及X射线衍射等检测方法对涂层各层进行了分析。结果表明,溶胶吸附ZrCl4蒸汽法制备ZrO2涂层,不仅能够在高温自动修复单层SiC涂层的裂纹缺陷,还起到了在制备外层SiC涂层过程中缓冲应力的作用。这种多层复合涂层在高温下具有良好的抗氧化性,在1800℃等离子焰动态空气氧化120 s后,计算得出该涂层失重速率仅为0.4 g/(m2·s),表明该涂层具有卓越的抗氧化性。

  7. Separation of mono- and di-PEGylate of exenatide and resolution of positional isomers of mono-PEGylates by preparative ion exchange chromatography.

    Science.gov (United States)

    Nguyen, Ngoc-Thanh Thi; Lee, Jae Sun; Yun, Soi; Lee, E K

    2016-07-29

    Exenatide is a synthetic version of the 39-mer peptide of Exendin-4, which is an FDA-approved therapeutic against Type II diabetes mellitus. However, exenatide has a very short in-serum half-life and PEGylation have been performed to improve its in-serum stability. PEGylation often yields multivalent binding to non-specific residues, and the desired species should be carefully separated by chromatographies. In this study, we first devised an aqueous-phase, two-step PEGylation process. This consists of thiolation of Lys 12 and 27 residues followed by attachment of PEG-maleimide (10kD) to thiol groups. This process yields various species: mono-PEGylates with positional isomers, di-PEGylate, and other higher MW substances. A prep-grade cationic exchange chromatography (HiTrap SP) at pH 3.0 partially separated mono- and di-PEGylates based on the molar ratio of conjugated PEG and peptide and thus molecular weight of the conjugates. To further investigate the chromatographic separation of positional isomers of mono-PEGylates, we prepared two kinds of exenatide analogs by point mutation; K12C and K27C. Each analog was mono-PEGylated with very high yield (>95%). When a mixture of the two positional isomers of mono-PEGylates was applied to HiTrap SP chromatography, K12C-PEGylate and K27C-PEGylate eluted separately at 0.22M and 0.33M NaCl, respectively. When the proportions of acid and its conjugate base of the amino acid residues adjacent to the PEGylation site at pH 3.0 were analyzed, K27C-PEGylate shows stronger positive charge than K12C-PEGylate, and we propose the residence time difference between the two mono-PEGylates could be due to the charge difference. ELISA result shows that the immuno-binding activity of both analogs and their mono-PEGylates are well maintained. Furthermore, both mono-PEGylates of the analogs show higher than 50-fold improved anti-trypsin stability. We expect that mono-PEGylates of the exenatide analogs are alternatives to the conventional C40

  8. Progress of Inosine Mono-phosphate(IMP) and Guanosine Mono-phosphate(GMP) Acid Production by Microbial Technology%利用微生物技术生产肌苷酸和鸟苷酸的进展

    Institute of Scientific and Technical Information of China (English)

    王美玲

    2014-01-01

    肌苷酸( IMP)和鸟苷酸( GMP)是非常有效的风味增强剂。它们和谷氨酸钠(味精)一起被广泛用作食品添加剂,共同发挥增强食物鲜味的作用。近年来,由于具有抗氧化性、神经保护作用、强心剂作用和免疫调节等有利作用,嘌呤类核苷酸都展现出了重要性。本综述回顾了利用微生物技术生产IMP和GMP的进展,包括其合成的代谢途径和调控网络,以及为获得这些嘌呤化合物所采用的生物技术流程和所用微生物菌种。%Inosine mono -phosphate ( IMP ) and guanosine mono -phosphate ( GMP ) are very effective flavor enhancers.They and mono-sodium glutamate (MSG) are widely used as food additives, working together to enhance the role of food flavors .In recent years ,with antioxidant activity ,neuro protective car-diac function and other favorable immunomodulatory effects of purine nucleotides ,they are showing further importance .The progress of microbial technology used to produce IMP and GMP are reviewed in this pa-per,including the synthesis of metabolic pathways and regulatory networks , as well as the biotechnology processes used to accept these purine compounds and microbial strains used .

