WorldWideScience

Sample records for monkeypox virus proteome

  1. Comparative Proteomics of Human Monkeypox and Vaccinia Intracellular Mature and Extracellular Enveloped Virions

    Energy Technology Data Exchange (ETDEWEB)

    Manes, Nathan P.; Estep, Ryan D.; Mottaz, Heather M.; Moore, Ronald J.; Clauss, Therese RW; Monroe, Matthew E.; Du, Xiuxia; Adkins, Joshua N.; Wong, Scott; Smith, Richard D.

    2008-03-07

    Orthopoxviruses are the largest and most complex of the animal viruses. In response to the recent emergence of monkeypox in Africa and the threat of smallpox bioterrorism, virulent (monkeypox virus) and benign (vaccinia virus) orthopoxviruses were proteomically compared with the goal of identifying proteins required for pathogenesis. Orthopoxviruses were grown in HeLa cells to two different viral forms (intracellular mature virus and extracellular enveloped virus), purified by sucrose gradient ultracentrifugation, denatured using RapiGest™ surfactant, and digested with trypsin. Unfractionated samples and strong cation exchange HPLC fractions were analyzed by reversed-phase LC-MS/MS, and analyses of the MS/MS spectra using SEQUEST® and X! Tandem resulted in the identification of hundreds of monkeypox, vaccinia, and copurified host proteins. The unfractionated samples were additionally analyzed by LC-MS on an LTQ-Orbitrap™, and the accurate mass and elution time tag approach was used to perform quantitative comparisons. Possible pathophysiological roles of differentially expressed orthopoxvirus genes are discussed.

  2. In vitro inhibition of monkeypox virus production and spread by Interferon-β

    Directory of Open Access Journals (Sweden)

    Johnston Sara C

    2012-01-01

    Full Text Available Abstract Background The Orthopoxvirus genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox, monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus. Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naïve population. Results The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-β (IFN-β for use against monkeypox virus. We found that treatment with human IFN-β results in a significant decrease in monkeypox virus production and spread in vitro. IFN-β substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-β induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection. Conclusions Our results demonstrate the successful inhibition of monkeypox virus using human IFN-β and suggest that IFN-β could potentially serve as a novel safe therapeutic for human monkeypox disease.

  3. Susceptibility of Marmosets (Callithrix jacchus) to Monkeypox Virus: A Low Dose Prospective Model for Monkeypox and Smallpox Disease.

    Science.gov (United States)

    Mucker, Eric M; Chapman, Jennifer; Huzella, Louis M; Huggins, John W; Shamblin, Joshua; Robinson, Camenzind G; Hensley, Lisa E

    2015-01-01

    Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox.

  4. 42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.

    Science.gov (United States)

    2010-10-01

    ... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...

  5. Sequence of pathogenic events in cynomolgus macaques infected with aerosolized monkeypox virus.

    Science.gov (United States)

    Tree, J A; Hall, G; Pearson, G; Rayner, E; Graham, V A; Steeds, K; Bewley, K R; Hatch, G J; Dennis, M; Taylor, I; Roberts, A D; Funnell, S G P; Vipond, J

    2015-04-01

    To evaluate new vaccines when human efficacy studies are not possible, the FDA's "Animal Rule" requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (10(5) PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it would be unethical and

  6. Monkeypox

    Science.gov (United States)

    ... been found in many animal species: rope squirrels, tree squirrels, Gambian rats, striped mice, dormice and primates. Doubts persist on the natural history of the virus and further studies are needed to identify the exact reservoir of the monkeypox virus and ...

  7. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection

    Czech Academy of Sciences Publication Activity Database

    Stittelaar, K. J.; Neyts, J.; Naesens, L.; Amerongen van, G.; Lavieren van, R. F.; Holý, Antonín; De Clercq, E.; Niesters, H. G. M.; Fries, E.; Maas, Ch.; Mulder, P. G. H.; Zeijst van der, B. A. M.; Osterhaus, D. M. E.

    2006-01-01

    Roč. 439, č. 7077 (2006), s. 745-748 ISSN 0028-0836 Institutional research plan: CEZ:AV0Z40550506 Keywords : monkeypox virus * vaccination * HPMPC * HPMPO-DAPy Subject RIV: CC - Organic Chemistry Impact factor: 26.681, year: 2006

  8. Comparison of monkeypox viruses pathogenesis in mice by in vivo imaging.

    Directory of Open Access Journals (Sweden)

    Jorge E Osorio

    2009-08-01

    Full Text Available Monkeypox viruses (MPXV cause human monkeypox, a zoonotic smallpox-like disease endemic to Africa, and are of worldwide public health and biodefense concern. Using viruses from the Congo (MPXV-2003-Congo-358 and West African (MPXV-2003-USA-044 clades, we constructed recombinant viruses that express the luciferase gene (MPXV-Congo/Luc+and MPXV-USA-Luc+ and compared their viral infection in mice by biophotonic imaging. BALB/c mice became infected by both MPXV clades, but they recovered and cleared the infection within 10 days post-infection (PI. However, infection in severe combined immune deficient (SCID BALB/c mice resulted in 100% lethality. Intraperitoneal (IP injection of both MPXV-Congo and MPXV-Congo/Luc+resulted in a systemic clinical disease and the same mean time-to-death at 9 (+/-0 days post-infection. Likewise, IP injection of SCID-BALB/c mice with MPXV-USA or the MPXV-USA-Luc+, resulted in similar disease but longer (P<0.05 mean time-to-death (11+/-0 days for both viruses compared to the Congo strains. Imaging studies in SCID mice showed luminescence in the abdomen within 24 hours PI with subsequent spread elsewhere. Animals infected with the MPXV-USA/Luc+had less intense luminescence in tissues than those inoculated with MPXV-Congo/Luc+, and systemic spread of the MPXV-USA/Luc+virus occurred approximately two days later than the MPXV-Congo/Luc+. The ovary was an important target for viral replication as evidenced by the high viral titers and immunohistochemistry. These studies demonstrate the suitability of a mouse model and biophotonic imaging to compare the disease progression and tissue tropism of MPX viruses.

  9. Further assessment of Monkeypox Virus infection in Gambian pouched rats (Cricetomys gambianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth; Lopera, Juan G.; Faye Lorenzsonn,; Salzer, Johanna S.; Hutson, Christina L.; Doty, Jeffrey; Gallardo-Romero, Nadia; Carroll, Darin S.; Osorio, Jorge E.; Rocke, Tonie E.

    2015-01-01

    Monkeypox is a zoonosis clinically similar to smallpox in humans. Recent evidence has shown a potential risk of increased incidence in central Africa. Despite attempts to isolate the virus from wild rodents and other small mammals, no reservoir host has been identified. In 2003,Monkeypox virus (MPXV) was accidentally introduced into the U.S. via the pet trade and was associated with the Gambian pouched rat (Cricetomys gambianus). Therefore, we investigated the potential reservoir competence of the Gambian pouched rat for MPXV by utilizing a combination of in vivo and in vitro methods. We inoculated three animals by the intradermal route and three animals by the intranasal route, with one mock-infected control for each route. Bioluminescent imaging (BLI) was used to track replicating virus in infected animals and virological assays (e.g. real time PCR, cell culture) were used to determine viral load in blood, urine, ocular, nasal, oral, and rectal swabs. Intradermal inoculation resulted in clinical signs of monkeypox infection in two of three animals. One severely ill animal was euthanized and the other affected animal recovered. In contrast, intranasal inoculation resulted in subclinical infection in all three animals. All animals, regardless of apparent or inapparent infection, shed virus in oral and nasal secretions. Additionally, BLI identified viral replication in the skin without grossly visible lesions. These results suggest that Gambian pouched rats may play an important role in transmission of the virus to humans, as they are hunted for consumption and it is possible for MPXV-infected pouched rats to shed infectious virus without displaying overt clinical signs.

  10. In vitro efficacy of ST246 against smallpox and monkeypox.

    Science.gov (United States)

    Smith, Scott K; Olson, Victoria A; Karem, Kevin L; Jordan, Robert; Hruby, Dennis E; Damon, Inger K

    2009-03-01

    Since the eradication of smallpox and the cessation of routine childhood vaccination for smallpox, the proportion of the world's population susceptible to infection with orthopoxviruses, such as variola virus (the causative agent of smallpox) and monkeypox virus, has grown substantially. In the United States, the only vaccines for smallpox licensed by the Food and Drug Administration (FDA) have been live virus vaccines. Unfortunately, a substantial number of people cannot receive live virus vaccines due to contraindications. Furthermore, no antiviral drugs have been fully approved by the FDA for the prevention or treatment of orthopoxvirus infection. Here, we show the inhibitory effect of one new antiviral compound, ST-246, on the in vitro growth properties of six variola virus strains and seven monkeypox virus strains. We performed multiple assays to monitor the cytopathic effect and to evaluate the reduction of viral progeny production and release in the presence of the compound. ST-246 had 50% effective concentrations of virus and <0.04 microM against monkeypox virus. In a dose-dependent manner, plaque size and comet tail formation were markedly reduced in the presence of the drug at low, noncytotoxic concentrations between 0.015 and 0.05 microM. Our in vitro phenotype data suggest that ST-246 inhibits variola and monkeypox viruses similarly by reducing the production and release of enveloped orthopoxvirus and support the development of ST-246 as an antiviral therapeutic compound for the treatment of severe systemic orthopoxvirus infections.

  11. About Monkeypox

    Science.gov (United States)

    ... For Veterinarians Transmission Examining Animals with Suspected Monkeypox African Rodent Importation Ban Resources Related Links ... A child affected with monkeypox. Monkeypox is a rare disease ...

  12. Laboratory investigations of African Pouched Rats (Cricetomys gambianus) as a potential reservoir host species for Monkeypox Virus

    Science.gov (United States)

    Hutson, Christina L.; Nakazawa, Yoshinori J.; Self, Joshua; Olson, Victoria A.; Regnery, Russell L.; Braden, Zachary; Weiss, Sonja; Malekani, Jean; Jackson, Eddie; Tate, Mallory; Karem, Kevin L.; Rocke, Tonie E.; Osorio, Jorge E.; Damon, Inger K.; Carroll, Darin S.

    2015-01-01

    Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV) and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s). In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus) shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats) and this rodent species’ competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu) from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4) or West African (W-MPXV: n = 4); an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV) between 3 and 27 days post infection (p.i.) (up to 1X108pfu/ml), with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini) can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.

  13. Laboratory Investigations of African Pouched Rats (Cricetomys gambianus as a Potential Reservoir Host Species for Monkeypox Virus.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s. In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats and this rodent species' competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4 or West African (W-MPXV: n = 4; an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV between 3 and 27 days post infection (p.i. (up to 1X108 pfu/ml, with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.

  14. Transmissibility of the monkeypox virus clades via respiratory transmission: investigation using the prairie dog-monkeypox virus challenge system.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV related to MPXV and cessation of routine smallpox vaccination (with the live OPXV vaccinia, there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively. Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.

  15. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    Science.gov (United States)

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  16. Attenuation of monkeypox virus by deletion of genomic regions

    Science.gov (United States)

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  17. Evaluation of monkeypox virus infection of prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.

    2014-01-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.

  18. Assessing Monkeypox Virus Prevalence in Small Mammals at the Human–Animal Interface in the Democratic Republic of the Congo

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Doty

    2017-10-01

    Full Text Available During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax. Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV infections in these small mammals. Seven (2.0% of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus; no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.

  19. Assessing Monkeypox Virus Prevalence in Small Mammals at the Human-Animal Interface in the Democratic Republic of the Congo.

    Science.gov (United States)

    Doty, Jeffrey B; Malekani, Jean M; Kalemba, Lem's N; Stanley, William T; Monroe, Benjamin P; Nakazawa, Yoshinori U; Mauldin, Matthew R; Bakambana, Trésor L; Liyandja Dja Liyandja, Tobit; Braden, Zachary H; Wallace, Ryan M; Malekani, Divin V; McCollum, Andrea M; Gallardo-Romero, Nadia; Kondas, Ashley; Peterson, A Townsend; Osorio, Jorge E; Rocke, Tonie E; Karem, Kevin L; Emerson, Ginny L; Carroll, Darin S

    2017-10-03

    During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus ; one Cricetomys emini ; one Heliosciurus sp.; one Oenomys hypoxanthus , and one elephant shrew Petrodromus tetradactylus ); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.

  20. Generation and Characterization of a Double Recombinant Monkeypox Virus for use in Animal Model Development and Therapeutic Evaluation

    Science.gov (United States)

    2012-09-27

    protect the virions from normal host immune responses (4, 41). Orthopoxviruses are genetically and antigenically similar. The central regions of...model for smallpox disease (35). Challenges associated with working with MPXV include the use of Bio Safety Level 3+ (BSL-3+) facilities in...release of weaponized variola or monkeypox, and ongoing monkeypox outbreaks in Africa have prompted investigations into the development of new vaccine

  1. Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Science.gov (United States)

    Rubins, Kathleen H.; Hensley, Lisa E.; Relman, David A.; Brown, Patrick O.

    2011-01-01

    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection. PMID:21267444

  2. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    2011-01-01

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  3. Presumptive risk factors for monkeypox in rural communities in the Democratic Republic of the Congo.

    Directory of Open Access Journals (Sweden)

    Claire A Quiner

    Full Text Available Monkeypox virus (MPXV, a close relative of Variola virus, is a zoonotic virus with an unknown reservoir. Interaction with infected wildlife, bites from peri-domestic animals, and bushmeat hunting are hypothesized routes of infection from wildlife to humans. Using a Risk Questionnaire, performed in monkeypox-affected areas of rural Democratic Republic of the Congo, we describe the lifestyles and demographics associated with presumptive risk factors for MPXV infection. We generated two indices to assess risk: Household Materials Index (HMI, a proxy for socioeconomic status of households and Risk Activity Index (RAI, which describes presumptive risk for animal-to-human transmission of MPXV. Based on participant self-reported activity patterns, we found that people in this population are more likely to visit the forest than a market to fulfill material needs, and that the reported occupation is limited in describing behavior of individuals may participate. Being bitten by rodents in the home was commonly reported, and this was significantly associated with a low HMI. The highest scoring RAI sub-groups were 'hunters' and males aged ≥ 18 years; however, several activities involving MPXV-implicated animals were distributed across all sub-groups. The current analysis may be useful in identifying at-risk groups and help to direct education, outreach and prevention efforts more efficiently.

  4. Mapping monkeypox transmission risk through time and space in the Congo Basin

    Science.gov (United States)

    Nakazawa, Yoshinori J.; Lash, R. Ryan; Carroll, Darin S.; Damon, Inger K.; Karem, Kevin L.; Reynolds, Mary G.; Osorio, Jorge E.; Rocke, Tonie E.; Malekani, Jean; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A. Townsend

    2013-01-01

    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.

  5. Monkeypox disease transmission in an experimental setting: prairie dog animal model.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox. MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively. Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.

  6. Proteomic analysis of purified coronavirus infectious bronchitis virus particles

    Directory of Open Access Journals (Sweden)

    Shu Dingming

    2010-06-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. Results Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%, molecular chaperone (18%, macromolcular biosynthesis proteins (17%, cytoskeletal proteins (15%, signal transport proteins (15%, protein degradation (8%, chromosome associated proteins (2%, ribosomal proteins (2%, and other function proteins (3%. Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. Conclusions The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.

  7. Comparison of Monkeypox Virus Clade Kinetics and Pathology within the Prairie Dog Animal Model Using a Serial Sacrifice Study Design

    Directory of Open Access Journals (Sweden)

    Christina L. Hutson

    2015-01-01

    Full Text Available Monkeypox virus (MPXV infection of the prairie dog is valuable to studying systemic orthopoxvirus disease. To further characterize differences in MPXV clade pathogenesis, groups of prairie dogs were intranasally infected (8×103 p.f.u. with Congo Basin (CB or West African (WA MPXV, and 28 tissues were harvested on days 2, 4, 6, 9, 12, 17, and 24 postinfection. Samples were evaluated for the presence of virus and gross and microscopic lesions. Virus was recovered from nasal mucosa, oropharyngeal lymph nodes, and spleen earlier in CB challenged animals (day 4 than WA challenged animals (day 6. For both groups, primary viremia (indicated by viral DNA was seen on days 6–9 through day 17. CB MPXV spread more rapidly, accumulated to greater levels, and caused greater morbidity in animals compared to WA MPXV. Histopathology and immunohistochemistry (IHC findings, however, were similar. Two animals that succumbed to disease demonstrated abundant viral antigen in all organs tested, except for brain. Dual-IHC staining of select liver and spleen sections showed that apoptotic cells (identified by TUNEL tended to colocalize with poxvirus antigen. Interestingly splenocytes were labelled positive for apoptosis more often than hepatocytes in both MPXV groups. These findings allow for further characterization of differences between MPXV clade pathogenesis, including identifying sites that are important during early viral replication and cellular response to viral infection.

  8. Comparative Pathology of Smallpox and Monkeypox in Man and Macaques

    Science.gov (United States)

    Cann, J. A.; Jahrling, P. B.; Hensley, L. E.; Wahl-Jensen, V.

    2012-01-01

    Summary In the three decades since the eradication of smallpox and cessation of routine vaccination, the collective memory of the devastating epidemics caused by this orthopoxvirus has waned, and the human population has become increasingly susceptible to a disease that remains high on the list of possible bioterrorism agents. Research using surrogate orthopoxviruses in their natural hosts, as well as limited variola virus research in animal models, continues worldwide; however, interpretation of findings is often limited by our relative lack of knowledge about the naturally occurring disease. For modern comparative pathologists, many of whom have no first-hand knowledge of naturally occurring smallpox, this work provides a contemporary review of this historical disease, as well as discussion of how it compares with human monkeypox and the corresponding diseases in macaques. PMID:22884034

  9. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.

    Science.gov (United States)

    Kulej, Katarzyna; Avgousti, Daphne C; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N; Kim, Eui Tae; Garcia, Benjamin A; Weitzman, Matthew D

    2017-04-01

    Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Differential proteome analysis of chikungunya virus infection on host cells.

    Directory of Open Access Journals (Sweden)

    Christina Li-Ping Thio

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.

  11. Improving the Care and Treatment of Monkeypox Patients in Low-Resource Settings: Applying Evidence from Contemporary Biomedical and Smallpox Biodefense Research

    Directory of Open Access Journals (Sweden)

    Mary G. Reynolds

    2017-12-01

    Full Text Available Monkeypox is a smallpox-like illness that can be accompanied by a range of significant medical complications. To date there are no standard or optimized guidelines for the clinical management of monkeypox (MPX patients, particularly in low-resource settings. Consequently, patients can experience protracted illness and poor outcomes. Improving care necessitates developing a better understanding of the range of clinical manifestations—including complications and sequelae—as well as of features of illness that may be predictive of illness severity and poor outcomes. Experimental and natural infection of non-human primates with monkeypox virus can inform the approach to improving patient care, and may suggest options for pharmaceutical intervention. These studies have traditionally been performed to address the threat of smallpox bioterrorism and were designed with the intent of using MPX as a disease surrogate for smallpox. In many cases this necessitated employing high-dose, inhalational or intravenous challenge to recapitulate the severe manifestations of illness seen with smallpox. Overall, these data—and data from biomedical research involving burns, superficial wounds, herpes, eczema vaccinatum, and so forth—suggest that MPX patients could benefit from clinical support to mitigate the consequences of compromised skin and mucosa. This should include prevention and treatment of secondary bacterial infections (and other complications, ensuring adequate hydration and nutrition, and protecting vulnerable anatomical locations such as the eyes and genitals. A standard of care that considers these factors should be developed and assessed in different settings, using clinical metrics specific for MPX alongside consideration of antiviral therapies.

  12. Contribution of MS-based proteomics to the understanding of Herpes Simplex Virus type 1 interaction with host cells

    Directory of Open Access Journals (Sweden)

    Enrique eSantamaría

    2012-03-01

    Full Text Available Like other DNA viruses, Herpes Simplex Virus type 1 (HSV-1 replicates and proliferates in host cells continuously modulating the host molecular environment. Following a sophisticated temporal expression pattern, HSV-1 encodes at least 89 multifunctional proteins that interplay with and modify the host cell proteome. During the last decade, advances in mass spectrometry applications coupled to the development of proteomic separation methods have allowed to partially monitor the impact of HSV-1 infection in human cells. In this review, we discuss the current use of different proteome fractionation strategies to define HSV-1 targets on two major application areas: i viral protein interactomics to decipher viral protein interactions in host cells and ii differential quantitative proteomics to analyse the virally induced changes in the cellular proteome. Moreover, we will also discuss the potential application of high throughput proteomic approaches to study global proteome dynamics and also post-translational modifications in HSV-1-infected cells, what will greatly improved our molecular knowledge of HSV-1 infection.

  13. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus.

    Science.gov (United States)

    Zandi, Fatemeh; Eslami, Naser; Soheili, Masoomeh; Fayaz, Ahmad; Gholami, Alireza; Vaziri, Behrouz

    2009-05-01

    Rabies is a neurotropic virus that causes a life threatening acute viral encephalitis. The complex relationship of rabies virus (RV) with the host leads to its replication and spreading toward the neural network, where viral pathogenic effects appeared as neuronal dysfunction. In order to better understand the molecular basis of this relationship, a proteomics study on baby hamster kidney cells infected with challenge virus standard strain of RV was performed. This cell line is an in vitro model for rabies infection and is commonly used for viral seed preparation. The direct effect of the virus on cellular protein machinery was investigated by 2-DE proteome mapping of infected versus control cells followed by LC-MS/MS identification. This analysis revealed significant changes in expression of 14 proteins, seven of these proteins were viral and the remaining were host proteins with different known functions: cytoskeletal (capping protein, vimentin), anti-oxidative stress (superoxide dismutase), regulatory (Stathmin), and protein synthesis (P0). Despite of limited changes appeared upon rabies infection, they present a set of interesting biochemical pathways for further investigation on viral-host interaction.

  14. Comparison of West African and Congo Basin monkeypox viruses in BALB/c and C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    2010-01-01

    Full Text Available Although monkeypox virus (MPXV studies in wild rodents and non-human primates have generated important knowledge regarding MPXV pathogenesis and inferences about disease transmission, it might be easier to dissect the importance of virulence factors and correlates of protection to MPXV in an inbred mouse model. Herein, we compared the two clades of MPXV via two routes of infection in the BALB/c and C57BL/6 inbred mice strains. Our studies show that similar to previous animal studies, the Congo Basin strain of MPXV was more virulent than West African MPXV in both mouse strains as evidenced by clinical signs. Although animals did not develop lesions as seen in human MPX infections, localized signs were apparent with the foot pad route of inoculation, primarily in the form of edema at the site of inoculation; while the Congo Basin intranasal route of infection led to generalized symptoms, primarily weight loss. We have determined that future studies with MPXV and laboratory mice would be very beneficial in understanding the pathogenesis of MPXV, in particular if used in in vivo imaging studies. Although this mouse model may not suffice as a model of human MPX disease, with an appropriate inbred mouse model, we can unravel many unknown aspects of MPX pathogenesis, including virulence factors, disease progression in rodent hosts, and viral shedding from infected animals. In addition, such a model can be utilized to test antivirals and the next generation of orthopoxvirus vaccines for their ability to alter the course of disease.

  15. Intrinsically Disordered Side of the Zika Virus Proteome

    Directory of Open Access Journals (Sweden)

    Rajanish Giri

    2016-11-01

    Full Text Available Over the last few decades, concepts of protein intrinsic disorder have been implicated in different biological processes. Recent studies have suggested that intrinsically disordered proteins (IDPs provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion in host cells. In case of Zika virus, the roles of protein intrinsic disorder in mechanisms of pathogenesis are not completely understood. In this study, we have analyzed the prevalence of intrinsic disorder in Zika virus proteome (strain MR 766. Our analyses revealed that Zika virus polyprotein is enriched with intrinsically disordered protein regions (IDPRs and this finding is consistent with previous reports on the involvement of IDPs in shell formation and virulence of the Flaviviridae family. We found abundant IDPRs in Capsid, NS2B, NS3, NS4A, and NS5 proteins that are involved in mature particle formation and replication. In our view, the intrinsic disorder-focused analysis of ZIKV proteins could be important for the development of new disorder-based drugs.

  16. Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology.

    Science.gov (United States)

    Munday, Diane C; Howell, Gareth; Barr, John N; Hiscox, Julian A

    2015-03-01

    The aim of this study was to quantitatively characterise the mitochondrial proteome of airway epithelial cells infected with human respiratory syncytial virus (HRSV), a major cause of paediatric illness. Quantitative proteomics, underpinned by stable isotope labelling with amino acids in cell culture, coupled to LC-MS/MS, was applied to mitochondrial fractions prepared from HRSV-infected and mock-infected cells 12 and 24 h post-infection. Datasets were analysed using ingenuity pathway analysis, and the results were validated and characterised using bioimaging, targeted inhibition and gene depletion. The data quantitatively indicated that antiviral signalling proteins converged on mitochondria during HRSV infection. The mitochondrial receptor protein Tom70 was found to act in an antiviral manner, while its chaperone, Hsp90, was confirmed to be a positive viral factor. Proteins associated with different organelles were also co-enriched in the mitochondrial fractions from HRSV-infected cells, suggesting that alterations in organelle dynamics and membrane associations occur during virus infection. Protein and pathway-specific alterations occur to the mitochondrial proteome in a spatial and temporal manner during HRSV infection, suggesting that this organelle may have altered functions. These could be targeted as part of potential therapeutic strategies to disrupt virus biology. © 2014 Royal Pharmaceutical Society.

  17. A Temporal Proteomic Map of Epstein-Barr Virus Lytic Replication in B Cells

    Directory of Open Access Journals (Sweden)

    Ina Ersing

    2017-05-01

    Full Text Available Epstein-Barr virus (EBV replication contributes to multiple human diseases, including infectious mononucleosis, nasopharyngeal carcinoma, B cell lymphomas, and oral hairy leukoplakia. We performed systematic quantitative analyses of temporal changes in host and EBV proteins during lytic replication to gain insights into virus-host interactions, using conditional Burkitt lymphoma models of type I and II EBV infection. We quantified profiles of >8,000 cellular and 69 EBV proteins, including >500 plasma membrane proteins, providing temporal views of the lytic B cell proteome and EBV virome. Our approach revealed EBV-induced remodeling of cell cycle, innate and adaptive immune pathways, including upregulation of the complement cascade and proteasomal degradation of the B cell receptor complex, conserved between EBV types I and II. Cross-comparison with proteomic analyses of human cytomegalovirus infection and of a Kaposi-sarcoma-associated herpesvirus immunoevasin identified host factors targeted by multiple herpesviruses. Our results provide an important resource for studies of EBV replication.

  18. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus.

    NARCIS (Netherlands)

    K.J. Stittelaar (Koert); G. van Amerongen (Geert); I. Kondova (Ivanela); R.F. van Lavieren (Rob); F.H. Pistoor (Frank); H.G.M. Niesters (Bert); G.J.J. van Doornum (Gerard); B.A.M. van der Zeijst (Ben); L. Mateo (Luis); P.J. Chaplin (Paul); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2005-01-01

    textabstractThe use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naive and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replication-deficient strain of VV, has been proven to be safe in humans and

  19. Alteration of protein levels during influenza virus H1N1 infection in host cells: a proteomic survey of host and virus reveals differential dynamics.

    Directory of Open Access Journals (Sweden)

    Susann Kummer

    Full Text Available We studied the dynamics of the proteome of influenza virus A/PR/8/34 (H1N1 infected Madin-Darby canine kidney cells up to 12 hours post infection by mass spectrometry based quantitative proteomics using the approach of stable isotope labeling by amino acids in cell culture (SILAC. We identified 1311 cell proteins and, apart from the proton channel M2, all major virus proteins. Based on their abundance two groups of virus proteins could be distinguished being in line with the function of the proteins in genesis and formation of new virions. Further, the data indicate a correlation between the amount of proteins synthesized and their previously determined copy number inside the viral particle. We employed bioinformatic approaches such as functional clustering, gene ontology, and pathway (KEGG enrichment tests to uncover co-regulated cellular protein sets, assigned the individual subsets to their biological function, and determined their interrelation within the progression of viral infection. For the first time we are able to describe dynamic changes of the cellular and, of note, the viral proteome in a time dependent manner simultaneously. Through cluster analysis, time dependent patterns of protein abundances revealed highly dynamic up- and/or down-regulation processes. Taken together our study provides strong evidence that virus infection has a major impact on the cell status at the protein level.

  20. Ectromelia Virus Infections of Mice as a Model to Support the Licensure of Anti-Orthopoxvirus Therapeutics

    Directory of Open Access Journals (Sweden)

    R. Mark Buller

    2010-09-01

    Full Text Available The absence of herd immunity to orthopoxviruses and the concern that variola or monkeypox viruses could be used for bioterroristic activities has stimulated the development of therapeutics and safer prophylactics. One major limitation in this process is the lack of accessible human orthopoxvirus infections for clinical efficacy trials; however, drug licensure can be based on orthopoxvirus animal challenge models as described in the “Animal Efficacy Rule”. One such challenge model uses ectromelia virus, an orthopoxvirus, whose natural host is the mouse and is the etiological agent of mousepox. The genetic similarity of ectromelia virus to variola and monkeypox viruses, the common features of the resulting disease, and the convenience of the mouse as a laboratory animal underscores its utility in the study of orthopoxvirus pathogenesis and in the development of therapeutics and prophylactics. In this review we outline how mousepox has been used as a model for smallpox. We also discuss mousepox in the context of mouse strain, route of infection, infectious dose, disease progression, and recovery from infection.

  1. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus.

    Science.gov (United States)

    Gao, Kun; Deng, Xiang-Yuan; Shang, Meng-Ke; Qin, Guang-Xing; Hou, Cheng-Xiang; Guo, Xi-Jie

    2017-01-30

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes them to death, which negatively affects the sericulture industry. In order to determine the midgut response at the protein levels to the virus infection, differential proteomes of the silkworm midgut responsive to BmCPV infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 193, 408, 189 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the midgut of BmCPV-infected and control larvae at 24, 48, 72h post infection (hpi) respectively. KEGG enrichment analysis showed that Oxidative phosphorylation, amyotrophic lateral sclerosis, Toll-like receptor signaling pathway, steroid hormone biosynthesis were the significant pathways (Q value≤0.05) both at 24 and 48hpi. qRT-PCR was used to further verify gene transcription of 30 DEPs from iTRAQ, showing that the regulations of 24 genes at the transcript level were consistent with those at the proteomic level. Moreover, the cluster analysis of the three time groups showed that there were seven co-regulated DEPs including BGIBMGA002620-PA, which was a putative p62/sequestosome-1 protein in silkworm. It was upregulated at both the mRNA level and the proteomic level and may play an important role in regulating the autophagy and apoptosis (especially apoptosis) induced by BmCPV infection. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection. The domesticated silkworm, Bombyx mori, is renowned for silk production as well as being a traditional lepidopteron model insect served as a subject for morphological, genetic, physiological, and developmental studies. Bombyx mori cytoplasmic polyhedrosis

  2. Pathogen-Host Associations and Predicted Range Shifts of Human Monkeypox in Response to Climate Change in Central Africa

    Science.gov (United States)

    Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.

    2013-01-01

    Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820

  3. Smallpox virus resequencing GeneChips can also rapidly ascertain species status for some zoonotic non-variola orthopoxviruses.

    Science.gov (United States)

    Sulaiman, Irshad M; Sammons, Scott A; Wohlhueter, Robert M

    2008-04-01

    We recently developed a set of seven resequencing GeneChips for the rapid sequencing of Variola virus strains in the WHO Repository of the Centers for Disease Control and Prevention. In this study, we attempted to hybridize these GeneChips with some known non-Variola orthopoxvirus isolates, including monkeypox, cowpox, and vaccinia viruses, for rapid detection.

  4. A Study of Waste Management within the COL Florence A. Blanchfield Army Community Hospital, Fort Campbell, Kentucky.

    Science.gov (United States)

    1981-08-01

    besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus Fowl plague virus Goat pox virus Hog...Varicella virus Vole rickettsia Yellow fever virus, 17D vaccine strain 69 Class 3 Alastrun, smallpox, monkeypox, and whitepox, when used in vitro Arbovirus...animal inoculation experiments Vesicular stomatitis virus Yellow fever virus - wild when used in vitro Class 4 Alastrun, smallpox, monkeypox, and

  5. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  6. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  7. Modulation of neuronal proteome profile in response to Japanese encephalitis virus infection.

    Science.gov (United States)

    Sengupta, Nabonita; Ghosh, Sourish; Vasaikar, Suhas V; Gomes, James; Basu, Anirban

    2014-01-01

    In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥ 1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.

  8. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis.

    Science.gov (United States)

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-02-22

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

  9. [Monkeypox: second human case observed in Ivory Coast (rural health sector of Daloa].

    Science.gov (United States)

    Merouze, F; Lesoin, J J

    1983-01-01

    A second case of human monkeypox (world fifty-forth case) has been observed in Ivory Coast (rural health sector of Daloa). A three years old girl presented a major pox-like eruption which evolved to recovery. The authors describe the eruption, the evolution of the sickness, and the scars observed at the fourth month after recovery. It has not been possible to prove neither animal-human nor interhuman contagion.

  10. Comparison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection.

    Science.gov (United States)

    Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie; Gruden, Kristina

    2017-07-06

    Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato ( Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.

  11. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV)

    Czech Academy of Sciences Publication Activity Database

    Černá, H.; Černý, M.; Habanová, H.; Šafářová, D.; Abushamsiya, K.; Navrátil, M.; Brzobohatý, Břetislav

    2017-01-01

    Roč. 153, FEB2017 (2017), s. 78-88 ISSN 1874-3919 Institutional support: RVO:68081707 Keywords : Proteome * Pea seed-borne mosaic virus PSbMV * Potyvirus Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.914, year: 2016

  12. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    Energy Technology Data Exchange (ETDEWEB)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen; Jacobs, Jon M.; Camp, David G.; Purvine, Samuel O.; Gritsenko, Marina A.; Li, Zhihua; Smith, Richard D.; Sugden, Bill; Moore, Patrick S.; Chang, Yuan

    2011-12-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  13. Improving HIV proteome annotation: new features of BioAfrica HIV Proteomics Resource.

    Science.gov (United States)

    Druce, Megan; Hulo, Chantal; Masson, Patrick; Sommer, Paula; Xenarios, Ioannis; Le Mercier, Philippe; De Oliveira, Tulio

    2016-01-01

    The Human Immunodeficiency Virus (HIV) is one of the pathogens that cause the greatest global concern, with approximately 35 million people currently infected with HIV. Extensive HIV research has been performed, generating a large amount of HIV and host genomic data. However, no effective vaccine that protects the host from HIV infection is available and HIV is still spreading at an alarming rate, despite effective antiretroviral (ARV) treatment. In order to develop effective therapies, we need to expand our knowledge of the interaction between HIV and host proteins. In contrast to virus proteins, which often rapidly evolve drug resistance mutations, the host proteins are essentially invariant within all humans. Thus, if we can identify the host proteins needed for virus replication, such as those involved in transporting viral proteins to the cell surface, we have a chance of interrupting viral replication. There is no proteome resource that summarizes this interaction, making research on this subject a difficult enterprise. In order to fill this gap in knowledge, we curated a resource presents detailed annotation on the interaction between the HIV proteome and host proteins. Our resource was produced in collaboration with ViralZone and used manual curation techniques developed by UniProtKB/Swiss-Prot. Our new website also used previous annotations of the BioAfrica HIV-1 Proteome Resource, which has been accessed by approximately 10 000 unique users a year since its inception in 2005. The novel features include a dedicated new page for each HIV protein, a graphic display of its function and a section on its interaction with host proteins. Our new webpages also add information on the genomic location of each HIV protein and the position of ARV drug resistance mutations. Our improved BioAfrica HIV-1 Proteome Resource fills a gap in the current knowledge of biocuration.Database URL:http://www.bioafrica.net/proteomics/HIVproteome.html. © The Author(s) 2016. Published

  14. Enhancing case definitions for surveillance of human monkeypox in the Democratic Republic of Congo.

    Directory of Open Access Journals (Sweden)

    Lynda Osadebe

    2017-09-01

    Full Text Available Human monkeypox (MPX occurs at appreciable rates in the Democratic Republic of Congo (DRC. Infection with varicella zoster virus (VZV has a similar presentation to that of MPX, and in areas where MPX is endemic these two illnesses are commonly mistaken. This study evaluated the diagnostic utility of two surveillance case definitions for MPX and specific clinical characteristics associated with laboratory-confirmed MPX cases.Data from a cohort of suspect MPX cases (identified by surveillance over the course of a 42 month period during 2009-2014 from DRC were used; real-time PCR diagnostic test results were used to establish MPX and VZV diagnoses. A total of 333 laboratory-confirmed MPX cases, 383 laboratory-confirmed VZV cases, and 36 cases that were determined to not be either MPX or VZV were included in the analyses. Significant (p<0.05 differences between laboratory-confirmed MPX and VZV cases were noted for several signs/symptoms including key rash characteristics. Both surveillance case definitions had high sensitivity and low specificities for individuals that had suspected MPX virus infections. Using 12 signs/symptoms with high sensitivity and/or specificity values, a receiver operator characteristic analysis showed that models for MPX cases that had the presence of 'fever before rash' plus at least 7 or 8 of the 12 signs/symptoms demonstrated a more balanced performance between sensitivity and specificity.Laboratory-confirmed MPX and VZV cases presented with many of the same signs and symptoms, and the analysis here emphasized the utility of including 12 specific signs/symptoms when investigating MPX cases. In order to document and detect endemic human MPX cases, a surveillance case definition with more specificity is needed for accurate case detection. In the absence of a more specific case definition, continued emphasis on confirmatory laboratory-based diagnostics is warranted.

  15. Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks

    Directory of Open Access Journals (Sweden)

    Isabel G. Fernández de Mera

    2017-07-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is an emerging tick-borne zoonotic disease caused by the CCHF virus (CCHFV. In this study, an experimental approach combining RT-PCR and proteomics was used for the identification and characterization of CCHFV in 106 ticks from 7 species that were collected from small ruminants in Greece. The methodological approach included an initial screening for CCHFV by RT-PCR followed by proteomics analysis of positive and control negative tick samples. This novel approach allowed the identification of CCHFV-positive ticks and provided additional information to corroborate the RT-PCR findings using a different approach. Two ticks, Dermacentor marginatus and Haemaphysalis parva collected from a goat and a sheep, respectively were positive for CCHFV. The sequences for CCHFV RNA segments S and L were characterized by RT-PCR and proteomics analysis of tick samples, respectively. These results showed the possibility of combining analyses at the RNA and protein levels using RT-PCR and proteomics for the characterization of CCHFV in ticks. The results supported that the CCHFV identified in ticks are genetic variants of the AP92 strain. Although the AP92-like strains probably do not represent a high risk of CCHF to the population, the circulation of genetically diverse CCHFV strains could potentially result in the appearance of novel viral genotypes with increased pathogenicity and fitness.

  16. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    Science.gov (United States)

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  17. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  18. Monkeypox

    Science.gov (United States)

    ... rodents being the major reservoir of the virus. Eating inadequately cooked meat of infected animals is a possible risk factor. Secondary, or human- ... endemic regions should focus on thoroughly cooking all animal products ... before eating. Gloves and other appropriate protective clothing should be ...

  19. The landscape of viral proteomics and its potential to impact human health

    Energy Technology Data Exchange (ETDEWEB)

    Oxford, Kristie L.; Wendler, Jason P.; McDermott, Jason E.; White III, Richard A.; Powell, Joshua D.; Jacobs, Jon M.; Adkins, Joshua N.; Waters, Katrina M.

