WorldWideScience

Sample records for mono c-si years

  1. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter

    Directory of Open Access Journals (Sweden)

    Akimchenko Alina

    2017-01-01

    Full Text Available The miniature and low-power devices with long service life in hard operating conditions like the Carbon-14 beta-decay energy converters indeed as eternal resource for integrated MEMS and NEMS are considered. Authors discuss how to create the power supply for MEMS/NEMS devices, based on porous SiC/Si structure, which are tested to be used as the beta-decay energy converters of radioactive C-14 into electrical energy. This is based on the silicon carbide obtaining by self-organizing mono 3C-SiC endotaxy on the Si substrate. The new idea is the C-14 atoms including in molecules in the silicon carbide porous structure by this technology, which will increase the efficiency of the converter due to the greater intensity of electron-hole pairs generation rate in the space charge region. The synthesis of C-14 can be also performed by using the electronically controlled magneto-optic chamber.

  2. Comparative study on stress in AlGaN/GaN HEMT structures grown on 6H-SiC, Si and on composite substrates of the 6H-SiC/poly-SiC and Si/poly-SiC

    International Nuclear Information System (INIS)

    Guziewicz, M; Kaminska, E; Piotrowska, A; Golaszewska, K; Domagala, J Z; Poisson, M-A; Lahreche, H; Langer, R; Bove, P

    2008-01-01

    The stresses in GaN-based HEMT structures grown on both single crystal 6H SiC(0001) and Si(111) have been compared to these in the HEMT structures grown on new composite substrates engendered as a thin monocrystalline film attached to polycrystalline 3C-SiC substrate. By using HRXRD technique and wafer curvature method we show that stress of monocrystalline layer in composite substrates of the type mono-Si/poly-SiC is lower than 100 MPa and residual stress of epitaxial GaN buffer grown on the composite substrate does not exceed 0.31 GPa, but in the cases of single crystal SiC or Si substrates the GaN buffer stress is compressive in the range of -0.5 to -0.75 GPa. The total stress of the HEMT structure calculated from strains is consistent with the averaged stress of the multilayers stack measured by wafer curvature method. The averaged stress of HEMT structure grown on single crystals is higher than those in structures grown on composites substrates

  3. C and Si delta doping in Ge by CH_3SiH_3 using reduced pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Ueno, Naofumi; Sakuraba, Masao; Murota, Junichi; Mai, Andreas; Tillack, Bernd

    2016-01-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH_3SiH_3 is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H_2 or N_2 carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N_2 as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH_3SiH_3 is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H_2 as carrier gas, lower incorporated C is observed in comparison to Si. CH_3SiH_3 injected with H_2 carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N_2 at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH_3SiH_3 exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH_3SiH_3 adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  4. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    Science.gov (United States)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  5. C and Si delta doping in Ge by CH{sub 3}SiH{sub 3} using reduced pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yuji, E-mail: yamamoto@ihp-microelectronics.com [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Ueno, Naofumi; Sakuraba, Masao [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577 (Japan); Murota, Junichi [Micro System Integration Center, Tohoku University, 519-1176, Aramaki aza Aoba, Aoba-ku, Sendai 980-0845 (Japan); Mai, Andreas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Tillack, Bernd [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Technische Universität Berlin, HFT4, Einsteinufer 25, 10587 Berlin (Germany)

    2016-03-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH{sub 3}SiH{sub 3} is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H{sub 2} or N{sub 2} carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N{sub 2} as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH{sub 3}SiH{sub 3} is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H{sub 2} as carrier gas, lower incorporated C is observed in comparison to Si. CH{sub 3}SiH{sub 3} injected with H{sub 2} carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N{sub 2} at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH{sub 3}SiH{sub 3} exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH{sub 3}SiH{sub 3} adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  6. Characteristics of poly- and mono-crystalline BeO and SiO{sub 2} as thermal and cold neutron filters

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Bashter, I.I. [Physics Department, Faculty of Science, Zagazig University (Egypt); Morcos, H.N.; El-Mesiry, M.S. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Mansy, M.S., E-mail: drmohamedmansy88@hotmail.com [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt)

    2015-09-01

    Highlights: • Neutron filtering features of BeO and SiO{sub 2} poly- and mono-crystals. • Calculations of the cold and thermal neutron cross sections and transmission with the code “HEXA-FILTERS”. • Optimal mosaic spread, thicknesses and cutting planes for BeO and SiO{sub 2} mono-crystals. - Abstract: A simple model along with a computer code “HEXA-FILTERS” is used to carry out the calculation of the total cross-sections of BeO and SiO{sub 2} having poly or mono-crystalline form as a function of neutron wavelength at room (R.T.) and liquid nitrogen (L.N.) temperatures. An overall agreement is indicated between the calculated neutron cross-sections and experimental data. Calculation shows that 25 cm thick of polycrystalline BeO cooled at liquid nitrogen temperature was found to be a good filter for neutron wavelengths longer than 0.46 nm. While, 50 cm of SiO{sub 2}, with much less transmission, for neutrons with wavelengths longer than 0.85 nm. It was also found that 10 cm of BeO and 15 cm SiO{sub 2} thick mono-crystals cut along their (0 0 2) plane, with 0.5° FWHM on mosaic spread and cooled at L.N., are a good thermal neutron filter, with high effect-to-noise ratio.

  7. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  8. Professional iPhone Programming with MonoTouch and .NET/C#

    CERN Document Server

    McClure, Wallace B; Dunn, Craig

    2010-01-01

    What .NET C# developers need to enter the hot field of iPhone apps. iPhone applications offer a hot opportunity for developers. Until the open source MonoTouch project, this field was limited to those familiar with Apple's programming languages. Now .NET and C# developers can join the party. This Wrox guide is the first book to cover MonoTouch, preparing developers to take advantage of this lucrative opportunity.: MonoTouch opens the field of iPhone app development to .NET and C# developers for the first time; the Wrox reputation among .NET developers assures them that this guide covers everyt

  9. Developing C# Apps for iPhone and iPad using MonoTouch

    CERN Document Server

    Costanich, Bryan

    2011-01-01

    Developing C# Applications for iPhone and iPad using MonoTouch shows you how to use your existing C# skills to write apps for the iPhone and iPad. Fortunately, there's MonoTouch, Novell's .NET library that allows C# developers to write C# code that executes in iOS. Furthermore, MonoTouch allows you to address all the unique functions of the iPhone, iPod Touch, and iPad. And the big plus: You needn't learn any Objective-C to master MonoTouch!. Former Microsoft engineer and published app-store developer Bryan Costanich shows you how to use the tools you already know to create native apps in iOS

  10. Irradiation project of SiC/SiC fuel pin 'INSPIRE': Status and future plan

    International Nuclear Information System (INIS)

    Kohyama, Akira; Kishimoto, Hirotatsu

    2015-01-01

    After the March 11 Disaster in East-Japan, Research and Development towards Ensuring Nuclear Safety Enhancement for LWR becomes a top priority R and D in nuclear energy policy of Japan. The role of high temperature non-metallic materials, such as SiC/SiC, is becoming important for the advanced nuclear reactor systems. SiC fibre reinforced SiC composite has been recognised to be the most attractive option for the future, now, METI fund based project, INSPIRE, has been launched as 5-year termed project at OASIS in Muroran Institute of Technology aiming at early realisation of this system. INSPIRE is the irradiation project of SiC/SiC fuel pins aiming to accumulate material, thermal, irradiation effect data of NITE-SiC/SiC in BWR environment. Nuclear fuel inserted SiC/SiC fuel pins are planned to be installed in the Halden reactor. The project includes preparing the NITE-SiC/SiC tubes, joining of end caps, preparation of rigs to control the irradiation environment to BWR condition and the instruments to measure the condition of rigs and pins in operation. Also, basic neutron irradiation data will be accumulated by SiC/SiC coupon samples currently under irradiation in BR2. The output from this project may present the potentiality of NITE-SiC/SiC fuel cladding with the first stage fuel-cladding interaction. (authors)

  11. Investigation into solubility and diffusion in SiC-NbC, SiC-TiC, SiC-ZrC systems

    International Nuclear Information System (INIS)

    Safaraliev, G.K.; Tairov, Yu.M.; Tsvetkov, V.F.; Shabanov, Sh.Sh.

    1991-01-01

    An investigation is carried out which demonstrates solid-phase interaction between SiC and NbC, TiC and ZrC monocrystals. The monocrystals are subjected to hot pressing in SiC powder with dispersity of 5x10 -6 m. The pressing temperature is 2270-2570 K and pressure is varied in the range of 20-40 MPa. Element composition and the distribution profile in a thin layer near the boundary of SiC-NbC, SiC-TiC and SiC-ZrC are investigated by the Anger spectroscopy method. The obtained results permit to make the conclusion in the possibility of solid solution formation in investigated systems

  12. Low dose irradiation performance of SiC interphase SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Lowden, R.A.; Strizak, J.; More, K.L.; Eatherly, W.S.; Bailey, J.; Williams, A.M.; Osborne, M.C.; Shinavski, R.J.

    1998-01-01

    Reduced oxygen Hi-Nicalon fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either 'porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1 x 10 25 n m -2 (E>0.1 MeV) in the temperature range of 260 to 1060 C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber. (orig.)

  13. Characteristics of poly- and mono-crystalline BeO and SiO2 as thermal and cold neutron filters

    Science.gov (United States)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2015-09-01

    A simple model along with a computer code "HEXA-FILTERS" is used to carry out the calculation of the total cross-sections of BeO and SiO2 having poly or mono-crystalline form as a function of neutron wavelength at room (R.T.) and liquid nitrogen (L.N.) temperatures. An overall agreement is indicated between the calculated neutron cross-sections and experimental data. Calculation shows that 25 cm thick of polycrystalline BeO cooled at liquid nitrogen temperature was found to be a good filter for neutron wavelengths longer than 0.46 nm. While, 50 cm of SiO2, with much less transmission, for neutrons with wavelengths longer than 0.85 nm. It was also found that 10 cm of BeO and 15 cm SiO2 thick mono-crystals cut along their (0 0 2) plane, with 0.5° FWHM on mosaic spread and cooled at L.N., are a good thermal neutron filter, with high effect-to-noise ratio.

  14. Elevated Temperature Properties of Commercially Available NITE-SiC/SiC Composites

    International Nuclear Information System (INIS)

    Choi, Y.B.; Hinoki, T.; Kohyama, A.

    2007-01-01

    Full text of publication follows: Continuous fiber-reinforced ceramic matrix composites (CMCs) have been expected as a new type of material having high fracture resistance up to a high temperature. In recent years, there have been extensive efforts in our research group to develop high performance SiC/SiC composites for energy applications, where improvements in mechanical properties and damage resistance by innovative new fabrication process with emphasis on interface improvement have been greatly accomplished. One of the most outstanding accomplishments is the Nano-powder Infiltration and Transient Eutectic (NITE) process using PyC coated Tyranno-SA fibers. For making SiC/SiC composites more attractive and competitive for high temperature structural components and for other industrial applications, one of the key issues is to demonstrate its reliability and safety under severe environments. Also to demonstrate the potential to produce SiC/SiC by NITE process from large scale production line at industries is very important. This paper provides fundamental database of mechanical properties and microstructure of Cera-NITE, the trade name of NITE-SiC/SiC composites. The mechanical properties were evaluated by uni-axial tensile test from room temperature to high temperatures. The tensile properties, including elastic modulus, PLS and ultimate tensile strength, are superior to those of other conventional SiC/SiC composites. The macroscopic observation of Cera-NITE indicated high density as planned with almost no-porosity and cracks. Furthermore, Cera-NITE showed outstanding microstructural uniformity. The characteristic variation coming from the sampling location was hardly observed.. Further information about database of properties and microstructure at evaluated temperature will be provided. (authors)

  15. Porous SiC/SiC composites development for industrial application

    International Nuclear Information System (INIS)

    Maeta, S.; Hinoki, T.

    2014-01-01

    Silicon carbide (SiC) is promising structural materials in nuclear fields due to an excellent irradiation resistance and low activation characteristics. Conventional SiC fibers reinforced SiC matrix (SiC/SiC composites) fabricated by liquid phase sintering (LPS-SiC/SiC composites) have been required high cost and long processing time. And microstructure and mechanical property data of finally obtained LPS-SiC/SiC composites are easily scattered, because quality of the composites depend on personal skill. Thus, conventional LPS-SiC/SiC composites are inadequate for industrial use. In order to overcome these issues, the novel “porous SiC/SiC composites” have been developed by means of liquid phase sintering fabrication process. The composites consist of porous SiC matrix and SiC fibers without conventional carbon interfacial layer. The composites don’t have concerns of the degradation interfacial layer at the severe accident. Porous SiC/SiC composites preform was prepared with a thin sheet shape of SiC, sintering additives and carbon powder mixture by tape casting process which was adopted because of productive and high yielding rate fabrication process. The preform was stacked with SiC fibers and sintered in hot-press at the high temperature in argon environment. The sintered preform was decarburized obtain porous matrix structure by heat-treatment in air. Moreover, mechanical property data scattering of the obtained porous SiC/SiC composites decreased. In the flexural test, the porous SiC/SiC composites showed pseudo-ductile behavior with sufficient strength even after heat treatment at high temperature in air. From these conclusions, it was proven that porous SiC/SiC composites were reliable material at severe environment such as high temperature in air, by introducing tape casting fabrication process that could produce reproducible materials with low cost and simple way. Therefore development of porous SiC/SiC composites for industrial application was

  16. Interfacial characterization of CVI-SiC/SiC composites

    International Nuclear Information System (INIS)

    Yang, W.; Kohyama, A.; Noda, T.; Katoh, Y.; Hinoki, T.; Araki, H.; Yu, J.

    2002-01-01

    The mechanical properties of the interfaces of two families of chemical vapor infiltration SiC/SiC composites, advanced Tyranno-SA and Hi-Nicalon fibers reinforced SiC/SiC composites with various carbon and SiC/C interlayers, were investigated by single fiber push-out/push-back tests. Interfacial debonding and fibers sliding mainly occurred adjacent to the first carbon layer on the fibers. The interfacial debonding strengths and frictional stresses for both Tyranno-SA/SiC and Hi-Nicalon/SiC composites were correlated with the first carbon layer thickness. Tyranno-SA/SiC composites exhibited much larger interfacial frictional stresses compared to Hi-Nicalon/SiC composites. This was assumed to be mainly contributed by the rather rough surface of the Tyranno-SA fiber

  17. Irradiation effect on Nite-SiC/SiC composites

    International Nuclear Information System (INIS)

    Hinoki, T.; Choi, Y.B.; Kohyama, A.; Ozawa, K.

    2007-01-01

    Full text of publication follows: Silicon carbide (SiC) and SiC composites are significantly attractive materials for nuclear application in particular due to exceptional low radioactivity, excellent high temperature mechanical properties and chemical stability. Despite of the excellent potential of SiC/SiC composites, the prospect of industrialization has not been clear mainly due to the low productivity and the high material cost. Chemical vapor infiltration (CVI) method can produce the excellent SiC/SiC composites with highly crystalline and excellent mechanical properties. It has been reported that the high purity SiC/SiC composites reinforced with highly crystalline fibers and fabricated by CVI method is very stable to neutron irradiation. However the production cost is high and it is difficult to fabricate thick and dense composites by CVI method. The novel processing called Nano-powder Infiltration and Transient Eutectic Phase (NITE) Processing has been developed based on the liquid phase sintering (LPS) process modification. The NITE processing can achieve both the excellent material quality and the low processing cost. The productivity of the processing is also excellent, and various kinds of shape and size of SiC/SiC composites can be produced by the NITE processing. The NITE processing can form highly crystalline matrix, which is requirement for nuclear application. The objective of this work is to understand irradiation effect of the NITESiC/SiC composites. The SiC/SiC composites used were reinforced with high purity SiC fibers, Tyranno TM SA and fabricated by the NITE method. The NITE-SiC/SiC composite bars and reference monolithic SiC bars fabricated by CVI and NITE were irradiated at up to 1.0 dpa and 600-1000 deg. C at JMTR, Japan. Mechanical properties of non-irradiated and irradiated NITESiC/ SiC composites bars were evaluated by tensile tests. Monolithic SiC bars were evaluated by flexural tests. The fracture surface was examined by SEM. Ultimate

  18. SiC/SiC Cladding Materials Properties Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormal operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.

  19. Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite

    International Nuclear Information System (INIS)

    Liu Yongsheng; Cheng Laifei; Zhang Litong; Wu Shoujun; Li Duo; Xu Yongdong

    2007-01-01

    A CVD boron coating was introduced between two CVD SiC coating layers. EDS and XRD results showed that the CVD B coating was a boron crystal without other impurity elements. SEM results indicated that the CVD B coating was a flake-like or column-like crystal with a compact cross-section. The crack width in the CVD SiC coating deposited on CVD B is smaller than that in a CVD SiC coating deposited on CVD SiC coating. After oxidation at 700 deg. C and 1000 deg. C, XRD results indicated that the coating was covered by product B 2 O 3 or B 2 O 3 .xSiO 2 film. The cracks were sealed as observed by SEM. There was a large amount of flake-like material on hybrid coating surface after oxidation at 1300 deg. C. Oxidation weight loss and residual flexural strength results showed that hybrid SiC/B/SiC multilayer coating provided better oxidation protection for C/SiC composite than a three layer CVD SiC coating at temperatures from 700 deg. C to 1000 deg. C for 600 min, but worse oxidation protection above 1000 deg. C due to the large amount of volatilization of B 2 O 3 or B 2 O 3 .xSiO 2

  20. Mechanical behavior of SiCf/SiC composites with alternating PyC/SiC multilayer interphases

    International Nuclear Information System (INIS)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-01-01

    Highlights: ► Superior combination of flexural strength and fracture toughness of the 3D SiC/SiC composite was achieved by interface tailoring. ► Resulted composite possesses a much higher flexural strength and fracture toughness than its counterparts in literatures. ► Mechanisms that PyC/SiC multilayer coatings improve the mechanical properties were illustrated. -- Abstract: In order to tailor the fiber–matrix interface of continuous silicon carbide fiber reinforced silicon carbide (SiC f /SiC) composites for improved fracture toughness, alternating pyrolytic carbon/silicon carbide (PyC/SiC) multilayer coatings were applied to the KD-I SiC fibers using chemical vapor deposition (CVD) method. Three dimensional (3D) KD-I SiC f /SiC composites reinforced by these coated fibers were fabricated using a precursor infiltration and pyrolysis (PIP) process. The interfacial characteristics were determined by the fiber push-out test and microstructural examination using scanning electron microscopy (SEM). The effect of interface coatings on composite mechanical properties was evaluated by single-edge notched beam (SENB) test and three-point bending test. The results indicate that the PyC/SiC multilayer coatings led to an optimum interfacial bonding between fibers and matrix and greatly improved the fracture toughness of the composites.

  1. Microstructure and Mechanical Property of SiCf/SiC and Cf/SiC Composites

    International Nuclear Information System (INIS)

    Lee, S P; Cho, K S; Lee, H U; Lee, J K; Bae, D S; Byun, J H

    2011-01-01

    The mechanical properties of SiC based composites reinforced with different types of fabrics have been investigated, in conjunction with the detailed analyses of their microstructures. The thermal shock properties of SiC f /SiC composites were also examined. All composites showed a dense morphology in the matrix region. Carbon coated PW-SiC f /SiC composites had a good fracture energy, even if their strength was lower than that of PW-C f /SiC composites. SiC f /SiC composites represented a great reduction of flexural strength at the thermal shock temperature difference of 300 deg. C.

  2. Design of a creep experiment for SiC/SiC composites in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, S.L.; Hamilton, M.L.; Jones, R.H. [and others

    1997-08-01

    A new specimen was designed for performing in-reactor creep tests on composite materials, specifically on SiC/SiC composites. The design was tailored for irradiation at 800{degrees}C in a HFIR RB position. The specimen comprises a composite cylinder loaded by a pressurized internal bladder that is made of Nb1Zr. The experiment was designed for approximately a one year irradiation.

  3. Design of a creep experiment for SiC/SiC composites in HFIR

    International Nuclear Information System (INIS)

    Hecht, S.L.; Hamilton, M.L.; Jones, R.H.

    1997-01-01

    A new specimen was designed for performing in-reactor creep tests on composite materials, specifically on SiC/SiC composites. The design was tailored for irradiation at 800 degrees C in a HFIR RB position. The specimen comprises a composite cylinder loaded by a pressurized internal bladder that is made of Nb1Zr. The experiment was designed for approximately a one year irradiation

  4. Accessing the application of in situ cosmogenic 14C to surface exposure dating of amorphous SiO2

    Science.gov (United States)

    Cesta, J. M.; Goehring, B. M.; Ward, D. J.

    2017-12-01

    We assess the feasibility and utility of in situ cosmogenic 14C as a geochronometer for landforms composed of amorphous SiO2 through the comparison of 14C surface exposure ages to independently determined eruption ages on Obsidian Dome, California. Landforms composed of amorphous SiO2 phases are difficult to date by conventional cosmogenic nuclide methods due to several complications that may arise (e.g., inability to remove meteoric contamination). The onset of an increased understanding of production rates and analytical measurement of in situ 14C in SiO2 provides an opportunity to address this limitation. Obsidian Dome is a 600-year-old phreatomagmatic dome of the Mono-Inyo Craters located in Inyo County, California, and consists of vesicular pumice, obsidian, and rhyolite. Exposure ages from eight obsidian and banded pumice and obsidian surface samples range from 3947 ± 678 to 914 ± 134 years, all significantly older than the accepted radiocarbon age of 650-550 years. δ13C values for the samples range between +2.65‰ and +1.34‰ and show a negative correlation with CO2 yield. The `too old' exposure ages coupled with this negative correlation between δ13C and CO2 yield suggests the incorporation of an atmospheric component of 14C. Measurement of 14C concentrations in shielded, subsurface samples will assist in isolating the atmospheric 14C component and aid in correcting the surface exposure ages.

  5. SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures

    Science.gov (United States)

    Abdollahi, Alireza; Ehsani, Naser; Valefi, Zia; Khalifesoltani, Ali

    2017-05-01

    A SiC nanoparticle toughened-SiC/MoSi2-SiC functionally graded oxidation protective coating on graphite was prepared by reactive melt infiltration (RMI) at 1773 and 1873 K under argon atmosphere. The phase composition and anti-oxidation behavior of the coatings were investigated. The results show that the coating was composed of MoSi2, α-SiC and β-SiC. By the variations of Gibbs free energy (calculated by HSC Chemistry 6.0 software), it could be suggested that the SiC coating formed at low temperatures by solution-reprecipitation mechanism and at high temperatures by gas-phase reactions and solution-reprecipitation mechanisms simultaneously. SiC nanoparticles could improve the oxidation resistance of SiC/MoSi2-SiC multiphase coating. Addition of SiC nanoparticles increases toughness of the coating and prevents spreading of the oxygen diffusion channels in the coating during the oxidation test. The mass loss and oxidation rate of the SiC nanoparticle toughened-SiC/MoSi2-SiC-coated sample after 10-h oxidation at 1773 K were only 1.76% and 0.32 × 10-2 g/cm3/h, respectively.

  6. SiC/SiC fuel cladding R and D Project 'SCARLET': Status and future plan

    International Nuclear Information System (INIS)

    Kishimoto, Hirotatsu; Kohyama, Akira

    2015-01-01

    This paper provides the recent progress in SiC/SiC development towards early utilisation for LWRs based on NITE method. After the March 11 Disaster in East-Japan, ensuring safe technology for LWR became a top priority R and D in nuclear energy policy of Japan. Along this line, replacement of Zircaloy claddings with SiC/SiC based fuel cladding is becoming one of the most attractive options and a MEXT fund based project, SCARLET, and a METI fund based project have been launched as 5-year termed projects at Muroran Institute of Technology. These projects care for NITE process for making long SiC/SiC fuel pins and connecting technology integration. The SCARLET project also includes coolant compatibility and irradiation effect evaluations as LWR and LMFBR materials. The outline and the present status of the SCARLET project will be briefly introduced in the present paper. (authors)

  7. Neutron tolerance of advanced SiC-fiber/CVI-SiC composites

    International Nuclear Information System (INIS)

    Katoh, Y.; Kohyama, A.; Snead, L.L.; Hinoki, T.; Hasegawa, A.

    2003-01-01

    Fusion blankets employing a silicon carbide (SiC) fiber-reinforced SiC matrix composite (SiC/SiC composite) as the structural material provide attractive features represented by high cycle efficiency and extremely low induced radioactivity. Recent advancement in processing and utilization techniques and application studies in ceramic gas turbine and advanced transportation systems, SiC/SiC composites are steadily getting matured as industrial materials. Reference SiC/SiC composites for fusion structural applications have been produced by a forced-flow chemical vapor infiltration (FCVI) method using conventional and advanced near-stoichiometric SiC fibers and extensively evaluated primarily in Japan-US collaborative JUPITER program. In this work, effect of neutron irradiation at elevated temperatures on mechanical property of these composites is characterized. Unlike in conventional SiC/SiC composites, practically no property degradation was identified in advanced composites with a thin carbon interphase by a neutron fluence level of approximately 8dpa at 800C. (author)

  8. High thermal conductivity SiC/SiC composites for fusion applications -- 2

    International Nuclear Information System (INIS)

    Kowbel, W.; Tsou, K.T.; Withers, J.C.; Youngblood, G.E.

    1998-01-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion Structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. An unirradiated SiC/SiC composite made with MER-developed CVR SiC fiber and a hybrid PIP/CVI SiC matrix exhibited room temperature transverse thermal conductivity of 45 W/mK. An unirradiated SiC/SiC composite made from C/C composite totally CVR-converted to a SiC/SiC composite exhibited transverse thermal conductivity values of 75 and 35 W/mK at 25 and 1000 C, respectively. Both types of SiC/SiC composites exhibited non-brittle failure in flexure testing

  9. Thermochemical instability effects in SiC-based fibers and SiC{sub f}/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H.; Jones, R.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1997-08-01

    Thermochemical instability in irradiated SiC-based fibers with an amorphous silicon oxycarbide phase leads to shrinkage and mass loss. SiC{sub f}/SiC composites made with these fibers also exhibit mass loss as well as severe mechanical property degradation when irradiated at 800{degrees}C, a temperature much below the generally accepted 1100{degrees}C threshold for thermomechanical degradation alone. The mass loss is due to an internal oxidation mechanism within these fibers which likely degrades the carbon interphase as well as the fibers in SiC{sub f}/SiC composites even in so-called {open_quotes}inert{close_quotes} gas environments. Furthermore, the mechanism must be accelerated by the irradiation environment.

  10. Development of SiC/SiC composite for fusion application

    International Nuclear Information System (INIS)

    Kohyama, A.; Katoh, Y.; Snead, L.L.; Jones, R.H.

    2001-01-01

    The recent efforts to develop SiC/SiC composite materials for fusion application under the collaboration with Japan and the USA are provided, where material performance with and without radiation damage has been greatly improved. One of the accomplishments is development of the high performance reaction sintering process. Mechanical and thermal conductivity are improved extensively by process modification and optimization with inexpensive fabrication process. The major efforts to make SiC matrix by CVI, PIP and RS methods are introduced together with the representing baseline properties. The resent results on mechanical properties of SiC/SiC under neutron irradiation are quite positive. The composites with new SiC fibers, Hi-Nicalon Type-S, did not exhibit mechanical property degradation up to 10 dpa. Based on the materials data recently obtained, a very preliminary design window is provided and the future prospects of SiC/SiC technology integration is provided. (author)

  11. Gas leak tightness of SiC/SiC composites at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hayasaka, Daisuke, E-mail: hayasaka@oasis.muroran-it.ac.jp [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Park, Joon-Soo. [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE-SiC/SiC has extremely densified microstructure compared with other SiC/SiC composite like CVI. • Excellent helium and hydrogen gas-leak tightness of SiC/SiC composites by DEMO-NITE method from prototype industrialization production line was presented. • The excellence against stainless steel and Zircaloy at elevated temperature, together with generic excellent properties of SiC will be inevitable for innovative blanket and divertors for DEMO- and power- fusion reactors. - Abstract: SiC/SiC composite materials are attractive candidates for high heat flux components and blanket of fusion reactor, mainly due to their high temperature properties, radiation damage tolerance and low induced radioactivity. One of the challenges for SiC/SiC application in fusion reactors is to satisfy sufficient gas leak tightness of hydrogen and helium isotopes. Although many efforts have been carried-out, SiC/SiC composites by conventional processes have not been successful to satisfy the requirements, except SiC/SiC composites by NITE-methods. Toward the early realization of SiC/SiC components into fusion reactor systems process development of NITE-process has been continued. Followed to the brief introduction of recently developed DEMO-NITE process, baseline properties and hydrogen and helium gas leak tightness is presented. SiC/SiC claddings with 10 mm in diameter and 1 mm in wall thickness are tested by gas leak tightness system developed. The leak tightness measurements are done room temperature to 400 °C. Excellent gas leak tightness equivalent or superior to Zircaloy claddings for light water fission reactors is confirmed. The excellent gas leak tightness suggests nearly perfect suppression of large gas leak path in DEMO-NITE SiC/SiC.

  12. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    Subhash Chander

    2015-11-01

    Full Text Available This paper presents a study on impact of temperature on the performance of series and parallel connected mono-crystalline silicon (mono-Si solar cell employing solar simulator. The experiment was carried out at constant light intensity 550 W/m2with cell temperature in the range 25–60 oC for single, series and parallel connected mono-Si solar cells. The performance parameters like open circuit voltage, maximum power, fill factor and efficiency are found to decrease with cell temperature while the short circuit current is observed to increase. The experimental results reveal that silicon solar cells connected in series and parallel combinations follow the Kirchhoff’s laws and the temperature has a significant effect on the performance parameters of solar cell.

  13. Transport properties at 3C-SiC interfaces

    OpenAIRE

    Eriksson, Gustav Jens Peter

    2011-01-01

    For years cubic (3C) silicon carbide (SiC) has been believed to be a very promising wide bandgap semiconductor for high frequency and high power electronics. However, 3C-SiC is fraught with large concentrations of various defects, which have so far hindered the achievement of the predicted properties at a macroscopic level. These defects have properties that are inherently nanoscale and that will have a strong influence on the electrical behavior of the material, particularly at interfaces c...

  14. Dielectric Properties of SiCf/PyC/SiC Composites After Oxidation

    Institute of Scientific and Technical Information of China (English)

    SONG Huihui; ZHOU Wancheng; LUO Fa; QING Yuchang; CHEN Malin; LI Zhimin

    2016-01-01

    In this paper, the SiC fiber-reinforced SiC matrix composites with a 0.15mm thick pyrocarbon interphase (notedas SiCf/PyC/SiC) were prepared by chemical vapor infiltration (CVI). The SiCf/PyC/SiC were oxidized in air at 950℃ for 50h. The dielectric properties after this high temperature oxidation were investigated in X-band from room temperature (RT) to 700℃. Results suggested that:e' of the SiCf/PyC/SiC after oxidation increased at first then de-creased with temperature elevating;e" increased with temperature raising in the temperature range studied.

  15. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  16. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes

    NARCIS (Netherlands)

    Armitt, D.J.; Bruce, M.I.; Gaudio, M.; Zaitseva, N.N.; Skelton, B.W.; White, A.H.; Le Guennic, B.; Halet, J.-F.; Fox, M.A.; Roberts, R.L.; Hartl, F.; Low, P.J.

    2008-01-01

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of

  17. 3C-SiC nanocrystal growth on 10° miscut Si(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Deokar, Geetanjali, E-mail: gitudeo@gmail.com [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); D' Angelo, Marie; Demaille, Dominique [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Cavellin, Catherine Deville [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Faculté des Sciences et Technologie UPEC, 61 av. De Gaulle, Créteil F-94010 (France)

    2014-04-01

    The growth of 3C-SiC nano-crystal (NC) on 10° miscut Si(001) substrate by CO{sub 2} thermal treatment is investigated by scanning and high resolution transmission electron microscopies. The vicinal Si(001) surface was thermally oxidized prior to the annealing at 1100 °C under CO{sub 2} atmosphere. The influence of the atomic steps at the vicinal SiO{sub 2}/Si interface on the SiC NC growth is studied by comparison with the results obtained for fundamental Si(001) substrates in the same conditions. For Si miscut substrate, a substantial enhancement in the density of the SiC NCs and a tendency of preferential alignment of them along the atomic step edges is observed. The SiC/Si interface is abrupt, without any steps and epitaxial growth with full relaxation of 3C-SiC occurs by domain matching epitaxy. The CO{sub 2} pressure and annealing time effect on NC growth is analyzed. The as-prepared SiC NCs can be engineered further for potential application in optoelectronic devices and/or as a seed for homoepitaxial SiC or heteroepitaxial GaN film growth. - Highlights: • Synthesis of 3C-SiC nanocrystals epitaxied on miscut-Si using a simple technique • Evidence of domain matching epitaxy at the SiC/Si interface • SiC growth proceeds along the (001) plane of host Si. • Substantial enhancement of the SiC nanocrystal density due to the miscut • Effect of the process parameters (CO{sub 2} pressure and annealing duration)

  18. Circumferential tensile test method for mechanical property evaluation of SiC/SiC tube

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ju-Hyeon, E-mail: 15096018@mmm.muroran-it.ac.jp [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Park, Joon-soo [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Nakazato, Naofumi [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE SiC/SiC cooling channel system to be a candidate of divertor system in future. • Hoop strength is one of the important factors for a tube. • This research studies the relationship between deformation and strain of SiC/SiC tube. - Abstract: SiC fiber reinforced/SiC matrix (SiC/SiC) composite is expected to be a candidate material for the first-wall, components in the blanket and divertor of fusion reactors in future. In such components, SiC/SiC composites need to be formed to be various shapes. SiC/SiC tubes has been expected to be employed for blanket and divertor after DEMO reactor, but there is not established mechanical investigation technique. Recent progress of SiC/SiC processing techniques is likely to realize strong, having gas tightness SiC/SiC tubes which will contribute for the development of fusion reactors. This research studies the relationship between deformation and strain of SiC/SiC tube using a circumferential tensile test method to establish a mechanical property investigation method of SiC/SiC tubes.

  19. Well-defined mono(η3-allyl)nickel complex MONi(η3-C3H5) (M = Si or Al) grafted onto silica or alumina: A molecularly dispersed nickel precursor for syntheses of supported small size nickel nanoparticles

    KAUST Repository

    Li, Lidong; Abou-Hamad, Edy; Anjum, Dalaver H.; Zhou, Lu; Laveille, Paco; Emsley, Lyndon; Basset, Jean-Marie

    2014-01-01

    Preparing evenly-dispersed small size nickel nanoparticles over inert oxides remains a challenge today. In this context, a versatile method to prepare supported small size nickel nanoparticles (ca. 1-3 nm) with narrow size distribution via a surface organometallic chemistry (SOMC) route is described. The grafted mono(η3-allyl)nickel complexes MONi(η 3-C3H5) (M = Si or Al) as precursors are synthesized and fully characterized by elemental analysis, FTIR spectroscopy and paramagnetic solid-state NMR. © 2014 the Partner Organisations.

  20. Formation mechanism of SiC in C-Si system by ion irradiation

    International Nuclear Information System (INIS)

    Hishita, Shunichi; Aizawa, Takashi; Suehara, Shigeru; Haneda, Hajime

    2003-01-01

    The irradiation effects of 2 MeV He + , Ne + , and Ar + ions on the film structure of the C-Si system were investigated with RHEED and XPS. The ion dose dependence of the SiC formation was kinetically analyzed. The SiC formation at moderate temperature was achieved by 2 MeV ion irradiation when the thickness of the initial carbon films was appropriate. The evolution process of the SiC film thickness consisted of the 3 stages. The first stage was the steep increase of the SiC, and was governed by the inelastic collision. The second was the gentle increase of the SiC, and was governed by the diffusion. The last was the decrease of the SiC, and was caused by the sputtering. The formation mechanism of the SiC was discussed. (author)

  1. Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Plasma Nanoscience, Industrial Innovation Program, CSIRO Manufacturing Flagship, Lindfield, New South Wales 2070 (Australia); Yang, Yonggang [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Wenjun, E-mail: apwjzh@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China)

    2015-10-15

    SiC- based nanomaterials possess superior electric, thermal and mechanical properties. However, due to the tricky synthesis process, which needs to be carried out under high temperature with multi-step reaction procedures, the further application is dramatically limited. Herein, a simple as well as a controllable approach is proposed for synthesis of SiC- based nanostructures under low temperature. Phenyl-bridged polysilsesquioxane was chosen as the starting material to react with magnesium at 650 °C, following which SiC@C nanocomposites were finally obtained, and it maintains the original bent rod-like architecture of polysilsesquioxanes. The possible formation process for the nanocomposites can proposed as well. The electrochemical behaviour of nanocomposites was accessed, verifying that the synthesized SiC@C nanocomposites deliver good electrochemical performance. Moreover, SiC@C also shows to be a promising scaffold in supporting Si thin film electrode in achieving stable cycling performance in lithium ion batteries. - Highlights: • SiC@C bent nanorods were synthesized with a magnesium reaction approach. • Carbon nanorod spines studded with ultrafine β-SiC nanocrystallines was realized. • The synthesized SiC@C keeps the original rod-like structure of polysilsesquioxanes. • The possible formation process for the nanocomposites was analysed and proposed. • Si@SiC@C nanocomposites reveal good electrochemical performance in LIBs.

  2. Silicon Effects on Properties of Melt Infiltrated SiC/SiC Composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Gyekenyesi, John Z.; Hurst, Janet B.

    2000-01-01

    Silicon effects on tensile and creep properties, and thermal conductivity of Hi-Nicalon SiC/SiC composites have been investigated. The composites consist of 8 layers of 5HS 2-D woven preforms of BN/SiC coated Hi-Nicalon fiber mats and a silicon matrix, or a mixture of silicon matrix and SiC particles. The Hi-Nicalon SiC/silicon and Hi-Nicalon SiC/SiC composites contained about 24 and 13 vol% silicon, respectively. Results indicate residual silicon up to 24 vol% has no significant effect on creep and thermal conductivity, but does decrease the primary elastic modulus and stress corresponding to deviation from linear stress-strain behavior.

  3. Electroplating chromium on CVD SiC and SiCf-SiC advanced cladding via PyC compatibility coating

    Science.gov (United States)

    Ang, Caen; Kemery, Craig; Katoh, Yutai

    2018-05-01

    Electroplating Cr on SiC using a pyrolytic carbon (PyC) bond coat is demonstrated as an innovative concept for coating of advanced fuel cladding. The quantification of coating stress, SEM morphology, XRD phase analysis, and debonding test of the coating on CVD SiC and SiCf-SiC is shown. The residual tensile stress (by ASTM B975) of electroplated Cr is > 1 GPa prior to stress relaxation by microcracking. The stress can remove the PyC/Cr layer from SiC. Surface etching of ∼20 μm and roughening to Ra > 2 μm (by SEM observation) was necessary for successful adhesion. The debonding strength (by ASTM D4541) of the coating on SiC slightly improved from 3.6 ± 1.4 MPa to 5.9 ± 0.8 MPa after surface etching or machining. However, this improvement is limited due to the absence of an interphase, and integrated CVI processing may be required for further advancement.

  4. SiC Seeded Crystal Growth

    Science.gov (United States)

    Glass, R. C.; Henshall, D.; Tsvetkov, V. F.; Carter, C. H., Jr.

    1997-07-01

    The availability of relatively large (30 mm) SiC wafers has been a primary reason for the renewed high level of interest in SiC semiconductor technology. Projections that 75 mm SiC wafers will be available in 2 to 3 years have further peaked this interest. Now both 4H and 6H polytypes are available, however, the micropipe defects that occur to a varying extent in all wafers produced to date are seen by many as preventing the commercialization of many types of SiC devices, especially high current power devices. Most views on micropipe formation are based around Frank's theory of a micropipe being the hollow core of a screw dislocation with a huge Burgers vector (several times the unit cell) and with the diameter of the core having a direct relationship with the magnitude of the Burgers vector. Our results show that there are several mechanisms or combinations of these mechanisms which cause micropipes in SiC boules grown by the seeded sublimation method. Additional considerations such as polytype variations, dislocations and both impurity and diameter control add to the complexity of producing high quality wafers. Recent results at Cree Research, Inc., including wafers with micropipe densities of less than 1 cm - 2 (with 1 cm2 areas void of micropipes), indicate that micropipes will be reduced to a level that makes high current devices viable and that they may be totally eliminated in the next few years. Additionally, efforts towards larger diameter high quality substrates have led to production of 50 mm diameter 4H and 6H wafers for fabrication of LEDs and the demonstration of 75 mm wafers. Low resistivity and semi-insulating electrical properties have also been attained through improved process and impurity control. Although challenges remain, the industry continues to make significant progress towards large volume SiC-based semiconductor fabrication.

  5. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  6. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies are in progress to evaluate the stability of these materials.

  7. Si/C and H coadsorption at 4H-SiC{0001} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wachowicz, E., E-mail: elwira@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Plac M. Borna 9, PL-50-204 Wrocław (Poland); Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, PL-02-106 Warsaw (Poland)

    2016-06-15

    Highlights: • Si on C-terminated and C on Si-terminated surface adsorb in the H{sub 3} hollow site. • The preferred adsorption site is in contrary to the stacking order of bulk crystal. • The presence of hydrogen increases the adsorption energy of Si/C. • Hydrogen weakens the bonds between the adsorbed Si or C and the surface. • Carbon adsorbs on top of the surface carbon on the C-terminated surface. • With both C and H on Si-terminated surface the surface state vanishes. - Abstract: Density functional theory (DFT) study of adsorption of 0.25 monolayer of either Si or C on 4H-SiC{0001} surfaces is presented. The adsorption in high-symmetry sites on both Si- and C-terminated surfaces was examined and the influence of the preadsorbed 0.25 ML of hydrogen on the Si/C adsorption was considered. It was found out that for Si on C-terminated surface and C on Si-terminated the most favourable is threefolded adsorption site on both clean and H-precovered surface. This is contrary to the bulk crystal stacking order which would require adsorption on top of the topmost surface atom. In those cases, the presence of hydrogen weakens the bonding of the adsorbate. Carbon on the C-terminated surface, only binds on-top of the surface atom. The C−C bond-length is almost the same for the clean surface and for one with H and equals to ∼1.33 Å which is shorter by ∼0.2 than in diamond. The analysis of the electronic structure changes under adsorption is also presented.

  8. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  9. Switching Performance Evaluation of Commercial SiC Power Devices (SiC JFET and SiC MOSFET) in Relation to the Gate Driver Complexity

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    and JFETs. The recent introduction of SiC MOSFET has proved that it is possible to have highly performing SiC devices with a minimum gate driver complexity; this made SiC power devices even more attractive despite their device cost. This paper presents an analysis based on experimental results...... of the switching losses of various commercially available Si and SiC power devices rated at 1200 V (Si IGBTs, SiC JFETs and SiC MOSFETs). The comparison evaluates the reduction of the switching losses which is achievable with the introduction of SiC power devices; this includes analysis and considerations...

  10. Microstructural optimization of high temperature SiC/SiC composites by nite process

    International Nuclear Information System (INIS)

    Shimoda, K.; Park, J.S.; Hinoki, T.; Kohyama, A.

    2007-01-01

    Full text of publication follows: SiC/SiC composites are one of the promising structural materials for future fusion reactor because of the excellent potentiality in thermal and mechanical properties under very severe environment including high temperature and high energy neutron bombardment. For fusion-grade SiC/SiC composites, high-crystallinity and near-stoichiometric characteristic are required to keep excellent stability against neutron irradiation. The realization of the reactor will be strongly depend on optimization of SiC/SiC composites microstructure, particularly in regard to the materials and processes used for the fiber, interphase and matrix constituents. One of the important accomplishments is the new process, called nano-particle infiltration and transient eutectic phase (NITE) process developed in our group. The microstructure of NITE-SiC/SiC composites, such as fiber volume fraction, porosity and type of pores, can be controlled precisely by the selection of sintering temperature/applied stress history. The objective of this study is to investigate thermal stability and mechanical properties of NITE-SiC/SiC composites at high-temperature. Two kinds of highly-densified SiC/SiC composites with the difference of fiber volume fraction were prepared, and were subjected to exposure tests from 1000 deg. C to 1500 deg. C in an argon-oxygen gas mixture with an oxygen partial pressure of 0.1 Pa. The thermal stability of the composites was characterized through mass change and TEM/SEM observation. The in-situ tensile tests at 1300 deg. C and 1500 deg. C were carried out in the same atmosphere. Most of SiC/SiC composites, even for the advanced CVI-SiC/SiC composites with multi-layered SiC/C inter-phases, underwent reduction in the maximum strength by about 20% at 1300 deg. C. In particular, this reduction was attributed to a slight burnout of the carbon interphase due to oxygen impurities in test atmosphere. However, there was no significant degradation for

  11. Microstructural optimization of high temperature SiC/SiC composites by nite process

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, K. [Kyoto Univ., Graduate School of Energy Science (Japan); Park, J.S. [Kyoto Univ., Institute of Advanced Energy (Japan); Hinoki, T.; Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy, Gokasho, Uji (Japan)

    2007-07-01

    Full text of publication follows: SiC/SiC composites are one of the promising structural materials for future fusion reactor because of the excellent potentiality in thermal and mechanical properties under very severe environment including high temperature and high energy neutron bombardment. For fusion-grade SiC/SiC composites, high-crystallinity and near-stoichiometric characteristic are required to keep excellent stability against neutron irradiation. The realization of the reactor will be strongly depend on optimization of SiC/SiC composites microstructure, particularly in regard to the materials and processes used for the fiber, interphase and matrix constituents. One of the important accomplishments is the new process, called nano-particle infiltration and transient eutectic phase (NITE) process developed in our group. The microstructure of NITE-SiC/SiC composites, such as fiber volume fraction, porosity and type of pores, can be controlled precisely by the selection of sintering temperature/applied stress history. The objective of this study is to investigate thermal stability and mechanical properties of NITE-SiC/SiC composites at high-temperature. Two kinds of highly-densified SiC/SiC composites with the difference of fiber volume fraction were prepared, and were subjected to exposure tests from 1000 deg. C to 1500 deg. C in an argon-oxygen gas mixture with an oxygen partial pressure of 0.1 Pa. The thermal stability of the composites was characterized through mass change and TEM/SEM observation. The in-situ tensile tests at 1300 deg. C and 1500 deg. C were carried out in the same atmosphere. Most of SiC/SiC composites, even for the advanced CVI-SiC/SiC composites with multi-layered SiC/C inter-phases, underwent reduction in the maximum strength by about 20% at 1300 deg. C. In particular, this reduction was attributed to a slight burnout of the carbon interphase due to oxygen impurities in test atmosphere. However, there was no significant degradation for

  12. Preparation and oxidation protection of CVD SiC/a-BC/SiC coatings for 3D C/SiC composites

    International Nuclear Information System (INIS)

    Liu Yongsheng; Zhang Litong; Cheng Laifei; Yang Wenbin; Zhang Weihua; Xu Yongdong

    2009-01-01

    An amorphous boron carbide (a-BC) coating was prepared by LPCVD process from BCl 3 -CH 4 -H 2 -Ar system. XPS result showed that the boron concentration was 15.0 at.%, and carbon was 82.0 at.%. One third of boron was distributed to a bonding with carbon and 37.0 at.% was dissolved in graphite lattice. A multiple-layered structure of CVD SiC/a-BC/SiC was coated on 3D C/SiC composites. Oxidation tests were conducted at 700, 1000, and 1200 deg. C in 14 vol.% H 2 O/8 vol.% O 2 /78 vol.% Ar atmosphere up to 100 h. The 3D C/SiC composites with the modified coating system had a good oxidation resistance. This resulted in the high strength retained ratio of the composites even after the oxidation.

  13. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-25

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  14. Influence of SiC coating thickness on mechanical properties of SiCf/SiC composite

    Science.gov (United States)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-11-01

    Silicon carbide (SiC) coatings with varying thickness (ranging from 0.14 μm to 2.67 μm) were deposited onto the surfaces of Type KD-I SiC fibres with native carbonaceous surface using chemical vapour deposition (CVD) process. Then, two dimensional SiC fibre reinforced SiC matrix (2D SiCf/SiC) composites were fabricated using polymer infiltration and pyrolysis (PIP) process. Influences of the fibre coating thickness on mechanical properties of SiC fibre and SiCf/SiC composite were investigated using single-filament test and three-point bending test. The results indicated that flexural strength of the composites initially increased with the increasing CVD SiC coating thickness and reached a peak value of 363 MPa at the coating thickness of 0.34 μm. Further increase in the coating thickness led to a rapid decrease in the flexural strength of the composites. The bending modulus of composites showed a monotonic increase with increasing coating thickness. A chemical attack of hydrogen or other ions (e.g. a C-H group) on the surface of SiC fibres during the coating process, owing to the formation of volatile hydrogen, lead to an increment of the surface defects of the fibres. This was confirmed by Wang et al. [35] in their work on the SiC coating of the carbon fibre. In the present study, the existing ˜30 nm carbon on the surface of KD-I fibre [36] made the fibre easy to be attacked. Deposition of non-stoichiometric SiC, causing a decrease in strength. During the CVD process, a small amount of free silicon or carbon always existed [35]. The existence of free silicon, either disordered the structure of SiC and formed a new source of cracks or attacked the carbon on fibre surface resulting in properties degeneration of the KD-I fibre. The effect of residual stress. The different thermal expansion coefficient between KD-I SiC fibre and CVD SiC coating, which are 3 × 10-6 K-1 (RT ˜ 1000 °C) and 4.6 × 10-6 K-1 (RT ˜ 1000 °C), respectively, could cause residual stress

  15. Thermal fatigue behavior of C/C composites modified by SiC-MoSi2-CrSi2 coating

    International Nuclear Information System (INIS)

    Chu Yanhui; Fu Qiangang; Li Hejun; Li Kezhi

    2011-01-01

    Highlights: → The low-density C/C composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation. → The thermal fatigue behavior of the modified C/C composites was studied after undergoing thermal cycling for 20 times under the different environments. → The decrease of the flexural strength of the modified C/C composites during thermal cycle in air was primarily attributed to the partial oxidation of the modified C/C samples. - Abstract: Carbon/carbon (C/C) composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation, and their thermal fatigue behavior under thermal cycling in Ar and air environments was investigated. The modified C/C composites were characterized by scanning electron microscopy and X-ray diffraction. Results of tests show that, after 20-time thermal cycles between 1773 K and room temperature in Ar environment, the flexural strength of modified C/C samples decreased lightly and the percentage of remaining strength was 94.92%. While, after thermal cycling between 1773 K and room temperature in air for 20 times, the weight loss of modified C/C samples was 5.1%, and the flexural strength of the modified C/C samples reduced obviously and the percentage of remaining strength was only 75.22%. The fracture mode of modified C/C samples changed from a brittle behavior to a pseudo-plastic one as the service environment transformed from Ar to air. The decrease of the flexural strength during thermal cycle in air was primarily attributed to the partial oxidation of modified C/C samples.

  16. Status and prospects for SiC-SiC composite materials development for fusion applications

    International Nuclear Information System (INIS)

    Sharafat, S.; Jones, R.H.; Kohyama, A.; Fenici, P.

    1995-01-01

    Silicon carbide (SiC) composites are very attractive for fusion applications because of their low afterheat and low activation characteristics coupled with excellent high temperature properties. These composites are relatively new materials that will require material development as well as evaluation of hermiticity, thermal conductivity, radiation stability, high temperature strength, fatigue, thermal shock, and joining techniques. The radiation stability of SiC-SiC composites is a critical aspect of their application as fusion components and recent results will be reported. Many of the non-fusion specific issues are under evaluation by other ceramic composite development programs, such as the US national continuous fiber ceramic composites.The current development status of various SiC-SiC composites research and development efforts is given. Effect of neutron irradiation on the properties of SiC-SiC composite between 500 and 1200 C are reported. Novel high temperature properties specific to ceramic matrix composite (CMC) materials are discussed. The chemical stability of SiC is reviewed briefly. Ongoing research and development efforts for joining CMC materials including SiC-SiC composites are described. In conclusion, ongoing research and development efforts show extremely promising properties and behavior for SiC-SiC composites for fusion applications. (orig.)

  17. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  18. Conversion of wood flour/SiO2/phenolic composite to porous SiC ceramic containing SiC whiskers

    Directory of Open Access Journals (Sweden)

    Li Zhong

    2013-01-01

    Full Text Available A novel wood flour/SiO2/phenolic composite was chosen to be converted into porous SiC ceramic containing SiC whiskers via carbothermal reduction. At 1550°C the composite is converted into porous SiC ceramic with pore diameters of 10~40μm, and consisting of β-SiC located at the position of former wood cell walls. β-SiC wire-like whiskers of less than 50 nm in diameter and several tens to over 100 μm in length form within the pores. The surface of the resulting ceramic is coated with β-SiC necklace-like whiskers with diameters of 1~2μm.

  19. Radiation effects and micromechanics of SiC/SiC composites

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1992-01-01

    The basic displacement damage process in SiC has been fully explored, and the mechanisms identified. Major modifications have been made to the theory of damage dosimetry in Fusion, Fission and Ion Simulation studies of Sic. For the first time, calculations of displacements per atoms in SiC can be made in any irradiation environment. Applications to irradiations in fusion first wall neutron spectra (ARIES and PROMETHEUS) as well as in fission spectra (HIFIR and FFTF) are given. Nucleation of helium-filled cavities in SiC was studied, using concepts of stability theory to determine the size of the critical nucleus under continuous generation of helium and displacement damage. It is predicted that a bimodal distribution of cavity sizes is likely to occur in heavily irradiated SiC. A study of the chemical compatibility of SiC composite structures with fusion reactor coolants at high-temperatures was undertaken. It was shown that SiC itself is chemically very stable in helium coolants in the temperature range 500--1000 degree C. However, current fiber/matrix interfaces, such as C and BN are not. The fracture mechanics of high-temperature matrix cracks with bridging fibers is now in progress. A fundamentally unique approach to study the propagation and interaction of cracks in a composite was initiated. The main focus of our research during the following period will be : (1) Theory and experiments for the micro-mechanics of high-temperature failure; and (2) Analysis of radiation damage and microstructure evolution

  20. Oxide Structure Dependence of SiO2/SiOx/3C-SiC/n-Type Si Nonvolatile Resistive Memory on Memory Operation Characteristics

    Science.gov (United States)

    Yamaguchi, Yuichiro; Shouji, Masatsugu; Suda, Yoshiyuki

    2012-11-01

    We have investigated the dependence of the oxide layer structure of our previously proposed metal/SiO2/SiOx/3C-SiC/n-Si/metal metal-insulator-semiconductor (MIS) resistive memory device on the memory operation characteristics. The current-voltage (I-V) measurement and X-ray photoemission spectroscopy results suggest that SiOx defect states mainly caused by the oxidation of 3C-SiC at temperatures below 1000 °C are related to the hysteresis memory behavior in the I-V curve. By restricting the SiOx interface region, the number of switching cycles and the on/off current ratio are more enhanced. Compared with a memory device formed by one-step or two-step oxidation of 3C-SiC, a memory device formed by one-step oxidation of Si/3C-SiC exhibits a more restrictive SiOx interface with a more definitive SiO2 layer and higher memory performances for both the endurance switching cycle and on/off current ratio.

