WorldWideScience

Sample records for monkey sensorimotor cortex

  1. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  2. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas.

    Directory of Open Access Journals (Sweden)

    Thomas J Baumgarten

    Full Text Available Neuronal oscillatory activity in the beta band (15-30 Hz is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy and beta oscillations (measured by magnetoencephalography at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex.

  3. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas

    Science.gov (United States)

    Baumgarten, Thomas J.; Oeltzschner, Georg; Hoogenboom, Nienke; Wittsack, Hans-Jörg; Schnitzler, Alfons; Lange, Joachim

    2016-01-01

    Neuronal oscillatory activity in the beta band (15–30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex. PMID:27258089

  4. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  6. Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery.

    Science.gov (United States)

    Goldstein, L B

    1995-03-13

    The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.

  7. Metabolic changes in the visual cortex of binocular blindness macaque monkeys: a proton magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Lingjie Wu

    Full Text Available PURPOSE: To evaluate proton magnetic resonance spectroscopy ((1H-MRS in a study of cross-modal plasticity in the visual cortex of binocular blindness macaque monkeys. MATERIALS AND METHODS: Four healthy neonatal macaque monkeys were randomly divided into 2 groups, with 2 in each group. Optic nerve transection was performed in both monkeys in the experimental group (group B to obtain binocular blindness. Two healthy macaque monkeys served as a control group (group A. After sixteen months post-procedure, (1H-MRS was performed in the visual cortex of all monkeys. We compared the peak areas of NAA, Cr, Cho, Glx and Ins and the ratios of NAA/Cr, Cho/Cr, Glx/Cr and Ins/Cr of each monkey in group B with group A. RESULTS: The peak area of NAA and the NAA/Cr ratio in the visual cortex of monkey 4 in group B were found to be dramatically decreased, the peak area of NAA slightly decreased and the NAA/Cr ratio clearly decreased in visual cortex of monkey 3 in group B than those in group A. The peak area of Ins and the Ins/Cr ratio in the visual cortex of monkey 4 in group B slightly increased. The peak area of Cho and the Cho/Cr ratio in the visual cortex of all monkeys in group B dramatically increased compared with group A. The peak area of Glx in the visual cortex of all monkeys in group B slightly increased compared with group A. CONCLUSIONS: (1H-MRS could detect biochemical and metabolic changes in the visual cortex and therefore this technique can be used to provide valuable information for investigating the mechanisms of cross-modal plasticity of binocular blindness in a macaque monkey model.

  8. Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat.

    Science.gov (United States)

    Goldstein, L B

    1997-01-01

    The recovery of beam-walking ability following a unilateral sensorimotor cortex lesion in the rat is hypothesized to be noradrenergically-mediated. We carried out two experiments to further test this hypothesis. In the first experiment, bilateral 6-hydroxydopamine locus coeruleus (LC) lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex suction-ablation lesion or sham cortex lesion. In the second experiment, unilateral left or right LC lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex lesion or sham cortex lesion. Beam-walking recovery was measured over the 12 days following cortex lesioning in each experiment. Bilateral, unilateral left, and unilateral right LC lesions resulted in impaired recovery. These data provide additional support for the hypothesis that beam-walking recovery after sensorimotor cortex injury is, at least in part, noradrenergically mediated.

  9. Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.

    Science.gov (United States)

    Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer

    2005-02-08

    Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.

  10. The Thalamocortical Projection Systems in Primate: An Anatomical Support for Multisensory and Sensorimotor Interplay

    Science.gov (United States)

    Cappe, Céline; Morel, Anne; Barone, Pascal

    2009-01-01

    Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed. PMID:19150924

  11. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs

    International Nuclear Information System (INIS)

    Travis, G.H.; Sutcliffe, J.G.

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, the authors developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA

  12. Spontaneous brain activity in the sensorimotor cortex in amyotrophic lateral sclerosis can be negatively regulated by corticospinal fiber integrity.

    Science.gov (United States)

    Sako, Wataru; Abe, Takashi; Izumi, Yuishin; Yamazaki, Hiroki; Matsui, Naoko; Harada, Masafumi; Kaji, Ryuji

    2017-05-01

    Previous studies failed to detect reduced value of the amplitude of low frequency fluctuation (ALFF) derived from resting state functional magnetic resonance imaging in the primary motor cortex in amyotrophic lateral sclerosis (ALS) though primary motor cortex was mainly affected with ALS. We aimed to investigate the cause of masking the abnormality in the primary motor cortex in ALS and usefulness of ALFF for differential diagnosis among diseases showing muscle weakness. We enrolled ten patients with ALS and eleven disease controls showing muscle weakness. Voxel-wise analysis revealed that significant reduction of ALFF value was present in the right sensorimotor cortex in ALS. There was a significant negative correlation between ALFF value in the right sensorimotor cortex and fractional anisotropy (FA) value in the posterior limbs of the internal capsule (PLIC). For a diagnostic tool, the area under receiver operating characteristic curve improved if the ALS patients with disease duration >1 year were excluded. The present findings raised the possibility of usefulness of ALFF value in the sensorimotor cortex for differential diagnosis of ALS, and supported the notion that adjustment for FA value in the PLIC could improve accuracy.