    2016-05-06

    Translating the intimate discourse between viruses and their host cells during infection is a challenging but critical task for development of antiviral interventions and diagnostics. Viruses commandeer cellular processes at every step of their life cycle, altering expression of genes and proteins. Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis by identifying virus-induced changes in the protein repertoire of infected cells or extracellular fluids. Interpretation of proteomics results using knowledge of cellular pathways and networks leads to identification of proteins that influence a range of infection processes, thereby focusing efforts for clinical diagnoses and therapeutics development. Herein we discuss applications of global proteomic studies of viral infections with the goal of providing a basis for improved studies that will benefit community-wide data integration and interpretation.

  20. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).

    Science.gov (United States)

    Varela, Anna Lidia N; Komatsu, Setsuko; Wang, Xin; Silva, Rodolpho G G; Souza, Pedro Filho N; Lobo, Ana Karla M; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, Jose T A

    2017-06-23

    Cowpea severe mosaic virus (CPSMV) causes significant losses in cowpea (Vigna unguiculata) production. In this present study biochemical, physiological, and proteomic analysis were done to identify pathways and defense proteins that are altered during the incompatible interaction between the cowpea genotype BRS-Marataoã and CPSMV. The leaf protein extracts from mock- (MI) and CPSMV-inoculated plantlets (V) were evaluated at 2 and 6days post-inoculation (DPI). Data support the assumptions that increases in biochemical (high hydrogen peroxide, antioxidant enzymes, and secondary compounds) and physiological responses (high photosynthesis index and chlorophyll content), confirmed by label-free comparative proteomic approach, in which quantitative changes in proteasome proteins, proteins related to photosynthesis, redox homeostasis, regulation factors/RNA processing proteins were observed may be implicated in the resistance of BRS-Marataoã to CPSMV. This pioneering study provides information for the selection of specific pathways and proteins, altered in this incompatible relationship, which could be chosen as targets for detailed studies to advance our understanding of the molecular, physiological, and biochemistry basis of the resistance mechanism of cowpea and design approachs to engineer plants that are more productive. This is a pioneering study in which an incompatible relationship between a resistant cowpea and Cowpea severe mosaic virus (CPSMV) was conducted to comparatively evaluate proteomic profiles by Gel-free/label-free methodology and some physiological and biochemical parameters to shed light on how a resistant cowpea cultivar deals with the virus attack. Specific proteins and associated pathways were altered in the cowpea plants challenged with CPSMV and will contribute to our knowledge on the biological process tailored by cowpea in response to CPSMV. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Proteome analysis of liver cells expressing a full-length hepatitis C virus (HCV) replicon and biopsy specimens of posttransplantation liver from HCV-infected patients

    Czech Academy of Sciences Publication Activity Database

    Jacobs, J. M.; Diamond, D. L.; Chan, E. Y.; Gritsenko, M. A.; Qian, W.; Šťastná, Miroslava; Baas, T.; Camp II, D. G .H.; Carithers Jr., R. L.; Smith, R. D.; Katze, M. G.

    2005-01-01

    Roč. 79, č. 12 (2005), s. 7558-7569 ISSN 0022-538X Institutional research plan: CEZ:AV0Z40310501 Keywords : proteome analysis * hepatitis C Virus * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.178, year: 2005

  2. Antiviral activity of the EB peptide against zoonotic poxviruses

    Directory of Open Access Journals (Sweden)

    Altmann Sharon E

    2012-01-01

    Full Text Available Abstract Background The EB peptide is a 20-mer that was previously shown to have broad spectrum in vitro activity against several unrelated viruses, including highly pathogenic avian influenza, herpes simplex virus type I, and vaccinia, the prototypic orthopoxvirus. To expand on this work, we evaluated EB for in vitro activity against the zoonotic orthopoxviruses cowpox and monkeypox and for in vivo activity in mice against vaccinia and cowpox. Findings In yield reduction assays, EB had an EC50 of 26.7 μM against cowpox and 4.4 μM against monkeypox. The EC50 for plaque reduction was 26.3 μM against cowpox and 48.6 μM against monkeypox. A scrambled peptide had no inhibitory activity against either virus. EB inhibited cowpox in vitro by disrupting virus entry, as evidenced by a reduction of the release of virus cores into the cytoplasm. Monkeypox was also inhibited in vitro by EB, but at the attachment stage of infection. EB showed protective activity in mice infected intranasally with vaccinia when co-administered with the virus, but had no effect when administered prophylactically one day prior to infection or therapeutically one day post-infection. EB had no in vivo activity against cowpox in mice. Conclusions While EB did demonstrate some in vivo efficacy against vaccinia in mice, the limited conditions under which it was effective against vaccinia and lack of activity against cowpox suggest EB may be more useful for studying orthopoxvirus entry and attachment in vitro than as a therapeutic against orthopoxviruses in vivo.

  3. Elimination of A-type inclusion formation enhances cowpox virus replication in mice: implications for orthopoxvirus evolution.

    Science.gov (United States)

    Kastenmayer, Robin J; Maruri-Avidal, Liliana; Americo, Jeffrey L; Earl, Patricia L; Weisberg, Andrea S; Moss, Bernard

    2014-03-01

    Some orthopoxviruses including cowpox virus embed virus particles in dense bodies, comprised of the A-type inclusion (ATI) protein, which may provide long-term environmental protection. This strategy could be beneficial if the host population is sparse or spread is inefficient or indirect. However, the formation of ATI may be neutral or disadvantageous for orthopoxviruses that rely on direct respiratory spread. Disrupted ATI open reading frames in orthopoxviruses such as variola virus, the agent of smallpox, and monkeypox virus suggests that loss of this feature provided positive selection. To test this hypothesis, we constructed cowpox virus mutants with deletion of the ATI gene or another gene required for embedding virions. The ATI deletion mutant caused greater weight loss and higher replication in the respiratory tract than control viruses, supporting our hypothesis. Deletion of the gene for embedding virions had a lesser effect, possibly due to known additional functions of the encoded protein. Published by Elsevier Inc.

  4. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    Science.gov (United States)

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    Directory of Open Access Journals (Sweden)

    Olga Pechanova

    2015-11-01

    Full Text Available Maize (Zea mays L. is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  6. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    Science.gov (United States)

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  7. Proteomic and phytohormone analysis of the response of maize (Zea mays L. seedlings to sugarcane mosaic virus.

    Directory of Open Access Journals (Sweden)

    Liuji Wu

    Full Text Available BACKGROUND: Sugarcane mosaic virus (SCMV is an important virus pathogen in crop production, causing serious losses in grain and forage yields in susceptible cultivars. Control strategies have been developed, but only marginal successes have been achieved. For the efficient control of this virus, a better understanding of its interactions and associated resistance mechanisms at the molecular level is required. METHODOLOGY/PRINCIPAL FINDINGS: The responses of resistant and susceptible genotypes of maize to SCMV and the molecular basis of the resistance were studied using a proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS analysis. Ninety-six protein spots showed statistically significant differences in intensity after SCMV inoculation. The classification of differentially expressed proteins showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, and photosynthesis. Most of the proteins identified were located in chloroplasts, chloroplast membranes, and the cytoplasm. Analysis of changes in phytohormone levels after virus inoculation suggested that salicylic acid, abscisic acid, jasmonic acid, and azelaic acid may played important roles in the maize response to SCMV infection. CONCLUSIONS/SIGNIFICANCE: Among these identified proteins, 19 have not been identified previously as virus-responsive proteins, and seven were new and did not have assigned functions. These proteins may be candidate proteins for future investigation, and they may present new biological functions and play important roles in plant-virus interactions. The behavioural patterns of the identified proteins suggest the existence of defense mechanisms operating during the early stages of infection that differed in two genotypes. In addition, there are overlapping and specific phytohormone

  8. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    Science.gov (United States)

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  10. Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus.

    Directory of Open Access Journals (Sweden)

    Piotr Wojtek Dabrowski

    Full Text Available Zoonotic infections caused by several orthopoxviruses (OPV like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages.

  11. Quantitative proteomic profiling for clarification of the crucial roles of lysosomes in microbial infections.

    Science.gov (United States)

    Xu, Benhong; Gao, Yanpan; Zhan, Shaohua; Ge, Wei

    2017-07-01

    Lysosomes play vital roles in both innate and adaptive immunity. It is widely accepted that lysosomes do not function exclusively as a digestive organelle. It is also involved in the process of immune cells against pathogens. However, the changes in the lysosomal proteome caused by infection with various microbes are still largely unknown, and our understanding of the proteome of the purified lysosome is another obstacle that needs to be resolved. Here, we performed a proteomic study on lysosomes enriched from THP1 cells after infection with Listeria monocytogenes (L.m), Herpes Simplex Virus 1 (HSV-1) and Vesicular Stomatitis Virus (VSV). In combination with the gene ontology (GO) analysis, we identified 284 lysosomal-related proteins from a total of 4560 proteins. We also constructed the protein-protein interaction networks for the differentially expressed proteins and revealed the core lysosomal proteins, including SRC in the L. m treated group, SRC, GLB1, HEXA and HEXB in the HSV-1 treated group and GLB1, CTSA, CTSB, HEXA and HEXB in the VSV treated group, which are involved in responding to diverse microbial infections. This study not only reveals variable lysosome responses depending on the bacterial or virus infection, but also provides the evidence based on which we propose a novel approach to proteome research for investigation of the function of the enriched organelles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol.

    Science.gov (United States)

    Luteijn, Rutger David; Drexler, Ingo; Smith, Geoffrey L; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2018-04-20

    Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.

  13. Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (Vigna unguiculata [L.] Walp.).

    Science.gov (United States)

    Paiva, Ana L S; Oliveira, Jose T A; de Souza, Gustavo A; Vasconcelos, Ilka M

    2016-12-02

    Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.

  14. A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.

    Science.gov (United States)

    Salunkhe, Vishal; De Cuyper, Iris M; Papadopoulos, Petros; van der Meer, Pieter F; Daal, Brunette B; Villa-Fajardo, María; de Korte, Dirk; van den Berg, Timo K; Gutiérrez, Laura

    2018-03-19

    Platelet concentrates (PCs) represent a blood transfusion product with a major concern for safety as their storage temperature (20-24°C) allows bacterial growth, and their maximum storage time period (less than a week) precludes complete microbiological testing. Pathogen inactivation technologies (PITs) provide an additional layer of safety to the blood transfusion products from known and unknown pathogens such as bacteria, viruses, and parasites. In this context, PITs, such as Mirasol Pathogen Reduction Technology (PRT), have been developed and are implemented in many countries. However, several studies have shown in vitro that Mirasol PRT induces a certain level of platelet shape change, hyperactivation, basal degranulation, and increased oxidative damage during storage. It has been suggested that Mirasol PRT might accelerate what has been described as the platelet storage lesion (PSL), but supportive molecular signatures have not been obtained. We aimed at dissecting the influence of both variables, that is, Mirasol PRT and storage time, at the proteome level. We present comprehensive proteomics data analysis of Control PCs and PCs treated with Mirasol PRT at storage days 1, 2, 6, and 8. Our workflow was set to perform proteomics analysis using a gel-free and label-free quantification (LFQ) approach. Semi-quantification was based on LFQ signal intensities of identified proteins using MaxQuant/Perseus software platform. Data are available via ProteomeXchange with identifier PXD008119. We identified marginal differences between Mirasol PRT and Control PCs during storage. However, those significant changes at the proteome level were specifically related to the functional aspects previously described to affect platelets upon Mirasol PRT. In addition, the effect of Mirasol PRT on the platelet proteome appeared not to be exclusively due to an accelerated or enhanced PSL. In summary, semi-quantitative proteomics allows to discern between proteome changes due to

  15. Viruses are a dominant driver of protein adaptation in mammals.

    Science.gov (United States)

    Enard, David; Cai, Le; Gwennap, Carina; Petrov, Dmitri A

    2016-05-17

    Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes.

  16. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses

    Directory of Open Access Journals (Sweden)

    Magdalena Molero-Abraham

    2015-01-01

    developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.

  17. Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3.

    Science.gov (United States)

    Vancsok, Catherine; Peñaranda, M Michelle D; Raj, V Stalin; Leroy, Baptiste; Jazowiecka-Rakus, Joanna; Boutier, Maxime; Gao, Yuan; Wilkie, Gavin S; Suárez, Nicolás M; Wattiez, Ruddy; Gillet, Laurent; Davison, Andrew J; Vanderplasschen, Alain F C

    2017-11-01

    Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (open reading frame 32 [ORF32], ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are nonessential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the nonessential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro , and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25-deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs. IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the

  18. Evaluation of Orally Delivered ST-246 as Postexposure Prophylactic and Antiviral Therapeutic in an Aerosolized Rabbitpox Rabbit Model

    National Research Council Canada - National Science Library

    Nalca, Aysegul; Hatkin, Josh M; Garza, Nicole L; Nichols, Donald K; Norris, Sarah W; Hruby, Dennis E; Jordan, Robert

    2008-01-01

    Orthopoxviruses, such as variola and monkeypox viruses, can cause severe disease in humans when delivered by the aerosol route, and thus represent significant threats to both military and civilian populations...

  19. Proteomic Profiling of Sugar Beet (Beta vulgaris Leaves during Rhizomania Compatible Interactions

    Directory of Open Access Journals (Sweden)

    Kimberly M. Webb

    2014-04-01

    Full Text Available Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV, severely impacts sugar beet (Beta vulgaris production throughout the world, and is widely prevalent in most production regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with BNYVV, but as resistance breaking strains become more prevalent, effective disease control strategies will require the application of novel methods based on better understanding of disease susceptibility and symptom development. Herein, proteomic profiling was conducted on susceptible sugar beet, infected with two strains of BNYVV, to clarify the types of proteins prevalent during compatible virus-host plant interactions. Total protein was extracted from sugar beet leaf tissue infected with BNYVV, quantified, and analyzed by mass spectrometry. A total of 203 proteins were confidently identified, with a predominance of proteins associated with photosynthesis and energy, metabolism, and response to stimulus. Many proteins identified in this study are typically associated with systemic acquired resistance and general plant defense responses. These results expand on relatively limited proteomic data available for sugar beet and provide the ground work for additional studies focused on understanding the interaction of BNYVV with sugar beet.

  20. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.

    Science.gov (United States)

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-06-15

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate

  1. Preexisting CD4+ T-cell immunity in human population to avian influenza H7N9 virus: whole proteome-wide immunoinformatics analyses.

    Directory of Open Access Journals (Sweden)

    Venkata R Duvvuri

    Full Text Available In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2. The CD4+ T-cell epitopes that are commonly conserved (∼ 556 were further screened against the Immune Epitope Database (IEDB to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556 epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥ 90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62% when compared with other ethnicities (57.77% to 94.84%. In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs.

  2. Recent 5-year Findings and Technological Advances in the Proteomic Study of HIV-associated Disorders.

    Science.gov (United States)

    Zhang, Lijun; Jia, Xiaofang; Jin, Jun-O; Lu, Hongzhou; Tan, Zhimi

    2017-04-01

    Human immunodeficiency virus-1 (HIV-1) mainly relies on host factors to complete its life cycle. Hence, it is very important to identify HIV-regulated host proteins. Proteomics is an excellent technique for this purpose because of its high throughput and sensitivity. In this review, we summarized current technological advances in proteomics, including general isobaric tags for relative and absolute quantitation (iTRAQ) and stable isotope labeling by amino acids in cell culture (SILAC), as well as subcellular proteomics and investigation of posttranslational modifications. Furthermore, we reviewed the applications of proteomics in the discovery of HIV-related diseases and HIV infection mechanisms. Proteins identified by proteomic studies might offer new avenues for the diagnosis and treatment of HIV infection and the related diseases. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2016-01-01

    to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide...... distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members...

  4. Infectious Disease Proteome Biomarkers: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Charles L.

    2011-12-31

    Research for the DOE Infectious Disease Proteome Biomarkers focused on Rift Valley fever virus (RVFV) and Venezuelan Equine Encephalitis Virus (VEEV). RVFV and VEEV are Category A and B pathogens respectively. Among the priority threats, RVFV and VEEV rank high in their potential for being weaponized and introduced to the United States, spreading quickly, and having a large health and economic impact. In addition, they both have live attenuated vaccine, which allows work to be performed at BSL-2. While the molecular biology of RVFV and VEEV are increasingly well-characterized, little is known about its host-pathogen interactions. Our research is aimed at determining critical alterations in host signaling pathways to identify therapeutics targeted against the host.

  5. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection.

    Science.gov (United States)

    Tan, Wei-Lian; Lee, Yean Kee; Ho, Yen Fong; Yusof, Rohana; Abdul Rahman, Noorsaadah; Karsani, Saiful Anuar

    2018-01-01

    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda ) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  6. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Lian Tan

    2018-01-01

    Full Text Available Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  7. The immunology of smallpox vaccines

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2010-01-01

    In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427

  8. Real-Time PCR Assay To Detect Smallpox Virus

    Science.gov (United States)

    Sofi Ibrahim, M.; Kulesh, David A.; Saleh, Sharron S.; Damon, Inger K.; Esposito, Joseph J.; Schmaljohn, Alan L.; Jahrling, Peter B.

    2003-01-01

    We developed a highly sensitive and specific assay for the rapid detection of smallpox virus DNA on both the Smart Cycler and LightCycler platforms. The assay is based on TaqMan chemistry with the orthopoxvirus hemagglutinin gene used as the target sequence. With genomic DNA purified from variola virus Bangladesh 1975, the limit of detection was estimated to be approximately 25 copies on both machines. The assay was evaluated in a blinded study with 322 coded samples that included genomic DNA from 48 different isolates of variola virus; 25 different strains and isolates of camelpox, cowpox, ectromelia, gerbilpox, herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia, and varicella-zoster viruses; and two rickettsial species at concentrations mostly ranging from 100 fg/μl to 1 ng/μl. Contained within those 322 samples were variola virus DNA, obtained from purified viral preparations, at concentrations of 1 fg/μl to 1 ng/μl. On the Smart Cycler platform, 2 samples with false-positive results were detected among the 116 samples not containing variola virus tested; i.e., the overall specificity of the assay was 98.3%. On the LightCycler platform, five samples with false-positive results were detected (overall specificity, 95.7%). Of the 206 samples that contained variola virus DNA ranging in concentrations from 100 fg/μl to 1 ng/μl, 8 samples were considered negative on the Smart Cycler platform and 1 sample was considered negative on the LightCycler platform. Thus, the clinical sensitivities were 96.1% for the Smart Cycler instrument and 99.5% for the LightCycler instrument. The vast majority of these samples were derived from virus-infected cell cultures and variola virus-infected tissues; thus, the DNA material contained both viral DNA and cellular DNA. Of the 43 samples that contained purified variola virus DNA ranging in concentration from 1 fg/μl to 1 ng/μl, the assay correctly detected the virus in all 43 samples on both the Smart Cycler

  9. Recent 5-year Findings and Technological Advances in the Proteomic Study of HIV-associated Disorders

    OpenAIRE

    Zhang, Lijun; Jia, Xiaofang; Jin, Jun-O; Lu, Hongzhou; Tan, Zhimi

    2017-01-01

    Human immunodeficiency virus-1 (HIV-1) mainly relies on host factors to complete its life cycle. Hence, it is very important to identify HIV-regulated host proteins. Proteomics is an excellent technique for this purpose because of its high throughput and sensitivity. In this review, we summarized current technological advances in proteomics, including general isobaric tags for relative and absolute quantitation (iTRAQ) and stable isotope labeling by amino acids in cell culture (SILAC), as wel...

  10. In Vitro Characterization of a Nineteenth-Century Therapy for Smallpox

    OpenAIRE

    Arndt, William; Mitnik, Chandra; Denzler, Karen L.; White, Stacy; Waters, Robert; Jacobs, Bertram L.; Rochon, Yvan; Olson, Victoria A.; Damon, Inger K.; Langland, Jeffrey O.

    2012-01-01

    In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarra...

  11. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  12. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Science.gov (United States)

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  13. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    Science.gov (United States)

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  14. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  15. Label-Free Quantitative Proteomic Analysis of Chitosan Oligosaccharide-Treated Rice Infected with Southern Rice Black-Streaked Dwarf Virus.

    Science.gov (United States)

    Yang, Anming; Yu, Lu; Chen, Zhuo; Zhang, Shanxue; Shi, Jing; Zhao, Xiaozhen; Yang, Yuanyou; Hu, Deyu; Song, Baoan

    2017-05-18

    Southern rice black-streaked dwarf virus (SRBSDV) has spread from thesouth of China to the north of Vietnam in the past few years and severelyinfluenced rice production. Its long incubation period and early symptoms are not evident; thus, controlling it is difficult. Chitosan oligosaccharide (COS) is a green plant immunomodulator. Early studies showed that preventing and controlling SRBSDV have a certain effect and reduce disease infection rate, but its underlying controlling and preventing mechanism is unclear. In this study, label-free proteomics was used to analyze differentially expressed proteins in rice after COS treatment. The results showed that COS can up-regulate the plant defense-related proteins and down-regulate the protein expression levels of SRBSDV. Meanwhile, quantitative real-time PCR test results showed that COS can improve defense gene expression in rice. Moreover, COS can enhance the defense enzymatic activities of peroxidase, superoxide dismutase and catalase through mitogen-activated protein kinase signaling cascade pathway, and enhance the rice disease resistance.

  16. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses.

    Science.gov (United States)

    Gao, Yanpan; Chen, Yanyu; Zhan, Shaohua; Zhang, Wenhao; Xiong, Feng; Ge, Wei

    2017-01-31

    Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses.

  17. Clinical proteomics

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Frederiksen, Hanne; Johannsen, Trine Holm

    2018-01-01

    Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS)-platforms...... standards and calibrants. The present challenge is to examine if targeted proteomics of IGF-I can truly measure up to the routine performance that must be expected from a clinical testing platform.......Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS......)-platforms already implemented in many clinical laboratories for routine quantitation of small molecules (i.e. uHPLC coupled to triple-quadrupole MS). Progress in targeted proteomics of circulating insulin-like growth factor 1 (IGF-I) have provided valuable insights about tryptic peptides, transitions, internal...

  18. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.

  19. A novel highly reproducible and lethal nonhuman primate model for orthopox virus infection.

    Directory of Open Access Journals (Sweden)

    Marit Kramski

    Full Text Available The intentional re-introduction of Variola virus (VARV, the agent of smallpox, into the human population is of great concern due its bio-terroristic potential. Moreover, zoonotic infections with Cowpox (CPXV and Monkeypox virus (MPXV cause severe diseases in humans. Smallpox vaccines presently available can have severe adverse effects that are no longer acceptable. The efficacy and safety of new vaccines and antiviral drugs for use in humans can only be demonstrated in animal models. The existing nonhuman primate models, using VARV and MPXV, need very high viral doses that have to be applied intravenously or intratracheally to induce a lethal infection in macaques. To overcome these drawbacks, the infectivity and pathogenicity of a particular CPXV was evaluated in the common marmoset (Callithrix jacchus.A CPXV named calpox virus was isolated from a lethal orthopox virus (OPV outbreak in New World monkeys. We demonstrated that marmosets infected with calpox virus, not only via the intravenous but also the intranasal route, reproducibly develop symptoms resembling smallpox in humans. Infected animals died within 1-3 days after onset of symptoms, even when very low infectious viral doses of 5x10(2 pfu were applied intranasally. Infectious virus was demonstrated in blood, saliva and all organs analyzed.We present the first characterization of a new OPV infection model inducing a disease in common marmosets comparable to smallpox in humans. Intranasal virus inoculation mimicking the natural route of smallpox infection led to reproducible infection. In vivo titration resulted in an MID(50 (minimal monkey infectious dose 50% of 8.3x10(2 pfu of calpox virus which is approximately 10,000-fold lower than MPXV and VARV doses applied in the macaque models. Therefore, the calpox virus/marmoset model is a suitable nonhuman primate model for the validation of vaccines and antiviral drugs. Furthermore, this model can help study mechanisms of OPV pathogenesis.

  20. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    Directory of Open Access Journals (Sweden)

    Tue Bjerg Bennike

    2015-12-01

    In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935.

  1. Recent advances in molecular biology of parasitic viruses.

    Science.gov (United States)

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses.

  2. ProteomicsDB.

    Science.gov (United States)

    Schmidt, Tobias; Samaras, Patroklos; Frejno, Martin; Gessulat, Siegfried; Barnert, Maximilian; Kienegger, Harald; Krcmar, Helmut; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Kuster, Bernhard; Wilhelm, Mathias

    2018-01-04

    ProteomicsDB (https://www.ProteomicsDB.org) is a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. ProteomicsDB was first released in 2014 to enable the interactive exploration of the first draft of the human proteome. To date, it contains quantitative data from 78 projects totalling over 19k LC-MS/MS experiments. A standardized analysis pipeline enables comparisons between multiple datasets to facilitate the exploration of protein expression across hundreds of tissues, body fluids and cell lines. We recently extended the data model to enable the storage and integrated visualization of other quantitative omics data. This includes transcriptomics data from e.g. NCBI GEO, protein-protein interaction information from STRING, functional annotations from KEGG, drug-sensitivity/selectivity data from several public sources and reference mass spectra from the ProteomeTools project. The extended functionality transforms ProteomicsDB into a multi-purpose resource connecting quantification and meta-data for each protein. The rich user interface helps researchers to navigate all data sources in either a protein-centric or multi-protein-centric manner. Several options are available to download data manually, while our application programming interface enables accessing quantitative data systematically. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. A Strategy for O-Glycoproteomics of Enveloped Viruses-the O-Glycoproteome of Herpes Simplex Virus Type 1

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2015-01-01

    present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B...

  4. Building ProteomeTools based on a complete synthetic human proteome

    Science.gov (United States)

    Zolg, Daniel P.; Wilhelm, Mathias; Schnatbaum, Karsten; Zerweck, Johannes; Knaute, Tobias; Delanghe, Bernard; Bailey, Derek J.; Gessulat, Siegfried; Ehrlich, Hans-Christian; Weininger, Maximilian; Yu, Peng; Schlegl, Judith; Kramer, Karl; Schmidt, Tobias; Kusebauch, Ulrike; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Wenschuh, Holger; Moehring, Thomas; Aiche, Stephan; Huhmer, Andreas; Reimer, Ulf; Kuster, Bernhard

    2018-01-01

    The ProteomeTools project builds molecular and digital tools from the human proteome to facilitate biomedical and life science research. Here, we report the generation and multimodal LC-MS/MS analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products and exemplify the utility of this data. The resource will be extended to >1 million peptides and all data will be shared with the community via ProteomicsDB and proteomeXchange. PMID:28135259

  5. Coupling Genetics and Proteomics To Identify Aphid Proteins Associated with Vector-Specific Transmission of Polerovirus (Luteoviridae)▿

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668

  6. Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome.

    Science.gov (United States)

    Ghodasara, P; Sadowski, P; Satake, N; Kopp, S; Mills, P C

    2017-12-01

    Over the last two decades, technological advancements in the field of proteomics have advanced our understanding of the complex biological systems of living organisms. Techniques based on mass spectrometry (MS) have emerged as powerful tools to contextualise existing genomic information and to create quantitative protein profiles from plasma, tissues or cell lines of various species. Proteomic approaches have been used increasingly in veterinary science to investigate biological processes responsible for growth, reproduction and pathological events. However, the adoption of proteomic approaches by veterinary investigators lags behind that of researchers in the human medical field. Furthermore, in contrast to human proteomics studies, interpretation of veterinary proteomic data is difficult due to the limited protein databases available for many animal species. This review article examines the current use of advanced proteomics techniques for evaluation of animal health and welfare and covers the current status of clinical veterinary proteomics research, including successful protein identification and data interpretation studies. It includes a description of an emerging tool, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS), available on selected mass spectrometry instruments. This newly developed data acquisition technique combines advantages of discovery and targeted proteomics approaches, and thus has the potential to advance the veterinary proteomics field by enhancing identification and reproducibility of proteomics data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identification and nucleotide sequence of the thymidine kinase gene of Shope fibroma virus

    International Nuclear Information System (INIS)

    Upton, C.; McFadden, G.

    1986-01-01

    The thymidine kinase (TK) gene of Shope fibroma virus (SFV), a tumorigenic leporipoxvirus, was localized within the viral genome with degenerate oligonucleotide probes. These probes were constructed to two regions of high sequence conservation between the vaccinia virus TK gene and those of several known eucaryotic cellular TK genes, including human, mouse, hamster, and chicken TK genes. The oligonucleotide probes initially localized the SFV TK gene 50 kilobases (kb) from the right terminus of the 160-kb SFV genome within the 9.5-kb BamHI-HindIII fragment E. Fine-mapping analysis indicated that the TK Gene was within a 1.2-kb AvaI-HaeIII fragment, and DNA sequencing of this region revealed an open reading frame capable of encoding a polypeptide of 187 amino acids possessing considerable homology to the TK genes of the vaccinia, variola, and monkeypox orthopoxviruses and also to a variety of cellular TK genes. Homology matrix analysis and homology scores suggest that the SFV TK gene has diverged significantly from its counterpart members in the orthopoxvirus genus. Nevertheless, the presence of conserved upstream open reading frames on the 5' side of all of the poxvirus TK genes indicates a similarity of functional organization between the orthopoxviruses and leporipoxviruses. These data suggest a common ancestral origin for at least some of the unique internal regions of the leporipoxviruses and orthopoxviruses as exemplified by SFV and vaccinia virus, respectively

  8. Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana.

    Science.gov (United States)

    Pineda, M; Sajnani, C; Barón, M

    2010-01-01

    We have analyzed the chloroplast proteome of Nicotiana benthamiana using two-dimensional gel electrophoresis and mass spectrometry followed by a database search. In order to improve the resolution of the two-dimensional electrophoresis gels, we have made separate maps for the low and the high pH range. At least 200 spots were detected. We identified 72 polypeptides, some being isoforms of different multiprotein families. In addition, changes in this chloroplast proteome induced by the infection with the Spanish strain of the Pepper mild mottle virus were investigated. Viral infection induced the down-regulation of several chloroplastidic proteins involved in both the photosynthetic electron-transport chain and the Benson-Calvin cycle.

  9. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein.

    Science.gov (United States)

    Khamina, Kseniya; Lercher, Alexander; Caldera, Michael; Schliehe, Christopher; Vilagos, Bojan; Sahin, Mehmet; Kosack, Lindsay; Bhattacharya, Anannya; Májek, Peter; Stukalov, Alexey; Sacco, Roberto; James, Leo C; Pinschewer, Daniel D; Bennett, Keiryn L; Menche, Jörg; Bergthaler, Andreas

    2017-12-01

    RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.

  10. Opportunities in proteomics to understand hepatitis C and HIV coinfection.

    Science.gov (United States)

    Meissner, Eric G; Suffredini, Anthony F; Kottilil, Shyamasundaran

    2012-08-01

    Antiretroviral therapy has significantly reduced morbidity and mortality associated with HIV infection. However, coinfection with HCV results in a more complicated disease course for both infections. HIV infection dramatically impacts the natural history of chronic liver disease due to HCV. Coinfected patients not on antiretroviral therapy for HIV develop liver fibrosis and cirrhosis at a faster rate, clear acute infection less commonly and respond to IFN-α-based therapy for chronic infection less often than HCV-monoinfected patients. The interaction between these two viruses, the immune system and the fibrotic machinery of the liver remains incompletely understood. In this review, we discuss recent advances in proteomics as applied to HCV and HIV and highlight issues in coinfection that are amenable to further discovery through proteomic approaches. We focus on clinical predictors of liver fibrosis and treatment outcome as these have the greatest potential clinical applicability.

  11. Proteomics dataset

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2017-01-01

    The datasets presented in this article are related to the research articles entitled “Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies” (Bennike et al., 2015 [1]), and “Proteome Analysis of Rheumatoid Arthritis Gut Mucosa” (Bennike et al., 2017 [2])...... been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples....

  12. Structural Proteomics of Herpesviruses

    Science.gov (United States)

    Leroy, Baptiste; Gillet, Laurent; Vanderplasschen, Alain; Wattiez, Ruddy

    2016-01-01

    Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections. PMID:26907323

  13. Proteomics research in India: an update.

    Science.gov (United States)

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-08

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Understanding the biological mechanisms of Zika virus disease ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will use advanced biomolecular, genomics and proteomics techniques to explain the molecular mechanisms by which the Zika virus infects and persists in the human body, how it affects the human reproductive and central nervous system, and how the risk of fetal abnormalities can be better predicted in infected ...

  15. The core proteome and pan proteome of Salmonella Paratyphi A epidemic strains.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Comparative proteomics of the multiple strains within the same species can reveal the genetic variation and relationships among strains without the need to assess the genomic data. Similar to comparative genomics, core proteome and pan proteome can also be obtained within multiple strains under the same culture conditions. In this study we present the core proteome and pan proteome of four epidemic Salmonella Paratyphi A strains cultured under laboratory culture conditions. The proteomic information was obtained using a Two-dimensional gel electrophoresis (2-DE technique. The expression profiles of these strains were conservative, similar to the monomorphic genome of S. Paratyphi A. Few strain-specific proteins were found in these strains. Interestingly, non-core proteins were found in similar categories as core proteins. However, significant fluctuations in the abundance of some core proteins were also observed, suggesting that there is elaborate regulation of core proteins in the different strains even when they are cultured in the same environment. Therefore, core proteome and pan proteome analysis of the multiple strains can demonstrate the core pathways of metabolism of the species under specific culture conditions, and further the specific responses and adaptations of the strains to the growth environment.

  16. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens.

    Science.gov (United States)

    Peng, Xuan-Xian

    2013-01-01

    China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Mining the human urine proteome for monitoring renal transplant injury

    Energy Technology Data Exchange (ETDEWEB)

    Sigdel, Tara K.; Gao, Yuqian; He, Jintang; Wang, Anyou; Nicora, Carrie D.; Fillmore, Thomas L.; Shi, Tujin; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Qian, Wei-Jun; Salvatierra, Oscar; Camp, David G.; Sarwal, Minnie M.

    2016-06-01

    The human urinary proteome reflects systemic and inherent renal injury perturbations and can be analyzed to harness specific biomarkers for different kidney transplant injury states. 396 unique urine samples were collected contemporaneously with an allograft biopsy from 396 unique kidney transplant recipients. Centralized, blinded histology on the graft was used to classify matched urine samples into categories of acute rejection (AR), chronic allograft nephropathy (CAN), BK virus nephritis (BKVN), and stable graft (STA). Liquid chromatography–mass spectrometry (LC-MS) based proteomics using iTRAQ based discovery (n=108) and global label-free LC-MS analyses of individual samples (n=137) for quantitative proteome assessment were used in the discovery step. Selected reaction monitoring (SRM) was applied to identify and validate minimal urine protein/peptide biomarkers to accurately segregate organ injury causation and pathology on unique urine samples (n=151). A total of 958 proteins were initially quantified by iTRAQ, 87% of which were also identified among 1574 urine proteins detected in LC-MS validation. 103 urine proteins were significantly (p<0.05) perturbed in injury and enriched for humoral immunity, complement activation, and lymphocyte trafficking. A set of 131 peptides corresponding to 78 proteins were assessed by SRM for their significance in an independent sample cohort. A minimal set of 35 peptides mapping to 33 proteins, were modeled to segregate different injury groups (AUC =93% for AR, 99% for CAN, 83% for BKVN). Urinary proteome discovery and targeted validation identified urine protein fingerprints for non-invasive differentiation of kidney transplant injuries, thus opening the door for personalized immune risk assessment and therapy.

  18. [Proteomics and transfusion medicine].

    Science.gov (United States)

    Lion, N; Prudent, M; Crettaz, D; Tissot, J-D

    2011-04-01

    The term "proteomics" covers tools and techniques that are used to analyze and characterize complex mixtures of proteins from various biological samples. In this short review, a typical proteomic approach, related to the study of particular and illustrative situation related to transfusion medicine is reported. This "case report" will allow the reader to be familiar with a practical proteomic approach of a real situation, and will permit to describe the tools that are usually used in proteomic labs, and, in a second part, to present various proteomic applications in transfusion medicine. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Analysis of the SUMO2 Proteome during HSV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Elizabeth Sloan

    2015-07-01

    Full Text Available Covalent linkage to members of the small ubiquitin-like (SUMO family of proteins is an important mechanism by which the functions of many cellular proteins are regulated. Sumoylation has roles in the control of protein stability, activity and localization, and is involved in the regulation of transcription, gene expression, chromatin structure, nuclear transport and RNA metabolism. Sumoylation is also linked, both positively and negatively, with the replication of many different viruses both in terms of modification of viral proteins and modulation of sumoylated cellular proteins that influence the efficiency of infection. One prominent example of the latter is the widespread reduction in the levels of cellular sumoylated species induced by herpes simplex virus type 1 (HSV-1 ubiquitin ligase ICP0. This activity correlates with relief from intrinsic immunity antiviral defence mechanisms. Previous work has shown that ICP0 is selective in substrate choice, with some sumoylated proteins such the promyelocytic leukemia protein PML being extremely sensitive, while RanGAP is completely resistant. Here we present a comprehensive proteomic analysis of changes in the cellular SUMO2 proteome during HSV-1 infection. Amongst the 877 potentially sumoylated species detected, we identified 124 whose abundance was decreased by a factor of 3 or more by the virus, several of which were validated by western blot and expression analysis. We found many previously undescribed substrates of ICP0 whose degradation occurs by a range of mechanisms, influenced or not by sumoylation and/or the SUMO2 interaction motif within ICP0. Many of these proteins are known or are predicted to be involved in the regulation of transcription, chromatin assembly or modification. These results present novel insights into mechanisms and host cell proteins that might influence the efficiency of HSV-1 infection.

  20. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    DEFF Research Database (Denmark)

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.

    2016-01-01

    to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the "generalist" (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions......Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked...... of these sectors for the general stress response sigma factor sigma(S). Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally...

  1. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression.

    Science.gov (United States)

    Megger, Dominik A; Philipp, Jos; Le-Trilling, Vu Thuy Khanh; Sitek, Barbara; Trilling, Mirko

    2017-01-01

    Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.

  2. Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression

    Directory of Open Access Journals (Sweden)

    Dominik A. Megger

    2017-09-01

    Full Text Available Interferons (IFNs are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction. In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.

  3. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    Science.gov (United States)

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  4. In silico proteome analysis to facilitate proteomics experiments using mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lindo Micheal

    2003-08-01

    Full Text Available Abstract Proteomics experiments typically involve protein or peptide separation steps coupled to the identification of many hundreds to thousands of peptides by mass spectrometry. Development of methodology and instrumentation in this field is proceeding rapidly, and effective software is needed to link the different stages of proteomic analysis. We have developed an application, proteogest, written in Perl that generates descriptive and statistical analyses of the biophysical properties of multiple (e.g. thousands protein sequences submitted by the user, for instance protein sequences inferred from the complete genome sequence of a model organism. The application also carries out in silico proteolytic digestion of the submitted proteomes, or subsets thereof, and the distribution of biophysical properties of the resulting peptides is presented. proteogest is customizable, the user being able to select many options, for instance the cleavage pattern of the digestion treatment or the presence of modifications to specific amino acid residues. We show how proteogest can be used to compare the proteomes and digested proteome products of model organisms, to examine the added complexity generated by modification of residues, and to facilitate the design of proteomics experiments for optimal representation of component proteins.

  5. The HUPO proteomics standards initiative--overcoming the fragmentation of proteomics data.

    Science.gov (United States)

    Hermjakob, Henning

    2006-09-01

    Proteomics is a key field of modern biomolecular research, with many small and large scale efforts producing a wealth of proteomics data. However, the vast majority of this data is never exploited to its full potential. Even in publicly funded projects, often the raw data generated in a specific context is analysed, conclusions are drawn and published, but little attention is paid to systematic documentation, archiving, and public access to the data supporting the scientific results. It is often difficult to validate the results stated in a particular publication, and even simple global questions like "In which cellular contexts has my protein of interest been observed?" can currently not be answered with realistic effort, due to a lack of standardised reporting and collection of proteomics data. The Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organisation (HUPO), defines community standards for data representation in proteomics to facilitate systematic data capture, comparison, exchange and verification. In this article we provide an overview of PSI organisational structure, activities, and current results, as well as ways to get involved in the broad-based, open PSI process.