  1. Thermophysical and mechanical properties of SiC/SiC composites

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.

    1998-01-01

    The key thermophysical and mechanical properties for SiC/SiC composites are summarized, including temperature-dependent tensile properties, elastic constants, thermal conductivity, thermal expansion, and specific heat. The effects of neutron irradiation on the thermal conductivity and dimensional stability (volumetric swelling, creep) of SiC is discussed. The estimated lower and upper temperatures limits for structural applications in high power density fusion applications are 400 and 1000 C due to thermal conductivity degradation and void swelling considerations, respectively. Further data are needed to more accurately determine these estimated temperature limits

  2. Fabrication and Mechanical Properties of SiCw(p/SiC-Si Composites by Liquid Si Infiltration using Pyrolysed Rice Husks and SiC Powders as Precursors

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2014-03-01

    Full Text Available Dense silicon carbide (SiC matrix composites with SiC whiskers and particles as reinforcement were prepared by infiltrating molten Si at 1550 °C into porous preforms composed of pyrolysed rice husks (RHs and extra added SiC powder in different ratios. The Vickers hardness of the composites showed an increase from 18.6 to 21.3 GPa when the amount of SiC added in the preforms was 20% (w/w, and then decreased to 17.3 GPa with the increase of SiC added in the preforms up to 80% (w/w. The values of flexural strength of the composites initially decreased when 20% (w/w SiC was added in the preform and then increased to 587 MPa when the SiC concentration reached 80% (w/w. The refinement of SiC particle sizes and the improvement of the microstructure in particle distribution of the composites due to the addition of external SiC played an effective role in improving the mechanical properties of the composites.

  3. Formation of permeation barriers on ceramic SiC/SiC composites

    International Nuclear Information System (INIS)

    Racault, C.; Fenici, P.

    1996-01-01

    The effectiveness as permeation barriers of the following CVD and PVD (sputtering) coatings has been investigated: TiC+Al 2 O 3 (CVD), SiC(CVD), SiO 2 (CVD), TiN(CVD), TiN(CVD)+TiN(PVD) and SiC(CVD)+Al 2 O 3 (PVD). The substrate material was a SiC/SiC composite, proposed as low activation structural material for fusion applications. Permeation measurements were performed in the temperature range 300-750 K using deuterium at pressures in the range 0.5-150 kPa. A linear dependence of permeation rate on pressure was measured. The efficiency of the coatings as deuterium permeation barriers is discussed in terms of coating microstructure. The best result was obtained with a bilayer of TiN(CVD) (15 μm) +TiN(PVD) (8 μm). (orig.)

  4. Modulating the Surface State of SiC to Control Carrier Transport in Graphene/SiC.

    Science.gov (United States)

    Jia, Yuping; Sun, Xiaojuan; Shi, Zhiming; Jiang, Ke; Liu, Henan; Ben, Jianwei; Li, Dabing

    2018-05-28

    Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000-1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000-1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  6. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, H.; Curtin, W.A. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  7. Tailoring of SiC nanoprecipitates formed in Si

    Energy Technology Data Exchange (ETDEWEB)

    Velisa, G., E-mail: gihan.velisa@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele (Romania); Trocellier, P. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Thomé, L. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR8609, Bât. 108, 91405 Orsay (France); Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Miro, S.; Serruys, Y.; Bordas, É. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Meslin, E. [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Mylonas, S. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR8609, Bât. 108, 91405 Orsay (France); Coulon, P.E. [Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA/DSM/IRAMIS-CNRS, 91128 Palaiseau Cedex (France); Leprêtre, F.; Pilz, A.; Beck, L. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2013-07-15

    The SiC synthesis through single-beam of C{sup +}, and simultaneous-dual-beam of C{sup +} and Si{sup +} ion implantations into a Si substrate heated at 550 °C has been studied by means of three complementary analytical techniques: nuclear reaction analysis (NRA), Raman, and transmission electron microscopy (TEM). It is shown that a broad distribution of SiC nanoprecipitates is directly formed after simultaneous-dual-beam (520-keV C{sup +} and 890-keV Si{sup +}) and single-beam (520-keV C{sup +}) ion implantations. Their shape appear as spherical (average size ∼4–5 nm) and they are in epitaxial relationship with the silicon matrix.

  8. Specimen size effect considerations for irradiation studies of SiC/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    For characterization of the irradiation performance of SiC/SiC, limited available irradiation volume generally dictates that tests be conducted on a small number of relatively small specimens. Flexure testing of two groups of bars with different sizes cut from the same SiC/SiC plate suggested the following lower limits for flexure specimen number and size: Six samples at a minimum for each condition and a minimum bar size of 30 x 6.0 x 2.0 mm{sup 3}.

  9. Evolution of 3C-SiC islands nucleated from a liquid phase on Si face α-SiC substrates

    International Nuclear Information System (INIS)

    Kim-Hak, Olivier; Ferro, Gabriel; Lorenzzi, Jean; Carole, Davy; Dazord, Jacques; Chaudouet, Patrick; Chaussende, Didier; Miele, Philippe

    2010-01-01

    The contact between α-SiC crystals and Si-Ge based melts provokes the nucleation of 3C-SiC islands on the crystal surface. Evolution of these islands as a function of various parameters was studied. On both 4H and 6H substrates, it was found that, after nucleation, 3C-SiC islands first enlarge and may form a complete 3C layer under certain conditions. The 3C deposit can then be dissolved by the liquid phase at high temperature or for prolonged contact at relatively moderate temperature. The graphite crucible is proposed to play a central role in these enlargement and dissolution mechanisms by providing extra carbon atoms on the seed surface (enlargement) or provoking thermal induced carbon transport toward the sidewall (dissolution). Several differences between the use of 4H and 6H substrates were also observed.

  10. Palladium transport in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2012-01-01

    Highlights: ► We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. ► The high temperature mobility of palladium silicides within polycrystalline SiC was studied. ► Corrosion of SiC by Pd was seen in all cases. ► The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. ► The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd 2 Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  11. Phenomenological inelastic constitutive equations for SiC and SiC fibers under irradiation

    International Nuclear Information System (INIS)

    El-Azab, A.; Ghoniem, N.M.

    1994-01-01

    Experimental data on irradiation-induced dimensional changes and creep in β-SiC and SiC fibers is analyzed, with the objective of studying the constitutive behavior of these materials under high-temperature irradiation. The data analysis includes empirical representation of irradiation-induced dimensional changes in SiC matrix and SiC fibers as function of time and irradiation temperature. The analysis also includes formulation of simple scaling laws to extrapolate the existing data to fusion conditions on the basis of the physical mechanisms of radiation effects on crystalline solids. Inelastic constitutive equations are then developed for SCS-6 SiC fibers, Nicalon fibers and CVD SiC. The effects of applied stress, temperature, and irradiation fields on the deformation behavior of this class of materials are simultaneously represented. Numerical results are presented for the relevant creep functions under the conditions of the fusion reactor (ARIES IV) first wall. The developed equations can be used in estimating the macro mechanical properties of SiC-SiC composite systems as well as in performing time-dependent micro mechanical analysis that is relevant to slow crack growth and fiber pull-out under fusion conditions

  12. Thermal shock properties of 2D-SiCf/SiC composites

    International Nuclear Information System (INIS)

    Lee, Sang Pill; Lee, Jin Kyung; Son, In Soo; Bae, Dong Su; Kohyama, Akira

    2012-01-01

    This paper dealt with the thermal shock properties of SiC f /SiC composites reinforced with two dimensional SiC fabrics. SiC f /SiC composites were fabricated by a liquid phase sintering process, using a commercial nano-size SiC powder and oxide additive materials. An Al 2 O 3 –Y 2 O 3 –SiO 2 powder mixture was used as a sintering additive for the consolidation of SiC matrix region. In this composite system, Tyranno SA SiC fabrics were also utilized as a reinforcing material. The thermal shock test for SiC f /SiC composites was carried out at the elevated temperature. Both mechanical strength and microstructure of SiC f /SiC composites were investigated by means of optical microscopy, SEM and three point bending test. SiC f /SiC composites represented a dense morphology with a porosity of about 8.2% and a flexural strength of about 160 MPs. The characterization of SiC f /SiC composites was greatly affected by the history of cyclic thermal shock. Especially, SiC f /SiC composites represented a reduction of flexural strength at the thermal shock temperature difference higher than 800 °C.

  13. Mechanical properties of MeV ion-irradiated SiC/SiC composites characterized by indentation technique

    International Nuclear Information System (INIS)

    Park, J.Y.; Park, K.H.; Kim, W.; Kishimoto, H.; Kohyama, A.

    2007-01-01

    Full text of publication follows: SiC/SiC composites have been considered as a structural material for advanced fusion concepts. In the core of fusion reactor, those SiC/SiC composites are experienced the complex attacks such as strong neutron, high temperature and transmuted gases. One of the vital data for designing the SiC/SiC composites to the fusion reactor is mechanical properties under the severe neutron irradiation. In this work, various SiC/SiC composites were prepared by the different fabrication processes like CVI (chemical vapor infiltration), WA-CVI (SiC whisker assisted CVI) and hot-pressed method. The expected neutron irradiation was simulated by a silicon self-ion irradiation at a DuET facility; Dual-beam for Energy Technologies, Kyoto University. The irradiation temperature were 600 deg. C and 1200 deg. C, and the irradiation does were 5 dpa and 20 dpa, respectively. The 5.1 MeV Si ions were irradiated to the intrinsic CVI-SiC, SiC whisker reinforced SiC and SiC composites produced by hot-press method. The mechanical properties like hardness, elastic modulus and fracture toughness were characterized by an indentation technique. The ion irradiation caused the increase of the hardness and fracture toughness, which was dependent on the irradiation temperature. SiC whisker reinforcement in the SiC matrix accelerated the increase of the fracture toughness by the ion irradiation. For SiC/SiC composites after the ion irradiation, this work will provide the additional data for the mechanical properties as well as the effect of SiC whisker reinforcement. (authors)

  14. SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-02-15

    Highlights: • The CNTs were distributed uniformly on the SiC fibers in the fabric by CVD process. • The microstructural evolution of the CNTs interface coating was studied. • The closed porosity was investigated by X-ray tomography. • The liquid precursor LPVCS exhibited high densification efficiency. - Abstract: Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied as promising candidate materials for nuclear applications. Three-dimensional SiC/SiC composite was fabricated via polymer impregnation and pyrolysis (PIP) process using carbon nanotubes (CNTs) as the interface layer and LPVCS as the polymer precursor. The microstructural evolution of the fiber/matrix interface was studied. The porosity, mechanical properties, thermal and electrical conductivities of the SiC/SiC composite were investigated. The results indicated that the high densification efficiency of the liquid precursor LPVCS resulted in a low porosity of the SiC/SiC composite. The SiC/SiC composite exhibited non-brittle fracture behavior, however, bending strength and fracture toughness of the composite were relatively low because of the absence of CNTs as the interface layer. The thermal and electrical conductivities of the SiC/SiC composite were low enough to meet the requirements desired for flow channel insert (FCI) applications.

  15. SiC-SiC and C-SiC Honeycomb for Advanced Flight Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project builds upon the work done in Phase I with the development of a C-SiC CMC honeycomb material that was successfully tested for mechanical...

  16. Analysis on the sequence of formation of Ti{sub 3}SiC{sub 2} and Ti{sub 3}SiC{sub 2}/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, R.; Bhaduri, S.B. [Idaho Univ., Moscow, ID (United States). Dept. of Mining and Metallurgy; Henager, C.H. Jr. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    Ti{sub 3}SiC{sub 2}, a compound in the ternary Ti-Si-C system, is reported to be ductile. This paper reports the sequence of formation of Ti{sub 3}SiC{sub 2} and Ti{sub 3}SiC{sub 2}/SiC composites involving either combustion synthesis or by displacement reaction, respectively. Onset of exothermic reaction temperatures were determined using Differential Thermal Analysis (DTA). Phases present after the exothermic temperatures were analyzed by X-Ray diffraction. Based on these observations, a route to formation of Ti{sub 3}SiC{sub 2} and Ti{sub 3}SiC{sub 2}/SiC composites is proposed for the two`s thesis methods.

  17. Palladium transport in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. Black-Right-Pointing-Pointer The high temperature mobility of palladium silicides within polycrystalline SiC was studied. Black-Right-Pointing-Pointer Corrosion of SiC by Pd was seen in all cases. Black-Right-Pointing-Pointer The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. Black-Right-Pointing-Pointer The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd{sub 2}Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  18. Fabrication of SiC Composites with Synergistic Toughening of Carbon Whisker and In Situ 3C-SiC Nanowire

    Directory of Open Access Journals (Sweden)

    Zhang Yunlong

    2016-01-01

    Full Text Available The SiC composites with synergistic toughening of carbon whisker and in situ 3C-SiC nanowire have been fabricated by hot press sinter technology and annealed treatment technology. Effect of annealed time on the morphology of SiC nanowires and mechanical properties of the Cw/SiC composites was surveyed in detail. The appropriate annealed time improved mechanical properties of the Cw/SiC composites. The synergistic effect of carbon whisker and SiC nanowire can improve the fracture toughness for Cw/SiC composites. The vapor-liquid-solid growth (VLS mechanism was proposed. TEM photo showed that 3C-SiC nanowire can be obtained with preferential growth plane ({111}, which corresponded to interplanar spacing about 0.25 nm.

  19. Investigation on fabrication of SiC/SiC composite as a candidate material for fuel sub-assembly

    International Nuclear Information System (INIS)

    Lee, Jae-Kwang; Naganuma, Masayuki; Park, Joon-Soo; Kohyama, Akira

    2005-01-01

    The possibility of SiC/SiC (Silicon carbide fiber reinforced Silicon carbide) composites application for fuel sub-assembly of Fast Breeder Reactor was investigated. To select a raw material of SiC/SiC composites, a few kinds of SiC nano powder was estimated by SEM observation and XRD analysis. Furthermore, SiC monolithic was sintered from them and estimated by flexural test. SiC nano-powder which showed good sinterability, it was used for fabrication of SiC/SiC composites by Hot Pressing method. From the sintering condition of 1800, 1820degC temperature and 15, 20 MPa pressure, SiC/SiC composite was fabricated and then estimated by tensile test. SiC/SiC composite, which made by 1820degC and 20 MPa condition, showed the highest mechanical strength by the monotonic tensile test. SiC/SiC composite, which made by 1800degC and 15 MPa condition, showed a stable fracture behavior at the monotonic and cyclic tensile test. And then, the hoop stress of ideal model of SiC/SiC composites was discussed. It was confirmed that applicability of SiC/SiC composites by Hot Pressing method for fuel sub-assembly structural material. To make it real attractive one, to maintain the reliability and safety as a high temperature structural material, the design and process study on SiC/Sic composites material will be continued. (author)

  20. Defect-induced polytype transformations in LPE grown SiC epilayers on (1 1 1) 3C-SiC seeds grown by VLS on 6H-SiC

    International Nuclear Information System (INIS)

    Marinova, Maya; Zoulis, Georgios; Robert, Teddy; Mercier, Frederic; Mantzari, Alkioni; Galben, Irina; Kim-Hak, Olivier; Lorenzzi, Jean; Juillaguet, Sandrine; Chaussende, Didier; Ferro, Gabriel; Camassel, Jean; Polychroniadis, Efstathios K.

    2009-01-01

    The results of transmission electron microscopy (TEM) with low-temperature photoluminescence (LTPL) and Raman studies of liquid phase grown epilayers on top of a vapor liquid solid (VLS) grown 3C-SiC buffer layer are compared. While the 6H-SiC substrate was completely covered by the 3C-SiC seed after the first VLS process, degradation occurred during the early stage of the liquid phase epitaxy process. This resulted in polytype instabilities, such that several rhombohedral forms stabilized one after the other. These (21R-SiC, 57R-SiC) eventually led after few microns to a final transition back to 6H-SiC. This interplay of polytypes resulted in a complex optical signature, with specific LTPL and Raman features.

  1. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports. Keywords. Biomimetic synthesis; carbonaceous biopreform; biomorphic Si–SiC ceramic composites; porous cellular SiC ceramics. 1. Introduction. In recent years, there has been tremendous ...

  2. Minimum bar size for flexure testing of irradiated SiC/SiC composite

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Jones, R.H.

    1998-01-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23-24, 1997. The minimum bar size for 4-point flexure testing of SiC/SiC composite recommended by PNNL for irradiation effects studies is 30 x 6 x 2 mm 3 with a span-to-depth ratio of 10/1

  3. The MONOS memory transistor: application in a radiation-hard nonvolatile RAM

    International Nuclear Information System (INIS)

    Brown, W.D.

    1985-01-01

    The MONOS (metal-oxide-nitride-oxide-silicon) device is a prime candidate for use as the nonvolatile memory element in a radiation-hardened RAM (random-access memory). The endurance, retention and radiation properties of MONOS memory transistors have been studied as a function of post nitride deposition annealing. Following the nitride layer deposition, all devices were subjected to an 800 0 C oxidation step and some were then annealed at 900 0 C in nitrogen. The nitrogen anneal produces an increase in memory window size of approximately 40%. The memory window center of the annealed devices is shifted toward more positive voltages and is more stable with endurance cycling. Endurance cycling to 10 9 cycles produces a 20% increase in memory window size and a 60% increase in decay rate. For a radiation total dose of 10 6 rads (Si), the memory window size is essentially unchanged and the decay rate increases approximately 13%. A combination of 10 9 cycles and 10 6 rads (Si) reduces the decades of retention (in sec) from 6.3 to 4.3 for a +- 23-V 16-μsec write/erase pulse. (author)

  4. Stability analysis of SiO2/SiC multilayer coatings

    International Nuclear Information System (INIS)

    Fu Zhiqiang; Jean-Charles, R.

    2006-01-01

    The stability behaviours of SiC coatings and SiO 2 /SiC coatings in helium with little impurities are studied by HSC Chemistry 4.1, the software for analysis of Chemical reaction and equilibrium in multi-component complex system. It is found that in helium with a low partial pressure of oxidative impurities under different total pressure, the key influence factor controlling T cp of SiC depends is the partial pressure of oxidative impurities; T cp of SiC increases with the partial pressure of oxidative impurities. In helium with a low partial pressure of different impurities, the key influence factor of T cs of SiO 2 are both the partial pressure of impurities and the amount of impurities for l mol SiO 2 ; T cs of SiO 2 increases with the partial pressure of oxidative impurities at the same amount of the impurities for 1 mol SiO 2 while it decreases with the amount of the impurities for 1 mm SiO 2 at the same partial pressure of the impurities. The influence of other impurities on T cp of SiC in He-O 2 is studied and it is found that CO 2 , H 2 O and N-2 increase T cp of SiC in He-O 2 while H 2 , CO and CH 4 decrease T cp of SiC He-O 2 . When there exist both oxidative impurities and reductive impurities, their effect on T cs of SiO 2 can be suppressed by the other. In HTR-10 operation atmosphere, SiO 2 /SiC coatings can keep stable status at higher temperature than SiC coatings, so SiO 2 /SiC coatings is more suitable to improve the oxidation resistance of graphite in HTR-10 operation atmosphere compared with SiC coatings. (authors)

  5. Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111/Si(111

    Directory of Open Access Journals (Sweden)

    Abe Shunsuke

    2010-01-01

    Full Text Available Abstract Surface chemistry involved in the epitaxy of graphene by sublimating Si atoms from the surface of epitaxial 3C-SiC(111 thin films on Si(111 has been studied. The change in the surface composition during graphene epitaxy is monitored by in situ temperature-programmed desorption spectroscopy using deuterium as a probe (D2-TPD and complementarily by ex situ Raman and C1s core-level spectroscopies. The surface of the 3C-SiC(111/Si(111 is Si-terminated before the graphitization, and it becomes C-terminated via the formation of C-rich (6√3 × 6√3R30° reconstruction as the graphitization proceeds, in a similar manner as the epitaxy of graphene on Si-terminated 6H-SiC(0001 proceeds.

  6. Effect of heat treatment on microstructure and mechanical properties of PIP-SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-01-01

    Continuous SiC fibre reinforced SiC matrix composites (SiC/SiC) have been studied as materials for heat resistant and nuclear applications. Thermal stability is one of the key issues for SiC/SiC composites. In this study, 3D SiC/SiC composites are fabricated via the polymer impregnation and pyrolysis (PIP) process, and then heat treated at 1400 Degree-Sign C, 1600 Degree-Sign C and 1800 Degree-Sign C in an inert atmosphere for 1 h, respectively. The effect of heat treatment on microstructure and mechanical properties of the composites is investigated. The results indicate that the mechanical properties of the SiC/SiC composites are significantly improved after heat treatment at 1400 Degree-Sign C mainly because the mechanical properties of the matrix are greatly improved due to crystallisation. With the increasing of heat treatment temperature, the properties of the composites are conversely decreased because of severe damage of the fibres and the matrix.

  7. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers

    International Nuclear Information System (INIS)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-01-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [es

  8. On the interplay between Si(110) epilayer atomic roughness and subsequent 3C-SiC growth direction

    Science.gov (United States)

    Khazaka, Rami; Michaud, Jean-François; Vennéguès, Philippe; Nguyen, Luan; Alquier, Daniel; Portail, Marc

    2016-11-01

    In this contribution, we performed the growth of a 3C-SiC/Si/3C-SiC layer stack on a Si(001) substrate by means of chemical vapor deposition. We show that, by tuning the growth conditions, the 3C-SiC epilayer can be grown along either the [111] direction or the [110] direction. The key parameter for the growth of the desired 3C-SiC orientation on the Si(110)/3C-SiC(001)/Si(001) heterostructure is highlighted and is linked to the Si epilayer surface morphology. The epitaxial relation between the layers has been identified using X-ray diffraction and transmission electron microscopy (TEM). We showed that, regardless of the top 3C-SiC epilayer orientation, domains rotated by 90° around the growth direction are present in the epilayer. Furthermore, the difference between the two 3C-SiC orientations was investigated by means of high magnification TEM. The results indicate that the faceted Si(110) epilayer surface morphology results in a (110)-oriented 3C-SiC epilayer, whereas a flat hetero-interface has been observed between 3C-SiC(111) and Si(110). The control of the top 3C-SiC growth direction can be advantageous for the development of new micro-electro-mechanical systems.

  9. C/SiC/MoSi2-Si multilayer coatings for carbon/carbon composites for protection against oxidation

    International Nuclear Information System (INIS)

    Zhang Yulei; Li Hejun; Qiang Xinfa; Li Kezhi; Zhang Shouyang

    2011-01-01

    Highlights: → A C/SiC/MoSi 2 -Si multilayer coating was prepared on C/C by slurry and pack cementation. → Multilayer coating can protect C/C for 300 h at 1873 K or 103 h at 1873 K in air. → The penetration cracks in the coating result in the weight loss of the coated C/C. → The fracture of the coated C/C in wind tunnel result from the excessive local stress. - Abstract: To improve the oxidation resistance of carbon/carbon (C/C) composites, a C/SiC/MoSi 2 -Si multilayer oxidation protective coating was prepared by slurry and pack cementation. The microstructure of the as-prepared coating was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The isothermal oxidation and erosion resistance of the coating was investigated in electrical furnace and high temperature wind tunnel. The results showed that the multilayer coating could effectively protect C/C composites from oxidation in air for 300 h at 1773 K and 103 h at 1873 K, and the coated samples was fractured after erosion for 27 h at 1873 K h in wind tunnel. The weight loss of the coated specimens was considered to be caused by the formation of penetration cracks in the coating. The fracture of the coated C/C composites might result from the excessive local stress in the coating.

  10. Diodes of nanocrystalline SiC on n-/n+-type epitaxial crystalline 6H-SiC

    Science.gov (United States)

    Zheng, Junding; Wei, Wensheng; Zhang, Chunxi; He, Mingchang; Li, Chang

    2018-03-01

    The diodes of nanocrystalline SiC on epitaxial crystalline (n-/n+)6H-SiC wafers were investigated, where the (n+)6H-SiC layer was treated as cathode. For the first unit, a heavily boron doped SiC film as anode was directly deposited by plasma enhanced chemical vapor deposition method on the wafer. As to the second one, an intrinsic SiC film was fabricated to insert between the wafer and the SiC anode. The third one included the SiC anode, an intrinsic SiC layer and a lightly phosphorus doped SiC film besides the wafer. Nanocrystallization in the yielded films was illustrated by means of X-ray diffraction, transmission electronic microscope and Raman spectrum respectively. Current vs. voltage traces of the obtained devices were checked to show as rectifying behaviors of semiconductor diodes, the conduction mechanisms were studied. Reverse recovery current waveforms were detected to analyze the recovery performance. The nanocrystalline SiC films in base region of the fabricated diodes are demonstrated as local regions for lifetime control of minority carriers to improve the reverse recovery properties.

  11. Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures

    International Nuclear Information System (INIS)

    Xu, Jie; Xu, Jun; Wang, Yuefei; Cao, Yunqing; Li, Wei; Yu, Linwei; Chen, Kunji

    2014-01-01

    Microscopic charge injection into the SiC/Si nanocrystals/SiC sandwiched structures through a biased conductive AFM tip is subsequently characterized by both electrostatic force microscopy and Kelvin probe force microscopy (KPFM). The charge injection and retention characteristics are found to be affected by not only the band offset at the Si nanocrystals/SiC interface but also the doping type of the Si substrate. On the other hand, capacitance–voltage (C–V) measurements investigate the macroscopic charging effect of the sandwiched structures with a thicker SiC capping layer, where the charges are injected from the Si substrates. The calculated macroscopic charging density is 3–4 times that of the microscopic one, and the possible reason is the underestimation of the microscopic charging density caused by the averaging effect and detection delay in the KPFM measurements. (paper)

  12. The corrosion behavior of CVI SiC matrix in SiC{sub f}/SiC composites under molten fluoride salt environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongda [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); School of Graduate, University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Qian [Analysis and Testing Center, Donghua University, Shanghai 201600 (China); Wang, Zhen, E-mail: jeff@mail.sic.ac.cn [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhou, Haijun; Kan, Yanmei; Hu, Jianbao [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Dong, Shaoming, E-mail: smdong@mail.sic.ac.cn [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2017-04-15

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  13. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers; Las tensiones residuales y las propiedades mecánicas de compuestos multicapa de Si3N4/SiC con diferentes capas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-11-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [Spanish] Se ha investigado el efecto de las tensiones residuales en la resistencia, dureza y trabajo de fractura de los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC. Puede ser una manera eficaz de diseñar y optimizar las propiedades mecánicas de los compuestos multicapa de Si3N4/SiC mediante el control de las propiedades de las capas de SiC. Los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC se fabricaron por medio de colado en cinta en medio acuoso y sinterización sin presión. Las tensiones residuales se calcularon mediante el uso de la simulación ANSYS, los valores máximos de las fuerzas de tracción y compresión fueron 553,2 MPa y −552,1 MPa, respectivamente. Se observó una fractura escalonada a partir de las superficies de fractura. La fracción de capas de deslaminación aumenta con la tensión residual, lo que puede mejorar la fiabilidad de los materiales. La fuerza de tracción residual era beneficiosa para la mejora de la dureza y el trabajo de fractura, pero la resistencia de los compuestos disminuyó.

  14. Effects of SiC amount on phase compositions and properties of Ti3SiC2-based composites

    Institute of Scientific and Technical Information of China (English)

    蔡艳芝; 殷小玮; 尹洪峰

    2015-01-01

    The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%−30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/TiC−SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15%than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/TiC−SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78μm, was near a half of that of T, 2715μm, at 1500 °C for 20 h. Ti3SiC2/TiC composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC−SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20%SiC added amount.

  15. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  16. Effects of dual-ion irradiation on the swelling of SiC/SiC composites

    International Nuclear Information System (INIS)

    Kishimoto, Hirotatsu; Kohyama, Akira; Ozawa, Kazumi; Kondo, Sosuke

    2005-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibers is a candidate structural material of fusion gas-cooled blanket system. From the viewpoint of material designs, it is important to investigate the swelling by irradiation, which results from the accumulation of displacement damages. In the fusion environment, (n, α) nuclear reactions are considered to produce helium gas in SiC. For the microstructural evolution, a dual-ion irradiation method is able to simulate the effects of helium. In the present research, 1.7 MeV tandem and 1 MeV single-end accelerators were used for Si self-ion irradiation and helium implantation, respectively. The average helium over displacement per atom (dpa) ratio in SiC was adjusted to 60 appm/dpa. The irradiation temperature ranged from room temperature to 1400degC. The irradiation-induced swelling was measured by the step height method. Helium that was implanted simultaneously with displacement damages in dual-ion irradiated SiC increased the swelling that was larger than that by single-ion irradiated SiC below 800degC. Since this increase was not observed above 1000degC, the interaction of helium and displacement damages was considered to change above 800degC. In this paper, the microstructural behavior and dimensional stability of SiC materials under the fusion relevant environment are discussed. (author)

  17. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  18. Process-property relationships of SiC chemical vapor deposition in the Si/H/C/O system

    International Nuclear Information System (INIS)

    Richardson, C.; Takoudis, C.G.

    1999-01-01

    The thermal, chemical, and physical properties of SiC make it an attractive material for a wide range of applications from wear resistant coatings on tools to high temperature microelectronics operations. A comprehensive thermodynamic analysis has been performed for the Si/H/C/O system from which a priori process-property relationships of the chemical vapor deposition (CVD) of silicon carbide (SiC) are obtained. The parameter space for pure silicon carbide growth is reported for five orders of magnitude of the system water vapor level (1 ppb--100 ppm), four orders of magnitude of system pressure (0.1--760 Torr), and two orders of magnitude of C/Si feed ratio (0.25--20) and H 2 /Si feed ratio (50--10,000). Lower growth temperatures for pure SiC are predicted in clean systems with low system water vapor levels, at stoichiometric to near carbon excess conditions (C/Si ≅ 1 to C/Si > 1), at high carrier gas flow rates (large H 2 /Si feed ratios), and at low operating pressures. Because relative C/Si and H 2 /Si feed ratios have been considered, the predictions in this study are applicable to both multiple and single precursor systems. Further, these results are valid for the CVD of α-SiC as well as β-SiC. Experimental data reported on the growth of α-SiC and β-SiC are found to be in satisfactory agreement with the theoretical predictions, for numerous systems that include multiple and single source, silicon and carbon, species

  19. Fiber/matrix interfacial thermal conductance effect on the thermal conductivity of SiC/SiC composites

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Henager, Charles H.

    2013-01-01

    SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby–Mori–Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al. [J. Nucl. Mater. 307–311 (2002) 1120–1125, Fusion Sci. Technol. 45 (2004) 583–591, Compos. Sci. Technol. 62 (2002) 1127–1139.

  20. PIE of nuclear grade SiC/SiC flexural coupons irradiated to 10 dpa at LWR temperature

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Silicon carbide fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230–340°C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials are chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC)-coated Hi-NicalonTM Type-S (HNS), TyrannoTM SA3 (SA3), and SCS-UltraTM (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexural behavior, dynamic Young’s modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young’s moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.

  1. Thermally induced formation of SiC nanoparticles from Si/C/Si multilayers deposited by ultra-high-vacuum ion beam sputtering

    International Nuclear Information System (INIS)

    Chung, C-K; Wu, B-H

    2006-01-01

    A novel approach for the formation of SiC nanoparticles (np-SiC) is reported. Deposition of Si/C/Si multilayers on Si(100) wafers by ultra-high-vacuum ion beam sputtering was followed by thermal annealing in vacuum for conversion into SiC nanoparticles. The annealing temperature significantly affected the size, density, and distribution of np-SiC. No nanoparticles were formed for multilayers annealed at 500 0 C, while a few particles started to appear when the annealing temperature was increased to 700 0 C. At an annealing temperature of 900 0 C, many small SiC nanoparticles, of several tens of nanometres, surrounding larger submicron ones appeared with a particle density approximately 16 times higher than that observed at 700 0 C. The higher the annealing temperature was, the larger the nanoparticle size, and the higher the density. The higher superheating at 900 0 C increased the amount of stable nuclei, and resulted in a higher particle density compared to that at 700 0 C. These particles grew larger at 900 0 C to reduce the total surface energy of smaller particles due to the higher atomic mobility and growth rate. The increased free energy of stacking defects during particle growth will limit the size of large particles, leaving many smaller particles surrounding the large ones. A mechanism for the np-SiC formation is proposed in this paper

  2. Impurities and evaluation of induced activity of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Noda, Tetsuji; Araki, Hiroshi; Ito, Shinji; Fujita, Mitsutane; Maki, Koichi

    1997-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about 5 orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC fibers is necessary to reduce the activity by 10 9 after several ten years cooling of fusion reactors. (author)

  3. New evaluation method of crack growth in SiC/SiC composites using interface elements

    International Nuclear Information System (INIS)

    Serizawa, H.; Ando, M.; Lewinsohn, C.A.; Murakawa, H.

    2000-01-01

    Crack propagation behavior in SiC/SiC composites was analyzed using a new computer simulation method that included time-dependent interface elements. The simulation method was used to describe the time-dependent crack growth in SiC/SiC composites under four-point bending of single-edge-notched beam bend-bars. Two methods were used to simulate time-dependent crack growth in SiC/SiC composites due to fiber creep. In one method, the creep property was introduced into the interface elements by the general method of finite element method (FEM) analysis. In the second method, a new technique making the best use of the potential function was used to represent crack closure tractions due to creeping fibers. The stage-II slow crack growth of a general creep deformation was simulated by both methods. Additionally, stage-III crack growth and the transition from stage-II to stage-III could be simulated by the new method. The new method has the potential to completely simulate time-dependent crack growth behavior in SiC/SiC composites due to fiber creep

  4. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, J.; Gonzalo, O.; Sanda, A.

    2014-04-01

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 {mu}m. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  5. Synthesis and characterization of laminated Si/SiC composites

    Science.gov (United States)

    Naga, Salma M.; Kenawy, Sayed H.; Awaad, Mohamed; Abd El-Wahab, Hamada S.; Greil, Peter; Abadir, Magdi F.

    2012-01-01

    Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results. PMID:25685404

  6. Synthesis and characterization of laminated Si/SiC composites

    Directory of Open Access Journals (Sweden)

    Salma M. Naga

    2013-01-01

    Full Text Available Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results.

  7. SiC/SiC composites by preceramic polymer infiltration and pyrolysis

    International Nuclear Information System (INIS)

    Schiroky, G.H.

    1997-01-01

    Lanxide Corporation has been developing fiber-reinforced silicon carbide matrix composites using the technique of preceramic polymer infiltration and pyrolysis, commonly referred to as the PIP-process. In this method, liquid CERASET TM preceramic polymer is being infiltrated into lay-ups of ceramic fibers, thermoset, and pyrolized at elevated temperatures for conversion into a SiC matrix. Several cycles of reinfiltration and pyrolysis must be performed to build up the SiC matrix because of the increase in density during pyrolysis from 1.0 g/cm 3 for the liquid polymer to between 2.2 and 3.2 g/cm 3 for the ceramic matrix. Composites have been fabricated using three different approaches: first, polymer infiltration of free-standing fiber preforms in which the fiber plies are being held together with a C/SiC duplex coating applied by chemical vapor infiltration; second, infiltration of individually coated fiber plies contained in a mold using the resin transfer molding method; and third, infiltration of vacuum-bagged, individually coated fiber plies using the vacuum assisted resin infiltration technique. Very good mechanical properties of Nicalon TM /SiC and Hi-Nicalon TM /SiC composites have been obtained, with four-point flexural strengths exceeding 400 MPa and toughnesses in the 20 to 30 MPa·m 1/2 range. The thermal conductivity of the fabricated composites is low (below 5 W/m·K) and must be improved substantially to meet the requirements for fusion structural applications. The fabricated components are relatively dense and impermeable to nitrogen, however, are readily permeated by helium. Chemical analysis has indicated the presence of a small amount of nitrogen (ca. 1 wt%) in the SiC material after pyrolysis of the CERASET preceramic polymer at 1600degC. (author)

  8. SiC/SiC composites by preceramic polymer infiltration and pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Schiroky, G.H. [Lanxide Corporation, Newark, DE (United States)

    1997-12-31

    Lanxide Corporation has been developing fiber-reinforced silicon carbide matrix composites using the technique of preceramic polymer infiltration and pyrolysis, commonly referred to as the PIP-process. In this method, liquid CERASET{sup TM} preceramic polymer is being infiltrated into lay-ups of ceramic fibers, thermoset, and pyrolized at elevated temperatures for conversion into a SiC matrix. Several cycles of reinfiltration and pyrolysis must be performed to build up the SiC matrix because of the increase in density during pyrolysis from 1.0 g/cm{sup 3} for the liquid polymer to between 2.2 and 3.2 g/cm{sup 3} for the ceramic matrix. Composites have been fabricated using three different approaches: first, polymer infiltration of free-standing fiber preforms in which the fiber plies are being held together with a C/SiC duplex coating applied by chemical vapor infiltration; second, infiltration of individually coated fiber plies contained in a mold using the resin transfer molding method; and third, infiltration of vacuum-bagged, individually coated fiber plies using the vacuum assisted resin infiltration technique. Very good mechanical properties of Nicalon{sup TM}/SiC and Hi-Nicalon{sup TM}/SiC composites have been obtained, with four-point flexural strengths exceeding 400 MPa and toughnesses in the 20 to 30 MPa{center_dot}m{sup 1/2} range. The thermal conductivity of the fabricated composites is low (below 5 W/m{center_dot}K) and must be improved substantially to meet the requirements for fusion structural applications. The fabricated components are relatively dense and impermeable to nitrogen, however, are readily permeated by helium. Chemical analysis has indicated the presence of a small amount of nitrogen (ca. 1 wt%) in the SiC material after pyrolysis of the CERASET preceramic polymer at 1600degC. (author)

  9. Technique development for modulus, microcracking, hermeticity, and coating evaluation capability characterization of SiC/SiC tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ang, Caen K. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Driven by the need to enlarge the safety margins of nuclear fission reactors in accident scenarios, research and development of accident-tolerant fuel has become an important topic in the nuclear engineering and materials community. A continuous-fiber SiC/SiC composite is under consideration as a replacement for traditional zirconium alloy cladding owing to its high-temperature stability, chemical inertness, and exceptional irradiation resistance. An important task is the development of characterization techniques for SiC/SiC cladding, since traditional work using rectangular bars or disks cannot directly provide useful information on the properties of SiC/SiC composite tubes for fuel cladding applications. At Oak Ridge National Laboratory, experimental capabilities are under development to characterize the modulus, microcracking, and hermeticity of as-fabricated, as-irradiated SiC/SiC composite tubes. Resonant ultrasound spectroscopy has been validated as a promising technique to evaluate the elastic properties of SiC/SiC composite tubes and microcracking within the material. A similar technique, impulse excitation, is efficient in determining the basic mechanical properties of SiC bars prepared by chemical vapor deposition; it also has potential for application in studying the mechanical properties of SiC/SiC composite tubes. Complete evaluation of the quality of the developed coatings, a major mitigation strategy against gas permeation and hydrothermal corrosion, requires the deployment of various experimental techniques, such as scratch indentation, tensile pulling-off tests, and scanning electron microscopy. In addition, a comprehensive permeation test station is being established to assess the hermeticity of SiC/SiC composite tubes and to determine the H/D/He permeability of SiC/SiC composites. This report summarizes the current status of the development of these experimental capabilities.

  10. Metallization of ion beam synthesized Si/3C-SiC/Si layer systems by high-dose implantation of transition metal ions

    International Nuclear Information System (INIS)

    Lindner, J.K.N.; Wenzel, S.; Stritzker, B.

    2001-01-01

    The formation of metal silicide layers contacting an ion beam synthesized buried 3C-SiC layer in silicon by means of high-dose titanium and molybdenum implantations is reported. Two different strategies to form such contact layers are explored. The titanium implantation aims to convert the Si top layer of an epitaxial Si/SiC/Si layer sequence into TiSi 2 , while Mo implantations were performed directly into the SiC layer after selectively etching off all capping layers. Textured and high-temperature stable C54-TiSi 2 layers with small additions of more metal-rich silicides are obtained in the case of the Ti implantations. Mo implantations result in the formation of the high-temperature phase β-MoSi 2 , which also grows textured on the substrate. The formation of cavities in the silicon substrate at the lower SiC/Si interface due to the Si consumption by the growing silicide phase is observed in both cases. It probably constitutes a problem, occurring whenever thin SiC films on silicon have to be contacted by silicide forming metals independent of the deposition technique used. It is shown that this problem can be solved with ion beam synthesized contact layers by proper adjustment of the metal ion dose

  11. Effect of La surface treatments on corrosion resistance of A3xx.x/SiC{sub p} composites in salt fog

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)]. E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Arrabal, R. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, Villanueva de la Canada, 28691 Madrid (Spain); Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)

    2006-02-15

    The influence of the SiC{sub p} proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) modified by lanthanum-based conversion or electrolysis coating was evaluated in neutral salt fog according to ASTM B 117. Lanthanum-based conversion coatings were obtained by immersion in 50 deg. C solution of La(III) salt and lanthanum electrolysis treatments were performed in ethylene glycol mono-butyl ether solution. These treatments preferentially covered cathodic areas such as intermetallic compounds, Si eutectic and SiC{sub p}. The kinetic of the corrosion process was studied on the basis of gravimetric tests. Both coating microstructure and nature of corrosion products were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDS) and low angle X-ray diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion process was more influenced by the concentration of alloy elements in the matrix than by the proportion of SiC{sub p} reinforcement. Both conversion and electrolysis surface treatments improved the behaviour to salt fog corrosion in comparison with original composites without treatment. Additionally, electrolysis provided a higher degree of protection than the conversion treatment because the coating was more extensive.

  12. Effect of TiO2 addition on reaction between SiC and Ni in SiC-Ni cermet spray coatings. Part 2. ; Development of SiC-based cermet spray coatings. SiC-Ni yosha himakuchu no SiC-Ni kaimen hanno ni oyobosu TiO2 tenka no koka. 2. ; SiC-ki sametto yosha himaku no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T [Kumano Technical College, Mie (Japan); Oki, S; Goda, S [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1992-09-30

    The depression of the reaction between SiC and Ni, by adding TiO2 powder in spraying powder which has caused uniform dispersion in spray coating and reduction of TiO2 by the reaction during spraying, was studied. The mass ratio of the mixed components has been, SiC:Ni:TiO2=3:2:1. The spray coating was examined by electron prove microanalysis as well as X-ray diffractometry, centering mainly to the SiC-metal interface reaction. The formation of Ni-Si compounds have been depressed by the addition of TiO2 to spraying powder and by using plasma gas containing H2. Reason for this has been that the TiC formed in the SiC-Ni interface has depressed the reaction at the SiC-Ni interface. Further, TiO2 is reduced during spraying, and TiC is thought to be formed by the reaction between Ti and SiC or reaction between TiO2 and SiC. 8 refs., 6 figs., 1 tab.

  13. Comparative study of SiC- and Si-based photovoltaic inverters

    Science.gov (United States)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio

    2017-01-01

    This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.

  14. Direct insight into grains formation in Si layers grown on 3C-SiC by chemical vapor deposition

    International Nuclear Information System (INIS)

    Khazaka, Rami; Portail, Marc; Vennéguès, Philippe; Alquier, Daniel; Michaud, Jean François

    2015-01-01

    Graphical abstract: In this contribution, we demonstrated the influence of the 3C-SiC layer on the subsequent growth of Si epilayers. We were able to give a direct evidence that the rotation in the Si epilayer of 90° around the growth direction occurs exactly on the termination of an antiphase boundary in the 3C-SiC layer as shown in the figure above. Thus, increasing the layer thickness of the 3C-SiC leads to a direct improvement of the crystalline quality of the subsequent Si epilayer. (a) Cross-section bright-field TEM image of the Si/3C-SiC layer stack along two 3C-SiC zone axes [1 −1 0] and [1 1 0] (equivalent to [1 −1 1] and [1 1 2] in Si, respectively), (b) dark field image selecting a (2 0 −2) electron diffraction spot indicated by the black circle in the SAED shown as inset, (c) dark field image selecting a (−1 1 −1) electron diffraction spot indicated by the black circle in the SAED shown as inset. The dotted white line in the images show the position of the defect in the 3C-SiC layer. - Abstract: This work presents a structural study of silicon (Si) thin films grown on cubic silicon carbide (3C-SiC) by chemical vapor deposition. The presence of grains rotated by 90° around the growth direction in the Si layer is directly related to the presence of antiphase domains on the 3C-SiC surface. We were able to provide a direct evidence that the 90° rotation of Si grains around the growth direction occurs exactly on the termination of antiphase boundaries (APBs) in 3C-SiC layer. Increasing the 3C-SiC thickness reduces the APBs density on 3C-SiC surface leading to a clear improvement of the uppermost Si film crystal quality. Furthermore, we observed by high resolution plan-view TEM images the presence of hexagonal Si domains limited to few nm in size. These hexagonal Si domains are inclusions in small Si grains enclosed in larger ones rotated by 90°. Finally, we propose a model of grains formation in the Si layer taking into consideration the effect

  15. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  16. Effect of irradiation on thermal expansion of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Senor, D.J.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC f /SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) β-SiC at all temperatures

  17. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W.; Lowden, R.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  18. Influência da mono-hidrogenação da fração C5 na síntese do TAME usando Amberlyst 15 como catalisador Influence of mono-hydrogenation of C5 cut on the synthesis of TAME using Amberlyst 15

    Directory of Open Access Journals (Sweden)

    Gilberto da Cunha Gonçalves

    2001-05-01

    Full Text Available No presente trabalho, foi estudada a síntese do TAME, em fase líquida, a partir de uma fração C5 e metanol, utilizando Amberlyst 15 como catalisador. A fração C5 utilizada possui uma diolefina, que tem uma alta tendência à formação de gomas e um alto teor de mono-olefinas. Deste modo, o objetivo deste trabalho foi avaliar o efeito da mono-hidrogenação da fração C5 na síntese do TAME. A hidrogenação foi feita a 80oC e 10 kgf/cm2 de H2, usando um catalisador 0,3% Pt/Al2O3. A diolefina foi totalmente hidrogenada e o teor de mono-olefinas significativamente reduzido sem um decréscimo apreciável no teor de isoamilenos reativos. A eterificação foi feita em um reator tipo batelada de 250 mL, com agitação magnética. A temperatura foi variada na faixa de 50 a 90oC, com uma pressão de 10 kgf/cm2 e razão molar isoamileno/metanol de aproximadamente um. Os produtos de reação foram analisados por cromatografia gasosa. A conversão total observada foi aproximadamente a mesma para o os cortes original e mono-hidrogenado. Entretanto, os produtos obtidos utilizando a fração C5 original apresentaram cheiro forte e coloração, mesmos para os testes a temperaturas mais baixas, que são características da formação de gomas. Por outro lado, quando a fração mono-hidrogenada foi usada na eterificação, o cheiro forte e coloração não foram observados. Portanto, a mono-hidrogenação da fração C5 contendo os isoamilenos reativos é necessária para que o TAME produzido na reação de eterificação possa ser adicionado à gasolinaTAME was synthesized in liquid phase from refinery C5 cut and methanol using Amberlyst 15 as catalyst. The C5 stream contains mainly mono-olefins and, in a less amount, a diolefin, which have a high gum formation tendency. The main purpose of this research was to evaluate the effect of mono-hydrogenation of C5 cut on TAME synthesis. The hydrogenation step was carried out at 80 oC and 10 kgf/cm2 of H2

  19. SiC/SiC composites through transient eutectic-phase route for fusion applications

    International Nuclear Information System (INIS)

    Katoh, Y.; Kohyama, A.; Nozawa, T.; Sato, M.

    2004-01-01

    Factors that may limit attractiveness of silicon-carbide-based ceramic composites to fusion applications include thermal conductivity, applicable design stress, chemical compatibility, hermeticity, radiation stability and fabrication cost. A novel SiC/SiC composite, which has recently been developed through nano-infiltration and transient eutectic-phase (NITE) processing route, surpasses conventional materials in many of these properties. In this paper, the latest development, property evaluation and prospect of the NITE SiC/SiC composites are briefly reviewed. The topics range from fundamental aspects of process development to industrial process development. Elevated temperature strength, fracture behavior, and thermo-physical properties in various environments are summarized. Future directions of materials and application technology development are also discussed

  20. Fabrication and characterization of 2.5D and 3D SiC{sub f}/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.co [Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-10-15

    Highlights: • 2.5D and 3D KD-I SiC fiber fabrics were used as the reinforcement. • Closed porosity was investigated by X-ray tomographic techniques. • The properties of the composites were improved by the CVD process. -- Abstract: SiC{sub f}/SiC composites are considered promising candidate materials for fusion applications. 2.5D and 3D KD-I SiC fiber fabrics were used as the reinforcement and SiC{sub f}/SiC composites were fabricated via polymer impregnation and pyrolysis (PIP) process and coated with chemical vapor deposited (CVD) SiC. The porosity, thermal conductivity and mechanical property of the composites were characterized. The results indicated that 2.5D and 3D SiC{sub f}/SiC composites fabricated via PIP process exhibited high porosity, and hence low thermal conductivity. After the CVD process, the density, thermal conductivity and mechanical properties of the composites were increased.

  1. Electrical properties of SiO{sub 2}/SiC interfaces on 2°-off axis 4H-SiC epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vivona, M., E-mail: marilena.vivona@imm.cnr.it [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy); Fiorenza, P. [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy); Sledziewski, T.; Krieger, M. [Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Department of Physics, Staudtstrasse 7/Bld. A3, D-91058 Erlangen (Germany); Chassagne, T.; Zielinski, M. [NOVASiC, Savoie Technolac, BP267, F-73375 Le Bourget-du-Lac Cedex (France); Roccaforte, F. [CNR-IMM, Strada VIII, n. 5 – Zona Industriale, I-95121 Catania (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Processing and electrical characterization of MOS capacitors fabricated on 4H-SiC epilayers grown on 2°-off axis heavily doped substrates. • Excellent characteristics of the SiO{sub 2}/4H-SiC interface in terms of flatness, interface state density and oxide reliability. • Electrical behavior of the MOS devices comparable with that obtained for the state-of-the-art of 4°-off axis 4H-SiC material. • Demonstration of the maturity of the 2°-off axis material for application in 4H-SiC MOSFET device technology. - Abstract: In this paper, the electrical properties of the SiO{sub 2}/SiC interface on silicon carbide (4H-SiC) epilayers grown on 2°-off axis substrates were studied. After epilayer growth, chemical mechanical polishing (CMP) allowed to obtain an atomically flat surface with a roughness of 0.14 nm. Metal-oxide-semiconductor (MOS) capacitors, fabricated on this surface, showed an interface state density of ∼1 × 10{sup 12} eV{sup −1} cm{sup −2} below the conduction band, a value which is comparable to the standard 4°-off-axis material commonly used for 4H-SiC MOS-based device fabrication. Moreover, the Fowler–Nordheim and time-zero-dielectric breakdown analyses confirmed an almost ideal behavior of the interface. The results demonstrate the maturity of the 2°-off axis material for 4H-SiC MOSFET device fabrication.

  2. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Mora, L. [Institute Eduardo Torroja for Construction Sciences-CSIC, Madrid (Spain); Department of Materials, University of Oxford (United Kingdom); Lowe, T. [Manchester X-ray Imaging Facility, The University of Manchester (United Kingdom); Zhao, S. [Department of Materials, University of Oxford (United Kingdom); Lee, P.D. [Research Complex at Harwell, Rutherford Appleton Laboratory (United Kingdom); Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester (United Kingdom); Marrow, T.J., E-mail: james.marrow@materials.ox.ac.uk [Department of Materials, University of Oxford (United Kingdom)

    2016-12-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  4. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    International Nuclear Information System (INIS)

    Saucedo-Mora, L.; Lowe, T.; Zhao, S.; Lee, P.D.; Mummery, P.M.; Marrow, T.J.

    2016-01-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  5. Current status and recent research achievements in SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Y., E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Henager, C.H. [Pacific Northwest National Laboratory, Richland, WA (United States); Nozawa, T. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Iveković, A.; Novak, S. [Jožef Stefan Institute, Ljubljana (Slovenia); Gonzalez de Vicente, S.M. [EFDA Close Support Unit, Garching (Germany)

    2014-12-15

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  6. Current status and recent research achievements in SiC/SiC composites

    International Nuclear Information System (INIS)

    Katoh, Y.; Snead, L.L.; Henager, C.H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S.M.