  13. Electroacupunctre improves motor impairment via inhibition of microglia-mediated neuroinflammation in the sensorimotor cortex after ischemic stroke.

    Science.gov (United States)

    Liu, Weilin; Wang, Xian; Yang, Shanli; Huang, Jia; Xue, Xiehua; Zheng, Yi; Shang, Guanhao; Tao, Jing; Chen, Lidian

    2016-04-15

    Electroacupuncture (EA) is one of the safety and effective therapies for improving neurological and sensorimotor impairment via blockade of inappropriate inflammatory responses. However, the mechanisms of anti-inflammation involved is far from been fully elucidated. Focal cerebral ischemic stroke was administered by the middle cerebral artery occlusion and reperfusion (MCAO/R) surgery. The MCAO/R rats were accepted EA treatment at the LI 11 and ST 36 acupoints for consecutive 3days. The neurological outcome, animal behaviors test and molecular biology assays were used to evaluate the MCAO/R model and therapeutic effect of EA. EA treatment for MCAO rats showed a significant reduction in the infarct volumes accompanied by functional recovery in mNSS outcomes, motor function performances. The possible mechanisms that EA treatment attenuated the over-activation of Iba-1 and ED1 positive microglia in the peri-infract sensorimotor cortex. Simultaneously, both tissue and serum protein levels of the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were decreased by EA treatment in MCAO/R injured rats. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were decreased in the peri-infract sensorimotor cortex and blood serum of MCAO/R injured rats after EA treatment. Furthermore, we found that EA treatment prevented from the nucleus translocation of NF-κB p65 and suppressed the expression of p38 mitogen-activated protein kinase (p38 MAPK) and myeloid differentiation factor 88 (MyD88) in the peri-infract sensorimotor cortex. The findings from this study indicated that EA improved the motor impairment via inhibition of microglia-mediated neuroinflammation that invoked NF-κB p65, p38 MAPK and MyD88 produced proinflammatory cytokine in the peri-infract sensorimotor cortex of rats following ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Laminar Differences in Associative Memory Signals in Monkey Perirhinal Cortex.

    Science.gov (United States)

    Vogels, Rufin

    2016-10-19

    New research published in Neuron describes assignment of cortical layer to single neurons recorded in awake monkeys. Applying the procedure to perirhinal cortex, Koyano et al. (2016) found marked and unsuspected differences among layers in the coding of associative memory signals. Copyright © 2016. Published by Elsevier Inc.

  15. Sensorimotor gating impairments induced by MK-801 treatment may be reduced by tolerance effect and by familiarization in monkeys

    Science.gov (United States)

    Saletti, Patricia G.; Maior, Rafael S.; Hori, Etsuro; Nishijo, Hisao; Tomaz, Carlos

    2015-01-01

    Dizocilpine (MK-801) is a non-competitive NMDA antagonist that induces schizophreniclike effects. It is therefore widely used in experimental models of schizophrenia including prepulse inhibition (PPI) impairments in rodents. Nevertheless, MK-801 has never been tested in monkeys on a PPI paradigm. In order to evaluate MK-801 effects on monkeys’ PPI, we tested eight capuchin monkeys (Sapajus spp.) using three different doses of MK-801 (0.01; 0.02; 0.03 mg/kg). Results show PPI impairment in acute administration of the highest dose (0.03 mg/kg). PPI impairment induced by MK-801 was reversed by re-exposure to the PPI test throughout treatment trials, in contrast with rodent studies. These results indicate that tolerance effect and familiarization with PPI test may reduce the sensorimotor gating deficits induced by MK-801 in monkeys, suggesting a drug-training interaction. PMID:26441660

  16. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately...... following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal-motor interactions......Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...

  17. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  18. Expressions of multiple neuronal dynamics during sensorimotor learning in the motor cortex of behaving monkeys.