  6. Making proteomics data accessible and reusable: current state of proteomics databases and repositories.

    Science.gov (United States)

    Perez-Riverol, Yasset; Alpi, Emanuele; Wang, Rui; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2015-03-01

    Compared to other data-intensive disciplines such as genomics, public deposition and storage of MS-based proteomics, data are still less developed due to, among other reasons, the inherent complexity of the data and the variety of data types and experimental workflows. In order to address this need, several public repositories for MS proteomics experiments have been developed, each with different purposes in mind. The most established resources are the Global Proteome Machine Database (GPMDB), PeptideAtlas, and the PRIDE database. Additionally, there are other useful (in many cases recently developed) resources such as ProteomicsDB, Mass Spectrometry Interactive Virtual Environment (MassIVE), Chorus, MaxQB, PeptideAtlas SRM Experiment Library (PASSEL), Model Organism Protein Expression Database (MOPED), and the Human Proteinpedia. In addition, the ProteomeXchange consortium has been recently developed to enable better integration of public repositories and the coordinated sharing of proteomics information, maximizing its benefit to the scientific community. Here, we will review each of the major proteomics resources independently and some tools that enable the integration, mining and reuse of the data. We will also discuss some of the major challenges and current pitfalls in the integration and sharing of the data. © 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Personalized medicine beyond genomics: alternative futures in big data-proteomics, environtome and the social proteome.

    Science.gov (United States)

    Özdemir, Vural; Dove, Edward S; Gürsoy, Ulvi K; Şardaş, Semra; Yıldırım, Arif; Yılmaz, Şenay Görücü; Ömer Barlas, I; Güngör, Kıvanç; Mete, Alper; Srivastava, Sanjeeva

    2017-01-01

    No field in science and medicine today remains untouched by Big Data, and psychiatry is no exception. Proteomics is a Big Data technology and a next generation biomarker, supporting novel system diagnostics and therapeutics in psychiatry. Proteomics technology is, in fact, much older than genomics and dates to the 1970s, well before the launch of the international Human Genome Project. While the genome has long been framed as the master or "elite" executive molecule in cell biology, the proteome by contrast is humble. Yet the proteome is critical for life-it ensures the daily functioning of cells and whole organisms. In short, proteins are the blue-collar workers of biology, the down-to-earth molecules that we cannot live without. Since 2010, proteomics has found renewed meaning and international attention with the launch of the Human Proteome Project and the growing interest in Big Data technologies such as proteomics. This article presents an interdisciplinary technology foresight analysis and conceptualizes the terms "environtome" and "social proteome". We define "environtome" as the entire complement of elements external to the human host, from microbiome, ambient temperature and weather conditions to government innovation policies, stock market dynamics, human values, political power and social norms that collectively shape the human host spatially and temporally. The "social proteome" is the subset of the environtome that influences the transition of proteomics technology to innovative applications in society. The social proteome encompasses, for example, new reimbursement schemes and business innovation models for proteomics diagnostics that depart from the "once-a-life-time" genotypic tests and the anticipated hype attendant to context and time sensitive proteomics tests. Building on the "nesting principle" for governance of complex systems as discussed by Elinor Ostrom, we propose here a 3-tiered organizational architecture for Big Data science such as

  8. Proteome profile of swine testicular cells infected with porcine transmissible gastroenteritis coronavirus.

    Directory of Open Access Journals (Sweden)

    Ruili Ma

    Full Text Available The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV-infected swine testicular (ST cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1, caspase-8, and heat shock protein 90 alpha (HSP90α were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis.

  9. Proteomics in medical microbiology.

    Science.gov (United States)

    Cash, P

    2000-04-01

    The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.

  10. Covering complete proteomes with X-ray structures: a current snapshot

    Energy Technology Data Exchange (ETDEWEB)

    Mizianty, Marcin J.; Fan, Xiao; Yan, Jing; Chalmers, Eric; Woloschuk, Christopher [University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Joachimiak, Andrzej, E-mail: andrzejj@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Kurgan, Lukasz, E-mail: andrzejj@anl.gov [University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2014-11-01

    The current and the attainable coverage by X-ray structures of proteins and their functions on the scale of the ‘protein universe’ are estimated. A detailed analysis of the coverage across nearly 2000 proteomes from all superkingdoms of life and functional annotations is performed, with particular focus on the human proteome and the family of GPCR proteins. Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed. It is shown that current X-ray crystallographic knowhow combined with homology modeling can provide structures for 25% of modeling families (protein clusters for which structural models can be obtained through homology modeling), with at least one structural model produced for each Gene Ontology functional annotation. The coverage varies between superkingdoms, with 19% for eukaryotes, 35% for bacteria and 49% for archaea, and with those of viruses following the coverage values of their hosts. It is shown that the crystallization propensities of proteomes from the taxonomic superkingdoms are distinct. The use of knowledge-based target selection is shown to substantially increase the ability to produce X-ray structures. It is demonstrated that the human proteome has one of the highest attainable coverage values among eukaryotes, and GPCR membrane proteins suitable for X-ray structure determination were determined.

  11. Covering complete proteomes with X-ray structures: a current snapshot

    International Nuclear Information System (INIS)

    Mizianty, Marcin J.; Fan, Xiao; Yan, Jing; Chalmers, Eric; Woloschuk, Christopher; Joachimiak, Andrzej; Kurgan, Lukasz

    2014-01-01

    The current and the attainable coverage by X-ray structures of proteins and their functions on the scale of the ‘protein universe’ are estimated. A detailed analysis of the coverage across nearly 2000 proteomes from all superkingdoms of life and functional annotations is performed, with particular focus on the human proteome and the family of GPCR proteins. Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed. It is shown that current X-ray crystallographic knowhow combined with homology modeling can provide structures for 25% of modeling families (protein clusters for which structural models can be obtained through homology modeling), with at least one structural model produced for each Gene Ontology functional annotation. The coverage varies between superkingdoms, with 19% for eukaryotes, 35% for bacteria and 49% for archaea, and with those of viruses following the coverage values of their hosts. It is shown that the crystallization propensities of proteomes from the taxonomic superkingdoms are distinct. The use of knowledge-based target selection is shown to substantially increase the ability to produce X-ray structures. It is demonstrated that the human proteome has one of the highest attainable coverage values among eukaryotes, and GPCR membrane proteins suitable for X-ray structure determination were determined

  12. Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection.

    Directory of Open Access Journals (Sweden)

    Nuno Carinhas

    Full Text Available Baculovirus infection of Spodoptera frugiperda cells is a system of choice to produce a range of recombinant proteins, vaccines and, potentially, gene therapy vectors. While baculovirus genomes are well characterized, the genome of S. frugiperda is not sequenced and the virus-host molecular interplay is sparsely known. Herein, we describe the application of stable isotope labeling by amino acids in cell culture (SILAC to obtain the first comparative proteome quantitation of S. frugiperda cells during growth and early baculovirus infection. The proteome coverage was maximized by compiling a search database with protein annotations from insect species. Of interest were differentially proteins related to energy metabolism, endoplasmic reticulum and oxidative stress, yet not investigated in the scope of baculovirus infection. Further, the reduced expression of key viral-encoded proteins early in the infection cycle is suggested to be related with decreased viral replication at high cell density culture. These findings have implications for virological research and improvement of baculovirus-based bioprocesses.

  13. Data from proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis

    Directory of Open Access Journals (Sweden)

    Yongxin Yang

    2015-06-01

    Full Text Available Milk fat globules memebrane (MFGM-enriched proteomes from Holstein, Jersey, yak, buffalo, goat, camel, horse, and human were extracted and identified by an iTRAQ quantification proteomic approach. Proteomes data were analyzed by bioinformatic and multivariate statistical analysis and used to present the characteristic traits of the MFGM proteins among the studied mammals. The data of this study are also related to the research article “Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis” in the Journal of Proteomics [1].

  14. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    Science.gov (United States)

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  15. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  16. Proteomics reveals the effects of sustained weight loss on the human plasma proteome

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Wewer Albrechtsen, Nicolai J; Tyanova, Stefka

    2016-01-01

    Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill-defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed...... by a year of weight maintenance. Using mass spectrometry-based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual-specific protein levels with wide-ranging effects of losing weight on the plasma proteome reflected in 93 significantly...

  17. Translational plant proteomics: a perspective.

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Pedreschi, Romina; Barkla, Bronwyn J; Bindschedler, Laurence Veronique; Cramer, Rainer; Sarkar, Abhijit; Renaut, Jenny; Job, Dominique; Rakwal, Randeep

    2012-08-03

    Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic values of plants, food security and safety, and energy sustainability. In this review, we highlight the substantial progress reached in plant proteomics during the past decade which has paved the way for translational plant proteomics. Increasing proteomics knowledge in plants is not limited to model and non-model plants, proteogenomics, crop improvement, and food analysis, safety, and nutrition but to many more potential applications. Given the wealth of information generated and to some extent applied, there is the need for more efficient and broader channels to freely disseminate the information to the scientific community. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Proteomics in Argentina - limitations and future perspectives: A special emphasis on meat proteomics.

    Science.gov (United States)

    Fadda, Silvina; Almeida, André M

    2015-11-01

    Argentina is one of the most relevant countries in Latin America, playing a major role in regional economics, culture and science. Over the last 80 years, Argentinean history has been characterized by several upward and downward phases that had major consequences on the development of science in the country and most recently on proteomics. In this article, we characterize the evolution of Proteomics sciences in Argentina over the last decade and a half. We describe the proteomics publication output of the country in the framework of the regional and international contexts, demonstrating that Argentina is solidly anchored in a regional context, showing results similar to other emergent and Latin American countries, albeit still far from the European, American or Australian realities. We also provide a case-study on the importance of Proteomics to a specific sector in the area of food science: the use of bacteria of technological interest, highlighting major achievements obtained by Argentinean proteomics scientists. Finally, we provide a general picture of the endeavors being undertaken by Argentinean Proteomics scientists and their international collaborators to promote the Proteomics-based research with the new generation of scientists and PhD students in both Argentina and other countries in the Southern cone. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Histopathological Characteristics Caused by Trionyx sinensis Hemorrhagic Syndrome Virus (TSHSV) and Comparative Proteomic Analysis of Liver Tissue in TSHSV-Infected Chinese Soft-Shelled Turtles (Pelodiscus sinensis).

    Science.gov (United States)

    Liu, Li; Cao, Zheng; Lin, Feng; Ye, Xueping; Lu, Shujuan; Lyv, Sunjian

    2017-01-01

    Trionyx sinensis hemorrhagic syndrome virus (TSHSV) is a pathogen that causes severe hemorrhagic syndrome and irreversible damage to different infected tissues of Pelodis cus sinensis, ending in the death of affected organisms. In the present study, the histopathological characteristics of TSHSV-infected P. sinensis were analyzed and compared by HE staining. Relative and absolute quantification (iTRAQ)-based proteomic analysis was employed to explore the molecular pathology of liver injury. Anatomical features indicated that TSHSV caused obvious congestion in the liver, kidney, intestine, and other tissues of P. sinensis. The typical clinical symptoms included hepatomegaly, fragility, spotty and severe congestion in liver tissue, and also obvious intestinal bleeding. The histopathological studies corroborated such lesions in the liver and kidney, etc. iTRAQ-based proteomic analysis revealed that there were 252 differentially expressed proteins in the liver tissue between healthy and infected P. sinensis, of which 118 proteins were upregulated and 134 proteins were downregulated. GO enrichment analysis and KEGG pathway analysis initially revealed the molecular mechanism of pathological changes in P. sinensis by TSHSV infection. The expression of some differentially expressed proteins was further confirmed by qRT-PCR. These results provided important information for the pathological diagnosis of TSHSV-caused disease, as well as the mechanism underlying TSHSV-caused disease. © 2017 S. Karger AG, Basel.

  20. Genetics Coupled to Quantitative Intact Proteomics Links Heritable Aphid and Endosymbiont Protein Expression to Circulative Polerovirus Transmission▿ †

    Science.gov (United States)

    Cilia, M.; Tamborindeguy, C.; Fish, T.; Howe, K.; Thannhauser, T. W.; Gray, S.

    2011-01-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  1. [Methods of quantitative proteomics].

    Science.gov (United States)

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  2. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    Science.gov (United States)

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  3. Mimivirus: leading the way in the discovery of giant viruses of amoebae.

    Science.gov (United States)

    Colson, Philippe; La Scola, Bernard; Levasseur, Anthony; Caetano-Anollés, Gustavo; Raoult, Didier

    2017-04-01

    The accidental discovery of the giant virus of amoeba - Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) - in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans.

  4. Translational plant proteomics: A perspective

    NARCIS (Netherlands)

    Agrawal, G.K.; Pedreschi, R.; Barkla, B.J.; Bindschedler, L.V.; Cramer, R.; Sarkar, A.; Renaut, J.; Job, D.; Rakwal, R.

    2012-01-01

    Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic

  5. Evolution of Clinical Proteomics and its Role in Medicine | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    NCI's Office of Cancer Clinical Proteomics Research authored a review of the current state of clinical proteomics in the peer-reviewed Journal of Proteome Research. The review highlights outcomes from the CPTC program and also provides a thorough overview of the different technologies that have pushed the field forward. Additionally, the review provides a vision for moving the field forward through linking advances in genomic and proteomic analysis to develop new, molecularly targeted interventions.

  6. Evidence that maturation of the N-linked glycans of the respiratory syncytial virus (RSV) glycoproteins is required for virus-mediated cell fusion: The effect of α-mannosidase inhibitors on RSV infectivity

    International Nuclear Information System (INIS)

    McDonald, Terence P.; Jeffree, Chris E.; Li, Ping; Rixon, Helen W. McL.; Brown, Gaie; Aitken, James D.; MacLellan, Kirsty; Sugrue, Richard J.

    2006-01-01

    Glycan heterogeneity of the respiratory syncytial virus (RSV) fusion (F) protein was demonstrated by proteomics. The effect of maturation of the virus glycoproteins-associated glycans on virus infectivity was therefore examined using the α-mannosidase inhibitors deoxymannojirimycin (DMJ) and swainsonine (SW). In the presence of SW the N-linked glycans on the F protein appeared in a partially mature form, whereas in the presence of DMJ no maturation of the glycans was observed. Neither inhibitor had a significant effect on G protein processing or on the formation of progeny virus. Although the level of infectious virus and syncytia formation was not significantly affected by SW-treatment, DMJ-treatment correlated with a one hundred-fold reduction in virus infectivity. Our data suggest that glycan maturation of the RSV glycoproteins, in particular those on the F protein, is an important step in virus maturation and is required for virus infectivity

  7. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants

    Directory of Open Access Journals (Sweden)

    Aleksandra eObrępalska-Stęplowska

    2015-10-01

    Full Text Available Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at 27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day on the accumulation rate of the virus and satellite RNA (satRNA in Nicotiana benthamiana plants infected by peanut stunt virus (PSV with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV+satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV+satRNA-infected plants the shift in the

  8. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  9. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  10. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  11. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  12. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus*

    Science.gov (United States)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; King, Sarah L.; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.

    2016-01-01

    Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a “bottom up” mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation. PMID:27129252

  13. Arthropods as a source of new RNA viruses.

    Science.gov (United States)

    Bichaud, L; de Lamballerie, X; Alkan, C; Izri, A; Gould, E A; Charrel, R N

    2014-12-01

    The discovery and development of methods for isolation, characterisation and taxonomy of viruses represents an important milestone in the study, treatment and control of virus diseases during the 20th century. Indeed, by the late-1950s, it was becoming common belief that most human and veterinary pathogenic viruses had been discovered. However, at that time, knowledge of the impact of improved commercial transportation, urbanisation and deforestation, on disease emergence, was in its infancy. From the late 1960s onwards viruses, such as hepatitis virus (A, B and C) hantavirus, HIV, Marburg virus, Ebola virus and many others began to emerge and it became apparent that the world was changing, at least in terms of virus epidemiology, largely due to the influence of anthropological activities. Subsequently, with the improvement of molecular biotechnologies, for amplification of viral RNA, genome sequencing and proteomic analysis the arsenal of available tools for virus discovery and genetic characterization opened up new and exciting possibilities for virological discovery. Many recently identified but "unclassified" viruses are now being allocated to existing genera or families based on whole genome sequencing, bioinformatic and phylogenetic analysis. New species, genera and families are also being created following the guidelines of the International Committee for the Taxonomy of Viruses. Many of these newly discovered viruses are vectored by arthropods (arboviruses) and possess an RNA genome. This brief review will focus largely on the discovery of new arthropod-borne viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. In vitro characterization of a nineteenth-century therapy for smallpox.

    Directory of Open Access Journals (Sweden)

    William Arndt

    Full Text Available In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections.

  15. In vitro characterization of a nineteenth-century therapy for smallpox.

    Science.gov (United States)

    Arndt, William; Mitnik, Chandra; Denzler, Karen L; White, Stacy; Waters, Robert; Jacobs, Bertram L; Rochon, Yvan; Olson, Victoria A; Damon, Inger K; Langland, Jeffrey O

    2012-01-01

    In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections.

  16. Proteomic explorations of autism spectrum disorder.

    Science.gov (United States)

    Szoko, Nicholas; McShane, Adam J; Natowicz, Marvin R

    2017-09-01

    Proteomics, the large-scale study of protein expression in cells and tissues, is a powerful tool to study the biology of clinical conditions and has provided significant insights in many experimental systems. Herein, we review the basics of proteomic methodology and discuss challenges in using proteomic approaches to study autism. Unlike other experimental approaches, such as genomic approaches, there have been few large-scale studies of proteins in tissues from persons with autism. Most of the proteomic studies on autism used blood or other peripheral tissues; few studies used brain tissue. Some studies found dysregulation of aspects of the immune system or of aspects of lipid metabolism, but no consistent findings were noted. Based on the challenges in using proteomics to study autism, we discuss considerations for future studies. Apart from the complex technical considerations implicit in any proteomic analysis, key nontechnical matters include attention to subject and specimen inclusion/exclusion criteria, having adequate sample size to ensure appropriate powering of the study, attention to the state of specimens prior to proteomic analysis, and the use of a replicate set of specimens, when possible. We conclude by discussing some potentially productive uses of proteomics, potentially coupled with other approaches, for future autism research including: (1) proteomic analysis of banked human brain specimens; (2) proteomic analysis of tissues from animal models of autism; and (3) proteomic analysis of induced pluripotent stem cells that are differentiated into various types of brain cells and neural organoids. Autism Res 2017, 10: 1460-1469. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  17. Proteomics dataset

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2017-01-01

    patients (Morgan et al., 2012; Abraham and Medzhitov, 2011; Bennike, 2014) [8–10. Therefore, we characterized the proteome of colon mucosa biopsies from 10 inflammatory bowel disease ulcerative colitis (UC) patients, 11 gastrointestinal healthy rheumatoid arthritis (RA) patients, and 10 controls. We...... been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples....

  18. Proteomic approach in human health and disease: Preventive and cure studies

    Directory of Open Access Journals (Sweden)

    Khaled MM Koriem

    2018-01-01

    Full Text Available Proteomic is a branch of science that deals with various numbers of proteins where proteins are essential human constituents. Proteomic has a lot of functions inside the human and animal living organisms. This review helps to make a thought on the importance of proteomic application in human health and disease with special reference to preventive and cure studies. The human health can be divided into physical and mental health. The physical health relates to keeping human body state in a good health and to nutritional type and environmental factors. The mental health correlates to human psychological state. The main factors that affect the status of human health are human diet, exercise and sleep. The healthy diet is very important and needs to maintain the human health. The training program exercise improves human fitness and overall health and wellness. The sleep is a vital factor to sustain the human health. The human disease indicates abnormal human condition which influences the specific human part or the whole human body. There are external and internal factors which induce human disease. The external factors include pathogens while internal factors include allergies and autoimmunity. There are 4 principle types of human diseases: (1 infectious disease, (2 deficiency disease, (3 genetic disease and (4 physiological disease. There are many and various external microbes' factors that induce human infectious disease and these agents include viruses, bacteria, fungi and protozoa. The lack of necessary and vital dietary rudiments such as vitamins and minerals is the main cause of human deficiency disease. The genetic disease is initiated by hereditary disturbances that occur in the human genetic map. The physiological disease occurs when the normal human function body is affected due to human organs become malfunction. In conclusion, proteomic plays a vital and significant role in human health and disease.

  19. 1001 Proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions.

    Science.gov (United States)

    Joshi, Hiren J; Christiansen, Katy M; Fitz, Joffrey; Cao, Jun; Lipzen, Anna; Martin, Joel; Smith-Moritz, A Michelle; Pennacchio, Len A; Schackwitz, Wendy S; Weigel, Detlef; Heazlewood, Joshua L

    2012-05-15

    The sequencing of over a thousand natural strains of the model plant Arabidopsis thaliana is producing unparalleled information at the genetic level for plant researchers. To enable the rapid exploitation of these data for functional proteomics studies, we have created a resource for the visualization of protein information and proteomic datasets for sequenced natural strains of A. thaliana. The 1001 Proteomes portal can be used to visualize amino acid substitutions or non-synonymous single-nucleotide polymorphisms in individual proteins of A. thaliana based on the reference genome Col-0. We have used the available processed sequence information to analyze the conservation of known residues subject to protein phosphorylation among these natural strains. The substitution of amino acids in A. thaliana natural strains is heavily constrained and is likely a result of the conservation of functional attributes within proteins. At a practical level, we demonstrate that this information can be used to clarify ambiguously defined phosphorylation sites from phosphoproteomic studies. Protein sets of available natural variants are available for download to enable proteomic studies on these accessions. Together this information can be used to uncover the possible roles of specific amino acids in determining the structure and function of proteins in the model plant A. thaliana. An online portal to enable the community to exploit these data can be accessed at http://1001proteomes.masc-proteomics.org/

  20. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  1. Farm animal proteomics - A review

    DEFF Research Database (Denmark)

    Bendixen, Emøke; Danielsen, Marianne; Hollung, Kristin

    2011-01-01

    In agricultural sciences as in all other areas of life science, the implementation of proteomics and other post-genomic tools is an important step towards more detailed understanding of the complex biological systems that control physiology and pathology of living beings. Farm animals are raised...... and cattle are relevant not only for farm animal sciences, but also for adding to our understanding of complex biological mechanisms of health and disease in humans. The aim of this review is to present an overview of the specific topics of interest within farm animal proteomics, and to highlight some...... of the areas where synergy between classic model organism proteomics and farm animal proteomics is rapidly emerging. Focus will be on introducing the special biological traits that play an important role in food production, and on how proteomics may help optimize farm animal production...

  2. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment.

    Science.gov (United States)

    Welker, F

    2018-02-20

    The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized

  3. Proteomic analysis of human tooth pulp: proteomics of human tooth.

    Science.gov (United States)

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-12-01

    The unique pulp-dentin complex demonstrates strong regenerative potential, which enables it to respond to disease and traumatic injury. Identifying the proteins of the pulp-dentin complex is crucial to understanding the mechanisms of regeneration, tissue calcification, defense processes, and the reparation of dentin by dental pulp. The lack of knowledge of these proteins limits the development of more efficient therapies. The proteomic profile of human tooth pulp was investigated and compared with the proteome of human dentin and blood. The samples of tooth pulp were obtained from 5 sound permanent human third molars of 5 adults (n = 5). The extracted proteins were separated by 2-dimensional gel electrophoresis, analyzed by nano-liquid chromatography tandem mass spectrometry, and identified by correlating mass spectra to the proteomic databases. A total of 342 proteins were identified with high confidence, and 2 proteins were detected for the first time in an actual human sample. The identified tooth pulp proteins have a variety of functions: structural, catalytic, transporter, protease activity, immune response, and many others. In a comparison with dentin and blood plasma, 140 (pulp/dentin) shared proteins were identified, 37 of which were not observed in plasma. It can be suggested that they might participate in the unique pulp-dentin complex. This proteomic investigation of human tooth pulp, together with the previously published study of human dentin, is one of the most comprehensive proteome lists of human teeth to date. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Mining the granule proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Goetze, Jens P; Johnsen, Anders H

    2015-01-01

    Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of g...

  5. Advances of Proteomic Sciences in Dentistry.

    Science.gov (United States)

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-05-13

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.

  6. Proteomics - new analytical approaches

    International Nuclear Information System (INIS)

    Hancock, W.S.

    2001-01-01

    Full text: Recent developments in the sequencing of the human genome have indicated that the number of coding gene sequences may be as few as 30,000. It is clear, however, that the complexity of the human species is dependent on the much greater diversity of the corresponding protein complement. Estimates of the diversity (discrete protein species) of the human proteome range from 200,000 to 300,000 at the lower end to 2,000,000 to 3,000,000 at the high end. In addition, proteomics (the study of the protein complement to the genome) has been subdivided into two main approaches. Global proteomics refers to a high throughput examination of the full protein set present in a cell under a given environmental condition. Focused proteomics refers to a more detailed study of a restricted set of proteins that are related to a specified biochemical pathway or subcellular structure. While many of the advances in proteomics will be based on the sequencing of the human genome, de novo characterization of protein microheterogeneity (glycosylation, phosphorylation and sulfation as well as the incorporation of lipid components) will be required in disease studies. To characterize these modifications it is necessary to digest the protein mixture with an enzyme to produce the corresponding mixture of peptides. In a process analogous to sequencing of the genome, shot-gun sequencing of the proteome is based on the characterization of the key fragments produced by such a digest. Thus, a glycopeptide and hence a specific glycosylation motif will be identified by a unique mass and then a diagnostic MS/MS spectrum. Mass spectrometry will be the preferred detector in these applications because of the unparalleled information content provided by one or more dimensions of mass measurement. In addition, highly efficient separation processes are an absolute requirement for advanced proteomic studies. For example, a combination of the orthogonal approaches, HPLC and HPCE, can be very powerful

  7. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko

    2017-05-10

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  8. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    Science.gov (United States)

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  9. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-01-01

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  10. Proteomic analysis of the EhV-86 virion

    Directory of Open Access Journals (Sweden)

    Lilley Kathryn S

    2008-03-01

    Full Text Available Abstract Background Emiliania huxleyi virus 86 (EhV-86 is the type species of the genus Coccolithovirus within the family Phycodnaviridae. The fully sequenced 407,339 bp genome is predicted to encode 473 protein coding sequences (CDSs and is the largest Phycodnaviridae sequenced to date. The majority of EhV-86 CDSs exhibit no similarity to proteins in the public databases. Results Proteomic analysis by 1-DE and then LC-MS/MS determined that the virion of EhV-86 is composed of at least 28 proteins, 23 of which are predicted to be membrane proteins. Besides the major capsid protein, putative function can be assigned to 4 other components of the virion: two lectin proteins, a thioredoxin and a serine/threonine protein kinase. Conclusion This study represents the first steps toward the identification of the protein components that make up the EhV-86 virion. Aside from the major capsid protein, whose function in the virion is well known and defined, the nature of the other proteins suggest roles involved with viral budding, caspase activation, signalling, anti-oxidation, virus adsorption and host range determination.

  11. The proteome of human saliva

    Science.gov (United States)

    Griffin, Timothy J.

    2013-05-01

    Human saliva holds tremendous potential for transforming disease and health diagnostics given its richness of molecular information and non-invasive collection. Enumerating its molecular constituents is an important first step towards reaching this potential. Among the molecules in saliva, proteins and peptides arguably have the most value: they can directly indicate biochemical functions linked to a health condition/disease state, and they are attractive targets for biomarker assay development. However, cataloging and defining the human salivary proteome is challenging given the dynamic, chemically heterogeneous and complex nature of the system. In addition, the overall human saliva proteome is composed of several "sub-proteomes" which include: intact full length proteins, proteins carrying post-translational modifications (PTMs), low molecular weight peptides, and the metaproteome, derived from protein products from nonhuman organisms (e.g. microbes) present in the oral cavity. Presented here will be a summary of communal efforts to meet the challenge of characterizing the multifaceted saliva proteome, focusing on the use of mass spectrometry as the proteomic technology of choice. Implications of these efforts to characterize the salivary proteome in the context of disease diagnostics will also be discussed.

  12. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment

    DEFF Research Database (Denmark)

    Welker, F.

    2018-01-01

    Background: The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identificati......Background: The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein...... not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against......), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations...

  13. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis

    International Nuclear Information System (INIS)

    McDonald, Terence P.; Pitt, Andrew R.; Brown, Gaie; Rixon, Helen W. McL.; Sugrue, Richard J.

    2004-01-01

    The interaction between the respiratory syncytial virus (RSV) polymerase complex and lipid rafts was examined in HEp2 cells. Lipid-raft membranes were prepared from virus-infected cells and their protein content was analysed by Western blotting and mass spectrometry. This analysis revealed the presence of the N, P, L, M2-1 and M proteins. However, these proteins appeared to differ from one another in their association with these structures, with the M2-1 protein showing a greater partitioning into raft membranes compared to that of the N, P or M proteins. Determination of the polymerase activity profile of the gradient fractions revealed that 95% of the detectable viral enzyme activity was associated with lipid-raft membranes. Furthermore, analysis of virus-infected cells by confocal microscopy suggested an association between these proteins and the raft-lipid, GM1. Together, these results provide evidence that the RSV polymerase complex is able to associate with lipid rafts in virus-infected cells

  14. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    KAUST Repository

    Marondedze, Claudius; Wong, Aloysius Tze; Groen, Arnoud; Serano, Natalia Lorena Gorron; Jankovic, Boris R.; Lilley, Kathryn; Gehring, Christoph A; Thomas, Ludivine

    2014-01-01

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  15. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    Directory of Open Access Journals (Sweden)

    Claudius Marondedze

    2014-12-01

    Full Text Available The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  16. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    KAUST Repository

    Marondedze, Claudius

    2014-12-31

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  17. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    Science.gov (United States)

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  18. Comprehensive proteome profiling in Aedes albopictus to decipher Wolbachia-arbovirus interference phenomenon.

    Science.gov (United States)

    Saucereau, Yoann; Valiente Moro, Claire; Dieryckx, Cindy; Dupuy, Jean-William; Tran, Florence-Hélène; Girard, Vincent; Potier, Patrick; Mavingui, Patrick

    2017-08-18

    Aedes albopictus is a vector of arboviruses that cause severe diseases in humans such as Chikungunya, Dengue and Zika fevers. The vector competence of Ae. albopictus varies depending on the mosquito population involved and the virus transmitted. Wolbachia infection status in believed to be among key elements that determine viral transmission efficiency. Little is known about the cellular functions mobilized in Ae. albopictus during co-infection by Wolbachia and a given arbovirus. To decipher this tripartite interaction at the molecular level, we performed a proteome analysis in Ae. albopictus C6/36 cells mono-infected by Wolbachia wAlbB strain or Chikungunya virus (CHIKV), and bi-infected. We first confirmed significant inhibition of CHIKV by Wolbachia. Using two-dimensional gel electrophoresis followed by nano liquid chromatography coupled with tandem mass spectrometry, we identified 600 unique differentially expressed proteins mostly related to glycolysis, translation and protein metabolism. Wolbachia infection had greater impact on cellular functions than CHIKV infection, inducing either up or down-regulation of proteins associated with metabolic processes such as glycolysis and ATP metabolism, or structural glycoproteins and capsid proteins in the case of bi-infection with CHIKV. CHIKV infection inhibited expression of proteins linked with the processes of transcription, translation, lipid storage and miRNA pathways. The results of our proteome profiling have provided new insights into the molecular pathways involved in tripartite Ae. albopictus-Wolbachia-CHIKV interaction and may help defining targets for the better implementation of Wolbachia-based strategies for disease transmission control.

  19. Quantitative proteome analysis of plasma microparticles for the characterization of HCV-induced hepatic cirrhosis and hepatocellular carcinoma.

    Science.gov (United States)

    Taleb, Raghda Saad Zaghloul; Moez, Pacint; Younan, Doreen; Eisenacher, Martin; Tenbusch, Matthias; Sitek, Barbara; Bracht, Thilo

    2017-12-01

    Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and a leading cause of cancer-related deaths worldwide. Cirrhosis induced by hepatitis-C virus (HCV) infection is the most critical risk factor for HCC. However, the mechanism of HCV-induced carcinogenesis is not fully understood. Plasma microparticles (PMP) contribute to numerous physiological and pathological processes and contain proteins whose composition correlates to the respective pathophysiological conditions. We analyzed PMP from 22 HCV-induced cirrhosis patients, 16 HCV-positive HCC patients with underlying cirrhosis and 18 healthy controls. PMP were isolated using ultracentrifugation and analyzed via label-free LC-MS/MS. We identified 840 protein groups and quantified 507 proteins. 159 proteins were found differentially abundant between the three experimental groups. PMP in both disease entities displayed remarkable differences in the proteome composition compared to healthy controls. Conversely, the proteome difference between both diseases was minimal. GO analysis revealed that PMP isolated from both diseases were significantly enriched in proteins involved in complement activation, while endopeptidase activity was downregulated exclusively in HCC patients. This study reports for the first time a quantitative proteome analysis for PMP from patients with HCV-induced cirrhosis and HCC. Data are available via ProteomeXchange with identifier PXD005777. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  1. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  2. Validation of a Pan-Orthopox Real-Time PCR Assay for the Detection and Quantification of Viral Genomes from Nonhuman Primate Blood

    Science.gov (United States)

    2017-06-19

    Validation of a pan-orthopox real-time PCR assay for the detection and quantification of viral genomes from nonhuman primate blood. Eric...medical countermeasures by the U.S. FDA, the assay was designed to quantitate poxvirus genomic DNA in a nonhuman primate (cynomolgus macaque) blood...monkeypox virus into nonhuman primate blood, we chose to use the HA standard after considering the potential biological safety and logistical issues with

  3. Proteomics Insights into Autophagy.

    Science.gov (United States)

    Cudjoe, Emmanuel K; Saleh, Tareq; Hawkridge, Adam M; Gewirtz, David A

    2017-10-01

    Autophagy, a conserved cellular process by which cells recycle their contents either to maintain basal homeostasis or in response to external stimuli, has for the past two decades become one of the most studied physiological processes in cell biology. The 2016 Nobel Prize in Medicine and Biology awarded to Dr. Ohsumi Yoshinori, one of the first scientists to characterize this cellular mechanism, attests to its importance. The induction and consequent completion of the process of autophagy results in wide ranging changes to the cellular proteome as well as the secretome. MS-based proteomics affords the ability to measure, in an unbiased manner, the ubiquitous changes that occur when autophagy is initiated and progresses in the cell. The continuous improvements and advances in mass spectrometers, especially relating to ionization sources and detectors, coupled with advances in proteomics experimental design, has made it possible to study autophagy, among other process, in great detail. Innovative labeling strategies and protein separation techniques as well as complementary methods including immuno-capture/blotting/staining have been used in proteomics studies to provide more specific protein identification. In this review, we will discuss recent advances in proteomics studies focused on autophagy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  5. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  6. [Monkey-pox, a model of emergent then reemergent disease].

    Science.gov (United States)

    Georges, A J; Matton, T; Courbot-Georges, M C

    2004-01-01

    The recent emergence of monkey pox in the United States of America highlights the problem (known for other infectious agents) of dissemination of pathogens outside their endemic area, and of subsequent global threats of variable gravity according to agents. It is a real emergency since monkey pox had been confined to Africa for several decades, where small epidemics occurred from time to time, monkey pox is a "miniature smallpox" which, in Africa, evolves on an endemic (zoonotic) mode with, as reservoirs, several species of wild rodents (mainly squirrels) and some monkey species. It can be accidentally transmitted to man then develops as epidemics, sometimes leading to death. The virus was imported in 2003 in the United States of America, via Gambia rats and wild squirrels (all African species), and infected prairie dogs (which are now in fashion as pets), then crossed the species barrier to man. In the United States of America, screening campaigns, epidemiological investigations, and subsequent treatments led to a rapid control of the epidemic, which is a model of emergent disease for this country. Therapeutic and preventive measures directly applicable to monkey pox are discussed. They can also be applied against other pox virus infections (including smallpox). The risk of criminal introduction of pox viruses is discussed since it is, more than ever, a real worldwide threat.

  7. NIH Common Fund - Disruptive Proteomics Technologies - Challenges and Opportunities | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    This Request for Information (RFI) is directed toward determining how best to accelerate research in disruptive proteomics technologies. The Disruptive Proteomics Technologies (DPT) Working Group of the NIH Common Fund wishes to identify gaps and opportunities in current technologies and methodologies related to proteome-wide measurements.  For the purposes of this RFI, “disruptive” is defined as very rapid, very significant gains, similar to the "disruptive" technology development that occurred in DNA sequencing technology.

  8. A decade of proteomics accomplished! Central and Eastern European Proteomic Conference (CEEPC) celebrates its 10th Anniversary in Budapest, Hungary.

    Science.gov (United States)

    Gadher, Suresh Jivan; Drahos, László; Vékey, Károly; Kovarova, Hana

    2017-07-01

    The Central and Eastern European Proteomic Conference (CEEPC) proudly celebrated its 10th Anniversary with an exciting scientific program inclusive of proteome, proteomics and systems biology in Budapest, Hungary. Since 2007, CEEPC has represented 'state-of the-art' proteomics in and around Central and Eastern Europe and these series of conferences have become a well-recognized event in the proteomic calendar. Fresher challenges and global healthcare issues such as ageing and chronic diseases are driving clinical and scientific research towards regenerative, reparative and personalized medicine. To this end, proteomics may enable diverse intertwining research fields to reach their end goals. CEEPC will endeavor to facilitate these goals.

  9. Proteome reference map of Drosophila melanogaster head.

    Science.gov (United States)

    Lee, Tian-Ren; Huang, Shun-Hong; Lee, Chi-Ching; Lee, Hsiao-Yun; Chan, Hsin-Tzu; Lin, Kuo-Sen; Chan, Hong-Lin; Lyu, Ping-Chiang

    2012-06-01

    Drosophila melanogaster has been used as a genetic model organism to understand the fundamental molecular mechanisms in human biology including memory formation that has been reported involving protein synthesis and/or post-translational modification. In this study, we employed a proteomic platform based on fluorescent 2DE and MALDI-TOF MS to build a standard D. melanogaster head proteome map for proteome-proteome comparison. In order to facilitate the comparison, an interactive database has been constructed for systematically integrating and analyzing the proteomes from different conditions and further implicated to study human diseases related to D. melanogaster model. In summary, the fundamental head proteomic database and bioinformatic analysis will be useful for further elucidating the biological mechanisms such as memory formation and neurodegenerative diseases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proteomics in pulmonary research: selected methodical aspects

    Directory of Open Access Journals (Sweden)

    Martin Petrek

    2007-10-01

    Full Text Available Recent years witness rapid expansion of applications of proteomics to clinical research including non-malignant lung disorders. These developments bring along the need for standardisation of proteomic experiments. This paper briefly reviews basic methodical aspects of appliedproteomic studies using SELDI-TOF mass spectrometry platform as example but also emphasizes general aspects of quality assurance in proteomics. Key-words: lung proteome, quality assurance, SELDI-TOF MS

  11. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  12. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Salvato, Fernanda; Havelund, Jesper Foged; Chen, Mingjie

    2014-01-01

    Mitochondria are called the powerhouses of the cell. To better understand the role of mitochondria in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from dormant potato tubers (Solanum tuberosum 'Folva') and their proteome investigated. Proteins...... manner using normalized spectral counts including as many as 5-fold more "extreme" proteins (low mass, high isoelectric point, hydrophobic) than previous mitochondrial proteome studies. We estimate that this compendium of proteins represents a high coverage of the potato tuber mitochondrial proteome...

  13. Portrait of a viral infection: The infection cycle of Vibrio vulnificus phage VvAW1 visualized through plaque assay, electron microscopy, and proteomics

    Science.gov (United States)

    Clah, K. E. Y.; Nigro, O. D.; Miranda, J.; Schvarcz, C.; Culley, A.; Saito, M. A.; Steward, G.