    2014-01-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications

  7. Current status and recent research achievements in SiC/SiC composites

    Science.gov (United States)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  8. Growing GaN LEDs on amorphous SiC buffer with variable C/Si compositions

    Science.gov (United States)

    Cheng, Chih-Hsien; Tzou, An-Jye; Chang, Jung-Hung; Chi, Yu-Chieh; Lin, Yung-Hsiang; Shih, Min-Hsiung; Lee, Chao-Kuei; Wu, Chih-I; Kuo, Hao-Chung; Chang, Chun-Yen; Lin, Gong-Ru

    2016-01-01

    The epitaxy of high-power gallium nitride (GaN) light-emitting diode (LED) on amorphous silicon carbide (a-SixC1−x) buffer is demonstrated. The a-SixC1−x buffers with different nonstoichiometric C/Si composition ratios are synthesized on SiO2/Si substrate by using a low-temperature plasma enhanced chemical vapor deposition. The GaN LEDs on different SixC1−x buffers exhibit different EL and C-V characteristics because of the extended strain induced interfacial defects. The EL power decays when increasing the Si content of SixC1−x buffer. The C-rich SixC1−x favors the GaN epitaxy and enables the strain relaxation to suppress the probability of Auger recombination. When the SixC1−x buffer changes from Si-rich to C-rich condition, the EL peak wavelengh shifts from 446 nm to 450 nm. Moreover, the uniform distribution contour of EL intensity spreads between the anode and the cathode because the traping density of the interfacial defect gradually reduces. In comparison with the GaN LED grown on Si-rich SixC1−x buffer, the device deposited on C-rich SixC1−x buffer shows a lower turn-on voltage, a higher output power, an external quantum efficiency, and an efficiency droop of 2.48 V, 106 mW, 42.3%, and 7%, respectively. PMID:26794268

  9. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  10. Effect of sintering temperature on structure of C-B4C-SiC composites with silicon additive

    International Nuclear Information System (INIS)

    Wu Lijun; Academia Sinica, Shenyang; Huang Qizhong; Yang Qiaoqin; Zhao Lihu; Xu Zhongyu

    1996-01-01

    Carbon materials possess good electric conductivity, heat conductivity, corrosion-resistance, self-lubrication and hot-shocking resistance, and are easily machined. However, they have low mechanical strength, and are easily oxidized in air at high temperature. On the contrary, ceramic materials have high mechanical strength and hardness, and have good wear-resistance and oxidation-resistance. However, they have the shortages of poor thermal-shock resistance lubrication, and are difficult to machine. Therefore, carbon/ceramic composites with the advantages of both carbon and ceramic materials have been widely studied in the recent years. Huang prepared C-B 4 C-SiC composites with the free sintering method and the hot pressing method, and studied the effects of Si, Al, Al 2 O 3 , Ni and Ti additives on the properties of the composites. The results showed that these additives could improve the properties of the composites. Zhao et al. studies the structure of C-B 4 C-SiC composites with Si additive sintered at 2,000 C and found two c-center monoclinic phases. In this paper, the authors discussed the effect of the sintering temperature on the structure of C-B 4 C-SiC composites with Si additive by means of transmission electron microscope (TEM) and x-ray diffractometer (XRD)

  11. Epitaxial growth of 3C-SiC by using C{sub 60} as a carbon source; Untersuchungen zum epitaktischen Wachstum von 3C-SiC bei Verwendung einer C{sub 60}-Kohlenstoffquelle

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Sascha

    2006-01-15

    Within this work epitaxial 3C-SiC-films were grown on Si(001) substrates and on ion beam synthesized 3C-SiC(001) pseudo substrates. A rather new process was used which is based on the simultaneous deposition of C60 and Si. In order to set up the necessary experimental conditions an ultra-high vacuum chamber has been designed and built. A RHEED system was used to examine SiC film growth in-situ. Using the described technique 3C-SiC films were grown void-free on Si(001) substrates. Deposition rates of C60 and Si were chosen adequately to maintain a Si:C ratio of approximately one during the deposition process. It was shown that stoichiometric and epitaxial 3C-SiC growth with the characteristic relationship (001)[110]Si(001)[110]3C-SiC could be achieved. TEM investigations revealed that the grown 3C-SiC films consist of individual grains that extend from the Si substrate to the film surface. Two characteristic grain types could be identified. The correlation between structure and texture of void-free grown 3C-SiC films and film thickness was studied by X-ray diffraction (XRD). Pole figure measurements showed that thin films only contain first-order 3C-SiC twins. With higher film thickness also second-order twins are found which are located as twin lamellae in grain type 2. Improvement of polar texture with increasing film thickness couldn't be observed in the investigated range of up to 550 nm. On ion beam synthesized 3C-SiC pseudo substrates homoepitaxial 3C-SiC growth could be demonstrated for the first time by using a C{sub 60} carbon source. In respect to the crystalline quality of the grown films the surface quality of the used substrates was identified as a crucial factor. Furthermore a correlation between the ratio of deposition rates of C{sub 60} and Si and 3C-SiC film quality could be found. Under silicon-rich conditions, i.e. with a Si:C ratio of slightly greater one, homoepitaxial 3C-SiC layer-by-layer growth can be achieved. Films grown under these

  12. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    Science.gov (United States)

    Jin, Enze; Du, Shiyu; Li, Mian; Liu, Chen; He, Shihong; He, Jian; He, Heming

    2016-10-01

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  13. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Enze [State Nuclear Power Research Institute, Beijing, 100029 (China); Du, Shiyu, E-mail: dushiyu@nimte.ac.cn [Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China); Li, Mian [Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China); Liu, Chen [Beijing Research Institute of Chemical Engineering and Metallurgy (China); He, Shihong [State Nuclear Power Research Institute, Beijing, 100029 (China); Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China); He, Jian [Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023 (China); He, Heming, E-mail: heheming@snptc.com.cn [State Nuclear Power Research Institute, Beijing, 100029 (China)

    2016-10-15

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  14. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    International Nuclear Information System (INIS)

    Jin, Enze; Du, Shiyu; Li, Mian; Liu, Chen; He, Shihong; He, Jian; He, Heming

    2016-01-01

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  15. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    International Nuclear Information System (INIS)

    Scholz, R.; Greeff, J. de; Vinche, C.

    1998-01-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 (Ω m) -1 at 20 deg. C to 550 (Ω m) -1 at 1000 deg.C. The irradiation reduced only slightly the magnitude of σ indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  16. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R.; Greeff, J. de; Vinche, C. [Commission Europeenne Community, JRC, Vatican City State, Holy See (Italy)

    1998-07-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 ({omega} m){sup -1} at 20 deg. C to 550 ({omega} m){sup -1} at 1000 deg.C. The irradiation reduced only slightly the magnitude of {sigma} indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  17. Sensing performance of plasma-enhanced chemical vapor deposition SiC-SiO2-SiC horizontal slot waveguides

    NARCIS (Netherlands)

    Pandraud, G.; Margallo-Balbas, E.; Sarro, P.M.

    2012-01-01

    We have studied, for the first time, the sensing capabilities of plasma-enhanced chemical vapor deposition (PECVD) SiC-SiO2-SiC horizontal slot waveguides. Optical propagation losses were measured to be 23.9 dB?cm for the quasi-transverse magnetic mode. To assess the potential of this device as a

  18. Structural and electronic properties of Si/SiO2 MOS structures with aligned 3C-SiC nanocrystals in the oxide

    International Nuclear Information System (INIS)

    Pongracz, A.; Battistig, G.; Duecso, Cs.; Josepovits, K.V.; Deak, P.

    2007-01-01

    Our group previously proved that a simple reactive annealing in CO containing gas produces 3C-SiC nanocrystals, which are epitaxially and void-free aligned in the Si substrate. By a further thermal oxidation step, these nanocrystals can be lifted from the Si and incorporated into the SiO 2 matrix, thereby creating a promising structure for charge storage. In this work the structural and electrical properties of such systems with nanocrystalline SiC will be presented. Prototype MOS structures with 3C-SiC nanocrystals were produced for current-voltage and capacitance-voltage measurements. The results indicate that the high-temperature annealing did not damage the MOS structure, despite the fact that the CO annealing changed the electrical properties of the system. There was a positive charge accumulation and a reversible carrier injection observed in the structure. We assume that the positive charges originated from oxygen vacancies and the charge injection is related to the presence of SiC nanocrystals

  19. Grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    ), raman spectroscopy and X-ray diffraction (XRD) measurements. UV–Visible absorption spectroscopy was used to study optical properties such as optical energy gap (Eg), Urbach's energy (Eu), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constant of PVA as well as PVA......Polyvinyl alcohol (PVA) grafted SiC (PVA-g-SiC)/PVA nanocomposite was synthesized by incorporating PVA grafted silicon carbide (SiC) nanocrystals inside PVA matrix. In-depth structural characterization of resulting nanocomposite was carried out using fourier transform infrared spectroscopy (FTIR...

  20. Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.

    Science.gov (United States)

    Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo

    2013-09-01

    We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.

  1. Impurities and evaluation of induced activity of CVI SiCf/SiC composites

    International Nuclear Information System (INIS)

    Noda, Tetsuji; Fujita, Mitsutane; Araki, Hiroshi; Kohyama, Akira

    2000-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However, the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about six orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC composites, especially reduction of Fe and Ni contents, is necessary to reduce the activity to satisfy the limit of remote handling recycling after several 10 years cooling of fusion reactors

  2. Gas-source molecular beam epitaxy of Si(111) on Si(110) substrates by insertion of 3C-SiC(111) interlayer for hybrid orientation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bantaculo, Rolando, E-mail: rolandobantaculo@yahoo.com; Saitoh, Eiji; Miyamoto, Yu; Handa, Hiroyuki; Suemitsu, Maki

    2011-11-01

    A method to realize a novel hybrid orientations of Si surfaces, Si(111) on Si(110), has been developed by use of a Si(111)/3C-SiC(111)/Si(110) trilayer structure. This technology allows us to use the Si(111) portion for the n-type and the Si(110) portion for the p-type channels, providing a solution to the current drive imbalance between the two channels confronted in Si(100)-based complementary metal oxide semiconductor (CMOS) technology. The central idea is to use a rotated heteroepitaxy of 3C-SiC(111) on Si(110) substrate, which occurs when a 3C-SiC film is grown under certain growth conditions. Monomethylsilane (SiH{sub 3}-CH{sub 3}) gas-source molecular beam epitaxy (GSMBE) is used for this 3C-SiC interlayer formation while disilane (Si{sub 2}H{sub 6}) is used for the top Si(111) layer formation. Though the film quality of the Si epilayer leaves a lot of room for betterment, the present results may suffice to prove its potential as a new technology to be used in the next generation CMOS devices.

  3. Characterization of SiCf/SiC and CNT/SiC composite materials produced by liquid phase sintering

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Cho, K.S.; Byun, J.H.; Bae, D.S.

    2011-01-01

    This paper dealt with the microstructure and mechanical properties of SiC based composites reinforced with different reinforcing materials. The composites were fabricated using reinforcing materials of carbon nanotubes (CNT) and Tyranno Lox-M SiC chopped fibers. The volume fraction of carbon nanotubes was also varied in this composite system. An Al 2 O 3 -Y 2 O 3 powder mixture was used as a sintering additive in the consolidation of the SiC matrix. The characterization of the composites was investigated by means of SEM and three point bending tests. These composites showed a dense morphology of the matrix region, by the creation of a secondary phase. The composites reinforced with SiC chopped fibers possessed a flexural strength of about 400 MPa at room temperature. The flexural strength of the carbon nanotubes composites had a tendency to decrease with increased volume fraction of the reinforcing material.

  4. Optimal determination of the elastic constants of woven 2D SiC/SiC composite materials

    International Nuclear Information System (INIS)

    Mouchtachi, A; Guerjouma, R El; Baboux, J C; Rouby, D; Bouami, D

    2004-01-01

    For homogeneous materials, the ultrasonic immersion method, associated with a numerical optimization process mostly based on Newton's algorithm, allows the determination of elastic constants for various synthetic and natural composite materials. Nevertheless, a principal limitation of the existing optimization procedure occurs when the considered material is at the limit of the homogeneous hypothesis. Such is the case of the woven bidirectional SiC matrix and SiC fibre composite material. In this study, we have developed two numerical methods for the determination of the elastic constants of the 2D SiC/SiC composite material (2D SiC/SiC). The first one is based on Newton's algorithm: the elastic constants are obtained by minimizing the square deviation between experimental and calculated velocities. The second method is based on the Levenberg-Marquardt algorithm. We show that these algorithms give the same results in the case of homogeneous anisotropic composite materials. For the 2D SiC/SiC composite material, the two methods, using the same measured velocities, give different sets of elastic constants. We then note that the Levenberg-Marquardt algorithm enables a better convergence towards a global set of elastic constants in good agreement with the elastic properties, which can be measured using classical quasi-static methods

  5. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  6. Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method

    Directory of Open Access Journals (Sweden)

    Omid Yaghobizadeh

    2017-03-01

    Full Text Available The material Cf-C-SiC-Ti3SiC2 is promising for high temperature application. Due to the laminated structure and special properties, the Ti3SiC2 is one of the best reinforcements for Cf-C-SiC composites. In this paper, Cf-C-SiC-Ti3SiC2 composites were fabricated by liquid silicon infiltration (LSI method; the effect of the TiC amount on the various composites properties were studied. For samples with 0, 50 and 90 vol.% of TiC, the results show that bending strength are 168, 190, and 181 MPa; porosities are 3.2, 4.7, and 9%; the fracture toughness are 6.1, 8.9, and 7.8 MPa∙m1/2; interlaminar shear strength are 27, 36, and 30 MPa; the amount of the MAX phase are 0, 8.5, and 5.6 vol.%, respectively. These results show that amount of TiC is not the main effective parameter in synthesis of Ti3SiC2. The existence of carbon promotes the synthesis of Ti3SiC2 indicating that only sufficient carbon content can lead to the appearance of Ti3SiC2 in the LSI process.

  7. SiC nanoparticles as potential carriers for biologically active substances

    Science.gov (United States)

    Guevara-Lora, Ibeth; Czosnek, Cezary; Smycz, Aleksandra; Janik, Jerzy F.; Kozik, Andrzej

    2009-01-01

    Silicon carbide SiC thanks to its many advantageous properties has found numerous applications in diverse areas of technology. In this regard, its nanosized forms often with novel properties have been the subject of intense research in recent years. The aim of this study was to investigate the binding of biologically active substances onto SiC nanopowders as a new approach to biomolecule immobilization in terms of their prospective applications in medicine or for biochemical detection. The SiC nanoparticles were prepared by a two-stage aerosol-assisted synthesis from neat hexamethyldisiloxane. The binding of several proteins (bovine serum albumin, high molecular weight kininogen, immunoglobulin G) on SiC particle surfaces was demonstrated at the levels of 1-2 nanograms per mg of SiC. These values were found to significantly increase after suitable chemical modifications of nanoparticle surfaces (by carbodiimide or 3-aminopropyltrietoxysilane treatment). The study of SiC biocompatibility showed a lack of cytotoxicity against macrophages-like cells below the concentration of 1 mg nanoparticles per mL. In summary, we demonstrated the successful immobilization of the selected substances on the SiC nanoparticles. These results including the cytotoxicity study make nano-SiC highly attractive for potential applications in medicine, biotechnology or molecular detection.

  8. Biomorphous SiSiC/Al-Si ceramic composites manufactured by squeeze casting: microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zollfrank, C.; Travitzky, N.; Sieber, H.; Greil, P. [Department of Materials Science, Glass and Ceramics, University of Erlangen-Nuernberg (Germany); Selchert, T. [Advanced Ceramics Group, Technical University of Hamburg-Harburg (Germany)

    2005-08-01

    SiSiC/Al-Si composites were fabricated by pressure-assisted infiltration of an Al-Si alloy into porous biocarbon preforms derived from the rattan palm. Al-Si alloy was found in the pore channels of the biomorphous SiSiC preform, whereas SiC and carbon were present in the struts. The formation of a detrimental Al{sub 4}C{sub 3}-phase was not observed in the composites. A bending strength of 200 MPa was measured. The fractured surfaces showed pull-out of the Al-alloy. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Radiation effects and micromechanics of SiC/SiC composites (December 1, 1990--November 14, 1993) and modeling the mechanical behavior of SiC/SiC composites in fusion environments (November 15, 1993--November 14, 1996). Final report, December 1, 1990--November 14, 1996

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1997-01-01

    The development of Silicon Carbide composite materials for structural applications in fusion energy systems is mainly motivated by the prospect that fusion power systems utilizing the material will have a much more favorable environmental impact. The research team at UCLA was the first to identify the potential advantages of SiC/SiC composite materials through early System Studies. Consequently, two three-year term grants have been awarded to the team, in order to focus on modeling the effects of irradiation on key properties that have been recognized by the community as fundamental to the successful development of the composite. Two main tasks, which are further subdivided into several subtasks each, have been pursued during the course of research during the period: December 1990 through November 1996. The first task deals with modeling the effects of irradiation on the dimensional stability of SiC. To achieve this goal, a substantial effort was launched for modeling the evolution of the microstructure under irradiation. Rate and Fokker-Planck theories have been advanced to model the complex multi-component system of SiC under irradiation. The effort has resulted in a deeper understanding of the interaction between displacement damage components, and transmutant helium gas atoms. Utilizing the methods of Molecular Dynamics (MD) and Monte Carlo (MC), the energetics of defects and the basic displacement mechanisms in SiC have been fully delineated. An advanced Fokker-Planck approach was formulated to determine the phase content and size distribution of damage microstructure in SiC. Finally, a rate theory model was developed and successfully applied to the experimental swelling data on SiC. In the second task, the authors investigated the mechanical behavior of SiC/SiC composites under the irradiation conditions of fusion reactors. The main focus of the second task has been on developing models for the micro-mechanics of cracks in the fiber reinforced matrix of the

  10. Self-sealing multilayer coating for SiC/SiC composites

    International Nuclear Information System (INIS)

    Ferraris, M.; Appendino Montorsi, M.; Salvo, M.; Isola, C.; Kohyama, A.

    1997-01-01

    A double layer coating for SiC/SiC for fusion applications is proposed: the first layer consists in a homogeneous, crack free, glass-ceramic with high characteristic temperatures and thermal expansion coefficient compatible to the composite one; the second layer is amorphous and shows self-sealing properties above 700degC. The glass and the glass-ceramic materials used for this double layer coating do not contain lithium and boron oxide, making them particularly interesting for thermonuclear fusion applications. The self-sealing property of the double layer coating was valued by inducing cracks on the coatings and observing their reparation after heating. (author)

  11. Hot pressing of B4C/SiC composites

    International Nuclear Information System (INIS)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O.

    2005-01-01

    B 4 C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B 4 C/SiC composite samples were lower than monolithic B 4 C in all experimental conditions. (authors)

  12. Influence of Constituents on Creep Properties of SiC/SiC Composites

    Science.gov (United States)

    Bhatt, R.; DiCarlo, J.

    2016-01-01

    SiC-SiC composites are being considered as potential candidate materials for next generation turbine components such as combustor liners, nozzle vanes and blades because of their low density, high temperature capability, and tailorable mechanical properties. These composites are essentially fabricated by infiltrating matrix into a stacked array of fibers or fiber preform by one or a combination of manufacturing methods such as, Melt Infiltration (MI) of molten silicon metal, Chemical Vapor Infiltration (CVI), Polymer Infiltration and Pyrolysis (PIP). To understand the influence of constituents, the SiC-SiC composites fabricated by MI, CVI, and PIP methods were creep tested in air between 12000 and 14500 degrees Centigrade for up to 500 hours. The failed specimens were analyzed under a scanning electron microscope to assess damage mechanisms. Also, knowing the creep deformation parameters of the fiber and the matrix under the testing conditions, the creep behavior of the composites was modeled and compared with the measured data. The implications of the results on the long term durability of these composites will be discussed.

  13. Progress in blanket designs using SiCf/SiC composites

    International Nuclear Information System (INIS)

    Giancarli, L.; Golfier, H.; Nishio, S.; Raffray, R.; Wong, C.; Yamada, R.

    2002-01-01

    This paper summarizes the most recent design activities concerning the use of SiC f /SiC composite as structural material for fusion power reactor breeding blanket. Several studies have been performed in the past. The most recent proposals are the TAURO blanket concept in the European Union, the ARIES-AT concept in the US, and DREAM concept in Japan. The first two concepts are self-cooled lithium-lead blankets, while DREAM is an helium-cooled beryllium/ceramic blanket. Both TAURO and ARIES-AT blankets are essentially formed by a SiC f /SiC box acting as a container for the lithium-lead which has the simultaneous functions of coolant, tritium breeder, neutron multiplier and, finally, tritium carrier. The DREAM blanket is characterized by small modules using pebble beds of Be as neutron multiplier material, of Li 2 O (or other lithium ceramics) as breeder material and of SiC as shielding material. The He coolant path includes a flow through the pebble beds and a porous partition wall. For each blanket, this paper describes the main design features and performances, the most recent design improvements, and the proposed manufacturing routes in order to identify specific issues and requirements for the future R and D on SiC f /SiC

  14. Fracture behavior of C/SiC composites at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Hyun; Lee, Jeong Won; Kim, Jae Hoon; Shin, Ihn Cheol; Lim, Byung Joo [Chungnam National University, Daejeon (Korea, Republic of)

    2017-08-15

    The fracture behavior of carbon fiber-reinforced silicon carbide (C/SiC) composites used in rocket nozzles has been investigated under tension, compression, and fracture conditions at room temperature, 773 K and 1173 K. The C/SiC composites used in this study were manufactured by liquid silicon infiltration process at ~1723 K. All experiments were conducted using two types of specimens, considering fiber direction and oxidation condition. Experimental results show that temperature, fiber direction, and oxidation condition affect the behavior of C/SiC composites. Oxidation was found to be the main factor that changes the strength of C/SiC composites. By applying an anti-oxidation coating, the tensile and compressive strengths of the C/SiC composites increased with temperature. The fracture toughness of the C/SiC composites also increased with increase temperature. A fractography analysis of the fractured specimens was conducted using a scanning electron microscope.

  15. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  16. Mo-based compounds for SiC-SiC joints

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, G.; Beaulardi, L.; Mingazzini, C. [ENEA-Faenza (Italy). New Material Div.; Marmo, E. [Fabbricazioni Nucleari S.p.A., Bosco Mavengo (Italy)

    2002-07-01

    New method to joint silicon carbide-based material was developed. It was based on mixture composed mainly by molybdenum silicides. This mixture was tested as brazing mixture with several types of silicon carbide-based material. Microstructural examination of the joint showed that brazing mixture reacted with substrate to form silicon carbide on the surface, while two different molybdenum silicides were identified inside the joint (MoSi{sub 2} and Mo{sub 4.8}Si{sub 3}C{sub 0.6}). Preliminary oxidation tests performed by means of TGA showed high oxidation resistance of this joint over 1000 C making it very promising for high temperature application like ceramic heat exchanger. (orig.)

  17. An optically controlled SiC lateral power transistor based on SiC/SiCGe super junction structure

    International Nuclear Information System (INIS)

    Pu Hongbin; Cao Lin; Ren Jie; Chen Zhiming; Nan Yagong

    2010-01-01

    An optically controlled SiC/SiCGe lateral power transistor based on superjunction structure has been proposed, in which n-SiCGe/p-SiC superjunction structure is employed to improve device figure of merit. Performance of the novel optically controlled power transistor was simulated using Silvaco Atlas tools, which has shown that the device has a very good response to the visible light and the near infrared light. The optoelectronic responsivities of the device at 0.5 μm and 0.7 μm are 330 mA/W and 76.2 mA/W at 2 V based voltage, respectively. (semiconductor devices)

  18. An optically controlled SiC lateral power transistor based on SiC/SiCGe super junction structure

    Energy Technology Data Exchange (ETDEWEB)

    Pu Hongbin; Cao Lin; Ren Jie; Chen Zhiming; Nan Yagong, E-mail: puhongbin@xaut.edu.c [Xi' an University of Technology, Xi' an 710048 (China)

    2010-04-15

    An optically controlled SiC/SiCGe lateral power transistor based on superjunction structure has been proposed, in which n-SiCGe/p-SiC superjunction structure is employed to improve device figure of merit. Performance of the novel optically controlled power transistor was simulated using Silvaco Atlas tools, which has shown that the device has a very good response to the visible light and the near infrared light. The optoelectronic responsivities of the device at 0.5 {mu}m and 0.7 {mu}m are 330 mA/W and 76.2 mA/W at 2 V based voltage, respectively. (semiconductor devices)

  19. Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-05-01

    Full Text Available A large-scale production of necklace-like SiC/SiO2 heterojunctions was obtained by a molten salt-mediated chemical vapor reaction technique without a metallic catalyst or flowing gas. The effect of the firing temperature on the evolution of the phase composition, microstructure, and morphology of the SiC/SiO2 heterojunctions was studied. The necklace-like SiC/SiO2 nanochains, several centimeters in length, were composed of SiC/SiO2 core-shell chains and amorphous SiO2 beans. The morphologies of the as-prepared products could be tuned by adjusting the firing temperature. In fact, the diameter of the SiO2 beans decreased, whereas the diameter of the SiC fibers and the thickness of the SiO2 shell increased as the temperature increased. The growth mechanism of the necklace-like structure was controlled by the vapor-solid growth procedure and the modulation procedure via a molten salt-mediated chemical vapor reaction process.

  20. Effect of simultaneous ion irradiation on microstructural change of SiC/SiC composites at high temperature

    International Nuclear Information System (INIS)

    Taguchi, T.; Wakai, E.; Igawa, N.; Nogami, S.; Snead, L.L.; Hasegawa, A.; Jitsukawa, S.

    2002-01-01

    The effect of simultaneous triple ion irradiation of He, H and Si on microstructural evolution of two kinds of SiC/SiC composites (HNS composite (using Hi-Nicalon type S SiC fiber) and TSA composite (using Tyranno SA SiC fiber)) at 1000 deg. C has been investigated. The microstructure observations of SiC/SiC composites irradiated to 10 dpa were examined by transmission electron microscopy. He bubbles were hardly formed in matrix of TSA composite, but many helium bubbles and some cracks were observed at grain boundaries of matrix of HNS composite. He bubbles and cracks were not, on the other hand, observed in the both fiber fabrics of HNS and TSA composites. Debonding between fiber and carbon layer following irradiation region was not observed in the both composites. Under these irradiation conditions, TSA composite showed the better microstructural stability against ion beams irradiation than one of HNS composite

  1. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  2. Determining the fracture resistance of advanced SiC fiber reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Nozawa, T.; Katoh, Y.; Kishimoto, H.

    2007-01-01

    Full text of publication follows: One of the perceived advantages for highly-crystalline and stoichiometric silicon carbide (SiC) and SiC composites, e.g., advanced SiC fiber reinforced chemically-vapor-infiltrated (CVI) SiC matrix composites, is the retention of fast fracture properties after neutron irradiation at high-temperatures (∼1000 deg. C) to intermediate-doses (∼15 dpa). Accordingly, it has been clarified that the maximum allowable stress (or strain) limit seems unaffected in certain irradiation conditions. Meanwhile, understanding the mechanism of crack propagation from flaws, as potential weakest link to cause composite failure, is somehow lacking, despite that determining the strength criterion based on the fracture mechanics will eventually become important considering the nature of composites' fracture. This study aims to evaluate crack propagation behaviors of advanced SiC/SiC and to provide fundamentals on fracture resistance of the composites to define the strength limit for the practical component design. For those purposes, the effects of irreversible energies related to interfacial de-bonding, fiber bridging, and microcrack forming on the fracture resistance were evaluated. Two-dimensional SiC/SiC composites were fabricated by CVI or nano-infiltration and transient-eutectic-phase (NITE ) methods. Hi-Nicalon TM Type-S or Tyranno TM -SA fibers were used as reinforcements. In-plane mode-I fracture resistance was evaluated by the single edge notched bend technique. The key finding is the continuous Load increase with the crack growth for any types of advanced composites, while many studies specified the gradual load decrease for the conventional composites once the crack initiates. This high quasi-ductility appeared due primarily to high friction (>100 MPa) at the fiber/matrix interface using rough SiC fibers. The preliminary analysis based on the linear elastic fracture mechanics, which does not consider the effects of irreversible energy

  3. BURNER RIG TESTING OF A500 C/SiC

    Science.gov (United States)

    2018-03-17

    AFRL-RX-WP-TR-2018-0071 BURNER RIG TESTING OF A500® C /SiC Larry P. Zawada Universal Technology Corporation Jennifer Pierce UDRI...TITLE AND SUBTITLE BURNER RIG TESTING OF A500® C /SiC 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...test program characterized the durability behavior of A500® C /SiC ceramic matrix composite material at room and elevated temperature. Specimens were

  4. Innovative SiC/SiC composite for nuclear applications

    International Nuclear Information System (INIS)

    Chaffron, L.; Sauder, C.; Lorrette, C.; Briottet, L.; Michaux, A.; Gelebart, L.; Coupe, A.; Zabiego, M.; Le Flem, M.; Seran, J. L.

    2013-01-01

    Among various refractory materials, SiC/SiC ceramic matrix composites (CMC) are of prime interest for fusion and advanced fission energy applications, due to their excellent irradiation tolerance and safety features (low activation, low tritium permeability,K). Initially developed as fuel cladding materials for the Fourth generation Gas cooled Fast Reactor (GFR), this material has been recently envisaged by CEA for different core structures of Sodium Fast Reactor (SFR) which combines fast neutrons and high temperature (500 deg.C). Regarding fuel cladding generic application, in the case of GFR, the first challenge facing this project is to demonstrate the feasibility of a fuel operating under very harsh conditions that are (i) temperatures of structures up to 700 deg.C in nominal and over 1600 deg.C in accidental conditions, (ii) irradiation damage higher than 60 dpa SiC , (iii) neutronic transparency, which disqualifies conventional refractory metals as structural core materials, (iv) mechanical behavior that guarantees in most circumstances the integrity of the first barrier (e.g.: ε> 0.5%), which excludes monolithic ceramics and therefore encourages the development of new types of fibrous composites SiC/SiC adapted to the fast reactor conditions. No existing material being capable to match all these requirements, CEA has launched an ambitious program of development of an advanced material satisfying the specifications [1]. This project, that implies many laboratories, inside and outside CEA, has permitted to obtain a very high quality compound that meets most of the challenging requirements. We present hereinafter few recent results obtained regarding the development of the composite. One of the most relevant challenges was to make a gas-tight composite up to the ultimate rupture. Indeed, multi-cracking of the matrix is the counterpart of the damageable behavior observed in these amazing compounds. Among different solutions envisaged, an innovative one has been

  5. Effect of Ti and Si interlayer materials on the joining of SiC ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Park, Dong Jun; Park, Jeong Yong; Kim, Weon Ju [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ∼0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ∼100 MPa. The joint interface consisted of TiSi{sub 2}, Ti{sub 3}SiC{sub 2}, and SiC phases formed by a diffusion reaction of Ti and Si.

  6. Chemical vapor deposition of Si/SiC nano-multilayer thin films

    International Nuclear Information System (INIS)

    Weber, A.; Remfort, R.; Woehrl, N.; Assenmacher, W.; Schulz, S.

    2015-01-01

    Stoichiometric SiC films were deposited with the commercially available single source precursor Et_3SiH by classical thermal chemical vapor deposition (CVD) as well as plasma-enhanced CVD at low temperatures in the absence of any other reactive gases. Temperature-variable deposition studies revealed that polycrystalline films containing different SiC polytypes with a Si to carbon ratio of close to 1:1 are formed at 1000 °C in thermal CVD process and below 100 °C in the plasma-enhanced CVD process. The plasma enhanced CVD process enables the reduction of residual stress in the deposited films and offers the deposition on temperature sensitive substrates in the future. In both deposition processes the film thickness can be controlled by variation of the process parameters such as the substrate temperature and the deposition time. The resulting material films were characterized with respect to their chemical composition and their crystallinity using scanning electron microscope, energy dispersive X-ray spectroscopy (XRD), atomic force microscopy, X-ray diffraction, grazing incidence X-ray diffraction, secondary ion mass spectrometry and Raman spectroscopy. Finally, Si/SiC multilayers of up to 10 individual layers of equal thickness (about 450 nm) were deposited at 1000 °C using Et_3SiH and SiH_4. The resulting multilayers features amorphous SiC films alternating with Si films, which feature larger crystals up to 300 nm size as measured by transmission electron microscopy as well as by XRD. XRD features three distinct peaks for Si(111), Si(220) and Si(311). - Highlights: • Stoichiometric silicon carbide films were deposited from a single source precursor. • Thermal as well as plasma-enhanced chemical vapor deposition was used. • Films morphology, crystallinity and chemical composition were characterized. • Silicon/silicon carbide multilayers of up to 10 individual nano-layers were deposited.

  7. The Present Status of SiC/SiC R and D for Nuclear Application in Japan

    International Nuclear Information System (INIS)

    Kohyama, Akira

    2011-01-01

    SiC/SiC R and D for nuclear application in Japan is quite active under the coordinated activities of Atomic Energy Society of Japan's committee on 'Applications of Ceramic Materials for Advanced Nuclear Power Systems' and mainly government funded nuclear engineering/materials activities collaborating academia and industries. Start with the brief introduction of those activities, representing research activities are introduced. ITER and BA related SiC/SiC activities are emphasized, followed by introductions of extensive OASIS, Muroran Institute of Technology activities. The importance of international collaboration and strategic planning is mentioned.

  8. Efficiency and Cost Comparison of Si IGBT and SiC JFET Isolated DC/DC Converters

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Török, Lajos; Munk-Nielsen, Stig

    2013-01-01

    Silicon carbide (SiC) and other wide band gap devices are in these years undergoing a rapid development. The need for higher efficiency and smaller dimensions are forcing engineers to take these new devices in to considerations when choosing semiconductors for their converters. In this article a Si...

  9. Effects of Surface Treatment Processes of SiC Ceramic on Interfacial Bonding Property of SiC-AFRP

    Directory of Open Access Journals (Sweden)

    WEI Ru-bin

    2016-12-01

    Full Text Available To improve the interfacial bonding properties of SiC-aramid fiber reinforced polymer matrix composites (SiC-AFRP, the influences of etching process of SiC ceramic, coupling treatment process, and the adhesives types on the interfacial peel strength of SiC-AFRP were studied. The results show that the surface etching process and coupling treatment process of silicon carbide ceramic can effectively enhance interfacial bonding property of the SiC-AFRP. After soaked the ceramic in K3Fe(CN6 and KOH mixed etching solution for 2 hours, and coupled with vinyl triethoxy silane coupling agent, the interfacial peel strength of the SiC-AFRP significantly increases from 0.45kN/m to 2.20kN/m. EVA hot melt film with mass fraction of 15%VA is ideal for interface adhesive.

  10. Evaluation of a Melt Infiltrated SiC/SiC Ceramic Matrix Composite

    Science.gov (United States)

    2017-12-20

    temperature performance of a state- of-the-art CMC provides evidence that this new class of materials can, or perhaps cannot, meet the harsh...and elevated temperature . This report describes tensile, creep, and fatigue testing procedures and presents the results. 15. SUBJECT TERMS ceramic...matrix composites, creep, dwell fatigue, fatigue, high temperature , melt infiltrated, SiC/SiC 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  11. The morphology of ceramic phases in B x C-SiC-Si infiltrated composites

    International Nuclear Information System (INIS)

    Hayun, S.; Frage, N.; Dariel, M.P.

    2006-01-01

    The present communication is concerned with the effect of the carbon source on the morphology of reaction bonded boron carbide (B 4 C). Molten silicon reacts strongly and rapidly with free carbon to form large, faceted, regular polygon-shaped SiC particles, usually embedded in residual silicon pools. In the absence of free carbon, the formation of SiC relies on carbon that originates from within the boron carbide particles. Examination of the reaction bonded boron carbide revealed a core-rim microstructure consisting of boron carbide particles surrounded by secondary boron carbide containing some dissolved silicon. This microstructure is generated as the outcome of a dissolution-precipitation process. In the course of the infiltration process molten Si dissolves some boron carbide until its saturation with B and C. Subsequently, precipitation of secondary boron carbide enriched with boron and silicon takes place. In parallel, elongated, strongly twinned, faceted SiC particles are generated by rapid growth along preferred crystallographic directions. This sequence of events is supported by X-ray diffraction and microcompositional analysis and well accounted for by the thermodynamic analysis of the ternary B-C-Si system. - Graphical abstract: Bright field TEM image of the rim area between two boron carbide grains

  12. Experimental investigation of slow-positron emission from 4H-SiC and 6H-SiC surfaces

    International Nuclear Information System (INIS)

    Ling, C.C.; Beling, C.D.; Fung, S.; Weng, H.M.

    2002-01-01

    Slow-positron emission from the surfaces of as-grown n-type 4H-SiC and 6H-SiC (silicon carbide) with a conversion efficiency of ∼10 -4 has been observed. After 30 min of 1000 deg. C annealing in forming gas, the conversion efficiency of the n-type 6H-SiC sample was observed to be enhanced by 75% to 1.9x10 -4 , but it then dropped to ∼10 -5 upon a further 30 min annealing at 1400 deg. C. The positron work function of the n-type 6H-SiC was found to increase by 29% upon 1000 deg. C annealing. For both p-type 4H-SiC and p-type 6H-SiC materials, the conversion efficiency was of the order of ∼10 -5 , some ten times lower than that for the n-type materials. This was attributed to the band bending at the p-type material surface which caused positrons to drift away from the positron emitting surface. (author)

  13. Characterization of SiC–SiC composites for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C.P., E-mail: Christian.Deck@ga.com; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC–SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC–SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  14. X-ray absorption spectroscopy study on SiC-side interface structure of SiO2–SiC formed by thermal oxidation in dry oxygen

    Science.gov (United States)

    Isomura, Noritake; Kosaka, Satoru; Kataoka, Keita; Watanabe, Yukihiko; Kimoto, Yasuji

    2018-06-01

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is demonstrated to measure the fine atomic structure of SiO2–SiC interfaces. The SiC-side of the interface can be measured by fabricating thin SiO2 films and using SiC-selective EXAFS measurements. Fourier transforms of the oscillations of the EXAFS spectra correspond to radial-structure functions and reveal a new peak of the first nearest neighbor of Si for m-face SiC, which does not appear in measurements of the Si-face. This finding suggests that the m-face interface could include a structure with shorter Si–C distances. Numerical calculations provide additional support for this finding.

  15. Compósitos SiCf /SiC utilizados em sistemas de proteção térmica SiCf /SiC composites for thermal protection systems

    Directory of Open Access Journals (Sweden)

    M. Florian

    2005-09-01

    Full Text Available Compósitos de carbeto de silício (SiC reforçado com fibras de carbeto de silício (SiCf são materiais candidatos em potencial para utilização em sistemas de proteção térmica em altas temperaturas devido principalmente à boa condutividade térmica na direção da fibra e muito baixa condutividade térmica na direção transversal à fibra, alta dureza, estabilidade térmica e à corrosão por oxidação. O compósito SiCf/SiC possui uma matriz de SiC reforçada com fibras contínuas policristalinas de SiC e é obtido por reações de conversão em altas temperaturas e atmosfera controlada, utilizando o compósito carbono/carbono como precursor. O processo de Reação Química em Vapor (CVR foi utilizado para a fabricação de compósitos SiCf/SiC com alta pureza na fase de SiC-beta. O compósito precursor de carbono/carbono foi fabricado com fibra de carbono não estabilizada e matriz carbonosa derivada da resina fenólica na forma de carbono isotrópico. O compósito convertido exibiu uma densidade de 1,75 g/cm³, com 40% de porosidade aberta e resistência à flexão de 80 MPa medida por ensaio flexão em 4 pontos. A área especifica medida pela técnica de BET é dependente da temperatura de conversão e das condições inicias do precursor de carbono, podendo chegar a 18 m²/g.Composites based on silicon carbide are potential candidate materials for thermal protection systems mainly due to its good thermal conductivity in fiber direction and very low transversal thermal conductivity, high hardness, corrosion and thermal resistance. SiCf/SiC composite presents a SiC matrix reinforced with SiC polycrystalline continuous fibers. The composite was obtained by conversion reactions at high temperature and controlled atmosphere from a carbon/carbon composite precursor. The CVR process was used to fabricate SiC /SiC composite with crystalline high-purity beta-SiC from a carbon-carbon precursor fabricated with non-stabilized carbon fiber and

  16. Matrix densification of SiC composites by sintering process

    International Nuclear Information System (INIS)

    Kim, Young-Wook; Jang, Doo-Hee; Eom, Jung-Hye; Chun, Yong-Seong

    2007-02-01

    The objectives of this research are to develop a process for dense SiC fiber-SiC composites with a porosity of 5% or less and to develop high-strength SiC fiber-SiC composites with a strength of 500 MPa or higher. To meet the above objectives, the following research topics were investigated ; new process development for the densification of SiC fiber-SiC composites, effect of processing parameters on densification of SiC fiber-SiC composites, effect of additive composition on matrix microstructure, effects of additive composition and content on densification of SiC fiber-SiC composites, mechanical properties of SiC fiber-SiC composites, effect of fiber coating on densification and strength of SiC fiber-SiC composites, development of new additive composition. There has been a great deal of progress in the development of technologies for the processing and densification of SiC fiber-SiC composites and in better understanding of additive-densification-mechanical property relations as results of this project. Based on the progress, dense SiC fiber-SiC composites (≥97%) and high strength SiC fiber-SiC composites (≥600 MPa) have been developed. Development of 2D SiC fiber-SiC composites with a relative density of ≥97% and a strength of ≥600 MPa can be counted as a notable achievement

  17. C-H and C-C activation of n -butane with zirconium hydrides supported on SBA15 containing N-donor ligands: [(≡SiNH-)(≡SiX-)ZrH2], [(≡SiNH-)(≡SiX-)2ZrH], and[(≡SiN=)(≡SiX-)ZrH] (X = -NH-, -O-). A DFT study

    KAUST Repository

    Pasha, Farhan Ahmad; Bendjeriou-Sedjerari, Anissa; Huang, Kuo-Wei; Basset, Jean-Marie

    2014-01-01

    : [(≡SiNH-)(≡SiO-)ZrH2] (A), [(≡SiNH-)2ZrH2] (B), [(≡SiNH-)(≡SiO-) 2ZrH] (C), [(≡SiNH-)2(≡SiO-)ZrH] (D), [(≡SiN=)(≡Si-O-)ZrH] (E), and [(≡SiN=)(≡SiNH-)ZrH] (F). The roles of these hydrides have been investigated in C-H/C-C bond activation and cleavage

  18. Effect of Reactant Concentration on the Microstructure of SiC Nano wires Grown In Situ within SiC Fiber Preforms

    International Nuclear Information System (INIS)

    Kim, Weon Ju; Kang, Seok Min; Park, Ji Yeon; Ryu, Woo Seog

    2006-01-01

    Silicon carbide fiber-reinforced silicon carbide matrix (SiC f /SiC) composites are considered as advanced materials for control rods and other in-core components of high-temperature gas cooled reactors. Although the carbon fiber-reinforced carbon matrix (C f /C) composites are more mature and have advantages in cost, manufacturability and some thermomechanical properties, the SiC f /SiC composites have a clear advantage in irradiation stability, specifically a lower level of swelling and retention of mechanical properties. This offers a lifetime component for control rod application to HTGRs while the Cf/C composites would require 2-3 replacements over the reactor lifetime. In general, the chemical vapor infiltration (CVI) technique has been used most widely to produce SiC f /SiC composites. Although the technique produces a highly pure SiC matrix, it requires a long processing time and inevitably contains large interbundle pores. The present authors have recently developed 'whisker growing-assisted process,' in which one-dimensional SiC nano structures with high aspect ratios such as whiskers, nano wires and nano rods are introduced into the fiber preform before the matrix infiltration step. This novel method can produce SiC f /SiC composites with a lower porosity and an uniform distribution of pores when compared with the conventional CVI. This would be expected to increase mechanical and thermal properties of the SiC f /SiC composites. In order to take full advantage of the whisker growing strategy, however, a homogeneous growth of long whiskers is required. In this study, we applied the atmospheric pressure CVI process without metallic catalysts for the growth of SiC nano wires within stacked SiC fiber fabrics. We focused on the effect of the concentration of a reactant gas on the growth behavior and microstructures of the SiC nano wires and discussed a controlling condition for the homogenous growth of long SiC nano wires

  19. Practical applications of SiC-MOSFETs and further developments

    Science.gov (United States)

    Furuhashi, Masayuki; Tomohisa, Shingo; Kuroiwa, Takeharu; Yamakawa, Satoshi

    2016-03-01

    The next generation power modules using SiC-MOSFETs have been developed for over ten years. From our successful results, we have released SiC power modules which have been used in railway vehicles, industrial machines and home appliances, etc. Low on-resistance 3.3 kV SiC-MOSFETs have been realized by JFET doping and they demonstrated a loss reduction of 55% in a traction inverter compared to a conventional system. In the case of a 1.2 kV MOSFET, a 1 cm2 die verified that it can control a large current of over 600 A. For home appliances, we reduce the trade-off between the threshold voltage and channel mobility by a new gate oxide process. High threshold voltage SiC-MOSFETs having a low on-resistance contribute to the low cost installation of SiC-MOSFETs into air conditioners and achieved a loss reduction of 45% in DC converters. For further reduction of conduction loss, we investigated new structures and technologies. Trench SiC-MOSFETs having a bottom p-well verify lower on-resistance and a larger SCSOA than those of planar MOSFETs. The optimization of the dopant concentration in the drift layer and a reduction of wafer thickness verified the reduction of on-resistance. They are expected to contribute to a lower power loss.

  20. Practical applications of SiC-MOSFETs and further developments

    International Nuclear Information System (INIS)

    Furuhashi, Masayuki; Tomohisa, Shingo; Kuroiwa, Takeharu; Yamakawa, Satoshi

    2016-01-01

    The next generation power modules using SiC-MOSFETs have been developed for over ten years. From our successful results, we have released SiC power modules which have been used in railway vehicles, industrial machines and home appliances, etc. Low on-resistance 3.3 kV SiC-MOSFETs have been realized by JFET doping and they demonstrated a loss reduction of 55% in a traction inverter compared to a conventional system. In the case of a 1.2 kV MOSFET, a 1 cm 2 die verified that it can control a large current of over 600 A. For home appliances, we reduce the trade-off between the threshold voltage and channel mobility by a new gate oxide process. High threshold voltage SiC-MOSFETs having a low on-resistance contribute to the low cost installation of SiC-MOSFETs into air conditioners and achieved a loss reduction of 45% in DC converters. For further reduction of conduction loss, we investigated new structures and technologies. Trench SiC-MOSFETs having a bottom p-well verify lower on-resistance and a larger SCSOA than those of planar MOSFETs. The optimization of the dopant concentration in the drift layer and a reduction of wafer thickness verified the reduction of on-resistance. They are expected to contribute to a lower power loss. (paper)

  1. Synergistic effect of displacement damage, helium and hydrogen on microstructural change of SiC/SiC composites fabricated by reaction bonding process

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, T.; Igawa, N.; Wakai, E.; Jitsukawa, S. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Hasegawa, A. [Tohoku Univ., Dept. of Quantum Science and Energy Engr., Sendai (Japan)

    2007-07-01

    Full text of publication follows: Continuous silicon carbide (SiC) fiber reinforced SiC matrix (SiC/SiC) composites are known to be attractive candidate materials for first wall and blanket components in fusion reactors. In the fusion environment, helium and hydrogen are produced and helium bubbles can be formed in the SiC by irradiation of 14-MeV neutrons. Authors reported the synergistic effect of helium and hydrogen as transmutation products on swelling behavior and microstructural change of the SiC/SiC composites fabricated by chemical vapor infiltration (CVI) process. Authors also reported about the fabrication of high thermal conductive SiC/SiC composites by reaction bonding (RB) process. The matrix fabricated by RB process has different microstructures such as bigger grain size of SiC and including Si phase as second phase from that by CVI process. It is, therefore, investigated the synergistic effect of displacement damage, helium and hydrogen as transmutation products on the microstructure of SiC/SiC composite by RB process in this study. The SiC/SiC composites by RB process were irradiated by the simultaneous triple ion irradiation (Si{sup 2+}, He{sup +} and H{sup +}) at 800 and 1000 deg. C. The displacement damage was induced by 6.0 MeV Si{sup 2+} ion irradiation up to 10 dpa. The microstructures of irradiated SiC/SiC composites by RB process were observed by TEM. The double layer of carbon and SiC as interphase between fiber and matrix by a chemical vapor deposition (CVD) was coated on SiC fibers in the SiC/SiC composites by RB process. The TEM observation revealed that He bubbles were formed both in the matrix by RB and SiC interphase by CVD process. Almost all He bubbles were formed at the grain boundary in SiC interphase by CVD process. On the other hand, He bubbles were formed both at the grain boundary and in Si grain of the matrix by RB process. The average size of He bubbles in the matrix by RB was smaller than that in SiC interphase by CVD

  2. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [pnnl; Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roosendaal, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shin, Yongsoon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nguyen, Ba Nghiep; Borlaug, Brennan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arreguin, Shelly A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-15

    A new dual-phase nanocomposite of Ti₃SiC₂/SiC is being synthesized using preceramic polymers, ceramic powders, and carbon nanotubes (CNTs) designed to be suitable for advanced nuclear reactors and perhaps as fuel cladding. The material is being designed to have superior fracture toughness compared to SiC, adequate thermal conductivity, and higher density than SiC/SiC composites. This annual report summarizes the progress towards this goal and reports progress in understanding certain aspects of the material behavior but some shortcomings in achieving full density or in achieving adequate incorporation of CNTs. The measured thermal conductivity is adequate and falls into an expected range based on SiC and Ti₃SiC₂. Part of this study makes an initial assessment for Ti₃SiC₂ as a barrier to fission product transport. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti₃SiC₂, SiC, and a synthesized at PNNL. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti₃SiC₂ occurs during ion implantation at 873 K. Cs in Ti₃SiC₂ is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti₃SiC₂ as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Progress is reported in thermal conductivity modeling of SiC-based materials that is relevant to this research, as is progress in modeling the effects of CNTs on fracture strength of SiC-based materials.

  3. Heteroepitaxial growth of SiC films by carbonization of polyimide Langmuir-Blodgett films on Si

    Directory of Open Access Journals (Sweden)

    Goloudina S.I.

    2017-01-01

    Full Text Available High quality single crystal SiC films were prepared by carbonization of polyimide Langmuir-Blodgett films on Si substrate. The films formed after annealing of the polyimide films at 1000°C, 1100°C, 1200°C were studied by Fourier transform-infrared (FTIR spectroscopy, X-ray diffraction (XRD, Raman spectroscopy, transmission electon microscopy (TEM, transmission electron diffraction (TED, and scanning electron microscopy (SEM. XRD study and HRTEM cross-section revealed that the crystalline SiC film begins to grow on Si (111 substrate at 1000°C. According to the HRTEM cross-section image five planes in 3C-SiC (111 film are aligned with four Si(111 planes at the SiC/Si interface. It was shown the SiC films (35 nm grown on Si(111 at 1200°C have mainly cubic 3C-SiC structure with a little presence of hexagonal polytypes. Only 3C-SiC films (30 nm were formed on Si (100 substrate at the same temperature. It was shown the SiC films (30-35 nm are able to cover the voids in Si substrate with size up to 10 μm.

  4. Hot pressing of B{sub 4}C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O. [Ystanbul Technical University, Faculty of Chemistry and Metallurgy, Materials and Metallurgical Engineering Dept., Maslak-Ystanbul (Turkey)

    2005-07-01

    B{sub 4}C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B{sub 4}C/SiC composite samples were lower than monolithic B{sub 4}C in all experimental conditions. (authors)

  5. Packaging Technologies for 500C SiC Electronics and Sensors

    Science.gov (United States)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  6. Purity and radioactive decay behaviour of industrial 2D-reinforced SiCf/SiC composites

    International Nuclear Information System (INIS)

    Scholz, H.W.; Zucchetti, M.; Casteleyn, K.; Adelhelm, C.

    1994-01-01

    Ceramic matrix composites based on SiC with continuous fibres (SiC f /SiC) are considered promising structural materials for future fusion devices. It was still to clarify, whether impurities in industrial SiC f /SiC could jeopardise radiological advantages. Experimental impurity analyses revealed a two-dimensionally reinforced SiC f /SiC with the matrix produced by CVI as very pure. Chemo-spectrometric methods were combined with radioactivation methods (CPAA, NAA). A quantification of the main constituents Si, C and O was added. Calculations with the FISPACT-2.4 code and EAF-2 library identified elements detrimental for different low-activation criteria. For the neutron exposure, EEF reactor-study first wall and blanket conditions were simulated. The calculated SiC f /SiC included 48 trace elements. Even under conservative assumptions, all low-activation limits of European interest are fulfilled. Exclusively the hands-on recycling limit for the First Wall can intrinsically not be satisfied with SiC. The theoretical goal of a SiC f /SiC depleted of 28 Si (isotopic tailoring) is critically discussed. ((orig.))

  7. Anisotropy in elastic properties of TiSi2 (C49, C40 and C54), TiSi and Ti5Si3: an ab-initio density functional study

    International Nuclear Information System (INIS)

    Niranjan, Manish K

    2015-01-01

    We present a comparative study of the anisotropy in the elastic properties of the C49, C54 and C40 phases of TiSi 2 , as well as orthorhombic TiSi and hexagonal Ti 5 Si 3 . The elastic constants, elastic moduli, Debye temperature and sound velocities are computed within the framework of density functional theory. The computed values of the elastic constants and moduli are found to be in excellent agreement with available experimental values. The average elastic moduli, such as Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio, of polycrystalline aggregates are computed using the computed elastic constants of single crystals. The anisotropy in elastic properties is analyzed using estimates of shear anisotropic factors, bulk modulus anisotropic factors and variations in Young’s and bulk moduli in different crystallographic directions. Among the Ti–Si phases, the computed directional Young’s modulus profiles of C49 TiSi 2 and C40 TiSi 2 are found to be quite similar to those of bulk Si and Ti, respectively. In addition to the elastic properties, the electronic structure of five Ti–Si phases is studied. The density of states and planar charge density profiles reveal mixed covalent–metallic bonding in all Ti–Si phases. (paper)

  8. Disorder accumulation and recovery in gold-ion irradiated 3C-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Weber, William J.; Lian, Jie; Kalkhoran, N. M.

    2009-01-12

    A single-crystal 3C-SiC film on the Si/SiO2/Si (SIMOX) substrate was irradiated in different areas at 156 K with Au2+ ions to low fluences. The disorder profiles as a function of dose on both the Si and C sublattices have been determined in situ using a combination of 0.94 MeV D+ Rutherford backscattering spectrometry and nuclear reaction analysis in channeling geometry along the <100>, <110> and <111> axes. The results indicate that for the same damage state, the level of disorder on the Si sublattice in 3C-SiC follows a decreasing order along the <111>, <100> and <110> axes, while that on the C sublattice shows comparable values. Similar levels of Si and C disorder are observed along the <111> axis over the applied dose range. However, the level of C disorder is higher than that of Si disorder along either <100> or <110>. The amount of disorder recovery during thermal annealing processes depends on the sublattice (Si or C) and crystallographic orientation. Room-temperature recovery occurs for both sublattices in 3C-SiC irradiated to a dose of 0.047 dpa or lower. Significant recovery is observed along all directions during thermal annealing at 600 K. The results will be discussed and compared to those for 6H- and 4H-SiC under similar irradiation conditions.

  9. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Takahashi, Tetsuo; Kato, Tomohisa; Fujii, Kuniharu; Ujihara, Toru; Matsumoto, Yuji; Kurashige, Kazuhisa; Okumura, Hajime

    2014-09-01

    The growth rate and surface morphology of 4H-SiC crystals prepared by solution growth with Si1-xCrx and Si1-x-yCrxAly (x=0.4, 0.5 and 0.6; y=0.04) solvents were investigated under various temperature conditions. The growth rate was examined as functions of the temperature difference between the growth surface and C source, the amount of supersaturated C and supersaturation at the growth surface. We found that generation of trench-like surface defects in 4H-SiC crystals was suppressed using Si1-x-yCrxAly solvents even under highly supersaturated conditions where the growth rate exceeded 760 μm/h. Conversely, trench-like defects were observed in crystals grown with Si1-xCrx solvents under all experimental conditions. Statistical observation of the macrostep structure showed that the macrostep height in crystals grown with Si1-x-yCrxAly solvents was maintained at lower levels than that obtained using Si1-xCrx solvents. Addition of Al prevents the macrosteps from developing into large steps, which are responsible for the generation of trench-like surface defects.