  9. Interaction of potassium mono and di phosphates with bovine serum albumin studied by fluorescence quenching method.

    Science.gov (United States)

    Bakkialakshmi, S; Shanthi, B; Chandrakala, D

    2011-03-01

    The interactions between potassium mono and di phosphates and bovine serum albumin (BSA) were studied using fluorescence spectroscopy (FS) and ultraviolet spectroscopy (UV). The experimental results showed that the potassium mono and di phosphates could insert into the BSA and quench the inner fluorescence of BSA by forming the potassium mono phosphate-BSA and pottassium di phosphate-BSA complexes. It was found that the static quenching was the main reason leading to the fluorescence quenching. It was conformed by XRD and SEM techniques.

  10. Professional iPhone Programming with MonoTouch and .NET/C#

    CERN Document Server

    McClure, Wallace B; Dunn, Craig

    2010-01-01

    What .NET C# developers need to enter the hot field of iPhone apps. iPhone applications offer a hot opportunity for developers. Until the open source MonoTouch project, this field was limited to those familiar with Apple's programming languages. Now .NET and C# developers can join the party. This Wrox guide is the first book to cover MonoTouch, preparing developers to take advantage of this lucrative opportunity.: MonoTouch opens the field of iPhone app development to .NET and C# developers for the first time; the Wrox reputation among .NET developers assures them that this guide covers everyt

  11. A new approach to modelling and designing mono-block dental implants

    OpenAIRE

    R. Hunter; F. Alister; Möller, J.; J. Alister

    2007-01-01

    Purpose: of this paper is present a new approach to modelling and design the low cost mono-block dental implants based on the integration of the computer aided techniques. This approach provides the automation of the design process of the mono-block dental implants.Design/methodology/approach: The approach used to develop the modelling and design of the mono-block dental implants are based on the parametrization of the main geometric features of the implants. This approach allows to generate ...

  12. Develop mono-block tooth implants using automate design and FEM analysis

    OpenAIRE

    J.P. Alister; J. Moller,; F. Alister; R. Hunter

    2007-01-01

    Purpose: Purpose of this paper is present a new approach to modelling and design the low cost mono-block dental implants based on the integration of the computer aided techniques. This approach provides the automation of the design process of the mono-block dental implants.Design/methodology/approach: The approach used to develop the modelling and design of the mono-block dental implants are based on the parametrization of the main geometric features of the implants. This approach allows to ...

  13. A Mono Master Shrug Matching Algorithm for Examination Surveillance

    Directory of Open Access Journals (Sweden)

    Sandhya Devi G

    2014-12-01

    Full Text Available This paper proposes an unusual slant for Shrug recognition from Gesticulation Penetrated Images (GPI based on template matching. Shrugs can be characterized with image templates which are used to compare and match shrugs. The proposed technique makes use of a single template to identify match in the candidates and hence entitled as mono master shrug matching. It does not necessitate erstwhile acquaintance of movements, motion estimation or tracking. The proposed technique brands a unique slant to isolate various shrugs from a given video. Additionally, this method is based on the reckoning of feature invariance to photometric and geometric variations from a given video for the rendering of the shrugs in a lexicon. This descriptor extraction method includes the standard deviation of the gesticulation penetrated images of a shrug. The comparison is based on individual and rational actions with exact definitions varying widely uses histogram based tracker which computes the deviation of the candidate shrugs from the template shrug. Far-reaching investigation is done on a very intricate and diversified dataset to establish the efficacy of retaining the anticipated method.