    2016-02-01

    The bacterium Vibrio vulnificus is an opportunistic human pathogen that thrives in warm brackish waters. Viral infection is one of several mechanisms influencing the population dynamics of this bacterium in the natural environment. V. vulnificus-specific viruses have been isolated; however, the details of their infection cycle have not been reported. As a result, our current understanding of the interaction between the bacterium and its viruses in the environment is limited. To better understand the infection process, a strain of V. vulnificus (V93D1V) and its bacteriophage, Vibrio phage VvAW1, were isolated from the estuarine waters of the Ala Wai Canal, HI. A time-series infection experiment was conducted with the virus-host pair in which samples were collected every ten minutes for eighty minutes post-infection for analysis by plaque assay, electron microscopy, and proteomics. Using electron microscopy, visibly infected bacteria were observed forty minutes after the introduction of the virus, signaling the end of the eclipse period. The peak of infection occurred at seventy minutes with an average viral load of 78 viruses per bacterium. The percentage of visibly infected bacteria reached a maximum just prior to a rise in free viruses in the culture, indicating the end of the latent period. The percentage of infected cells that lysed was low and there was little effect on the bacterial population growth rate. Analysis of the proteome revealed that protein expression patterns, in particular capsid and other structural proteins, closely follow the timing of the observed infection cycle. Together, these analyses provided the first detailed view of a viral infection in a highly lethal aquatic bacterium. The apparent temperate nature of this virus suggests that it can be a source of mortality to V. vulnificus, but has evolved to avoid total destruction of its host by complete lysis, a characteristic that helps ensure its replication in subsequent generations.

  14. Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology.

    Science.gov (United States)

    Pasini, Erica M; Lutz, Hans U; Mann, Matthias; Thomas, Alan W

    2010-01-03

    Membrane proteomics is concerned with accurately and sensitively identifying molecules involved in cell compartmentalisation, including those controlling the interface between the cell and the outside world. The high lipid content of the environment in which these proteins are found often causes a particular set of problems that must be overcome when isolating the required material before effective HPLC-MS approaches can be performed. The membrane is an unusually dynamic cellular structure since it interacts with an ever changing environment. A full understanding of this critical cell component will ultimately require, in addition to proteomics, lipidomics, glycomics, interactomics and study of post-translational modifications. Devoid of nucleus and organelles in mammalian species other than camelids, and constantly in motion in the blood stream, red blood cells (RBCs) are the sole mammalian oxygen transporter. The fact that mature mammalian RBCs have no internal membrane-bound organelles, somewhat simplifies proteomics analysis of the plasma membrane and the fact that it has no nucleus disqualifies microarray based methods. Proteomics has the potential to provide a better understanding of this critical interface, and thereby assist in identifying new approaches to diseases. (c) 2009 Elsevier B.V. All rights reserved.

  15. Proteomic Analysis of Chinese Hamster Ovary Cells

    DEFF Research Database (Denmark)

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama

    2012-01-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimens......To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis...

  16. Semen proteomics and male infertility.

    Science.gov (United States)

    Jodar, Meritxell; Soler-Ventura, Ada; Oliva, Rafael

    2017-06-06

    Semen is a complex body fluid containing an admixture of spermatozoa suspended in secretions from the testes and epididymis which are mixed at the time of ejaculation with secretions from other accessory sex glands such as the prostate and seminal vesicles. High-throughput technologies have revealed that, contrary to the idea that sperm cells are simply a silent delivery vehicle of the male genome to the oocyte, the sperm cells in fact provide both a specific epigenetically marked DNA together with a complex population of proteins and RNAs crucial for embryogenesis. Similarly, -omic technologies have also enlightened that seminal fluid seems to play a much greater role than simply being a medium to carry the spermatozoa through the female reproductive tract. In the present review, we briefly overview the sperm cell biology, consider the key issues in sperm and seminal fluid sample preparation for high-throughput proteomic studies, describe the current state of the sperm and seminal fluid proteomes generated by high-throughput proteomic technologies and provide new insights into the potential communication between sperm and seminal fluid. In addition, comparative proteomic studies open a window to explore the potential pathogenic mechanisms of infertility and the discovery of potential biomarkers with clinical significance. The review updates the numerous proteomics studies performed on semen, including spermatozoa and seminal fluid. In addition, an integrative analysis of the testes, sperm and seminal fluid proteomes is also included providing insights into the molecular mechanisms that regulate the generation, maturation and transit of spermatozoa. Furthermore, the compilation of several differential proteomic studies focused on male infertility reveals potential pathways disturbed in specific subtypes of male infertility and points out towards future research directions in the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.

    Science.gov (United States)

    Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Overall, Christopher M; Deutsch, Eric W

    2017-12-01

    The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17 008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 ( https://hupo.org/Guidelines ), up from 13 664 in 2012-12 and 16 518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15 173 canonical proteins, accounting for nearly all of the 15 290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10 492 highly curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.

  18. Proteomic approaches in brain research and neuropharmacology.

    Science.gov (United States)

    Vercauteren, Freya G G; Bergeron, John J M; Vandesande, Frans; Arckens, Lut; Quirion, Rémi

    2004-10-01

    Numerous applications of genomic technologies have enabled the assembly of unprecedented inventories of genes, expressed in cells under specific physiological and pathophysiological conditions. Complementing the valuable information generated through functional genomics with the integrative knowledge of protein expression and function should enable the development of more efficient diagnostic tools and therapeutic agents. Proteomic analyses are particularly suitable to elucidate posttranslational modifications, expression levels and protein-protein interactions of thousands of proteins at a time. In this review, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) investigations of brain tissues in neurodegenerative diseases such as Alzheimer's disease, Down syndrome and schizophrenia, and the construction of 2D-PAGE proteome maps of the brain are discussed. The role of the Human Proteome Organization (HUPO) as an international coordinating organization for proteomic efforts, as well as challenges for proteomic technologies and data analysis are also addressed. It is expected that the use of proteomic strategies will have significant impact in neuropharmacology over the coming decade.

  19. Proteomic landscape in Central and Eastern Europe: the 9th Central and Eastern European Proteomic Conference, Poznan, Poland

    Czech Academy of Sciences Publication Activity Database

    Gadher, S. J.; Marczak, L.; Luczak, M.; Stobiecki, M.; Widlak, P.; Kovářová, Hana

    2016-01-01

    Roč. 13, č. 1 (2016), s. 5-7 ISSN 1478-9450. [Central and Eastern European Proteomic Conference (CEEPC) /9./. Poznaň, 15.06.2015-18.06.2015] Institutional support: RVO:67985904 Keywords : Central and Eastern Proteomic Conference * proteomics * mass spectrometry imaging Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.849, year: 2016

  20. Establishing Substantial Equivalence: Proteomics

    Science.gov (United States)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  1. Proteome identification of the silkworm middle silk gland

    Directory of Open Access Journals (Sweden)

    Jian-ying Li

    2016-03-01

    Full Text Available To investigate the functional differentiation among the anterior (A, middle (M, and posterior (P regions of silkworm middle silk gland (MSG, their proteomes were characterized by shotgun LC–MS/MS analysis with a LTQ-Orbitrap mass spectrometer. To get better proteome identification and quantification, triplicate replicates of mass spectrometry analysis were performed for each sample. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2014 [1] via the PRIDE partner repository (Vizcaino, 2013 [2] with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003371. The peptide identifications that were further processed by PeptideProphet program in Trans-Proteomic Pipeline (TPP after database search with Mascot software were also available in .XML format files. Data presented here are related to a research article published in Journal of Proteomics by Li et al. (2015 [3]. Keywords: Bombyx mori, Middle silk gland, Silk protein synthesis, Shotgun proteomics, Label-free

  2. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  3. Comparison of protein extraction methods suitable for proteomics ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... An efficient protein extraction method is a prerequisite for successful implementation of proteomics. ... research, it is noteworthy to discover a proteome ..... Proteomic analysis of rice (Oryza sativa) seeds during germination.

  4. Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox.

    Science.gov (United States)

    Crump, Ryan; Korom, Maria; Buller, R Mark; Parker, Scott

    2017-03-01

    Orthopoxviruses continue to pose a significant threat to the population as potential agents of bioterrorism. An intentional release of natural or engineered variola virus (VARV) or monkeypox viruses would cause mortality and morbidity in the target population. To address this, antivirals have been developed and evaluated in animal models of smallpox and monkeypox. One such antiviral, brincidofovir (BCV, previously CMX001), has demonstrated high levels of efficacy against orthopoxviruses in animal models and is currently under clinical evaluation for prevention and treatment of diseases caused by cytomegaloviruses and adenoviruses. In this study we use the mousepox model of smallpox to evaluate the relationship between the magnitude of the infectious virus dose and an efficacious BCV therapy outcome when treatment is initiated concomitant with detection of ectromelia virus viral DNA (vDNA) in mouse buccal swabs. We found that vDNA could be detected in buccal swabs of some, but not all infected mice over a range of challenge doses by day 3 or 4 postexposure, when initiation of BCV treatment was efficacious, suggesting that detection of vDNA in buccal swabs could be used as a trigger to initiate BCV treatment of an entire potentially exposed population. However, buccal swabs of some mice did not become positive until 5 days postexposure, when initiation of BCV therapy failed to protect mice that received high doses of virus. And finally, the data suggest that the therapeutic window for efficacious BCV treatment decreases as the virus infectious dose increases. Extrapolating these findings to VARV, the data suggest that treatment should be initiated as soon as possible after exposure and not rely on a diagnostic tool such as the measurement of vDNA in buccal cavity swabs; however, consideration should be given to the fact that the behavior/disease-course of VARV in humans is different from that of ectromelia virus in the mouse. Copyright © 2016 Elsevier B.V. All

  5. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

    Science.gov (United States)

    Loroch, Stefan; Schommartz, Tim; Brune, Wolfram; Zahedi, René Peiman; Sickmann, Albert

    2015-05-01

    Quantitative proteomics and phosphoproteomics have become key disciplines in understanding cellular processes. Fundamental research can be done using cell culture providing researchers with virtually infinite sample amounts. In contrast, clinical, pre-clinical and biomedical research is often restricted to minute sample amounts and requires an efficient analysis with only micrograms of protein. To address this issue, we generated a highly sensitive workflow for combined LC-MS-based quantitative proteomics and phosphoproteomics by refining an ERLIC-based 2D phosphoproteomics workflow into an ERLIC-based 3D workflow covering the global proteome as well. The resulting 3D strategy was successfully used for an in-depth quantitative analysis of both, the proteome and the phosphoproteome of murine cytomegalovirus-infected mouse fibroblasts, a model system for host cell manipulation by a virus. In a 2-plex SILAC experiment with 150 μg of a tryptic digest per condition, the 3D strategy enabled the quantification of ~75% more proteins and even ~134% more peptides compared to the 2D strategy. Additionally, we could quantify ~50% more phosphoproteins by non-phosphorylated peptides, concurrently yielding insights into changes on the levels of protein expression and phosphorylation. Beside its sensitivity, our novel three-dimensional ERLIC-strategy has the potential for semi-automated sample processing rendering it a suitable future perspective for clinical, pre-clinical and biomedical research. Copyright © 2015. Published by Elsevier B.V.

  6. Urine Proteomics in the Era of Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ashley Beasley-Green

    2016-11-01

    Full Text Available With the technological advances of mass spectrometry (MS-based platforms, clinical proteomics is one of the most rapidly growing areas in biomedical research. Urine proteomics has become a popular subdiscipline of clinical proteomics because it is an ideal source for the discovery of noninvasive disease biomarkers. The urine proteome offers a comprehensive view of the local and systemic physiology since the proteome is primarily composed of proteins/peptides from the kidneys and plasma. The emergence of MS-based proteomic platforms as prominent bioanalytical tools in clinical applications has enhanced the identification of protein-based urinary biomarkers. This review highlights the characteristics of urine that make it an attractive biofluid for biomarker discovery and the impact of MS-based technologies on the clinical assessment of urinary protein biomarkers.

  7. Proteomics of Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Raquel González-Fernández

    2010-01-01

    Full Text Available Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  8. Birth of plant proteomics in India: a new horizon.

    Science.gov (United States)

    Narula, Kanika; Pandey, Aarti; Gayali, Saurabh; Chakraborty, Niranjan; Chakraborty, Subhra

    2015-09-08

    In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, Shanghai 200063 (China); Liu, Siwen [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Bode, Liv [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Liu, Chengyu [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Zhang, Liang [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wang, Xiao [Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016 (China); Li, Dan [Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016 (China); Lei, Yang [Department of Internal Medicine, University-Town Hospital of Chongqing Medical University, Chongqing 400016 (China); Peng, Xiaojun [Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018 (China); Cheng, Zhongyi [Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092 (China); and others

    2015-11-15

    Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteins and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.

  10. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels

    International Nuclear Information System (INIS)

    Liu, Xia; Liu, Siwen; Bode, Liv; Liu, Chengyu; Zhang, Liang; Wang, Xiao; Li, Dan; Lei, Yang; Peng, Xiaojun; Cheng, Zhongyi

    2015-01-01

    Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteins and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.

  11. The Redox Proteome*

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges. PMID:23861437

  12. Proteomic landscape in Central and Eastern Europe: the 9th Central and Eastern European Proteomic Conference, Poznań, Poland.

    Science.gov (United States)

    Gadher, Suresh Jivan; Marczak, Łukasz; Łuczak, Magdalena; Stobiecki, Maciej; Widlak, Piotr; Kovarova, Hana

    2016-01-01

    Every year since 2007, the Central and Eastern European Proteomic Conference (CEEPC) has excelled in representing state-of-the-art proteomics in and around Central and Eastern Europe, and linking it to international institutions worldwide. Its mission remains to contribute to all approaches of proteomics including traditional and often-revisited methodologies as well as the latest technological achievements in clinical, quantitative and structural proteomics with a view to systems biology of a variety of processes. The 9th CEEPC was held from June 15th to 18th, 2015, at the Institute of Bioorganic Chemistry, Polish Academy of Sciences in Poznań, Poland. The scientific program stimulated exchange of proteomic knowledge whilst the spectacular venue of the conference allowed participants to enjoy the cobblestoned historical city of Poznań.

  13. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.

    Science.gov (United States)

    Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo

    2017-09-01

    The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for

  14. Application of proteomics to ecology and population biology.

    Science.gov (United States)

    Karr, T L

    2008-02-01

    Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.

  15. Virtual Labs in proteomics: new E-learning tools.

    Science.gov (United States)

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  17. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Directory of Open Access Journals (Sweden)

    Stéphane Tchankouo-Nguetcheu

    Full Text Available BACKGROUND: Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. METHODOLOGY AND PRINCIPAL FINDINGS: Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE, we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI with dengue 2 (DENV-2 and chikungunya (CHIKV viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. CONCLUSION/SIGNIFICANCE: Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha

  18. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    Science.gov (United States)

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-02

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  19. Maillard Proteomics: Opening New Pages

    Directory of Open Access Journals (Sweden)

    Alena Soboleva

    2017-12-01

    Full Text Available Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer’s disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus, proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.

  20. Knowledge Translation: Moving Proteomics Science to Innovation in Society.

    Science.gov (United States)

    Holmes, Christina; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-06-01

    Proteomics is one of the pivotal next-generation biotechnologies in the current "postgenomics" era. Little is known about the ways in which innovative proteomics science is navigating the complex socio-political space between laboratory and society. It cannot be assumed that the trajectory between proteomics laboratory and society is linear and unidirectional. Concerned about public accountability and hopes for knowledge-based innovations, funding agencies and citizens increasingly expect that emerging science and technologies, such as proteomics, are effectively translated and disseminated as innovation in society. Here, we describe translation strategies promoted in the knowledge translation (KT) and science communication literatures and examine the use of these strategies within the field of proteomics. Drawing on data generated from qualitative interviews with proteomics scientists and ethnographic observation of international proteomics conferences over a 5-year period, we found that proteomics science incorporates a variety of KT strategies to reach knowledge users outside the field. To attain the full benefit of KT, however, proteomics scientists must challenge their own normative assumptions and approaches to innovation dissemination-beyond the current paradigm relying primarily on publication for one's scientific peers within one's field-and embrace the value of broader (interdisciplinary) KT strategies in promoting the uptake of their research. Notably, the Human Proteome Organization (HUPO) is paying increasing attention to a broader range of KT strategies, including targeted dissemination, integrated KT, and public outreach. We suggest that increasing the variety of KT strategies employed by proteomics scientists is timely and would serve well the omics system sciences community.

  1. First systematic plant proteomics workshop in Botany Department, University of Delhi: transferring proteomics knowledge to next-generation researchers and students.

    Science.gov (United States)

    Deswal, Renu; Abat, Jasmeet Kaur; Sehrawat, Ankita; Gupta, Ravi; Kashyap, Prakriti; Sharma, Shruti; Sharma, Bhavana; Chaurasia, Satya Prakash; Chanu, Sougrakpam Yaiphabi; Masi, Antonio; Agrawal, Ganesh Kumar; Sarkar, Abhijit; Agrawal, Raj; Dunn, Michael J; Renaut, Jenny; Rakwal, Randeep

    2014-07-01

    International Plant Proteomics Organization (INPPO) outlined ten initiatives to promote plant proteomics in each and every country. With greater emphasis in developing countries, one of those was to "organize workshops at national and international levels to train manpower and exchange information". This third INPPO highlights covers the workshop organized for the very first time in a developing country, India, at the Department of Botany in University of Delhi on December 26-30, 2013 titled - "1(st) Plant Proteomics Workshop / Training Program" under the umbrella of INPPO India-Nepal chapter. Selected 20 participants received on-hand training mainly on gel-based proteomics approach along with manual booklet and parallel lectures on this and associated topics. In house, as well as invited experts drawn from other Universities and Institutes (national and international), delivered talks on different aspects of gel-based and gel-free proteomics. Importance of gel-free proteomics approach, translational proteomics, and INPPO roles were presented and interactively discussed by a group of three invited speakers Drs. Ganesh Kumar Agrawal (Nepal), Randeep Rakwal (Japan), and Antonio Masi (Italy). Given the output of this systematic workshop, it was proposed and thereafter decided to be organized every alternate year; the next workshop will be held in 2015. Furthermore, possibilities on providing advanced training to those students / researchers / teachers with basic knowledge in proteomics theory and experiments at national and international levels were discussed. INPPO is committed to generating next-generation trained manpower in proteomics, and it would only happen by the firm determination of scientists to come forward and do it. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Proteomics methods applied to malaria: Plasmodium falciparum

    International Nuclear Information System (INIS)

    Cuesta Astroz, Yesid; Segura Latorre, Cesar

    2012-01-01

    Malaria is a parasitic disease that has a high impact on public health in developing countries. The sequencing of the plasmodium falciparum genome and the development of proteomics have enabled a breakthrough in understanding the biology of the parasite. Proteomics have allowed to characterize qualitatively and quantitatively the parasite s expression of proteins and has provided information on protein expression under conditions of stress induced by antimalarial. Given the complexity of their life cycle, this takes place in the vertebrate host and mosquito vector. It has proven difficult to characterize the protein expression during each stage throughout the infection process in order to determine the proteome that mediates several metabolic, physiological and energetic processes. Two dimensional electrophoresis, liquid chromatography and mass spectrometry have been useful to assess the effects of antimalarial on parasite protein expression and to characterize the proteomic profile of different p. falciparum stages and organelles. The purpose of this review is to present state of the art tools and advances in proteomics applied to the study of malaria, and to present different experimental strategies used to study the parasite's proteome in order to show the advantages and disadvantages of each one.

  3. The Seed Proteome Web Portal

    Directory of Open Access Journals (Sweden)

    Marc eGalland

    2012-06-01

    Full Text Available The Seed Proteome Web Portal (SPWP; http://www.seedproteome.com/ gives access to information both on quantitative seed proteomic data and on seed-related protocols. Firstly, the SPWP provides access to the 475 different Arabidopsis seed proteins annotated from 2 dimensional electrophoresis (2DE maps. Quantitative data are available for each protein according to their accumulation profile during the germination process. These proteins can be retrieved either in list format or directly on scanned 2DE maps. These proteomic data reveal that 40% of seed proteins maintain a stable abundance over germination, up to radicle protrusion. During sensu stricto germination (24 h upon imbibition about 50% of the proteins display quantitative variations, exhibiting an increased abundance (35% or a decreasing abundance (15%. Moreover, during radicle protrusion (24 h to 48 h upon imbibition, 41% proteins display quantitative variations with an increased (23% or a decreasing abundance (18%. In addition, an analysis of the seed proteome revealed the importance of protein post-translational modifications as demonstrated by the poor correlation (r2 = 0.29 between the theoretical (predicted from Arabidopsis genome and the observed protein isoelectric points. Secondly, the SPWP is a relevant technical resource for protocols specifically dedicated to Arabidopsis seed proteome studies. Concerning 2D electrophoresis, the user can find efficient procedures for sample preparation, electrophoresis coupled with gel analysis and protein identification by mass spectrometry, which we have routinely used during the last 12 years. Particular applications such as the detection of oxidized proteins or de novo synthetized proteins radiolabeled by [35S]-methionine are also given in great details. Future developments of this portal will include proteomic data from studies such as dormancy release and protein turnover through de novo protein synthesis analyses during germination.

  4. Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings.

    Science.gov (United States)

    Pando-Robles, Victoria; Batista, Cesar V

    2017-06-01

    Aedes-borne viruses are responsible for high-impact neglected tropical diseases and unpredictable outbreaks such as the ongoing Zika epidemics. Aedes mosquitoes spread different arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus, among others, and are responsible for the continuous emergence and reemergence of these pathogens. These viruses have complex transmission cycles that include two hosts, namely the Aedes mosquito as a vector and susceptible vertebrate hosts. Human infection with arboviruses causes diseases that range from subclinical or mild to febrile diseases, encephalitis, and hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The infection of the Aedes mosquito by viruses involves a molecular crosstalk between cell and viral proteins. An understanding of how mosquito vectors and viruses interact is of fundamental interest, and it also offers novel perspectives for disease control. In recent years, mass spectrometry (MS)-based strategies in combination with bioinformatics have been successfully applied to identify and quantify global changes in cellular proteins, lipids, peptides, and metabolites in response to viral infection. Although the information about proteomics in the Aedes mosquito is limited, the information that has been reported can set up the basis for future studies. This review reflects how MS-based approaches have extended our understanding of Aedes mosquito biology and the development of DENV and CHIKV infection in the vector. Finally, this review discusses future challenges in the field.

  5. Dentistry proteomics: from laboratory development to clinical practice.

    Science.gov (United States)

    Rezende, Taia M B; Lima, Stella M F; Petriz, Bernardo A; Silva, Osmar N; Freire, Mirna S; Franco, Octávio L

    2013-12-01

    Despite all the dental information acquired over centuries and the importance of proteome research, the cross-link between these two areas only emerged around mid-nineties. Proteomic tools can help dentistry in the identification of risk factors, early diagnosis, prevention, and systematic control that will promote the evolution of treatment in all dentistry specialties. This review mainly focuses on the evolution of dentistry in different specialties based on proteomic research and how these tools can improve knowledge in dentistry. The subjects covered are an overview of proteomics in dentistry, specific information on different fields in dentistry (dental structure, restorative dentistry, endodontics, periodontics, oral pathology, oral surgery, and orthodontics) and future directions. There are many new proteomic technologies that have never been used in dentistry studies and some dentistry areas that have never been explored by proteomic tools. It is expected that a greater integration of these areas will help to understand what is still unknown in oral health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  6. Global Proteome Analysis of Leptospira interrogans

    Science.gov (United States)

    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...

  7. Marine proteomics: a critical assessment of an emerging technology.

    Science.gov (United States)

    Slattery, Marc; Ankisetty, Sridevi; Corrales, Jone; Marsh-Hunkin, K Erica; Gochfeld, Deborah J; Willett, Kristine L; Rimoldi, John M

    2012-10-26

    The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.

  8. Proteogenomics Dashboard for the Human Proteome Project.

    Science.gov (United States)

    Tabas-Madrid, Daniel; Alves-Cruzeiro, Joao; Segura, Victor; Guruceaga, Elizabeth; Vialas, Vital; Prieto, Gorka; García, Carlos; Corrales, Fernando J; Albar, Juan Pablo; Pascual-Montano, Alberto

    2015-09-04

    dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.

  9. Proteomic Biomarkers for Spontaneous Preterm Birth

    DEFF Research Database (Denmark)

    Kacerovsky, Marian; Lenco, Juraj; Musilova, Ivana

    2014-01-01

    This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published...

  10. PCAS – a precomputed proteome annotation database resource

    Directory of Open Access Journals (Sweden)

    Luo Jingchu

    2003-11-01

    Full Text Available Abstract Background Many model proteomes or "complete" sets of proteins of given organisms are now publicly available. Much effort has been invested in computational annotation of those "draft" proteomes. Motif or domain based algorithms play a pivotal role in functional classification of proteins. Employing most available computational algorithms, mainly motif or domain recognition algorithms, we set up to develop an online proteome annotation system with integrated proteome annotation data to complement existing resources. Results We report here the development of PCAS (ProteinCentric Annotation System as an online resource of pre-computed proteome annotation data. We applied most available motif or domain databases and their analysis methods, including hmmpfam search of HMMs in Pfam, SMART and TIGRFAM, RPS-PSIBLAST search of PSSMs in CDD, pfscan of PROSITE patterns and profiles, as well as PSI-BLAST search of SUPERFAMILY PSSMs. In addition, signal peptide and TM are predicted using SignalP and TMHMM respectively. We mapped SUPERFAMILY and COGs to InterPro, so the motif or domain databases are integrated through InterPro. PCAS displays table summaries of pre-computed data and a graphical presentation of motifs or domains relative to the protein. As of now, PCAS contains human IPI, mouse IPI, and rat IPI, A. thaliana, C. elegans, D. melanogaster, S. cerevisiae, and S. pombe proteome. PCAS is available at http://pak.cbi.pku.edu.cn/proteome/gca.php Conclusion PCAS gives better annotation coverage for model proteomes by employing a wider collection of available algorithms. Besides presenting the most confident annotation data, PCAS also allows customized query so users can inspect statistically less significant boundary information as well. Therefore, besides providing general annotation information, PCAS could be used as a discovery platform. We plan to update PCAS twice a year. We will upgrade PCAS when new proteome annotation algorithms

  11. Proteomic and transcriptomic studies of HBV-associated liver fibrosis of an AAV-HBV-infected mouse model.

    Science.gov (United States)

    Kan, Fangming; Ye, Lei; Yan, Tao; Cao, Jiaqi; Zheng, Jianhua; Li, Wuping

    2017-08-22

    Human hepatitis B virus (HBV) infection is an important public health issue in the Asia-Pacific region and is associated with chronic hepatitis, liver fibrosis, cirrhosis and even liver cancer. However, the underlying mechanisms of HBV-associated liver fibrosis remain incompletely understood. In the present study, proteomic and transcriptomic approaches as well as biological network analyses were performed to investigate the differentially expressed molecular signature and key regulatory networks that were associated with HBV-mediated liver fibrosis. RNA sequencing and 2DE-MALDI-TOF/TOF were performed on liver tissue samples obtained from HBV-infected C57BL/6 mouse generated via AAV8-HBV virus. The results showed that 322 genes and 173 proteins were differentially expressed, and 28 HBV-specific proteins were identified by comprehensive proteomic and transcriptomic analysis. GO analysis indicated that the differentially expressed proteins were predominantly involved in oxidative stress, which plays a key role in HBV-related liver fibrosis. Importantly, CAT, PRDX1, GSTP1, NXN and BLVRB were shown to be associated with oxidative stress among the differentially expressed proteins. The most striking results were validated by Western blot and RT-qPCR. The RIG-I like receptor signaling pathway was found to be the major signal pathway that changed during HBV-related fibrosis. This study provides novel insights into HBV-associated liver fibrosis and reveals the significant role of oxidative stress in liver fibrosis. Furthermore, CAT, BLVRB, NXN, PRDX1, and IDH1 may be candidates for detection of liver fibrosis or therapeutic targets for the treatment of liver fibrosis.

  12. Proteomics and the dynamic plasma membrane

    DEFF Research Database (Denmark)

    Sprenger, Richard R; Jensen, Ole Nørregaard

    2010-01-01

    plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma...... the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required...... for detailed functional and comparative analysis of the dynamic plasma membrane proteome....

  13. PROTEOMICS in aquaculture: applications and trends.

    Science.gov (United States)

    Rodrigues, Pedro M; Silva, Tomé S; Dias, Jorge; Jessen, Flemming

    2012-07-19

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Proteomics in uveal melanoma.

    LENUS (Irish Health Repository)

    Ramasamy, Pathma

    2014-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with an incidence of 5-7 per million per year. It is associated with the development of metastasis in about 50% of cases, and 40% of patients with uveal melanoma die of metastatic disease despite successful treatment of the primary tumour. The survival rates at 5, 10 and 15 years are 65%, 50% and 45% respectively. Unlike progress made in many other areas of cancer, uveal melanoma is still poorly understood and survival rates have remained similar over the past 25 years. Recently, advances made in molecular genetics have improved our understanding of this disease and stratification of patients into low risk and high risk for developing metastasis. However, only a limited number of studies have been performed using proteomic methods. This review will give an overview of various proteomic technologies currently employed in life sciences research, and discuss proteomic studies of uveal melanoma.

  15. Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox - an animal model of smallpox.

    Science.gov (United States)

    Parker, Scott; Chen, Nanhai G; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Hruby, Dennis; Jordan, Robert; Lanier, Randall; Painter, George; Painter, Wesley; Sagartz, John E; Schriewer, Jill; Mark Buller, R

    2012-04-01

    The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analog of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is four or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection - thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. CPTAC Collaborates with Molecular & Cellular Proteomics to Address Reproducibility in Targeted Assay Development | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812).  NCI’s participation is part of NIH’s overall effort to address the r

  17. Challenges for proteomics core facilities.

    Science.gov (United States)

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An individual urinary proteome analysis in normal human beings to define the minimal sample number to represent the normal urinary proteome

    Directory of Open Access Journals (Sweden)

    Liu Xuejiao

    2012-11-01

    Full Text Available Abstract Background The urinary proteome has been widely used for biomarker discovery. A urinary proteome database from normal humans can provide a background for discovery proteomics and candidate proteins/peptides for targeted proteomics. Therefore, it is necessary to define the minimum number of individuals required for sampling to represent the normal urinary proteome. Methods In this study, inter-individual and inter-gender variations of urinary proteome were taken into consideration to achieve a representative database. An individual analysis was performed on overnight urine samples from 20 normal volunteers (10 males and 10 females by 1DLC/MS/MS. To obtain a representative result of each sample, a replicate 1DLCMS/MS analysis was performed. The minimal sample number was estimated by statistical analysis. Results For qualitative analysis, less than 5% of new proteins/peptides were identified in a male/female normal group by adding a new sample when the sample number exceeded nine. In addition, in a normal group, the percentage of newly identified proteins/peptides was less than 5% upon adding a new sample when the sample number reached 10. Furthermore, a statistical analysis indicated that urinary proteomes from normal males and females showed different patterns. For quantitative analysis, the variation of protein abundance was defined by spectrum count and western blotting methods. And then the minimal sample number for quantitative proteomic analysis was identified. Conclusions For qualitative analysis, when considering the inter-individual and inter-gender variations, the minimum sample number is 10 and requires a balanced number of males and females in order to obtain a representative normal human urinary proteome. For quantitative analysis, the minimal sample number is much greater than that for qualitative analysis and depends on the experimental methods used for quantification.

  19. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  20. Proteomics wants cRacker: automated standardized data analysis of LC-MS derived proteomic data.

    Science.gov (United States)

    Zauber, Henrik; Schulze, Waltraud X

    2012-11-02

    The large-scale analysis of thousands of proteins under various experimental conditions or in mutant lines has gained more and more importance in hypothesis-driven scientific research and systems biology in the past years. Quantitative analysis by large scale proteomics using modern mass spectrometry usually results in long lists of peptide ion intensities. The main interest for most researchers, however, is to draw conclusions on the protein level. Postprocessing and combining peptide intensities of a proteomic data set requires expert knowledge, and the often repetitive and standardized manual calculations can be time-consuming. The analysis of complex samples can result in very large data sets (lists with several 1000s to 100,000 entries of different peptides) that cannot easily be analyzed using standard spreadsheet programs. To improve speed and consistency of the data analysis of LC-MS derived proteomic data, we developed cRacker. cRacker is an R-based program for automated downstream proteomic data analysis including data normalization strategies for metabolic labeling and label free quantitation. In addition, cRacker includes basic statistical analysis, such as clustering of data, or ANOVA and t tests for comparison between treatments. Results are presented in editable graphic formats and in list files.

  1. Automation, parallelism, and robotics for proteomics.

    Science.gov (United States)

    Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F

    2006-07-01

    The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas.

  2. Proteomic analysis of PBMCs: characterization of potential HIV-associated proteins

    Directory of Open Access Journals (Sweden)

    Yin Lin

    2010-03-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 pandemic has continued unabated for nearly 30 years. To better understand the influence of virus on host cells, we performed the differential proteome research of peripheral blood mononuclear cells (PBMCs from HIV-positive patients and healthy controls. Results 26 protein spots with more than 1.5-fold difference were detected in two dimensional electrophoresis (2DE gels. 12 unique up-regulated and one down-regulated proteins were identified in HIV-positive patients compared with healthy donors. The mRNA expression of 10 genes was analyzed by real time RT-PCR. It shows that the mRNA expression of talin-1, vinculin and coronin-1C were up-regulated in HIV positive patients and consistent with protein expression. Western blotting analysis confirmed the induction of fragments of vinculin, talin-1 and filamin-A in pooled and most part of individual HIV-positive clinical samples. Bioinformatic analysis showed that a wide host protein network was disrupted in HIV-positive patients. Conclusions Together, this work provided useful information to facilitate further investigation of the underlying mechanism of HIV and host cell protein interactions, and discovered novel potential biomarkers such as fragment of vinculin, filamin-A and talin-1 for anti-HIV research.

  3. Expanding the bovine milk proteome through extensive fractionation

    DEFF Research Database (Denmark)

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne

    2013-01-01

    Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human...... of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk...... nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection...

  4. Spermatogenesis in mammals: proteomic insights.

    Science.gov (United States)

    Chocu, Sophie; Calvel, Pierre; Rolland, Antoine D; Pineau, Charles

    2012-08-01

    Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling

  5. Polyphemus, Odysseus and the ovine milk proteome.

    Science.gov (United States)

    Cunsolo, Vincenzo; Fasoli, Elisa; Di Francesco, Antonella; Saletti, Rosaria; Muccilli, Vera; Gallina, Serafina; Righetti, Pier Giorgio; Foti, Salvatore

    2017-01-30

    In the last years the amount of ovine milk production, mainly used to formulate a wide range of different and exclusive dairy products often categorized as gourmet food, has been progressively increasing. Taking also into account that sheep milk (SM) also appears to be potentially less allergenic than cow's one, an in-depth information about its protein composition is essential to improve the comprehension of its potential benefits for human consumption. The present work reports the results of an in-depth characterization of SM whey proteome, carried out by coupling the CPLL technology with SDS-PAGE and high resolution UPLC-nESI MS/MS analysis. This approach allowed the identification of 718 different protein components, 644 of which are from unique genes. Particularly, this identification has expanded literature data about sheep whey proteome by 193 novel proteins previously undetected, many of which are involved in the defence/immunity mechanisms or in the nutrient delivery system. A comparative analysis of SM proteome known to date with cow's milk proteome, evidenced that while about 29% of SM proteins are also present in CM, 71% of the identified components appear to be unique of SM proteome and include a heterogeneous group of components which seem to have health-promoting benefits. The data have been deposited to the ProteomeXchange with identifier . Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Coming Age of Complete, Accurate, and Ubiquitous Proteomes

    DEFF Research Database (Denmark)

    Mann, M.; Kulak, N.A.; Nagaraj, N.

    2013-01-01

    High-resolution mass spectrometry (MS)-based proteomics has progressed tremendously over the years. For model organisms like yeast, we can now quantify complete proteomes in just a few hours. Developments discussed in this Perspective will soon enable complete proteome analysis of mammalian cells...

  7. A novel method for transmitting southern rice black-streaked dwarf virus to rice without insect vector.

    Science.gov (United States)

    Yu, Lu; Shi, Jing; Cao, Lianlian; Zhang, Guoping; Wang, Wenli; Hu, Deyu; Song, Baoan

    2017-08-15

    Southern rice black-streaked dwarf virus (SRBSDV) has spread from the south of China to the north of Vietnam in the past few years, and has severely influenced rice production. However, previous study of traditional SRBSDV transmission method by the natural virus vector, the white-backed planthopper (WBPH, Sogatella furcifera), in the laboratory, researchers are frequently confronted with lack of enough viral samples due to the limited life span of infected vectors and rice plants and low virus acquisition and inoculation efficiency by the vector. Meanwhile, traditional mechanical inoculation of virus only apply to dicotyledon because of the higher content of lignin in the leaves of the monocot. Therefore, establishing an efficient and persistent-transmitting model, with a shorter virus transmission time and a higher virus transmission efficiency, for screening novel anti-SRBSDV drugs is an urgent need. In this study, we firstly reported a novel method for transmitting SRBSDV in rice using the bud-cutting method. The transmission efficiency of SRBSDV in rice was investigated via the polymerase chain reaction (PCR) method and the replication of SRBSDV in rice was also investigated via the proteomics analysis. Rice infected with SRBSDV using the bud-cutting method exhibited similar symptoms to those infected by the WBPH, and the transmission efficiency (>80.00%), which was determined using the PCR method, and the virus transmission time (30 min) were superior to those achieved that transmitted by the WBPH. Proteomics analysis confirmed that SRBSDV P1, P2, P3, P4, P5-1, P5-2, P6, P8, P9-1, P9-2, and P10 proteins were present in infected rice seedlings infected via the bud-cutting method. The results showed that SRBSDV could be successfully transmitted via the bud-cutting method and plants infected SRBSDV exhibited the symptoms were similar to those transmitted by the WBPH. Therefore, the use of the bud-cutting method to generate a cheap, efficient, reliable supply of

  8. Cidofovir Activity against Poxvirus Infections

    Directory of Open Access Journals (Sweden)

    Robert Snoeck

    2010-12-01

    Full Text Available Cidofovir [(S-1-(3-hydroxy-2-phosphonylmethoxypropylcytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV retinitis in AIDS patients. Cidofovir (CDV has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox, cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections.

  9. Glycoproteins and Glycosylation Site Assignments in Cereal seed Proteomes

    DEFF Research Database (Denmark)

    Dedvisitsakul, Plaipol

    The study of plant proteomes is important to further the understanding of biological processes and enhance the agronomical and nutritional value of crops and food products. To gain deeper understanding on the proteome level, it is important to characterize posttranslational modifications. Glycosy......The study of plant proteomes is important to further the understanding of biological processes and enhance the agronomical and nutritional value of crops and food products. To gain deeper understanding on the proteome level, it is important to characterize posttranslational modifications...

  10. Mathematical biodescriptors of proteomics maps: background and applications.

    Science.gov (United States)

    Basak, Subhash C; Gute, Brian D

    2008-05-01

    This article reviews recent developments in the formulation and application of biodescriptors to characterize proteomics maps. Such biodescriptors can be derived by applying techniques from discrete mathematics (graph theory, linear algebra and information theory). This review focuses on the development of biodescriptors for proteomics maps derived from 2D gel electrophoresis. Preliminary results demonstrated that such descriptors have a reasonable ability to differentiate between proteomics patterns that result from exposure to closely related individual chemicals and complex mixtures, such as the jet fuel JP-8. Further research is required to evaluate the utility of these proteomics-based biodescriptors for drug discovery and predictive toxicology.