  10. Palladium assisted silver transport in polycrystalline SiC

    Energy Technology Data Exchange (ETDEWEB)

    Neethling, J.H., E-mail: Jan.Neethling@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); O' Connell, J.H.; Olivier, E.J. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-10-15

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd-Ag compound at temperatures of 800 and 1000 Degree-Sign C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC-SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag-Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag-Pd compound if present at the IPyC-SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  11. Luminescence of solar cells with a-Si:H/c-Si heterojunctions

    Science.gov (United States)

    Zhigunov, D. M.; Il'in, A. S.; Forsh, P. A.; Bobyl', A. V.; Verbitskii, V. N.; Terukov, E. I.; Kashkarov, P. K.

    2017-05-01

    We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  12. Palladium assisted silver transport in polycrystalline SiC

    International Nuclear Information System (INIS)

    Neethling, J.H.; O’Connell, J.H.; Olivier, E.J.

    2012-01-01

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd–Ag compound at temperatures of 800 and 1000 °C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC–SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag–Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag–Pd compound if present at the IPyC–SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  13. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  14. Preparation of SiC and Ag/SiC coatings on TRISO surrogate particles by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Lustfeld, Martin; Reinecke, Anne-Maria; Lippman, Wolfgang; Hurtado, Antonio; Ruiz-Moreno, Ana

    2014-01-01

    Recently published research results suggest significant advantages of using nanocrystalline instead of coarse grained SiC for nuclear applications. In this work it was attempted to prepare nanocrystalline SiC coatings on TRISO surrogate kernels using the pulsed laser deposition (PLD) process. As a plasma-based physical vapor deposition process, PLD allows the synthesis of dense and stoichiometric coatings in the amorphous or nanocrystalline phase. Two different types of TRISO surrogate kernels were used with outer diameters of 500 pm and 800 μm, respectively: plain Al_2O_3 kernels and ZrO_2 kernels coated with TRISO-like buffer and pyrolytic carbon (PyC) layers. In a second step, the PLD process was used for the preparation of multilayer coatings consisting of a Ag layer buried with a SiC layer. The samples were analyzed regarding their morphology, microstructure, crystalline phase and chemical composition using scanning electron microscopy (SEM), laser scanning microscopy (LSM), x-ray diffraction (XRD) and energy- dispersive x-ray spectroscopy (EDX). The samples will be used in future work for out-of-pile investigations of both thermal stability and Ag retention capability of nanocrystalline SiC layers. X-ray diflraction measurements did not confirm nano crystallinity of the SiC coatings, but rather indicated that the coatings were mainly amorphous possibly with a little fraction of the nanocrystalline phase. Further analyses showed that some of the SiC coatings had an adequate stoichiometric composition and that Ag/SiC multilayer coatings were successfully produced by PLD. Coatings on TRISO- like buffer and PyC layers exhibited good adhesion to the substrate while coatings on Al_2O_3 kernels were susceptible to delamination. The results suggest that PLD is generally suitable for SiC coating of TRISO particles. However, further optimization of the process parameters such as the coating temperature is needed to obtain fine- grained non-columnar SiC layers that are

  15. Heteroepitaxy of zinc-blende SiC nano-dots on Si substrate by organometallic ion beam

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kiuchi, M.; Sugimoto, S.; Goto, S.

    2006-01-01

    The self-assembled SiC nano-dots were fabricated on Si(111) substrate at low-temperatures using the organometallic ion beam deposition technique. The single precursor of methylsilicenium ions (SiCH 3 + ) with the energy of 100 eV was deposited on Si(111) substrate at 500, 550 and 600 deg. C. The characteristics of the self-assembled SiC nano-dots were analyzed by reflection high-energy electron diffraction (RHEED), Raman spectroscopy and atomic force microscope (AFM). The RHEED patterns showed that the crystal structure of the SiC nano-dots formed on Si(111) substrate was zinc-blende SiC (3C-SiC) and it was heteroepitaxy. The self-assembled SiC nano-dots were like a dome in shape, and their sizes were the length of 200-300 nm and the height of 10-15 nm. Despite the low-temperature of 500 deg. C as SiC crystallization the heteroepitaxial SiC nano-dots were fabricated on Si(111) substrate using the organometallic ion beam

  16. Nano-SiC region formation in (100) Si-on-insulator substrate: Optimization of hot-C+-ion implantation process to improve photoluminescence intensity

    Science.gov (United States)

    Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu

    2018-04-01

    We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.

  17. M3FT-16OR020202112 - Report on viability of hydrothermal corrosion resistant SiC/SiC Joint development

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans Jr, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-30

    Hydrothermal corrosion of four types of the silicon carbide (SiC) to SiC plate joints were investigated under PWR and BWR relevant chemical conditions without irradiation. The joints were formed by metal diffusion bonding using molybdenum or titanium interlayer, reaction sintering using Ti-Si-C system, and SiC nanopowder sintering. Most of the formed joints withstood the corrosion tests for five weeks. The recession of the SiC substrates was limited. Based on the recession rate of the bonding layers, it was concluded that all the joints except for the molybdenum diffusion bond are promising under the reducing activity environments. The SiC nanopowder sintered joint was the most corrosion tolerant under the oxidizing activity environment among the four joints.

  18. Physicochemical interactions resulting from the use of a SiC/SiC composite material in typical environments of future nuclear reactors

    International Nuclear Information System (INIS)

    Braun, James

    2014-01-01

    The development of high purity SiC fibers during the nineties has led to their consideration as nuclear reactors components through the use of SiC/SiC composites. SiC and SiC/SiC composites are considered as core materials of future nuclear reactors (SFR, GFR) and as a potential replacement for the zirconium cladding of PWR. Therefore, the thermochemical compatibility of these materials with typical environments of those nuclear reactors has been studied. The composition and the growth kinetics of the reaction zone of SiC towards niobium and tantalum (considered as materials to ensure the leak-tightness of a SiC/SiC cladding for GFR) have been studied between 1050 and 1500 C. High temperature heat treatments in open and closed systems between SiC and UO 2 have shown a significant reactivity over 1200 C characterized by the formation of CO and uranium silicides. Moreover, a liquid phase has been detected between 1500 and 1650 C. The exposure of SiC/SiC to liquid sodium (550 C, up to 2000 h) has been studied as a function of the oxygen concentration dissolved in liquid sodium. An improvement of the mechanical properties of the composites elaborated for this study (increase of the tensile strength and strain at failure) has been highlighted after immersion in the liquid sodium independently of its oxygen concentration. It is believed that this phenomenon is due to the presence of residual sodium in the material. (author) [fr

  19. Mechanical performance of Hi-Nicalon/CVI-SiC composites with multilayer SiC/C interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, H.G.; Carter, R.H.; Curtin, W.A. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics

    1997-12-01

    The mechanical properties and interfacial characteristics of new SiC/SiC ceramic composites, composed of Hi-Nicalon fibers in a CVI-SiC matrix and having a variety of multilayer SiC/C coatings between the fibers and the matrix, are studied in detail to elucidate the roles of the coatings and fibers. Axial tension tests and unload/reload hysteresis loop measurements are performed to determine mechanical performance. All materials exhibit the strong and tough behavior characteristic of good ceramic composites, with all multilayer variants performing quite similarly. SEM microscopy demonstrates that matrix cracks penetrate through the multilayers and debond at the fiber/inner-coating interface. Analysis of the hysteretic behavior leads to values for interfacial sliding resistance {tau} {approx} 11 ksi and interfacial toughness {Gamma}{sub i} {approx} 2 J/m{sup 2} that are nearly independent of multilayer structure, and are similar to values obtained for standard pyrolitic carbon interfaces. These results all indicate debonding at the fiber surface for all coating structures, which provides a common roughness, {tau}, and {Gamma}{sub i}. Analysis of fiber fracture mirrors provides an estimate of the in-situ strength of the fibers and demonstrates the high strength retention of the Hi-Nicalon fibers. The in-situ fiber strengths are combined with the measured pullout lengths to obtain an independent determination of {tau} = 8.5 ksi that agrees well with the value found from the hysteretic behavior. Predictions of composite strength using the derived fiber strengths agree well with the measured value although the predicted failure strain is too large. This study demonstrates that Hi-Nicalon fiber/CVI-SiC composites perform well for a wide range of multilayer interface structures and that the interfaces present relatively high values of {tau} and {Gamma}{sub i}, both of which are beneficial to strength and toughness. The small carbon layer thicknesses in these multilayer

  20. Nitric acid oxidation of Si (NAOS) method for low temperature fabrication of SiO{sub 2}/Si and SiO{sub 2}/SiC structures

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H., E-mail: koba771@ybb.ne.jp [Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Agency, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Imamura, K.; Kim, W.-B.; Im, S.-S.; Asuha [Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Agency, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2010-07-15

    We have developed low temperature formation methods of SiO{sub 2}/Si and SiO{sub 2}/SiC structures by use of nitric acid, i.e., nitric acid oxidation of Si (or SiC) (NAOS) methods. By use of the azeotropic NAOS method (i.e., immersion in 68 wt% HNO{sub 3} aqueous solutions at 120 deg. C), an ultrathin (i.e., 1.3-1.4 nm) SiO{sub 2} layer with a low leakage current density can be formed on Si. The leakage current density can be further decreased by post-metallization anneal (PMA) at 200 deg. C in hydrogen atmosphere, and consequently the leakage current density at the gate bias voltage of 1 V becomes 1/4-1/20 of that of an ultrathin (i.e., 1.5 nm) thermal oxide layer usually formed at temperatures between 800 and 900 deg. C. The low leakage current density is attributable to (i) low interface state density, (ii) low SiO{sub 2} gap-state density, and (iii) high band discontinuity energy at the SiO{sub 2}/Si interface arising from the high atomic density of the NAOS SiO{sub 2} layer. For the formation of a relatively thick (i.e., {>=}10 nm) SiO{sub 2} layer, we have developed the two-step NAOS method in which the initial and subsequent oxidation is performed by immersion in {approx}40 wt% HNO{sub 3} and azeotropic HNO{sub 3} aqueous solutions, respectively. In this case, the SiO{sub 2} formation rate does not depend on the Si surface orientation. Using the two-step NAOS method, a uniform thickness SiO{sub 2} layer can be formed even on the rough surface of poly-crystalline Si thin films. The atomic density of the two-step NAOS SiO{sub 2} layer is slightly higher than that for thermal oxide. When PMA at 250 deg. C in hydrogen is performed on the two-step NAOS SiO{sub 2} layer, the current-voltage and capacitance-voltage characteristics become as good as those for thermal oxide formed at 900 deg. C. A relatively thick (i.e., {>=}10 nm) SiO{sub 2} layer can also be formed on SiC at 120 deg. C by use of the two-step NAOS method. With no treatment before the NAOS method

  1. SiC for microwave power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, S.; Siergiej, R.R.; Clarke, R.C.; Agarwal, A.K.; Brandt, C.D. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-16

    The advantages of SiC for high power, microwave devices are discussed. The design considerations, fabrication, and experimental results are described for SiC MESFETs and SITs. The highest reported f{sub max} for a 0.5 {mu}m MESFET using semi-insulating 4H-SiC is 42 GHz. These devices also showed a small signal gain of 5.1 dB at 20 GHz. Other 4H-SiC MESFETs have shown a power density of 3.3 W/mm at 850 MHz. The largest SiC power transistor reported is a 450 W SIT measured at 600 MHz. The power output density of this SIT is 2.5 times higher than that of comparable silicon devices. SITs have been designed to operate as high as 3.0 GHz, with a 3 cm periphery part delivering 38 W of output power. (orig.) 28 refs.

  2. ZnO epitaxy on SiC(0001-bar) substrate: Comparison with ZnO/SiC(0 0 0 1) heterostructure

    International Nuclear Information System (INIS)

    Ashrafi, Almamun; Aminuzzaman, Mohammod

    2011-01-01

    ZnO thin layers deposited on 6H-SiC substrates showed six-fold crystal symmetry with an epitaxial relationship of (0 0 0 2) ZnO ||(0 0 0 6) SiC and [112-bar 0] ZnO ||[112-bar 0] SiC . Despite the different 6H-SiC substrate surface orientations for the ZnO epitaxy, the orientation relationship of ZnO/6H-SiC heterostructures is identical, as confirmed by X-ray diffraction studies. In these ZnO/6H-SiC(0 0 0 1) and ZnO/6H-SiC(0001-bar) heterostructures, the valence band offsets are measured to be 1.12 eV and 1.09 eV, leading to the conduction band offset values of 0.75 eV and 0.72 eV, respectively. These slightly different band-offset values in ZnO/6H-SiC heterojunctions are attributed to the variation of valence band maximums and the different interface charge compensation mechanisms.

  3. Molecular dynamics simulation of damage cascade creation in SiC composites containing SiC/graphite interface

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Joseph; Chen, Di; Wang, Jing; Shao, Lin, E-mail: lshao@tamu.edu

    2013-07-15

    Silicon carbide composites have been investigated for their use as structural materials for advanced nuclear reactor designs. Although the composites have significantly enhanced mechanical properties and structure integrity, there is little known about the behavior of defects in the presence of a graphite-silicon carbide interface. In this study, molecular dynamics simulations have been used to model defect creation and clustering in a composite containing a SiC/graphite interface. Evolution of displacements as a function of time were studied and compared to bulk SiC. The results show that the first a few SiC atomic layers closest to the interface are easily damaged. However, beyond these first few atomic layers the system appears to be unaffected by the SiC interface.

  4. Electrochemical characteristics of nc-Si/SiC composite for anode electrode of lithium ion batteries

    International Nuclear Information System (INIS)

    Jeon, Bup Ju; Lee, Joong Kee

    2014-01-01

    Graphical abstract: Cycling performances and coulombic efficiencies of the nc-Si/SiC composite anodes at different CH 4 /SiH 4 mole ratios. -- Highlights: • Our work has focused on irreversible discharge capacity and capacity retention of nc-Si/SiC composite particles. • Particles comprised a mixed construction of nc-Si/SiC structure with dual phases. • The SiC phase acted as retarding media, leading to enhanced cycle stability. -- Abstract: nc-Si/SiC composite particles were prepared as an anode material for lithium ion batteries using a plasma jet with DC arc discharge. The composition of the nc-Si/SiC composite particles was controlled by setting the mole ratio of CH 4 and SiH 4 precursor gases. X-ray diffraction, TEM images, and Raman shift analyses revealed that the synthesized nc-Si/SiC composite particles comprised a construction of nano-nocaled structure with crystalline phases of active silicon, highly disordered amorphous carbon of graphite and crystalline phases of β-SiC. In the experimental range examined, the nc-Si/SiC composite particles showed good coulombic efficiency in comparison with particles high Si–Si bonding content due to the interplay of particles with a small proportion of carbon and the buffering effect against volume expansion by structural stabilization, and played a role as retarding media for the rapid electrochemical reactions of the SiC crystal against lithium

  5. Electrochemical characteristics of nc-Si/SiC composite for anode electrode of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bup Ju [Department of Energy Resources, Shinhan University, 233-1, Sangpae-dong, Dongducheon, Gyeonggi-do, 483-777 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Advanced Energy Materials Processing Laboratory, Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-03-25

    Graphical abstract: Cycling performances and coulombic efficiencies of the nc-Si/SiC composite anodes at different CH{sub 4}/SiH{sub 4} mole ratios. -- Highlights: • Our work has focused on irreversible discharge capacity and capacity retention of nc-Si/SiC composite particles. • Particles comprised a mixed construction of nc-Si/SiC structure with dual phases. • The SiC phase acted as retarding media, leading to enhanced cycle stability. -- Abstract: nc-Si/SiC composite particles were prepared as an anode material for lithium ion batteries using a plasma jet with DC arc discharge. The composition of the nc-Si/SiC composite particles was controlled by setting the mole ratio of CH{sub 4} and SiH{sub 4} precursor gases. X-ray diffraction, TEM images, and Raman shift analyses revealed that the synthesized nc-Si/SiC composite particles comprised a construction of nano-nocaled structure with crystalline phases of active silicon, highly disordered amorphous carbon of graphite and crystalline phases of β-SiC. In the experimental range examined, the nc-Si/SiC composite particles showed good coulombic efficiency in comparison with particles high Si–Si bonding content due to the interplay of particles with a small proportion of carbon and the buffering effect against volume expansion by structural stabilization, and played a role as retarding media for the rapid electrochemical reactions of the SiC crystal against lithium.

  6. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  7. Effect of hydrogen flow on growth of 3C-SiC heteroepitaxial layers on Si(111) substrates

    International Nuclear Information System (INIS)

    Yan, Guoguo; Zhang, Feng; Niu, Yingxi; Yang, Fei; Liu, Xingfang; Wang, Lei; Zhao, Wanshun; Sun, Guosheng; Zeng, Yiping

    2015-01-01

    Highlights: • 3C-SiC thin films of preferential orientation along with Si(111) substrates were obtained using home-made horizontal LPCVD with different H_2 flow rate ranging from15 to 30 slm. • High H_2 flow rate will inhibit the out-diffusion of silicon atoms from silicon substrates effectively. Transformation and the mechanism of void formation are discussed based on our model. • The variation of growth rate and n-type doping with increasing H_2 flow rate is researched and the influencing mechanism is discussed. - Abstract: 3C-SiC thin films were grown on Si(111) substrates at 1250 °C by horizontal low pressure chemical vapor deposition (LPCVD). We performed an exhaustive study on the effect of H_2 flow rate on the crystalline quality, surface morphologies, growth rate, n-type doping of 3C-SiC thin films and the voids at the interface. The films show epitaxial nature with high crystal quality and surface morphology increase obviously with increasing H_2 flow rate. The growth rate and n-type doping are also dependent on H_2 flow rate. The properties of the voids at the interface are discussed based on the cross-sectional scanning electron microscope characterization. Transformation of voids with increasing H_2 flow rate are attributed to higher 3C-SiC film growth rate and H_2 etching rate. The mechanism of void formation is discussed based on our model, too. The results demonstrate that H_2 flow rate plays a very important role in the heteroepitaxial growth of 3C-SiC films.

  8. Effect of hydrogen flow on growth of 3C-SiC heteroepitaxial layers on Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guoguo [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang, Feng, E-mail: fzhang@semi.ac.cn [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Niu, Yingxi; Yang, Fei [Electrical Engineering New Materials and Microelectronics Department, State Grid Smart Grid Research Institute, Beijing 100192 (China); Liu, Xingfang; Wang, Lei; Zhao, Wanshun [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Guosheng [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Dongguan Tianyu Semiconductor, Inc., Dongguan 523000 (China); Zeng, Yiping [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-10-30

    Highlights: • 3C-SiC thin films of preferential orientation along with Si(111) substrates were obtained using home-made horizontal LPCVD with different H{sub 2} flow rate ranging from15 to 30 slm. • High H{sub 2} flow rate will inhibit the out-diffusion of silicon atoms from silicon substrates effectively. Transformation and the mechanism of void formation are discussed based on our model. • The variation of growth rate and n-type doping with increasing H{sub 2} flow rate is researched and the influencing mechanism is discussed. - Abstract: 3C-SiC thin films were grown on Si(111) substrates at 1250 °C by horizontal low pressure chemical vapor deposition (LPCVD). We performed an exhaustive study on the effect of H{sub 2} flow rate on the crystalline quality, surface morphologies, growth rate, n-type doping of 3C-SiC thin films and the voids at the interface. The films show epitaxial nature with high crystal quality and surface morphology increase obviously with increasing H{sub 2} flow rate. The growth rate and n-type doping are also dependent on H{sub 2} flow rate. The properties of the voids at the interface are discussed based on the cross-sectional scanning electron microscope characterization. Transformation of voids with increasing H{sub 2} flow rate are attributed to higher 3C-SiC film growth rate and H{sub 2} etching rate. The mechanism of void formation is discussed based on our model, too. The results demonstrate that H{sub 2} flow rate plays a very important role in the heteroepitaxial growth of 3C-SiC films.

  9. Doping and stability of 3C-SiC: from thinfilm to bulk growth

    DEFF Research Database (Denmark)

    Jokubavicius, V.; Sun, J.; Linnarsson, M. K.

    cell technology. Nitrogen and boron doped 3C-SiC layers can depict a new infrared LED. Hexagonal SiC is an excellent substrate for heteropeitaxial growth of 3C-SiC due to excellent compatibility in lattice constant and thermal expansion coefficient. However, the growth of 3C-SiC on such substrates......-SiC for optoelectronic applications are discussed....

  10. The Seebeck coefficient of monocrystalline α-SiC and polycrystalline β-SiC measured at 300-533 K

    Science.gov (United States)

    Abu-Ageel, N.; Aslam, M.; Ager, R.; Rimai, L.

    2000-01-01

    The temperature dependence of the Seebeck coefficient of polycrystalline icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/> -SiC films deposited on quartz substrates by laser ablation and of commercially available icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> -SiC wafers is reported in a temperature range of 300-533 K for the first time. The Seebeck emf of icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> -SiC substrates and icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/> -SiC samples ranges between -9 µV °C-1 and -108 µV °C-1 which is higher than that of commercial Pt thermocouples.

  11. Impact resistance of uncoated SiC/SiC composites

    International Nuclear Information System (INIS)

    Bhatt, Ramakrishna T.; Choi, Sung R.; Cosgriff, Laura M.; Fox, Dennis S.; Lee, Kang N.

    2008-01-01

    Two-dimensional woven SiC/SiC composites fabricated by melt infiltration method were impact tested at room temperature and at 1316 deg. C in air using 1.59-mm diameter steel-ball projectiles at velocities ranging from 115 to 400 m/s. The extent of substrate damage with increasing projectile velocity was imaged and analyzed using optical and scanning electron microscopy, and non-destructive evaluation (NDE) methods such as pulsed thermography, and computed tomography. The impacted specimens were tensile tested at room temperature to determine their residual mechanical properties. Results indicate that at 115 m/s projectile velocity, the composite showed no noticeable surface or internal damage and retained its as-fabricated mechanical properties. As the projectile velocity increased above this value, the internal damage increased and mechanical properties degraded. At velocities >300 m/s, the projectile penetrated through the composite, but the composite retained ∼50% of the ultimate tensile strength of the as-fabricated composite and exhibited non-brittle failure. Predominant internal damages are delamination of fiber plies, fiber fracture and matrix shearing

  12. Mono- and polyadducts of C60 with anthracenes by Diels-Alder-reactions

    International Nuclear Information System (INIS)

    Duarte-Ruiz, A.

    2000-09-01

    This work describes the synthesis and characterization of seven new mono-adducts of 9-methylanthracene, 9,10-dimethylanthracene, 9-bromoanthracene. 2,3,6,7-tetramethylanthracene, 1-methylanthracene, 2,6-di-tert-butylanthracen, as well as 2-methylanthracene to fullerene C60 in solution at r.t. by means of [4+2] Diels-Alder reactions. It could be shown that the mono-adducts with 9-methylanthracene, 9,10-dimethylanthracene, and 1-methylanthracene form the corresponding antipodal bis-adduct 'trans-1' on heating the solid to 180 o C. Furthermore the functionalization of fullerene C60 anthracene mono-adduct (C60C14H10) with anthracene through [4+2] Diels-Alder reactions was investigated which made it possible to separate and to characterize the five possible bis-adducts ('trans-1', 'trans-2', 'trans-3', 'trans-4', and 'e') that can form when the second anthracene adds either 'trans' to the opposite hemisphere (compared to the first addition of anthracene) or to an equatorial position. An exact identification of the bis-adducts 'trans-2' and 'trans-4' could only be acquired with spectroscopic methods, fortunately the bis-adducts 'trans-4', 'trans-3', and 'e' could also be examined by x-ray, thus all five could be fully characterized. No bis-adducts on the same hemisphere ('cis') were found. UV/VIS-spectra of the bis-adducts opened up the possibility to identify other [4+2] Diels-Alder products in the future. It has been noticed that the eluation sequence of the bis-adducts ('trans-1' before 'trans-2' before 'trans-4' before 'trans-3' before 'e') doesn't strictly correlate with the dipole moments. Furthermore six new tris-adducts ('t4t4t2', 't3t3t3', 't3t3t4', 'et3t2', 'et3t4', and 'eee') and one tetra-adduct ('eeet3') were separated and characterized. The tris-adduct 't3t3t3' was additionally characterized by x-ray which showed that the crystal contains only one enatiomer. All bis- and tris-adducts form the antipodal bis-adduct 'trans-1' on heating to 180 o C for 10 min

  13. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  14. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10 16 N + ions/cm 2 and 3.6 x 10 17 e/cm 2 and 1.08 x 10 18 e/cm 2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  15. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  16. ZnO epitaxy on SiC(0001-bar) substrate: Comparison with ZnO/SiC(0 0 0 1) heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafi, Almamun, E-mail: ash2phy@gmail.com [Department of Physics, University of Vermont, VT 05405 (United States); Aminuzzaman, Mohammod [Department of Chemical Science, Universiti Tunku Abdul Rahman, Perak (Malaysia)

    2011-05-01

    ZnO thin layers deposited on 6H-SiC substrates showed six-fold crystal symmetry with an epitaxial relationship of (0 0 0 2){sub ZnO}||(0 0 0 6){sub SiC} and [112-bar 0]{sub ZnO}||[112-bar 0]{sub SiC}. Despite the different 6H-SiC substrate surface orientations for the ZnO epitaxy, the orientation relationship of ZnO/6H-SiC heterostructures is identical, as confirmed by X-ray diffraction studies. In these ZnO/6H-SiC(0 0 0 1) and ZnO/6H-SiC(0001-bar) heterostructures, the valence band offsets are measured to be 1.12 eV and 1.09 eV, leading to the conduction band offset values of 0.75 eV and 0.72 eV, respectively. These slightly different band-offset values in ZnO/6H-SiC heterojunctions are attributed to the variation of valence band maximums and the different interface charge compensation mechanisms.

  17. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  18. Solving the critical thermal bowing in 3C-SiC/Si(111) by a tilting Si pillar architecture

    Science.gov (United States)

    Albani, Marco; Marzegalli, Anna; Bergamaschini, Roberto; Mauceri, Marco; Crippa, Danilo; La Via, Francesco; von Känel, Hans; Miglio, Leo

    2018-05-01

    The exceptionally large thermal strain in few-micrometers-thick 3C-SiC films on Si(111), causing severe wafer bending and cracking, is demonstrated to be elastically quenched by substrate patterning in finite arrays of Si micro-pillars, sufficiently large in aspect ratio to allow for lateral pillar tilting, both by simulations and by preliminary experiments. In suspended SiC patches, the mechanical problem is addressed by finite element method: both the strain relaxation and the wafer curvature are calculated at different pillar height, array size, and film thickness. Patches as large as required by power electronic devices (500-1000 μm in size) show a remarkable residual strain in the central area, unless the pillar aspect ratio is made sufficiently large to allow peripheral pillars to accommodate the full film retraction. A sublinear relationship between the pillar aspect ratio and the patch size, guaranteeing a minimal curvature radius, as required for wafer processing and micro-crack prevention, is shown to be valid for any heteroepitaxial system.

  19. Synthesis of whiskers of SiC microwave assisted; Sintesis de whiskers de SiC asistida por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Garza-Mendez, F. J.; Vanegas, A. J.; Vazquez, B. A.; Garza-Paz, J.

    2013-06-01

    We developed a new process for the synthesis of SiC whiskers assisted by microwaves; this is based on the mixture of silica xerogels and graphite powder. As energy source were used microwaves of 2.45 GHz and 1.0 kW of power RMS. On the other hand, mesoporous silica was synthesized via sol-gel, the precursors used were TEOS/H{sub 2}O and ethanol. Through analysis of the BET is determined the value of average pore size (3.0 nm) and the surface area (1090 m2/g).By mean of X-Ray diffraction it was demonstrated that the silica obtained is an amorphous solid and, the powders obtained in the microwave synthesis are {beta}-SiC. Synthesized SiC powders were observed using a SEM in secondary electron mode, it was observed that this powders consists of SiC whiskers. The effect of microwaves on the synthesis of whiskers of SiC is discussed in the present work. (Author) 19 refs.

  20. Mechanical properties of hot-pressed SiC-TiC composites

    Directory of Open Access Journals (Sweden)

    Kamil Kornaus

    2017-12-01

    Full Text Available SiC-TiC composites, with 0, 5, 10 and 20 vol.% of TiC, were sintered by the hot-pressing technique at temperature of 2000 °C under argon atmosphere. SiC sintering process was activated by liquid phase created by the reaction between Al2O3 and Y2O3, in which it is possible to dissolve passivating oxide layers (SiO2 and TiO2 and partially SiC and TiC carbides. Microstructure observation and density measurements confirmed that the composites were dense with uniformly distributed components. Differences in thermal expansion coefficients between SiC and TiC led to complex stress state occurrence. These stresses combined with the liquid-derived separate phase between grains boundaries increased fracture toughness of the composites, which ranged from 5.8 to 6.3 MPa·m0.5. Opposite to the bending strength, fracture toughness increased with the TiC volume fraction. By means of simulation of residual thermal stresses in the composites, it was found that with the increasing volume fraction of TiC, tensile stress in TiC grains is reduced simultaneously with strong rise of compressive stresses in the matrix.

  1. Structure and chemistry of passivated SiC/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Houston Dycus, J.; Xu, Weizong; LeBeau, James M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Lichtenwalner, Daniel J.; Hull, Brett; Palmour, John W. [Power Devices R& D, Wolfspeed, A Cree Company, Research Triangle Park, North Carolina 27709 (United States)

    2016-05-16

    Here, we report on the chemistry and structure of 4H-SiC/SiO{sub 2} interfaces passivated either by nitric oxide annealing or Ba deposition. Using aberration corrected scanning transmission electron microscopy and spectroscopy, we find that Ba and N remain localized at SiC/SiO{sub 2} interface after processing. Further, we find that the passivating species can introduce significant changes to the near-interface atomic structure of SiC. Specifically, we quantify significant strain for nitric oxide annealed sample where Si dangling bonds are capped by N. In contrast, strain is not observed at the interface of the Ba treated samples. Finally, we place these results in the context of field effect mobility.

  2. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  3. High-temperature protective coatings for C/SiC composites

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2014-12-01

    Full Text Available Carbon fiber-reinforced silicon carbide (C/SiC composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073 K or higher in water vapor.

  4. Photoelectric Properties of Si Doping Superlattice Structure on 6H-SiC(0001).

    Science.gov (United States)

    Li, Lianbi; Zang, Yuan; Hu, Jichao; Lin, Shenghuang; Chen, Zhiming

    2017-05-25

    The energy-band structure and visible photoelectric properties of a p/n-Si doping superlattice structure (DSL) on 6H-SiC were simulated by Silvaco-TCAD. The,n the Si-DSL structures with 40 nm-p-Si/50 nm-n-Si multilayers were successfully prepared on 6H-SiC(0001) Si-face by chemical vapor deposition. TEM characterizations of the p/n-Si DSL confirmed the epitaxial growth of the Si films with preferred orientation and the misfit dislocations with a Burgers vector of 1/3 at the p-Si/n-Si interface. The device had an obvious rectifying behavior, and the turn-on voltage was about 1.2 V. Under the visible illumination of 0.6 W/cm², the device demonstrated a significant photoelectric response with a photocurrent density of 2.1 mA/cm². Visible light operation of the Si-DSL/6H-SiC heterostructure was realized for the first time.

  5. Photoelectric Properties of Si Doping Superlattice Structure on 6H-SiC(0001

    Directory of Open Access Journals (Sweden)

    Lianbi Li

    2017-05-01

    Full Text Available The energy-band structure and visible photoelectric properties of a p/n-Si doping superlattice structure (DSL on 6H-SiC were simulated by Silvaco-TCAD. The,n the Si-DSL structures with 40 nm-p-Si/50 nm-n-Si multilayers were successfully prepared on 6H-SiC(0001 Si-face by chemical vapor deposition. TEM characterizations of the p/n-Si DSL confirmed the epitaxial growth of the Si films with preferred orientation and the misfit dislocations with a Burgers vector of 1/3 <21-1> at the p-Si/n-Si interface. The device had an obvious rectifying behavior, and the turn-on voltage was about 1.2 V. Under the visible illumination of 0.6 W/cm2, the device demonstrated a significant photoelectric response with a photocurrent density of 2.1 mA/cm2. Visible light operation of the Si-DSL/6H-SiC heterostructure was realized for the first time.

  6. Grinding, Machining Morphological Studies on C/SiC Composites

    Science.gov (United States)

    Xiao, Chun-fang; Han, Bing

    2018-05-01

    C/SiC composite is a typical material difficult to machine. It is hard and brittle. In machining, the cutting force is large, the material removal rate is low, the edge is prone to collapse, and the tool wear is serious. In this paper, the grinding of C/Si composites material along the direction of fiber distribution is studied respectively. The surface microstructure and mechanical properties of C/SiC composites processed by ultrasonic machining were evaluated. The change of surface quality with the change of processing parameters has also been studied. By comparing the performances of conventional grinding and ultrasonic grinding, the surface roughness and functional characteristics of the material can be improved by optimizing the processing parameters.

  7. Influence wt.% of SiC and borax on the mechanical properties of AlSi-Mg-TiB-SiC composite by the method of semi solid stir casting

    Science.gov (United States)

    Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2017-04-01

    SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.

  8. SiC/C composite sheets produced from polycarbosilane/resin/bonder mixtures. Polycarbosilane/jushi/bonder kongokei kara sakuseishita SiC/C fukugo sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, K. (The National Defense Academy, Kanagawa (Japan)); Koga, J.; Iwata, T.; Yamanaka, S.; Ono, M. (Mitsubishi Materials Corp., Saitama (Japan))

    1992-02-01

    In a course of work to improve anti-oxidative property and strength of sheets of carbonic composite materials with resins, and further to produce those sheets in an industrial scale, it was tried to prepare two types of 0.4 {approximately} 0.6 m thickness SiC / C composite sheets by heat treatment of two green sheets polycarbosilane ( PCS ) / fran resin / binder type and PCS / (phenol-formaldehyde resin / binder type ) at temperature of 1200 {approximately} 1400{degree}C in an atmosphere of nitrogen. The sheets thus made were subjected to SEM observation, X-ray diffraction, measurement of density and electric resistance, and to tests on weight loss by heating and on bending. The texture of them were as tight as that of their resin carbon ( glassy carbon ). The structural feature is formation of amorphous SiO{sub 2} as a secondary product, This indicates that Si in PCS reacts with oxygen in resin during pyrolysis. The bending strength and anti-oxidative property depend on the SiC content from PCS and that the mixing effect of SiC on them are feasible when a mixing ratio of PCS / resin is higher than (2/1). 13 ref., 7 figs., 2 tabs.

  9. Synthesis of micro-sized interconnected Si-C composites

    Science.gov (United States)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  10. SiV color centers in Si-doped isotopically enriched {sup 12}C and {sup 13}C CVD diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Sedov, Vadim; Bolshakov, Andrey [General Physics Institute, RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Boldyrev, Kirill [Institute of Spectroscopy, RAS, Troitsk, Moscow (Russian Federation); Krivobok, Vladimir; Nikolaev, Sergei [Lebedev Physical Institute, RAS, Moscow (Russian Federation); Khomich, Alex [Institute of Radio Engineering and Electronics, RAS, Fryazino (Russian Federation); Khomich, Andrew [General Physics Institute, RAS, Moscow (Russian Federation); Institute of Radio Engineering and Electronics, RAS, Fryazino (Russian Federation); Krasilnikov, Anatoly [Institution ' ' ProjectCenter ITER' ' , Moscow (Russian Federation); Ralchenko, Victor [General Physics Institute, RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Harbin Institute of Technology, Harbin (China)

    2017-11-15

    The effect of isotopic modification of diamond lattice on photoluminescence (PL) and optical absorption spectra of ensembles of SiV{sup -} centers was studied. Thin epitaxial diamond layers were grown by a microwave plasma CH{sub 4}/H{sub 2} mixtures using methane enriched to 99.96% for either {sup 12}C or {sup 13}C isotopes, while the Si doping was performed by adding a small percentage of silane SiH{sub 4} into the plasma. Temperature dependent SiV{sup -} ZPL spectra in absorption were measured at 3-80 K to monitor the evolution of the ZPL fine structure. It is found that the SiV{sup -} ZPL at 736.9 nm observed in PL for {sup 12}C diamond at T = 5 K, exhibits a blue shift of 1.78 meV, to 736.1 nm in {sup 13}C diamond matrix. Narrow ZPL with the width (FWHM) of 0.09 meV (21 GHz) was measured in absorption spectra at T = 3-30 K in the Si-doped {sup 13}C diamond. Besides the charged SiV{sup -} center, the absorption of the neutral SiV{sup 0} defect at 946 nm wavelength has also been detected. From changes observed in SiV{sup -} phonon band structure in PL with isotopic modification, the band at 64 meV was confirmed to be a local vibration mode (LVM) involving a Si atom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  12. Electrical resistivity and thermal conductivity of SiC/Si ecoceramics prepared from sapele wood biocarbon

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Mucha, J.; Jezowski, A.; Gutierrez-Pardo, A.; Ramirez-Rico, J.

    2012-10-01

    Samples of β-SiC/Si ecoceramics with a silicon concentration of ˜21 vol % have been prepared using a series of consecutive procedures (carbonization of sapele wood biocarbon, synthesis of high-porosity biocarbon with channel-type pores, infiltration of molten silicon into empty channels of the biocarbon, formation of β-SiC, and retention of residual silicon in channels of β-SiC). The electrical resistivity ρ and thermal conductivity κ of the β-SiC/Si ecoceramic samples have been measured in the temperature range 5-300 K. The values of ρ{Si/chan}( T) and κ{Si/chan}( T) have been determined for silicon Sichan located in β-SiC channels of the synthesized β-SiC/Si ecoceramics. Based on the performed analysis of the obtained results, the concentration of charge carriers (holes) in Sichan has been estimated as p ˜ 1019 cm-3. The factors that can be responsible for such a high value of p have been discussed. The prospects for practical application of β-SiC/Si ecoceramics have been considered.

  13. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. 721.3130 Section 721.3130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... significant new uses are: (i) Industrial, commercial, and consumer activities. Requirements as specified in...

  14. SiC-based refractory paints prepared with alkali aluminosilicate binders

    Czech Academy of Sciences Publication Activity Database

    Medri, V.; Fabbri, S.; Ruffini, A.; Dědeček, Jiří; Vaccari, A.

    2011-01-01

    Roč. 31, č. 12 (2011), s. 2155-2165 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z40400503 Keywords : C.corrosion * C.thermal properties * D.SiC Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.353, year: 2011

  15. What's Mono?

    Science.gov (United States)

    ... mono? Have you ever heard of the "kissing disease"? If you said that it's mono, you're absolutely correct. But you don't get mono only from kissing. Infectious mononucleosis, called mono for short, is caused by the Epstein-Barr virus (EBV), which is a type of herpes ...

  16. Joining of SiCf/SiC composites for thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Ferraris, M.; Badini, C.; Montorsi, M.; Appendino, P.; Scholz, H.W.

    1994-01-01

    Due to their favourable radiological behaviour, SiC f /SiC composites are promising structural materials for future use in fusion reactors. A problem to cope with is the joining of the ceramic composite material (CMC) to itself for more complex structures. Maintenance concepts for a reactor made of SiC f /SiC will demand a method of joining. The joining agents should comply with the low-activation approach of the base material. With the acceptable elements Si and Mg, sandwich structures of composite/metal/composite were prepared in Ar atmosphere at temperatures just above the melting points of the metals. Another promising route is the use of joining agents of boro-silicate glasses: their composition can be tailored to obtain softening temperatures of interest for fusion applications. The glassy joint can be easily ceramised to improve thermomechanical properties. The joining interfaces were investigated by SEM-EDS, XRD and mechanical tests. ((orig.))

  17. Simulation of light-induced degradation of μc-Si in a-Si/μc-Si tandem solar cells by the diode equivalent circuit

    Science.gov (United States)

    Weicht, J. A.; Hamelmann, F. U.; Behrens, G.

    2016-02-01

    Silicon-based thin film tandem solar cells consist of one amorphous (a-Si) and one microcrystalline (μc-Si) silicon solar cell. The Staebler - Wronski effect describes the light- induced degradation and temperature-dependent healing of defects of silicon-based solar thin film cells. The solar cell degradation depends strongly on operation temperature. Until now, only the light-induced degradation (LID) of the amorphous layer was examined in a-Si/μc-Si solar cells. The LID is also observed in pc-Si single function solar cells. In our work we show the influence of the light-induced degradation of the μc-Si layer on the diode equivalent circuit. The current-voltage-curves (I-V-curves) for the initial state of a-Si/pc-Si modules are measured. Afterwards the cells are degraded under controlled conditions at constant temperature and constant irradiation. At fixed times the modules are measured at standard test conditions (STC) (AM1.5, 25°C cell temperature, 1000 W/m2) for controlling the status of LID. After the degradation the modules are annealed at dark conditions for several hours at 120°C. After the annealing the dangling bonds in the amorphous layer are healed, while the degradation of the pc-Si is still present, because the healing of defects in pc-Si solar cells needs longer time or higher temperatures. The solar cells are measured again at STC. With this laboratory measured I-V-curves we are able to separate the values of the diode model: series Rs and parallel resistance Rp, saturation current Is and diode factor n.

  18. TiC/Ti3SiC2复合材料的制备及其性能研究%Preparation and properties of TiC/Ti3SiC2 composites

    Institute of Scientific and Technical Information of China (English)

    贾换; 尹洪峰; 袁蝴蝶; 杨祎诺

    2012-01-01

    以粉末Ti,Si,TiC和炭黑为原料,采用反应热压烧结法制备TiC/Ti3SiC2复合材料.借助XRD和SEM研究TiC含量对TiC/Ti3SiC2复合材料相组成、显微结构及力学特性的影响.结果表明:通过热压烧结可以得到致密度较高的TiC/Ti3SiC2复合材料;引入TiC可以促进Ti3SiC2的生成,当引入TiC的质量分数达30%,TiC/Ti3SiC2复合材料的弯曲强度和断裂韧性分别为406.9 MPa,3.7 MPa·m1/2;复合材料中Ti3SiC2相以穿晶断裂为主,TiC晶粒易产生拔出.%TiC/Ti3SiC2 composites were fabricated by reactive hot pressing sintering method using the mixture powder of Ti, Si, C and TiC as raw material. The effect of TiC content on phase composition, microstructure and mechanical properties of TiC/Ti3SiC2 composites was investigated by X-ray diffraction and scanning electron microscopy. The results demonstrate that dense TiC/ Ti3SiC2 composites can be obtained by hot pressing. The addition of TiC into composites can enhance the formation of TisSiC2. When the additional content of TiC reaches 30% (mass fraction) , the flexural strength and fracture toughness of TiC/Ti3SiC2 composite are 406.9 MPa and 3.7 MPa·m-2, respectively. Ti3SiC2 phase displays intergranular fracture and TiC grain pulls out from Ti3SiC2 matrix when TiC/Ti3SiC2 composite fractures.

  19. Surface acoustic wave devices on AlN/3C–SiC/Si multilayer structures

    International Nuclear Information System (INIS)

    Lin, Chih-Ming; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G; Pisano, Albert P; Chen, Yung-Yu; Felmetsger, Valery V

    2013-01-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C–SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C–SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C–SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C–SiC/Si multilayer structure exhibits a phase velocity of 5528 m s −1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C–SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C–SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C–SiC layers are applicable to timing and sensing applications in harsh environments. (paper)

  20. C-H and C-C activation of n -butane with zirconium hydrides supported on SBA15 containing N-donor ligands: [(≡SiNH-)(≡SiX-)ZrH2], [(≡SiNH-)(≡SiX-)2ZrH], and[(≡SiN=)(≡SiX-)ZrH] (X = -NH-, -O-). A DFT study

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-07-01

    Density functional theory (DFT) was used to elucidate the mechanism of n-butane hydrogenolysis (into propane, ethane, and methane) on well-defined zirconium hydrides supported on SBA15 coordinated to the surface via N-donor surface pincer ligands: [(≡SiNH-)(≡SiO-)ZrH2] (A), [(≡SiNH-)2ZrH2] (B), [(≡SiNH-)(≡SiO-) 2ZrH] (C), [(≡SiNH-)2(≡SiO-)ZrH] (D), [(≡SiN=)(≡Si-O-)ZrH] (E), and [(≡SiN=)(≡SiNH-)ZrH] (F). The roles of these hydrides have been investigated in C-H/C-C bond activation and cleavage. The dihydride A linked via a chelating [N,O] surface ligand was found to be more active than B, linked to the chelating [N,N] surface ligand. Moreover, the dihydride zirconium complexes are also more active than their corresponding monohydrides C-F. The C-C cleavage step occurs preferentially via β-alkyl transfer, which is the rate-limiting step in the alkane hydrogenolysis. The energetics of the comparative pathways over the potential energy surface diagram (PES) reveals the hydrogenolysis of n-butane into propane and ethane. © 2014 American Chemical Society.

  1. Preparation of Biomorphic SiC/C Ceramics from Pine Wood via Supercritical Ethanol Infiltration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Biomorphic (wood derived) carbide ceramics with an overall composition in the SiC/C was produced by supercritical ethanol infiltration of low viscosity tetraethylorthosilicate/supercritical ethanol into biologically derived carbon templates (CB-templates) and in situ hydrolysis into Si(OH)4-gel, the Si(OH)4-gel was calcined at 1400℃ to promote the polycondensation of Si(OH)4-gel into SiO2-phase and then carbonthermal reduction of the SiO2 with the biocarbon template into highly porous, biomorphic SiC/C ceramics. The phases and morphology conversion mechanism of resulting porous SiC/C ceramics have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Experimental results showed that the biomorphic cellular morphology of pinewood charcoal was remained in the porous SiC/C ceramic with high precision that consisted of β-SiC with minority of α-SiC and the remain free carbon existed in amorphous phase.

  2. Homoepitaxial VPE growth of SiC active layers

    Energy Technology Data Exchange (ETDEWEB)

    Burk, A.A. Jr. [Northrop Grumman Electron. Sensors and Syst. Div., Baltimore, MD (United States); Rowland, L.B. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-01

    SiC active layers of tailored thickness and doping form the heart of all SiC electronic devices. These layers are most conveniently formed by vapor phase epitaxy (VPE). Exacting requirements are placed upon the SiC-VPE layers` material properties by both semiconductor device physics and available methods of device processing. In this paper, the current ability of the SiC-VPE process to meet these requirements is described along with continuing improvements in SiC epitaxial reactors, processes and materials. (orig.) 48 refs.

  3. Formation of Si/SiC multilayers by low-energy ion implantation and thermal annealing

    NARCIS (Netherlands)

    Dobrovolskiy, S.; Yakshin, Andrey; Tichelaar, F.D.; Verhoeven, J.; Louis, Eric; Bijkerk, Frederik

    2010-01-01

    Si/SiC multilayer systems for XUV reflection optics with a periodicity of 10–20 nm were produced by sequential deposition of Si and implantation of 1 keV View the MathML source ions. Only about 3% of the implanted carbon was transferred into the SiC, with a thin, 0.5–1 nm, buried SiC layer being

  4. Improved thermoelectric performance of CdO by adding SiC fibers versus by adding SiC nanoparticles inclusions

    Science.gov (United States)

    Liang, S.; Li, Longjiang

    2018-03-01

    We report the improved thermoelectric (TE) performance of CdO by alloying with SiC fibers. In contrast to the lowered thermoelectric figure of merit (ZT) in a CdO matrix with SiC nanoparticle composites, an appreciable ZT value increment of about 36% (from 0.32 to 0.435) at 1000 K was obtained in the CdO matrix with SiC fiber composites. Both kinds of composites show substantially decreased thermal conductivity due to additional phonon scattering by the nano-inclusions. Compared to the very high electrical resistivity (ρ ˜ 140 μΩ m) for 5 at. % SiC nanoparticle composites, SiC fiber composites favorably maintained a very low ρ (˜30 μΩ m) even with 5 at. % SiC at 1000 K. We think the substantial difference of specific surface areas of these two nano-inclusions (30 m2/g for fibers vs 300 m2/g for nanoparticles) might play a crucial role to fine tune the TE performance. Larger interface could be inductive to diffusion and electron acceptor activation, which affect carrier mobility considerably. This work might hint at an alternative approach to improve TE materials' performance.

  5. Interfacial push-out measurements of fully-bonded SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Steiner, D.; Zinkle, S.J.

    1990-01-01

    The direct measurement of interfacial bond strength and frictional resistance to sliding in a fully-bonded SiC/SiC composite is measured. It is shown that a fiber push-out technique can be utilized for small diameter fibers and very thin composite sections. Results are presented for a 22 micron thick section for which 37 out of 44 Nicalon fibers tested were pushed-out within the maximum nanoindentor load of 120 mN. Fiber interfacial yielding, push-out and sliding resistance were measured for each fiber. The distribution of interfacial strengths is treated as being Weibull in form. 14 refs., 5 figs

  6. Demonstration of SiC Pressure Sensors at 750 C

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2014-01-01

    We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.

  7. Interaction in polysilazane/SiC powder systems

    Energy Technology Data Exchange (ETDEWEB)

    Boiteux, Y.P.

    1992-07-01

    Consolidation of ceramic precursor ceramic powder systems upon heating is investigated. A polysilazane (silicon nitride precursor) is chosen as ceramic precursor with a filler of a sub-micron SiC powder. A scheme to optimize the volume fraction of precursor is developed in order to maximize the density of the compacted samples in the green state. Different techniques are presented to improve the homogeneity of precursor distribution in the mixture. A microencapsulation technique is developed that leads to a uniform coating of precursor on individual SiC particles. Upon pyrolysis of systems with 20 wt% polysilazane, little shrinkage occurs. The SiC particles do not coarsen during the heat treatment. The precursor, upon pyrolysis, transforms into an amorphous ceramic phase that acts as a cement between SiC particles. This cement phase can remain amorphous up to 1500{degrees}C; and is best described as a siliconoxycarbide with or without traces of nitrogen. Elimination of nitrogen in the amorphous phase indicates that the filler material (SiC) has a strong influence on the pyrolysis behavior of the chosen polysilazane. The amorphous ceramic phase may crystallize between 1400 and 1500{degrees}C, and depending on the nature of the gas environment, the crystalline phases are SiC, Si or Si{sub 3}N{sub 4}. Mechanisms explaining the strength increase upon heat treatment are proposed. Redistribution of the precursor occurs by capillary forces or vapor phase diffusion and recondensation of volatile monomers. The confined pyrolysis of the precursor results in an increase of residual ceramic matter being decomposed inside the sample. Interfacial reaction between the native silica-rich surface layer on SiC particles and the precursor derived phase explains the high strength of the materials.

  8. Effect of different parameters on machining of SiC/SiC composites via pico-second laser

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weinan; Zhang, Ruoheng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Wang, Chunhui; Wang, Jing [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Cheng, Laifei [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2016-02-28

    Graphical abstract: - Highlights: • The highlights of the manuscript include the following two aspects. • First, we found that the different machining modes (helical line scanning and single ring line scanning) and processing power of machining have remarkable effect on the surface morphology of the machined area, such as the shape, depth and the formation of different surface structures. • Secondly, we investigated that the debris consisted of C, Si and O was observed on the machined surface. • Some of the Si–C bonds of the SiC matrix and fibers would be transformed into Si–O bonds after machined, depending on the processing power. - Abstract: Pico-second laser plays an important role in modern machining technology, especially in machining high hardness materials. In this article, pico-second laser was utilized for irradiation on SiC/SiC composites, and effects of different processing parameters including the machining modes and laser power were discussed in detail. The results indicated that the machining modes and laser power had great effect on machining of SiC/SiC composites. Different types of surface morphology and structure were observed under helical line scanning and single ring line scanning, and the analysis of their formulation was discussed in detail. It was believed that the machining modes would be responsible to the different shapes of machining results at the same parameters. The processing power shall also influence the surface morphology and quality of machining results. In micro-hole drilling process, large amount of debris and fragments were observed within the micro-holes, and XPS analysis showed that there existed Si–O bonds and Si–C bonds, indicating that the oxidation during processing was incomplete. Other surface morphology, such as pores and pits were discussed as well.

  9. TaxHf1−xB2–SiC multiphase oxidation protective coating for SiC-coated carbon/carbon composites

    International Nuclear Information System (INIS)

    Ren, Xuanru; Li, Hejun; Fu, Qiangang; Li, Kezhi

    2014-01-01

    Highlights: • Ta x Hf 1−x B 2 –SiC coating was prepared on SiC coated C/C by in-situ reaction method. • TaB 2 and HfB 2 were introduced in the form of solid solution Ta x Hf 1−x B 2 . • The coating could protect C/C for 1480 h with only 0.57% mass loss at 1773 K in air. • Oxidation layer consists of out Ta–Si–O compound layer and inner SiO 2 glass layer. • Ta–Si–O compound silicate layer presents a better stability than SiO 2 glass layer. - Abstract: A Ta x Hf 1−x B 2 –SiC coating was prepared by in-situ reaction method on SiC coated C/C composites. Ta x Hf 1−x B 2 phase is the form of solid solution between TaB 2 and HfB 2 . Isothermal oxidation behavior at 1773 K and ablation behavior of the coated C/C were tested. Ta x Hf 1−x B 2 –SiC/SiC coating could protect the C/C from oxidation at 1773 K for 1480 h and ablation above 2200 K for 40 s. During oxidation, oxides of Ta and Hf atoms exist as “pinning phases” in the compound glass layer consisted of outer Ta–Si–O compound silicate layer and inner SiO 2 glass layer, which was responsible for the excellent oxidation resistance

  10. Research on SiC Whisker Prepared by H-PSO

    Directory of Open Access Journals (Sweden)

    WANG Yao

    2017-10-01

    Full Text Available SiC whiskers were prepared on the matrix of graphite by using high hydrogenous silicone oil(PSO as raw material. The effect of surface conditions of graphite and heating temperature on the growth of SiC whisker was mainly studied in this paper. The main factor which affects the nucleation and growth of SiC whisker is the heating temperature, with the heating temperature rising, the production of SiC whisker increases. The surface condition of graphite matrix also influences the growth of SiC whisker. With the nucleation points provided by graphite matrix defects increasing, the production of SiC whisker incleases and SiC whisker starts to overlap with each other. The formation process of SiC whisker includes two steps:nucleation and growth. SiC whisker nucleates at low temperature and grows at high temperature, which follows the VLS (vapor-liquid-solid growth mechanism.