  14. Adding Mono- and Multivalent Ions to Lyotropic Chromonic Liquid Crystals

    Science.gov (United States)

    Tortora, Luana; Park, Heung-Shik; Antion, Kelly; Woolwerton, Chris; Finotello, Daniele; Lavrentovich, Oleg

    2006-03-01

    Lyotropic Chromonic Liquid Crystals (LCLCs) are a distinct class of liquid crystals formed in aqueous solutions by molecules with rigid polyaromatic cores and ionic groups at the periphery [1-4]. The phase diagrams of these materials should depend on entropic factors (as in the Onsager model) and electrostatic interactions. Using optical polarizing microscopy, we studied the effects of mono- and multivalent ions on the phase diagrams of Blue 27 [3] and Sunset Yellow [2]. The monovalent ions change the temperatures of phase transitions, as described in [4], while the effect of multivalent ions is more dramatic and, in addition to the changed temperatures of phase transitions by tens of degrees, it often involves condensation of LCLC aggregates into domains with birefringence much higher than that in a normal nematic phase. Work supported by OBR B-7844. [1]J. Lydon, Current Opin. Colloid & Interface Sci. 3, 458 (1998);8, 480-489 (2004); [2]V. R. Horowitz, L. A. Janowitz, A. L. Modic, P. J. Heiney, and P. J. Collings, 2005, Phys. Rew. E 72, 041710; [3]Yu. A. Nastishin, H. Liu, T. Schneider, T., V. Nazarenko, R. Vasyuta, S. V. Shiyanovskii, and O. D. Lavrentovich, 2005, Phys. Rev. E 72, 041711; [4]A.F. Kostko, B. H. Cipriano, O. A. Pinchuk, L. Ziserman, M. A. Anisimov, D. Danino, and S. R. Raghavan. J. Phys. Chem. B 109, 19126-19133 (2005)

  15. Similar Sister Chromatid Arrangement in Mono- and Holocentric Plant Chromosomes.

    Science.gov (United States)

    Schubert, Veit; Zelkowski, Mateusz; Klemme, Sonja; Houben, Andreas

    2016-01-01

    Due to the X-shape formation at somatic metaphase, the arrangement of the sister chromatids is obvious in monocentric chromosomes. In contrast, the sister chromatids of holocentric chromosomes cannot be distinguished even at mitotic metaphase. To clarify their organization, we differentially labelled the sister chromatids of holocentric Luzula and monocentric rye chromosomes by incorporating the base analogue EdU during replication. Using super-resolution structured illumination microscopy (SIM) and 3D rendering, we found that holocentric sister chromatids attach to each other at their contact surfaces similar to those of monocentrics in prometaphase. We found that sister chromatid exchanges (SCEs) are distributed homogeneously along the whole holocentric chromosomes of Luzula, and that their occurrence is increased compared to monocentric rye chromosomes. The SCE frequency of supernumerary B chromosomes, present additionally to the essential A chromosome complement of rye, does not differ from that of A chromosomes. Based on these results, models of the sister chromatid arrangement in mono- and holocentric plant chromosomes are presented.

  16. Fringing in MonoCam Y4 filter images

    Science.gov (United States)

    Brooks, J.; Fisher-Levine, M.; Nomerotski, A.

    2017-05-01

    We study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net ``fringe'' pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relative intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. We also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.

  17. THE RECOGNITION OF SPOKEN MONO-MORPHEMIC COMPOUNDS IN CHINESE

    Directory of Open Access Journals (Sweden)

    Yu-da Lai

    2012-12-01

    Full Text Available This paper explores the auditory lexical access of mono-morphemic compounds in Chinese as a way of understanding the role of orthography in the recognition of spoken words. In traditional Chinese linguistics, a compound is a word written with two or more characters whether or not they are morphemic. A monomorphemic compound may either be a binding word, written with characters that only appear in this one word, or a non-binding word, written with characters that are chosen for their pronunciation but that also appear in other words. Our goal was to determine if this purely orthographic difference affects auditory lexical access by conducting a series of four experiments with materials matched by whole-word frequency, syllable frequency, cross-syllable predictability, cohort size, and acoustic duration, but differing in binding. An auditory lexical decision task (LDT found an orthographic effect: binding words were recognized more quickly than non-binding words. However, this effect disappeared in an auditory repetition and in a visual LDT with the same materials, implying that the orthographic effect during auditory lexical access was localized to the decision component and involved the influence of cross-character predictability without the activation of orthographic representations. This claim was further confirmed by overall faster recognition of spoken binding words in a cross-modal LDT with different types of visual interference. The theoretical and practical consequences of these findings are discussed.