  11. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Barnaby, Omar; Steen, Hanno

    2015-01-01

    Synovial fluid is present in all joint cavities, and protects the articular cartilage surfaces in large by lubricating the joint, thus reducing friction. Several studies have described changes in the protein composition of synovial fluid in patients with joint disease. However, the protein concen...... data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935....

  12. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    Science.gov (United States)

    2007-12-01

    that fascinating fungus known as Coccidioides. I also want to thank the UA Mass Spectrometry Facility and the UA Proteomics Consortium, especially...W. & N. N. Kav. 2006. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6: 5995-6007. 127. de Godoy, L. M., J. V...IDENTIFICATION OF PROTEIN VACCINE CANDIDATES USING COMPREHENSIVE PROTEOMIC ANALYSIS STRATEGIES by James G. Rohrbough

  13. Serum proteome profiling in canine idiopathic dilated cardiomyopathy using TMT-based quantitative proteomics approach.

    Science.gov (United States)

    Bilić, Petra; Guillemin, Nicolas; Kovačević, Alan; Beer Ljubić, Blanka; Jović, Ines; Galan, Asier; Eckersall, Peter David; Burchmore, Richard; Mrljak, Vladimir

    2018-05-15

    Idiopathic dilated cardiomyopathy (iDCM) is a primary myocardial disorder with an unknown aetiology, characterized by reduced contractility and ventricular dilation of the left or both ventricles. Naturally occurring canine iDCM was used herein to identify serum proteomic signature of the disease compared to the healthy state, providing an insight into underlying mechanisms and revealing proteins with biomarker potential. To achieve this, we used high-throughput label-based quantitative LC-MS/MS proteomics approach and bioinformatics analysis of the in silico inferred interactome protein network created from the initial list of differential proteins. To complement the proteomic analysis, serum biochemical parameters and levels of know biomarkers of cardiac function were measured. Several proteins with biomarker potential were identified, such as inter-alpha-trypsin inhibitor heavy chain H4, microfibril-associated glycoprotein 4 and apolipoprotein A-IV, which were validated using an independent method (Western blotting) and showed high specificity and sensitivity according to the receiver operating characteristic curve analysis. Bioinformatics analysis revealed involvement of different pathways in iDCM, such as complement cascade activation, lipoprotein particles dynamics, elastic fibre formation, GPCR signalling and respiratory electron transport chain. Idiopathic dilated cardiomyopathy is a severe primary myocardial disease of unknown cause, affecting both humans and dogs. This study is a contribution to the canine heart disease research by means of proteomic and bioinformatic state of the art analyses, following similar approach in human iDCM research. Importantly, we used serum as non-invasive and easily accessible biological source of information and contributed to the scarce data on biofluid proteome research on this topic. Bioinformatics analysis revealed biological pathways modulated in canine iDCM with potential of further targeted research. Also, several

  14. Proteomics: Protein Identification Using Online Databases

    Science.gov (United States)

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  15. Modification-specific proteomics in plant biology

    DEFF Research Database (Denmark)

    Ytterberg, A Jimmy; Jensen, Ole N

    2010-01-01

    and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM...

  16. Biomarker discovery in mass spectrometry-based urinary proteomics.

    Science.gov (United States)

    Thomas, Samuel; Hao, Ling; Ricke, William A; Li, Lingjun

    2016-04-01

    Urinary proteomics has become one of the most attractive topics in disease biomarker discovery. MS-based proteomic analysis has advanced continuously and emerged as a prominent tool in the field of clinical bioanalysis. However, only few protein biomarkers have made their way to validation and clinical practice. Biomarker discovery is challenged by many clinical and analytical factors including, but not limited to, the complexity of urine and the wide dynamic range of endogenous proteins in the sample. This article highlights promising technologies and strategies in the MS-based biomarker discovery process, including study design, sample preparation, protein quantification, instrumental platforms, and bioinformatics. Different proteomics approaches are discussed, and progresses in maximizing urinary proteome coverage and standardization are emphasized in this review. MS-based urinary proteomics has great potential in the development of noninvasive diagnostic assays in the future, which will require collaborative efforts between analytical scientists, systems biologists, and clinicians. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan O.; Prášil, Ilja T.; Renaut, Jenny

    2018-01-01

    HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic

  18. Proteomic approaches in cancer risk and response assessment.

    Science.gov (United States)

    Petricoin, Emanuel F; Liotta, Lance A

    2004-02-01

    Proteomics is more than just a list-generating exercise where increases or decreases in protein expression are identified. Proteomic technologies will ultimately characterize information-flow through the protein circuitry that interconnects the extracellular microenvironment to the serum or plasma macroenvironment through intracellular signaling systems and their control of gene transcription. The nature of this information can be a cause or a consequence of disease processes and how patients respond to therapy. Analysis of human cancer as a model for how proteomics can have an impact at the bedside can take advantage of several promising new proteomic technologies. These technologies are being developed for early detection and risk assessment, therapeutic targeting and patient-tailored therapy.

  19. Proteomic approach to nanotoxicity.

    Science.gov (United States)

    Matysiak, Magdalena; Kapka-Skrzypczak, Lucyna; Brzóska, Kamil; Gutleb, Arno C; Kruszewski, Marcin

    2016-03-30

    In recent years a large number of engineered nanomaterials (NMs) have been developed with promising technical benefits for consumers and medical appliances. In addition to already known potentially advantageous biological properties (antibiotic, antifungal and antiviral activity) of NMs, many new medical applications of NMs are foreseen, such as drug carriers, contrast agents, radiopharmaceuticals and many others. However, there is increasing concern about potential environmental and health effects due to NMs exposure. An increasing body of evidence suggests that NMs may trigger undesirable hazardous interactions with biological systems with potential to generate harmful effects. In this review we summarized a current state of knowledge on the proteomics approaches to nanotoxicity, including protein corona formation, in vitro and in vivo effects of exposure to NMs on proteome of different classes of organisms, from bacteria and plants to mammals. The effects of NMs on the proteome of environmentally relevant organisms are also described. Despite the benefit that development of nanotechnology may bring to the society, there are still major gaps of knowledge on the influence of nanomaterials on human health and the environment. Thus, it seems necessary to conduct further interdisciplinary research to fill the knowledge gaps in NM toxicity, using more holistic approaches than offered by conventional biological techniques. “OMICS” techniques will certainly help researchers in this field. In this paper we summarized the current stage of knowledge of the effects of nanoparticles on the proteome of different organisms, including those commonly used as an environmentally relevant indicator organisms.

  20. The quest of the human proteome and the missing proteins: digging deeper.

    Science.gov (United States)

    Reddy, Panga Jaipal; Ray, Sandipan; Srivastava, Sanjeeva

    2015-05-01

    Given the diverse range of transcriptional and post-transcriptional mechanisms of gene regulation, the estimates of the human proteome is likely subject to scientific surprises as the field of proteomics has gained momentum worldwide. In this regard, the establishment of the "Human Proteome Draft" using high-resolution mass spectrometry (MS), tissue microarrays, and immunohistochemistry by three independent research groups (laboratories of Pandey, Kuster, and Uhlen) accelerated the pace of proteomics research. The Chromosome Centric Human Proteome Project (C-HPP) has taken initiative towards the completion of the Human Proteome Project (HPP) so as to understand the proteomics correlates of common complex human diseases and biological diversity, not to mention person-to-person and population differences in response to drugs, nutrition, vaccines, and other health interventions and host-environment interactions. Although high-resolution MS-based and antibody microarray approaches have shown enormous promises, we are still unable to map the whole human proteome due to the presence of numerous "missing proteins." In December 2014, at the Indian Institute of Technology Bombay, Mumbai the 6(th) Annual Meeting of the Proteomics Society, India (PSI) and the International Proteomics Conference was held. As part of this interdisciplinary summit, a panel discussion session on "The Quest of the Human Proteome and Missing Proteins" was organized. Eminent scientists in the field of proteomics and systems biology, including Akhilesh Pandey, Gilbert S. Omenn, Mark S. Baker, and Robert L. Mortiz, shed light on different aspects of the human proteome drafts and missing proteins. Importantly, the possible reasons for the "missing proteins" in shotgun MS workflow were identified and debated by experts as low tissue expression, lack of enzymatic digestion site, or protein lost during extraction, among other contributing factors. To capture the missing proteins, the experts' collective

  1. Clinical proteomics: Current status, challenges, and future perspectives

    Directory of Open Access Journals (Sweden)

    Shyh-Horng Chiou

    2011-01-01

    Full Text Available This account will give an overview and evaluation of the current advances in mass spectrometry (MS-based proteomics platforms and technology. A general review of some background information concerning the application of these methods in the characterization of molecular sizes and related protein expression profiles associated with different types of cells under varied experimental conditions will be presented. It is intended to provide a concise and succinct overview to those clinical researchers first exposed to this foremost powerful methodology in modern life sciences of postgenomic era. Proteomic characterization using highly sophisticated and expensive instrumentation of MS has been used to characterize biological samples of complex protein mixtures with vastly different protein structure and composition. These systems are then used to highlight the versatility and potential of the MS-based proteomic strategies for facilitating protein expression analysis of various disease-related organisms or tissues of interest. Major MS-based strategies reviewed herein include (1 matrix-assisted laser desorption ionization-MS and electron-spray ionization proteomics; (2 one-dimensional or two-dimensional gel-based proteomics; (3 gel-free shotgun proteomics in conjunction with liquid chromatography/tandem MS; (4 Multiple reaction monitoring coupled tandem MS quantitative proteomics and; (5 Phosphoproteomics based on immobilized metal affinity chromatography and liquid chromatography-MS/MS.

  2. A community proposal to integrate proteomics activities in ELIXIR.

    Science.gov (United States)

    Vizcaíno, Juan Antonio; Walzer, Mathias; Jiménez, Rafael C; Bittremieux, Wout; Bouyssié, David; Carapito, Christine; Corrales, Fernando; Ferro, Myriam; Heck, Albert J R; Horvatovich, Peter; Hubalek, Martin; Lane, Lydie; Laukens, Kris; Levander, Fredrik; Lisacek, Frederique; Novak, Petr; Palmblad, Magnus; Piovesan, Damiano; Pühler, Alfred; Schwämmle, Veit; Valkenborg, Dirk; van Rijswijk, Merlijn; Vondrasek, Jiri; Eisenacher, Martin; Martens, Lennart; Kohlbacher, Oliver

    2017-01-01

    Computational approaches have been major drivers behind the progress of proteomics in recent years. The aim of this white paper is to provide a framework for integrating computational proteomics into ELIXIR in the near future, and thus to broaden the portfolio of omics technologies supported by this European distributed infrastructure. This white paper is the direct result of a strategy meeting on 'The Future of Proteomics in ELIXIR' that took place in March 2017 in Tübingen (Germany), and involved representatives of eleven ELIXIR nodes. These discussions led to a list of priority areas in computational proteomics that would complement existing activities and close gaps in the portfolio of tools and services offered by ELIXIR so far. We provide some suggestions on how these activities could be integrated into ELIXIR's existing platforms, and how it could lead to a new ELIXIR use case in proteomics. We also highlight connections to the related field of metabolomics, where similar activities are ongoing. This white paper could thus serve as a starting point for the integration of computational proteomics into ELIXIR. Over the next few months we will be working closely with all stakeholders involved, and in particular with other representatives of the proteomics community, to further refine this paper.

  3. "Does understanding the brain need proteomics and does understanding proteomics need brains?"--Second HUPO HBPP Workshop hosted in Paris.

    Science.gov (United States)

    Hamacher, Michael; Klose, Joachim; Rossier, Jean; Marcus, Katrin; Meyer, Helmut E

    2004-07-01

    The second Human Brain Proteome Project (HBPP) Workshop of the Human Proteome Organisation (HUPO) took place at the Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI) from April 23-24, 2004. During two days, more than 70 attendees from Europe, Asia and the US came together to decide basic strategic approaches, standards and the beginning of a pilot phase prior to further studies of the human brain proteome. The international consortium presented the technological and scientific portfolio and scheduled the time table for the next year.

  4. Pre-fractionation strategies to resolve pea (Pisum sativum sub-proteomes

    Directory of Open Access Journals (Sweden)

    Claudia Nicole Meisrimler

    2015-10-01

    Full Text Available Legumes are important crop plants and pea (Pisum sativum L. has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula G. allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins. Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed.

  5. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  6. Characterization of individual mouse cerebrospinal fluid proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles; Orton, Daniel J.; Moore, Ronald J.; Smith, Richard D.

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% false discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.

  7. Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis.

    Science.gov (United States)

    He, Ding; Pengtao, Gong; Ju, Yang; Jianhua, Li; He, Li; Guocai, Zhang; Xichen, Zhang

    2017-04-01

    Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis , we detected 2 strains of T. vaginalis ; the virus-infected (V + ) and uninfected (V - ) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V + compared with V - isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V + isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V + and V - isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

  8. Inspection, visualisation and analysis of quantitative proteomics data

    OpenAIRE

    Gatto, Laurent

    2016-01-01

    Material Quantitative Proteomics and Data Analysis Course. 4 - 5 April 2016, Queen Hotel, Chester, UK Table D - Inspection, visualisation and analysis of quantitative proteomics data, Laurent Gatto (University of Cambridge)

  9. Non-Human Primate Models of Orthopoxvirus Infections

    Directory of Open Access Journals (Sweden)

    Anne Schmitt

    2014-06-01

    Full Text Available Smallpox, one of the most destructive diseases, has been successfully eradicated through a worldwide vaccination campaign. Since immunization programs have been stopped, the number of people with vaccinia virus induced immunity is declining. This leads to an increase in orthopoxvirus (OPXV infections in humans, as well as in animals. Additionally, potential abuse of Variola virus (VARV, the causative agent of smallpox, or monkeypox virus, as agents of bioterrorism, has renewed interest in development of antiviral therapeutics and of safer vaccines. Due to its high risk potential, research with VARV is restricted to two laboratories worldwide. Therefore, numerous animal models of other OPXV infections have been developed in the last decades. Non-human primates are especially suitable due to their close relationship to humans. This article provides a review about on non-human primate models of orthopoxvirus infections.

  10. Revisiting biomarker discovery by plasma proteomics

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Holdt, Lesca M; Teupser, Daniel

    2017-01-01

    slow rate. As described in this review, mass spectrometry (MS)-based proteomics has become a powerful technology in biological research and it is now poised to allow the characterization of the plasma proteome in great depth. Previous "triangular strategies" aimed at discovering single biomarker...

  11. Elucidation of hepatitis C virus transmission and early diversification by single genome sequencing.

    Science.gov (United States)

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Blair, Lily M; Giorgi, Elena E; Parrish, Erica H; Learn, Gerald H; Hraber, Peter; Goepfert, Paul A; Saag, Michael S; Denny, Thomas N; Haynes, Barton F; Hahn, Beatrice H; Ribeiro, Ruy M; Perelson, Alan S; Korber, Bette T; Bhattacharya, Tanmoy; Shaw, George M

    2012-01-01

    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.

  12. Expanding the bovine milk proteome through extensive fractionation.

    Science.gov (United States)

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne; Røntved, Christine Maria

    2013-01-01

    Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk collected from documented healthy cows in early lactation. Four simple and industrially applicable techniques exploring the physical and chemical properties of milk, including acidification, filtration, and centrifugation, were used for separation of the proteins. This resulted in 5 different fractions, whose content of proteins were compared with the proteins of nonfractionated milk using 2-dimensional liquid chromatography tandem mass spectrometry analysis. To validate the proteome analysis, spectral counts and ELISA were performed on 7 proteins using the ELISA for estimation of the detection sensitivity limit of the 2-dimensional liquid chromatography tandem mass spectrometry analysis. Each fractionation technique resulted in identification of a unique subset of proteins. However, high-speed centrifugation of milk to whey was by far the best method to achieve high and repeatable proteome coverage. The total number of milk proteins initially detected in nonfractionated milk and the fractions were 635 in 2 replicates. Removal of dominant proteins and filtering for redundancy across the

  13. Comprehensive proteomic analysis of human pancreatic juice

    DEFF Research Database (Denmark)

    Grønborg, Mads; Bunkenborg, Jakob; Kristiansen, Troels Zakarias

    2004-01-01

    Proteomic technologies provide an excellent means for analysis of body fluids for cataloging protein constituents and identifying biomarkers for early detection of cancers. The biomarkers currently available for pancreatic cancer, such as CA19-9, lack adequate sensitivity and specificity...... contributing to late diagnosis of this deadly disease. In this study, we carried out a comprehensive characterization of the "pancreatic juice proteome" in patients with pancreatic adenocarcinoma. Pancreatic juice was first fractionated by 1-dimensional gel electrophoresis and subsequently analyzed by liquid...... in this study could be directly assessed for their potential as biomarkers for pancreatic cancer by quantitative proteomics methods or immunoassays....

  14. Mass Spectrometry for Translational Proteomics: Progress and Clinical Implications

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Erin Shammel; Liu, Tao; Petyuk, Vladislav A.; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; Anderson, Gordon A.; Smith, Richard D.

    2012-08-31

    Mass spectrometry (MS)-based proteomics measurements have become increasingly utilized in a wide range of biological and biomedical applications, and have significantly enhanced the understanding of the complex and dynamic nature of the proteome and its connections to biology and diseases. While some MS techniques such as those for targeted analysis are increasingly applied with great success, others such as global quantitative analysis (for e.g. biomarker discovery) are more challenging and continue to be developed and refined to provide the desired throughput, sensitivity and/ or specificity. New MS capabilities and proteomics-based pipelines/strategies also keep enhancing for the advancement of clinical proteomics applications such as protein biomarker discovery and validation. Herein, we provide a brief review to summarize the current state of MS-based proteomics with respect to its advantages and present limitations, while highlighting its potential in future clinical applications.

  15. Tissue-based map of the human proteome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.

    2015-01-01

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transc...

  16. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs......In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  17. Suppression of Poxvirus Replication by Resveratrol.

    Science.gov (United States)

    Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong

    2017-01-01

    Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  18. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  19. Orthopoxvirus species and strain differences in cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Bengali, Zain; Satheshkumar, P.S. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210 (United States); Moss, Bernard, E-mail: bmoss@nih.gov [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210 (United States)

    2012-11-25

    Vaccinia virus (VACV) enters cells by a low pH endosomal route or by direct fusion with the plasma membrane. We previously found differences in entry properties of several VACV strains: entry of WR was enhanced by low pH, reduced by bafilomycin A1 and relatively unaffected by heparin, whereas entry of IHD-J, Copenhagen and Elstree were oppositely affected. Since binding and entry modes may have been selected by specific conditions of in vitro propagation, we now examined the properties of three distinct, recently isolated cowpox viruses and a monkeypox virus as well as additional VACV and cowpox virus strains. The recent isolates were more similar to WR than to other VACV strains, underscoring the biological importance of endosomal entry by orthopoxviruses. Sequence comparisons, gene deletions and gene swapping experiments indicated that viral determinants, other than or in addition to the A26 and A25 'fusion-suppressor' proteins, impact entry properties.

  20. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components*

    Science.gov (United States)

    van Herwijnen, Martijn J.C.; Zonneveld, Marijke I.; Goerdayal, Soenita; Nolte – 't Hoen, Esther N.M.; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A.F.; Redegeld, Frank A.; Wauben, Marca H.M.

    2016-01-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  1. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components.

    Science.gov (United States)

    van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M

    2016-11-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  2. Bovine neonatal pancytopenia--comparative proteomic characterization of two BVD vaccines and the producer cell surface proteome (MDBK).

    Science.gov (United States)

    Euler, Kerstin N; Hauck, Stefanie M; Ueffing, Marius; Deeg, Cornelia A

    2013-01-23

    Bovine neonatal pancytopenia (BNP) is a disease syndrome in newborn calves of up to four weeks of age, first observed in southern Germany in 2006. By now, cases have been reported in several countries around the globe. Many affected calves die within days due to multiple haemorrhages, thrombocytopenia, leukocytopenia and bone marrow depletion. A certain vaccine directed against Bovine Virus Diarrhoea Virus (BVDV) was recently shown to be associated with BNP pathogenesis. Immunized cows develop alloantibodies that are transferred to newborn calves via colostrum intake. In order to further elucidate BNP pathogenesis, the purpose of this study was to characterize and compare the protein composition of the associated vaccine to another vaccine directed against BVDV not related to BNP and the cell surface proteome of MDBK (Madin-Darby Bovine Kidney) cells, the cell line used for production of the associated vaccine. By SDS-PAGE and mass spectrometry, we were able to detect several coagulation-related and immune modulatory proteins, as well as cellular and serum derived molecules being shared between the associated vaccine and MDBK cells. Furthermore, the number of proteins identified in the BNP related vaccine was almost as high as the number of surface proteins detected on MDBK cells and exceeded the amount of proteins identified in the non-BNP related vaccine over 3.5 fold. The great amount of shared cellular and serum derived proteins confirm that the BNP associated vaccine contained many molecules originating from MDBK cells and vaccine production. The respective vaccine was not purified enough to prevent the development of alloantibodies. To narrow down possible candidate proteins, those most likely to represent a trigger for BNP pathogenesis are presented in this study, giving a fundament for further analysis in future research.

  3. Bovine neonatal pancytopenia - Comparative proteomic characterization of two BVD vaccines and the producer cell surface proteome (MDBK

    Directory of Open Access Journals (Sweden)

    Euler Kerstin N

    2013-01-01

    Full Text Available Abstract Background Bovine neonatal pancytopenia (BNP is a disease syndrome in newborn calves of up to four weeks of age, first observed in southern Germany in 2006. By now, cases have been reported in several countries around the globe. Many affected calves die within days due to multiple haemorrhages, thrombocytopenia, leukocytopenia and bone marrow depletion. A certain vaccine directed against Bovine Virus Diarrhoea Virus (BVDV was recently shown to be associated with BNP pathogenesis. Immunized cows develop alloantibodies that are transferred to newborn calves via colostrum intake. In order to further elucidate BNP pathogenesis, the purpose of this study was to characterize and compare the protein composition of the associated vaccine to another vaccine directed against BVDV not related to BNP and the cell surface proteome of MDBK (Madin-Darby Bovine Kidney cells, the cell line used for production of the associated vaccine. Results By SDS-PAGE and mass spectrometry, we were able to detect several coagulation-related and immune modulatory proteins, as well as cellular and serum derived molecules being shared between the associated vaccine and MDBK cells. Furthermore, the number of proteins identified in the BNP related vaccine was almost as high as the number of surface proteins detected on MDBK cells and exceeded the amount of proteins identified in the non-BNP related vaccine over 3.5 fold. The great amount of shared cellular and serum derived proteins confirm that the BNP associated vaccine contained many molecules originating from MDBK cells and vaccine production. Conclusions The respective vaccine was not purified enough to prevent the development of alloantibodies. To narrow down possible candidate proteins, those most likely to represent a trigger for BNP pathogenesis are presented in this study, giving a fundament for further analysis in future research.

  4. Neolithic and Medieval virus genomes reveal complex evolution of Hepatitis B.

    Science.gov (United States)

    Krause-Kyora, Ben; Susat, Julian; Key, Felix M; Kühnert, Denise; Bosse, Esther; Immel, Alexander; Rinne, Christoph; Kornell, Sabin-Christin; Yepes, Diego; Franzenburg, Sören; Heyne, Henrike O; Meier, Thomas; Lösch, Sandra; Meller, Harald; Friederich, Susanne; Nicklisch, Nicole; Alt, Kurt W; Schreiber, Stefan; Tholey, Andreas; Herbig, Alexander; Nebel, Almut; Krause, Johannes

    2018-05-10

    The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, yet its origin and evolutionary history are still unclear and controversial. Here, we report the analysis of three ancient HBV genomes recovered from human skeletons found at three different archaeological sites in Germany. We reconstructed two Neolithic and one medieval HBV genomes by de novo assembly from shotgun DNA sequencing data. Additionally, we observed HBV-specific peptides using paleo-proteomics. Our results show that HBV circulates in the European population for at least 7000 years. The Neolithic HBV genomes show a high genomic similarity to each other. In a phylogenetic network, they do not group with any human-associated HBV genome and are most closely related to those infecting African non-human primates. These ancient virus forms appear to represent distinct lineages that have no close relatives today and possibly went extinct. Our results reveal the great potential of ancient DNA from human skeletons in order to study the long-time evolution of blood borne viruses. © 2018, Krause-Kyora et al.

  5. PatternLab for proteomics: a tool for differential shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Yates John R

    2008-07-01

    Full Text Available Abstract Background A goal of proteomics is to distinguish between states of a biological system by identifying protein expression differences. Liu et al. demonstrated a method to perform semi-relative protein quantitation in shotgun proteomics data by correlating the number of tandem mass spectra obtained for each protein, or "spectral count", with its abundance in a mixture; however, two issues have remained open: how to normalize spectral counting data and how to efficiently pinpoint differences between profiles. Moreover, Chen et al. recently showed how to increase the number of identified proteins in shotgun proteomics by analyzing samples with different MS-compatible detergents while performing proteolytic digestion. The latter introduced new challenges as seen from the data analysis perspective, since replicate readings are not acquired. Results To address the open issues above, we present a program termed PatternLab for proteomics. This program implements existing strategies and adds two new methods to pinpoint differences in protein profiles. The first method, ACFold, addresses experiments with less than three replicates from each state or having assays acquired by different protocols as described by Chen et al. ACFold uses a combined criterion based on expression fold changes, the AC test, and the false-discovery rate, and can supply a "bird's-eye view" of differentially expressed proteins. The other method addresses experimental designs having multiple readings from each state and is referred to as nSVM (natural support vector machine because of its roots in evolutionary computing and in statistical learning theory. Our observations suggest that nSVM's niche comprises projects that select a minimum set of proteins for classification purposes; for example, the development of an early detection kit for a given pathology. We demonstrate the effectiveness of each method on experimental data and confront them with existing strategies

  6. Clinical proteomic analysis of scrub typhus infection.

    Science.gov (United States)

    Park, Edmond Changkyun; Lee, Sang-Yeop; Yun, Sung Ho; Choi, Chi-Won; Lee, Hayoung; Song, Hyun Seok; Jun, Sangmi; Kim, Gun-Hwa; Lee, Chang-Seop; Kim, Seung Il

    2018-01-01

    Scrub typhus is an acute and febrile infectious disease caused by the Gram-negative α-proteobacterium Orientia tsutsugamushi from the family Rickettsiaceae that is widely distributed in Northern, Southern and Eastern Asia. In the present study, we analysed the serum proteome of scrub typhus patients to investigate specific clinical protein patterns in an attempt to explain pathophysiology and discover potential biomarkers of infection. Serum samples were collected from three patients (before and after treatment with antibiotics) and three healthy subjects. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry was performed to identify differentially abundant proteins using quantitative proteomic approaches. Bioinformatic analysis was then performed using Ingenuity Pathway Analysis. Proteomic analysis identified 236 serum proteins, of which 32 were differentially expressed in normal subjects, naive scrub typhus patients and patients treated with antibiotics. Comparative bioinformatic analysis of the identified proteins revealed up-regulation of proteins involved in immune responses, especially complement system, following infection with O. tsutsugamushi , and normal expression was largely rescued by antibiotic treatment. This is the first proteomic study of clinical serum samples from scrub typhus patients. Proteomic analysis identified changes in protein expression upon infection with O. tsutsugamushi and following antibiotic treatment. Our results provide valuable information for further investigation of scrub typhus therapy and diagnosis.

  7. The path to enlightenment: making sense of genomic and proteomic information.

    Science.gov (United States)

    Maurer, Martin H

    2004-05-01

    Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases and powerful software tools to translate experimental results into meaningful biological hypotheses and answers. In this resource article, I provide a collection of databases and software available on the Internet that are useful to interpret genomic and proteomic data. The article is a toolbox for researchers who have genomic or proteomic datasets and need to put their findings into a biological context.

  8. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  9. The state of proteome profiling in the fungal genus Aspergillus.

    Science.gov (United States)

    Kim, Yonghyun; Nandakumar, M P; Marten, Mark R

    2008-03-01

    Aspergilli are an important genus of filamentous fungi that contribute to a multibillion dollar industry. Since many fungal genome sequencing were recently completed, it would be advantageous to profile their proteome to better understand the fungal cell factory. Here, we review proteomic data generated for the Aspergilli in recent years. Thus far, a combined total of 28 cell surface, 102 secreted and 139 intracellular proteins have been identified based on 10 different studies on Aspergillus proteomics. A summary proteome map highlighting identified proteins in major metabolic pathway is presented.

  10. STRUKTUR PROTEOMIK VIRUS DENGUE DAN MANFAATNYA SEBAGAI TARGET ANTIVIRUS

    Directory of Open Access Journals (Sweden)

    Novia Rachmayanti

    2014-09-01

    Full Text Available AbstrakVirus dengue (DENV telah menyebabkan sekitar 50 juta kasus infeksi demam berdarah setiap tahunnya, akan tetapi hingga saat ini belum terdapat vaksin maupun antivirus yang mampu mencegah atau mengobati penyakit tersebut. Selama pengembangan vaksin dan antivirus, diperoleh berbagai informasi tentang struktur protein DENV yang dapat dimanfaatkan sebagai target obat. Makalah membahas tentang struktur proteomik pada DENV, yaitu glikoprotein pada envelope, NS3 protease, NS3 helikase, NS5 metiltransferase, dan NS5 RNA-dependent RNA polimerase.AbstractDengue virus (DENV has caused over 50 millions infection every year. However, to date neither vaccine nor medicine could be used to prevent or cure the illness. During researches in finding the vaccine or antiviral for DENV, information on DENV protein structure has been obtained which is potentially used as drug target. This paper disscuss DENV proteomic structure that consist of envelope glicoprotein, NS3 protease, NS3 helicase, NS5 methyl-transferase, and NS5 RNA-dependent RNA polymerase.

  11. Scientific Workflow Management in Proteomics

    Science.gov (United States)

    de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus

    2012-01-01

    Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703

  12. PROTEOMICS in aquaculture

    DEFF Research Database (Denmark)

    Rodrigues, Pedro M.; Silva, Tomé S.; Dias, Jorge

    2012-01-01

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous...... growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance...... questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined...

  13. Implementation of proteomics for cancer research: past, present, and future.

    Science.gov (United States)

    Karimi, Parisa; Shahrokni, Armin; Ranjbar, Mohammad R Nezami

    2014-01-01

    Cancer is the leading cause of the death, accounts for about 13% of all annual deaths worldwide. Many different fields of science are collaborating together studying cancer to improve our knowledge of this lethal disease, and find better solutions for diagnosis and treatment. Proteomics is one of the most recent and rapidly growing areas in molecular biology that helps understanding cancer from an omics data analysis point of view. The human proteome project was officially initiated in 2008. Proteomics enables the scientists to interrogate a variety of biospecimens for their protein contents and measure the concentrations of these proteins. Current necessary equipment and technologies for cancer proteomics are mass spectrometry, protein microarrays, nanotechnology and bioinformatics. In this paper, we provide a brief review on proteomics and its application in cancer research. After a brief introduction including its definition, we summarize the history of major previous work conducted by researchers, followed by an overview on the role of proteomics in cancer studies. We also provide a list of different utilities in cancer proteomics and investigate their advantages and shortcomings from theoretical and practical angles. Finally, we explore some of the main challenges and conclude the paper with future directions in this field.

  14. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.

    Science.gov (United States)

    Eckhard, Ulrich; Marino, Giada; Butler, Georgina S; Overall, Christopher M

    2016-03-01

    Proteolytic processing is a pervasive and irreversible post-translational modification that expands the protein universe by generating new proteoforms (protein isoforms). Unlike signal peptide or prodomain removal, protease-generated proteoforms can rarely be predicted from gene sequences. Positional proteomic techniques that enrich for N- or C-terminal peptides from proteomes are indispensable for a comprehensive understanding of a protein's function in biological environments since protease cleavage frequently results in altered protein activity and localization. Proteases often process other proteases and protease inhibitors which perturbs proteolytic networks and potentiates the initial cleavage event to affect other molecular networks and cellular processes in physiological and pathological conditions. This review is aimed at researchers with a keen interest in state of the art systems level positional proteomic approaches that: (i) enable the study of complex protease-protease, protease-inhibitor and protease-substrate crosstalk and networks; (ii) allow the identification of proteolytic signatures as candidate disease biomarkers; and (iii) are expected to fill the Human Proteome Project missing proteins gap. We predict that these methodologies will be an integral part of emerging precision medicine initiatives that aim to customize healthcare, converting reactive medicine into a personalized and proactive approach, improving clinical care and maximizing patient health and wellbeing, while decreasing health costs by eliminating ineffective therapies, trial-and-error prescribing, and adverse drug effects. Such initiatives require quantitative and functional proteome profiling and dynamic disease biomarkers in addition to current pharmacogenomics approaches. With proteases at the pathogenic center of many diseases, high-throughput protein termini identification techniques such as TAILS (Terminal Amine Isotopic Labeling of Substrates) and COFRADIC (COmbined

  15. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions

    Directory of Open Access Journals (Sweden)

    Anna Papa

    2017-05-01

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is transmitted to humans by bite of infected ticks or by direct contact with blood or tissues of viremic patients or animals. It causes to humans a severe disease with fatality up to 30%. The current knowledge about the vector-host-CCHFV interactions is very limited due to the high-level containment required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most competent virus vectors. CCHFV evades the tick immune response, and following its replication in the lining of the tick's midgut, it is disseminated by the hemolymph in the salivary glands and reproductive organs. The introduction of salivary gland secretions into the host cells is the major route via which CCHFV enters the host. Following an initial amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status of the host may affect the release of cytokines which play a major role in disease progression and outcome. It is expected that the use of new technology of metabolomics, transcriptomics and proteomics will lead to improved understanding of CCHFV-host interactions and identify potential targets for blocking the CCHFV transmission.

  16. The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery

    Science.gov (United States)

    Savino, Rocco; Paduano, Sergio; Preianò, Mariaimmacolata; Terracciano, Rosa

    2012-01-01

    In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, which might increase chances of success and reduce the occurrence of drug resistance. Chemical proteomics, by analyzing the drug interactome, strongly contributes to accelerate the process of new druggable targets discovery. In the research area of clinical proteomics, proteome and peptidome mass spectrometry-profiling of human bodily fluid (plasma, serum, urine and so on), as well as of tissue and of cells, represents a promising tool for novel biomarker and eventually new druggable targets discovery. In the present review we provide a survey of current strategies of functional, chemical and clinical proteomics. Major issues will be presented for proteomic technologies used for the discovery of biomarkers for early disease diagnosis and identification of new drug targets. PMID:23203042

  17. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    DEFF Research Database (Denmark)

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S

    2015-01-01

    and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions...

  18. Shaping Biological Knowledge: Applications in Proteomics

    Directory of Open Access Journals (Sweden)

    R. Appel

    2006-04-01

    Full Text Available The central dogma of molecular biology has provided a meaningful principle for data integration in the field of genomics. In this context, integration reflects the known transitions from a chromosome to a protein sequence: transcription, intron splicing, exon assembly and translation. There is no such clear principle for integrating proteomics data, since the laws governing protein folding and interactivity are not quite understood. In our effort to bring together independent pieces of information relative to proteins in a biologically meaningful way, we assess the bias of bioinformatics resources and consequent approximations in the framework of small-scale studies. We analyse proteomics data while following both a data-driven (focus on proteins smaller than 10 kDa and a hypothesis-driven (focus on whole bacterial proteomes approach. These applications are potentially the source of specialized complements to classical biological ontologies.

  19. Shaping biological knowledge: applications in proteomics.

    Science.gov (United States)

    Lisacek, F; Chichester, C; Gonnet, P; Jaillet, O; Kappus, S; Nikitin, F; Roland, P; Rossier, G; Truong, L; Appel, R

    2004-01-01

    The central dogma of molecular biology has provided a meaningful principle for data integration in the field of genomics. In this context, integration reflects the known transitions from a chromosome to a protein sequence: transcription, intron splicing, exon assembly and translation. There is no such clear principle for integrating proteomics data, since the laws governing protein folding and interactivity are not quite understood. In our effort to bring together independent pieces of information relative to proteins in a biologically meaningful way, we assess the bias of bioinformatics resources and consequent approximations in the framework of small-scale studies. We analyse proteomics data while following both a data-driven (focus on proteins smaller than 10 kDa) and a hypothesis-driven (focus on whole bacterial proteomes) approach. These applications are potentially the source of specialized complements to classical biological ontologies.

  20. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.

    Science.gov (United States)

    Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru

    2017-06-13

    Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both

  1. The Path to Enlightenment: Making Sense of Genomic and Proteomic Information

    OpenAIRE

    Maurer, Martin H.

    2016-01-01

    Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases an...

  2. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue.

    Directory of Open Access Journals (Sweden)

    Monique Ramos de Oliveira Trugilho

    2017-05-01

    Full Text Available Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet

  3. Bayesian methods for proteomic biomarker development

    Directory of Open Access Journals (Sweden)

    Belinda Hernández

    2015-12-01

    In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.

  4. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    Science.gov (United States)

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  5. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2009-09-01

    Full Text Available Abstract Background Borna disease virus (BDV is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa. BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results Class III viral fusion proteins (VFP encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G. Conclusion These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes.

  6. Proteomics and circadian rhythms: It’s all about signaling!

    Science.gov (United States)

    Mauvoisin, Daniel; Dayon, Loïc; Gachon, Frédéric; Kussmann, Martin

    2014-01-01

    1. Abstract Proteomic technologies using mass spectrometry (MS) offer new perspectives in circadian biology, in particular the possibility to study posttranslational modifications (PTMs). To date, only very few studies have been carried out to decipher the rhythmicity of protein expression in mammals with large-scale proteomics. Although signaling has been shown to be of high relevance, comprehensive characterization studies of PTMs are even more rare. This review aims at describing the actual landscape of circadian proteomics and the opportunities and challenges appearing on the horizon. Emphasis was given to signaling processes for their role in metabolic heath as regulated by circadian clocks and environmental factors. Those signaling processes are expected to be better and more deeply characterized in the coming years with proteomics. PMID:25103677

  7. Soybean Proteome Database 2012: Update on the comprehensive data repository for soybean proteomics

    Directory of Open Access Journals (Sweden)

    Hajime eOhyanagi

    2012-05-01

    Full Text Available The Soybean Proteome Database (SPD was created to provide a data repository for functional analyses of soybean responses to flooding stress, thought to be a major constraint for establishment and production of this plant. Since the last publication of the SPD, we thoroughly enhanced the contents of database, particularly protein samples and their annotations from several organelles. The current release contains 23 reference maps of soybean (Glycine max cv. Enrei proteins collected from several organs, tissues and organelles including the maps for plasma membrane, cell wall, chloroplast and mitochondrion, which were electrophoresed on two-dimensional polyacrylamide gels. Furthermore, the proteins analyzed with gel-free proteomics technique have been added and available online. In addition to protein fluctuations under flooding, those of salt and drought stress have been included in the current release. An omics table also has been provided to reveal relationships among mRNAs, proteins and metabolites with a unified temporal-profile tag in order to facilitate retrieval of the data based on the temporal profiles. An intuitive user interface based on dynamic HTML enables users to browse the network as well as the profiles of multiple omes in an integrated fashion. The SPD is available at: http://proteome.dc.affrc.go.jp/Soybean/.

  8. compomics-utilities: an open-source Java library for computational proteomics.

    Science.gov (United States)

    Barsnes, Harald; Vaudel, Marc; Colaert, Niklaas; Helsens, Kenny; Sickmann, Albert; Berven, Frode S; Martens, Lennart

    2011-03-08

    The growing interest in the field of proteomics has increased the demand for software tools and applications that process and analyze the resulting data. And even though the purpose of these tools can vary significantly, they usually share a basic set of features, including the handling of protein and peptide sequences, the visualization of (and interaction with) spectra and chromatograms, and the parsing of results from various proteomics search engines. Developers typically spend considerable time and effort implementing these support structures, which detracts from working on the novel aspects of their tool. In order to simplify the development of proteomics tools, we have implemented an open-source support library for computational proteomics, called compomics-utilities. The library contains a broad set of features required for reading, parsing, and analyzing proteomics data. compomics-utilities is already used by a long list of existing software, ensuring library stability and continued support and development. As a user-friendly, well-documented and open-source library, compomics-utilities greatly simplifies the implementation of the basic features needed in most proteomics tools. Implemented in 100% Java, compomics-utilities is fully portable across platforms and architectures. Our library thus allows the developers to focus on the novel aspects of their tools, rather than on the basic functions, which can contribute substantially to faster development, and better tools for proteomics.