  11. Improved C/SiC Ceramic Composites Made Using PIP

    Science.gov (United States)

    Easler, Timothy

    2007-01-01

    Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber

  12. Tasks for development of SiC/SiC composites as structural material in a fusion reactor

    International Nuclear Information System (INIS)

    Yamada, Reiji

    1997-01-01

    SiC/SiC composites are chosen for a structural material of blankets in DREAM Reactor that has been proposed as a power reactor by JAERI. The main requirements and the target values in the DREAM conceptual design were described, and compared to available experimental data. (author)

  13. A new SiC/C bulk FGM for fusion reactor

    International Nuclear Information System (INIS)

    Changchun, G.; Anhua, W.; Wenbin, C.; Jiangtao, L.

    2001-01-01

    Graphite is widely used in present Tokamak facilities and a C/C composite has been selected as one of the candidate materials for the ITER. But C-based material has an excessive chemical sputtering yield at 600-1000 K and exhibits irradiation enhanced sublimation at >1200 K under plasma erosion condition, causing serious C-contamination of plasma. Low Z material SiC has several advantages for use in fusion reactor, such as excellent high temperature properties, corrosion resistance, low density, and especially its low activation irradiation. To reduce C contamination during plasma exposure, previously SiC coatings were chemically deposited on the surface of C-substrate, however, the thermal stresses arise on the interface between the coating layers and the substrate under high temperature. Heating/cooling cycle leading to cracks in SiC/C interface, small thickness of coating and long processing time are limiting factors for FGM made with CVD process. In this paper, a new SiC/C bulk FGM has been successfully fabricated with P/M hot pressing process. The chemical sputtering yield, gas desorption performance, thermal shock resistance and physical sputtering performance in Tokamak are outlined in this paper. (author)

  14. Negative effects of crystalline-SiC doping on the critical current density in Ti-sheathed MgB2(SiC)y superconducting wires

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Luo, Z P; Hoyt, C; Yen, F; Guchhait, S; Lv, B; Markert, J T

    2007-01-01

    Ti-sheathed MgB 2 wires doped with nanosize crystalline-SiC up to a concentration of 15 wt% SiC have been fabricated, and the effects of the SiC doping on the critical current density (J c ) and other superconducting properties studied. In contrast with the previously reported results that nano-SiC doping with a doping range below 16 wt% usually enhances J c , particularly at higher fields, our measurements show that SiC doping decreases J c over almost the whole field range from 0 to 7.3 T at all temperatures. Furthermore, it is found that the degradation of J c becomes stronger at higher SiC doping levels, which is also in sharp contrast with the reported results that J c is usually optimized at doping levels near 10 wt% SiC. Our results indicate that these negative effects on J c could be attributed to the absence of significant effective pinning centres (mainly Mg 2 Si) due to the high chemical stability of the crystalline-SiC particles

  15. Mechanical characterization of Si-C(O) fiber/SiC (CVI) matrix composites with a BN-interphase

    International Nuclear Information System (INIS)

    Prouhet, S.; Camus, G.; Labrugere, C.; Guette, A.; Martin, E.

    1994-01-01

    The mechanical behavior of three CVI-processed 2D woven SiC/BN/SiC composite materials with different initial BN interphase thicknesses has been investigated by means of tensile and impact tests. The results have established the efficiency of a BN interphase in promoting a nonlinear/noncatastrophic tensile behavior and high impact resistance. The effect of the initial BN interphase thickness on the resulting mechanical behavior has also been demonstrated. AES and TEM has revealed the presence of a SiO 2 /C double layer at the BN/fiber interface, which might result from a decomposition undergone by the Si-C(O) Nicalon fiber during processing. It has been suggested that the influence of the initial BN interphase thickness on the mechanical properties of the composites results from both changes occurring in the composition and morphology of the interfacial zones and modifications of the interfacial forces due to accommodation of the radial residual clamping stress

  16. Rare-earth element doped Si3N4/SiC micro/nano-composites-RT and HT mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Lojanová, Š.; Tatarko, P.; Chlup, Zdeněk; Hnatko, M.; Dusza, J.; Lenčéš, Z.; Šajgalík, P.

    2010-01-01

    Roč. 30, č. 9 (2010), s. 1931-1944 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z20410507 Keywords : Si3N4 * SiC * Nano-composites * Fracture toughness * Hardness * Strength * Creep Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.574, year: 2010

  17. Control of the graphene growth rate on capped SiC surface under strong Si confinement

    International Nuclear Information System (INIS)

    Çelebi, C.; Yanık, C.; Demirkol, A.G.; Kaya, İsmet İ.

    2013-01-01

    Highlights: ► Graphene is grown on capped SiC surface with well defined cavity size. ► Graphene growth rate linearly increases with the cavity height. ► Graphene uniformity is reduced with thickness. - Abstract: The effect of the degree of Si confinement on the thickness and morphology of UHV grown epitaxial graphene on (0 0 0 −1) SiC is investigated by using atomic force microscopy and Raman spectroscopy measurements. Prior to the graphene growth process, the C-face surface of a SiC substrate is capped by another SiC comprising three cavities on its Si-rich surface with depths varying from 0.5 to 2 microns. The Si atoms, thermally decomposed from the sample surface during high temperature annealing of the SiC cap /SiC sample stack, are separately trapped inside these individual cavities at the sample/cap interface. Our analyses show that the growth rate linearly increases with the cavity height. It was also found that stronger Si confinement yields more uniform graphene layers.

  18. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  19. Si/SiC heterojunction optically controlled transistor with charge compensation layer

    Directory of Open Access Journals (Sweden)

    Pu Hongbin

    2016-01-01

    Full Text Available A novel n-SiC/p-Si/n-Si optically controlled transistor with charge compensation layer has been studied in the paper. The performance of the device is simulated using Silvaco Atlas tools, which indicates excellent performances of the device in both blocking state and conducting state. The device also has a good switching characteristic with 0.54μs as rising time and 0.66μs as falling time. With the charge compensation layer, the breakdown voltage and the spectral response intensity of the device are improved by 90V and 33A/W respectively. Compared with optically controlled transistor without charge compensation layer, the n-SiC/p-Si/n-Si optically controlled transistor with charge compensation layer has a better performance.

  20. Damage accumulation and annealing in 6H-SiC irradiated with Si+

    International Nuclear Information System (INIS)

    Jiang, W.; Weber, W.J.; Thevuthasan, S.; McCready, D.E.

    1998-01-01

    Damage accumulation and annealing in 6H-silicon carbide (α-SiC) single crystals have been studied in situ using 2.0 MeV He + RBS in a left angle 0001 right angle -axial channeling geometry (RBS/C). The damage was induced by 550 keV Si + ion implantation (30 off normal) at a temperature of -110 C, and the damage recovery was investigated by subsequent isochronal annealing (20 min) over the temperature range from -110 C to 900 C. At ion fluences below 7.5 x 10 13 Si + /cm 2 (0.04 dpa in the damage peak), only point defects appear to be created. Furthermore, the defects on the Si sublattice can be completely recovered by thermal annealing at room temperature (RT), and recovery of defects on the C sublattice is suggested. At higher fluences, amorphization occurs; however, partial damage recovery at RT is still observed, even at a fluence of 6.6 x 10 14 Si + /cm 2 (0.35 dpa in the damage peak) where a buried amorphous layer is produced. At an ion fluence of 6.0 x 10 15 Si + /cm 2 (-90 C), an amorphous layer is created from the surface to a depth of 0.6 μm. Because of recovery processes at the buried crystalline-amorphous interface, the apparent thickness of this amorphous layer decreases slightly (<10%) with increasing temperature over the range from -90 C to 600 C. (orig.)

  1. SiO 2/SiC interface proved by positron annihilation

    Science.gov (United States)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-06-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2/SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage ( C- V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method.

  2. SiO2/SiC interface proved by positron annihilation

    International Nuclear Information System (INIS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-01-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2 /SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage (C-V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method

  3. Electric measurements of PV heterojunction structures a-SiC/c-Si

    Science.gov (United States)

    Perný, Milan; Šály, Vladimír; Janíček, František; Mikolášek, Miroslav; Váry, Michal; Huran, Jozef

    2018-01-01

    Due to the particular advantages of amorphous silicon or its alloys with carbon in comparison to conventional crystalline materials makes such a material still interesting for study. The amorphous silicon carbide may be used in a number of micro-mechanical and micro-electronics applications and also for photovoltaic energy conversion devices. Boron doped thin layers of amorphous silicon carbide, presented in this paper, were prepared due to the optimization process for preparation of heterojunction solar cell structure. DC and AC measurement and subsequent evaluation were carried out in order to comprehensively assess the electrical transport processes in the prepared a-SiC/c-Si structures. We have investigated the influence of methane content in deposition gas mixture and different electrode configuration.

  4. Microwave joining of SiC ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Silberglitt, R.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States); Katz, J.D. [Los Alamos National Lab., NM (United States)

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  5. Pressureless sintering of dense Si3N4 and Si3N4/SiC composites with nitrate additives

    International Nuclear Information System (INIS)

    Kim, J.Y.; Iseki, Takayoshi; Yano, Toyohiko

    1996-01-01

    The effect of aluminum and yttrium nitrate additives on the densification of monolithic Si 3 N 4 and a Si 3 N 4 /SiC composite by pressureless sintering was compared with that of oxide additives. The surfaces of Si 3 N 4 particles milled with aluminum and yttrium nitrates, which were added as methanol solutions, were coated with a different layer containing Al and Y from that of Si 3 N 4 particles milled with oxide additives. Monolithic Si 3 N 4 could be sintered to 94% of theoretical density (TD) at 1,500 C with nitrate additives. The sintering temperature was about 100 C lower than the case with oxide additives. After pressureless sintering at 1,750 C for 2 h in N 2 , the bulk density of a Si 3 N 4 /20 wt% SiC composite reached 95% TD with nitrate additives

  6. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis

    Science.gov (United States)

    Singh, Gyanender; Terrani, Kurt; Katoh, Yutai

    2018-02-01

    SiC/SiC composites are considered among leading candidates for accident tolerant fuel cladding in light water reactors. However, when SiC-based materials are exposed to neutron irradiation, they experience significant changes in dimensions and physical properties. Under a large heat flux application (i.e. fuel cladding), the non-uniform changes in the dimensions and physical properties will lead to build-up of stresses in the structure over the course of time. To ensure reliable and safe operation of such a structure it is important to assess its thermo-mechanical performance under in-reactor conditions of irradiation and elevated temperature. In this work, the foundation for 3D thermo-mechanical analysis of SiC/SiC cladding is put in place and a set of analyses with simplified boundary conditions has been performed. The analyses were carried out with two different codes that were benchmarked against one another and prior results in the literature. A constitutive model is constructed and solved numerically to predict the stress distribution and variation in the cladding under normal operating conditions. The dependence of dimensions and physical properties variation with irradiation and temperature has been incorporated. These robust models may now be modified to take into account the axial and circumferential variation in neutron and heat flux to fully account for 3D effects. The results from the simple analyses show the development of high tensile stresses especially in the circumferential and axial directions at the inner region of the cladding. Based on the results obtained, design guidelines are recommended. For lack of certainty in or tailor-ability for the physical and mechanical properties of SiC/SiC composite material a sensitivity analysis is conducted. The analysis results establish a precedence order of the properties based on the extent to which these properties influence the temperature and the stresses.

  7. A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1993-01-01

    Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.

  8. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  9. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  10. Thermal effect of TiC in the Mo/TiC/SiC system at elevated temperature

    International Nuclear Information System (INIS)

    Roger, Jerome; Audubert, Fabienne; Le Petitcorps, Yann

    2010-01-01

    In this study, we examined the effect induced by the addition of a TiC interlayer on the stability of the Mo/SiC system at high temperature. Indeed, Mo/SiC couple is unstable at high temperature with formation of Mo 2 C and Mo 5 Si 3 C x phases. In order to limit the degradation of Mo mechanical properties, a TiC film was inserted between Mo and SiC. Samples used in this work were prepared on metallic wires substrates, SiC and TiC being deposited by CVD. The protection given by TiC layer was considered in the 1473-1673 K temperature range and for TiC thicknesses up to about 60 μm. From our results, TiC is not effective enough to mitigate C and Si atoms diffusion. Nevertheless, a notable reduction of the reaction extent is obtained at any temperatures. The so-observed effect depends on the TiC thickness and the temperature. In actual fact, TiC efficiency increases when temperature and/or TiC layer thickness increases without reaching a complete protection.

  11. Ion beam synthesis and characterization of large area 3C-SiC pseudo substrates for homo- and heteroepitaxy; Ionenstrahlsynthese und Charakterisierung grossflaechiger 3C-SiC-Pseudosubstrate fuer die Homo- und Heteroepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlen, Maik

    2006-12-15

    In this work, large area epitaxial 3C-SiC films on Si(100) and Si(111) were formed by ion beam synthesis and subsequently characterized for their structural and crystalline properties. These SiC/Si structures are meant to be used as SiC pseudosubstrates for the homo- and heteroepitaxial growth of other compound semiconductors. The suitability of these pseudosubstrates for this purpose was tested using various epitaxial systems and thin film growth methods. For this the homoepitaxial growth of 3C-SiC employing C{sub 60}-MBE and the heteroepitaxial growth of hexagonal GaN films grown by MOCVD and IBAMBA was studied in detail. The comparison of the structural and crystalline properties with data from literature enabled a qualified judgement of the potential of the 3C-SiC pseudosubstrates as an alternative substrate for the epitaxial growth of such films. These new 3C-SiC pseudosubstrates also enabled studies of other little known epitaxial systems: For the first time hexagonal ZnO films on (111) oriented pseudosubstrates were grown using PLD. The method if IBAMBE enabled the growth of cubic GaN layers on (100)-oriented pseudosubstrates. (orig.)

  12. Transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1-xCx nanocomposites mixed with Si nanoparticles and C atoms

    International Nuclear Information System (INIS)

    Shin, J.W.; Oh, D.H.; Kim, T.W.; Cho, W.J.

    2009-01-01

    Bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and fast-Fourier transformed electron-diffraction patterns showed that n-butyl terminated Si nanoparticles were aggregated. The formation of Si 1-x C x nanocomposites was mixed with Si nanoparticles and C atoms embedded in a SiO 2 layer due to the diffusion of C atoms from n-butyl termination shells into aggregated Si nanoparticles. Atomic force microscopy (AFM) images showed that the Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms existed in almost all regions of the SiO 2 layer. The formation mechanism of Si nanoparticles and the transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si 1-x C x nanocomposites mixed with Si nanoparticles and C atoms are described on the basis of the TEM, HRTEM, and AFM results. These results can help to improve the understanding of the formation mechanism of Si nanoparticles.

  13. Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique

    International Nuclear Information System (INIS)

    Hinoki, T.; Zhang, W.; Kohyama, A.; Noda, T.

    1998-01-01

    In order to quantitatively evaluate mechanical properties of fibers, matrices and their interfaces in fiber reinforced SiC/SiC composites, fiber push-out tests have been carried out. From the indentation load vs. displacement relations, the fiber push-out process has been discussed in comparison with the C/C composites and the loads for fiber push-in and those for fiber push-out were estimated. The trends of load-displacement curve of fiber push-out process depended on specimen thickness. The curve in the case of thick specimen had a micro step indicating fiber push-in and a larger step corresponding to fiber push-out. However just a larger step indicating fiber push-out was seen without fiber push-in process in the case of thin specimen. Interfacial shear stress was discussed and defined in both cases. The effects of fiber coatings on interfacial shear stress obtained from thin specimens were analyzed. The relationship between bending stress and interfacial shear stress of SiC (pcs) /SiC (CVI) is preliminarily postulated together with microstructural characteristics of the composites. (orig.)

  14. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  15. Theoretical study of helium insertion and diffusion in 3C-SiC

    International Nuclear Information System (INIS)

    Van Ginhoven, Renee M.; Chartier, Alain; Meis, Constantin; Weber, William J.; Rene Corrales, L.

    2006-01-01

    Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical and experimental data. Helium insertion energies were calculated to be lower for divacancy and silicon vacancy defects compared to the other mono-vacancies and interstitial sites considered. Migration barriers for helium were determined by using the nudged elastic band method. Calculated activation energies for migration in and around vacancies (silicon vacancy, carbon vacancy or divacancy) range from 0.6 to 1.0 eV. Activation energy for interstitial migration is calculated to be 2.5 eV. Those values are discussed and related to recent experimental activation energies for migration that range from 1.1 [P. Jung, J. Nucl. Mater. 191-194 (1992) 377] to 3.2 eV [E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F. Bardot, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 223; E. Oliviero, M.F. Beaufort, J.F. Bardot, A. van Veen, A.V. Fedorov, J. Appl. Phys. 93 (2003) 231], depending on the SiC samples used and on helium implantation conditions

  16. Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites

    International Nuclear Information System (INIS)

    Balasubramanian, I.; Maheswaran, R.

    2015-01-01

    Highlights: • AA6063/SiC composites with different weight percent are stir cast. • Resistance properties against indentation, stretching force and sliding force are studied. • Increase in initiation of cleavage facets and reduces the tensile strength for 15% SiC. • Transition from micro ploughing to micro cutting wear mechanism is less due to SiC inclusion. - Abstract: This study investigates the mechanical resistance behaviour of AA6063 particulate composites with the inclusion of micron-sized silicon carbide (SiC) particles with different weight percentages in an AA6063 aluminium matrix. AA6063/SiC particulate composites containing 0, 5, 10, and 15 weight percent of SiC particles were produced by stir casting. Standard mechanical tests were conducted on the composite plates, and the mechanical resistance to indentation, tensile force and sliding force are evaluated. It has been observed that upon addition of SiC particles, the resistance against indentation is increased and the resistance against tensile force is initially increased and then decreased. Furthermore, using scanning electron microscopy (SEM), the fracture appearance of the broken specimen subjected to tensile force and morphological changes in the surface subjected to sliding force are analysed. The SEM images reveal that the addition of SiC particles in the AA6063 aluminium matrix initiates more cleavage facets. This leads to brittle fracture in the specimen subjected to tensile forces and less transition from material displacement to material removal in the specimen subjected to sliding forces

  17. EFFECT OF THE Si POWDER ADDITIONS ON THE PROPERTIES OF SiC COMPOSITES

    Directory of Open Access Journals (Sweden)

    GUOGANG XU

    2012-09-01

    Full Text Available By means of transient plastic phase process, the SiC silicon carbide kiln furniture materials were produced through adding Si powder to SiC materials. At the condition of the same additions of SiO2 powder, the effect of the Si powder additions on properties of silicon carbide materials after sintered at 1450°C for 3 h in air atmosphere was studied by means of SEM and other analysis methods. The results showed that silicon powder contributes to both sintering by liquid state and plastic phase combination to improve the strength of samples. When the Si powder additions is lower than 3.5 %, the density and strength of samples increase and porosity decrease with increasing Si powder additions. However when the Si powder additions is higher than 3.5 %, the density and strength of samples decrease and porosity increase with increasing Si powder additions. With increasing of Si additions, the residual strength of sample after thermal shocked increased and linear change rate decreased, and get to boundary value when Si additions is 4.5 %. The results also indicated that at the same sintering temperature, the sample with 3.5 % silicon powder has maximum strength.

  18. Microstructure, mechanical and tribological properties of CrSiC coatings sliding against SiC and Al{sub 2}O{sub 3} balls in water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiwei [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037 (China); Zhou, Fei, E-mail: fzhou@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Chen, Kangmin [Center of Analysis, Jiangsu University, Zhenjiang 212013 (China); Wang, Qianzhi [Department of Mechanical Engineering, Keio University, Yokohama 2238522 (Japan); Zhou, Zhifeng [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Yan, Jiwang [Department of Mechanical Engineering, Keio University, Yokohama 2238522 (Japan); Li, Lawrence Kwok-Yan [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-04-15

    Graphical abstract: CrSiC coatings were speculated to be X-ray amorphous (A). Although the hardness of coatings fluctuated slightly (13.2–13.8 GPa), the CrSiC coatings showed poor wear resistance due to the decline of the crack resistance and toughness. Moreover, the friction coefficient (0.24–0.31) and the wear rate (2.97–7.66 × 10{sup −6} mm{sup 3}/Nm) of CrSiC/SiC trobopairs were lower than those of CrSiC/Al{sub 2}O{sub 3} tribopairs (B and C). - Highlights: • CrSiC coatings with Si content of 2.0–7.4 at.% were deposited via adjusting the TMS flow. • The amorphous structure in the CrSiC coatings was presented. • No obvious fluctuations of hardness (about 13 GPa) were observed with TMS flow. • CrSiC/SiC tribopairs showed better tribological performance than CrSiC/Al{sub 2}O{sub 3} tribopairs. - Abstract: CrSiC coatings with different silicon contents were prepared using unbalanced magnetron sputtering via adjusting trimethylsilane (Si(CH{sub 3}){sub 3}H) flows. Their phase structure, bonding structure, microstructure and hardness were characterized by X-ray diffraction (XRD), X-ray photoelectrons spectroscopy (XPS), a field emission scanning electron microscope (FESEM) and nano-indenter, respectively. The tribological properties of CrSiC coatings sliding against SiC and Al{sub 2}O{sub 3} balls were investigated in water. The results showed that the CrSiC coatings were speculated to be X-ray amorphous. Although the hardness of coatings fluctuated slightly (13.2–13.8 GPa), the coatings showed poor wear resistance due to the decline of the crack resistance and toughness. Moreover, the friction coefficient (0.24–0.31) and the wear rate (2.97–7.66 × 10{sup −6} mm{sup 3}/Nm) of CrSiC/SiC trobopairs were lower than those of CrSiC/Al{sub 2}O{sub 3} tribopairs.

  19. Atomic state and characterization of nitrogen at the SiC/SiO2 interface

    International Nuclear Information System (INIS)

    Xu, Y.; Garfunkel, E. L.; Zhu, X.; Lee, H. D.; Xu, C.; Shubeita, S. M.; Gustafsson, T.; Ahyi, A. C.; Sharma, Y.; Williams, J. R.; Lu, W.; Ceesay, S.; Tuttle, B. R.; Pantelides, S. T.; Wan, A.; Feldman, L. C.

    2014-01-01

    We report on the concentration, chemical bonding, and etching behavior of N at the SiC(0001)/SiO 2 interface using photoemission, ion scattering, and computational modeling. For standard NO processing of a SiC MOSFET, a sub-monolayer of nitrogen is found in a thin inter-layer between the substrate and the gate oxide (SiO 2 ). Photoemission shows one main nitrogen related core-level peak with two broad, higher energy satellites. Comparison to theory indicates that the main peak is assigned to nitrogen bound with three silicon neighbors, with second nearest neighbors including carbon, nitrogen, and oxygen atoms. Surprisingly, N remains at the surface after the oxide was completely etched by a buffered HF solution. This is in striking contrast to the behavior of Si(100) undergoing the same etching process. We conclude that N is bound directly to the substrate SiC, or incorporated within the first layers of SiC, as opposed to bonding within the oxide network. These observations provide insights into the chemistry and function of N as an interface passivating additive in SiC MOSFETs

  20. Creep/Stress Rupture Behavior and Failure Mechanisms of Full CVI and Full PIP SiC/SiC Composites at Elevated Temperatures in Air

    Science.gov (United States)

    Bhatt, R. T.; Kiser, J. D.

    2017-01-01

    SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.

  1. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  2. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when

  3. SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste

    Science.gov (United States)

    Chanadee, Tawat

    2017-11-01

    Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.

  4. Investigation of structural and electronic properties of epitaxial graphene on 3C–SiC(100/Si(100 substrates

    Directory of Open Access Journals (Sweden)

    Gogneau N

    2014-09-01

    Full Text Available Noelle Gogneau,1 Amira Ben Gouider Trabelsi,2 Mathieu G Silly,3 Mohamed Ridene,1 Marc Portail,4 Adrien Michon,4 Mehrezi Oueslati,2 Rachid Belkhou,3 Fausto Sirotti,3 Abdelkarim Ouerghi1 1Laboratoire de Photonique et de Nanostructures, Centre National de la Recherche Scientifique, Marcoussis, France; 2Unité des Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Université de Tunis El Manar Campus Universitaire, Tunis, Tunisia; 3Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France; 4Centre de Recherche sur l'HétéroEpitaxie et Ses Application, Centre National de la Recherche Scientifique, Valbonne, France Abstract: Graphene has been intensively studied in recent years in order to take advantage of its unique properties. Its synthesis on SiC substrates by solid-state graphitization appears a suitable option for graphene-based electronics. However, before developing devices based on epitaxial graphene, it is desirable to understand and finely control the synthesis of material with the most promising properties. To achieve these prerequisites, many studies are being conducted on various SiC substrates. Here, we review 3C–SiC(100 epilayers grown by chemical vapor deposition on Si(100 substrates for producing graphene by solid state graphitization under ultrahigh-vacuum conditions. Based on various characterization techniques, the structural and electrical properties of epitaxial graphene layer grown on 3C–SiC(100/Si(100 are discussed. We establish that epitaxial graphene presents properties similar to those obtained using hexagonal SiC substrates, with the advantage of being compatible with current Si-processing technology. Keywords: epitaxial graphene, electronic properties, structural properties, silicon carbide 

  5. In-situ synthesis of SiC particles by the structural evolution of TiCx in Al–Si melt

    International Nuclear Information System (INIS)

    Nie, Jinfeng; Li, Dakui; Wang, Enzhao; Liu, Xiangfa

    2014-01-01

    Highlights: • A facile method to in-situ synthesize SiC was developed utilizing the structural evolution of TiC x in Al–Si melt. • The SiC particles have the size range from 2.5 to 7.5 μm and a block-like morphology. • The SiC particles and (SiC + TiB 2 ) hybrid-particles reinforced Al–18Si composite were prepared. • The wear resistance effect of SiC on the based alloy was investigated. - Abstract: A facile method has been developed to in-situ synthesize SiC particles utilizing the structural instability and evolution of TiC x in Al–Si melt. It is considered that the synthesis of SiC particles occurs via the gradual reaction between TiC x and Si atoms, whilst Si content plays the crucial role in this approach. If the Si content in the melt is above 30%, TiC x directly reacts with Si and Al to form SiC, but the needle-like TiAl x Si y phase formed simultaneously will do harm to the mechanical properties of the composites. Thus, it is proposed to add B element in the melt to transform the TiAl x Si y into TiB 2 particles. Therefore, the SiC and (SiC + TiB 2 ) hybrid-particles reinforced Al–18Si composites were successfully prepared using the method. In the composites, the SiC particles have the size range from 2.5 to 7.5 μm and a block-like morphology. Furthermore, the mechanical properties of base alloy, including the wear resistance and macro-hardness, have been obviously improved by the in-situ SiC particles. Besides, the relevant underlying mechanisms are also discussed

  6. Microstructural characterization of hybrid CFRP/SiC composites

    International Nuclear Information System (INIS)

    Von Dollinger, C.F.A.; Pardini, L.C.; Alves, S.C.N.

    2016-01-01

    In present work a hybrid matrix C-C/SiC composites were produced. Carbon fiber fabric was impregnated with phenolic resin mixed with powder Si in proportions of 5%, 10%, 15% e 20%wt. Optical microscopy under reflected light and polarized light were used in order to characterize samples in the as molded condition and after carbonization at 1000°C, and heat treatment 1600°C in order to react carbon and liquid silicon in order to form in situ SiC . The pore volume fraction ranges from 33% to 41% for composites after heat treatment at 1600°C due to volatiles released specially during carbonization process. Complementary analyses were done by Scanning Electron microscopy (SEM) and X-Ray diffraction to confirm in situ conversion of SiC. The results showed that the impregnation of a carbon fabric with phenolic resin added with silicon proved to be an alternative route to produce CFRP/SiC composites. (author)

  7. SiC Composite for Fuel Structure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yueh, Ken [Electric Power Research Inst. (EPRI), Charlotte, NC (United States)

    2017-12-22

    Extensive evaluation was performed to determine the suitability of using SiC composite as a boiling water reactor (BWR) fuel channel material. A thin walled SiC composite box, 10 cm in dimension by approximately 1.5 mm wall thickness was fabricated using chemical vapor deposition (CVD) for testing. Mechanical test results and performance evaluations indicate the material could meet BWR channel mechanical design requirement. However, large mass loss of up to 21% was measured in in-pile corrosion test under BWR-like conditions in under 3 months of irradiation. A fresh sister sample irradiated in a follow-up cycle under PWR conditions showed no measureable weight loss and thus supports the hypothesis that the oxidizing condition of the BWR-like coolant chemistry was responsible for the high corrosion rate. A thermodynamic evaluation showed SiC is not stable and the material may oxidize to form SiO2 and CO2. Silica has demonstrated stability in high temperature steam environment and form a protective oxide layer under severe accident conditions. However, it does not form a protective layer in water under normal BWR operational conditions due to its high solubility. Corrosion product stabilization by modifying the SiC CVD surface is an approach evaluated in this study to mitigate the high corrosion rate. Titanium and zirconium have been selected as stabilizing elements since both TiSiO4 and ZrSiO4 are insoluble in water. Corrosion test results in oxygenated water autoclave indicate TiSiO4 does not form a protective layer. However, zirconium doped test samples appear to form a stable continuous layer of ZrSiO4 during the corrosion process. Additional process development is needed to produce a good ZrSiC coating to verify functionality of the mitigation concept.

  8. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-01

    MAX phases, such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti3SiC2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti3SiC2, SiC, and a dual-phase nanocomposite of Ti3SiC2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti3SiC2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti3SiC2 occurs during ion implantation at 873 K. Cs in Ti3SiC2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.

  9. Mechanism of Si intercalation in defective graphene on SiC

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2012-01-01

    Previously reported experimental findings on Si-intercalated graphene on SiC(0001) seem to indicate the possibility of an intercalation process based on the migration of the intercalant through atomic defects in the graphene sheet. We employ density

  10. Effects of neutron irradiation on the strength of continuous fiber reinforced SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H. Jr.; Jones, R.H. [Pacific National Lab., Richland, WA (United States)

    1997-04-01

    Flexural strength data as a function of irradiation temperature and dose for a SiC{sub f}/SiC composite made with Nicalon-CG fiber suggest three major degradation mechanisms. Based on an analysis of tensile strength and microstructural data for irradiated Nicalon-CG and Hi-Nicalon fibers, it is anticipated that these degradation mechanisms will be alleviated in Hi-Nicalon reinforced composites.

  11. Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications

    International Nuclear Information System (INIS)

    Dochev, D; Desmaris, V; Pavolotsky, A; Meledin, D; Belitsky, V; Lai, Z; Henry, A; Janzen, E; Pippel, E; Woltersdorf, J

    2011-01-01

    We report on electrical properties and microstructure of epitaxial thin NbN films grown on 3C-SiC/Si substrates by means of reactive magnetron sputtering. A complete epitaxial growth at the NbN/3C-SiC interface has been confirmed by means of high resolution transmission electron microscopy (HRTEM) along with x-ray diffractometry (XRD). Resistivity measurements of the films have shown that the superconducting transition onset temperature (T C ) for the best specimen is 11.8 K. Using these epitaxial NbN films, we have fabricated submicron-size hot-electron bolometer (HEB) devices on 3C-SiC/Si substrate and performed their complete DC characterization. The observed critical temperature T C = 11.3 K and critical current density of about 2.5 MA cm -2 at 4.2 K of the submicron-size bridges were uniform across the sample. This suggests that the deposited NbN films possess the necessary homogeneity to sustain reliable hot-electron bolometer device fabrication for THz mixer applications.

  12. Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications

    Energy Technology Data Exchange (ETDEWEB)

    Dochev, D; Desmaris, V; Pavolotsky, A; Meledin, D; Belitsky, V [Group for Advanced Receiver Development, Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Lai, Z [Nanofabrication Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Henry, A; Janzen, E [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Pippel, E; Woltersdorf, J, E-mail: dimitar.dochev@chalmers.se [Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2011-03-15

    We report on electrical properties and microstructure of epitaxial thin NbN films grown on 3C-SiC/Si substrates by means of reactive magnetron sputtering. A complete epitaxial growth at the NbN/3C-SiC interface has been confirmed by means of high resolution transmission electron microscopy (HRTEM) along with x-ray diffractometry (XRD). Resistivity measurements of the films have shown that the superconducting transition onset temperature (T{sub C}) for the best specimen is 11.8 K. Using these epitaxial NbN films, we have fabricated submicron-size hot-electron bolometer (HEB) devices on 3C-SiC/Si substrate and performed their complete DC characterization. The observed critical temperature T{sub C} = 11.3 K and critical current density of about 2.5 MA cm{sup -2} at 4.2 K of the submicron-size bridges were uniform across the sample. This suggests that the deposited NbN films possess the necessary homogeneity to sustain reliable hot-electron bolometer device fabrication for THz mixer applications.

  13. In-situ Observation of Fracture Behavior on Nano Structure in NITE SiC/SiC Composite by HVEM

    International Nuclear Information System (INIS)

    Shibayama, Tamaki; Hamada, Kouichi; Watanabe, Seiichi; Matsuo, Genichiro; Kishimoto, Hirotatsu

    2011-01-01

    We have been successfully done in situ observation on the sequence of fracture event at the interface of NITE SiC/SiC composite examined by using miniaturized double notched shear specimen for TEM prepared by Focused Ion Beam method. In this study, we used nano-mechanics TEM experimental apparatus to investigate not only microstructure evolution and but also load and displacement curve at once in High Voltage Electron Microscope. Our results summarize as follows. Cracks were initiated at the interface between carbon coating layer on the SiC fiber and SiC matrices, and propagated along the interface. Load drop in the load and displacement curve during in-situ TEM was clearly observed at the crack initiation. The shear strength by using the miniaturized specimen is about ten times higher than that obtained by the standard testing.

  14. Use of SiCf/SiC ceramic composites as structure material of a fusion reactor toroid internal components

    International Nuclear Information System (INIS)

    Aiello, G.

    2001-01-01

    The use of low neutron-induced activation structural materials seems necessary in order to improve safety in future fusion power reactors. Among them, SiC f /SiC composites appear as a very promising solution because of their low activation characteristics coupled with excellent mechanical properties at high temperatures. With the main objective of evaluating the limit of present-day composites, a tritium breeding blanket using SiC f /SiC as structural material (the TAURO blanket) has been developed in the last years by the Commissariat a l'Energie Atomique (CEA). The purpose of this thesis was to modify the available design tools (computer codes, design criteria), normally used for the analyses of metallic structures, in order to better take into account the mechanical behaviour of SiC f /SiC. Alter a preliminary improvement of the calculation methods, two main topics of study could be identified: the modelling of the mechanical behaviour of the composite and the assessment of appropriate design criteria. The different behavioural models available in literature were analysed in order to find the one that was the best suited to the specific problems met in the field of fusion power. The selected model was then implemented in the finite elements code CASTEM 2000 used within the CEA for the thermo-mechanical analyses of the TAURO blanket. For the design of the blanket, we proposed a new resistance criterion whose main advantage, with respect to the other examined, lies in the easiness of identification. The suggested solutions were then applied in the design studies of the TAURO blanket. We then could show that the use of appropriate calculation methodologies is necessary in order to achieve a correct design of the blanket and a more realistic estimate of the limits of present day composites. The obtained results can also be extended to all nuclear components making use of SiC f /SiC structures. (author) [fr

  15. Effects of C+ ion implantation on electrical properties of NiSiGe/SiGe contacts

    International Nuclear Information System (INIS)

    Zhang, B.; Yu, W.; Zhao, Q.T.; Buca, D.; Breuer, U.; Hartmann, J.-M.; Holländer, B.; Mantl, S.; Zhang, M.; Wang, X.

    2013-01-01

    We have investigated the morphology and electrical properties of NiSiGe/SiGe contact by C + ions pre-implanted into relaxed Si 0.8 Ge 0.2 layers. Cross-section transmission electron microscopy revealed that both the surface and interface of NiSiGe were improved by C + ions implantation. In addition, the effective hole Schottky barrier heights (Φ Bp ) of NiSiGe/SiGe were extracted. Φ Bp was observed to decrease substantially with an increase in C + ion implantation dose

  16. Metastability of a-SiO{sub x}:H thin films for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Serenelli, L., E-mail: luca.serenelli@enea.it [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Martini, L. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Imbimbo, L. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Asquini, R. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Menchini, F.; Izzi, M.; Tucci, M. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy)

    2017-01-15

    Highlights: • a-SiO{sub x}:H film deposition by RF-PECVD is optimized from SiH{sub 4}, CO{sub 2} and H{sub 2} gas mixture. • Metastability of a-SiO{sub x}:H/c-Si passivation is investigated under thermal annealing and UV exposure. • A correlation between passivation metastability and Si−H bonds is found by FTIR spectra. • A metastability model is proposed. - Abstract: The adoption of a-SiO{sub x}:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiN{sub x} on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiO{sub x}:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Si−H and Si−O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm{sup 2}. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiO{sub x}:H/c-Si/a-SiO{sub x}:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiO{sub x} passivation properties, was furthermore considered. In

  17. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  18. A comparative study of low energy radiation responses of SiC, TiC and ZrC

    International Nuclear Information System (INIS)

    Jiang, M.; Xiao, H.Y.; Zhang, H.B.; Peng, S.M.; Xu, C.H.; Liu, Z.J.; Zu, X.T.

    2016-01-01

    In this study, an ab initio molecular dynamics method is employed to compare the responses of SiC, TiC and ZrC to low energy irradiation. It reveals that C displacements are dominant in the cascade events of the three carbides. The associated defects in SiC are mainly Frenkel pairs and antisite defects, whereas damage end states in TiC and ZrC generally consist of Frenkel pairs and very few antisite defects are created. It is proposed that the susceptibility to antisite formation in SiC contributes to its crystalline-to-amorphous transformation under irradiation that is observed experimentally. The stronger radiation tolerance of TiC and ZrC than SiC can be originated from their different electronic structures, i.e., the C> and C> bonds are a mixture of covalent, metallic, and ionic character, whereas the C> bond is mainly covalent. The presented results provide underlying mechanisms for defect generation in SiC, TiC and ZrC, and advance the fundamental understanding of the radiation resistances of carbide materials.

  19. Study of the interface in n{sup +}{mu}c-Si/p-type c-Si heterojunctions: role of the fluorine chemistry in the interface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Grimaldi, A.; Sacchetti, A.; Capezzuto, P.; Ambrico, M.; Bruno, G.; Roca, Francesco

    2003-03-03

    Investigation of n-p heterojunction solar cells obtained by depositing a n-type thin silicon films either amorphous or microcrystalline on p-type c-Si is carried out. The study is focused on the improvement of the c-Si surface and emitter layer/c-Si substrate interface. The peculiarity is the use of SiF{sub 4}-based plasmas for the in situ dry cleaning and passivation of the c-Si surface and for the PECVD deposition of the emitter layer that can be either amorphous (a-Si:H,F) or microcrystalline ({mu}c-Si). The use of SiF{sub 4} instead of the conventional SiH{sub 4} results in a lower hydrogen content in the film and in a reduction of the interaction of the c-Si surface with hydrogen atoms. Furthermore, the dependence of the heterojunction solar cell photovoltaic parameters on the insertion of an intrinsic buffer layer between the n-type thin silicon layer and the p-type c-Si substrate is discussed.

  20. Bulk Thermoelectric Materials Reinforced with SiC Whiskers

    Science.gov (United States)

    Akao, Takahiro; Fujiwara, Yuya; Tarui, Yuki; Onda, Tetsuhiko; Chen, Zhong-Chun

    2014-06-01

    SiC whiskers have been incorporated into Zn4Sb3 compound as reinforcements to overcome its extremely brittle nature. The bulk samples were prepared by either hot-extrusion or hot-pressing techniques. The obtained products containing 1 vol.% to 5 vol.% SiC whiskers were confirmed to exhibit sound appearance, high density, and fine-grained microstructure. Mechanical properties such as the hardness and fracture resistance were improved by the addition of SiC whiskers, as a result of dispersion strengthening and microstructural refinement induced by a pinning effect. Furthermore, crack deflection and/or bridging/pullout mechanisms are invoked by the whiskers. Regarding the thermoelectric properties, the Seebeck coefficient and electrical resistivity values comparable to those of the pure compound are retained over the entire range of added whisker amount. However, the thermal conductivity becomes large with increasing amount of SiC whiskers because of the much higher conductivity of SiC relative to the Zn4Sb3 matrix. This results in a remarkable degradation of the dimensionless figure of merit in the samples with addition of SiC whiskers. Therefore, the optimum amount of SiC whiskers in the Zn4Sb3 matrix should be determined by balancing the mechanical properties and thermoelectric performance.

  1. Behaviors of SiC fibers at high temperature

    International Nuclear Information System (INIS)

    Colin, C.; Falanga, V.; Gelebart, L.

    2010-01-01

    On the one hand, considering the improvements of mechanical and thermal behaviours of the last generation of SiC fibers (Hi-Nicalon S, Tyranno SA3); on the other hand, regarding physical and chemical properties and stability under irradiation, SiC/SiC composites are potential candidates for nuclear applications in advanced fission and fusion reactors. CEA must characterize and optimize these composites before their uses in reactors. In order to study this material, CEA is developing a multi-scale approach by modelling from fibers to bulk composite specimen: fibres behaviours must be well known in first. Thus, CEA developed a specific tensile test device on single fibers at high temperature, named MecaSiC. Using this device, we have already characterized the thermoelastic and thermoelectric behaviours of SiC fibers. Additional results about the plastic properties at high temperatures were also obtained. Indeed, we performed tensile tests between 1200 degrees C up to 1700 degrees C to characterize this plastic behaviour. Some thermal annealing, up to 3 hours at 1700 degrees C, had been also performed. Furthermore, we compare the mechanical behaviours with the thermal evolution of the electric resistivity of these SiC fibers. Soon, MecaSiC will be coupled to a new charged particle accelerator. Thus, in this configuration, we will be able to study in-situ irradiation effects on fibre behaviours, as swelling or creep for example

  2. Joining of SiC/SiCf ceramic matrix composites for fusion reactor blanket applications

    International Nuclear Information System (INIS)

    Colombo, P.; Riccardi, B.; Donato, A.; Scarinci, G.

    2000-01-01

    Using a preceramic polymer, joints between SiC/SiC f ceramic matrix composites were obtained. The polymer, upon pyrolysis at high temperature, transforms into a ceramic material and develops an adhesive bonding with the composite. The surface morphology of 2D and 3D SiC/SiC f composites did not allow satisfactory results to be obtained by a simple application of the method initially developed for monolithic SiC bodies, which employed the use of a pure silicone resin. Thus, active or inert fillers were mixed with the preceramic polymer, in order to reduce its volumetric shrinkage which occurs during pyrolysis. In particular, the joints realized using the silicone resin with Al-Si powder as reactive additive displayed remarkable shear strength (31.6 MPa maximum). Large standard deviation for the shear strength has nevertheless been measured. The proposed joining method is promising for the realization of fusion reactor blanket structures, even if presently the measured strength values are not fully satisfactory

  3. Towards radiation hard converter material for SiC-based fast neutron detectors

    Science.gov (United States)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection

  4. Ab initio study of 3C-SiC/M (M = Ti or Al) nano-hetero interfaces

    International Nuclear Information System (INIS)

    Tanaka, Shingo; Kohyama, Masanori

    2003-01-01

    Ab initio pseudopotential calculation of 3C-SiC(1 1 1)/Al nano-hetero interfaces have been performed and interface atom species dependence (IASD) and interface orientation dependence (IOD) of nano-hetero interfaces between 3C-SiC ((1 1 1) or (0 0 1) orientation) and metal (Ti or Al) have been studied systematically. Stable atomic configurations of the 3C-SiC(1 1 1)/Al interfaces are quite different from those of the 3C-SiC(1 1 1)/Ti interfaces. Two terminated, Si-terminated (Si-TERM) and C-terminated (C-TERM), 3C-SiC(1 1 1)/Al interfaces have covalent bonding nature. In 3C-SiC/M (M = Ti or Al) nano-hetero interfaces, the C-terminated interface has relative strong, covalent and ionic C-Ti or C-Al bonds as TiC or SiC while the Si-terminated interface has various type of bonding nature, relative weak Si-Ti or Si-Al bonds from metallic character at the (0 0 1) interface to covalent character at the (1 1 1) interface. Adhesive energy (AE) shows strong IASD and IOD. The AE of the C-terminated interface is larger than that of the Si-terminated one. In the C-terminated interface, the AE of the (1 1 1) interface is smaller than that of the (0 0 1) one while in the Si-terminated interface there exists opposite interrelation. Schottky barrier height (SBH) also shows strong IASD and IOD. The SBH of the C-terminated interface is smaller than that of the Si-terminated one. The C-terminated SiC/Al interfaces have extremely small SBHs. In comparison with some experimental SBH, the present result is reliable as the difference of SBH between the two terminated interfaces and qualitative properties

  5. Laser cladding of Al-Si/SiC composite coatings : Microstructure and abrasive wear behavior

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J.Th.M.

    2007-01-01

    Surface coatings of an Al-Si-SiC composite were produced on UNS A03560 cast Al-alloy substrates by laser cladding using a mixture of powders of Al-12 wt.% Si alloy and SiC. The microstructure of the coatings depends considerably on the processing parameters. For a specific energy of 26 MJ/m2 the

  6. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Bin [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Jia, Ren-Xu, E-mail: rxjia@mail.xidian.edu.cn [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Hu, Ji-Chao [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Tsai, Cheng-Ying [Graduate Institute of Electronics Engineering, National Taiwan University, 10617 Taipei, Taiwan (China); Lin, Hao-Hsiung, E-mail: hhlin@ntu.edu.tw [Graduate Institute of Electronics Engineering, National Taiwan University, 10617 Taipei, Taiwan (China); Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 10617 Taipei, Taiwan (China); Zhang, Yu-Ming [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China)

    2015-12-01

    Highlights: • A step-by-step experiment to investigate the growth mechanism of SiC hetero-epitaxial is proposed. • It has shown protrusive regular “hill” morphology with much lower density of DPB defect in our experiment, which normally were in high density with shallow groove. Based on the defect morphology, an anisotropy migration rate phenomenon of adatoms has been regarded as forming the morphology of DPB defects and a new “DPB defects assist epitaxy” growth mode has been proposed based on Frank-van der Merwe growth mode. - Abstract: To investigate the growth mechanism of hetero-epitaxial SiC, a step-by-step experiment of 3C-SiC epitaxial layers grown on 4H-SiC on-axis substrates by the CVD method are reported in this paper. Four step experiments with four one-quarter 4H-SiC wafers were performed. Optical microscopy and atomic force microscopy (AFM) were used to characterize the morphology of the epitaxial layers. It was previously found that the main factor affecting the epilayer morphology was double-positioning boundary (DPB) defects, which normally were in high density with shallow grooves. However, a protrusive regular “hill” morphology with a much lower density was shown in our experiment in high-temperature growth conditions. The anisotropic migration of adatoms is regarded as forming the morphology of DPB defects, and a new “DPB defects assist epitaxy” growth mode has been proposed based on the Frank-van der Merwe growth mode. Raman spectroscopy and X-ray diffraction were used to examine the polytypes and the quality of the epitaxial layers.

  7. SiC/C components for nuclear applications from low cost precursor

    International Nuclear Information System (INIS)

    Narciso, J.; Calderon, N.R.

    2009-01-01

    The development of structural materials with the desired properties to produce the components facing the plasma in fusion reactors is one of the key problems in fusion technology. The structural materials used in the first wall and breeder blanket limits the operating temperature of the system, and higher operating temperatures means higher efficiency. Among the advanced material under consideration for those parts (first wall and breeder blanket) SiC based composites offers the greatest potential. However, considerable research is still required in order to solve engineering feasibility and manufacturing issues, as the improvement of the maximum working temperature and the capability of fabrication of components with homogeneous properties at reasonable cost. Last decade, there has been a strong effort in blanket design using SiC f /SiC composites which are rather expensive while excellent mechanical properties are not so mandatory as resistance to neutron irradiation for this application. In this work, an experimental procedure for manufacturing SiC/C composite materials with homogeneous properties from low cost precursors is described. The process consists in classical reactive infiltration of porous carbon preforms by liquid silicon to produce RBSC where the porous carbon preforms are tailor-made for the fabrication of SiC components without residual Si. The proper selection of the feedstock nature and the pyrolysis conditions determine the microstructure and sinterability of the carbon particles, respectively. These two features control the reactivity of the carbon substrate and porosity of the carbon preform for complete infiltration. The absence of silicon and the homogeneous microstructure of the SiC materials produced by this procedure make them suitable for structural applications at temperatures higher than 1200 deg. C. Furthermore, the technique allows near-net-shape capability and the carbon source is a low cost material. (author)

  8. Feasibility study on the application of carbide (ZrC, SiC) for VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog; Kim, Si Hyeong; Jang, Moon Hee; Lee, Young Woo

    2006-08-15

    A feasibility study on the coating process of ZrC for the TRISO nuclear fuel and applications of SiC as high temperature materials for the core components has performed to develop the fabrication process for the advanced ZrC TRISO fuels and the high temperature structural components for VHTR, respectively. In the case of ZrC coating, studies were focused on the comparisons of the developed coating processes for screening of our technology, the evaluations of the reactions parameters for a ZrC deposition by the thermodynamic calculations and the preliminary coating experiments by the chloride process. With relate to SiC ceramics, our interesting items are as followings; an analysis of applications and specifications of the SiC components and collections of the SiC properties and establishments of data base. For these purposes, applications of SiC ceramics for the GEN-IV related components as well as the fusion reactor related ones were reviewed. Additionally, the on-going activities with related to the ZrC clad and the SiC composites discussed in the VHTR GIF-PMB, were reviewed to make the further research plans at the section 1 in chapter 3.

  9. Utilization of 14C-labelled cellulose in conventional, germ-free and mono-associated rats

    International Nuclear Information System (INIS)

    Juhr, N.C.; Franke, J.; Ratsch, H.

    1987-01-01

    This report deals with the ultilization of 14 C-labelled cellulose in conventional, defined associated, and germ-free rats. With conventional animals 35.8% of the administered 14 C dose can be demonstrated in the exhaled air, 5.9% in organs, and 3.9% in the urine. 58.6% could be identified as not utilized in the intestinal and fecal contents. Animals mono-associated with Bacteroides succinogenes have about the same utilization rate. The appearance of 14 C in the exhaled air, in organs and the urine of germ-free animals is caused by a part of 14 C-labelled starch in the used test material. (author)

  10. Microstructure and mechanical properties of low-activation glass-ceramic joining and coating for SiC/SiC composites

    International Nuclear Information System (INIS)

    Katoh, Yutai; Kotani, M.; Kohyama, A.; Montorsi, M.; Salvo, M.; Ferraris, M.

    2000-01-01

    Calcia-alumina (CA) glass-ceramic was studied as a candidate low-activation joining and sealing material for SiC/SiC components for fusion blanket and diverter structures, in terms of microstructural stability and mechanical properties. The CA glass-ceramic joining and seal coating were applied to the Hi-Nicalon TM SiC fiber-reinforced SiC matrix composites in which the matrix had been formed through chemical vapor infiltration and polymer impregnation and pyrolysis methods. Microstructural characterization was carried out for the joined and coated materials by optical and scanning electron microscopy (SEM). The mechanical property of the joint was evaluated through a shear test on sandwich joints. The average shear strength of the joined structures was 28 MPa at room temperature. Fractography revealed that the fracture occurred in the glass phase and the shear strength may be improved by reduction of the glass fraction

  11. Biomorphous SiC ceramics prepared from cork oak as precursor

    Science.gov (United States)

    Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.

    2016-04-01

    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.

  12. Microstructural evolution and mechanical properties of Ti3SiC2-TiC composites

    International Nuclear Information System (INIS)

    Tian, WuBian; Sun, ZhengMing; Hashimoto, Hitoshi; Du, YuLei

    2010-01-01

    Ti 3 SiC 2 -TiC composites were fabricated by pulse discharge sintering technique using three different sets of powder mixtures, i.e. Ti/Si/TiC (TC30), Ti/Si/C/TiC (SI30) and Ti/Si/C (TSC30). Based on X-ray diffraction (XRD) analysis and microstructural observations, starting powder reactants were found to have little effect on phase content but strong influence on the microstructure in terms of phase distribution. The phase distribution mainly relies on the heat released from reaction and the liquid phase content formed during sintering. The mechanical properties of the fabricated dense samples demonstrate that more homogeneous phase distribution, available by choosing the starting reactants of SI30, results in higher flexural strength, whereas the Vickers hardness is almost independent of the microstructure. The enhanced flexural strength in sample SI30 sintered at 1400 o C is mainly attributed to the homogeneous TiC distribution in the microstructure.

  13. MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Timossi, Chris

    2006-01-01

    Mono is an independent implementation of the .NET Framework by Novell that runs on multiple operating systems (including Windows, Linux and Macintosh) and allows any .NET compatible application to run unmodified. For instance Mono can run programs with graphical user interfaces (GUI) developed with the C(number s ign) language on Windows with Visual Studio (a full port of WinForm for Mono is in progress). We present the results of tests we performed to evaluate the portability of our controls system .NET applications from MS Windows to Linux

  14. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  15. Characterization of a n+3C/n−4H SiC heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Minamisawa, R. A.; Mihaila, A. [Department of Power Electronics, ABB Corporate Research Center, CH-5405 Baden-Dättwil (Switzerland); Farkas, I.; Hsu, C.-W.; Janzén, E. [Semiconductor Materials, IFM, Linköping University, SE-58183 Linköping (Sweden); Teodorescu, V. S. [National Institute of Material Physics, R-077125 Bucharest-Măgurele (Romania); Afanas' ev, V. V. [Semiconductor Physics Laboratory, KU Leuven, 3001 Leuven (Belgium); Rahimo, M. [ABB Semiconductors, Fabrikstrasse 3, CH-5600 Lenzburg (Switzerland)

    2016-04-04

    We report on the fabrication of n + 3C/n-4H SiC heterojunction diodes (HJDs) potentially promising the ultimate thermal stability of the junction. The diodes were systematically analyzed by TEM, X-ray diffraction, AFM, and secondary ion mass spectroscopy, indicating the formation of epitaxial 3C-SiC crystal on top of 4H-SiC substrate with continuous interface, low surface roughness, and up to ∼7 × 10{sup 17 }cm{sup −3} dopant impurity concentration. The conduction band off-set is about 1 V as extracted from CV measurements, while the valence bands of both SiC polytypes are aligned. The HJDs feature opening voltage of 1.65 V, consistent with the barrier height of about 1.5 eV extracted from CV measurement. We finally compare the electrical results of the n + 3C/n-4H SiC heterojunction diodes with those featuring Si and Ge doped anodes in order to evaluate current challenges involved in the fabrication of such devices.