  18. Antioxidant and cytotoxic activity of mono- and bissalicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Đurendić Evgenija A.

    2014-01-01

    Full Text Available A simple synthesis of mono- and bis-salicylic acid derivatives 1-10 by the transesterification of methyl salicylate (methyl 2-hydroxybenzoate with 3-oxapentane-1,5-diol, 3,6- dioxaoctane-1,8-diol, 3,6,9-trioxaundecane-1,11-diol, propane-1,2-diol or 1-aminopropan- 2-ol in alkaline conditions is reported. All compounds were tested in vitro on three malignant cell lines (MCF-7, MDA-MB-231, PC-3 and one non-tumor cell line (MRC- 5. Strong cytotoxicity against prostate PC-3 cancer cells expressed compounds 3, 4, 6, 9 and 10, all with the IC50 less than 10 μmol/L, which were 11-27 times higher than the cytotoxicity of antitumor drug doxorubicin. All tested compounds were not toxic against the non-tumor MRC-5 cell line. Antioxidant activity of the synthesized derivatives was also evaluated. Compounds 2, 5 and 8 were better OH radical scavengers than commercial antioxidants BHT and BHA. The synthesized compounds showed satisfactory scavenger activity, which was studied by QSAR modeling. A good correlation between the experimental variables IC50 DPPH and IC50 OH and MTI (molecular topological indices molecular descriptors and CAA (accessible Connolly solvent surface area for the new compounds 1, 3, and 5 was observed.

  19. Mono-energy coronary angiography with a compact light source

    Science.gov (United States)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-03-01

    While conventional x-ray tube sources reliably provide high-power x-ray beams for everyday clinical practice, the broad spectra that are inherent to these sources compromise the diagnostic image quality. For a monochromatic x-ray source on the other hand, the x-ray energy can be adjusted to optimal conditions with respect to contrast and dose. However, large-scale synchrotron sources impose high spatial and financial demands, making them unsuitable for clinical practice. During the last decades, research has brought up compact synchrotron sources based on inverse Compton scattering, which deliver a highly brilliant, quasi-monochromatic, tunable x-ray beam, yet fitting into a standard laboratory. One application that could benefit from the invention of these sources in clinical practice is coronary angiography. Being an important and frequently applied diagnostic tool, a high number of complications in angiography, such as renal failure, allergic reaction, or hyperthyroidism, are caused by the large amount of iodine-based contrast agent that is required for achieving sufficient image contrast. Here we demonstrate monochromatic angiography of a porcine heart acquired at the MuCLS, the first compact synchrotron source. By means of a simulation, the CNR in a coronary angiography image achieved with the quasi-mono-energetic MuCLS spectrum is analyzed and compared to a conventional x-ray-tube spectrum. The results imply that the improved CNR achieved with a quasi-monochromatic spectrum can allow for a significant reduction of iodine contrast material.

  20. 2.5维自愈合C/SiC复合材料的拉伸应力-应变关系%Tensile stress-strain behavior of 2.5-D self-healing C/SiC composite

    Institute of Scientific and Technical Information of China (English)

    梁仕飞; 矫桂琼

    2013-01-01

    根据2.5维自愈合C/SiC复合材料的细观结构特点,基于界面开裂和基体开裂的损伤机理,分别建立了该材料经向和纬向拉伸的细观力学模型,进而得到了经向和纬向拉伸的非线性应力-应变关系,应力-应变曲线的预测结果与试验值吻合较好.结果表明:纬向应力-应变曲线的最大预测误差为9%,经向应力-应变曲线的最大预测误差约为10%,经向和纬向的应力-应变关系不同.该模型采用切线弹性模量和平均裂纹间距的方法,省去了以往模型复杂的应变计算过程,使模型得到简化,便于应用.