  9. compomics-utilities: an open-source Java library for computational proteomics

    Directory of Open Access Journals (Sweden)

    Helsens Kenny

    2011-03-01

    Full Text Available Abstract Background The growing interest in the field of proteomics has increased the demand for software tools and applications that process and analyze the resulting data. And even though the purpose of these tools can vary significantly, they usually share a basic set of features, including the handling of protein and peptide sequences, the visualization of (and interaction with spectra and chromatograms, and the parsing of results from various proteomics search engines. Developers typically spend considerable time and effort implementing these support structures, which detracts from working on the novel aspects of their tool. Results In order to simplify the development of proteomics tools, we have implemented an open-source support library for computational proteomics, called compomics-utilities. The library contains a broad set of features required for reading, parsing, and analyzing proteomics data. compomics-utilities is already used by a long list of existing software, ensuring library stability and continued support and development. Conclusions As a user-friendly, well-documented and open-source library, compomics-utilities greatly simplifies the implementation of the basic features needed in most proteomics tools. Implemented in 100% Java, compomics-utilities is fully portable across platforms and architectures. Our library thus allows the developers to focus on the novel aspects of their tools, rather than on the basic functions, which can contribute substantially to faster development, and better tools for proteomics.

  10. Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study

    OpenAIRE

    Sun, Su; Xie, Shangxian; Cheng, Yanbing; Yu, Hongbo; Zhao, Honglu; Li, Muzi; Li, Xiaotong; Zhang, Xiaoyu; Yuan, Joshua S.; Dai, Susie Y.

    2017-01-01

    Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass,...

  11. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells.

    Science.gov (United States)

    Liu, X; Yang, Y; Zhao, M; Bode, L; Zhang, L; Pan, J; Lv, L; Zhan, Y; Liu, S; Zhang, L; Wang, X; Huang, R; Zhou, J; Xie, P

    2014-05-30

    Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK-RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK-RSK complex of

  12. Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments.

    Science.gov (United States)

    Nicolas, Armel; Alazard-Dany, Nathalie; Biollay, Coline; Arata, Loredana; Jolinon, Nelly; Kuhn, Lauriane; Ferro, Myriam; Weller, Sandra K; Epstein, Alberto L; Salvetti, Anna; Greco, Anna

    2010-09-01

    Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.

  13. Advances in Proteomics of Mycobacterium leprae.

    Science.gov (United States)

    Parkash, O; Singh, B P

    2012-04-01

    Although Mycobacterium leprae was the first bacterial pathogen identified causing human disease, it remains one of the few that is non-cultivable. Understanding the biology of M. leprae is one of the primary challenges in current leprosy research. Genomics has been extremely valuable, nonetheless, functional proteins are ultimately responsible for controlling most aspects of cellular functions, which in turn could facilitate parasitizing the host. Furthermore, bacterial proteins provide targets for most of the vaccines and immunodiagnostic tools. Better understanding of the proteomics of M. leprae could also help in developing new drugs against M. leprae. During the past nearly 15 years, there have been several developments towards the identification of M. leprae proteins employing contemporary proteomics tools. In this review, we discuss the knowledge gained on the biology and pathogenesis of M. leprae from current proteomic studies. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.

  14. Proteomic classification of breast cancer.

    LENUS (Irish Health Repository)

    Kamel, Dalia

    2012-11-01

    Being a significant health problem that affects patients in various age groups, breast cancer has been extensively studied to date. Recently, molecular breast cancer classification has advanced significantly with the availability of genomic profiling technologies. Proteomic technologies have also advanced from traditional protein assays including enzyme-linked immunosorbent assay, immunoblotting and immunohistochemistry to more comprehensive approaches including mass spectrometry and reverse phase protein lysate arrays (RPPA). The purpose of this manuscript is to review the current protein markers that influence breast cancer prediction and prognosis and to focus on novel advances in proteomic classification of breast cancer.

  15. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    Science.gov (United States)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  16. MitoMiner: a data warehouse for mitochondrial proteomics data.

    Science.gov (United States)

    Smith, Anthony C; Blackshaw, James A; Robinson, Alan J

    2012-01-01

    MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process.

  17. Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea ...

    African Journals Online (AJOL)

    A two-dimensional liquid chromatography (2D LC) system, ProteomeLab PF 2D, was employed to study the defence proteome of Arabidopsis following infection with the necrotrophic fungal pathogen, Botrytis cinerea. This system demonstrated differential protein expression in control and treated samples in some fractions.

  18. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    Science.gov (United States)

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  19. Top Down proteomics: Facts and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Catherman, Adam D.; Skinner, Owen S.; Kelleher, Neil L., E-mail: n-kelleher@northwestern.edu

    2014-03-21

    Highlights: • Top Down versus Bottom Up proteomics analysis. • Separations methods for Top Down proteomics. • Developments in mass spectrometry instrumentation and fragmentation. • Native mass spectrometry. - Abstract: The rise of the “Top Down” method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious “inference” problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years.

  20. Top Down proteomics: Facts and perspectives

    International Nuclear Information System (INIS)

    Catherman, Adam D.; Skinner, Owen S.; Kelleher, Neil L.

    2014-01-01

    Highlights: • Top Down versus Bottom Up proteomics analysis. • Separations methods for Top Down proteomics. • Developments in mass spectrometry instrumentation and fragmentation. • Native mass spectrometry. - Abstract: The rise of the “Top Down” method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious “inference” problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years

  1. Analytical performance of reciprocal isotope labeling of proteome digests for quantitative proteomics and its application for comparative studies of aerobic and anaerobic Escherichia coli proteomes

    International Nuclear Information System (INIS)

    Lo, Andy; Weiner, Joel H.; Li, Liang

    2013-01-01

    Graphical abstract: -- Highlights: •Investigating a strategy of reciprocal isotope labeling of comparative samples. •Filtering out incorrect peptide identification or quantification values. •Analyzing the proteome changes of E. coli cells grown aerobically or anaerobically. •Presenting guidelines for reciprocal labeling experimental design. -- Abstract: Due to limited sample amounts, instrument time considerations, and reagent costs, only a small number of replicate experiments are typically performed for quantitative proteome analyses. Generation of reproducible data that can be readily assessed for consistency within a small number of datasets is critical for accurate quantification. We report our investigation of a strategy using reciprocal isotope labeling of two comparative samples as a tool for determining proteome changes. Reciprocal labeling was evaluated to determine the internal consistency of quantified proteome changes from Escherichia coli grown under aerobic and anaerobic conditions. Qualitatively, the peptide overlap between replicate analyses of the same sample and reverse labeled samples were found to be within 8%. Quantitatively, reciprocal analyses showed only a slight increase in average overall inconsistency when compared with replicate analyses (1.29 vs. 1.24-fold difference). Most importantly, reverse labeling was successfully used to identify spurious values resulting from incorrect peptide identifications and poor peak fitting. After removal of 5% of the peptide data with low reproducibility, a total of 275 differentially expressed proteins (>1.50-fold difference) were consistently identified and were then subjected to bioinformatics analysis. General considerations and guidelines for reciprocal labeling experimental design and biological significance of obtained results are discussed

  2. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2013-04-01

    Full Text Available C4 plants exhibit much higher CO2 assimilation rates than C3 plants. The specialized differentiation of mesophyll cell (M and bundle sheath cell (BS type chloroplasts is unique to C4 plants and improves photosynthesis efficiency. Maize (Zea mays is an important crop and model with C4 photosynthetic machinery. Current high-throughput quantitative proteomics approaches (e.g., 2DE, iTRAQ, and shotgun proteomics have been employed to investigate maize chloroplast structure and function. These proteomic studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology.

  3. The 3rd Central and Eastern European Proteomic Conference

    Czech Academy of Sciences Publication Activity Database

    Gadher, S. J.; Martinková, Jiřina; Drahoš, L.; Vékey, K.; Allmaier, G.; Kovářová, Hana

    2010-01-01

    Roč. 7, č. 1 (2010), s. 15-17 ISSN 1478-9450 Institutional research plan: CEZ:AV0Z50450515 Keywords : proteomics * proteome research * biomarkers Subject RIV: CE - Biochemistry Impact factor: 4.406, year: 2010

  4. Cutting edge proteomics

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Espadas, Guadalupe; Molina, Henrik

    2013-01-01

    Tryptic digestion is an important component of most proteomics experiments, and trypsin is available from many sources with a cost that varies by more than 1000-fold. This high-mass-accuracy LC-MS study benchmarks six commercially available trypsins with respect to autolytic species and sequence ...

  5. A Proposal of the Ur-proteome

    Science.gov (United States)

    Palacios-Pérez, Miryam; Andrade-Díaz, Fernando; José, Marco V.

    2017-11-01

    Herein we outline a plausible proteome, encoded by assuming a primeval RNY genetic code. We unveil the primeval phenotype by using only the RNA genotype; it means that we recovered the most ancestral proteome, mostly made of the 8 amino acids encoded by RNY triplets. By looking at those fragments, it is noticeable that they are positioned, not at catalytic sites, but in the cofactor binding sites. It implies that the stabilization of a molecule appeared long before its catalytic activity, and therefore the Ur-proteome comprised a set of proteins modules that corresponded to Cofactor Stabilizing Binding Sites (CSBSs), which we call the primitive bindome. With our method, we reconstructed the structures of the "first protein modules" that Sobolevsky and Trifonov (2006) found by using only RMSD. We also examine the probable cofactors that bound to them. We discuss the notion of CSBSs as the first proteins modules in progenotes in the context of several proposals about the primitive forms of life.

  6. Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion.

    Directory of Open Access Journals (Sweden)

    Frauke Beilstein

    Full Text Available In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG in lipid droplets (LD during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ labeling coupled with liquid chromatography and tandem mass spectrometry. We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2, which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity.

  7. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.; Burnum-Johnson, Kristin E.; Kim, Young-Mo; Kyle, Jennifer E.; Matzke, Melissa M.; Shukla, Anil K.; Chu, Rosalie K.; Schepmoes, Athena A.; Jacobs, Jon M.; Baric, Ralph S.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Metz, Thomas O.; Chia, Nicholas

    2016-05-03

    ABSTRACT

    Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of this protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical).

    IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated

  8. Proteomics of Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Dongli eHe

    2013-07-01

    Full Text Available Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies.

  9. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  10. HSPA5 is an essential host factor for Ebola virus infection.

    Science.gov (United States)

    Reid, St Patrick; Shurtleff, Amy C; Costantino, Julie A; Tritsch, Sarah R; Retterer, Cary; Spurgers, Kevin B; Bavari, Sina

    2014-09-01

    Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures. Published by Elsevier B.V.

  11. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus.

    Directory of Open Access Journals (Sweden)

    Cecilia Tamborindeguy

    Full Text Available Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV. The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate

  12. TAILS N-terminomic and proteomic datasets of healthy human dental pulp

    Directory of Open Access Journals (Sweden)

    Ulrich Eckhard

    2015-12-01

    Full Text Available The Data described here provide the in depth proteomic assessment of the human dental pulp proteome and N-terminome (Eckhard et al., 2015 [1]. A total of 9 human dental pulps were processed and analyzed by the positional proteomics technique TAILS (Terminal Amine Isotopic Labeling of Substrates N-terminomics. 38 liquid chromatography tandem mass spectrometry (LC-MS/MS datasets were collected and analyzed using four database search engines in combination with statistical downstream evaluation, to yield the by far largest proteomic and N-terminomic dataset of any dental tissue to date. The raw mass spectrometry data and the corresponding metadata have been deposited in ProteomeXchange with the PXD identifier ; Supplementary Tables described in this article are available via Mendeley Data (10.17632/555j3kk4sw.1.

  13. PROTEINCHALLENGE: Crowd sourcing in proteomics analysis and software development

    DEFF Research Database (Denmark)

    Martin, Sarah F.; Falkenberg, Heiner; Dyrlund, Thomas Franck

    2013-01-01

    , including arguments for community-wide open source software development and “big data” compatible solutions for the future. For the meantime, we have laid out ten top tips for data processing. With these at hand, a first large-scale proteomics analysis hopefully becomes less daunting to navigate.......However there is clearly a real need for robust tools, standard operating procedures and general acceptance of best practises. Thus we submit to the proteomics community a call for a community-wide open set of proteomics analysis challenges—PROTEINCHALLENGE—that directly target and compare data analysis workflows......In large-scale proteomics studies there is a temptation, after months of experimental work, to plug resulting data into a convenient—if poorly implemented—set of tools, which may neither do the data justice nor help answer the scientific question. In this paper we have captured key concerns...

  14. A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hugh D.; Eisfeld, Amie J.; Sims, Amy; McDermott, Jason E.; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Tilton, Susan C.; Tchitchek, Nicholas; Josset, Laurence; Li, Chengjun; Ellis, Amy L.; Chang, Jean H.; Heegel, Robert A.; Luna, Maria L.; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Neumann, Gabriele; Benecke, Arndt; Smith, Richard D.; Baric, Ralph; Kawaoka, Yoshihiro; Katze, Michael G.; Waters, Katrina M.

    2013-07-25

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.

  15. Parasites, proteomes and systems: has Descartes' clock run out of time?

    Science.gov (United States)

    Wastling, J M; Armstrong, S D; Krishna, R; Xia, D

    2012-08-01

    Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.

  16. Proteomics Standards Initiative: Fifteen Years of Progress and Future Work.

    Science.gov (United States)

    Deutsch, Eric W; Orchard, Sandra; Binz, Pierre-Alain; Bittremieux, Wout; Eisenacher, Martin; Hermjakob, Henning; Kawano, Shin; Lam, Henry; Mayer, Gerhard; Menschaert, Gerben; Perez-Riverol, Yasset; Salek, Reza M; Tabb, David L; Tenzer, Stefan; Vizcaíno, Juan Antonio; Walzer, Mathias; Jones, Andrew R

    2017-12-01

    The Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) has now been developing and promoting open community standards and software tools in the field of proteomics for 15 years. Under the guidance of the chair, cochairs, and other leadership positions, the PSI working groups are tasked with the development and maintenance of community standards via special workshops and ongoing work. Among the existing ratified standards, the PSI working groups continue to update PSI-MI XML, MITAB, mzML, mzIdentML, mzQuantML, mzTab, and the MIAPE (Minimum Information About a Proteomics Experiment) guidelines with the advance of new technologies and techniques. Furthermore, new standards are currently either in the final stages of completion (proBed and proBAM for proteogenomics results as well as PEFF) or in early stages of design (a spectral library standard format, a universal spectrum identifier, the qcML quality control format, and the Protein Expression Interface (PROXI) web services Application Programming Interface). In this work we review the current status of all of these aspects of the PSI, describe synergies with other efforts such as the ProteomeXchange Consortium, the Human Proteome Project, and the metabolomics community, and provide a look at future directions of the PSI.

  17. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Ksenia J., E-mail: ksenia.groh@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich (Switzerland); Suter, Marc J.-F. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich (Switzerland)

    2015-02-15

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  18. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    International Nuclear Information System (INIS)

    Groh, Ksenia J.; Suter, Marc J.-F.

    2015-01-01

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  19. A high-quality catalog of the Drosophila melanogaster proteome

    DEFF Research Database (Denmark)

    Brunner, Erich; Ahrens, Christian H.; Mohanty, Sonaly

    2007-01-01

    % of the predicted Drosophila melanogaster proteome by detecting 9,124 proteins from 498,000 redundant and 72,281 distinct peptide identifications. This unprecedented high proteome coverage for a complex eukaryote was achieved by combining sample diversity, multidimensional biochemical fractionation and analysis...

  20. Regional differences of the urinary proteomes in healthy Chinese individuals

    OpenAIRE

    Qin, Weiwei; Wu, Jianqiang; Pan, Li; Zhang, Fanshuang; Wang, Xiaorong; Zhang, Biao; Shan, Guangliang; Gao, Youhe

    2017-01-01

    Urine is a promising biomarker source for clinical proteomics studies. Although regional physiological differences are common in multi-center clinical studies, the presence of significant differences in the urinary proteomes of individuals from different regions remains unknown. In this study, morning urine samples were collected from healthy urban residents in three regions of China and urinary proteins were preserved using a membrane-based method (Urimem). The urine proteomes of 27 normal s...

  1. Nasopharyngeal Protein Biomarkers of Acute Respiratory Virus Infection

    Directory of Open Access Journals (Sweden)

    Thomas W. Burke

    2017-03-01

    Full Text Available Infection of respiratory mucosa with viral pathogens triggers complex immunologic events in the affected host. We sought to characterize this response through proteomic analysis of nasopharyngeal lavage in human subjects experimentally challenged with influenza A/H3N2 or human rhinovirus, and to develop targeted assays measuring peptides involved in this host response allowing classification of acute respiratory virus infection. Unbiased proteomic discovery analysis identified 3285 peptides corresponding to 438 unique proteins, and revealed that infection with H3N2 induces significant alterations in protein expression. These include proteins involved in acute inflammatory response, innate immune response, and the complement cascade. These data provide insights into the nature of the biological response to viral infection of the upper respiratory tract, and the proteins that are dysregulated by viral infection form the basis of signature that accurately classifies the infected state. Verification of this signature using targeted mass spectrometry in independent cohorts of subjects challenged with influenza or rhinovirus demonstrates that it performs with high accuracy (0.8623 AUROC, 75% TPR, 97.46% TNR. With further development as a clinical diagnostic, this signature may have utility in rapid screening for emerging infections, avoidance of inappropriate antibacterial therapy, and more rapid implementation of appropriate therapeutic and public health strategies.

  2. Proteomic analyses of host and pathogen responses during bovine mastitis.

    Science.gov (United States)

    Boehmer, Jamie L

    2011-12-01

    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

  3. When proteomics reveals unsuspected roles: the plastoglobule example

    Directory of Open Access Journals (Sweden)

    Claire eBréhélin

    2013-04-01

    Full Text Available Plastoglobules are globular compartments found in plastids. Before initial proteomic studies were published, these particles were often viewed as passive lipid droplets whose unique role was to store lipids coming from the thylakoid turn-over, or to accumulate carotenoids in the chromoplasts. Yet, two proteomic studies, published concomitantly, suggested for the first time that plastoglobules are more than "junk cupboards" for lipids. Indeed, both studies demonstrated that plastoglobules do not only include structural proteins belonging to the plastoglobulin / fibrillin family, but also contain active enzymes. The specific plastoglobule localization of these enzymes has been confirmed by different approaches such as immunogold localization and GFP protein fusions, thus providing evidence that plastoglobules actively participate in diverse pathways of plastid metabolism. These proteomic studies have been the basis for numerous recent works investigating plastoglobule function. However, a lot still needs to be discovered about the molecular composition and the role of plastoglobules. In this chapter, we will describe how the proteomic approaches have launched new perspectives on plastoglobule functions.

  4. Plant plasma membrane proteomics for improving cold tolerance

    Directory of Open Access Journals (Sweden)

    Daisuke eTakahashi

    2013-04-01

    Full Text Available Plants are always exposed to various stresses. We have focused on freezing stress, which causes serious problems for agricultural management. When plants suffer freeze-induced damage, the plasma membrane is thought to be the primary site of injury because of its central role in regulation of various cellular processes. Cold tolerant species, however, adapt to such freezing conditions by modifying cellular components and functions (cold acclimation. One of the most important adaptation mechanisms to freezing is alteration of plasma membrane compositions and functions. Advanced proteomic technologies have succeeded in identification of many candidates that may play roles in adaptation of the plasma membrane to freezing stress. Proteomics results suggest that adaptations of plasma membrane functions to low temperature are associated with alterations of protein compositions during cold acclimation. Some of proteins identified by proteomic approaches have been verified their functional roles in freezing tolerance mechanisms further. Thus, accumulation of proteomic results in the plasma membrane is of importance for application to molecular breeding efforts to increase cold tolerance in crops.

  5. Proteome regulation during Olea europaea fruit development.

    Directory of Open Access Journals (Sweden)

    Linda Bianco

    Full Text Available Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes.In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies.This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  6. Proteome regulation during Olea europaea fruit development.

    Science.gov (United States)

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano

    2013-01-01

    Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  7. Sherlock Holmes and the proteome--a detective story.

    Science.gov (United States)

    Righetti, Pier Giorgio; Boschetti, Egisto

    2007-02-01

    The performance of a hexapeptide ligand library in capturing the 'hidden proteome' is illustrated and evaluated. This library, insolubilized on an organic polymer and available under the trade name 'Equalizer Bead Technology', acts by capturing all components of a given proteome, by concentrating rare and very rare proteins, and simultaneously diluting the abundant ones. This results in a proteome of 'normalized' relative abundances, amenable to analysis by MS and any other analytical tool. Examples are given of analysis of human urine and serum, as well as cell and tissue lysates, such as Escherichia coli and Saccharomyces cerevisiae extracts. Another important application is impurity tracking and polishing of recombinant DNA products, especially biopharmaceuticals meant for human consumption.

  8. An update on the mouse liver proteome

    Directory of Open Access Journals (Sweden)

    Borlak Jürgen

    2009-09-01

    Full Text Available Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. Conclusion Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.

  9. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors.

    Science.gov (United States)

    Nuss, Jonathan E; Kehn-Hall, Kylene; Benedict, Ashwini; Costantino, Julie; Ward, Michael; Peyser, Brian D; Retterer, Cary J; Tressler, Lyal E; Wanner, Laura M; McGovern, Hugh F; Zaidi, Anum; Anthony, Scott M; Kota, Krishna P; Bavari, Sina; Hakami, Ramin M

    2014-01-01

    Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

  10. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors.

    Directory of Open Access Journals (Sweden)

    Jonathan E Nuss

    Full Text Available Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV. Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90, as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

  11. Quantitative proteomic assessment of very early cellular signaling events

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Olsen, Jesper V

    2007-01-01

    Technical limitations have prevented proteomic analyses of events occurring less than 30 s after signal initiation. We developed an automated, continuous quench-flow system allowing quantitative proteomic assessment of very early cellular signaling events (qPACE) with a time resolution of 1 s...

  12. Proteomic Technologies for the Study of Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Stephanie D. Byrum

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary bone cancer of children and is established during stages of rapid bone growth. The disease is a consequence of immature osteoblast differentiation, which gives way to a rapidly synthesized incompletely mineralized and disorganized bone matrix. The mechanism of osteosarcoma tumorogenesis is poorly understood, and few proteomic studies have been used to interrogate the disease thus far. Accordingly, these studies have identified proteins that have been known to be associated with other malignancies, rather than being osteosarcoma specific. In this paper, we focus on the growing list of available state-of-the-art proteomic technologies and their specific application to the discovery of novel osteosarcoma diagnostic and therapeutic targets. The current signaling markers/pathways associated with primary and metastatic osteosarcoma that have been identified by early-stage proteomic technologies thus far are also described.

  13. The Use of Proteomics in Assisted Reproduction.

    Science.gov (United States)

    Kosteria, Ioanna; Anagnostopoulos, Athanasios K; Kanaka-Gantenbein, Christina; Chrousos, George P; Tsangaris, George T

    2017-01-01

    Despite the explosive increase in the use of Assisted Reproductive Technologies (ART) over the last 30 years, their success rates remain suboptimal. Proteomics is a rapidly-evolving technology-driven science that has already been widely applied in the exploration of human reproduction and fertility, providing useful insights into its physiology and leading to the identification of numerous proteins that may be potential biomarkers and/or treatment targets of a successful ART pregnancy. Here we present a brief overview of the techniques used in proteomic analyses and attempt a comprehensive presentation of recent data from mass spectrometry-based proteomic studies in humans, regarding all components of ARTs, including the male and female gamete, the derived zygote and embryo, the endometrium and, finally, the ART offspring both pre- and postnatally. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Xu, Yanli [Fuyang People’s Hospital (China); Meng, Qian [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Zheng, Qingqing [Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People’s Hospital (China); Wu, Jianhong [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Wang, Chen; Jia, Weiping [Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital (China); Figeys, Daniel [Department of Biochemistry, Microbiology and Immunology, and Department of Chemistry and Biomolecular Sciences, University of Ottawa (Canada); Chang, Ying, E-mail: emulan@163.com [Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People’s Hospital (China); Zhou, Hu, E-mail: zhouhu@simm.ac.cn [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China)

    2016-08-05

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.

  15. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling

    International Nuclear Information System (INIS)

    Liu, Xing; Xu, Yanli; Meng, Qian; Zheng, Qingqing; Wu, Jianhong; Wang, Chen; Jia, Weiping; Figeys, Daniel; Chang, Ying; Zhou, Hu

    2016-01-01

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.

  16. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets.

    Science.gov (United States)

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; Del-Toro, Noemi; Dianes, Jose A; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE.The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX "complete" submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    in plants under low N and iv) proteomes of uninfected plants were similar under two N levels. Correlation of level of proteolysis induced by the fungus with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that FHB was more severe in barley with low N. In Chapter 3......, the molecular mechanisms of barley defense to Fusarium graminearum at the early infection stage were studied. Antibodies against barley β-amylases were shown to be the markers for infection at proteome level and for selection of the time for proteome analysis before extensive degradation caused by the fungus...... the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different...

  18. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine.

    Science.gov (United States)

    Zhang, Xi

    2017-02-01

    Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Identification of full-length transmitted/founder viruses and their progeny in primary HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Hraber, Peter [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Bhattacharya, T [Los Alamos National Laboratory

    2009-01-01

    Identification of transmitted/founder virus genomes and their progeny by is a novel strategy for probing the molecular basis of HIV-1 transmission and for evaluating the genetic imprint of viral and host factors that act to constrain or facilitate virus replication. Here, we show in a cohort of twelve acutely infected subjects (9 clade B; 3 clade C), that complete genomic sequences of transmitted/founder viruses could be inferred using single genome amplification of plasma viral RNA, direct amplicon sequencing, and a model of random virus evolution. This allowed for the precise identification, chemical synthesis, molecular cloning, and biological analysis of those viruses actually responsible for productive clinical infection and for a comprehensive mapping of sequential viral genomes and proteomes for mutations that are necessary or incidental to the establishment of HIV-1 persistence. Transmitted/founder viruses were CD4 and CCR5 tropic, replicated preferentially in activated primary T-Iymphocytes but not monocyte-derived macrophages, and were effectively shielded from most heterologous or broadly neutralizing antibodies. By 3 months of infection, the evolving viral quasispecies in three subjects showed mutational fixation at only 2-5 discreet genomic loci. By 6-12 months, mutational fixation was evident at 18-27 genomic loci. Some, but not all, of these mutations were attributable to virus escape from cytotoxic Tlymphocytes or neutralizing antibodies, suggesting that other viral or host factors may influence early HIV -1 fitness.

  20. Data from proteome analysis of Lasiodiplodia theobromae (Botryosphaeriaceae

    Directory of Open Access Journals (Sweden)

    Carla C. Uranga

    2017-08-01

    Full Text Available Trunk disease fungi are a global problem affecting many economically important fruiting trees. The Botryosphaeriaceae are a family of trunk disease fungi that require detailed biochemical characterization in order to gain insight into their pathogenicity. The application of a modified Folch extraction to protein extraction from the Botryosphaeriaceae Lasiodiplodia theobromae generated an unprecedented data set of protein identifications from fragmentation analysis and de novo peptide sequencing of its proteome. This article contains data from protein identifications obtained from a database-dependent fragmentation analysis using three different proteomics algorithms (MSGF, Comet and X! Tandem via the SearchGUI proteomics pipeline program and de novo peptide sequencing. Included are data sets of gene ontology annotations using an all-Uniprot ontology database, as well as a Saccharomyces cerevisiae-only and a Candida albicans-only ontology database, in order to discern between those proteins involved in common functions with S. cerevisiae and those in common with the pathogenic yeast C. albicans. Our results reveal the proteome of L. theobromae contains more ontological categories in common to C. albicans, yet possesses a much wider metabolic repertoire than any of the yeasts studied in this work. Many novel proteins of interest were identified for further biochemical characterization and annotation efforts, as further discussed in the article referencing this article (1. Interactive Cytoscape networks of molecular functions of identified peptides using an all-Uniprot ontological database are included. Data, including raw data, are available via ProteomeXchange with identifier PXD005283.

  1. Susceptibility of the wild-derived inbred CAST/Ei mouse to infection by orthopoxviruses analyzed by live bioluminescence imaging

    International Nuclear Information System (INIS)

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.; Vogel, Jodi L.; Kristie, Thomas M.; Moss, Bernard; Earl, Patricia L.

    2014-01-01

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chest and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus

  2. Susceptibility of the wild-derived inbred CAST/Ei mouse to infection by orthopoxviruses analyzed by live bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.; Vogel, Jodi L.; Kristie, Thomas M.; Moss, Bernard, E-mail: bmoss@nih.gov; Earl, Patricia L., E-mail: pearl@nih.gov

    2014-01-20

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chest and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.

  3. Proteomics in the investigation of HIV-1 interactions with host proteins.

    Science.gov (United States)

    Li, Ming

    2015-02-01

    Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Proteomic Investigations into Hemodialysis Therapy

    Directory of Open Access Journals (Sweden)

    Mario Bonomini

    2015-12-01

    Full Text Available The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane’s performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane’s bio(incompatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research.

  5. Proteomic Investigations into Hemodialysis Therapy

    Science.gov (United States)

    Bonomini, Mario; Sirolli, Vittorio; Pieroni, Luisa; Felaco, Paolo; Amoroso, Luigi; Urbani, Andrea

    2015-01-01

    The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane’s performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane’s bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research. PMID:26690416

  6. Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network.

    Science.gov (United States)

    Tafforeau, Lionel; Chantier, Thibault; Pradezynski, Fabrine; Pellet, Johann; Mangeot, Philippe E; Vidalain, Pierre-Olivier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent

    2011-12-01

    The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response.

  7. Proteomic profile of acute myeloid leukaemia: A review update

    African Journals Online (AJOL)

    attention to the progress and advancements in cancer proteomics technology with the aim of simplifying ... hematopoietic cells leading to distinct differences ... procedures like bone marrow and tissue biopsies. [7,8]. .... patients who were subjected to transplantation ..... Boyd RS, Dyer MJ, Cain K. Proteomic analysis of b-cell.

  8. A community proposal to integrate proteomics activities in ELIXIR

    NARCIS (Netherlands)

    Vizcaíno, Juan Antonio; Walzer, Mathias; Jiménez, Rafael C; Bittremieux, Wout; Bouyssié, David; Carapito, Christine; Corrales, Fernando; Ferro, Myriam; Heck, Albert J R; Horvatovich, Peter; Hubalek, Martin; Lane, Lydie; Laukens, Kris; Levander, Fredrik; Lisacek, Frederique; Novak, Petr; Palmblad, Magnus; Piovesan, Damiano; Pühler, Alfred; Schwämmle, Veit; Valkenborg, Dirk; van Rijswijk, Merlijn; Vondrasek, Jiri; Eisenacher, Martin; Martens, Lennart; Kohlbacher, Oliver

    2017-01-01

    Computational approaches have been major drivers behind the progress of proteomics in recent years. The aim of this white paper is to provide a framework for integrating computational proteomics into ELIXIR in the near future, and thus to broaden the portfolio of omics technologies supported by this

  9. Genome sequence diversity and clues to the evolution of variola (smallpox) virus.

    Science.gov (United States)

    Esposito, Joseph J; Sammons, Scott A; Frace, A Michael; Osborne, John D; Olsen-Rasmussen, Melissa; Zhang, Ming; Govil, Dhwani; Damon, Inger K; Kline, Richard; Laker, Miriam; Li, Yu; Smith, Geoffrey L; Meyer, Hermann; Leduc, James W; Wohlhueter, Robert M

    2006-08-11

    Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.

  10. Asymmetric proteome equalization of the skeletal muscle proteome using a combinatorial hexapeptide library.

    Directory of Open Access Journals (Sweden)

    Jenny Rivers

    Full Text Available Immobilized combinatorial peptide libraries have been advocated as a strategy for equalization of the dynamic range of a typical proteome. The technology has been applied predominantly to blood plasma and other biological fluids such as urine, but has not been used extensively to address the issue of dynamic range in tissue samples. Here, we have applied the combinatorial library approach to the equalization of a tissue where there is also a dramatic asymmetry in the range of abundances of proteins; namely, the soluble fraction of skeletal muscle. We have applied QconCAT and label-free methodology to the quantification of the proteins that bind to the beads as the loading is progressively increased. Although some equalization is achieved, and the most abundant proteins no longer dominate the proteome analysis, at high protein loadings a new asymmetry of protein expression is reached, consistent with the formation of complex assembles of heat shock proteins, cytoskeletal elements and other proteins on the beads. Loading at different ionic strength values leads to capture of different subpopulations of proteins, but does not completely eliminate the bias in protein accumulation. These assemblies may impair the broader utility of combinatorial library approaches to the equalization of tissue proteomes. However, the asymmetry in equalization is manifest at either low and high ionic strength values but manipulation of the solvent conditions may extend the capacity of the method.

  11. Towards a functional definition of the mitochondrial human proteome

    Directory of Open Access Journals (Sweden)

    Mauro Fasano

    2016-03-01

    Full Text Available The mitochondrial human proteome project (mt-HPP was initiated by the Italian HPP group as a part of both the chromosome-centric initiative (C-HPP and the “biology and disease driven” initiative (B/D-HPP. In recent years several reports highlighted how mitochondrial biology and disease are regulated by specific interactions with non-mitochondrial proteins. Thus, it is of great relevance to extend our present view of the mitochondrial proteome not only to those proteins that are encoded by or transported to mitochondria, but also to their interactors that take part in mitochondria functionality. Here, we propose a graphical representation of the functional mitochondrial proteome by retrieving mitochondrial proteins from the NeXtProt database and adding to the network their interactors as annotated in the IntAct database. Notably, the network may represent a reference to map all the proteins that are currently being identified in mitochondrial proteomics studies.

  12. Anthelmintic metabolism in parasitic helminths: proteomic insights.

    Science.gov (United States)

    Brophy, Peter M; MacKintosh, Neil; Morphew, Russell M

    2012-08-01

    Anthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.

  13. Characterization of the canine urinary proteome.

    Science.gov (United States)

    Brandt, Laura E; Ehrhart, E J; Scherman, Hataichanok; Olver, Christine S; Bohn, Andrea A; Prenni, Jessica E

    2014-06-01

    Urine is an attractive biofluid for biomarker discovery as it is easy and minimally invasive to obtain. While numerous studies have focused on the characterization of human urine, much less research has focused on canine urine. The objectives of this study were to characterize the universal canine urinary proteome (both soluble and exosomal), to determine the overlap between the canine proteome and a representative human urinary proteome study, to generate a resource for future canine studies, and to determine the suitability of the dog as a large animal model for human diseases. The soluble and exosomal fractions of normal canine urine were characterized using liquid chromatography tandem mass spectrometry (LC-MS/MS). Biological Networks Gene Ontology (BiNGO) software was utilized to assign the canine urinary proteome to respective Gene Ontology categories, such as Cellular Component, Molecular Function, and Biological Process. Over 500 proteins were confidently identified in normal canine urine. Gene Ontology analysis revealed that exosomal proteins were largely derived from an intracellular location, while soluble proteins included both extracellular and membrane proteins. Exosome proteins were assigned to metabolic processes and localization, while soluble proteins were primarily annotated to specific localization processes. Several proteins identified in normal canine urine have previously been identified in human urine where these proteins are related to various extrarenal and renal diseases. The results of this study illustrate the potential of the dog as an animal model for human disease states and provide the framework for future studies of canine renal diseases. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  14. Proteomics Development and Application for Bioforensics

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Karen L.; Wunschel, David S.; Clowers, Brian H.

    2010-09-15

    Proteomics is a relatively new scientific discipline dedicated to the comprehensive study of the protein composition of biological systems. While genomic sequencing is an invaluable tool for bioforensic sample identification, proteomics complements genomics in that the genes present in an organism code for the proteins that can be present in a microorganism. Many proteins are conserved for general identification while other protein expression varies with environment/growth state/growth conditions (i.e. not all proteins are expressed at any given time or condition) providing additional information beyond genomic analysis. This expression specificity and the relative stability of proteins with respect to genetic material make them attractive targets for microorganism identification and forensic applications to complement genomic approaches. Proteomic analysis depends upon the availability of genome sequences of the relevant organisms or their near relatives. The known amino acid sequences for potential proteins within the database can be compared to amino acid sequences of actual proteins present in a sample as determined with high mass accuracy by mass spectrometry for identification of the proteins in the sample. With the development of technology for rapid genome sequencing of organisms, the known protein database is growing, supporting improved identification of the proteins present in a sample. Recent developments in mass spectrometry instrumentation and microbial sequencing are leading to an increased growth in application of proteomics to microbiology, pathogen detection, disease diagnosis and microbial forensics as well as other biological disciplines. Mass spectrometry analysis does not require a priori knowledge of the sample or expected targets to gain meaningful.

  15. Examining hemodialyzer membrane performance using proteomic technologies.

    Science.gov (United States)

    Bonomini, Mario; Pieroni, Luisa; Di Liberato, Lorenzo; Sirolli, Vittorio; Urbani, Andrea

    2018-01-01

    The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium-high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may thus provide an actual functional definition as to the effect of a membrane material on plasma proteins during hemodialysis. Here, we review the results of proteomic studies on the performance of hemodialysis membranes, as evaluated in terms of solute removal efficiency and blood-membrane interactions. The evidence collected indicates that the information provided by proteomic

  16. Cardiovascular proteomics in the era of big data: experimental and computational advances.

    Science.gov (United States)

    Lam, Maggie P Y; Lau, Edward; Ng, Dominic C M; Wang, Ding; Ping, Peipei

    2016-01-01

    Proteomics plays an increasingly important role in our quest to understand cardiovascular biology. Fueled by analytical and computational advances in the past decade, proteomics applications can now go beyond merely inventorying protein species, and address sophisticated questions on cardiac physiology. The advent of massive mass spectrometry datasets has in turn led to increasing intersection between proteomics and big data science. Here we review new frontiers in technological developments and their applications to cardiovascular medicine. The impact of big data science on cardiovascular proteomics investigations and translation to medicine is highlighted.

  17. Systemic sclerosis biomarkers discovered using mass-spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Bălănescu, Paul; Lădaru, Anca; Bălănescu, Eugenia; Băicuş, Cristian; Dan, Gheorghe Andrei

    2014-08-01

    Systemic sclerosis (SSc) is an autoimmune disease with incompletely known physiopathology. There is a great challenge to predict its course and therapeutic response using biomarkers. To critically review proteomic biomarkers discovered from biological specimens from systemic sclerosis patients using mass spectrometry technologies. Medline and Embase databases were searched in February 2014. Out of the 199 records retrieved, a total of 20 records were included, identifying 116 candidate proteomic biomarkers. Research in SSc proteomic biomarkers should focus on biomarker validation, as there are valuable mass-spectrometry proteomics studies in the literature.

  18. NCI Blog Post: CPTAC, the Complementary Sibling of TCGA (An Interview with Dr. Henry Rodriguez about NCI’s Proteomics Program) | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    What is proteomics? Proteomics is a highly automated and rapid method for measuring all the proteins in a biological sample. Proteins are the molecules that actually do most of the work inside a cell. When researchers develop cancer drugs, those drugs typically target proteins, so scientists and clinicians really have to understand what the proteins are doing. Proteomics researchers are now able to measure up to 10,000 proteins per tumor sample.