  16. Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids.

    Science.gov (United States)

    Li, Bin; Jiang, Peng; Zhai, Famin; Chen, Junhong; Bei, Guo-Ping; Hou, Xinmei; Chou, Kuo-Chih

    2018-06-04

    In this paper, the fabrication and thermal conductivity of water-based nanofluids using boron (B) doped SiC as dispersions are reported. Doping B into β-SiC phase leads to the shrinkage of SiC lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B atoms (radius: 0.095 nm). The presence of B in SiC phase also promotes crystallization and grain growth of obtained particles. The tailored crystal structure and morphology of B doped SiC nanoparticles are beneficial for the thermal conductivity improvement of the nanofluids by using them as dispersions. Serving B doped SiC nanoparticles as dispersions for nanofluids, a remarkable improvement of the stability was achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. Dispersing B doped SiC nanoparticles in water based fluids, the thermal conductivity of the as prepared nanofluids containing only 0.3 vol. % SiC-B6 nanoparticles is remarkably raised up to 39.3 % at 30 °C compared to the base fluids and is further enhanced with the increased temperature. The main reasons for the improvement of thermal conductivity of SiC-B6 nanofluids are more stable dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the enhanced thermal conductivity of the SiC-B dispersions. © 2018 IOP Publishing Ltd.

  17. SiC Power MOSFET with Improved Gate Dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, Nick M. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Spencer, Michael G. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Chandrashekhar, Chandra M.V. S. [Structured Materials Industries, Inc., Piscataway, NJ (United States)

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  18. Crystal growth and characterization of fluorescent SiC

    DEFF Research Database (Denmark)

    Wellmann, P.; Kaiser, M.; Hupfer, T.

    -SiC co-doped with nitrogen and boron has been achieved [1][2]. The source is the rate determining step, and is expected to be determining the fluorescent properties by introducing dopants to the layer from the source. The optimization process of the polycrystalline, co-doped SiC:B,N source material...... and its impact on the FSPG epitaxial process, in particular the influence on the brightness of the is presented. In particular, the doping properties of the poly-SiC source material influence on the brightness of the fluorescent 6H-SiC. In addition we have investigated how the grain orientation...

  19. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures

    Science.gov (United States)

    Šály, V.; Perný, M.; Janíček, F.; Huran, J.; Mikolášek, M.; Packa, J.

    2017-04-01

    Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements.

  20. Emanation thermal analysis of SiC based materials

    Czech Academy of Sciences Publication Activity Database

    Bálek, V.; Zeleňák, V.; Mitsuhashi, T.; Bakardjieva, Snejana; Šubrt, Jan; Haneda, H.

    2002-01-01

    Roč. 67, č. 1 (2002), s. 83-89 ISSN 1418-2874 R&D Projects: GA MŠk ME 180 Grant - others:EFDA(XE) TTMA-001 Institutional research plan: CEZ:AV0Z4032918 Keywords : emanation thermal analysis * SEM * SiC nanocomposites Subject RIV: CA - Inorganic Chemistry Impact factor: 0.598, year: 2002

  1. Ultrarapid Multimode Microwave Synthesis of Nano/Submicron β-SiC

    Directory of Open Access Journals (Sweden)

    Min Zhao

    2018-02-01

    Full Text Available This paper presents the design, development and realization of a fast and novel process for the synthesis of 3C silicon carbide (β-SiC nanorods and submicron powder. Using SiO2 (or Si and activated carbon (AC, this process allows β-SiC to be synthesized with almost 100% purity in timeframes of seconds or minutes using multimode microwave rotary tube reactors under open-air conditions. The synthesis temperature used was 1460 ± 50 °C for Si + AC and 1660 ± 50 °C for SiO2 + AC. The shortest β-SiC synthesis time achieved was about 20 s for Si + AC and 100 s for SiO2 + AC. This novel synthesis method allows for scaled-up flow processes in the rapid industrial-scale production of β-SiC, having advantages of time/energy saving and carbon dioxide emission reduction over comparable modern processes.

  2. Pd/CeO2/SiC Chemical Sensors

    Science.gov (United States)

    Lu, Weijie; Collins, W. Eugene

    2005-01-01

    The incorporation of nanostructured interfacial layers of CeO2 has been proposed to enhance the performances of Pd/SiC Schottky diodes used to sense hydrogen and hydrocarbons at high temperatures. If successful, this development could prove beneficial in numerous applications in which there are requirements to sense hydrogen and hydrocarbons at high temperatures: examples include monitoring of exhaust gases from engines and detecting fires. Sensitivity and thermal stability are major considerations affecting the development of high-temperature chemical sensors. In the case of a metal/SiC Schottky diode for a number of metals, the SiC becomes more chemically active in the presence of the thin metal film on the SiC surface at high temperature. This increase in chemical reactivity causes changes in chemical composition and structure of the metal/SiC interface. The practical effect of the changes is to alter the electronic and other properties of the device in such a manner as to degrade its performance as a chemical sensor. To delay or prevent these changes, it is necessary to limit operation to a temperature sensor structures. The present proposal to incorporate interfacial CeO2 films is based partly on the observation that nanostructured materials in general have potentially useful electrical properties, including an ability to enhance the transfer of electrons. In particular, nanostructured CeO2, that is CeO2 with nanosized grains, has shown promise for incorporation into hightemperature electronic devices. Nanostructured CeO2 films can be formed on SiC and have been shown to exhibit high thermal stability on SiC, characterized by the ability to withstand temperatures somewhat greater than 700 C for limited times. The exchanges of oxygen between CeO2 and SiC prevent the formation of carbon and other chemical species that are unfavorable for operation of a SiC-based Schottky diode as a chemical sensor. Consequently, it is anticipated that in a Pd/CeO2/SiC Schottky

  3. High density plasma via hole etching in SiC

    International Nuclear Information System (INIS)

    Cho, H.; Lee, K.P.; Leerungnawarat, P.; Chu, S.N.G.; Ren, F.; Pearton, S.J.; Zetterling, C.-M.

    2001-01-01

    Throughwafer vias up to 100 μm deep were formed in 4H-SiC substrates by inductively coupled plasma etching with SF 6 /O 2 at a controlled rate of ∼0.6 μm min-1 and use of Al masks. Selectivities of >50 for SiC over Al were achieved. Electrical (capacitance-voltage: current-voltage) and chemical (Auger electron spectroscopy) analysis techniques showed that the etching produced only minor changes in reverse breakdown voltage, Schottky barrier height, and near surface stoichiometry of the SiC and had high selectivity over common frontside metallization. The SiC etch rate was a strong function of the incident ion energy during plasma exposure. This process is attractive for power SiC transistors intended for high current, high temperature applications and also for SiC micromachining

  4. Removal of C and SiC from Si and FeSi during ladle refining and solidification

    Energy Technology Data Exchange (ETDEWEB)

    Klevan, Ole Svein

    1997-12-31

    The utilization of solar energy by means of solar cells requires the Si to be very pure. The purity of Si is important for other applications as well. This thesis mainly studies the total removal of carbon from silicon and ferrosilicon. The decarburization includes removal of SiC particles by stirring and during casting in addition to reduction of dissolved carbon by gas purging. It was found that for three commercial qualities of FeSi75, Refined, Gransil, and Standard lumpy, the refined quality is lowest in carbon, followed by Gransil and Standard. A decarburization model was developed that shows the carbon removal by oxidation of dissolved carbon to be a slow process at atmospheric pressure. Gas stirring experiments have shown that silicon carbide particles are removed by transfer to the ladle wall. The casting method of ferrosilicon has a strong influence on the final total carbon content in the commercial alloy. Shipped refined FeSi contains about 100 ppm total carbon, while the molten alloy contains roughly 200 ppm. The total carbon out of the FeSi-furnace is about 1000 ppm. It is suggested that low values of carbon could be obtained on an industrial scale by injection of silica combined with the use of vacuum. Also, the casting system could be designed to give low carbon in part of the product. 122 refs., 50 figs., 24 tabs.

  5. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  6. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  7. High-performance a -Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution

    KAUST Repository

    Wang, Hsin Ping; Sun, Ke; Noh, Sun Young; Kargar, Alireza; Tsai, Meng Lin; Huang, Ming Yi; Wang, Deli; He, Jr-Hau

    2015-01-01

    Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages

  8. Electrically modulated lateral photovoltage in μc-SiOx:H/a-Si:H/c-Si p-i-n structure at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jihong; Qiao, Shuang, E-mail: sqiao@hbu.edu.cn; Wang, Jianglong; Wang, Shufang, E-mail: sfwang@hbu.edu.cn; Fu, Guangsheng

    2017-04-15

    Graphical abstract: In this paper, the temperature dependence of the LPE has been experimentally studied under illumination of different lasers ranging from visible to infrared for the μc-SiOx:H/a-Si:H/c-Si p-i-n structure. It was found that the position sensitivity increases nearly linearly with wavelength from 405 nm to 980 nm in the whole temperature range, and the saturated position sensitivity decreased quickly from 32.4 mV/mm to a very low value of 1.26 mV/mm and the nonlinearity improved from 7.01% to 3.54% with temperature decreasing from 296 K to 80 K for 532 nm laser illumination. By comparing the experiment results of μc-SiOx:H/a-Si:H/c-Si and ITO/c-Si, it is suggest that the position sensitivity was mainly determined by the temperature-dependent SB and the nonlinearity was directly related to the decreased resistivity of conductive layer. When an external bias voltage was applied, the LPE improved greatly and the position sensitivity of 361.35 mV/mm under illumination of 80 mW at 80 K is 286.7 times as large as that without biased voltage. More importantly, both the position sensitivity and the nonlinearity were independent of temperature again, which can be ascribed to the large constant transmission probability and diffusion length induced by the greatly increased SB. Our research provides an essential insight on the bias voltage-modulated LPE at different temperatures, and this temperature-independent greatly improved LPE is thought to be very useful for developing novel photoelectric devices. - Highlights: • The LPE is proportional to the laser wavelength in the whole temperature range. • The LPE decreases gradually with decreasing temperature from 296 K to 80 K. • Nonlinearity of the LPV curve improves a little with decreasing temperature. • The LPE improves dramatically and is independent of temperature with the aid of a bias voltage. - Abstract: The lateral photovoltaic effect (LPE) in μc-SiOx:H/a-Si:H/c-Si p-i-n structure is studied

  9. First-principles study of the Pd–Si system and Pd(001)/SiC(001) hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P.E.A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ivashchenko, V.I. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine)

    2014-11-01

    First-principles molecular dynamics simulations of the Pd(001)/3C–SiC(001) nano-layered structure were carried out at different temperatures ranging from 300 to 2100 K. Various PdSi (Pnma, Fm3m, P6m2, Pm3m), Pd2Si (P6⁻2m, P63/mmc, P3m1, P3⁻1m) and Pd3Si (Pnma, P6322, Pm3m, I4/mmm) structures under pressure were studied to identify the structure of the Pd/Si and Pd/C interfaces in the Pd/SiC systems at high temperatures. It was found that a large atomic mixing at the Pd/Si interface occurred at 1500–1800 K, whereas the Pd/C interface remained sharp even at the highest temperature of 2100 K. At the Pd/C interface, voids and a graphite-like clustering were detected. Palladium and silicon atoms interact at the Pd/Si interface to mostly form C22-Pd2Si and D011-Pd3Si fragments, in agreement with experiment.

  10. Deposition of SiC thin films by PECVD

    CERN Document Server

    Cho, N I; Kim, C K

    1999-01-01

    The SiC films were deposited on Si substrate by the decomposition of CH sub 3 SiCl sub 3 (methylthrichlorosilane) molecules in a high frequency discharge field. From the Raman spectra, it is conjectured that the deposited film are formed into the polycrystalline structure. The photon absorption measurement reveal that the band gap of the electron energy state are to be 2.4 eV for SiC, and 2.6 eV for Si sub 0 sub . sub 4 C sub 0 sub . sub 6 , respectively. In the high power density regime, methyl-radicals decompose easily and increases the carbon concentration in plasma and result in the growing films.

  11. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering

    Science.gov (United States)

    Hong, Li; Hongbin, Pu; Chunlei, Zheng; Zhiming, Chen

    2015-06-01

    β-FeSi2 thin films have been successfully prepared by magnetron sputtering and post rapid thermal annealing method on 6H-SiC (0001) substrates using a FeSi2 target and a Si target. X-ray diffraction (XRD) and Raman spectroscopy are applied to analyze the formation of β-FeSi2 films. XRD spectra reveal that the amorphous FeSi2 films are transformed to β-FeSi2 phase as the annealing temperature is increased from 500 to 900 °C for 5 min and the optimal annealing temperature is 900 °C. The formation of β-FeSi2 is also confirmed by Raman spectroscopy. Scanning electron microscope (SEM) observations indicate that the film is flat, relatively compact and the interface between β-FeSi2 and 6H-SiC is clear. Atomic force microscope (AFM) measurements demonstrate that the surface roughness confirmed by the root mean square (RMS) of the β-FeSi2 film is 0.87 nm. Near-infrared spectrophotometer observation shows that the absorption coefficient is of the order of 105 cm-1 and the optical band-gap of the β-FeSi2 film is 0.88 eV. The β-FeSi2 film with high crystal quality is fabricated by co-sputtering a FeSi2 target and a Si target for 60 min and annealing at 900 °C for 5 min. Project supported by the National Natural Science Foundation of China (No. 51177134) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM6286).

  12. New High-Performance SiC Fiber Developed for Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.; Yun, Hee Mann

    2002-01-01

    creates a more environmentally durable fiber surface not only because a more oxidation-resistant BN is formed, but also because this layer provides a physical barrier between contacting fibers with oxidation-prone SiC surface layers (refs. 3 and 4). This year, Glenn demonstrated that the in situ BN treatment can be applied simply to Sylramic fibers located within continuous multifiber tows, within woven fabric pieces, or even assembled into complex product shapes (preforms). SiC/SiC ceramic composite panels have been fabricated from Sylramic-iBN fabric and then tested at Glenn within the Ultra-Efficient Engine Technology Program. The test conditions were selected to simulate those experienced by hot-section components in advanced gas turbine engines. The results from testing at Glenn demonstrate all the benefits expected for the Sylramic-iBN fibers. That is, the composites displayed the best thermostructural performance in comparison to composites reinforced by Sylramic fibers and by all other currently available high-performance SiC fiber types (refs. 3 and 5). For these reasons, the Ultra-Efficient Engine Technology Program has selected the Sylramic-iBN fiber for ongoing efforts aimed at SiC/SiC engine component development.

  13. Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping

    Science.gov (United States)

    Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.

    2003-08-01

    We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.

  14. Professional Android Programming with Mono for Android and NETC#

    CERN Document Server

    McClure, Wallace B; Croft, John J; Dick, Jonathan; Hardy, Chris

    2012-01-01

    A one-of-a-kind book on Android application development with Mono for Android The wait is over! For the millions of .NET/C# developers who have been eagerly awaiting the book that will guide them through the white-hot field of Android application programming, this is the book. As the first guide to focus on Mono for Android, this must-have resource dives into writing applications against Mono with C# and compiling executables that run on the Android family of devices. Putting the proven Wrox Professional format into practice, the authors provide you with the knowledge you need to become a succ

  15. Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions

    International Nuclear Information System (INIS)

    Kim, Byung-Kook; Shin, Dong-Gap; Kim, Chang-Lae; Kim, Dae-Eun; Goo, Byeong-Choon

    2017-01-01

    The surface temperature of disc brakes varies during braking, which can affect the friction and wear behavior of braking systems. In order to develop an efficient braking system, the friction and wear behaviors of brake materials need to be clearly understood. In this work, the friction and wear behavior of the C/C-SiC-Cu composite and the Al/SiC composite, which are used in disc braking systems, were investigated. Both the surface temperature and contact pressure were studied. A pin-on-reciprocating tribotester was used for this purpose, in order to control temperature and load. Results showed that the friction varied significantly with temperature and sliding distance. It was found that a transfer layer of compacted wear debris formed on the wear track of the two materials. These layers caused the surface roughness of the wear track to increase. The outcome of this work is expected to serve as a basis for the development of braking systems under various operating conditions.

  16. Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Kook; Shin, Dong-Gap; Kim, Chang-Lae; Kim, Dae-Eun [Yonsei Univ., Seoul (Korea, Republic of); Goo, Byeong-Choon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2017-01-15

    The surface temperature of disc brakes varies during braking, which can affect the friction and wear behavior of braking systems. In order to develop an efficient braking system, the friction and wear behaviors of brake materials need to be clearly understood. In this work, the friction and wear behavior of the C/C-SiC-Cu composite and the Al/SiC composite, which are used in disc braking systems, were investigated. Both the surface temperature and contact pressure were studied. A pin-on-reciprocating tribotester was used for this purpose, in order to control temperature and load. Results showed that the friction varied significantly with temperature and sliding distance. It was found that a transfer layer of compacted wear debris formed on the wear track of the two materials. These layers caused the surface roughness of the wear track to increase. The outcome of this work is expected to serve as a basis for the development of braking systems under various operating conditions.

  17. Multi-scale approach to the mechanical behavior of SiC/SiC composites: the concept of mini-composite

    International Nuclear Information System (INIS)

    Lamon, J.

    2007-01-01

    Full text of publication follows: The concept of composite materials is very powerful, since one can tailor the properties with respect to end use applications, through a sound combination of constituents, including fibre, matrix and inter-phases. Ceramic matrix composites (CMCs) are at the forefront of advanced materials technology because of their light weight, high strength and toughness, high temperature capabilities and graceful failure under loading. This key behaviour is achieved by proper design of the fiber/matrix interface which helps in arresting and deflecting the cracks formed in the brittle matrix under load and preventing the early failure of the fiber arrangement. Ceramic matrix composites are considered as enabling technology for advanced aero-propulsion, space power, aerospace vehicles, space structures, ground transportation, as well as nuclear and chemical industries. During the last 30 years, tremendous progress has been made in the development of CMCs. Much research work has been conducted by LCTS on those SiC/SiC composites made via Chemical Vapor Infiltration. A multi-scale approach to mechanical behaviour has been developed. This multi-scale approach is aimed at relating the mechanical behaviour at macroscopic scale to constituent properties. It involves experiments and modelling. It allows chemical effects to be introduced in the models of mechanical behaviour. The present paper discusses the main features of the mechanical behaviour of textile SiC/SiC composites. These features are related to composite microstructure, properties of constituents (fibers, matrix and interphase) and fiber arrangement. Relationships between properties at different scales are established. Then the mini-composite concept is addressed. This concept is very powerful for composite design and investigation. Mini-composites consist of unidirectional composites reinforced by multi-filament tows. Mini-composites represent the mesoscale of textile composites. In

  18. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    introduced in the characteristic TO and LO mode of vibration of SiC nanocrystals after grafting procedure.XRD analysis confirmed that the grafting procedure did not alter the crystalline geometry of SiC nanocrystals. TEM and SEM images further support the FTIR and Raman spectroscopic results and confirm...... of semiconducting SiC nanocrystals using a novel method. FTIR spectroscopy reveals the introduction of new peaks corresponding to various functional groups of PVA alongwith the presence of characteristic Si-C vibrational peak in the spectra of grafted SiC nanocrystals. Raman spectra depict the presence of changes...... the presence of PVA layer around SiC nanocrystals. Thermal degradation behavior of PVA-g-SiC nanocrystals has been studied using TGA analysis....

  19. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures

    International Nuclear Information System (INIS)

    Šály, V; Pern, M; Janíček, F; Mikolášek, M; Packa, J; Huran, J

    2017-01-01

    Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements. (paper)

  20. Micromechanics of fiber pull-out and crack bridging in SCS-6 SiC- CVD SiC composite system at high-temperature

    International Nuclear Information System (INIS)

    El-Azab, A.; Ghoniem, N.M.

    1993-01-01

    A micro mechanical model is developed to study fiber pull-out and crack bridging in fiber reinforced SiC-SiC composites with time dependent thermal creep. By analyzing the creep data for monolithic CVD SiC (matrix) and the SCS-6 SiC fibers in the temperature range 900-1250 degrees C, it is found that the matrix creep rates can be ignored in comparison to those of fibers. Two important relationships are obtained: (1) a time dependent relation between the pull-out stress and the relative sliding distance between the fiber and matrix for the purpose of analyzing pull-out experiments, and (2) the relation between the bridging stress and the crack opening displacement to be used in studying the mechanics and stability of matrix crack bridged by fibers at high temperatures. The present analysis can also be applied to Nicalon-reinforced CVD SiC matrix system since the Nicalon fibers exhibit creep characteristics similar to those of the SCS-6 fibers

  1. SiC as an oxidation-resistant refractory material. Pt. 1

    International Nuclear Information System (INIS)

    Schlichting, J.

    1979-01-01

    Uses his own investigations and gives a literature survey on the oxidation and corrosion behaviour of SiC (in the form of a pure SiC powder, hot-pressed and reaction-sintered materials). The excellent stability of SiC in oxidizing atmosphere is due to the development of protective SiO 2 coatings. Any changes in these protective coatings (e.g. due to impurities with corrosive media, high porosity of SiC, etc.) lead in most cases to increased rates of oxidation and thus restrict the field of application of SiC. (orig.) [de

  2. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  3. Effects of the curing methods on the fabrication of polycarbosilane derived SiCf/SiC composite

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Ryu, Woo Seog; Woo, Chang Hyun; Han, Bum Soo

    2005-01-01

    Silicon carbide has potential advantages for structural applications in the next generation energy system- VHTR, GFR and the fusion reactor due to its unique properties such as a good irradiation resistance and thermo-mechanical properties, less severe waste generation due to neutron activation and improved plant conversion efficiencies by higher operating temperatures. Among the several fabrication processes for SiC f /SiC composites, the polymer impregnation and pyrolysis (PIP) process is the only method derived from polymeric precursors. In the PIP process, the careful control of the oxygen content is important to avoid the property degradation at a high temperature because polymeric precursors are used as source materials of SiC ceramics. During the polymer precursor conversion process, unintended oxygen may be introduced for a cross-linking with producing the Si-O-Si bonds at the curing step. High oxygen content affects the degradation of the high temperature stability in SiC ceramics. Therefore, a decrease of the oxygen content is desirable to obtain SiC ceramics with the high temperature stability. One of the methods to reduce the oxygen content of polymer derived SiC ceramics is the irradiation curing process by gamma ray or electron beam. Polymer derived SiC ceramics with the low oxygen content prepared by the electron beam curing showed the improved thermal stability at a higher temperature. In this study, the electron beam (EB) and the thermal oxidation curing methods were applied to make SiC f /SiC composite using a polymer precursor, polycarbosilane (PCS) by the PIP process. And the evaluations of the curing effects, the pyrolysis behaviors and a high temperature stability were performed

  4. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  5. Effects of antimony (Sb) on electron trapping near SiO{sub 2}/4H-SiC interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, P. M.; Jiang, Zenan; Basile, A. F. [Physics Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Zheng, Yongju; Dhar, Sarit [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2016-07-21

    To investigate the mechanism by which Sb at the SiO{sub 2}/SiC interface improves the channel mobility of 4H-SiC MOSFETs, 1 MHz capacitance measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements were performed on Sb-implanted 4H-SiC MOS capacitors. The measurements reveal a significant concentration of Sb donors near the SiO{sub 2}/SiC interface. Two Sb donor related CCDLTS peaks corresponding to shallow energy levels in SiC were observed close to the SiO{sub 2}/SiC interface. Furthermore, CCDLTS measurements show that the same type of near-interface traps found in conventional dry oxide or NO-annealed capacitors are present in the Sb implanted samples. These are O1 traps, suggested to be carbon dimers substituted for O dimers in SiO{sub 2}, and O2 traps, suggested to be interstitial Si in SiO{sub 2}. However, electron trapping is reduced by a factor of ∼2 in Sb-implanted samples compared with samples with no Sb, primarily at energy levels within 0.2 eV of the SiC conduction band edge. This trap passivation effect is relatively small compared with the Sb-induced counter-doping effect on the MOSFET channel surface, which results in improved channel transport.

  6. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  7. Effect of SiC Content on Microstructure and Wear Resistance of Laser Cladding SiC/Ni60A Composite Coating

    Directory of Open Access Journals (Sweden)

    ZHAO Long-zhi

    2017-03-01

    Full Text Available The SiC reinforced Ni60A alloy laser cladding coating on the 45 steel substrate was fabricated with the LDM2500-60 semiconductor laser equipment. The effect of SiC content on microstructure, dilution rate, wear resistance, friction coefficient and microhardness was investigated systematically.The results show that with the increase of SiC content, the microstructure of upper coating is refined obviously, the dilution rate, wear resistance, friction coefficient and microhardness increase firstly and then decrease;when the mass fraction of SiC is 20%, the wear resistance of the cladding coating is the best one, in which the wear loss of coating is only 0.0012g and is 1/36.3 of the matrix;the minimum friction coefficient is 0.464, the friction process is the most stable;the highest microhardness of the cladding coating is 1039.9HV0.2, which is 3.5 times of the substrate;but when the mass fraction of SiC is 25%, the microhardness and wear resistance of coating decrease.

  8. Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, George [General Atomics, San Diego, CA (United States); Back, Christina [General Atomics, San Diego, CA (United States)

    2015-10-30

    As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called the endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.

  9. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    Science.gov (United States)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  10. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption

    KAUST Repository

    Zhong, Bo; Sai, Tianqi; Xia, Long; Yu, Yuanlie; Wen, Guangwu

    2017-01-01

    In the current report, we have demonstrated that the high-efficient production of SiC/SiO2 core-shell nanowires can be achieved through the introduction of trace of water vapor during the chemical vapor deposition process. The yield of the SiC/SiO2 core-shell nanowires is dramatically improved due to the introduction of water vapor. The SiC/SiO2 core-shell nanowires exhibit an excellent microwave absorption property in the frequency range of 2.0–18.0GHz with a very low weight percentage of 0.50wt.% in the absorbers. A minimum reflection loss value of −32.72dB (>99.99% attenuation) at 13.84GHz has been observed with the absorber thickness of 3.0mm. Moreover, the SiC/SiO2 core-shell nanowires based absorber can reach an effective absorption bandwidth (<−10dB) of 5.32GHz with the absorber thickness of 3.5mm. Furthermore, a possible absorption mechanism is also proposed in detail for such effective attenuation of microwave which can be attributed to the dielectric loss and magnetic loss of SiC/SiO2 core-shell nanowires.

  11. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-02-21

    In the current report, we have demonstrated that the high-efficient production of SiC/SiO2 core-shell nanowires can be achieved through the introduction of trace of water vapor during the chemical vapor deposition process. The yield of the SiC/SiO2 core-shell nanowires is dramatically improved due to the introduction of water vapor. The SiC/SiO2 core-shell nanowires exhibit an excellent microwave absorption property in the frequency range of 2.0–18.0GHz with a very low weight percentage of 0.50wt.% in the absorbers. A minimum reflection loss value of −32.72dB (>99.99% attenuation) at 13.84GHz has been observed with the absorber thickness of 3.0mm. Moreover, the SiC/SiO2 core-shell nanowires based absorber can reach an effective absorption bandwidth (<−10dB) of 5.32GHz with the absorber thickness of 3.5mm. Furthermore, a possible absorption mechanism is also proposed in detail for such effective attenuation of microwave which can be attributed to the dielectric loss and magnetic loss of SiC/SiO2 core-shell nanowires.

  12. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.

    Science.gov (United States)

    Jiang, M; Zheng, J W; Xiao, H Y; Liu, Z J; Zu, X T

    2017-08-24

    ZrC and TiC have been proposed to be alternatives to SiC as fuel-cladding and structural materials in nuclear reactors due to their strong radiation tolerance and high thermal conductivity at high temperatures. To unravel how the presence of defects affects the thermo-physical properties under irradiation, first-principles calculations based on density function theory were carried out to investigate the mechanical and thermal properties of defective ZrC, TiC and SiC. As compared with the defective SiC, the ZrC and TiC always exhibit larger bulk modulus, smaller changes in the Young's and shear moduli, as well as better ductility. The total thermal conductivity of ZrC and TiC are much larger than that of SiC, implying that under radiation environment the ZrC and TiC will exhibit superior heat conduction ability than the SiC. One disadvantage for ZrC and TiC is that their Debye temperatures are generally lower than that of SiC. These results suggest that further improving the Debye temperature of ZrC and TiC will be more beneficial for their applications as fuel-cladding and structural materials in nuclear reactors.

  13. Nanowires of silicon carbide and 3D SiC/C nanocomposites with inverse opal structure

    International Nuclear Information System (INIS)

    Emelchenko, G.A.; Zhokhov, A.A.; Masalov, V.M.; Kudrenko, E.A.; Tereshenko, A.N.; Steinman, E.A.; Khodos, I.I.; Zinenko, V.I.; Agafonov, Yu.A.

    2011-01-01

    Synthesis, morphology, structural and optical characteristics of SiC NWs and SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by carbothermal reduction of silica (SiC NWs) and by thermo-chemical treatment of opal matrices (SiC/C) filled with carbon compounds which was followed by silicon dioxide dissolution. It was shown that the nucleation of SiC NWs occurs at the surface of carbon fibers felt. It was observed three preferred growth direction of the NWs: [111], [110] and [112]. HRTEM studies revealed the mechanism of the wires growth direction change. SiC/C- HRTEM revealed in the structure of the composites, except for silicon carbide, graphite and amorphous carbon, spherical carbon particles containing concentric graphite shells (onion-like particles).

  14. Morphological and electronic properties of epitaxial graphene on SiC

    International Nuclear Information System (INIS)

    Yakimova, R.; Iakimov, T.; Yazdi, G.R.; Bouhafs, C.; Eriksson, J.; Zakharov, A.; Boosalis, A.; Schubert, M.; Darakchieva, V.

    2014-01-01

    We report on the structural and electronic properties of graphene grown on SiC by high-temperature sublimation. We have studied thickness uniformity of graphene grown on 4H–SiC (0 0 0 1), 6H–SiC (0 0 0 1), and 3C–SiC (1 1 1) substrates and investigated in detail graphene surface morphology and electronic properties. Differences in the thickness uniformity of the graphene layers on different SiC polytypes is related mainly to the minimization of the terrace surface energy during the step bunching process. It is also shown that a lower substrate surface roughness results in more uniform step bunching and consequently better quality of the grown graphene. We have compared the three SiC polytypes with a clear conclusion in favor of 3C–SiC. Localized lateral variations in the Fermi energy of graphene are mapped by scanning Kelvin probe microscopy. It is found that the overall single-layer graphene coverage depends strongly on the surface terrace width, where a more homogeneous coverage is favored by wider terraces. It is observed that the step distance is a dominating, factor in determining the unintentional doping of graphene from the SiC substrate. Microfocal spectroscopic ellipsometry mapping of the electronic properties and thickness of epitaxial graphene on 3C–SiC (1 1 1) is also reported. Growth of one monolayer graphene is demonstrated on both Si- and C-polarity of the 3C–SiC substrates and it is shown that large area homogeneous single monolayer graphene can be achieved on the Si-face substrates. Correlations between the number of graphene monolayers on one hand and the main transition associated with an exciton enhanced van Hove singularity at ∼4.5 eV and the free-charge carrier scattering time, on the other are established. It is shown that the interface structure on the Si- and C-polarity of the 3C–SiC (1 1 1) differs and has a determining role for the thickness and electronic properties homogeneity of the epitaxial graphene.

  15. Characterization and formation of NV centers in 3 C , 4 H , and 6 H SiC: An ab initio study

    Science.gov (United States)

    Csóré, A.; von Bardeleben, H. J.; Cantin, J. L.; Gali, A.

    2017-08-01

    Fluorescent paramagnetic defects in solids have become attractive systems for quantum information processing in recent years. One of the leading contenders is the negatively charged nitrogen-vacancy (NV) defect in diamond with visible emission, but an alternative solution in a technologically mature host is an immediate quest for many applications in this field. It has been recently found that various polytypes of silicon carbide (SiC), that are standard semiconductors with wafer scale technology, can host a NV defect that could be an alternative qubit candidate with emission in the near infrared region. However, there is much less known about this defect than its counterpart in diamond. The inequivalent sites within a polytype and the polytype variations offer a family of NV defects. However, there is an insufficient knowledge on the magneto-optical properties of these configurations. Here we carry out density functional theory calculations, in order to characterize the numerous forms of NV defects in the most common polytypes of SiC including 3 C , 4 H , and 6 H , and we also provide new experimental data in 4 H SiC. Our calculations mediate the identification of individual NV qubits in SiC polytypes. In addition, we discuss the formation of NV defects in SiC, providing detailed ionization energies of NV defects in SiC, which reveals the critical optical excitation energies for ionizing these qubits in SiC. Our calculations unravel the challenges to produce NV defects in SiC with a desirable spin bath.

  16. Al-Si/B{sub 4}C composite coatings on Al-Si substrate by plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, Ozkan [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Anik, Selahaddin [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Aslanlar, Salim [Sakarya University, Faculty of Technical Education, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Cem Okumus, S. [Sakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Celik, Erdal [Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Buca, Izmir 35160 (Turkey)]. E-mail: erdal.celik@deu.edu.tr

    2007-07-01

    Plasma-sprayed coatings of Al-Si/B{sub 4}C have been prepared on Al-Si piston alloys for diesel engine motors. The Al-Si/B{sub 4}C composite powders including 5-25 wt% B{sub 4}C were prepared by mixing and ball-milling processes. These powders were deposited on Al-Si substrate using an atmospheric plasma spray technique. The coatings have been characterised with respect to phase composition, microstructure, microhardness, bond strength and thermal expansion. It was found that Al, Si, B{sub 4}C and Al{sub 2}O{sub 3} phases were determined in the coatings with approximately 600 {mu}m thick by using X-ray diffraction analysis. Scanning electron microscope observation revealed that boron carbide particles were uniformly distributed in composite coatings and B{sub 4}C particles were fully wetted by Al-Si alloy. Also, no reaction products were observed in Al-Si/B{sub 4}C composite coatings. It was found that surface roughness, porosity, bond strength and thermal expansion coefficient of composite coatings decreased with increasing fraction of the boron carbide particle. It was demonstrated that the higher the B{sub 4}C content, the higher the hardness of coatings because the hardness of B{sub 4}C is higher than that of Al-Si.

  17. Investigation of 3C-SiC/SiO2 interfacial point defects from ab initio g-tensor calculations and electron paramagnetic resonance measurements

    Science.gov (United States)

    Nugraha, T. A.; Rohrmueller, M.; Gerstmann, U.; Greulich-Weber, S.; Stellhorn, A.; Cantin, J. L.; von Bardeleben, J.; Schmidt, W. G.; Wippermann, S.

    SiC is widely used in high-power, high-frequency electronic devices. Recently, it has also been employed as a building block in nanocomposites used as light absorbers in solar energy conversion devices. Analogous to Si, SiC features SiO2 as native oxide that can be used for passivation and insulating layers. However, a significant number of defect states are reported to form at SiC/SiO2 interfaces, limiting mobility and increasing recombination of free charge carriers. We investigated the growth of oxide on different 3C-SiC surfaces from first principles. Carbon antisite Csi defects are found to be strongly stabilized in particular at the interface, because carbon changes its hybridization from sp3 in the SiC-bulk to sp2 at the interface, creating a dangling bond inside a porous region of the SiO2 passivating layer. Combining ab initio g-tensor calculations and electron paramagnetic resonance (EPR) measurements, we show that Csi defects explain the measured EPR signatures, while the hyperfine structure allows to obtain local structural information of the oxide layer. Financial support from BMBF NanoMatFutur Grant 13N12972 and DFG priority program SPP-1601 is gratefully acknowledged.

  18. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

    Science.gov (United States)

    Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu

    2018-04-01

    Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

  19. The topotactic transformation of Ti3SiC2 into a partially ordered cubic Ti(C0.67Si0.06) phase by the diffusion of Si into molten cryolite

    International Nuclear Information System (INIS)

    Barsoum, M.W.; El-Raghy, T.; Farber, L.; Amer, M.; Christini, R.; Adams

    1999-01-01

    Immersion of Ti 3 SiC 2 samples in molten cryolite at 960 C resulted in the preferential diffusion of Si atoms out of the basal planes to form a partially ordered, cubic phase with approximate chemistry Ti(C 0.67 , Si 0.06 ). The latter forms in domains, wherein the (111) planes are related by mirror planes; i.e., the loss of Si results in the de-twinning of the Ti 3 C 2 layers. Raman spectroscopy, X-ray diffraction, optical, scanning and transmission electron microscopy all indicate that the Si exists the structure topotactically, in such a way that the C atoms remain partially in their ordered position in the cubic phase

  20. Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

    Science.gov (United States)

    Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun

    2017-05-01

    High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

  1. Preliminary soft x-ray studies of beta-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Shek, M.L. [Brookhaven National Lab., Upton, NY (United States); Miyano, K.E.; Ederer, D.L. [Tulane Univ., New Orleans, LA (United States). Dept. of Physics; Dong, Q.Y.; Callcott, T.A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics

    1994-06-01

    We have looked at beta-SiC with soft x-ray emission and photoemission spectroscopy. From the Si L{sub 23} and C K emissions, the Si s+d-like and C p partial density of states in the bulk valence band are identified, and compared with valence band photoemission. In addition to bulk electronic structural features, photoemission from a (3 {times} 2) Si-rich surface shows two surface-derived valence features at {approximately}{minus}2.6 and {approximately}{minus}1.6 eV relative to the Fermi level. The intensities of these valence features vary as those of surface Si 2p core level components shifted by {minus}0.5 eV and {minus}1.4 eV from the bulk-like SiC Si 2p core level. We have also used the Si L{sub 23} absorption edge as a probe of the unfilled states near the conduction, band minimum.

  2. 3C-SiC epitaxial films deposited by reactive magnetron sputtering: Growth, characterization and device development

    Energy Technology Data Exchange (ETDEWEB)

    Wahab, Qamar ul.

    1994-01-01

    Epitaxial 3C-SiC films were grown on silicon substrates by reactive magnetron sputtering of pure Si target in a mixed Ar-CH[sub 4] discharges. Films were grown on Si(001), and 4 degrees off-oriented (001) substrates. Epitaxial 3C-SiC films with sharp interface to Si substrates have been grown at substrate temperatures [<=] 900 degrees C. Above 900 degrees C interfacial reaction starts resulting in a rough SiC/Si interface. The carbon content as well as the crystalline structure was also found to be strongly dependent on CH[sub 4] partial pressure (PCH[sub 4]) and stoichiometric composition can only be obtained in a narrow PCH[sub 4] range. Films grown on Si(001) substrates contained anti domain boundaries as evident by cross-sectional transmission electron microscopy (XTEM). Films grown on (111)-oriented substrates were epitaxial at 850 degrees C but contained double positioning domains as determined by X-ray diffraction analysis and XTEM. High quality films were obtained on 4 degrees off-oriented Si(001) substrates at T[sub s]=850 degrees C and PCH[sub 4]=0.6 mTorr. Films grown on off-oriented substrates showed atomically sharp interface to Si and also a smooth top surface. SiO[sub 2] layer grown on such films showed atomically sharp oxide/film interface. Also the growth of epitaxial Si films on top of SiC films was realized. Au-Schottky diodes fabricated on (001)-oriented 3C-SiC films showed good rectification with a leakage current density = 4 [mu]A cm[sup -2], a breakdown voltage of -15 V, an ideality factor of 1.27 and a barrier height of 1.04 eV. Metal oxide semiconductor structures were fabricated by thermally grown SiO[sub 2] on (111)-oriented SiC films. The capacitance-voltage measurements showed the accumulation, depletion and deep depletion region in the C-V curve. The interface trap densities were 3-7 x 10[sup 11] cm[sup -2] eV[sup -1]. Finally 3C-SiC/Si heterojunction diodes processed showed good rectification and the diode had a breakdown at -110 V.

  3. 3C-SiC epitaxial films deposited by reactive magnetron sputtering: Growth, characterization and device development

    International Nuclear Information System (INIS)

    Wahab, Qamar ul.

    1994-01-01

    Epitaxial 3C-SiC films were grown on silicon substrates by reactive magnetron sputtering of pure Si target in a mixed Ar-CH 4 discharges. Films were grown on Si(001), and 4 degrees off-oriented (001) substrates. Epitaxial 3C-SiC films with sharp interface to Si substrates have been grown at substrate temperatures ≤ 900 degrees C. Above 900 degrees C interfacial reaction starts resulting in a rough SiC/Si interface. The carbon content as well as the crystalline structure was also found to be strongly dependent on CH 4 partial pressure (PCH 4 ) and stoichiometric composition can only be obtained in a narrow PCH 4 range. Films grown on Si(001) substrates contained anti domain boundaries as evident by cross-sectional transmission electron microscopy (XTEM). Films grown on (111)-oriented substrates were epitaxial at 850 degrees C but contained double positioning domains as determined by X-ray diffraction analysis and XTEM. High quality films were obtained on 4 degrees off-oriented Si(001) substrates at T s =850 degrees C and PCH 4 =0.6 mTorr. Films grown on off-oriented substrates showed atomically sharp interface to Si and also a smooth top surface. SiO 2 layer grown on such films showed atomically sharp oxide/film interface. Also the growth of epitaxial Si films on top of SiC films was realized. Au-Schottky diodes fabricated on (001)-oriented 3C-SiC films showed good rectification with a leakage current density = 4 μA cm -2 , a breakdown voltage of -15 V, an ideality factor of 1.27 and a barrier height of 1.04 eV. Metal oxide semiconductor (MOS) structures were fabricated by thermally grown SiO 2 on (111)-oriented SiC films. The capacitance-voltage measurements showed the accumulation, depletion and deep depletion region in the C-V curve. The interface trap densities were 3-7 x 10 11 cm -2 eV -1 . Finally 3C-SiC/Si heterojunction diodes processed showed good rectification and the diode had a breakdown at -110 V. 59 refs, figs, tabs

  4. Structure of Ti{sub 3}SiC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rawn, C.J.; Payzant, E.A.; Hubbard, C.R. [Oak Ridge National Lab., TN (United States); Barsoum, M.W.; El-Raghy, T. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering

    1998-11-01

    Earlier high temperature structure analysis by neutron powder diffraction suggested that Si vacancies were created when Ti{sub 3}SiC{sub 2} was heated. A specimen that was heated to 906 C overnight was later examined at room temperature. For this subsequent room temperature data set refinement of the Si site occupancies in the Ti{sub 3}SiC{sub 2} structure did not support the hypothesis that Si vacancies were being created when the sample was held at elevated temperatures in a vacuum furnace.

  5. Luminescence and Morphological Properties of GaN Layers Grown on SiC/Si(111) Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Garcia, M.A.; Ristic, J.; Calleja, E. [ISOM and Dpto. Ing. Electronica, ETSI Telecomunicacion, Univ. Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Perez-Rodriguez, A.; Serre, C.; Romano-Rodriguez, A.; Morante, J.R. [EME - Electronic Materials and Engineering, Department of Electronics, Universidad de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Koegler, R.; Skorupa, W. [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf e.V., 01314 Dresden (Germany); Trampert, A.; Ploog, K.H. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2002-08-16

    This article describes the fabrication of SiC thin films on top of Si(111) substrates by means of a multiple C-ion implantation and the subsequent growth by plasma-assisted molecular beam epitaxy of GaN layers. The stoichiometry of the top SiC layer is controlled by reactive ion etching. Photoluminescence spectra reveal that all GaN layers are under biaxial tensile strain of thermal origin. The photoluminescence efficiency clearly depends on the stoichiometry of the initial SiC layer and on whether AlN buffer layers are used or not. GaN layers grown directly on bare non-stoichiometric SiC layers exhibit the best photoluminescence efficiency but also a high degree of mosaicity, as measured by X-ray diffraction techniques. The nucleation process involved in the initial stages of the growth leads to the formation of large dislocation-free grains with a high PL efficiency and with a higher tensile strain character. Despite the lack of a perfect monocrystalline SiC substrate lattice, high quality GaN microcrystals are obtained. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  6. Development of the fabrication process of SiC composite by polycarbosilane

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Kim, Jung Il; Ryu, Woo Seog

    2004-11-01

    This technical report reviewed the fabrication process of fiber reinforced ceramic composites, characteristics of the PIP process, and applications of SiC f /SiC composite to develop a silicon carbide composite by PIP method. Additionally, characteristics and thermal behaviors of a PCS+SiC powder slurry and infiltration behaviors of slurry into the SiC fabric was evaluated. The stacking behaviors of SiC fabrics infiltrated a PCS+SiC powder slurry was also investigated. Using this stacked preforms, SiC f /SiC composites were fabricated by the electron beam curing and pyrolysis process and the thermal oxidation curing and pyrolysis process, respectively. And the characteristics of both composites were compared

  7. Effect of 3C-SiC intermediate layer in GaN—based light emitting diodes grown on Si(111) substrate

    Science.gov (United States)

    Zhu, Youhua; Wang, Meiyu; Li, Yi; Tan, Shuxin; Deng, Honghai; Guo, Xinglong; Yin, Haihong; Egawa, Takashi

    2017-03-01

    GaN-based light emitting diodes (LEDs) have been grown by metalorganic chemical vapor deposition on Si(111) substrate with and without 3C-SiC intermediate layer (IL). Structural property has been characterized by means of atomic force microscope, X-ray diffraction, and transmission electron microscope measurements. It has been revealed that a significant improvement in crystalline quality of GaN and superlattice epitaxial layers can be achieved by using 3C-SiC as IL. Regarding of electrical and optical characteristics, it is clearly observed that the LEDs with its IL have a smaller leakage current and higher light output power comparing with the LEDs without IL. The better performance of LEDs using 3C-SiC IL can be contributed to both of the improvements in epitaxial layers quality and light extraction efficiency. As a consequence, in terms of optical property, a double enhancement of the light output power and external quantum efficiency has been realized.

  8. Fibre-reinforced SiC ceramics: Properties and applications; Faserverstaerkte SiC-Keramik: Eigenschaften und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Leuchs, M. [MT Aerospace AG, Franz-Josef-Strauss-Str. 5, 86153 Augsburg (Germany)

    2006-04-15

    Composite ceramics can be produced by different processes resulting in different qualities. A composite ceramic material with C or SiC fibres and a SiC matrix is presented which is produced by chemical vapour infiltration (CVI). The material characteristics are defined by the embedding of the fibres in the matrix. For full utilisation of the strength and elasticity of the fibres, weak coupling between the fibres and matrix is required. The measured cracking resistances are similar to those of metals, e.g. grey cast iron. Applications so far have focused on applications where known materials cannot be used, e.g. because of high temperatures, thermoshock and brittle fracture problems, and wear. Examples are control flaps in aerospace applications are exposed to temperatures above 1600 degree C during re-entry into the earth atmosphere and heavy-duty sliding bearings in industrial pumps where ceramic composite materials have been in use for more than a decade. (orig.) [German] Mit Verbundkeramiken ist eine Werkstoffklasse entstanden, bei denen sich verschiedene Herstellverfahren mit unterschiedlichen Qualitaeten entwickelt haben [1]. Es wird eine Verbundkeramik mit C- bzw. SiC-Fasern und SiC-Matrix vorgestellt, die ueber die Infiltration der Fasern mit dem CVI-Verfahren (Chemical Vapour Infiltration) hergestellt wird [2]. Die Eigenschaften werden bestimmt durch die Qualitaet der Einbettung der Fasern in die Matrix. Nur eine schwache Ankopplung zwischen Fasern und Matrix erlaubt es, Festigkeit und Dehnbarkeit der Fasern auszunutzen. Die gemessenen Risswiderstaende solcher Verbundkeramiken liegen im Bereich von Metallen wie zum Beispiel Grauguss. Anwendungen konzentrieren sich bisher auf Gebiete, in denen die bekannten Werkstoffe nicht eingesetzt werden koennen. Gruende hierfuer sind zum Beispiel zu hohe Temperaturen, Thermoschock- und Sproedbruchverhalten und Verschleiss. Beispiele sind Steuerklappen aus dem Bereich der Raumfahrt, die beim Wiedereintritt in die

  9. Structural and optical properties of SiC-SiO2 nanocomposite thin films

    Science.gov (United States)

    Bozetine, I.; Keffous, A.; Kaci, S.; Menari, H.; Manseri, A.

    2018-03-01

    This study deals with the deposition of thin films of a SiC-SiO2nanocomposite deposited on silicon substrates. The deposition is carried out by a co-sputtering RF magnetron 13.56 MHz, using two targets a polycristallin 6H-SiC and sprigs of SiO2. In order to study the influence of the deposition time on the morphology, the structural and optical properties of the thin films produced, two series of samples were prepared, namely a series A with a 30 min deposition time and a series B of one hour duration. The samples were investigated using different characterization techniques such as Scanning Electron Microscope (SEM), X-ray Diffraction (DRX), Fourier Transform Infrared Spectroscopy (FTIR), Secondary Ion Mass Spectrometry (SIMS) and photoluminescence. The results obtained, reveal an optical gap varies between 1.4 and 2.4 eV depending on the thickness of the film; thus depending on the deposition time. The SIMS profile recorded the presence of oxygen (16O) on the surface, which the signal beneath the silicon signal (28Si) and carbon (12C) signals, which confirms that the oxide (SiO2) is the first material deposited at the interface film - substrate with an a-OSiC structure. The photoluminescence (PL) measurement exhibits two peaks, centred at 390 nm due to the oxide and at 416 nm due probably to the nanocrystals of SiC crystals, note that when the deposition time increases, the intensity of the PL drops drastically, result in agreement with dense and smooth film.

  10. Graphene synthesis on SiC: Reduced graphitization temperature by C-cluster and Ar-ion implantation

    International Nuclear Information System (INIS)

    Zhang, R.; Li, H.; Zhang, Z.D.; Wang, Z.S.; Zhou, S.Y.; Wang, Z.; Li, T.C.; Liu, J.R.; Fu, D.J.

    2015-01-01

    Thermal decomposition of SiC is a promising method for high quality production of wafer-scale graphene layers, when the high decomposition temperature of SiC is substantially reduced. The high decomposition temperature of SiC around 1400 °C is a technical obstacle. In this work, we report on graphene synthesis on 6H–SiC with reduced graphitization temperature via ion implantation. When energetic Ar, C 1 and C 6 -cluster ions implanted into 6H–SiC substrates, some of the Si–C bonds have been broken due to the electronic and nuclear collisions. Owing to the radiation damage induced bond breaking and the implanted C atoms as an additional C source the graphitization temperature was reduced by up to 200 °C

  11. Influence of defects in SiC (0001) on epitaxial graphene

    International Nuclear Information System (INIS)

    Guo Yu; Guo Li-Wei; Lu Wei; Huang Jiao; Jia Yu-Ping; Sun Wei; Li Zhi-Lin; Wang Yi-Fei

    2014-01-01

    Defects in silicon carbide (SiC) substrate are crucial to the properties of the epitaxial graphene (EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC (0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG. (rapid communication)

  12. Determination of material properties for short fibre reinforced C/C-SiC

    Directory of Open Access Journals (Sweden)

    Hausherr J.-M.

    2015-01-01

    Full Text Available Determining the mechanical properties of short fibre reinforced CMC using standard sized coupons has always been a challenge due to a high statistical scattering of the measured values. Although the random orientation of short fibres results in a quasi-isotropic material behavior of 2D-structures with a sufficiently large volume, the small volume typical for test coupons usually results in a non-isotropic fibre orientation in the tested volume. This paper describes a method for manufacturing unidirectional oriented short fibre reinforced CMC materials and presents material properties of UD-C/C-SiC. After verifying the fibre orientation of the CMC using micro-computed tomography, coupons were extracted to determine the orthotropic material properties. These orthotropic material properties were then used to predict the properties of C/C-SiC with randomly distributed short fibres. To validate the method, micro-computed tomography is used to quantitatively determine the fibre orientation within coupons extracted from randomly distributed short fibre C/C-SiC. After mechanical three-point-bending tests, the measured stiffness and bending strength is compared with the predicted properties. Finally, the data are used to devise a method suited for reducing the inherent large spread of material properties associated with the measurement of CMC materials with randomly distributed short fibres.

  13. Electrical activation of nitrogen heavily implanted 3C-SiC(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fan, E-mail: f.li.1@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Sharma, Yogesh; Shah, Vishal; Jennings, Mike [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Pérez-Tomás, Amador [ICN2 – Institut Catala de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Myronov, Maksym [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Fisher, Craig [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Leadley, David [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Mawby, Phil [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-10-30

    Highlights: • Nitrogen is fully activated by 1175 °C annealing for 1.5 × 10{sup 19} cm{sup −3} doped 3C-SiC. • Free donor concentration is found to readily saturate in 3C-SiC at ∼7 × 10{sup 19} cm{sup −3}. • 3C-SiC is found to have complete donor thermal ionization above 150 K. • Donor in 1.5 × 10{sup 19} cm{sup −3} nitrogen implanted 3C-SiC has an energy level ∼15 meV. • The SiO{sub 2} cap is found to have a bigger influence on low and medium doped samples. - Abstract: A degenerated wide bandgap semiconductor is a rare system. In general, implant levels lie deeper in the band-gap and carrier freeze-out usually takes place at room temperature. Nevertheless, we have observed that heavily doped n-type degenerated 3C-SiC films are achieved by nitrogen implantation level of ∼6 × 10{sup 20} cm{sup −3} at 20 K. According to temperature dependent Hall measurements, nitrogen activation rates decrease with the doping level from almost 100% (1.5 × 10{sup 19} cm{sup −3}, donor level 15 meV) to ∼12% for 6 × 10{sup 20} cm{sup −3}. Free donors are found to saturate in 3C-SiC at ∼7 × 10{sup 19} cm{sup −3}. The implanted film electrical performances are characterized as a function of the dopant doses and post implantation annealing (PIA) conditions by fabricating Van der Pauw structures. A deposited SiO{sub 2} layer was used as the surface capping layer during the PIA process to study its effect on the resultant film properties. From the device design point of view, the lowest sheet resistivity (∼1.4 mΩ cm) has been observed for medium doped (4 × 10{sup 19} cm{sup −3}) sample with PIA 1375 °C 2 h without a SiO{sub 2} cap.

  14. Application of SiC masses as tube liners in municipal incinerators. Anwendung von SiC-Massen fuer Rohrverkleidungen in kommunalen Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Soo.

    1993-09-02

    Phosphate-bonded SiC masses with different additives were investigated. The reference mass was a SiC mass consisting of 90% by mass of SiC and 10% by mass of Al[sub 2]O[sub 3]. The reactive alumina ([alpha]-Al[sub 2]O[sub 3]) served as reaction partner for the aluminium phosphate binder. The physical and thermomechanical properties as well as the corrosion resistance of the developed SiC masses were investigated, and the reactions of the additives with the aluminium phosphate binder were investigated. The best combination of properties required of a refractory liner for waste incinerators was found in masses with Si[sub 3]N[sub 4] additives. These masses have optimal physical and thermomechanical properties and a high resistance to the corrosive gases and alkaline slags produced in modern incinerators. (orig./EF)

  15. Effect of SiC buffer layer on GaN growth on Si via PA-MBE

    Science.gov (United States)

    Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.

    2017-11-01

    The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.

  16. Direct growth of freestanding GaN on C-face SiC by HVPE.

    Science.gov (United States)

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  17. Fabrication of laminated ZrC-SiC composite by vacuum hot-pressing sintering

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2015-03-01

    Full Text Available Laminated ZrC-SiC ceramic was prepared through tape casting and hot pressing. The green tapes of ZrC and SiC were prepared at room temperature. In order to improve the density of composite, the binder of green tapes were removed at 550 °C for 1 h. The laminated structure and the cracks propagation path, which is not a straight line, are observed by optical metalloscope. The compact laminated ZrC-SiC composite sintered by vacuum hot-pressing at 1650 °C for 90 min under pressure of 20 MPa was researched by X-ray diffraction and scanning electron microscopy (SEM equipped with energy dispersive X-ray analysis. The results showed that interlayer bonding is tight, and no disordered phase has formed in the interlayers of ZrC or SiC, and the combination mode is physical mechanism.

  18. Reaction phases and diffusion paths in SiC/metal systems

    Energy Technology Data Exchange (ETDEWEB)

    Naka, M.; Fukai, T. [Osaka Univ., Osaka (Japan); Schuster, J.C. [Vienna Univ., Vienna (Austria)

    2004-07-01

    The interface structures between SiC and metal are reviewed at SiC/metal systems. Metal groups are divided to carbide forming metals and non-carbide forming metals. Carbide forming metals form metal carbide granular or zone at metal side, and metal silicide zone at SiC side. The further diffusion of Si and C from SiC causes the formation of T ternary phase depending metal. Non-carbide forming metals form silicide zone containing graphite or the layered structure of metal silicide and metal silicide containing graphite. The diffusion path between SiC and metal are formed along tie-lines connecting SiC and metal on the corresponding ternary Si-C-M system. The reactivity of metals is dominated by the forming ability of carbide or silicide. Te reactivity tendency of elements are discussed on the periodical table of elements, and Ti among elements shows the highest reactivity among carbide forming metals. For non-carbide forming metals the reactivity sequence of metals is Fe>Ni>Co. (orig.)

  19. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  20. Creep behavior for advanced polycrystalline SiC fibers

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-01-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep open-quotes mclose quotes curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261 degrees C), Nicalon S (1256 degrees C), annealed Hi Nicalon (1215 degrees C), Hi Nicalon (1078 degrees C), Nicalon CG (1003 degrees C) and Tyranno E (932 degrees C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests

  1. The Capacitance and Temperature Effects of the SiC- and Si-Based MEMS Pressure Sensor

    International Nuclear Information System (INIS)

    Marsi, N; Majlis, B Y; Hamzah, A A; Mohd, F

    2013-01-01

    This project develops the pressure sensor for monitoring the extreme conditions inside the gas turbine engine. The capacitive-based instead of piezoresistive-based pressure sensor is employed to avoid temperature drift. The deflecting (top) plate and the fixed (bottom) plate generate the capacitance, which is proportional to the applied input pressure and temperature. Two thin film materials of four different sizes are employed for the top plate, namely cubic silicon carbide (3C-SiC) and silicon (Si). Their performances in term of the sensitivity and linearity of the capacitance versus pressure are simulated at the temperature of 27°C, 500°C, 700°C and 1000°C. The results show that both materials display linear characteristics for temperature up to 500°C, although SiC-based sensor shows higher sensitivity. However, when the temperatures are increased to 700°C and 1000°C, the Si- based pressure sensor starts to malfunction at 50 MPa. However, the SiC-based pressure sensor continues to demonstrate high sensitivity and linearity at such high temperature and pressure. This paper validates the need of employing silicon carbide instead of silicon for sensing of extreme environments.

  2. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    Science.gov (United States)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  3. Controlling the optical properties of monocrystalline 3C-SiC heteroepitaxially grown on silicon at low temperatures

    Science.gov (United States)

    Colston, Gerard; Myronov, Maksym

    2017-11-01

    Cubic silicon carbide (3C-SiC) offers an alternative wide bandgap semiconductor to conventional materials such as hexagonal silicon carbide (4H-SiC) or gallium nitride (GaN) for the detection of UV light and can offer a closely lattice matched virtual substrate for subsequent GaN heteroepitaxy. As 3C-SiC can be heteroepitaxially grown on silicon (Si) substrates its optical properties can be manipulated by controlling the thickness and doping concentrations. The optical properties of 3C-SiC epilayers have been characterized by measuring the transmission of light through suspended membranes. Decreasing the thickness of the 3C-SiC epilayers is shown to shift the absorbance edge to lower wavelengths, a result of the indirect bandgap nature of silicon carbide. This property, among others, can be exploited to fabricate very low-cost, tuneable 3C-SiC based UV photodetectors. This study investigates the effect of thickness and doping concentration on the optical properties of 3C-SiC epilayers grown at low temperatures by a standard Si based growth process. The results demonstrate the potential photonic applications of 3C-SiC and its heterogeneous integration into the Si industry.

  4. Fabrication of Multi-Layerd SiC Composite Tube for LWR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong; Jung, Choonghwan; Kim, Weonju; Park, Jiyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Jongmin [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, the chemical vapor deposition (CVD) and chemical vapor infiltration (CVI) methods were employed for the fabrication of the composite tubes. SiC ceramics and SiC-based composites have recently been studied for LWR fuel cladding applications because of good mechanical/physical properties, neutron irradiation resistance and excellent compatibility with coolant under severe accident. A multi-layered SiC composite tube as the nuclear fuel cladding is composed of the monolith SiC inner layer, SiC/SiC composite intermediate layer, and monolith SiC outer layer. Since all constituents should be highly pure, stoichiometric to achieve the good properties, it has been considered that the chemical process is a well-suited technique for the fabrication of the SiC phases.

  5. Separation of stress-free AlN/SiC thin films from Si substrate

    International Nuclear Information System (INIS)

    Redkov, A V; Osipov, A V; Mukhin, I S; Kukushkin, S A

    2016-01-01

    We separated AlN/SiC film from Si substrate by chemical etching of the AlN/SiC/Si heterostructure. The film fully repeats the size and geometry of the original sample and separated without destroying. It is demonstrated that a buffer layer of silicon carbide grown by a method of substitution of atoms may have an extensive hollow subsurface structure, which makes it easier to overcome the differences in the coefficients of thermal expansion during the growth of thin films. It is shown that after the separation of the film from the silicon substrate, mechanical stresses therein are almost absent. (paper)

  6. Characterization of μc-Si:H/a-Si:H tandem solar cell structures by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Murata, Daisuke; Yuguchi, Tetsuya; Fujiwara, Hiroyuki

    2014-01-01

    In order to perform the structural characterization of Si thin-film solar cells having submicron-size rough textured surfaces, we have developed an optical model that can be utilized for the spectroscopic ellipsometry (SE) analysis of a multilayer solar cell structure consisting of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) layers fabricated on textured SnO 2 :F substrates. To represent the structural non-uniformity in the textured structure, the optical response has been calculated from two regions with different thicknesses of the Si layers. Moreover, in the optical model, the interface layers are modeled by multilayer structures assuming two-phase composites and the volume fractions of the phases in the layers are controlled by the structural curvature factor. The polarized reflection from the μc-Si:H layer that shows extensive surface roughening during the growth has also been modeled. In this study, a state-of-the-art solar cell structure with the textured μc-Si:H (2000 nm)/ZnO (100 nm)/a-Si:H (200 nm)/SnO 2 :F/glass substrate structure has been characterized. The μc-Si:H/a-Si:H textured structure deduced from our SE analysis shows remarkable agreement with that observed by transmission electron microscopy. From the above results, we have demonstrated the high-precision characterization of highly-textured μc-Si:H/a-Si:H solar cell structures. - Highlights: • Characterization of textured μc-Si:H/a-Si:H solar cell structures by ellipsometry • A new optical model using surface area and multilayer models • High precision characterization of submicron-range rough interface structures

  7. The characteristics of photo-CVD SiO{sub 2} and its application on SiC MIS UV photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.H.; Chang, C.S.; Chang, S.J.; Su, Y.K.; Chiou, Y.Z.; Liu, S.H.; Huang, B.R

    2003-07-15

    SiO{sub 2} layers were deposited onto SiC by photo-chemical vapor deposition (photo-CVD) using deuterium (D{sub 2}) lamp as the excitation source. For the photo-SiO{sub 2} deposited 500 deg. C, interface state density (D{sub it}) was estimated to be 5.66x10{sup 11} cm{sup -2} eV{sup -1}. With an applied electric field of 4 MV cm{sup -1}, it was found that the leakage current was only 3.15x10{sup -8} A cm{sup -2} for the photo-CVD SiO{sub 2} layer prepared at 500 deg. C. It was also found that photo-SiO{sub 2} could effectively suppress dark current of SiC-based photodetectors (PDs). It was found that we could reduce dark current of SiC-based PDs by about three orders of magnitude by the insertion of a 5 nm-thick photo-CVD SiO{sub 2} film in between Indium-tin-oxide (ITO) contact and the underneath SiC. Photocurrent to dark current ratio of ITO/SiO{sub 2}/SiC MIS PDs was also found to be much larger than that of conventional ITO/SiC Schottky barrier PDs.

  8. Chemical interaction of B4C, B, and C with Mo/Si layered structures

    International Nuclear Information System (INIS)

    Rooij-Lohmann, V. I. T. A. de; Veldhuizen, L. W.; Zoethout, E.; Yakshin, A. E.; Kruijs, R. W. E. van de; Thijsse, B. J.; Gorgoi, M.; Schaefers, F.; Bijkerk, F.

    2010-01-01

    To enhance the thermal stability, B 4 C diffusion barrier layers are often added to Mo/Si multilayer structures for extreme ultraviolet optics. Knowledge about the chemical interaction between B 4 C and Mo or Si, however is largely lacking. Therefore, the chemical processes during annealing up to 600 deg. C of a Mo/B 4 C/Si layered structure have been investigated in situ with hard x-ray photoelectron spectroscopy and ex situ with depth profiling x-ray photoelectron spectroscopy. Mo/B/Si and Mo/C/Si structures have also been analyzed as reference systems. The chemical processes in these systems have been identified, with two stages being distinguished. In the first stage, B and C diffuse and react predominantly with Mo. MoSi x forms in the second stage. If the diffusion barrier consists of C or B 4 C, a compound forms that is stable up to the maximum probed temperature and annealing time. We suggest that the diffusion barrier function of B 4 C interlayers as reported in literature can be caused by the stability of the formed compound, rather than by the stability of B 4 C itself.

  9. Microstructural characterization of hybrid CFRP/SiC composites; Caracterizacao microestrutural de compositos de fibras de carbono com matriz hibrida de Carbono/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Von Dollinger, C.F.A.; Pardini, L.C., E-mail: Christian.dcta@gmail.com [Instituto de Aeronautica e Espaco (DCTA/IAE), Sao Jose dos Campos, SP (Brazil). Departamento de Ciencia e Tecnologia Aeroespacial; Pazini, J.C. [Universidade de Sao Paulo (USP), Lorena, SP (Brazil); Alves, S.C.N. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2016-07-01

    In present work a hybrid matrix C-C/SiC composites were produced. Carbon fiber fabric was impregnated with phenolic resin mixed with powder Si in proportions of 5%, 10%, 15% e 20%wt. Optical microscopy under reflected light and polarized light were used in order to characterize samples in the as molded condition and after carbonization at 1000°C, and heat treatment 1600°C in order to react carbon and liquid silicon in order to form in situ SiC . The pore volume fraction ranges from 33% to 41% for composites after heat treatment at 1600°C due to volatiles released specially during carbonization process. Complementary analyses were done by Scanning Electron microscopy (SEM) and X-Ray diffraction to confirm in situ conversion of SiC. The results showed that the impregnation of a carbon fabric with phenolic resin added with silicon proved to be an alternative route to produce CFRP/SiC composites. (author)

  10. Crystal structures of eight mono-methyl alkanes (C26–C32 via single-crystal and powder diffraction and DFT-D optimization

    Directory of Open Access Journals (Sweden)

    Lee Brooks

    2015-09-01

    Full Text Available The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S-9-methylpentacosane, C26H54; (S-9-methylheptacosane and (S-11-methylheptacosane, C28H58; (S-7-methylnonacosane, (S-9-methylnonacosane, (S-11-methylnonacosane and (S-13-methylnonacosane, C30H62; and (S-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

  11. Functional materials - Study of process for CVD SiC/C composite material

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Jin; Wang, Chae Chyun; Lee, Young Jin; Oh, Byung Jun [Yonsei University, Seoul (Korea)

    2000-04-01

    The CVD SiC coating techniques are the one of high functional material manufactures that improve the thermal, wear, oxidization and infiltration resistance of the surface of raw materials and extend the life of material. Silicon carbide films have been grown onto graphite substrates by low pressure chemical vapor deposition using MTS(CH{sub 3}SiCl{sub 3}) as a source precursor and H{sub 2} or N{sub 2} as a diluent gas. The experiments for temperature and diluent gas addition changes were performed. The effect of temperature from 900 deg. C to 1350 deg. C and the alteration of diluent gas species on the growth rate and structure of deposits have been studied. The experimental results showed that the deposition rate increased with increasing deposition temperature irrespective of diluent gases and reactant depletion effect increased especially at H{sub 2} diluent gas ambient. As the diluent gas added, the growth rate decreased parabolically. For N{sub 2} addition, surface morphology of leaf-like structure appeared, and for H{sub 2}, faceted structure at 1350 deg. C. The observed features were involved by crystalline phase of {beta}-SiC and surface composition with different gas ambient. We also compared the experimental results of the effect of partial pressure on the growth rate with the results of theoretical approach based on the Langmuir-Hinshelwood model. C/SiC composites were prepared by isothermal chemical vapor infiltration (ICVI). In order to fabricate the more dense C/SiC composites, a novel process of the in-situ whisker growing and filling during ICVI was devised, which was manipulated by alternating dilute gas species. The denser C/SiC composites were successfully prepared by the novel process comparing with the conventional ICVI process. 64 refs., 36 figs., 5 tabs. (Author)

  12. InSitu SEM Investigation of Microstructural Damage Evolution and Strain Relaxation in a Melt Infiltrated SiC/SiC Composite

    Science.gov (United States)

    Sevener, Kathy; Chen, Zhe; Daly, Sam; Tracy, Jared; Kiser, Doug

    2016-01-01

    With CMC components poised to complete flight certification in turbine engines on commercial aircraft within the near future, there are many efforts within the aerospace community to model the mechanical and environmental degradation of CMCs. Direct observations of damage evolution are needed to support these modeling efforts and provide quantitative measures of damage parameters used in the various models. This study was performed to characterize the damage evolution during tensile loading of a melt infiltrated (MI) silicon carbide reinforced silicon carbide (SiC/SiC) composite. A SiC/SiC tensile coupon was loaded to a maximum global stress of 30 ksi in a tensile fixture within an SEM while observations were made at 5 ksi increments. Both traditional image analysis and DIC (digital image correlation) were used to quantify damage evolution. With the DIC analysis, microscale damage was observed at the fiber-matrix interfaces at stresses as low as 5 ksi. First matrix cracking took place between 20 and 25 ksi, accompanied by an observable relaxation in strain near matrix cracks. Matrix crack opening measurements at the maximum load ranged from 200 nm to 1.5 m. Crack opening along the fiber-matrix interface was also characterized as a function of load and angular position relative to the loading axis. This characterization was funded by NASA GRC and was performed to support NASA GRC modeling of SiC/SiC environmental degradation

  13. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    International Nuclear Information System (INIS)

    Onojima, Norio; Kasamatsu, Akihumi; Hirose, Nobumitsu; Mimura, Takashi; Matsui, Toshiaki

    2008-01-01

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g m ) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f T compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel

  14. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    Energy Technology Data Exchange (ETDEWEB)

    Onojima, Norio [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan)], E-mail: nonojima@nict.go.jp; Kasamatsu, Akihumi; Hirose, Nobumitsu [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Mimura, Takashi [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Matsui, Toshiaki [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan)

    2008-07-30

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g{sub m}) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f{sub T} compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel.

  15. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  16. Progress in the development of a SiC{sub f}/SiC creep test

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, M.L.; Lewinsohn, C.A.; Jones, R.H.; Youngblood, G.E.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Hecht, S.L.

    1996-10-01

    An effort is now underway to design an experiment that will allow the irradiation creep behavior of SiC{sub f}/SiC composites to be quantified. Numerous difficulties must be overcome to achieve this goal, including determining an appropriate specimen geometry that will fit their radiation volumes available and developing a fabrication procedure for such a specimen. A specimen design has been selected, and development of fabrication methods is proceeding. Thermal and stress analyses are being performed to evaluate the viability of the specimen and to assist with determining the design parameters. A possible alternate type of creep test is also being considered. Progress in each of these areas is described in this report.

  17. Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications

    Science.gov (United States)

    Ko, Hyunseok

    Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding

  18. Cold spraying SiC/Al metal matrix composites: effects of SiC contents and heat treatment on microstructure, thermophysical and flexural properties

    Science.gov (United States)

    Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.

    2018-02-01

    In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.

  19. First-principles prediction of Tl/SiC for valleytronics

    KAUST Repository

    Xu, Zhen; Zhang, Qingyun; Shen, Qian; Cheng, Yingchun; Schwingenschlö gl, Udo; Huang, Wei

    2017-01-01

    Recently, monolayer Tl on a Si or Ge substrate has been proposed for potential valleytronic systems. However, the band gaps of these systems are less than 0.1 eV, which is too small to be applied because an electric field or magnetic doping will reduce the band gaps further for the systems to become metallic. Here, we investigate SiC as an alternative substrate. By first-principles calculations we demonstrate that monolayer Tl can be grown on SiC. There are two valleys around the K/K′ points and the Berry curvature shows that the two valleys are inequivalent, indicating valley pseudospin. Moreover, due to the larger band gap of SiC (3.3 eV), the band gap of the Tl/SiC system is 0.6 eV, which is large enough for valley manipulation. Furthermore, we demonstrate that Cr doping can achieve valley polarization. Our study shows that the Tl/SiC system is promising for valleytronic applications.

  20. First-principles prediction of Tl/SiC for valleytronics

    KAUST Repository

    Xu, Zhen

    2017-09-22

    Recently, monolayer Tl on a Si or Ge substrate has been proposed for potential valleytronic systems. However, the band gaps of these systems are less than 0.1 eV, which is too small to be applied because an electric field or magnetic doping will reduce the band gaps further for the systems to become metallic. Here, we investigate SiC as an alternative substrate. By first-principles calculations we demonstrate that monolayer Tl can be grown on SiC. There are two valleys around the K/K′ points and the Berry curvature shows that the two valleys are inequivalent, indicating valley pseudospin. Moreover, due to the larger band gap of SiC (3.3 eV), the band gap of the Tl/SiC system is 0.6 eV, which is large enough for valley manipulation. Furthermore, we demonstrate that Cr doping can achieve valley polarization. Our study shows that the Tl/SiC system is promising for valleytronic applications.

  1. Effects of phosphorous-doping and high temperature annealing on CVD grown 3C-SiC

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Neethling, J.H.; Henry, A.; Janzén, E.; Mokoduwe, S.M.; Janse van Vuuren, A.; Olivier, E.

    2012-01-01

    The integrity and property behavior of the SiC layer of the Tri-isotropic (TRISO) coated particle (CP) for high temperature reactors (HTR) are very important as the SiC layer is the main barrier for gaseous and metallic fission product release. This study describes the work done on un-irradiated SiC samples prepared with varying phosphorus levels to simulate the presence of phosphorus due to transmutation. 30 Si transmutes to phosphorous ( 31 P) and other transmutation products during irradiation, which may affect the integrity of the SiC layer. The P-doping levels of the SiC samples used in this study cover the range from 1.1 × 10 15 to 1.2 × 10 19 atom/cm 3 and are therefore relevant to the PBMR operating conditions. Annealing from 1000 °C to 2100 °C was performed to study the possible changes in nanostructures and various properties due to temperature. Characterization results by X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), are reported in this article. As grain boundary diffusion is identified as a possible mechanism by which 110m Ag, one of the fission activation products, might be released through intact SiC layer, grain size measurements is also included in this study. Temperature is evidently one of the factors/parameters amongst others known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. The ASTM E112 method as well as electron back scatter diffraction (EBSD) was used to determine the grain size of various commercial SiC samples and the SiC layer in experimental PBMR Coated Particles (CPs) after annealing at temperatures ranging from 1600 °C to 2100 °C. The HRTEM micrograph of the decomposition of SiC at 2100 °C are shown and discussed. Nanotubes were not identified during the TEM and HRTEM analysis

  2. Effects of phosphorous-doping and high temperature annealing on CVD grown 3C-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: Isabella.vanrooyen@inl.gov [CSIR, National Laser Centre, PO Box 395, Pretoria 0001 (South Africa); Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Fuel Design, PBMR, 1279 Mike Crawford Avenue, Centurion 0046 (South Africa); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Henry, A.; Janzen, E. [Department of Physics, Chemistry and Biology, Semiconductor Materials, Linkoeping University, Linkoeping 58183 (Sweden); Mokoduwe, S.M. [Fuel Design, PBMR, 1279 Mike Crawford Avenue, Centurion 0046 (South Africa); Janse van Vuuren, A.; Olivier, E. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-10-15

    The integrity and property behavior of the SiC layer of the Tri-isotropic (TRISO) coated particle (CP) for high temperature reactors (HTR) are very important as the SiC layer is the main barrier for gaseous and metallic fission product release. This study describes the work done on un-irradiated SiC samples prepared with varying phosphorus levels to simulate the presence of phosphorus due to transmutation. {sup 30}Si transmutes to phosphorous ({sup 31}P) and other transmutation products during irradiation, which may affect the integrity of the SiC layer. The P-doping levels of the SiC samples used in this study cover the range from 1.1 Multiplication-Sign 10{sup 15} to 1.2 Multiplication-Sign 10{sup 19} atom/cm{sup 3} and are therefore relevant to the PBMR operating conditions. Annealing from 1000 Degree-Sign C to 2100 Degree-Sign C was performed to study the possible changes in nanostructures and various properties due to temperature. Characterization results by X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), are reported in this article. As grain boundary diffusion is identified as a possible mechanism by which {sup 110m}Ag, one of the fission activation products, might be released through intact SiC layer, grain size measurements is also included in this study. Temperature is evidently one of the factors/parameters amongst others known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. The ASTM E112 method as well as electron back scatter diffraction (EBSD) was used to determine the grain size of various commercial SiC samples and the SiC layer in experimental PBMR Coated Particles (CPs) after annealing at temperatures ranging from 1600 Degree-Sign C to 2100 Degree-Sign C. The HRTEM micrograph of the decomposition of SiC

  3. Direct electron transfer of Cytochrome c at mono-dispersed and negatively charged perylene-graphene matrix.

    Science.gov (United States)

    Zhang, Nan; Lv, Xiangyu; Ma, Weiguang; Hu, Yuwei; Li, Fenghua; Han, Dongxue; Niu, Li

    2013-03-30

    Mono-dispersed 3,4,9,10-perylene tetracarboxylic acid (PTCA) functionalized graphene sheets (PTCA-graphene) were fabricated by a chemical route and dispersed well in aqueous solution. PTCA-graphene with plenty of -COOH groups as electrostatic absorbing sites were beneficial to the loading of Cytochrome c (Cyt c). Cyt c, which was tightly immobilized on the PTCA-graphene modified glassy carbon electrode, maintained its natural conformation. Direct electron transfer of Cyt c and the electro-catalytic activity towards the reduction of H2O2 were also achieved. It has been substantiated that PTCA-graphene is a preferable biocompatible matrix for Cyt c. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effect of LaB6 on the thermal shock property of MoSi2-SiC coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li Ting; Li Hejun; Shi Xiaohong

    2013-01-01

    Highlights: ► LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC multi-composition coatings were coated on C/C composites by pack cementation. ► The microstructure and thermal shock resistance of both coatings were investigated. ► The addition of LaB 6 can increase the compactness, flexural strength and fracture toughness of the MoSi 2 -SiC coating simultaneously. ► Both coatings bond well with the substrates before and after thermal cycling oxidation between 1773 K and room temperature. ► The LaB 6 -MoSi 2 -SiC coated C/C shows better thermal shock resistance than the MoSi 2 -SiC coated C/C. - Abstract: LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coatings were prepared on the surface of carbon/carbon composites by pack cementation method. The crystal structures of the coatings were measured by X-ray diffraction. The morphologies and element distributions were also analyzed by scanning electron microscopy and energy dispersive spectroscopy, respectively. The effect of LaB 6 on the microstructure and thermal shock resistance of MoSi 2 -SiC coating was investigated. The results indicated that the LaB 6 -MoSi 2 -SiC coating possessed a denser structure and superior thermal shock resistance. After 25 times of thermal cycling oxidation between 1773 K and room temperature, the weight losses of the LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coated samples were 0.627% and 2.019%, respectively.

  5. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  6. Rotated domain network in graphene on cubic-SiC(001)

    International Nuclear Information System (INIS)

    Chaika, Alexander N; Aristov, Victor Y; Molodtsova, Olga V; Zakharov, Alexei A; Marchenko, Dmitry; Sánchez-Barriga, Jaime; Varykhalov, Andrei; Babenkov, Sergey V; Portail, Marc; Zielinski, Marcin; Murphy, Barry E; Krasnikov, Sergey A; Lübben, Olaf; Shvets, Igor V

    2014-01-01

    The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by ±13.5° relative to the 〈110〉-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 × 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 × 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers. (paper)

  7. Progress on Fabrication of Planar Diffusion Couples with Representative TRISO PyC/SiC Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Campbell, Anne A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    Release of fission products from tristructural-isotropic (TRISO) coated particle fuel limits the fuel’s operational lifetime and creates potential safety and maintenance concerns. A need for diffusion analysis in representative TRISO layers exists to provide fuel performance models with high fidelity data to improve fuel performance and efficiency. An effort has been initiated to better understand fission product transport in, and release from, quality TRISO fuel by investigating diffusion couples with representative pyrocarbon (PyC) and silicon carbide (SiC). Here planar PyC/SiC diffusion couples are being developed with representative PyC/SiC layers using a fluidized bed chemical vapor deposition (FBCVD) system identical to those used to produce laboratory-scale TRISO fuel for the Advanced Gas Reactor Fuel Qualification and Development Program’s (AGR) first fuel irradiation. The diffusivity of silver, the silver and palladium system, europium, and strontium in the PyC/SiC will be studied at elevated temperatures and under high temperature neutron irradiation. The study also includes a comparative study of PyC/SiC diffusion couples with varying TRISO layer properties to understand the influence of SiC microstructure (grain size) and the PyC/SiC interface on fission product transport. The first step in accomplishing these goals is the development of the planar diffusion couples. The diffusion couple construction consists of multiple steps which includes fabrication of the primary PyC/SiC structures with targeted layer properties, introduction of fission product species and seal coating to create an isolated system. Coating development has shown planar PyC/SiC diffusion couples with similar properties to AGR TRISO fuel can be produced. A summary of the coating development process, characterization methods, and status are presented.

  8. Effects of Preform Density on Structure and Property of C/C-SiC Composites Fabricated by Gaseous Silicon Infiltration

    Directory of Open Access Journals (Sweden)

    CAO Yu

    2016-07-01

    Full Text Available The 3-D needled C/C preforms with different densities deposited by chemical vapor infiltration (CVI method were used to fabricate C/C-SiC composites by gaseous silicon infiltration (GSI. The porosity and CVI C thickness of the preforms were studied, and the effects of preform density on the mechanical and thermal properties of C/C-SiC composites were analyzed. The results show that with the increase of preform density, the preform porosity decreases and the CVI C thickness increases from several hundred nanometers to several microns. For the C/C-SiC composites, as the preform density increases, the residual C content increases while the density and residual Si content decreases. The SiC content first keeps at a high level of about 40% (volume fraction, which then quickly reduces. Meanwhile, the mechanical properties increase to the highest values when the preform density is 1.085g/cm3, with the flexure strength up to 308.31MP and fracture toughness up to 11.36MPa·m1/2, which then decrease as the preform density further increases. The thermal conductivity and CTE of the composites, however, decrease with the increase of preform density. It is found that when the preform porosity is too high, sufficient infiltration channels lead to more residual Si, and thinner CVI C thickness results in the severe corrosion of the reinforcing fibers by Si and lower mechanical properties. When the preform porosity is relatively low, the contents of Si and SiC quickly reduce since the infiltration channels are rapidly blocked, resulting in the formation of large closed pores and not high mechanical properties.

  9. Processing, Microstructure, and Mechanical Properties of Si3N4/SiC Nanocomposites from Precursor Derived Ceramics

    Science.gov (United States)

    Strong, Kevin Thomas, Jr.

    Polymer-derived ceramics (PDCs) provides a unique processing route to create Si3N4/SiC composites. Silazane precursor polyureasilazane (Ceraset PURS20) produce's an amorphous SiCN ceramic at temperatures of ~800 -- 1200 °C and crystallizes to a Si3N4/SiC nanocomposite at temperatures >1500 °C. A novel processing technique was developed where crosslinked polymers were heat-treated in a reactive NH3 atmosphere to control the stoichiometry of the pyrolyzed SiCN ceramic. Using this technique processing parameters were established to produce SiCN powders that resulted in nanocomposites with approximately 0, 5, 10, 20 and 30 vol. % SiC. Lu2O3 was added to these powders as a sintering aid and were densified using Hot Pressing and Field Assisted Sintering. The sintered nanocomposites resulted in microstructures with multiple-length scales. These length-scales included Si3N4 (0.1 -- 5 microm), SiC (10 -- 100 nm) and the intergranular grain boundary phase (<1 nm). Using a combination of SEM and TEM it was possible to quantify some of these microstructural features such as the size and location of the SiC. Hardness and fracture toughness testing was conducted to compared the room temperature mechanical properties of these resultant microstructures. This research was intended to develop robust processing approaches that can be used to control the nanostructures of Si3N4/SiC composites with significant structural features at multiple length scales. The control of their features and the investigation of their affect on the properties of composites can be used to simulate the affect of the structure on properties. These models can then be used to design optimal microstructures for specific applications.

  10. Feasibility study of a SiC sandwich neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian, E-mail: caepwujian@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Lei, Jiarong, E-mail: jiarong_lei@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Jiang, Yong; Chen, Yu; Rong, Ru; Zou, Dehui; Fan, Xiaoqiang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Chen, Gang; Li, Li; Bai, Song [Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2013-04-21

    Semiconductor sandwich neutron spectrometers are suitable for in-pile measurements of fast reactor spectra thanks to their compact and relatively simple design. We have assembled and tested a sandwich neutron spectrometer based on 4H-silicon carbide (4H-SiC) Schottky diodes. The SiC diodes detect neutrons via neutron-induced charged particles (tritons and alpha particles) produced by {sup 6}Li(n,α){sup 3}H reaction. {sup 6}LiF neutron converter layers are deposited on the front surface of Schottky diodes by magnetron sputtering. The responses of SiC diodes to charged particles were investigated with an {sup 241}Am alpha source. A sandwich neutron spectrometer was assembled with two SiC Schottky diodes selected based on the charged-particle-response experimental results. The low-energy neutron response of the sandwich spectrometer was measured in the neutron field of the Chinese Fast Burst Reactor-II (CFBR-II). Spectra of alpha particles and tritons from {sup 6}Li(n,α){sup 3}H reaction were obtained with two well-resolved peaks. The energy resolution of the sum spectrum was 8.8%. The primary experimental results confirmed the 4H-SiC sandwich neutron spectrometer's feasibility. -- Highlights: ► Sandwich neutron spectrometer employing 4H-SiC as a detecting material has been developed for the first time. ► {sup 6}LiF neutron converter has been deposited on the surface of 4H-SiC Schottky diode. ► Preliminary testing results obtained with the 4H-SiC sandwich neutron spectrometer are presented.

  11. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  12. Irradiation damages in Ti3SiC2

    International Nuclear Information System (INIS)

    Nappe, J.C.; Grosseau, Ph.; Guilhot, B.; Audubert, F.; Beauvy, M.

    2007-01-01

    Carbides, by their remarkable properties, are considered as possible materials (fuel cans) in reactor of generation IV. Among those studied, Ti 3 SiC 2 is particularly considered because it joins both the ceramics and metals properties. Nevertheless, its behaviour under irradiation is not known. Characterizations have been carried out on samples irradiated at 75 MeV krypton ions. They have revealed that TiO 2 (formed at the surface of Ti 3 SiC 2 ) is pulverized by the irradiation and that the crystal lattice of Ti 3 SiC 2 dilates with c. (O.M.)

  13. Preliminary calculations of stress change of fuel pin using SiC/SiC composites for GFR with changing of thermal conductivity degradation by irradiation

    International Nuclear Information System (INIS)

    Lee, J. K.; Naganuma, M.

    2006-01-01

    Gas cooled Fast Reactor (GFR) is being researched as a candidate concept of Generation IV international Forum. As a main feature of GFR, it should be maintained high temperature and pressure of coolant gas for heat transfer efficiency. Such a demanding environment requires high-temperature-resistant structural materials distinguished from traditional steel material. Consequently, ceramics are promising candidate material of core components. Especially, Silicon Carbide fiber reinforced Silicon Carbide composites (SiC/SiC) have encouraging characteristics such as refractoriness, low activation and toughness. Application of new material to core components must be explained by the viewpoint of engineering validity. Therefore, present study surveyed that current report for mechanical strength and thermal conductivity of SiC/SiC composites. According to the reports, neutron irradiation environment degraded mechanical properties of SiC/SiC composites. To confirm applicability to core components, model of fuel pin using SiC/SiC composites was assumed with feasible mechanical properties. Furthermore, it was calculated and estimated that the stress caused by temperature variation of inner and outer side of assumed model of cladding tube. Stress was calculated by changing of input date such as thickness of cladding tube, temperature variation, thermal conductivity and linear power. In the range of this study, the most important factor was identified as degradation of thermal conductivity by irradiation. It caused a significant stress and limited a geometrical design of fuel pin. It was discussed that the differences of heat transfer between isotropic and anisotropic materials like a metal and composites. These results should be helpful not only to determine a design factor of core component but also to indicate an improvement direction of SiC/SiC composites. Through these work, reliability and safety of GFR will be increased

  14. CVD growth and characterization of 3C-SiC thin films

    Indian Academy of Sciences (India)

    Unknown

    Cubic silicon carbide (3C-SiC) thin films were grown on (100) and (111) Si substrates by CVD technique using ... of grown films were studied using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and X-ray ... the oxide mask gets damaged (Edgar et al 1998). There- fore, lower ...

  15. Characterization of commercial grade Tyranno SA/CVI-SiC composites

    International Nuclear Information System (INIS)

    Riccardi, B.; Trentini, E.; Labanti, M.; Leuchs, M.; Roccella, S.; Visca, E.

    2007-01-01

    The objective of the present work was to characterize commercial-grade Tyranno SA SiC fiber reinforced chemically vapour infiltrated (CVI) SiC matrix composites (SiC f /SiC) with chemically vapour deposited (CVD) SiC coating. The characterization includes the assessment of the monotonic mechanical properties. Low cycle flexural fatigue behaviour has been investigated at room temperature (RT) and 1000 o C by means of 4-point bending tests. The creep behaviour at 1000 o C was preliminary investigated by means of constant bending stress rupture test. The material showed a pronounced degradation of monotonic mechanical properties at high temperature. Low cycle flexural fatigue behaviour showed excellent and satisfactory results at RT and 1000 o C, respectively. The creep resistance at 1000 o C is significant only at low load level

  16. TRISO coated fuel particles with enhanced SiC properties

    International Nuclear Information System (INIS)

    Lopez-Honorato, E.; Tan, J.; Meadows, P.J.; Marsh, G.; Xiao, P.

    2009-01-01

    The silicon carbide (SiC) layer used for the formation of TRISO coated fuel particles is normally produced at 1500-1650 deg. C via fluidized bed chemical vapor deposition from methyltrichlorosilane in a hydrogen environment. In this work, we show the deposition of SiC coatings with uniform grain size throughout the coating thickness, as opposed to standard coatings which have larger grain sizes in the outer sections of the coating. Furthermore, the use of argon as the fluidizing gas and propylene as a carbon precursor, in addition to hydrogen and methyltrichlorosilane, allowed the deposition of stoichiometric SiC coatings with refined microstructure at 1400 and 1300 deg. C. The deposition of SiC at lower deposition temperatures was also advantageous since the reduced heat treatment was not detrimental to the properties of the inner pyrolytic carbon which generally occurs when SiC is deposited at 1500 deg. C. The use of a chemical vapor deposition coater with four spouts allowed the deposition of uniform and spherical coatings.

  17. Preparation and infrared absorption properties of buried SiC layers

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Wong, S.P.; Kwok, R.W.M.

    1997-01-01

    Buried SiC layers were formed by using a metal vapor vacuum arc (MEVVA) ion source, with C + ions implanted into Si substrates under different doses. In the present study, the extracted voltage was 50 kV and the ion dose was varied from 3.0 x 10 17 to 1.6 x 10 18 cm -2 . According to infrared absorption measurements, it was fount that the structure of the buried SiC layers depended on the ion dose. Moreover, the results also demonstrated that the buried SiC layers including cubic crystalline SiC could be synthesized at an averaged substrate temperature of lower than 400 degree C with the MEVVA ion source

  18. Lateral boron distribution in polycrystalline SiC source materials

    DEFF Research Database (Denmark)

    Linnarsson, M. K.; Kaiser, M.; Liljedahl, R.

    2013-01-01

    . The materials are co-doped materials with nitrogen and boron to a concentration of 1x1018 cm-3 and 1x1019 cm-3, respectively. Depth profiles as well as ion images have been recorded. According to ocular inspection, the analyzed poly-SiC consists mainly of 4H-SiC and 6H-SiC grains. In these grains, the boron...

  19. Pressureless sintering behavior and mechanical properties of ZrB2–SiC composites: effect of SiC content and particle size

    Directory of Open Access Journals (Sweden)

    Mehri Mashhadi

    2015-10-01

    Full Text Available In the present paper, ZrB2–SiC composites were prepared by pressureless sintering at temperatures of 2000–2200 °C for 1 h under argon atmosphere. In order to prepare composite samples, ZrB2 powder was milled for 2 h, then the reinforcing particles including of micron and nano-sized SiC powder were added. The mixtures were formed and, after the pyrolysis, they were sintered. Densification, microstructural and mechanical properties of ZrB2–SiC composites were investigated. The shrinkage of samples was measured both before and after the sintering, and the microstructure of samples was examined using scanning electron microscopy (SEM, equipped with EDS spectroscopy. Both mass fraction and size of SiC powder have a great effect on relative density, porosity, shrinkage, hardness and microstructure of these composites. The highest relative density and hardness were 98.12% and 15.02 GPa, respectively, in ZrB2–10 wt% SiCnano composite sintered at 2200 °C.

  20. Research Progress of Optical Fabrication and Surface-Microstructure Modification of SiC

    Directory of Open Access Journals (Sweden)

    Fang Jiang

    2012-01-01

    Full Text Available SiC has become the best candidate material for space mirror and optical devices due to a series of favorable physical and chemical properties. Fine surface optical quality with the surface roughness (RMS less than 1 nm is necessary for fine optical application. However, various defects are present in SiC ceramics, and it is very difficult to polish SiC ceramic matrix with the 1 nm RMS. Surface modification of SiC ceramics must be done on the SiC substrate. Four kinds of surface-modification routes including the hot pressed glass, the C/SiC clapping, SiC clapping, and Si clapping on SiC surface have been reported and reviewed here. The methods of surface modification, the mechanism of preparation, and the disadvantages and advantages are focused on in this paper. In our view, PVD Si is the best choice for surface modification of SiC mirror.

  1. InP-based photonic integrated circuit platform on SiC wafer.

    Science.gov (United States)

    Takenaka, Mitsuru; Takagi, Shinichi

    2017-11-27

    We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 μm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO 2 /Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.

  2. Ion irradiation effects on the matrix phase of SiCf/SiC composites prepared by the whisker growing assisted CVI process

    International Nuclear Information System (INIS)

    Park, Kyeong Hwan; Park, Ji Yeon; Kang, Suk Min; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog

    2005-01-01

    SiC f /SiC composites are one of promising candidates for structural material of the next generation energy system such as GFR and fusion reactors. A number of fabrication methods have been studied for obtaining an outstanding SiC f /SiC composite with a high density, high crystallinity and purity. SiC f /SiC composites consisted of whisker-reinforced matrix have a great potential at the viewpoint both of the fabrication process and the mechanical properties. SiC whiskers formed between SiC fibers improve the densification of SiC matrix during CVI process. In addition, the reinforced whiskers would be likely to enhance the mechanical properties of matrix and SiC f /SiC composite. While there has been significant developmental work on manufacturing the SiC f /SiC composite by the whisker growing assisted CVI process, detailed understanding of what effects the complex in the operating conditions combined with realistic materials property data is not adequately understood. Especially, its irradiation effects are even less clear and not well understood. A method of charged-particle irradiation is the most important R and D topics for simulating the core conditions of the advanced nuclear systems. Many studies on radiation effects of SiC and SiC f /SiC composites using a method of ion irradiation have in progress for R and D of the advanced nuclear systems. In this present work, changes of the mechanical property of SiC whisker-reinforced matrix in SiC f /SiC composite were evaluated by means of the depth sensing indentation method before and after chargedparticle irradiation

  3. WxC-β-SiC Nanocomposite Catalysts Used in Aqueous Phase Hydrogenation of Furfural.

    Science.gov (United States)

    Rogowski, Jacek; Andrzejczuk, Mariusz; Berlowska, Joanna; Binczarski, Michal; Kregiel, Dorota; Kubiak, Andrzej; Modelska, Magdalena; Szubiakiewicz, Elzbieta; Stanishevsky, Andrei; Tomaszewska, Jolanta; Witonska, Izabela Alina

    2017-11-22

    This study investigates the effects of the addition of tungsten on the structure, phase composition, textural properties and activities of β-SiC-based catalysts in the aqueous phase hydrogenation of furfural. Carbothermal reduction of SiO₂ in the presence of WO₃ at 1550 °C in argon resulted in the formation of W x C-β-SiC nanocomposite powders with significant variations in particle morphology and content of W x C-tipped β-SiC nano-whiskers, as revealed by TEM and SEM-EDS. The specific surface area (SSA) of the nanocomposite strongly depended on the amount of tungsten and had a notable impact on its catalytic properties for the production of furfuryl alcohol (FA) and tetrahydrofurfuryl alcohol (THFA). Nanocomposite W x C-β-SiC catalysts with 10 wt % W in the starting mixture had the highest SSA and the smallest W x C crystallites. Some 10 wt % W nanocomposite catalysts demonstrated up to 90% yield of THFA, in particular in the reduction of furfural derived from biomass, although the reproducible performance of such catalysts has yet to be achieved.

  4. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.

    2017-04-11

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  5. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.; Niesen, Bjoern; Tomasi, Andrea; Ballif, Christophe; De Wolf, Stefaan

    2017-01-01

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  6. Characterization of anodic SiO2 films on P-type 4H-SiC

    International Nuclear Information System (INIS)

    Woon, W.S.; Hutagalung, S.D.; Cheong, K.Y.

    2009-01-01

    The physical and electronic properties of 100-120-nm thick anodic silicon dioxide film grown on p-type 4H-SiC wafer and annealed at different temperatures (500, 600, 700, and 800 deg. C ) have been investigated and reported. Chemical bonding of the films has been analyzed by Fourier transform infra red spectroscopy. Smooth and defect-free film surface has been revealed under field emission scanning electron microscope. Atomic force microscope has been used to study topography and surface roughness of the films. Electronic properties of the film have been investigated by high frequency capacitance-voltage and current-voltage measurements. As the annealing temperature increased, refractive index, dielectric constant, film density, SiC surface roughness, effective oxide charge, and leakage current density have been reduced until 700 deg. C . An increment of these parameters has been observed after this temperature. However, a reversed trend has been demonstrated in porosity of the film and barrier height between conduction band edge of SiO 2 and SiC

  7. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    Science.gov (United States)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  8. Hydrogen activated axial inter-conversion in SiC nanowires

    International Nuclear Information System (INIS)

    Ruemmeli, Mark H.; Adebimpe, David B.; Borowiak-Palen, Ewa; Gemming, Thomas; Ayala, Paola; Ioannides, Nicholas; Pichler, Thomas; Huczko, Andrzej; Cudzilo, Stanislaw; Knupfer, Martin; Buechner, Bernd

    2009-01-01

    A facile low pressure annealing route using NH 3 as a hydrogen source for the structural and chemical modification of SiC nanowires (SiCNWs) is presented. The developed route transforms SiCNWs into tubular SiC nanostructures while coaxial SiO 2 /SiCNWs reverse their sheath/core structure. Our findings suggest a decomposition process induced via the preferential substitution of silicon by hydrogen and via the difference in diffusion rates of available atomic species, which leads to axial structural rearrangement. In addition to these effects, the procedure improves the crystallinity of the samples. The process could be exploited as a viable route to manipulate a variety of nanostructures and films for doping and etching and structural manipulation. - Graphical abstract: SiC and SiO 2 /SiCNWs are shown to be structurally modified through a hydrogen activated replacement route which can even lead to the axial inter-conversion of species. The process could be exploited as a viable route to manipulate a variety of nanostructures and films for doping and etching and structural manipulation

  9. Fluorescent SiC for white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Kamiyama, S.

    2012-01-01

    The strong photoluminescence from f-SiC was achieved after the optimization of the B and N concentrations. Surface nanostructures were successfully applied to enhance the extraction efficiency. f-SiC is a promising wavelength convertor for white LEDs....

  10. Properties of point defects either native or induced by irradiation in the 3C and 6H polytypes of silicon carbide determined by positron annihilation and EPR; Proprietes des defauts ponctuels natifs et induits par irradiation dans les polytypes 3C et 6H du carbure de silicium determinees par annihilation de positons et RPE

    Energy Technology Data Exchange (ETDEWEB)

    Kerbiriou, X

    2006-02-15

    Potential applications of silicon carbide (SiC) in micro-electronics have justified many studies on point defects, which play an important role in the electrical compensation. Moreover, this material has many assets to take part in the fissile materials confining in the gas cooled reactors of the future (4. generation). In this thesis, we have used Electronic Paramagnetic Resonance and Positron Annihilation Spectroscopy to study the properties of point defects (nature, size, charge state, migration and agglomeration during annealing), either native or induced by irradiation with various particles (H{sup +}, e{sup -}, carbon ions), in the 3C and 6H polytypes of SiC. The positron annihilation study of native defects in 6H-SiC has shown the presence of a strong concentration of non-vacancy traps of acceptor type, which are not present in the 3C-SiC crystals. The nature of the defects detected after irradiation with low energy electrons (190 keV) depends on the polytype. Indeed, while silicon Frenkel pairs and carbon mono-vacancies are detected in the 6H crystals, only carbon mono-vacancies are detected in the 3C crystals. We propose that these differences concerning the populations of detected point defects result from different values of the silicon displacement threshold energy for the two polytypes (approximately 20 eV for 6H and 25 V for 3C). In addition, the irradiations with 12 MeV protons and 132 MeV carbon ions have created silicon mono-vacancies as well as VSi-VC di-vacancies. Neither the particle (protons or ions carbon), nor the polytype (3C or 6H) influence the nature of the generated defects. Finally the study of the annealing of 6H-SiC monocrystals irradiated with 12 MeV protons have revealed several successive processes. The most original result is the agglomeration of the silicon mono-vacancies with the VSi-VC di-vacancies which leads to the formation of VSi-VC-VSi tri-vacancies. (author)

  11. Hierarchical 3C-SiC nanowires as stable photocatalyst for organic dye degradation under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Judong; Chen, Jianjun; Xin, Lipeng; Wang, Mingming

    2014-01-01

    Graphical abstract: The photocatalytic performance was enhanced by hierarchical nanostructural SiC nanowires due to the increased specific surface areas and efficient incident light scattering. The positive effect of SiO 2 layer growth on the surface of nanowires during the catalytic process on the high decolorization efficiency of SiC nanowires was attributed to SiO 2 surface oxygen vacancies. -- Highlights: • High decolorization rate of methylene blue using hierarchical 3C-SiC nanowires was obtained. • The effect of methylene blue with different concentration to catalytic result was investigated. • The photocatalytic reaction mechanism of degrading methylene blue was explained. • The SiO 2 layer generating on nanowire surface in the catalytic process was analyzed. -- Abstract: 3C-SiC nanowires with hierarchical structure were synthesized by sol–gel carbothermal reduction method. The photocatalytic property of SiC nanowires was investigated. 3C-SiC hierarchical nanowires exhibited an enhanced photocatalytic activity by accelerating the photocatalytic degradation of methylene blue solution under visible light irradiation. Methylene blue was degraded efficiently after 5 h irradiation over the photocatalyst. The photocatalytic activity was affected by the initial concentration of the methylene blue solution. Silicon dioxide layer was observed on the surface of nanowires after the catalytic process. The positive effect of SiO 2 surface oxygen vacancies and 3C-SiC hierarchical nanostructures on the high decolorization efficiency of SiC nanowires was discussed. The detailed photocatalytic redox processes were also explained

  12. Analysis and recommendations for DPA calculations in SiC

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1998-01-01

    Recent modeling results, coupled with the implications of available experimental results, provide sufficient information to achieve consensus on the values of threshold displacement energies to use in displacements per atom (DPA) calculations. The values recommended here, 20 eV for C and 35 eV for Si, will be presented for adoption by the international fusion materials community at the next IEA SiC/SiC workshop

  13. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications....

  14. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  15. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni_2Si formation and the resulting barrier height changes

    International Nuclear Information System (INIS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-01-01

    Highlights: • Schottky behavior (Φ_B = 0.41 eV) and Fermi level pining were found pre annealing. • Ni_2Si formation was confirmed for 5 min at 850 °C. • 3C/Ni_2Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni_2Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni_2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  16. Radiation response of SiC-based fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Battelle Pacific Northwest Labs., Richland, WA (United States); Kohyama, A. [Inst. of Advanced Energy, Kyoto Univ. (Japan); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1998-10-01

    Loss of strength in irradiated fiber-reinforced SiC/SiC composite generally is related to degradation in the reinforcing fiber. To assess fiber degradation, the density and length changes were determined for four types of SiC-based fibers (Tyranno, Nicalon CG, Hi Nicalon and Dow X) after high temperature (up to 1000 C) and high dose (up to 80 dpa-SiC) irradiations. For the fibers with nonstoichiometric compositions (the first three types in the list), the fiber densities increased from 6% to 12%. In contrast, a slight decrease in density (<1%) was observed for the Dow X fiber with a quasi-stoichiometric composition. Fiber length changes (0-5.6% shrinkage) suggested small mass losses (1-6%) had occurred for irradiated uncoated fibers. In contrast, excessive linear shrinkage of the pyrocarbon-coated Nicalon CG and Tyranno fibers (7-9% and 16-32%, respectively) indicated that much larger mass losses (11-84%) had occurred for these coated fibers. Crystallization and crystal growth were observed to have taken place at fiber surfaces by SEM and in the bulk by XRD, moreso for irradiated Nicalon CG than for Hi Nicalon fiber. The radiation response of the quasi-stoichiometric Dow X fiber was the most promising. Further testing of this type fiber is recommended. (orig.) 11 refs.

  17. Effect of re-oxidation annealing process on the SiO2/SiC interface characteristics

    International Nuclear Information System (INIS)

    Yan Hongli; Jia Renxu; Tang Xiaoyan; Song Qingwen; Zhang Yuming

    2014-01-01

    The effect of the different re-oxidation annealing (ROA) processes on the SiO 2 /SiC interface characteristics has been investigated. With different annealing processes, the flat band voltage, effective dielectric charge density and interface trap density are obtained from the capacitance—voltage curves. It is found that the lowest interface trap density is obtained by the wet-oxidation annealing process at 1050 °C for 30 min, while a large number of effective dielectric charges are generated. The components at the SiO 2 /SiC interface are analyzed by X-ray photoelectron spectroscopy (XPS) testing. It is found that the effective dielectric charges are generated due to the existence of the C and H atoms in the wet-oxidation annealing process. (semiconductor technology)

  18. Si and SiC Schottky diodes in smart power circuits: a comparative study by I-V-T and C-V measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hadzi-Vukovic, J [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria); Jevtic, M [Institute for Physics, Pregrevica 118, 11080 Zemun (Serbia and Montenegro); Rothleitner, H [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria); Croce, P Del [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Austria)

    2005-01-01

    In this paper we analyze a possibility of manufacturing and implementation of Schottky diodes in the smart power circuits. Three different Schottky diodes, in three different technologies, are realized in Si and SiC processes. The electrical characterizations with I-V-T and C-V measurements are done for all structures. It is shown that Si based Schottky diodes also are suitable to be integrated in the typical smart power circuits.

  19. Si and SiC Schottky diodes in smart power circuits: a comparative study by I-V-T and C-V measurements

    International Nuclear Information System (INIS)

    Hadzi-Vukovic, J; Jevtic, M; Rothleitner, H; Croce, P Del

    2005-01-01

    In this paper we analyze a possibility of manufacturing and implementation of Schottky diodes in the smart power circuits. Three different Schottky diodes, in three different technologies, are realized in Si and SiC processes. The electrical characterizations with I-V-T and C-V measurements are done for all structures. It is shown that Si based Schottky diodes also are suitable to be integrated in the typical smart power circuits

  20. Effect of Si3N4 Addition on Oxidation Resistance of ZrB2-SiC Composites

    Directory of Open Access Journals (Sweden)

    Manab Mallik

    2017-06-01

    Full Text Available The oxidation behavior of ZrB2-20 vol % SiC and ZrB2-20 vol % SiC-5 vol % Si3N4 composites prepared by hot-pressing and subjected to isothermal exposure at 1200 or 1300 °C for durations of 24 or 100 h in air, as well as cyclic exposure at 1300 °C for 24 h, have been investigated. The oxidation resistance of the ZrB2-20 vol % SiC composite has been found to improve by around 20%–25% with addition of 5 vol % Si3N4 during isothermal or cyclic exposures at 1200 or 1300 °C. This improvement in oxidation resistance has been attributed to the formation of higher amounts of SiO2 and Si2N2O, as well as a greater amount of continuity in the oxide scale, because these phases assist in closing the pores and lower the severity of cracking by exhibiting self-healing type behavior. For both the composites, the mass changes are found to be higher during cyclic exposure at 1300 °C by about 2 times compared to that under isothermal conditions.