  19. Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing

    Directory of Open Access Journals (Sweden)

    Rosa Lozano-Durán

    2013-03-01

    Full Text Available The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R, the other susceptible (S to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the

  20. Application of proteomics for prenatal diagnosis of Down syndrome ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Proteome Organization (HUPO) in 2001, proteomic developed rapidly ... reports showed the hopes of the development of effective non-invasive ... This systematic review and meta-analysis was conducted according to a protocol ..... long-term culture for a case of trisomy 18 detected in CVS. Prenat. Diagn.

  1. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  2. [Application progress of proteomic in pharmacological study of Chinese medicinal formulae].

    Science.gov (United States)

    Liu, Yu-Qian; Zhan, Shu-Yu; Ruan, Yu-Er; Zuo, Zhi-Yan; Ji, Xiao-Ming; Wang, Shuai-Jie; Ding, Bao-Yue

    2017-10-01

    Chinese medicinal formulae are the important means of clinical treatment in traditional Chinese medicine. It is urgent to use modern advanced scientific and technological means to reveal the complicated mechanism of Chinese medicinal formulae because they have the function characteristics of multiple components, multiple targets and integrated regulation. The systematic and comprehensive research model of proteomic is in line with the function characteristics of Chinese medicinal formulae, and proteomic has been widely used in the study of pharmacological mechanism of Chinese medicinal formulae. The recent applications of proteomic in pharmacological study of Chinese medicinal formulae in anti-cardiovascular and cerebrovascular diseases, anti-liver disease, antidiabetic, anticancer, anti-rheumatoid arthritis and other diseases were reviewed in this paper, and then the future development direction of proteomic in pharmacological study of Chinese medicinal formulae was put forward. This review is to provide the ideas and method for proteomic research on function mechanism of Chinese medicinal formulae. Copyright© by the Chinese Pharmaceutical Association.

  3. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    2016-06-30

    Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of

  4. Informed-Proteomics: open-source software package for top-down proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungkap; Piehowski, Paul D.; Wilkins, Christopher; Zhou, Mowei; Mendoza, Joshua; Fujimoto, Grant M.; Gibbons, Bryson C.; Shaw, Jared B.; Shen, Yufeng; Shukla, Anil K.; Moore, Ronald J.; Liu, Tao; Petyuk, Vladislav A.; Tolić, Nikola; Paša-Tolić, Ljiljana; Smith, Richard D.; Payne, Samuel H.; Kim, Sangtae

    2017-08-07

    Top-down proteomics involves the analysis of intact proteins. This approach is very attractive as it allows for analyzing proteins in their endogenous form without proteolysis, preserving valuable information about post-translation modifications, isoforms, proteolytic processing or their combinations collectively called proteoforms. Moreover, the quality of the top-down LC-MS/MS datasets is rapidly increasing due to advances in the liquid chromatography and mass spectrometry instrumentation and sample processing protocols. However, the top-down mass spectra are substantially more complex compare to the more conventional bottom-up data. To take full advantage of the increasing quality of the top-down LC-MS/MS datasets there is an urgent need to develop algorithms and software tools for confident proteoform identification and quantification. In this study we present a new open source software suite for top-down proteomics analysis consisting of an LC-MS feature finding algorithm, a database search algorithm, and an interactive results viewer. The presented tool along with several other popular tools were evaluated using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.

  5. Quantitative, high-resolution proteomics for data-driven systems biology

    DEFF Research Database (Denmark)

    Cox, J.; Mann, M.

    2011-01-01

    Systems biology requires comprehensive data at all molecular levels. Mass spectrometry (MS)-based proteomics has emerged as a powerful and universal method for the global measurement of proteins. In the most widespread format, it uses liquid chromatography (LC) coupled to high-resolution tandem...... primary structure of proteins including posttranslational modifications, to localize proteins to organelles, and to determine protein interactions. Here, we describe the principles of analysis and the areas of biology where proteomics can make unique contributions. The large-scale nature of proteomics...... data and its high accuracy pose special opportunities as well as challenges in systems biology that have been largely untapped so far....

  6. Diversification of the muscle proteome through alternative splicing.

    Science.gov (United States)

    Nakka, Kiran; Ghigna, Claudia; Gabellini, Davide; Dilworth, F Jeffrey

    2018-03-06

    Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved "targeted" proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies.

  7. Investigation of heart proteome of different consomic mouse strains. Testing the effect of polymorphisms on the proteome-wide trans-variation of proteins

    Directory of Open Access Journals (Sweden)

    Stefanie Forler

    2015-06-01

    Full Text Available We investigated to which extent polymorphisms of an individual affect the proteomic network. Consomic mouse strains (CS were used to study the trans-effect of the cis-variant (polymorphic proteins of the strain PWD/Ph on the proteins of the host strain C57BL/6J. The cardiac proteome of ten CSs was analyzed by 2-DE and MS. Cis-variant PWD proteins altered a high number of C57BL/6J proteins, but the number of trans-variant proteins differed considerably between different CSs. Cardiac hypertrophy was induced in CSs. We found that high variability of the proteome, as induced by polymorphisms in CS14, acts protective against the complex disease.

  8. Proteomic profile of acute myeloid leukaemia: A review update ...

    African Journals Online (AJOL)

    This review draws attention to the progress and advancements in cancer proteomics technology with the aim of simplifying the understanding of the mechanisms underlying the disease and to contribute to detection of biomarkers in addition to the development of novel treatments. Given that proteome is a dynamic entity of ...

  9. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation

    Science.gov (United States)

    Chen, Ke; Gao, Ye; Mih, Nathan; O’Brien, Edward J.; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for Escherichia coli and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show (i) that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, (ii) how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, (iii) how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and (iv) how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses. PMID:29073085

  10. Effects of Three Commonly-used Diuretics on the Urinary Proteome

    Directory of Open Access Journals (Sweden)

    Xundou Li

    2014-06-01

    Full Text Available Biomarker is the measurable change associated with a physiological or pathophysiological process. Unlike blood which has mechanisms to keep the internal environment homeostatic, urine is more likely to reflect changes of the body. As a result, urine is likely to be a better biomarker source than blood. However, since the urinary proteome is affected by many factors, including diuretics, careful evaluation of those effects is necessary if urinary proteomics is used for biomarker discovery. Here, we evaluated the effects of three commonly-used diuretics (furosemide, F; hydrochlorothiazide, H; and spirolactone, S on the urinary proteome in rats. Urine samples were collected before and after intragastric administration of diuretics at therapeutic doses and the proteomes were analyzed using label-free liquid chromatography–tandem mass spectrometry (LC–MS/MS. Based on the criteria of P ⩽ 0.05, a fold change ⩾2, a spectral count ⩾5, and false positive rate (FDR ⩽1%, 14 proteins (seven for F, five for H, and two for S were identified by Progenesis LC–MS. The human orthologs of most of these 14 proteins are stable in the healthy human urinary proteome, and ten of them are reported as disease biomarkers. Thus, our results suggest that the effects of diuretics deserve more attention in future urinary protein biomarker studies. Moreover, the distinct effects of diuretics on the urinary proteome may provide clues to the mechanisms of diuretics.

  11. Effects of three commonly-used diuretics on the urinary proteome.

    Science.gov (United States)

    Li, Xundou; Zhao, Mindi; Li, Menglin; Jia, Lulu; Gao, Youhe

    2014-06-01

    Biomarker is the measurable change associated with a physiological or pathophysiological process. Unlike blood which has mechanisms to keep the internal environment homeostatic, urine is more likely to reflect changes of the body. As a result, urine is likely to be a better biomarker source than blood. However, since the urinary proteome is affected by many factors, including diuretics, careful evaluation of those effects is necessary if urinary proteomics is used for biomarker discovery. Here, we evaluated the effects of three commonly-used diuretics (furosemide, F; hydrochlorothiazide, H; and spirolactone, S) on the urinary proteome in rats. Urine samples were collected before and after intragastric administration of diuretics at therapeutic doses and the proteomes were analyzed using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Based on the criteria of P≤0.05, a fold change ≥2, a spectral count ≥5, and false positive rate (FDR) ≤1%, 14 proteins (seven for F, five for H, and two for S) were identified by Progenesis LC-MS. The human orthologs of most of these 14 proteins are stable in the healthy human urinary proteome, and ten of them are reported as disease biomarkers. Thus, our results suggest that the effects of diuretics deserve more attention in future urinary protein biomarker studies. Moreover, the distinct effects of diuretics on the urinary proteome may provide clues to the mechanisms of diuretics. Copyright © 2014. Production and hosting by Elsevier Ltd.

  12. Subnanogram proteomics: Impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ying; Zhao, Rui; Piehowski, Paul D.; Moore, Ronald J.; Lim, Sujung; Orphan, Victoria J.; Paša-Tolić, Ljiljana; Qian, Wei-Jun; Smith, Richard D.; Kelly, Ryan T.

    2018-04-01

    One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-µm-i.d. columns increase signal intensity by >3-fold relative to those using 75-µm-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos mass spectrometer significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap), leading to a ~3× increase in peptide identifications and 1.7× increase in identified protein groups for 2 ng tryptic digests of bacterial lysate. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by ~ 95% for 0.5 ng samples and by ~42% for 2 ng samples. The present platform is capable of identifying >3000 protein groups from tryptic digestion of cell lysates equivalent to 50 HeLa cells and 100 THP-1 cells (~10 ng total proteins), respectively, and >950 proteins from subnanogram bacterial and archaeal cell lysates. The present ultrasensitive LC-MS platform is expected to enable deep proteome coverage for subnanogram samples, including single mammalian cells.

  13. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  14. Standard guidelines for the chromosome-centric human proteome project.

    Science.gov (United States)

    Paik, Young-Ki; Omenn, Gilbert S; Uhlen, Mathias; Hanash, Samir; Marko-Varga, György; Aebersold, Ruedi; Bairoch, Amos; Yamamoto, Tadashi; Legrain, Pierre; Lee, Hyoung-Joo; Na, Keun; Jeong, Seul-Ki; He, Fuchu; Binz, Pierre-Alain; Nishimura, Toshihide; Keown, Paul; Baker, Mark S; Yoo, Jong Shin; Garin, Jerome; Archakov, Alexander; Bergeron, John; Salekdeh, Ghasem Hosseini; Hancock, William S

    2012-04-06

    The objective of the international Chromosome-Centric Human Proteome Project (C-HPP) is to map and annotate all proteins encoded by the genes on each human chromosome. The C-HPP consortium was established to organize a collaborative network among the research teams responsible for protein mapping of individual chromosomes and to identify compelling biological and genetic mechanisms influencing colocated genes and their protein products. The C-HPP aims to foster the development of proteome analysis and integration of the findings from related molecular -omics technology platforms through collaborations among universities, industries, and private research groups. The C-HPP consortium leadership has elicited broad input for standard guidelines to manage these international efforts more efficiently by mobilizing existing resources and collaborative networks. The C-HPP guidelines set out the collaborative consensus of the C-HPP teams, introduce topics associated with experimental approaches, data production, quality control, treatment, and transparency of data, governance of the consortium, and collaborative benefits. A companion approach for the Biology and Disease-Driven HPP (B/D-HPP) component of the Human Proteome Project is currently being organized, building upon the Human Proteome Organization's organ-based and biofluid-based initiatives (www.hupo.org/research). The common application of these guidelines in the participating laboratories is expected to facilitate the goal of a comprehensive analysis of the human proteome.

  15. 1st Central and Eastern European Proteomic Conference and 3rd Czech Proteomic Conference

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Hana; Gadher, S. J.; Archakov, A.

    2008-01-01

    Roč. 5, č. 1 (2008), s. 25-28 ISSN 1478-9450 Institutional research plan: CEZ:AV0Z50450515 Keywords : proteomic conference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.848, year: 2008

  16. Proteomic Analysis of Human Tooth Pulp: Proteomics of Human Tooth

    Czech Academy of Sciences Publication Activity Database

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-01-01

    Roč. 40, č. 12 (2014), s. 1961-1966 ISSN 0099-2399 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GAP206/12/0453; GA MZd(CZ) NT14324 Institutional support: RVO:67985823 Keywords : dentin * human pulp * tandem mass spectrometry * tooth proteome * 2-dimensional gel electrophoresis Subject RIV: FF - HEENT, Dentistry Impact factor: 3.375, year: 2014

  17. Combining genomic and proteomic approaches for epigenetics research

    Science.gov (United States)

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  18. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    Science.gov (United States)

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  19. Impact of phenolic substrate and growth temperature on the arthrobacter chlorophenolicus proteome

    Energy Technology Data Exchange (ETDEWEB)

    Unell, Maria; Abraham, Paul E.; Shah, Manesh; Zhang, Bing; Ruckert, Christian; VerBerkmoes, Nathan C.; Jansson, Janet K.

    2009-02-15

    We compared the Arthrobacter chlorophenolicus proteome during growth on 4-chlorophenol, 4-nitrophenol or phenol at 5 C and 28 C; both for the wild type and a mutant strain with mass spectrometry based proteomics. A label free workflow employing spectral counting identified 3749 proteins across all growth conditions, representing over 70% of the predicted genome and 739 of these proteins form the core proteome. Statistically significant differences were found in the proteomes of cells grown under different conditions including differentiation of hundreds of unknown proteins. The 4-chlorophenol-degradation pathway was confirmed, but not that for phenol.

  20. Chromosomocentric approach to overcoming difficulties in implementation of international project Human Proteome

    Directory of Open Access Journals (Sweden)

    A. I. Archakov

    2013-12-01

    Full Text Available The international project Human Proteome (PHP, being a logical continuation of the project Human Genome, was started on September 23, 2010. In correspondence with the genocentric approach, the PHP aim is to prepare a catalogue of all human proteins and to decipher a network of their interactions. The PHP implementation difficulties arise because the research subject itself – proteome – is much more complicated than genome. The major problem is the insufficient sensitivity of proteome methods that does not allow detecting low- and ultralow-copy proteins. Bad reproducibility of proteome methods and the lack of so-called “gold standard” is the second major complicacy in PHP implementation. The third problem is the dynamic character of proteome, its instabili­ty in time. The paper deals with possible variants of overcoming these complicacies, preventing from successful implementation of PHP.

  1. Antibody Recognition of the Dengue Virus Proteome and Implications for Development of Vaccines

    Science.gov (United States)

    2011-04-01

    Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic detenninants of dengue 2 virus. J. Infect. Dis. 194:790-794. 3... reactiv - ity against other DENV serotypes (1, 35). In contrast to DF, dengue hemorrhagic fever (DHF) is an infrequent but far more serious consequence of...recipients of the tetrava- lent DENV vaccine or from dengue cases owing to antibody cross- reactivity among serotypes (29). Furthermore, as results from

  2. An introduction to statistical process control in research proteomics.

    Science.gov (United States)

    Bramwell, David

    2013-12-16

    Statistical process control is a well-established and respected method which provides a general purpose, and consistent framework for monitoring and improving the quality of a process. It is routinely used in many industries where the quality of final products is critical and is often required in clinical diagnostic laboratories [1,2]. To date, the methodology has been little utilised in research proteomics. It has been shown to be capable of delivering quantitative QC procedures for qualitative clinical assays [3] making it an ideal methodology to apply to this area of biological research. To introduce statistical process control as an objective strategy for quality control and show how it could be used to benefit proteomics researchers and enhance the quality of the results they generate. We demonstrate that rules which provide basic quality control are easy to derive and implement and could have a major impact on data quality for many studies. Statistical process control is a powerful tool for investigating and improving proteomics research work-flows. The process of characterising measurement systems and defining control rules forces the exploration of key questions that can lead to significant improvements in performance. This work asserts that QC is essential to proteomics discovery experiments. Every experimenter must know the current capabilities of their measurement system and have an objective means for tracking and ensuring that performance. Proteomic analysis work-flows are complicated and multi-variate. QC is critical for clinical chemistry measurements and huge strides have been made in ensuring the quality and validity of results in clinical biochemistry labs. This work introduces some of these QC concepts and works to bridge their use from single analyte QC to applications in multi-analyte systems. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 The Author. Published by Elsevier

  3. Mass spectrometry based proteomics, background, status and future needs

    DEFF Research Database (Denmark)

    Roepstorff, Peter

    2012-01-01

    An overview of the background for proteomics and a description of the present state of art are given with a description of the main strategies in proteomics. The advantages and limitations of the two major strategies, 2D-gel based and LC-MS based, are discussed and a combination for the two, CeLC...

  4. Extensive mass spectrometry proteomics data of Persicaria minor herb upon methyl jasmonate treatment

    Directory of Open Access Journals (Sweden)

    Wan Mohd Aizat

    2018-02-01

    Full Text Available Proteomics is often hindered by the lack of protein sequence database particularly for non-model species such as Persicaria minor herbs. An integrative approach called proteomics informed by transcriptomics is possible [1], in which translated transcriptome sequence database is used as the protein sequence database. In this current study, the proteome profile were profiled using SWATH-MS technology complemented with documented transcriptome profiling [2], the first such report in this tropical herb. The plant was also elicited using a phytohormone, methyl jasmonate (MeJA and protein changes were elucidated using label-free quantification of SWATH-MS to understand the role of such signal molecule in this herbal species. The mass spectrometry proteomics data was deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD005749. This data article refers to the article entitled “Proteomics (SWATH-MS-informed by transcriptomics approach of Persicaria minor leaves upon methyl jasmonate elicitation” [3].

  5. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.

    Science.gov (United States)

    Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2015-07-15

    Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Quantitative proteomics by amino acid labeling in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Giessing, Anders

    2011-01-01

    We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-med......-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.......We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi...

  7. Biogeoscience from a Metallomic and Proteomic Perspective

    Science.gov (United States)

    Anbar, A. D.; Shock, E.

    2004-12-01

    In the wake of the genomics revolution, life scientists are expanding their focus from the genome to the "proteome" - the assemblage of all proteins in a cell - and the "metallome" - the distribution of inorganic species in a cell. The proteome and metallome are tightly connected because proteins and protein products are intimately involved in the transport and homeostasis of inorganic elements, and because many enzymes depend on inorganic elements for catalytic activity. Together, they are at the heart of metabolic function. Unlike the relatively static genome, the proteome and metallome are extremely dynamic, changing rapidly in response to environmental cues. They are substantially more complex than the genome; for example, in humans, some 30,000 genes code for approximately 500,000 proteins. Metaphorically, the proteome and metallome constitute the complex, dynamic "language" by which the genome and the environment communicate. Therefore biogeochemists, like life scientists, are moving beyond a strictly genomic perspective. Research guided by proteomic and metallomic perspectives and methodologies should provide new insights into the connections between life and the inorganic Earth in modern environments, and the evolution of these connections through time. For example, biogeochemical research in modern environments, such as Yellowstone hot springs, is hindered by the gap between genomic determinations of metabolic potential in ecosystems and geochemical characterizations of the energetic boundary conditions faced by these ecosystems; genomics tells us "who is there" and geochemistry tells us "what they might be doing", but neither genomics nor geochemistry easily provide quantitative information about which metabolisms are actually active or a framework for understanding why ecosystems do not fully exploit the energy available in their surroundings. Such questions are fundamentally kinetic rather than thermodynamic and therefore demand that we characterize and

  8. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  9. Examining hemodialyzer membrane performance using proteomic technologies

    Directory of Open Access Journals (Sweden)

    Bonomini M

    2017-12-01

    Full Text Available Mario Bonomini,1 Luisa Pieroni,2 Lorenzo Di Liberato,1 Vittorio Sirolli,1 Andrea Urbani2,3 1Department of Medicine, G. d’Annunzio University, Chieti, 2Proteomic and Metabonomic Units, IRCCS S. Lucia Foundation, Rome, 3Faculty of Medicine, Biochemistry and Clinical Biochemistry Institute, Catholic University of the “Sacred Heart”, Rome, Italy Abstract: The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium–high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may

  10. Utility of proteomics in obstetric disorders: a review

    Directory of Open Access Journals (Sweden)

    Hernández-Núñez J

    2015-04-01

    Full Text Available Jónathan Hernández-Núñez,1 Magel Valdés-Yong21Department of Obstetrics and Gynecology, Hospital Alberto Fernández-Valdés, Santa Cruz del Norte, Mayabeque, 2Department of Obstetrics and Gynecology, Hospital Luis Díaz Soto, Habana del Este, La Habana, CubaAbstract: The study of proteomics could explain many aspects of obstetric disorders. We undertook this review with the aim of assessing the utility of proteomics in the specialty of obstetrics. We searched the electronic databases of MEDLINE, EBSCOhost, BVS Bireme, and SciELO, using various search terms with the assistance of a librarian. We considered cohort studies, case-control studies, case series, and systematic review articles published until October 2014 in the English or Spanish language, and evaluated their quality and the internal validity of the evidence provided. Two reviewers extracted the data independently, then both researchers simultaneously revised the data later, to arrive at a consensus. The search retrieved 1,158 papers, of which 965 were excluded for being duplicates, not relevant, or unrelated studies. A further 86 papers were excluded for being guidelines, protocols, or case reports, along with another 64 that did not contain relevant information, leaving 43 studies for inclusion. Many of these studies showed the utility of proteomic techniques for prediction, pathophysiology, diagnosis, management, monitoring, and prognosis of pre-eclampsia, perinatal infection, premature rupture of membranes, preterm birth, intrauterine growth restriction, and ectopic pregnancy. Proteomic techniques have enormous clinical significance and constitute an invaluable weapon in the management of obstetric disorders that increase maternal and perinatal morbidity and mortality.Keywords: proteomic techniques, obstetrics, diagnosis, prediction

  11. Proteomics in quality control: Whey protein-based supplements.

    Science.gov (United States)

    Garrido, Bruno Carius; Souza, Gustavo H M F; Lourenço, Daniela C; Fasciotti, Maíra

    2016-09-16

    The growing consumption of nutritional supplements might represent a problem, given the concern about the quality of these supplements. One of the most used supplements is whey protein (WP); because of its popularity, it has been a target of adulteration with substitute products, such as cheaper proteins with lower biological value. To investigate this type of adulteration, this study used shotgun proteomics analyses by MS(E) (multiplexed, low- and high-collision energy, data-independent acquisition) of WP-based supplements. Seventeen WP-based supplement samples were evaluated. Chicken, maize, rice, potato, soybean, and wheat proteins were considered as probable sources of bovine whey adulteration. Collectively, 523 proteins were identified across all 16 samples and replicates, with 94% of peptides inside a normal distribution within 10ppm of maximum error. In 10 of the 16 samples analyzed, only proteins from bovine whey could be detected, while in the other samples several other protein sources were detected in high concentrations, especially soybean, wheat, and rice. These results point out a probable adulteration and/or sample contamination during manufacturing that could only be detected using this proteomic approach. The present work shows how shotgun proteomics can be used to provide reliable answers in quality control matters, especially focusing on Whey Protein nutritional supplements which are a very popular subject in food and nutrition. In order to achieve an appropriate methodology, careful evaluation was performed applying extremely rigorous quality criteria, established for the proteomic analysis. These criteria and the methodological approach used in this work might serve as a guide for other authors seeking to use proteomics in quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Proteomic profiling of the human T-cell nucleolus.

    Science.gov (United States)

    Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2011-12-01

    The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    Directory of Open Access Journals (Sweden)

    Thomas Kieselbach

    Full Text Available Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT and leukotoxin (LtxA into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs. To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e using liquid chromatography-tandem mass spectrometry (LC-MS/MS. This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.

  14. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  15. Proteomics technique opens new frontiers in mobilome research.

    Science.gov (United States)

    Davidson, Andrew D; Matthews, David A; Maringer, Kevin

    2017-01-01

    A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the "mobilome," which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the "domestication" of transposon proteins for cellular functions. Although 'omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called "proteomics informed by transcriptomics" (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti ). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease.

  16. Proteomics for discovery of candidate colorectal cancer biomarkers

    Science.gov (United States)

    Álvarez-Chaver, Paula; Otero-Estévez, Olalla; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco J; Martínez-Zorzano, Vicenta S

    2014-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in Europe and other Western countries, mainly due to the lack of well-validated clinically useful biomarkers with enough sensitivity and specificity to detect this disease at early stages. Although it is well known that the pathogenesis of CRC is a progressive accumulation of mutations in multiple genes, much less is known at the proteome level. Therefore, in the last years many proteomic studies have been conducted to find new candidate protein biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of colorectal carcinogenesis. An important advantage of the proteomic approaches is the capacity to look for multiple differentially expressed proteins in a single study. This review provides an overview of the recent reports describing the different proteomic tools used for the discovery of new protein markers for CRC such as two-dimensional electrophoresis methods, quantitative mass spectrometry-based techniques or protein microarrays. Additionally, we will also focus on the diverse biological samples used for CRC biomarker discovery such as tissue, serum and faeces, besides cell lines and murine models, discussing their advantages and disadvantages, and summarize the most frequently identified candidate CRC markers. PMID:24744574

  17. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  18. Changes to the Aqueous Humor Proteome during Glaucoma.

    Science.gov (United States)

    Kaeslin, Martha Andrea; Killer, Hanspeter Ezriel; Fuhrer, Cyril Adrian; Zeleny, Nauke; Huber, Andreas Robert; Neutzner, Albert

    2016-01-01

    To investigate the aqueous humor proteome in patients with glaucoma and a control group. Aqueous humor was obtained from five human donors diagnosed with primary open angle glaucoma (POAG) and five age- and sex-matched controls undergoing cataract surgery. Quantitative proteome analysis of the aqueous humor by hyper reaction monitoring mass spectrometry (HRM-MS) based on SWATH technology was performed. Expression levels of 87 proteins were found to be different between glaucomatous and control aqueous humor. Of the 87 proteins, 34 were significantly upregulated, whereas 53 proteins were downregulated in the aqueous humor from glaucoma patients compared to controls. Differentially expressed proteins were found to be involved in cholesterol-related, inflammatory, metabolic, antioxidant as well as proteolysis-related processes. Glaucoma leads to profound changes to the aqueous humor proteome consistent with an altered metabolic state, an inflammatory response and impaired antioxidant defense.

  19. Application of mass spectrometry-based proteomics for biomarker discovery in neurological disorders

    Directory of Open Access Journals (Sweden)

    Venugopal Abhilash

    2009-01-01

    Full Text Available Mass spectrometry-based quantitative proteomics has emerged as a powerful approach that has the potential to accelerate biomarker discovery, both for diagnostic as well as therapeutic purposes. Proteomics has traditionally been synonymous with 2D gels but is increasingly shifting to the use of gel-free systems and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS. Quantitative proteomic approaches have already been applied to investigate various neurological disorders, especially in the context of identifying biomarkers from cerebrospinal fluid and serum. This review highlights the scope of different applications of quantitative proteomics in understanding neurological disorders with special emphasis on biomarker discovery.

  20. Data Visualization and Feature Selection Methods in Gel-based Proteomics

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Richard, Nadege; Dias, Jorge P.

    2014-01-01

    -based proteomics, summarizing the current state of research within this field. Particular focus is given on discussing the usefulness of available multivariate analysis tools both for data visualization and feature selection purposes. Visual examples are given using a real gel-based proteomic dataset as basis....

  1. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    Peanut (Arachis hypogaea) is one of the most important sources of plant protein. Current selection of genotypes requires molecular characterization of available populations. Peanut genome database has several EST cDNAs which can be used to analyze gene expression. Analysis of proteins is a direct...... approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel...... electrophoresis in combination with sequence identification using MALDI/TOF to determine their identity and function related to growth, development and responses to stresses. Peanut leaf proteins were resolved into 300 polypeptides with pI values between 3.5 and 8.0 and relative molecular masses from 12 to 100 k...

  2. Mass Spectrometry-Based Serum Proteomics for Biomarker Discovery and Validation.

    Science.gov (United States)

    Bhosale, Santosh D; Moulder, Robert; Kouvonen, Petri; Lahesmaa, Riitta; Goodlett, David R

    2017-01-01

    Blood protein measurements are used frequently in the clinic in the assessment of patient health. Nevertheless, there remains the need for new biomarkers with better diagnostic specificities. With the advent of improved technology for bioanalysis and the growth of biobanks including collections from specific disease risk cohorts, the plasma proteome has remained a target of proteomics research toward the characterization of disease-related biomarkers. The following protocol presents a workflow for serum/plasma proteomics including details of sample preparation both with and without immunoaffinity depletion of the most abundant plasma proteins and methodology for selected reaction monitoring mass spectrometry validation.

  3. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis

    NARCIS (Netherlands)

    Low, T.Y.; van Heesch, S.; van den Toorn, H.; Giansanti, P.; Cristobal, A.; Toonen, P.; Schafer, S.; Hubner, N.; van Breukelen, B.; Mohammed, S.; Cuppen, E.; Heck, A.J.R.; Guryev, V.

    2013-01-01

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We

  4. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses

    DEFF Research Database (Denmark)

    Mokhtar, Helen; Pedrera, Miriam; Frossard, Jean-Pierre

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses...... proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered...... attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development....

  5. Detection of ROS Induced Proteomic Signatures by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2017-07-01

    Full Text Available Reversible and irreversible post-translational modifications (PTMs induced by endogenously generated reactive oxygen species (ROS in regulatory enzymes and proteins plays an essential role in cellular signaling. Almost all cellular processes including metabolism, transcription, translation and degradation have been identified as containing redox regulated proteins. Specific redox modifications of key amino acids generated by ROS offers a dynamic and versatile means to rapidly alter the activity or functional structure of proteins in response to biochemical, environmental, genetic and pathological perturbations. How the proteome responds to these stimuli is of critical importance in oxidant physiology, as it can regulate the cell stress response by reversible and irreversible PTMs, affecting protein activity and protein-protein interactions. Due to the highly labile nature of many ROS species, applying redox proteomics can provide a signature footprint of the ROS species generated. Ideally redox proteomic approaches would allow; (1 the identification of the specific PTM, (2 identification of the amino acid residue that is modified and (3 the percentage of the protein containing the PTM. New developments in MS offer the opportunity of a more sensitive targeted proteomic approach and retrospective data analysis. Subsequent bioinformatics analysis can provide an insight into the biochemical and physiological pathways or cell signaling cascades that are affected by ROS generation. This mini-review will detail current redox proteomic approaches to identify and quantify ROS induced PTMs and the subsequent effects on cellular signaling.

  6. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.

    Science.gov (United States)

    Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart

    2016-12-15

    Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions

  7. TrSDB: a proteome database of transcription factors

    Science.gov (United States)

    Hermoso, Antoni; Aguilar, Daniel; Aviles, Francesc X.; Querol, Enrique

    2004-01-01

    TrSDB—TranScout Database—(http://ibb.uab.es/trsdb) is a proteome database of eukaryotic transcription factors based upon predicted motifs by TranScout and data sources such as InterPro and Gene Ontology Annotation. Nine eukaryotic proteomes are included in the current version. Extensive and diverse information for each database entry, different analyses considering TranScout classification and similarity relationships are offered for research on transcription factors or gene expression. PMID:14681387

  8. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    Science.gov (United States)

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database

  9. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders.

    Science.gov (United States)

    Cehofski, Lasse Jørgensen; Honoré, Bent; Vorum, Henrik

    2017-04-28

    Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.

  10. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain.

    Science.gov (United States)

    Bissa, Massimiliano; Pacchioni, Sole Maria; Zanotto, Carlo; De Giuli Morghen, Carlo; Illiano, Elena; Granucci, Francesca; Zanoni, Ivan; Broggi, Achille; Radaelli, Antonia

    2013-12-26

    The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Proteomics of Trypanosoma evansi infection in rodents.

    Science.gov (United States)

    Roy, Nainita; Nageshan, Rishi Kumar; Pallavi, Rani; Chakravarthy, Harshini; Chandran, Syama; Kumar, Rajender; Gupta, Ashok Kumar; Singh, Raj Kumar; Yadav, Suresh Chandra; Tatu, Utpal

    2010-03-22

    Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS). Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more. Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the

  12. Proteomics of Trypanosoma evansi infection in rodents.

    Directory of Open Access Journals (Sweden)

    Nainita Roy

    2010-03-01

    Full Text Available Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS.Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a

  13. PCR strategy for identification and differentiation of small pox and other orthopoxviruses.

    Science.gov (United States)

    Ropp, S L; Jin, Q; Knight, J C; Massung, R F; Esposito, J J

    1995-08-01

    Rapid identification and differentiation of orthopoxviruses by PCR were achieved with primers based on genome sequences encoding the hemagglutinin (HA) protein, an infected-cell membrane antigen that distinguishes orthopoxviruses from other poxvirus genera. The initial identification step used a primer pair of consensus sequences for amplifying an HA DNA fragment from the three known North American orthopoxviruses (raccoonpox, skunkpox, and volepox viruses), and a second pair for amplifying virtually the entire HA open reading frame of the Eurasian-African orthopoxviruses (variola, vaccinia, cowpox, monkeypox, camelpox, ectromelia, and gerbilpox viruses). RsaI digest electropherograms of the amplified DNAs of the former subgroup provided species differentiation, and TaqI digests differentiated the Eurasian-African orthopoxviruses, including vaccinia virus from the vaccinia virus subspecies buffalopox virus. Endonuclease HhaI digest patterns distinguished smallpox variola major viruses from alastrim variola minor viruses. For the Eurasian-African orthopoxviruses, a confirmatory step that used a set of higher-sequence-homology primers was developed to provide sensitivity to discern individual virus HA DNAs from cross-contaminated orthopoxvirus DNA samples; TaqI and HhaI digestions of the individual amplified HA DNAs confirmed virus identity. Finally, a set of primers and modified PCR conditions were developed on the basis of base sequence differences within the HA genes of the 10 species, which enabled production of a single DNA fragment of a particular size that indicated the specific species.

  14. Quantitative and Qualitative Proteome Characteristics Extracted from In-Depth Integrated Genomics and Proteomics Analysis

    NARCIS (Netherlands)

    Low, Teck Yew; van Heesch, Sebastiaan; van den Toorn, Henk; Giansanti, Piero; Cristobal, Alba; Toonen, Pim; Schafer, Sebastian; Huebner, Norbert; van Breukelen, Bas; Mohammed, Shabaz; Cuppen, Edwin; Heck, Albert J. R.; Guryev, Victor

    2013-01-01

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and post-transcriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We

  15. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    Science.gov (United States)

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  16. Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    DEFF Research Database (Denmark)

    Alkhalaf, Alaa; Zürbig, Petra; Bakker, Stephan J L

    2010-01-01

    /d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). METHODOLOGY/PRINCIPAL FINDINGS: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously......BACKGROUND: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers...... with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration ≥5 years, cases of DN were defined as albuminuria >300 mg...

  17. Effects of High-Pressure Treatment on the Muscle Proteome of Hake by Bottom-Up Proteomics.

    Science.gov (United States)

    Carrera, Mónica; Fidalgo, Liliana G; Saraiva, Jorge A; Aubourg, Santiago P

    2018-05-02

    A bottom-up proteomics approach was applied for the study of the effects of high-pressure (HP) treatment on the muscle proteome of fish. The performance of the approach was established for a previous HP treatment (150-450 MPa for 2 min) on frozen (up to 5 months at -10 °C) European hake ( Merluccius merluccius). Concerning possible protein biomarkers of quality changes, a significant degradation after applying a pressure ≥430 MPa could be observed for phosphoglycerate mutase-1, enolase, creatine kinase, fructose bisphosphate aldolase, triosephosphate isomerase, and nucleoside diphosphate kinase; contrary, electrophoretic bands assigned to tropomyosin, glyceraldehyde-3-phosphate dehydrogenase, and beta parvalbumin increased their intensity after applying a pressure ≥430 MPa. This repository of potential protein biomarkers may be very useful for further HP investigations related to fish quality.

  18. Noninvasive diagnosis of intraamniotic infection: proteomic biomarkers in vaginal fluid.

    Science.gov (United States)

    Hitti, Jane; Lapidus, Jodi A; Lu, Xinfang; Reddy, Ashok P; Jacob, Thomas; Dasari, Surendra; Eschenbach, David A; Gravett, Michael G; Nagalla, Srinivasa R

    2010-07-01

    We analyzed the vaginal fluid proteome to identify biomarkers of intraamniotic infection among women in preterm labor. Proteome analysis was performed on vaginal fluid specimens from women with preterm labor, using multidimensional liquid chromatography, tandem mass spectrometry, and label-free quantification. Enzyme immunoassays were used to quantify candidate proteins. Classification accuracy for intraamniotic infection (positive amniotic fluid bacterial culture and/or interleukin-6 >2 ng/mL) was evaluated using receiver-operator characteristic curves obtained by logistic regression. Of 170 subjects, 30 (18%) had intraamniotic infection. Vaginal fluid proteome analysis revealed 338 unique proteins. Label-free quantification identified 15 proteins differentially expressed in intraamniotic infection, including acute-phase reactants, immune modulators, high-abundance amniotic fluid proteins and extracellular matrix-signaling factors; these findings were confirmed by enzyme immunoassay. A multi-analyte algorithm showed accurate classification of intraamniotic infection. Vaginal fluid proteome analyses identified proteins capable of discriminating between patients with and without intraamniotic infection. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  19. Hepatitis C virus infection protein network.

    Science.gov (United States)

    de Chassey, B; Navratil, V; Tafforeau, L; Hiet, M S; Aublin-Gex, A; Agaugué, S; Meiffren, G; Pradezynski, F; Faria, B F; Chantier, T; Le Breton, M; Pellet, J; Davoust, N; Mangeot, P E; Chaboud, A; Penin, F; Jacob, Y; Vidalain, P O; Vidal, M; André, P; Rabourdin-Combe, C; Lotteau, V

    2008-01-01

    A proteome-wide mapping of interactions between hepatitis C virus (HCV) and human proteins was performed to provide a comprehensive view of the cellular infection. A total of 314 protein-protein interactions between HCV and human proteins was identified by yeast two-hybrid and 170 by literature mining. Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HCV are enriched in highly central and interconnected proteins. A global analysis on the basis of functional annotation highlighted the enrichment of cellular pathways targeted by HCV. A network of proteins associated with frequent clinical disorders of chronically infected patients was constructed by connecting the insulin, Jak/STAT and TGFbeta pathways with cellular proteins targeted by HCV. CORE protein appeared as a major perturbator of this network. Focal adhesion was identified as a new function affected by HCV, mainly by NS3 and NS5A proteins.

  20. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  1. Proteomics reveals the effects of sustained weight loss on the human plasma proteome

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Wewer Albrechtsen, Nicolai J; Tyanova, Stefka

    2016-01-01

    Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill-defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed ...

  2. Isolation and proteomic analysis of Chlamydomonas centrioles.

    Science.gov (United States)

    Keller, Lani C; Marshall, Wallace F

    2008-01-01

    Centrioles are barrel-shaped cytoskeletal organelles composed of nine triplet microtubules blades arranged in a pinwheel-shaped array. Centrioles are required for recruitment of pericentriolar material (PCM) during centrosome formation, and they act as basal bodies, which are necessary for the outgrowth of cilia and flagella. Despite being described over a hundred years ago, centrioles are still among the most enigmatic organelles in all of cell biology. To gain molecular insights into the function and assembly of centrioles, we sought to determine the composition of the centriole proteome. Here, we describe a method that allows for the isolation of virtually "naked" centrioles, with little to no obscuring PCM, from the green alga, Chlamydomonas. Proteomic analysis of this material provided evidence that multiple human disease gene products encode protein components of the centriole, including genes involved in Meckel syndrome and Oral-Facial-Digital syndrome. Isolated centrioles can be used in combination with a wide variety of biochemical assays in addition to being utilized as a source for proteomic analysis.

  3. Probing the Proteome on Earth and Beyond

    Science.gov (United States)

    Ostrom, P.