  1. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanis...

  2. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  3. Comparison of stability of WSiX/SiC and Ni/SiC Schottky rectifiers to high dose gamma-ray irradiation

    International Nuclear Information System (INIS)

    Kim, Jihyun; Ren, F.; Chung, G.Y.; MacMillan, M.F.; Baca, A.G.; Briggs, R.D.; Schoenfeld, D.; Pearton, S.J.

    2004-01-01

    SiC Schottky rectifiers with moderate breakdown voltages of ∼450 V and with either WSi X or Ni rectifying contacts were irradiated with Co-60 γ-rays to doses up to ∼315 Mrad. The Ni/SiC rectifiers show severe reaction of the contact after irradiation at the highest dose, badly degrading the forward current characteristics and increasing the on-state resistance by up to a factor of 6 after irradiation. By sharp contrast, the WSi X /SiC devices show little deterioration of the contact with the same conditions and changes in on-state resistance of X contacts appear promising for applications requiring improved contact stability

  4. Fundamentals of Passive Oxidation In SiC and Si3N4

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.

    1998-01-01

    The very slow oxidation kinetics of silicon carbide and silicon nitride, which derive from their adherent and passivating oxide films, has been explored at length in a broad series of studies utilizing thermogravimetric analysis, electron and optical micrography, energy dispersive spectrometry, x-ray diffractometry, micro-analytical depth profiling, etc. Some interesting microstructural phenomena accompanying the process of oxidation in the two materials will be presented. In Si3N4 the oxide is stratified, with an SiO2 topscale (which is relatively impervious to O2)underlain by a coherent subscale of silicon oxynitride which is even less permeable to O2- Such "defence in depth" endows Si3N4 with what is perhaps the highest oxidation resistance of any material, and results in a unique set of oxidation processes. In SiC the oxidation reactions are much simpler, yet new issues still emerge; for instance, studies involving controlled devitrification of the amorphous silica scale confirmed that the oxidation rate of SiC drops by more than an order of magnitude when the oxide scale fully crystallizes.

  5. High-temperature mechanical and material design for SiC composites

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1992-01-01

    Silicon Carbide (SiC) fiber reinforced composites (FRC's) are strong potential candidate structural and high heat flux materials for fusion reactors. During this past decade, they have been vigorously developed for use in aerospace and transportation applications. Recent fusion reactor systems studies, such as ARIES, have concluded that further development of SiC composites will result in significant safety, operational, and waste disposal advantages for fusion systems. A concise discussion of the main material and design issues related to the use of SiC FRC's as structural materials in future fusion systems is given in this paper. The status of material processing of SiC/SiC composites is first reviewed. The advantages and shortcomings of the leading processing technology, known as Chemical Vapor Infiltration are particularly highlighted. A brief outline of the design-relevant physical, mechanical, and radiation data base is then presented. SiC/SiC FRC's possess the advantage of increased apparent toughness under mechanical loading conditions. This increased toughness, however, is associated with the nucleation and propagation of small crack patterns in the structure. Design approaches and failure criteria under these conditions are discussed

  6. a-Si:H crystallization from isothermal annealing and its dependence on the substrate used

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Orduna-Diaz, A.; Delgado-Macuil, R.; Gayou, V.L.; Bibbins-Martinez, M. [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Torres-Jacome, A.; Trevino-Palacios, C.G. [INAOE, Tonantzintla, Puebla, Pue. 72000 (Mexico)

    2010-10-25

    We present hydrogenated amorphous silicon (a-Si:H) films which were deposited on two different substrates (glass and mono-crystalline silicon) after an isothermal annealing treatment at 250 deg. C for up to 14 h. The annealed amorphous films were analyzed using atomic force microscopy, Raman and FTIR spectroscopy. Films deposited on glass substrate experienced an amorphous-crystalline phase transition after annealing because of the metal-induced crystallization effect, reaching approximately 70% conversion after 14 h of annealing. An absorption frequency of the TO-phonon mode that varies systematically with the substoichiometry of the silicon oxide in the 1046-1170 cm{sup -1} region was observed, revealing the reactivity of the film with the annealing time. For similar annealing time, films deposited on mono-crystalline silicon substrate remained mainly amorphous with minimal Si-crystalline formation. Therefore, the crystalline formations and the shape of the films surfaces depends on the annealing time as well as on the substrate employed during the deposition process of the a-Si:H film.

  7. WxC-β-SiC Nanocomposite Catalysts Used in Aqueous Phase Hydrogenation of Furfural

    Directory of Open Access Journals (Sweden)

    Jacek Rogowski

    2017-11-01

    Full Text Available This study investigates the effects of the addition of tungsten on the structure, phase composition, textural properties and activities of β-SiC-based catalysts in the aqueous phase hydrogenation of furfural. Carbothermal reduction of SiO2 in the presence of WO3 at 1550 °C in argon resulted in the formation of WxC-β-SiC nanocomposite powders with significant variations in particle morphology and content of WxC-tipped β-SiC nano-whiskers, as revealed by TEM and SEM-EDS. The specific surface area (SSA of the nanocomposite strongly depended on the amount of tungsten and had a notable impact on its catalytic properties for the production of furfuryl alcohol (FA and tetrahydrofurfuryl alcohol (THFA. Nanocomposite WxC-β-SiC catalysts with 10 wt % W in the starting mixture had the highest SSA and the smallest WxC crystallites. Some 10 wt % W nanocomposite catalysts demonstrated up to 90% yield of THFA, in particular in the reduction of furfural derived from biomass, although the reproducible performance of such catalysts has yet to be achieved.

  8. Water absorption in thermally grown oxides on SiC and Si: Bulk oxide and interface properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Xu, Can; Feldman, Leonard C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States); Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States); Bloch, Joseph [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); NRCN, Beer-Sheva 84190 (Israel); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-11-10

    We combine nuclear reaction analysis and electrical measurements to study the effect of water exposure (D{sub 2}O) on the n-type 4H-SiC carbon face (0001{sup ¯}) MOS system and to compare to standard silicon based structures. We find that: (1) The bulk of the oxides on Si and SiC behave essentially the same with respect to deuterium accumulation; (2) there is a significant difference in accumulation of deuterium at the semiconductor/dielectric interface, the SiC C-face structure absorbs an order of magnitude more D than pure Si; (3) standard interface passivation schemes such as NO annealing greatly reduce the interfacial D accumulation; and (4) the effective interfacial charge after D{sub 2}O exposure is proportional to the total D amount at the interface.

  9. SiC substrate defects and III-N heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Poust, B D [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Koga, T S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Sandhu, R [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Heying, B [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Hsing, R [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Wojtowicz, M [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Khan, A [Department of Electrical Engineering, University of South Carolina, Columbia, SC (United States); Goorsky, M S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2003-05-21

    This study addressed how defects in SiC substrates influence the crystallographic properties of AlGaN/GaN layers deposited by metallorganic vapour phase epitaxy and by molecular beam epitaxy. We employed double crystal reflection x-ray topography using symmetric (0008) and (00012) reflections with CuK{alpha} radiation ({lambda} = 1.54 A) to image dislocations, micropipes, and low angle boundaries in SiC substrates. Lattice strain near the core of a micropipe defect was estimated to be of the order of 10{sup -7}. The substrates investigated exhibited radial patterns of strain and, primarily, of tilt of the order of tens of arcsec. After deposition of the AlGaN and GaN layers, DCXRT images were generated from the substrate (0008) or (00012) and GaN epitaxial layer (0004) reflections. Full-width at half-maximum values ranging from {approx}100 to 300 arcsec were typical of the GaN reflections, while those of the 4H-SiC reflections were {approx}20-70 arcsec. Micropipes, tilt boundaries, and inclusions in the SiC were shown to produce structural defects in the GaN layers. A clear correlation between SiC substrate defects and GaN defects has been established.

  10. SiC substrate defects and III-N heteroepitaxy

    International Nuclear Information System (INIS)

    Poust, B D; Koga, T S; Sandhu, R; Heying, B; Hsing, R; Wojtowicz, M; Khan, A; Goorsky, M S

    2003-01-01

    This study addressed how defects in SiC substrates influence the crystallographic properties of AlGaN/GaN layers deposited by metallorganic vapour phase epitaxy and by molecular beam epitaxy. We employed double crystal reflection x-ray topography using symmetric (0008) and (00012) reflections with CuKα radiation (λ = 1.54 A) to image dislocations, micropipes, and low angle boundaries in SiC substrates. Lattice strain near the core of a micropipe defect was estimated to be of the order of 10 -7 . The substrates investigated exhibited radial patterns of strain and, primarily, of tilt of the order of tens of arcsec. After deposition of the AlGaN and GaN layers, DCXRT images were generated from the substrate (0008) or (00012) and GaN epitaxial layer (0004) reflections. Full-width at half-maximum values ranging from ∼100 to 300 arcsec were typical of the GaN reflections, while those of the 4H-SiC reflections were ∼20-70 arcsec. Micropipes, tilt boundaries, and inclusions in the SiC were shown to produce structural defects in the GaN layers. A clear correlation between SiC substrate defects and GaN defects has been established

  11. Synthesis and structural characterization of Al4SiC4-homeotypic aluminum silicon oxycarbide, [Al4.4Si0.6][O1.0C2.0]C

    International Nuclear Information System (INIS)

    Kaga, Motoaki; Iwata, Tomoyuki; Nakano, Hiromi; Fukuda, Koichiro

    2010-01-01

    A new quaternary layered oxycarbide, [Al 4.39(5) Si 0.61(5) ] Σ5 [O 1.00(2) C 2.00(2) ] Σ3 C, has been synthesized and characterized by X-ray powder diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX). The title compound was found to be hexagonal with space group P6 3 /mmc, Z=2, and unit-cell dimensions a=0.32783(1) nm, c=2.16674(7) nm and V=0.20167(1) nm 3 . The atom ratios Al:Si were determined by EDX, and the initial structural model was derived by the direct methods. The final structural model showed the positional disordering of one of the three types of Al/Si sites. The maximum-entropy methods-based pattern fitting (MPF) method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The reliability indices calculated from the MPF were R wp =3.73% (S=1.20), R p =2.94%, R B =1.04% and R F =0.81%. The crystal was an inversion twin. Each twin-related individual was isostructural with Al 4 SiC 4 (space group P6 3 mc, Z=2). - Graphical abstract: A new oxycarbide discovered in the Al-Si-O-C system, Al 4 SiC 4 -homeotypic [Al 4.4 Si 0.6 ][O 1.0 C 2.0 ]C. The crystal is an inversion twin, and hence the structure is represented by a split-atom model. The three-dimensional electron density distributions are determined by the maximum-entropy methods-based pattern fitting, being consistent with the disordered structural model.

  12. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    International Nuclear Information System (INIS)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-01-01

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking

  13. Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2 interface

    Science.gov (United States)

    Gruber, G.; Cottom, J.; Meszaros, R.; Koch, M.; Pobegen, G.; Aichinger, T.; Peters, D.; Hadley, P.

    2018-04-01

    SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO2 interface degrade the ideal behavior of the devices. The relevant microscopic defects can be identified by electron paramagnetic resonance (EPR) or electrically detected magnetic resonance (EDMR). This helps to decide which changes to the fabrication process will likely lead to further increases of device performance and reliability. EDMR measurements have shown very similar dominant hyperfine (HF) spectra in differently processed MOSFETs although some discrepancies were observed in the measured g-factors. Here, the HF spectra measured of different SiC MOSFETs are compared, and it is argued that the same dominant defect is present in all devices. A comparison of the data with simulated spectra of the C dangling bond (PbC) center and the silicon vacancy (VSi) demonstrates that the PbC center is a more suitable candidate to explain the observed HF spectra.

  14. Formation of metallic Si and SiC nanoparticles from SiO2 particles by plasma-induced cathodic discharge electrolysis in chloride melt

    International Nuclear Information System (INIS)

    Tokushige, M.; Tsujimura, H.; Nishikiori, T.; Ito, Y.

    2013-01-01

    Silicon nanoparticles are formed from SiO 2 particles by conducting plasma-induced cathodic discharge electrolysis. In a LiCl–KCl melt in which SiO 2 particles were suspended at 450 °C, we obtained Si nanoparticles with diameters around 20 nm. During the electrolysis period, SiO 2 particles are directly reduced by discharge electrons on the surface of the melt just under the discharge, and the deposited Si atom clusters form Si nanoparticles, which leave the surface of the original SiO 2 particle due to free spaces caused by a molar volume difference between SiO 2 and Si. We also found that SiC nanoparticles can be obtained using carbon anode. Based on Faraday's law, the current efficiency for the formation of Si nanoparticles is 70%

  15. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  16. Synthesis, characterization, and wear and friction properties of variably structured SiC/Si elements made from wood by molten Si impregnation

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Rana, Kuldeep; Bengu, Erman

    2012-01-01

    We have synthesized pre-shaped SiC/Si ceramic material elements from charcoal (obtained from wood) by impregnation with molten silicon, which takes place in a two-stage process. In the first process, a porous structure of connected micro-crystals of β-SiC is formed, while, in the second process...

  17. Structural and electronic properties of the transition layer at the SiO2/4H-SiC interface

    Directory of Open Access Journals (Sweden)

    Wenbo Li

    2015-01-01

    Full Text Available Using first-principles methods, we generate an amorphous SiO2/4H-SiC interface with a transition layer. Based this interface model, we investigate the structural and electronic properties of the interfacial transition layer. The calculated Si 2p core-level shifts for this interface are comparable to the experimental data, indicating that various SiCxOy species should be present in this interface transition layer. The analysis of the electronic structures reveals that the tetrahedral SiCxOy structures cannot introduce any of the defect states at the interface. Interestingly, our transition layer also includes a C-C=C trimer and SiO5 configurations, which lead to the generation of interface states. The accurate positions of Kohn-Sham energy levels associated with these defects are further calculated within the hybrid functional scheme. The Kohn-Sham energy levels of the carbon trimer and SiO5 configurations are located near the conduction and valence band of bulk 4H-SiC, respectively. The result indicates that the carbon trimer occurred in the transition layer may be a possible origin of near interface traps. These findings provide novel insight into the structural and electronic properties of the realistic SiO2/SiC interface.

  18. Effect of Pressurizing during Compaction and Sintering on the Formation of Reaction-Bonded SiC–Ti{sub 3}SiC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Han; Jung, Yang-Il; Rhee, Young-Woo; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun [LWR Fuel Technology Division, KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A reaction-bonded SiC-Ti{sub 3}SiC{sub 2} ceramic composite was produced for use in a ceramic-metal composite cladding tube. The diffusion reaction between TiC and Si was investigated with respect to process pressure. The mole-fraction of TiC and Si was controlled to be 3:2 to obtain a Ti{sub 3}SiC{sub 2} phase in the ceramic composite. Sintering was conducted at 1450 °C where TiC particles could react with melted Si. SiC ceramic composites consisting of Ti{sub 3}SiC{sub 2} and TiSi{sub 2} matrix phases were obtained. The formation of the constituent phases was strongly related to the processing pressure. The number of second phases in the SiC-Ti{sub 3}SiC{sub 2} composite was controlled by adjusting the processing pressure. When the powder compacts were not pressurized, no Ti{sub 3}SiC{sub 2} phase was formed. However, the Ti{sub 3}SiC{sub 2} phase was formed under pressurizing during compaction and/or sintering. The higher the pressure the higher the purity of SiC-Ti{sub 3}SiC{sub 2}. The dual-phased SiC-Ti{sub 3}SiC{sub 2} composite, however, revealed the decreased resistance to high-temperature oxidation. It is suggested that the incorporation of TiSi{sub 2} in the composite increases the oxidation resistance as well as mechanical property.

  19. Parametric investigation of the formation of epitaxial Ti{sub 3}SiC{sub 2} on 4H-SiC from Al-Ti annealing

    Energy Technology Data Exchange (ETDEWEB)

    Abi-Tannous, T., E-mail: tony.abi-tannous@insa-lyon.fr [Université de Lyon, CNRS, Laboratoire Ampère, INSA-Lyon, UMR 5005, F-69621 (France); Soueidan, M. [Université de Lyon, CNRS, Laboratoire Ampère, INSA-Lyon, UMR 5005, F-69621 (France); Ferro, G. [Université de Lyon, CNRS, Laboratoire des Multimatériaux et Interfaces, UMR 5615, F-69622 (France); Lazar, M. [Université de Lyon, CNRS, Laboratoire Ampère, INSA-Lyon, UMR 5005, F-69621 (France); Toury, B. [Université de Lyon, CNRS, Laboratoire des Multimatériaux et Interfaces, UMR 5615, F-69622 (France); Beaufort, M.F.; Barbot, J.F. [Institut Pprime CNRS - Université de Poitiers - ENSMA - UPR 3346 Département Physique et Mécanique des Matériaux SP2MI 86962 Futuroscope Chasseneuil Cedex (France); Penuelas, J. [Université de Lyon, Institut des Nanotechnologies de Lyon, UMR CNRS 5270, 69134 ECULLY Cedex (France); Planson, D. [Université de Lyon, CNRS, Laboratoire Ampère, INSA-Lyon, UMR 5005, F-69621 (France)

    2015-08-30

    Highlights: • Growth of Ti{sub 3}SiC{sub 2} thin films onto 4H-SiC (0 0 0 1) 8° and 4°-off substrates. • High temperature application for SiC ohmic contact. • Thermal annealing of Ti{sub -}Al layers. • Influence of the composition in the Ti{sub x}Al{sub 1−x} alloy was investigated. • Influence of the annealing temperature (900–1200 °C) after deposition was investigated. • The structural investigations were mainly performed by using X-ray diffraction (XRD), and transmission electron microscopy (TEM). • Elementary and profile characterization were performed using X-Ray photoelectron spectroscopy (XPS). - Abstract: The growth of Ti{sub 3}SiC{sub 2} thin films was studied onto 4H-SiC (0 0 0 1) 8° and 4°-off substrates by thermal annealing of Ti{sub x}Al{sub 1−x} (0.5 ≤ x ≤ 1) layers. The annealing time was fixed at 10 min under Argon atmosphere. The synthesis conditions were also investigated according to the annealing temperature (900–1200 °C) after deposition. X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM) show that the layer of Ti{sub 3}SiC{sub 2} is epitaxially grown on the 4H-SiC substrate. In addition the interface looks sharp and smooth with evidence of interfacial ordering. Moreover, during the annealing procedure, the formation of unwanted aluminum oxide was detected by using X-Ray Photoelectron Spectroscopy (XPS); this layer can be removed by using a specific annealing procedure.

  20. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  1. CaO-Al2O3 glass-ceramic as a joining material for SiC based components: A microstructural study of the effect of Si-ion irradiation

    Science.gov (United States)

    Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica

    2018-04-01

    The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.

  2. Detail study of SiC MOSFET switching characteristics

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    This paper makes detail study of the latest SiC MOSFETs switching characteristics in relation to gate driver maximum current, gate resistance, common source inductance and parasitic switching loop inductance. The switching performance of SiC MOSFETs in terms of turn on and turn off voltage...

  3. Mechanical Properties and Real-Time Damage Evaluations of Environmental Barrier Coated SiC/SiC CMCs Subjected to Tensile Loading Under Thermal Gradients

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    SiC/SiC ceramic matrix composites (CMCs) require new state-of-the art environmental barrier coatings (EBCs) to withstand increased temperature requirements and high velocity combustion corrosive combustion gasses. The present work compares the response of coated and uncoated SiC/SiC CMC substrates subjected to simulated engine environments followed by high temperature mechanical testing to asses retained properties and damage mechanisms. Our focus is to explore the capabilities of electrical resistance (ER) measurements as an NDE technique for testing of retained properties under combined high heat-flux and mechanical loading conditions. Furthermore, Acoustic Emission (AE) measurements and Digital Image Correlation (DIC) were performed to determine material damage onset and accumulation.

  4. Interface and interaction of graphene layers on SiC(0001[combining macron]) covered with TiC(111) intercalation.

    Science.gov (United States)

    Wang, Lu; Wang, Qiang; Huang, Jianmei; Li, Wei-Qi; Chen, Guang-Hui; Yang, Yanhui

    2017-10-11

    It is important to understand the interface and interaction between the graphene layer, titanium carbide [TiC(111)] interlayer, and silicon carbide [SiC(0001[combining macron])] substrates in epitaxial growth of graphene on silicon carbide (SiC) substrates. In this study, the fully relaxed interfaces which consist of up to three layers of TiC(111) coatings on the SiC(0001[combining macron]) as well as the graphene layers interactions with these TiC(111)/SiC(0001[combining macron]) were systematically studied using the density functional theory-D2 (DFT-D2) method. The results showed that the two layers of TiC(111) coating with the C/C-terminated interfaces were thermodynamically more favorable than one or three layers of TiC(111) on the SiC(0001[combining macron]). Furthermore, the bonding of the Ti-hollow-site stacked interfaces would be a stronger link than that of the Ti-Fcc-site stacked interfaces. However, the formation of the C/Ti/C and Ti/C interfaces implied that the first upper carbon layer can be formed on TiC(111)/SiC(0001[combining macron]) using the decomposition of the weaker Ti-C and C-Si interfacial bonds. When growing graphene layers on these TiC(111)/SiC(0001[combining macron]) substrates, the results showed that the interaction energy depended not only on the thickness of the TiC(111) interlayer, but also on the number of graphene layers. Bilayer graphene on the two layer thick TiC(111)/SiC(0001[combining macron]) was thermodynamically more favorable than a monolayer or trilayer graphene on these TiC(111)/SiC(0001[combining macron]) substrates. The adsorption energies of the bottom graphene layers with the TiC(111)/SiC(0001[combining macron]) substrates increased with the decrease of the interface vertical distance. The interaction energies between the bottom, second and third layers of graphene on the TiC(111)/SiC(0001[combining macron]) were significantly higher than that of the freestanding graphene layers. All of these findings provided

  5. Properties of point defects either native or induced by irradiation in the 3C and 6H polytypes of silicon carbide determined by positron annihilation and EPR

    International Nuclear Information System (INIS)

    Kerbiriou, X.

    2006-02-01

    Potential applications of silicon carbide (SiC) in micro-electronics have justified many studies on point defects, which play an important role in the electrical compensation. Moreover, this material has many assets to take part in the fissile materials confining in the gas cooled reactors of the future (4. generation). In this thesis, we have used Electronic Paramagnetic Resonance and Positron Annihilation Spectroscopy to study the properties of point defects (nature, size, charge state, migration and agglomeration during annealing), either native or induced by irradiation with various particles (H + , e - , carbon ions), in the 3C and 6H polytypes of SiC. The positron annihilation study of native defects in 6H-SiC has shown the presence of a strong concentration of non-vacancy traps of acceptor type, which are not present in the 3C-SiC crystals. The nature of the defects detected after irradiation with low energy electrons (190 keV) depends on the polytype. Indeed, while silicon Frenkel pairs and carbon mono-vacancies are detected in the 6H crystals, only carbon mono-vacancies are detected in the 3C crystals. We propose that these differences concerning the populations of detected point defects result from different values of the silicon displacement threshold energy for the two polytypes (approximately 20 eV for 6H and 25 V for 3C). In addition, the irradiations with 12 MeV protons and 132 MeV carbon ions have created silicon mono-vacancies as well as VSi-VC di-vacancies. Neither the particle (protons or ions carbon), nor the polytype (3C or 6H) influence the nature of the generated defects. Finally the study of the annealing of 6H-SiC monocrystals irradiated with 12 MeV protons have revealed several successive processes. The most original result is the agglomeration of the silicon mono-vacancies with the VSi-VC di-vacancies which leads to the formation of VSi-VC-VSi tri-vacancies. (author)

  6. Effects of sintering additives on the microstructural and mechanical properties of the ion-irradiated SiCf/SiC

    Science.gov (United States)

    Fitriani, Pipit; Sharma, Amit Siddharth; Yoon, Dang-Hyok

    2018-05-01

    SiCf/SiC composites containing three different types of sintering additives viz. Sc-nitrate, Al2O3-Sc2O3, and Al2O3-Y2O3, were subjected to ion irradiation using 0.2 MeV H+ ions with a fluence of 3 × 1020 ions/m2 at room temperature. Although all composites showed volumetric swelling upon ion irradiation, SiCf/SiC with Sc-nitrate showed the smallest change followed by those with the Al2O3-Sc2O3 and Al2O3-Y2O3 additives. In particular, SiCf/SiC containing the conventional Al2O3-Y2O3 additive revealed significant microstructural changes, such as surface roughening and the formation of cracks and voids, resulting in reduced fiber pullout upon irradiation. On the other hand, the SiCf/SiC with Sc-nitrate showed the highest resistance against ion irradiation without showing any macroscopic changes in surface morphology and mechanical strength, indicating the importance of the sintering additive in NITE-based SiCf/SiC for nuclear structural applications.

  7. Nanostructured Si/TiC composite anode for Li-ion batteries

    International Nuclear Information System (INIS)

    Zeng, Z.Y.; Tu, J.P.; Yang, Y.Z.; Xiang, J.Y.; Huang, X.H.; Mao, F.; Ma, M.

    2008-01-01

    Si/TiC nanocomposite anode was synthesized by a surface sol-gel method in combination with a following heat-treatment process. Through this process, nanosized Si was homogeneously distributed in a titanium carbide matrix. The electrochemically less active TiC working as a buffer matrix successfully prevented Si from cracking/crumbling during the charging/discharging process. The interspaces in the Si/TiC nanocomposite could offer convenient channels for Li ions to react with active Si. The Si/TiC composite exhibited a reversible charge/discharge capacity of about 1000 mAh g -1 with average discharge capacity fading of 1.8 mAh g -1 (0.18%) from 2nd to 100th cycle, indicating its excellent cyclability when used as anode materials for lithium-ion batteries

  8. Interface strength of SiC/SiC composites with and without helium implantation using micro-indentation test

    International Nuclear Information System (INIS)

    Saito, M.; Ohtsuka, S.

    1998-01-01

    Helium implantation effects on interface strength of SiC/SiC composite were studied using the micro-indentation fiber push-out method. Helium implantation was carried out with an accelerator at about 400 K. Total amount of implanted helium was approximately 10000 appm. Increase of the fiber push-in load was observed in as-implanted specimen. After post-implantation-annealing at 1673 K for 1 h, the change of the fiber push-in load by helium implantation was not observed. Effects of helium implantation on the interface are discussed. (orig.)

  9. How Is Mono Spread?

    Science.gov (United States)

    ... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...

  10. Interlaminar shear strength of SiC matrix composites reinforced by continuous fibers at 900 °C in air

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Gou, Jianjie; Qiao, Shengru; Wang, Xuanwei; Zhang, Jun

    2014-01-01

    Highlights: • The application of SiC fiber could improve ILSS of the SiC matrix composites. • The orientation of the warp fibers plays a critical role in determining ILSS of 2.5D-C/SiC. • The failure mechanisms of 2D composites involve matrix cracking, and interfacial debonding. - Abstract: To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers

  11. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  12. Structural, bonding, anisotropic mechanical and thermal properties of Al4SiC4 and Al4Si2C5 by first-principles investigations

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2016-09-01

    Full Text Available The structural, bonding, electronic, mechanical and thermal properties of ternary aluminum silicon carbides Al4SiC4 and Al4Si2C5 are investigated by first-principles calculations combined with the Debye quasi-harmonic approximation. All the calculated mechanical constants like bulk, shear and Young's modulus are in good agreement with experimental values. Both compounds show distinct anisotropic elastic properties along different crystalline directions, and the intrinsic brittleness of both compounds is also confirmed. The elastic anisotropy of both aluminum silicon carbides originates from their bonding structures. The calculated band gap is obtained as 1.12 and 1.04 eV for Al4SiC4 and Al4Si2C5 respectively. From the total electron density distribution map, the obvious covalent bonds exist between Al and C atoms. A distinct electron density deficiency sits between AlC bond along c axis among Al4SiC4, which leads to its limited tensile strength. Meanwhile, the anisotropy of acoustic velocities for both compounds is also calculated and discussed.

  13. Protección contra la oxidación de materiales compuestos SiC(C/SiC mediante la combinación de recubrimientos de silicatos de itrio y sílice

    Directory of Open Access Journals (Sweden)

    Aparicio, M.

    2001-12-01

    Full Text Available The factor which currently precludes the use of carbon fibre reinforced silicon carbide (C/SiC in high temperature structural applications is the oxidation of carbon fibres at temperatures greater than 450ºC (1. For this reason, it is necessary to develop coatings capable of protecting C/SiC components from oxidation for extended periods at 1600ºC. Conventional coatings consist of multilayers of different materials with complementary antioxidant properties. The objective of this work was to develop a multilayer coating consisted by a bonding layer of SiC, a intermediate layer of yttrium silicates: Y2Si2O7 and Y2SiO5, and an external layer of SiO2. Different techniques have been used to prepare the layers: painting with policarbosilane solutions, slip-coating and sol-gel, respectively. The behaviour against oxidation of coated composite material has been evaluated, and the samples before and after oxidation has been characterised by SEM. The cracking of SiC coating leads to a very low oxidation resistance at low temperatures. Only when the substrate is protected by the trilayer coating the reduction of the oxidation rate is considerable, and the weight loss is reduced from 50% (with a SiC coating to 15%.

    El principal inconveniente para la utilización de los materiales compuestos C/SiC en aplicaciones estructurales de alta temperatura es la elevada velocidad de oxidación de la fibra de carbono por encima de 450°C (1. Por esta razón, es necesario el desarrollo de recubrimientos capaces de proteger de la oxidación a estos materiales durante periodos prolongados a temperaturas de hasta 1600°C. Habitualmente, los recubrimientos están formados por multicapas con características antioxidantes complementarias. El objetivo de este trabajo ha sido el desarrollo de un recubrimiento multicapa formado por una capa interior de SiC, una intermedia de silicatos de itrio: Y2Si2O7 y Y2SiO5, y una exterior de SiO2. En su procesamiento se han

  14. New Possibilities of Power Electronic Structures Using SiC Technology

    Directory of Open Access Journals (Sweden)

    Robert Sul

    2006-01-01

    Full Text Available This paper is dedicated to the recent unprecedented boom of SiC electronic technology. The contribution deals with brief survey of those properties. In particular, the differences (both good and bad between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are given for several large-scale applications on the end of the contribution. The basic properties of SiC material have been discussed already on the beginning of 80’s, also at our university.

  15. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  16. Effect of Environment on the Stress- Rupture Behavior of a C/SiC Composite Studied

    Science.gov (United States)

    Verrilli, Michael J.; Kiser, J. Douglas; Opila, Elizabeth J.; Calomino, Anthony M.

    2002-01-01

    Advanced reusable launch vehicles will likely incorporate fiber-reinforced ceramic matrix composites (CMC's) in critical propulsion and airframe components. The use of CMC's is highly desirable to save weight, improve reuse capability, and increase performance. One of the candidate CMC materials is carbon-fiber-reinforced silicon carbide (C/SiC). In potential propulsion applications, such as turbopump rotors and nozzle exit ramps, C/SiC components will be subjected to a service cycle that includes mechanical loading under complex, high-pressure environments containing hydrogen, oxygen, and steam. Degradation of both the C fibers and the SiC matrix are possible in these environments. The objective of this effort was to evaluate the mechanical behavior of C/SiC in various environments relevant to reusable launch vehicle applications. Stress-rupture testing was conducted at the NASA Glenn Research Center on C/SiC specimens in air and steam-containing environments. Also, the oxidation kinetics of the carbon fibers that reinforce the composite were monitored by thermogravimetric analysis in the same environments and temperatures used for the stress-rupture tests of the C/SiC composite specimens. The stress-rupture lives obtained for C/SiC tested in air and in steam/argon mixtures are shown in the following bar chart. As is typical for most materials, lives obtained at the lower temperature (600 C) are longer than for the higher temperature (1200 C). The effect of environment was most pronounced at the lower temperature, where the average test duration in steam at 600 C was at least 30 times longer than the lives obtained in air. The 1200 C data revealed little difference between the lives of specimens tested in air and steam at atmospheric pressure.

  17. Residual stress analysis in carbon fiber-reinforced SiC ceramics; Eigenspannungsanalyse in kohlenstoffaserverstaerkten SiC-Keramiken

    Energy Technology Data Exchange (ETDEWEB)

    Broda, M.

    1998-12-31

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C{sub fiber}/SiC{sub matrix} specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface ({mu}m) have been measured using characteristic X-radiation and applying the sin {sup 2}{psi} method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250{mu}m) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [Deutsch] Im Rahmen der Arbeit werden systematische Eigenspannungsanalysen an langfaserverstaerkten SiC-Keramiken durchgefuehrt. Hierbei werden polymerpyrolytisch abgeleitete, laminierte C{sub Faser}/SiC{sub Matrix} Proben und Bauteile untersucht, welche industriell gefertigt wurden. Fuer die zerstoerungsfreie Eigenspannungsermittlung kommen verschiedene Beugungsverfahren zum Einsatz. Dadurch kann die Eigenspannungsverteilung in diesen Proben vollstaendig erfasst werden, d.h. der Eigenspannungszustand im Oberflaechenbereich ({mu}m) wird mit Hilfe charakteristischer Roentgenstrahlung unter Nutzung der sin{sup 2}{psi}-Methode als auch der Streuvektor-Methode beschrieben. Fuer die Analyse der Eigenspannungen im Volumen (cm) wird die Neutronenbeugung herangezogen. Um den Spannungszustand in den einzelnen Fasermatten (ca. 250 {mu}m) in Abhaengigkeit ihrer Lage

  18. Thermal cyclic oxidation behavior of the developed compositionally gradient graphite material of SiC/C in air environment

    International Nuclear Information System (INIS)

    Nakano, Junichi; Fujii, Kimio; Shindo, Masami

    1993-08-01

    For the developed compositionally gradient graphite material composed of surface SiC coating layer, middle SiC/C layer and graphite matrix, the thermal cyclic oxidation test was performed together with two kinds of the SiC coated graphite materials in air environment. It was made clear that the developed material exhibited high performance under severe thermal cyclic condition independent of the morphology of middle SiC/C layers and had the longer time or the more cycle margins from crack initiation to failure for surface SiC coating layer compared with the SiC coated graphite materials. (author)

  19. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni{sub 2}Si formation and the resulting barrier height changes

    Energy Technology Data Exchange (ETDEWEB)

    Tengeler, Sven, E-mail: stengeler@surface.tu-darmstadt.de [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Kaiser, Bernhard [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Chaussende, Didier [Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Jaegermann, Wolfram [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2017-04-01

    Highlights: • Schottky behavior (Φ{sub B} = 0.41 eV) and Fermi level pining were found pre annealing. • Ni{sub 2}Si formation was confirmed for 5 min at 850 °C. • 3C/Ni{sub 2}Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni{sub 2}Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni{sub 2}Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  20. Roughness of the SiC/SiO{sub 2} vicinal interface and atomic structure of the transition layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peizhi; Li, Guoliang; Duscher, Gerd, E-mail: gduscher@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996 (United States); Sharma, Yogesh K.; Ahyi, Ayayi C.; Isaacs-Smith, Tamara; Williams, John R.; Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-11-01

    The SiC/SiO{sub 2} interface is generally considered to be the cause for the reduced electron mobility of SiC power devices. Previous studies have shown a correlation between the mobility and the transition layer width at the SiC/SiO{sub 2} interface. The authors investigated this interface with atomic resolution Z-contrast imaging and electron energy-loss spectroscopy, and discovered that this transition region was due to the roughness of the vicinal interface. The roughness of a vicinal interface consisted of atomic steps and facets deviating from the ideal off-axis cut plane. The authors conclude that this roughness is limiting the mobility in the channels of SiC MOSFETs.

  1. Characterisation of point defects in SiC by microscopic optical spectroscopy

    International Nuclear Information System (INIS)

    Evans, G.A.

    2001-09-01

    Defects have a dramatic effect on the properties of semiconductors. In SiC, intrinsic defects can be introduced during growth or device-processing steps such as implantation. In this work electron irradiation has been used for the controlled generation of defects in SiC. The irradiated material has been annealed and subsequent low temperature photoluminescence (LTPL) measurements have been performed. A key element in this work has been the ability to perform both the irradiation and characterisation on a microscopic scale. These results have allowed a variety of new optical centres to be discovered, and have also significantly enhanced the pool of knowledge about other defect centres. Utilising low voltage irradiations has enabled the electron irradiation voltage displacement thresholds for Carbon and Silicon displacements to be investigated. In 4H-SiC the electron irradiation voltage displacement thresholds were found to be 88kV for C displacement and 225kV for Si displacement. A large number of previously unreported luminescence features have been measured in 4H, 6H and 15R-SiC material. The criteria used for comparison are the voltage threshold, annealing characteristics, spatial distribution with respect to the irradiated region, and the characteristics of associated local modes and vibronic structures. Compelling evidence has been found to support the assignment of centres in 4H and 6H-SiC to a C-C dumbbell split interstitial defect. Two high energy local modes at 133meV and 180meV are associated with these centres. In 13 C enriched 6H-SiC material the 180meV local mode splits into three components whilst the 133meV local mode splits into two components. This splitting is interpreted as being caused by isotopic substitutions between the components of the C-C dumbbell. The high energy local mode corresponds to the bonding between the two constituent atoms of the dumbbell whilst the low energy local mode is associated with the bonding between either a C 13 or 12

  2. SiC Discrete Power Devices

    National Research Council Canada - National Science Library

    Baliga, B

    2000-01-01

    .... The investigation of the poor performance of the 4H-SiC ACCUFETs provided insights for changes in device design and process flow, for improving their breakdown voltage and specific on-resistance...

  3. High Temperature Memories in SiC Technology

    OpenAIRE

    Ekström, Mattias

    2014-01-01

    This thesis is part of the Working On Venus (WOV) project. The aim of the project is to design electronics in silicon carbide (SiC) that can withstand the extreme surface environmen  of Venus. This thesis investigates some possible computer memory technologies that could survive on the surface of Venus. A memory must be able to function at 460 °C and after a total radiation dose of at least 200 Gy (SiC). This thesis is a literature survey. The thesis covers several Random-Access Memory (RAM) ...

  4. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  5. Determination of irradiation temperature using SiC temperature monitors

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

  6. Crystallization behavior and controlling mechanism of iron-containing Si-C-N ceramics.

    Science.gov (United States)

    Francis, Adel; Ionescu, Emanuel; Fasel, Claudia; Riedel, Ralf

    2009-11-02

    The crystallization behavior and controlling mechanism of the Si-Fe-C-N system based on polymer-derived SiCN ceramic filled with iron metal powder has been studied. The composite preparation conditions allow the formation of a random distribution of metallic particles in the polymer matrix volume for the Si-C-N system. Pyrolysis of the composite material at 1100 degrees C indicates the presence of one crystalline phase Fe(3)Si. While the sample pyrolyzed at 1200 degrees C reveals the formation of both Fe(3)Si and Fe(5)Si(3) phases, a crystallization of beta-SiC is additionally observed by increasing the temperature up to 1300 degrees C. The propensity for the formation of SiC is due to the presence of Fe(5)Si(3), where a solid-liquid-solid (SLS) growth mechanism was suggested to occur. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA), and thermal gravimetric analysis with mass spectroscopic detection (TGA-MS) were employed to investigate the crystallization behavior of the Si-Fe-C-N system.

  7. CVD growth of (001) and (111)3C-SiC epilayers and their interface reactivity with praseodymium oxide dielectric layers

    International Nuclear Information System (INIS)

    Sohal, R.

    2006-01-01

    In this work, growth and characterisation of 3C-SiC thin films, investigation of oxidation of thus prepared layers and Pr-silicate and AlON based interface with SiC have been studied. Chemical vapor deposition of 3C-SiC thin films on Si(001) and Si(111) substrates has been investigated. Prior to the actual SiC growth, preparation of initial buffer layers of SiC was done. Using such a buffer layer, epitaxial growth of 3C-SiC has been achieved on Si(111) and Si(001) substrates. The temperature of 1100 C and 1150 C has been determined to be the optimal temperature for 3C-SiC growth on Si (111) and Si(001) substrates respectively. The oxidation studies on SiC revealed that a slow oxidation process at moderate temperatures in steps was useful in reducing and suppressing the g-C at the SiO 2 /SiC interface. Clean, graphite-free SiO 2 has been successfully grown on 3C-SiC by silicon evaporation and UHV anneal. For the application of high-k Pr 2 O 3 on silicon carbide, plausible interlayer, Pr-Silicate and AlON, have been investigated. Praseodymium silicate has been prepared successfully completely consuming the SiO2 and simultaneously suppressing the graphitic carbon formation. A comparatively more stable interlayer using AlON has been achieved. This interlayer mainly consists of stable phases of AlN along with some amount of Pr-aluminates and CN. Such layers act as a reaction barrier between Pr 2 O 3 and SiC, and simultaneously provide higher band offsets. (orig.)

  8. CVD growth of (001) and (111)3C-SiC epilayers and their interface reactivity with pradeodymium oxide dielectric layers

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, R.

    2006-07-24

    In this work, growth and characterisation of 3C-SiC thin films, investigation of oxidation of thus prepared layers and Pr-silicate and AlON based interface with SiC have been studied. Chemical vapor deposition of 3C-SiC thin films on Si(001) and Si(111) substrates has been investigated. Prior to the actual SiC growth, preparation of initial buffer layers of SiC was done. Using such a buffer layer, epitaxial growth of 3C-SiC has been achieved on Si(111) and Si(001) substrates. The temperature of 1100 C and 1150 C has been determined to be the optimal temperature for 3C-SiC growth on Si (111) and Si(001) substrates respectively. The oxidation studies on SiC revealed that a slow oxidation process at moderate temperatures in steps was useful in reducing and suppressing the g-C at the SiO{sub 2}/SiC interface. Clean, graphite-free SiO{sub 2} has been successfully grown on 3C-SiC by silicon evaporation and UHV anneal. For the application of high-k Pr{sub 2}O{sub 3} on silicon carbide, plausible interlayer, Pr-Silicate and AlON, have been investigated. Praseodymium silicate has been prepared successfully completely consuming the SiO2 and simultaneously suppressing the graphitic carbon formation. A comparatively more stable interlayer using AlON has been achieved. This interlayer mainly consists of stable phases of AlN along with some amount of Pr-aluminates and CN. Such layers act as a reaction barrier between Pr{sub 2}O{sub 3} and SiC, and simultaneously provide higher band offsets. (orig.)

  9. Effect of hydrogen on passivation quality of SiNx/Si-rich SiNx stacked layers deposited by catalytic chemical vapor deposition on c-Si wafers

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2015-01-01

    We investigate the role of hydrogen content and fixed charges of catalytic chemical vapor deposited (Cat-CVD) SiN x /Si-rich SiN x stacked layers on the quality of crystalline silicon (c-Si) surface passivation. Calculated density of fixed charges is on the order of 10 12 cm −2 , which is high enough for effective field effect passivation. Hydrogen content in the films is also found to contribute significantly to improvement in passivation quality of the stacked layers. Furthermore, Si-rich SiN x films deposited with H 2 dilution show better passivation quality of SiN x /Si-rich SiN x stacked layers than those prepared without H 2 dilution. Effective minority carrier lifetime (τ eff ) in c-Si passivated by SiN x /Si-rich SiN x stacked layers is as high as 5.1 ms when H 2 is added during Si-rich SiN x deposition, which is much higher than the case of using Si-rich SiN x films prepared without H 2 dilution showing τ eff of 3.3 ms. - Highlights: • Passivation mechanism of Si-rich SiN x /SiN x stacked layers is investigated. • H atoms play important role in passivation quality of the stacked layer. • Addition of H 2 gas during Si-rich SiN x film deposition greatly enhances effective minority carrier lifetime (τ eff ). • For a Si-rich SiN x film with refractive index of 2.92, τ eff improves from 3.3 to 5.1 ms by H 2 addition

  10. Fusion hindrance for the positive Q -value system 12C+30Si

    Science.gov (United States)

    Montagnoli, G.; Stefanini, A. M.; Jiang, C. L.; Hagino, K.; Galtarossa, F.; Colucci, G.; Bottoni, S.; Broggini, C.; Caciolli, A.; Čolović, P.; Corradi, L.; Courtin, S.; Depalo, R.; Fioretto, E.; Fruet, G.; Gal, A.; Goasduff, A.; Heine, M.; Hu, S. P.; Kaur, M.; Mijatović, T.; Mazzocco, M.; Montanari, D.; Scarlassara, F.; Strano, E.; Szilner, S.; Zhang, G. X.

    2018-02-01

    Background: The fusion reaction 12C+30Si is a link between heavier cases studied in recent years, and the light heavy-ion systems, e.g., 12C+12C , 16O+16O that have a prominent role in the dynamics of stellar evolution. 12C+30Si fusion itself is not a relevant process for astrophysics, but it is important to establish its behavior below the barrier, where couplings to low-lying collective modes and the hindrance phenomenon may determine the cross sections. The excitation function is presently completely unknown below the barrier for the 12C+30Si reaction, thus no reliable extrapolation into the astrophysical regime for the C+C and O+O cases can be performed. Purpose: Our aim was to carry out a complete measurement of the fusion excitation function of 12C+30Si from well below to above the Coulomb barrier, so as to clear up the consequence of couplings to low-lying states of 30Si, and whether the hindrance effect appears in this relatively light system which has a positive Q value for fusion. This would have consequences for the extrapolated behavior to even lighter systems. Methods: The inverse kinematics was used by sending 30Si beams delivered from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro onto thin 12C (50 μ g /cm2 ) targets enriched to 99.9 % in mass 12. The fusion evaporation residues (ER) were detected at very forward angles, following beam separation by means of an electrostatic deflector. Angular distributions of ER were measured at Ebeam=45 , 59, and 80 MeV, and they were angle integrated to derive total fusion cross sections. Results: The fusion excitation function of 12C+30Si was measured with high statistical accuracy, covering more than five orders of magnitude down to a lowest cross section ≃3 μ b . The logarithmic slope and the S factor have been extracted and we have convincing phenomenological evidence of the hindrance effect. These results have been compared with the calculations performed within the model that

  11. Temperature Dependence of Mechanical Properties of TRISO SiC Coatings

    International Nuclear Information System (INIS)

    Kim, Do Kyung; Park, Kwi Il; Lee, Hyeon Keun; Seong, Young Hoon; Lee, Seung Jun

    2009-04-01

    SiC coating layer has been introduced as protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to excellent mechanical stability at high temperature. It is important to study for high temperature stability in SiC coating layers, because TRISO fuel particles were operating at high temperature around 1000 .deg. C. In this study, the nanoindentation test and micro tensile test were conducted in order to measure the mechanical properties of SiC coating layers at elevated temperature. SiC coating film was fabricated on the carbon substrate using chemical vapor deposition process with different microstructures and thicknesses. Nanoindentation test was performed for the analysis of the hardness, modulus and creep properties up to 500 .deg. C. Impression creep method applied to nanoindentation and creep properties of SiC coating layers were characterized by nanoindentation creep test. The fracture strength of SiC coating layers was measured by the micro tensile method at room temperature and 500 .deg. C. From the results, we can conclude that the hardness and fracture strength are decreased with temperature and no significant change in the modulus is observed with increase in temperature. The deformation mechanism for indentation creep and creep rate changes as the testing temperature increased

  12. CVD of SiC and AlN using cyclic organometallic precursors

    Science.gov (United States)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  13. Irradiation damages in Ti{sub 3}SiC{sub 2}; Dommages d'irradiation dans Ti{sub 3}SiC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nappe, J.C.; Grosseau, Ph. [Ecole Nationale Superieure des Mines, Centre SPIN, Lab. PMMC et LPMG UMR CNRS 5148, 42 - Saint-Etienne (France); Guilhot, B. [Ecole Nationale Superieure des Mines, Centre CIS, 42 - Saint-Etienne (France); Audubert, F.; Beauvy, M. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles; Iacconi, Ph.; Benabdesselam, M. [Nice Univ. - Sophia Antipolis, Lab. LPES-CRESA, 06 (France)

    2007-07-01

    Carbides, by their remarkable properties, are considered as possible materials (fuel cans) in reactor of generation IV. Among those studied, Ti{sub 3}SiC{sub 2} is particularly considered because it joins both the ceramics and metals properties. Nevertheless, its behaviour under irradiation is not known. Characterizations have been carried out on samples irradiated at 75 MeV krypton ions. They have revealed that TiO{sub 2} (formed at the surface of Ti{sub 3}SiC{sub 2}) is pulverized by the irradiation and that the crystal lattice of Ti{sub 3}SiC{sub 2} dilates with c. (O.M.)

  14. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C

  15. First-principles study of point-defect production in Si and SiC

    International Nuclear Information System (INIS)

    Windl, W.; Lenosky, T.J.; Kress, J.D.; Voter, A.F.

    1998-03-01

    The authors have calculated the displacement-threshold energy E(d) for point-defect production in Si and SiC using empirical potentials, tight-binding, and first-principles methods. They show that -- depending on the knock-on direction -- 64-atom simulation cells can be sufficient to allow a nearly finite-size-effect-free calculation, thus making the use of first-principles methods possible. They use molecular dynamics (MD) techniques and propose the use of a sudden approximation which agrees reasonably well with the MD results for selected directions and which allows estimates of Ed without employing an MD simulation and the use of computationally demanding first-principles methods. Comparing the results with experiment, the authors find the full self-consistent first-principles method in conjunction with the sudden approximation to be a reliable and easy method to predict E d . Furthermore, they have examined the temperature dependence of E d for C in SiC and found it to be negligible

  16. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring

    International Nuclear Information System (INIS)

    Nozawa, Takashi; Ozawa, Kazumi; Asakura, Yuuki; Kohyama, Akira; Tanigawa, Hiroyasu

    2014-01-01

    Understanding the cracking process of the composites is essential to establish the design basis for practical applications. This study aims to investigate the damage accumulation process and its anisotropy for nano-infiltration transient eutectic sintered (NITE) SiC/SiC composites by various characterization techniques such as the acoustic emission (AE), digital image correlation (DIC) and electrical resistivity (ER) measurements. Cracking behavior below the proportional limit stress (PLS) was specifically addressed. Similar to the other generic SiC/SiC composites, the 1st AE event was identified below the PLS for NITE SiC/SiC composites with a dependency of fabric orientation. The DIC results support that the primary failure mode depending on fiber orientation affected more than the other minor modes did. Detailed AE waveform analysis by wavelet shows a potential to classify the failure behavior depending on architecture. Cracking below the PLS is a potential concern in component deign but the preliminary ER measurements imply that the impact of cracking below the PLS on composite function was limited

  17. Unraveling the role of SiC or Si substrates in water vapor incorporation in SiO 2 films thermally grown using ion beam analyses

    Science.gov (United States)

    Corrêa, S. A.; Soares, G. V.; Radtke, C.; Stedile, F. C.

    2012-02-01

    The incorporation of water vapor in SiO 2 films thermally grown on 6H-SiC(0 0 0 1) and on Si (0 0 1) was investigated using nuclear reaction analyses. Water isotopically enriched in deuterium ( 2H or D) and in 18O was used. The dependence of incorporated D with the water annealing temperature and initial oxide thickness were inspected. The D amount in SiO 2/SiC structures increases continuously with temperature and with initial oxide thickness, being incorporated in the surface, bulk, and interface regions of SiO 2 films. However, in SiO 2/Si, D is observed mostly in near-surface regions of the oxide and no remarkable dependence with temperature or initial oxide thickness was observed. At any annealing temperature, oxygen from water vapor was incorporated in all depths of the oxide films grown on SiC, in contrast with the SiO 2/Si.

  18. Annealing study on radiation-induced defects in 6H-SiC

    International Nuclear Information System (INIS)

    Pinheiro, M.V.B.; Lingner, T.; Caudepon, F.; Greulich-Weber, S.; Spaeth, J.M.

    2004-01-01

    We present the results of a systematic isochronal annealing investigation of vacancy-related defects in electron-irradiated n-type 6H-SiC:N. A series of 10 samples cut from a commercial wafer and annealed up to 1200 C after electron-irradiation (1.5 x 10 18 cm -3 ) was characterized with photoluminescence (PL), Magnetic circular dichroism of the absorption (MCDA) and conventional electron paramagnetic resonance (EPR). Apart from less stable triplet-related defects which vanished between 150 C and 300 C, the thermal behavior of three radiation-induced defects was studied: the silicon vacancy (V Si ), the carbon-antisite-carbon-vacancy pair (C Si -V C ) and the D1 center. Their annealing behavior showed that the destruction of the isolated V Si between 750 C and 900 C is followed by the formation of thermally more stable C Si -V C pairs, a result that has been theoretically predicted recently. By further heating the samples the C Si -V C pairs are annealed out between 900 C and 1050 C and were followed by an increase in the D1 center concentration. (orig.)

  19. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes

    Science.gov (United States)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-04-01

    The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  20. Ion beam synthesis and characterization of large area 3C-SiC pseudo substrates for homo- and heteroepitaxy

    International Nuclear Information System (INIS)

    Haeberlen, Maik

    2006-12-01

    In this work, large area epitaxial 3C-SiC films on Si(100) and Si(111) were formed by ion beam synthesis and subsequently characterized for their structural and crystalline properties. These SiC/Si structures are meant to be used as SiC pseudosubstrates for the homo- and heteroepitaxial growth of other compound semiconductors. The suitability of these pseudosubstrates for this purpose was tested using various epitaxial systems and thin film growth methods. For this the homoepitaxial growth of 3C-SiC employing C 60 -MBE and the heteroepitaxial growth of hexagonal GaN films grown by MOCVD and IBAMBA was studied in detail. The comparison of the structural and crystalline properties with data from literature enabled a qualified judgement of the potential of the 3C-SiC pseudosubstrates as an alternative substrate for the epitaxial growth of such films. These new 3C-SiC pseudosubstrates also enabled studies of other little known epitaxial systems: For the first time hexagonal ZnO films on (111) oriented pseudosubstrates were grown using PLD. The method if IBAMBE enabled the growth of cubic GaN layers on (100)-oriented pseudosubstrates. (orig.)