    2008-12-01

    Less than a decade ago, protein sequencing was the bane of paleobiology. Since that time researchers have completely sequenced proteins in >50 Ka fossils, been dazzled by reports of collagen peptides in dinosaur bones, and witnessed the development of phylogenetic trees from ancient protein sequences. Enlisting proteomics as biosignature is now in our grasp. In this talk the pitfalls and challenges of mass spectrometric approaches to protein sequencing will be illustrated and phylogenetic applications will be discussed. Work on extinct organisms at Michigan State University, University of Michigan and York University will provide a vantage point to assess methodologies, explore diagenetic alterations, evaluate mass spectra and illustrate issues associated with data base searching. Challenges encountered in the study of paleoproteomics, such as the absence of sequences for extinct organisms in commercially available databases, protein diagenesis and low concentrations of target are parallel to those that will be encountered when protein sequencing is extended to extreme and extraterrestrial environments. Thus, lessons learned from interrogating the ancient proteome are important and necessary step in developing proteomics as a biosignature tools.

  4. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.

    Science.gov (United States)

    Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin

    2014-06-13

    Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    Science.gov (United States)

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  6. BioinformatiqTM - integrating data types for proteomic discovery

    International Nuclear Information System (INIS)

    Arthur, J.W.; Harrison, M.; Manoharan, A.; Traini, M.; Shaw, E.; Wilkins, M.

    2001-01-01

    Proteomics (Wilkins et al. 1997) involves the large-scale analysis of expressed proteins. At each stage of the discovery process the researcher accumulates large volumes of data. These include: clinical or biological data about the sample being studied; details of sample purification and separation; images of 2D gels and associated information; MALDI mass spectra; MS/MS and PSD spectra; as well as meta-data relating to the projects undertaken and experiments performed. All this must be combined with existing databases of protein and EST sequences, post-translational modifications, and protein glycosylation, then processed with sophisticated bioinformatics tools in order to extract meaningful answers to questions of biological, clinical, and agricultural significance. BioinformatlQ TM is a web-based application for the storage, management, and automated bioinformatic analysis of proteomic information. This poster will demonstrate the integration of these disparate data sources in proteomics

  7. Changes to the Aqueous Humor Proteome during Glaucoma.

    Directory of Open Access Journals (Sweden)

    Martha Andrea Kaeslin

    Full Text Available To investigate the aqueous humor proteome in patients with glaucoma and a control group.Aqueous humor was obtained from five human donors diagnosed with primary open angle glaucoma (POAG and five age- and sex-matched controls undergoing cataract surgery. Quantitative proteome analysis of the aqueous humor by hyper reaction monitoring mass spectrometry (HRM-MS based on SWATH technology was performed.Expression levels of 87 proteins were found to be different between glaucomatous and control aqueous humor. Of the 87 proteins, 34 were significantly upregulated, whereas 53 proteins were downregulated in the aqueous humor from glaucoma patients compared to controls. Differentially expressed proteins were found to be involved in cholesterol-related, inflammatory, metabolic, antioxidant as well as proteolysis-related processes.Glaucoma leads to profound changes to the aqueous humor proteome consistent with an altered metabolic state, an inflammatory response and impaired antioxidant defense.

  8. Generation and Comprehensive Analysis of an Influenza Virus Polymerase Cellular Interaction Network▿†§

    Science.gov (United States)

    Tafforeau, Lionel; Chantier, Thibault; Pradezynski, Fabrine; Pellet, Johann; Mangeot, Philippe E.; Vidalain, Pierre-Olivier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent

    2011-01-01

    The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response. PMID:21994455

  9. Microbial proteomics: a mass spectrometry primer for biologists

    Directory of Open Access Journals (Sweden)

    Graham Ciaren

    2007-08-01

    Full Text Available Abstract It is now more than 10 years since the publication of the first microbial genome sequence and science is now moving towards a post genomic era with transcriptomics and proteomics offering insights into cellular processes and function. The ability to assess the entire protein network of a cell at a given spatial or temporal point will have a profound effect upon microbial science as the function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond current technologies rapid advances in mass spectrometry, bioinformatics and protein separation technologies have produced a step change in our current proteomic capabilities. Subsequently a small, but steadily growing, number of groups are taking advantage of this cutting edge technology to discover more about the physiology and metabolism of microorganisms. From this research it will be possible to move towards a systems biology understanding of a microorganism. Where upon researchers can build a comprehensive cellular map for each microorganism that links an accurately annotated genome sequence to gene expression data, at a transcriptomic and proteomic level. In order for microbiologists to embrace the potential that proteomics offers, an understanding of a variety of analytical tools is required. The aim of this review is to provide a basic overview of mass spectrometry (MS and its application to protein identification. In addition we will describe how the protein complexity of microbial samples can be reduced by gel-based and gel-free methodologies prior to analysis by MS. Finally in order to illustrate the power of microbial proteomics a case study of its current application within the Bacilliaceae is given together with a description of the emerging discipline of metaproteomics.

  10. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    2010-12-01

    Full Text Available The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  11. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Science.gov (United States)

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N; Carter, Jeff; Dalby, Andrew B; Eaton, Bruce E; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R; Kim, Nancy; Koch, Tad H; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D; Vrkljan, Mike; Walker, Jeffrey J; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K; Wolfson, Alexey; Wolk, Steven K; Zhang, Chi; Zichi, Dom

    2010-12-07

    The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  12. Proteome analysis of Aspergillus ochraceus.

    Science.gov (United States)

    Rizwan, Muhammad; Miller, Ingrid; Tasneem, Fareeha; Böhm, Josef; Gemeiner, Manfred; Razzazi-Fazeli, Ebrahim

    2010-08-01

    Genome sequencing for many important fungi has begun during recent years; however, there is still some deficiency in proteome profiling of aspergilli. To obtain a comprehensive overview of proteins and their expression, a proteomic approach based on 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry was used to investigate A. ochraceus. The cell walls of fungi are exceptionally resistant to destruction, therefore two lysis protocols were tested: (1) lysis via manual grinding using liquid nitrogen, and (2) mechanical lysis via rapid agitation with glass beads using MagNalyser. Mechanical grinding with mortar and pestle using liquid nitrogen was found to be a more efficient extraction method for our purpose, resulting in extracts with higher protein content and a clear band pattern in SDS-PAGE. Two-dimensional electrophoresis gave a complex spot pattern comprising proteins of a broad range of isoelectric points and molecular masses. The most abundant spots were subjected to mass spectrometric analysis. We could identify 31 spots representing 26 proteins, most of them involved in metabolic processes and response to stress. Seventeen spots were identified by de novo sequencing due to a lack of DNA and protein database sequences of A. ochraceus. The proteins identified in our study have been reported for the first time in A. ochraceus and this represents the first proteomic approach with identification of major proteins, when the fungus was grown under submerged culture.

  13. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2016-11-11

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies

  14. Detecting differential protein expression in large-scale population proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Soyoung; Qian, Weijun; Camp, David G.; Smith, Richard D.; Tompkins, Ronald G.; Davis, Ronald W.; Xiao, Wenzhong

    2014-06-17

    Mass spectrometry-based high-throughput quantitative proteomics shows great potential in clinical biomarker studies, identifying and quantifying thousands of proteins in biological samples. However, methods are needed to appropriately handle issues/challenges unique to mass spectrometry data in order to detect as many biomarker proteins as possible. One issue is that different mass spectrometry experiments generate quite different total numbers of quantified peptides, which can result in more missing peptide abundances in an experiment with a smaller total number of quantified peptides. Another issue is that the quantification of peptides is sometimes absent, especially for less abundant peptides and such missing values contain the information about the peptide abundance. Here, we propose a Significance Analysis for Large-scale Proteomics Studies (SALPS) that handles missing peptide intensity values caused by the two mechanisms mentioned above. Our model has a robust performance in both simulated data and proteomics data from a large clinical study. Because varying patients’ sample qualities and deviating instrument performances are not avoidable for clinical studies performed over the course of several years, we believe that our approach will be useful to analyze large-scale clinical proteomics data.

  15. Application of Proteomics to the Study of Pollination Drops

    Directory of Open Access Journals (Sweden)

    Natalie Prior

    2013-04-01

    Full Text Available Premise of the study: Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. Methods: Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar, Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper, Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir, Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. Results: Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. Discussion: Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.

  16. The Urine Proteome Profile Is Different in Neuromyelitis Optica Compared to Multiple Sclerosis: A Clinical Proteome Study.

    Directory of Open Access Journals (Sweden)

    Helle H Nielsen

    Full Text Available Inflammatory demyelinating diseases of the CNS comprise a broad spectrum of diseases like neuromyelitis optica (NMO, NMO spectrum disorders (NMO-SD and multiple sclerosis (MS. Despite clear classification criteria, differentiation can be difficult. We hypothesized that the urine proteome may differentiate NMO from MS.The proteins in urine samples from anti-aquaporin 4 (AQP4 seropositive NMO/NMO-SD patients (n = 32, patients with MS (n = 46 and healthy subjects (HS, n = 31 were examined by quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS after trypsin digestion and iTRAQ labelling. Immunoglobulins (Ig in the urine were validated by nephelometry in an independent cohort (n = 9-10 pr. groups.The analysis identified a total of 1112 different proteins of which 333 were shared by all 109 subjects. Cluster analysis revealed differences in the urine proteome of NMO/NMO-SD compared to HS and MS. Principal component analysis also suggested that the NMO/NMO-SD proteome profile was useful for classification. Multivariate regression analysis revealed a 3-protein profile for the NMO/NMO-SD versus HS discrimination, a 6-protein profile for NMO/NMO-SD versus MS discrimination and an 11-protein profile for MS versus HS discrimination. All protein panels yielded highly significant ROC curves (AUC in all cases >0.85, p≤0.0002. Nephelometry confirmed the presence of increased Ig-light chains in the urine of patients with NMO/NMO-SD.The urine proteome profile of patients with NMO/NMO-SD is different from MS and HS. This may reflect differences in the pathogenesis of NMO/NMO-SD versus MS and suggests that urine may be a potential source of biomarkers differentiating NMO/NMO-SD from MS.

  17. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  18. A Method for Microalgae Proteomics Analysis Based on Modified Filter-Aided Sample Preparation.

    Science.gov (United States)

    Li, Song; Cao, Xupeng; Wang, Yan; Zhu, Zhen; Zhang, Haowei; Xue, Song; Tian, Jing

    2017-11-01

    With the fast development of microalgal biofuel researches, the proteomics studies of microalgae increased quickly. A filter-aided sample preparation (FASP) method is widely used proteomics sample preparation method since 2009. Here, a method of microalgae proteomics analysis based on modified filter-aided sample preparation (mFASP) was described to meet the characteristics of microalgae cells and eliminate the error caused by over-alkylation. Using Chlamydomonas reinhardtii as the model, the prepared sample was tested by standard LC-MS/MS and compared with the previous reports. The results showed mFASP is suitable for most of occasions of microalgae proteomics studies.

  19. Aspects of the barley seed proteome during development and germination

    DEFF Research Database (Denmark)

    Finnie, Christine; Maeda, K.; Østergaard, O.

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  20. Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection

    Data.gov (United States)

    National Aeronautics and Space Administration — To reveal outcomes of microgravity on molecular processes within the cellular environment we have employed a mass-spectrometry based proteomics approach. Proteomics...

  1. Morphine Produces Immunosuppressive Effects in Non-human Primates at the Proteomic and Cellular Levels

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.; Jacobs, Jon M.; Gritsenko, Marina A.; Chan, Eric Y.; Purdy, David E.; Murnane, Robert D.; Larsen, Kay; Palermo, Robert E.; Shukla, Anil K.; Clauss, Therese RW; Katze, Michael G.; McCune, Joseph M.; Smith, Richard D.

    2012-05-11

    Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. As a prelude to understanding how these changes might interact with lentiviral infection in vivo, animals from two non-human primate (NHP) species [African green monkey (AGMs) and pigtailed macaque (PTs)] were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g., lymph node, colon, cerebrospinal fluid (CSF), and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an inter-organ, inter-individual, and inter-species basis. In both species, morphine was associated with decreased levels of (Ki-67+) T cell activation but with only minimal changes in overall T cell counts, neutrophil counts, and NK cells counts. While changes in T cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in the lymph node, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the interplay between opioid abuse and the response to infection with agents such as the human immunodeficiency virus, type 1 (HIV).

  2. Proteomics approaches shed new light on hibernation physiology.

    Science.gov (United States)

    Grabek, Katharine R; Martin, Sandra L; Hindle, Allyson G

    2015-08-01

    The broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways. Here, we review the findings that have emerged from proteomics studies of hibernation. One striking feature is the stability of the proteome, especially across the extreme physiological shifts of torpor-arousal cycles during hibernation. This has led to subsequent investigations of the role of post-translational protein modifications in altering protein activity without energetically wasteful removal and rebuilding of protein pools. Another unexpected finding is the paucity of universal proteomic adjustments across organ systems in response to the extreme metabolic fluctuations despite the universality of their physiological challenges; rather each organ appears to respond in a unique, tissue-specific manner. Additional research is needed to extend and synthesize these results before it will be possible to address the whole body physiology of hibernation.

  3. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Directory of Open Access Journals (Sweden)

    Sorette M

    2004-12-01

    Full Text Available Abstract Background Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. Results Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. Conclusion The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.

  4. Non-biased enrichment does not improve quantitative proteomic delineation of reovirus T3D-infected HeLa cell protein alterations

    Directory of Open Access Journals (Sweden)

    Jieyuan eJiang

    2012-09-01

    Full Text Available Mass spectrometry-based methods have allowed elucidation of alterations in complex proteomes, such as eukaryotic cells. Such studies have identified and measured relative abundances of thousands of host proteins after cells are infected with a virus. One of the potential limitations in such studies is that generally only the most abundant proteins are identified, leaving the deep richness of the cellular proteome largely unexplored. We differentially labeled HeLa cells with light and heavy stable isotopic forms of lysine and arginine (SILAC and infected cells with reovirus strain T3D. Cells were harvested at 24 hours post-infection. Heavy-labeled infected and light-labeled mock-infected cells were mixed together 1:1. Cells were then divided into cytosol and nuclear fractions and each fraction analyzed, both by standard 2D-HPLC/MS, and also after each fraction had been reacted with a random hexapeptide library (Proteominer® beads to attempt to enrich for low-abundance cellular proteins. A total of 2736 proteins were identified by 2 or more peptides at >99% confidence, of which 66 were significantly up-regulated and 67 were significantly down-regulated. Up-regulated proteins included those involved in antimicrobial and antiviral responses, GTPase activity, nucleotide binding, interferon signaling, and enzymes associated with energy generation. Down-regulated proteins included those involved in cell and biological adhesion, regulation of cell proliferation, structural molecule activity, and numerous molecular binding activities. Comparisons of the r2 correlations, degree of dataset overlap, and numbers of peptides detected suggest that non-biased enrichment approaches may not provide additional data to allow deeper quantitative and comparative mining of complex proteomes.

  5. A community proposal to integrate proteomics activities in ELIXIR

    DEFF Research Database (Denmark)

    Vizcaíno, Juan Antonio; Walzer, Mathias; Jiménez, Rafael C.

    2017-01-01

    in computational proteomics that would complement existing activities and close gaps in the portfolio of tools and services offered by ELIXIR so far. We provide some suggestions on how these activities could be integrated into ELIXIR's existing platforms, and how it could lead to a new ELIXIR use case...... involved, and in particular with other representatives of the proteomics community, to further refine this paper....

  6. Proteomics and Metabolomics: two emerging areas for legume improvement

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important source of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signalling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signalling in legumes. In

  7. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis.

    Science.gov (United States)

    Clark, David J; Fondrie, William E; Liao, Zhongping; Hanson, Phyllis I; Fulton, Amy; Mao, Li; Yang, Austin J

    2015-10-20

    Exosomes are microvesicles of endocytic origin constitutively released by multiple cell types into the extracellular environment. With evidence that exosomes can be detected in the blood of patients with various malignancies, the development of a platform that uses exosomes as a diagnostic tool has been proposed. However, it has been difficult to truly define the exosome proteome due to the challenge of discerning contaminant proteins that may be identified via mass spectrometry using various exosome enrichment strategies. To better define the exosome proteome in breast cancer, we incorporated a combination of Tandem-Mass-Tag (TMT) quantitative proteomics approach and Support Vector Machine (SVM) cluster analysis of three conditioned media derived fractions corresponding to a 10 000g cellular debris pellet, a 100 000g crude exosome pellet, and an Optiprep enriched exosome pellet. The quantitative analysis identified 2 179 proteins in all three fractions, with known exosomal cargo proteins displaying at least a 2-fold enrichment in the exosome fraction based on the TMT protein ratios. Employing SVM cluster analysis allowed for the classification 251 proteins as "true" exosomal cargo proteins. This study provides a robust and vigorous framework for the future development of using exosomes as a potential multiprotein marker phenotyping tool that could be useful in breast cancer diagnosis and monitoring disease progression.

  9. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.; Anderson, G. A.; Smith, R. D.; Dabney, A. R.

    2012-01-01

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein's associated spectral peaks. However, typical MS-based proteomics datasets have substantial

  10. Comparative proteomics of matrix fractions between pimpled and normal chicken eggshells.

    Science.gov (United States)

    Liu, Zhangguo; Song, Lingzi; Lu, Lizhi; Zhang, Xianfu; Zhang, Fuming; Wang, Kehua; Linhardt, Robert J

    2017-09-07

    Eggshell matrix can be dissociated into three matrix fractions: acid-insoluble matrix (M1), water-insoluble matrix (M2) and acid-water facultative-soluble matrix (M3). Matrix fractions from pimpled and normal eggshells were compared using label-free proteomic method to understand the differences among three matrix fractions and the proteins involved with eggshell quality. A total of 738 and 600 proteins were identified in the pimpled and normal calcified eggshells, respectively. Both eggshells showed a combined proteomic inventory of 769 proteins. In the same type of eggshell, a high similarity was present in the proteomes of three matrix fractions. These triply overlapped common proteins formed the predominant contributor to proteomic abundance in the matrix fractions. In each matrix fraction and between both eggshell models, normal and pimpled eggshells, a majority of the proteomes of the fractions were commonly observed. Forty-two common major proteins (iBAQ-derived abundance ≥0.095% of proteomic abundance) were identified throughout the three matrix fractions and these proteins might act as backbone constituents in chicken eggshell matrix. Finally, using 1.75-fold as up-regulated and using 0.57-fold as down-regulated cutoff values, twenty-five differential major proteins were screened and they all negatively influence and none showed any effect on eggshell quality. Overall, we uncovered the characteristics of proteomics of three eggshell matrix fractions and identified candidate proteins influencing eggshell quality. The next research on differential proteins will uncover the potential mechanisms underlying how proteins affect eggshell quality. It was reported that the proteins in an eggshell can be divided into insoluble and soluble proteins. The insoluble proteins are thought to be an inter-mineral matrix and acts as a structural framework, while the soluble proteins are thought as intra-mineral matrix that are embedded within the crystal during

  11. The urinary proteome in diabetes and diabetes-associated complications

    DEFF Research Database (Denmark)

    Rossing, Kasper; Mischak, Harald; Rossing, Peter

    2008-01-01

    Diabetes represents one of the main chronic diseases worldwide. Diabetes and its associated complications may be detectable even at early stages in the urinary proteome. In this article we review the current literature on urinary proteomics applied to the study of diabetes and diabetic...... complications. Further, we present recent data that strongly indicate urinary proteome analysis may be a valuable tool in detecting diabetes-associated pathophysiological changes at an early stage, and also may enable assessment of disease progression and efficacy of therapy. Current data indicate that collagen......-derived peptides represent one of the main peptidic components in urine, which are consistently found at reduced levels in diabetes. It is tempting to speculate that this decrease in urinary collagen-derived peptides is related to an increase in extracellular matrix deposition which is a major complication...

  12. PROTEINCHALLENGE: Crowd sourcing in proteomics analysis and software development

    DEFF Research Database (Denmark)

    Martin, Sarah F.; Falkenberg, Heiner; Dyrlund, Thomas Franck

    2013-01-01

    , including arguments for community-wide open source software development and “big data” compatible solutions for the future. For the meantime, we have laid out ten top tips for data processing. With these at hand, a first large-scale proteomics analysis hopefully becomes less daunting to navigate......, with the aim of setting a community-driven gold standard for data handling, reporting and sharing. This article is part of a Special Issue entitled: New Horizons and Applications for Proteomics [EuPA 2012].......In large-scale proteomics studies there is a temptation, after months of experimental work, to plug resulting data into a convenient—if poorly implemented—set of tools, which may neither do the data justice nor help answer the scientific question. In this paper we have captured key concerns...

  13. Mitotic spindle proteomics in Chinese hamster ovary cells.

    Directory of Open Access Journals (Sweden)

    Mary Kate Bonner

    Full Text Available Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.

  14. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara; Gottig, Natalia; Garavaglia, Betiana S.; Gehring, Christoph A; Ottado, Jorgelina

    2011-01-01

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  15. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  16. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  17. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives.

    Science.gov (United States)

    Tholey, Andreas; Becker, Alexander

    2017-11-01

    Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics

    DEFF Research Database (Denmark)

    Mortensen, Peter; Gouw, Joost W; Olsen, Jesper V

    2010-01-01

    Mass spectrometry-based proteomics critically depends on algorithms for data interpretation. A current bottleneck in the rapid advance of proteomics technology is the closed nature and slow development cycle of vendor-supplied software solutions. We have created an open source software environment...

  19. Guidelines for reporting quantitative mass spectrometry based experiments in proteomics.

    Science.gov (United States)

    Martínez-Bartolomé, Salvador; Deutsch, Eric W; Binz, Pierre-Alain; Jones, Andrew R; Eisenacher, Martin; Mayer, Gerhard; Campos, Alex; Canals, Francesc; Bech-Serra, Joan-Josep; Carrascal, Montserrat; Gay, Marina; Paradela, Alberto; Navajas, Rosana; Marcilla, Miguel; Hernáez, María Luisa; Gutiérrez-Blázquez, María Dolores; Velarde, Luis Felipe Clemente; Aloria, Kerman; Beaskoetxea, Jabier; Medina-Aunon, J Alberto; Albar, Juan P

    2013-12-16

    Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows. The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and

  20. Advancement of mass spectrometry-based proteomics technologies to explore triple negative breast cancer.

    Science.gov (United States)

    Miah, Sayem; Banks, Charles A S; Adams, Mark K; Florens, Laurence; Lukong, Kiven E; Washburn, Michael P

    2016-12-20

    Understanding the complexity of cancer biology requires extensive information about the cancer proteome over the course of the disease. The recent advances in mass spectrometry-based proteomics technologies have led to the accumulation of an incredible amount of such proteomic information. This information allows us to identify protein signatures or protein biomarkers, which can be used to improve cancer diagnosis, prognosis and treatment. For example, mass spectrometry-based proteomics has been used in breast cancer research for over two decades to elucidate protein function. Breast cancer is a heterogeneous group of diseases with distinct molecular features that are reflected in tumour characteristics and clinical outcomes. Compared with all other subtypes of breast cancer, triple-negative breast cancer is perhaps the most distinct in nature and heterogeneity. In this review, we provide an introductory overview of the application of advanced proteomic technologies to triple-negative breast cancer research.

  1. Proteome stability analysis of snap frozen, RNAlater preserved, and formalin-fixed paraffin-embedded human colon mucosal biopsies

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Kastaniegaard, Kenneth; Padurariu, Simona

    2016-01-01

    Large repositories of well characterized RNAlater preserved samples and formalin-fixed, paraffin-embedded samples have been generated worldwide. However, the impact on the proteome of the preservation methods remain poorly described. Therefore, we analyzed the impact on the proteome of preserving...... throughput gel free quantitative proteomics. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD002029....

  2. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  3. Data from quantitative label free proteomics analysis of rat spleen

    Directory of Open Access Journals (Sweden)

    Khadar Dudekula

    2016-09-01

    Full Text Available The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides. A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis. Keywords: Spleen, Rat, Protein extraction, Label-free quantitative proteomics

  4. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion.

    Science.gov (United States)

    Pan, Yanbo; Cheng, Kai; Mao, Jiawei; Liu, Fangjie; Liu, Jing; Ye, Mingliang; Zou, Hanfa

    2014-10-01

    Trypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of trypsin-catalyzed cleavage. It was found that trypsin cleaves the C-terminal to lysine (K) and arginine (R) residues with higher rates for R. And the cleavage sites surrounded by neutral residues could be quickly cut, while those with neighboring charged residues (D/E/K/R) or proline residue (P) could be slowly cut. In a proteome sample, a huge number of proteins with different physical chemical properties coexists. If any type of protein could be preferably digested, then limited digestion could be applied to reduce the sample complexity. However, we found that protein abundance and other physicochemical properties, such as molecular weight (Mw), grand average of hydropathicity (GRAVY), aliphatic index, and isoelectric point (pI) have no notable correlation with digestion priority of proteins.

  5. MASCP Gator: An overview of the Arabidopsis proteomic aggregation portal

    Directory of Open Access Journals (Sweden)

    Gregory W Mann

    2013-10-01

    Full Text Available A key challenge in the area of bioinformatics in the coming decades is the ability to manage the wealth of information that is being generated from the variety of high throughput methodologies currently being undertaken in laboratories across the world. While these approaches have made available large volumes of data to the research community, less attention has been given to the problem of how to intuitively present the data to enable greater biological insights. Recently, an attempt was made to tackle this problem in the area of Arabidopsis proteomics. The model plant has been the target of countless proteomics surveys producing an exhaustive array of data and online repositories. The MASCP Gator is an aggregation portal for proteomic data currently being produced by the community and unites a large collection of specialized resources to a single portal (http://gator.masc-proteomics.org/. Here we describe the latest additions, upgrades and features to this resource further expanding its role into protein modifications and genome sequence variations.

  6. Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.

    Science.gov (United States)

    Petricoin, Emanuel F; Ornstein, David K; Liotta, Lance A

    2004-01-01

    The science of proteomics comprises much more than simply generating lists of proteins that change in expression as a cause of or consequence of pathophysiology. The goal of proteomics should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. Serum proteomic pattern diagnostics is a new type of proteomic concept in which patterns of ion signatures generated from high dimensional mass spectrometry data are used as diagnostic classifiers. This recent approach has exciting potential for clinical utility of diagnostic patterns because low molecular weight metabolites, peptides, and protein fragments may have higher accuracy than traditional biomarkers of cancer detection. Intriguingly, we now have discovered that this diagnostic information exists in a bound state, complexed with circulating highly abundant carrier proteins. These diagnostic fragments may one day be harvested by circulating nanoparticles, designed to absorb, enrich, and amplify the repertoire of diagnostic biomarkers generated-even at the critical, initial stages of carcinogenesis. Copyright 2004 Elsevier Inc.

  7. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.

    Science.gov (United States)

    Buron-Moles, Gemma; Wisniewski, Michael; Viñas, Inmaculada; Teixidó, Neus; Usall, Josep; Droby, Samir; Torres, Rosario

    2015-01-30

    Apples are subjected to both abiotic and biotic stresses during the postharvest period, which lead to large economic losses worldwide. To obtain biochemical insights into apple defense response, we monitored the protein abundance changes (proteome), as well as the protein carbonyls (oxi-proteome) formed by reactive oxygen species (ROS) in 'Golden Smoothee' apple in response to wounding, Penicillium expansum (host) and Penicillium digitatum (non-host) pathogens with select transcriptional studies. To examine the biological relevance of the results, we described quantitative and oxidative protein changes into the gene ontology functional categories, as well as into de KEGG pathways. We identified 26 proteins that differentially changed in abundance in response to wounding, P. expansum or P. digitatum infection. While these changes showed some similarities between the apple responses and abiotic and biotic stresses, Mal d 1.03A case, other proteins as Mal d 1.03E and EF-Tu were specifically induced in response to P. digitatum infection. Using a protein carbonyl detection method based on fluorescent Bodipy, we detected and identified 27 oxidized proteins as sensitive ROS targets. These ROS target proteins were related to metabolism processes, suggesting that this process plays a leading role in apple fruit defense response against abiotic and biotic stresses. ACC oxidase and two glutamine synthetases showed the highest protein oxidation level in response to P. digitatum infection. Documenting changes in the proteome and, specifically in oxi-proteome of apple can provide information that can be used to better understand how impaired protein functions may affect apple defense mechanisms. Possible mechanisms by which these modified proteins are involved in fruit defense response are discussed. Mechanical damage in apple fruits is linked annually to large economic losses due to opportunistic infection by postharvest pathogens, such as P. expansum. Despite the current use

  8. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective.

    Science.gov (United States)

    Findeisen, Peter; Neumaier, Michael

    2009-01-01

    Proteomics analysis has been heralded as a novel tool for identifying new and specific biomarkers that may improve diagnosis and monitoring of various disease states. Recent years have brought a number of proteomics profiling technologies. Although proteomics profiling has resulted in the detection of disease-associated differences and modification of proteins, current proteomics technologies display certain limitations that are hampering the introduction of these new technologies into clinical laboratory diagnostics and routine applications. In this review, we summarize current advances in mass spectrometry based biomarker discovery. The promises and challenges of this new technology are discussed with particular emphasis on diagnostic perspectives of mass-spectrometry based proteomics profiling for malignant diseases.

  9. The Proteome of Primary Prostate Cancer

    DEFF Research Database (Denmark)

    Iglesias-Gato, Diego; Wikström, Pernilla; Tyanova, Stefka

    2016-01-01

    for disease aggressiveness. DESIGN, SETTING, AND PARTICIPANTS: Mass spectrometry was used for genome-scale quantitative proteomic profiling of 28 prostate tumors (Gleason score 6-9) and neighboring nonmalignant tissue in eight cases, obtained from formalin-fixed paraffin-embedded prostatectomy samples. Two...... changes occurring during prostate cancer (PCa) initiation and progression can result in clinically relevant discoveries. OBJECTIVES: To study cellular processes altered in PCa using system-wide quantitative analysis of changes in protein expression in clinical samples and to identify prognostic biomarkers......BACKGROUND: Clinical management of the prostate needs improved prognostic tests and treatment strategies. Because proteins are the ultimate effectors of most cellular reactions, are targets for drug actions and constitute potential biomarkers; a quantitative systemic overview of the proteome...

  10. Proteomic maps of breast cancer subtypes

    DEFF Research Database (Denmark)

    Tyanova, Stefka; Albrechtsen, Reidar; Kronqvist, Pauliina

    2016-01-01

    Systems-wide profiling of breast cancer has almost always entailed RNA and DNA analysis by microarray and sequencing techniques. Marked developments in proteomic technologies now enable very deep profiling of clinical samples, with high identification and quantification accuracy. We analysed 40...... oestrogen receptor positive (luminal), Her2 positive and triple negative breast tumours and reached a quantitative depth of >10,000 proteins. These proteomic profiles identified functional differences between breast cancer subtypes, related to energy metabolism, cell growth, mRNA translation and cell......-cell communication. Furthermore, we derived a signature of 19 proteins, which differ between the breast cancer subtypes, through support vector machine (SVM)-based classification and feature selection. Remarkably, only three proteins of the signature were associated with gene copy number variations and eleven were...

  11. Redox proteomic analysis of the gastrocnemius muscle from adult and old mice

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2015-09-01

    Full Text Available The data provides information in support of the research article, “Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging”, Journal of Proteome Research, 2014, 13 (11, 2008–21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys containing peptides was alkylated using N-ethylmalemide (d0-NEM. Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethylphosphine (TCEP and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM. Label-free analysis of the global proteome of adult (n=5 and old (n=4 gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0 NEM labeled and reversibly oxidized d(5–NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response.

  12. Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.

    Science.gov (United States)

    Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo

    2014-01-01

    Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.

  13. Quantitative proteomics of Chlorobaculum tepidum

    DEFF Research Database (Denmark)

    Falkenby, Lasse Gaarde; Szymanska, Monika; Holkenbrink, Carina

    2011-01-01

    Chlorobaculum (Cba.) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. To gain insight into the sulfur metabolism, the proteome of Cba. tepidum cells sampled under different growth conditions has been quantified using a rapid g...

  14. PACOM: A Versatile Tool for Integrating, Filtering, Visualizing, and Comparing Multiple Large Mass Spectrometry Proteomics Data Sets.

    Science.gov (United States)

    Martínez-Bartolomé, Salvador; Medina-Aunon, J Alberto; López-García, Miguel Ángel; González-Tejedo, Carmen; Prieto, Gorka; Navajas, Rosana; Salazar-Donate, Emilio; Fernández-Costa, Carolina; Yates, John R; Albar, Juan Pablo

    2018-04-06

    Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly. However, tools are needed to integrate multiple proteomics data sets to compare different experimental features or to perform quality control analysis. Here, we present a new Java stand-alone tool, Proteomics Assay COMparator (PACOM), that is able to import, combine, and simultaneously compare numerous proteomics experiments to check the integrity of the proteomic data as well as verify data quality. With PACOM, the user can detect source of errors that may have been introduced in any step of a proteomics workflow and that influence the final results. Data sets can be easily compared and integrated, and data quality and reproducibility can be visually assessed through a rich set of graphical representations of proteomics data features as well as a wide variety of data filters. Its flexibility and easy-to-use interface make PACOM a unique tool for daily use in a proteomics laboratory. PACOM is available at https://github.com/smdb21/pacom .

  15. Boosting the globalization of plant proteomics through INPPO: current developments and future prospects.

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Sarkar, Abhijit; Agrawal, Raj; Ndimba, Bongani Kaiser; Tanou, Georgia; Dunn, Michael J; Kieselbach, Thomas; Cramer, Rainer; Wienkoop, Stefanie; Chen, Sixue; Rafudeen, Mohammed Suhail; Deswal, Renu; Barkla, Bronwyn J; Weckwerth, Wolfram; Heazlewood, Joshua L; Renaut, Jenny; Job, Dominique; Chakraborty, Niranjan; Rakwal, Randeep

    2012-02-01

    The International Plant Proteomics Organization (INPPO) is a non-profit-organization consisting of people who are involved or interested in plant proteomics. INPPO is constantly growing in volume and activity, which is mostly due to the realization among plant proteomics researchers worldwide for the need of such a global platform. Their active participation resulted in the rapid growth within the first year of INPPO's official launch in 2011 via its website (www.inppo.com) and publication of the 'Viewpoint paper' in a special issue of PROTEOMICS (May 2011). Here, we will be highlighting the progress achieved in the year 2011 and the future targets for the year 2012 and onwards. INPPO has achieved a successful administrative structure, the Core Committee (CC; composed of President, Vice-President, and General Secretaries), Executive Council (EC), and General Body (GB) to achieve INPPO objectives. Various committees and subcommittees are in the process of being functionalized via discussion amongst scientists around the globe. INPPO's primary aim to popularize the plant proteomics research in biological sciences has also been recognized by PROTEOMICS where a section dedicated to plant proteomics has been introduced starting January 2012, following the very first issue of this journal devoted to plant proteomics in May 2011. To disseminate organizational activities to the scientific community, INPPO has launched a biannual (in January and July) newsletter entitled 'INPPO Express: News & Views' with the first issue published in January 2012. INPPO is also planning to have several activities in 2012, including programs within the Education Outreach committee in different countries, and the development of research ideas and proposals with priority on crop and horticultural plants, while keeping tight interactions with proteomics programs on model plants such as Arabidopsis thaliana, rice, and Medicago truncatula. Altogether, the INPPO progress and upcoming activities

  16. A community proposal to integrate proteomics activities in ELIXIR [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Juan Antonio Vizcaíno

    2017-06-01

    Full Text Available Computational approaches have been major drivers behind the progress of proteomics in recent years. The aim of this white paper is to provide a framework for integrating computational proteomics into ELIXIR in the near future, and thus to broaden the portfolio of omics technologies supported by this European distributed infrastructure. This white paper is the direct result of a strategy meeting on ‘The Future of Proteomics in ELIXIR’ that took place in March 2017 in Tübingen (Germany, and involved representatives of eleven ELIXIR nodes.   These discussions led to a list of priority areas in computational proteomics that would complement existing activities and close gaps in the portfolio of tools and services offered by ELIXIR so far. We provide some suggestions on how these activities could be integrated into ELIXIR’s existing platforms, and how it could lead to a new ELIXIR use case in proteomics. We also highlight connections to the related field of metabolomics, where similar activities are ongoing. This white paper could thus serve as a starting point for the integration of computational proteomics into ELIXIR. Over the next few months we will be working closely with all stakeholders involved, and in particular with other representatives of the proteomics community, to further refine this paper.

  17. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data.

    Science.gov (United States)

    Kustatscher, Georg; Grabowski, Piotr; Rappsilber, Juri

    2016-02-01

    Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof-of-concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about ⅓ of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available. © 2015 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An attempt to understand kidney's protein handling function by comparing plasma and urine proteomes.

    Directory of Open Access Journals (Sweden)

    Lulu Jia

    Full Text Available BACKGROUND: With the help of proteomics technology, the human plasma and urine proteomes, which closely represent the protein compositions of the input and output of the kidney, respectively, have been profiled in much greater detail by different research teams. Many datasets have been accumulated to form "reference profiles" of the plasma and urine proteomes. Comparing these two proteomes may help us understand the protein handling aspect of kidney function in a way, however, which has been unavailable until the recent advances in proteomics technology. METHODOLOGY/PRINCIPAL FINDINGS: After removing secreted proteins downstream of the kidney, 2611 proteins in plasma and 1522 in urine were identified with high confidence and compared based on available proteomic data to generate three subproteomes, the plasma-only subproteome, the plasma-and-urine subproteome, and the urine-only subproteome, and they correspond to three groups of proteins that are handled in three different ways by the kidney. The available experimental molecular weights of the proteins in the three subproteomes were collected and analyzed. Since the functions of the overrepresented proteins in the plasma-and-urine subproteome are probably the major functions that can be routinely regulated by excretion from the kidney in physiological conditions, Gene Ontology term enrichment in the plasma-and-urine subproteome versus the whole plasma proteome was analyzed. Protease activity, calcium and growth factor binding proteins, and coagulation and immune response-related proteins were found to be enriched. CONCLUSION/SIGNIFICANCE: The comparison method described in this paper provides an illustration of a new approach for studying organ functions with a proteomics methodology. Because of its distinctive input (plasma and output (urine, it is reasonable to predict that the kidney will be the first organ whose functions are further elucidated by proteomic methods in the near future. It

  20. Integration of cardiac proteome biology and medicine by a specialized knowledgebase.

    Science.gov (United States)

    Zong, Nobel C; Li, Haomin; Li, Hua; Lam, Maggie P Y; Jimenez, Rafael C; Kim, Christina S; Deng, Ning; Kim, Allen K; Choi, Jeong Ho; Zelaya, Ivette; Liem, David; Meyer, David; Odeberg, Jacob; Fang, Caiyun; Lu, Hao-Jie; Xu, Tao; Weiss, James; Duan, Huilong; Uhlen, Mathias; Yates, John R; Apweiler, Rolf; Ge, Junbo; Hermjakob, Henning; Ping, Peipei

    2013-10-12

    Omics sciences enable a systems-level perspective in characterizing cardiovascular biology. Integration of diverse proteomics data via a computational strategy will catalyze the assembly of contextualized knowledge, foster discoveries through multidisciplinary investigations, and minimize unnecessary redundancy in research efforts. The goal of this project is to develop a consolidated cardiac proteome knowledgebase with novel bioinformatics pipeline and Web portals, thereby serving as a new resource to advance cardiovascular biology and medicine. We created Cardiac Organellar Protein Atlas Knowledgebase (COPaKB; www.HeartProteome.org), a centralized platform of high-quality cardiac proteomic data, bioinformatics tools, and relevant cardiovascular phenotypes. Currently, COPaKB features 8 organellar modules, comprising 4203 LC-MS/MS experiments from human, mouse, drosophila, and Caenorhabditis elegans, as well as expression images of 10,924 proteins in human myocardium. In addition, the Java-coded bioinformatics tools provided by COPaKB enable cardiovascular investigators in all disciplines to retrieve and analyze pertinent organellar protein properties of interest. COPaKB provides an innovative and interactive resource that connects research interests with the new biological discoveries in protein sciences. With an array of intuitive tools in this unified Web server, nonproteomics investigators can conveniently collaborate with proteomics specialists to dissect the molecular signatures of cardiovascular phenotypes.