    Directory of Open Access Journals (Sweden)

    Yael Mandelblat-Cerf

    Full Text Available Previous studies support the notion that sensorimotor learning involves multiple processes. We investigated the neuronal basis of these processes by recording single-unit activity in motor cortex of non-human primates (Macaca fascicularis, during adaptation to force-field perturbations. Perturbed trials (reaching to one direction were practiced along with unperturbed trials (to other directions. The number of perturbed trials relative to the unperturbed ones was either low or high, in two separate practice schedules. Unsurprisingly, practice under high-rate resulted in faster learning with more pronounced generalization, as compared to the low-rate practice. However, generalization and retention of behavioral and neuronal effects following practice in high-rate were less stable; namely, the faster learning was forgotten faster. We examined two subgroups of cells and showed that, during learning, the changes in firing-rate in one subgroup depended on the number of practiced trials, but not on time. In contrast, changes in the second subgroup depended on time and practice; the changes in firing-rate, following the same number of perturbed trials, were larger under high-rate than low-rate learning. After learning, the neuronal changes gradually decayed. In the first subgroup, the decay pace did not depend on the practice rate, whereas in the second subgroup, the decay pace was greater following high-rate practice. This group shows neuronal representation that mirrors the behavioral performance, evolving faster but also decaying faster at learning under high-rate, as compared to low-rate. The results suggest that the stability of a new learned skill and its neuronal representation are affected by the acquisition schedule.

  19. Post-Movement Beta Activity in Sensorimotor Cortex Indexes Confidence in the Estimations from Internal Models.

    Science.gov (United States)

    Tan, Huiling; Wade, Cian; Brown, Peter

    2016-02-03

    Beta oscillations are a dominant feature of the sensorimotor system. A transient and prominent increase in beta oscillations is consistently observed across the sensorimotor cortical-basal ganglia network after cessation of voluntary movement: the post-movement beta synchronization (PMBS). Current theories about the function of the PMBS have been focused on either the closure of motor response or the processing of sensory afferance. Computational models of sensorimotor control have emphasized the importance of the integration between feedforward estimation and sensory feedback, and therefore the putative motor and sensory functions of beta oscillations may reciprocally interact with each other and in fact be indissociable. Here we show that the amplitude of sensorimotor PMBS is modulated by the history of visual feedback of task-relevant errors, and negatively correlated with the trial-to-trial exploratory adjustment in a sensorimotor adaptation task in young healthy human subjects. The PMBS also negatively correlated with the uncertainty associated with the feedforward estimation, which was recursively updated in light of new sensory feedback, as identified by a Bayesian learning model. These results reconcile the two opposing motor and sensory views of the function of PMBS, and suggest a unifying theory in which PMBS indexes the confidence in internal feedforward estimation in Bayesian sensorimotor integration. Its amplitude simultaneously reflects cortical sensory processing and signals the need for maintenance or adaptation of the motor output, and if necessary, exploration to identify an altered sensorimotor transformation. For optimal sensorimotor control, sensory feedback and feedforward estimation of a movement's sensory consequences should be weighted by the inverse of their corresponding uncertainties, which require recursive updating in a dynamic environment. We show that post-movement beta activity (13-30 Hz) over sensorimotor cortex in young healthy

  20. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking.

    Science.gov (United States)

    Haegens, Saskia; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Jensen, Ole

    2011-11-29

    Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8-14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.

  1. Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey

    Science.gov (United States)

    2011-01-01

    Background According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. Results Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. Conclusions The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera

  2. Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex

    Science.gov (United States)

    Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.

    2012-01-01

    We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972

  3. Chronological changes in astrocytes induced by chronic electrical sensorimotor cortex stimulation in rats.

    Science.gov (United States)

    Morishita, Takashi; Yamashita, Akiko; Katayama, Yoichi; Oshima, Hideki; Nishizaki, Yuji; Shijo, Katsunori; Fukaya, Chikashi; Yamamoto, Takamitsu

    2011-01-01

    Motor cortex stimulation (MCS) is a treatment option for various disorders such as medically refractory pain, poststroke hemiplegia, and movement disorders. However, the exact mechanisms underlying its effects remain unknown. In this study, the effects of long-term chronic MCS were investigated by observing changes in astrocytes. A quadripolar stimulation electrode was implanted on the dura over the sensorimotor cortex of adult rats, and the cortex was continuously stimulated for 3 hours, 1 week, 4 weeks, and 8 weeks. Immunohistochemical staining of microglia (ionized calcium-binding adaptor molecule 1 [Iba1] staining) and astrocytes (glial fibrillary acidic protein [GFAP] staining), and neuronal degeneration histochemistry (Fluoro-Jade B staining) were carried out to investigate the morphological changes following long-term chronic MCS. Iba1 staining and Fluoro-Jade B staining showed no evidence of Iba1-positive microglial changes or neurodegeneration. Following continuous MCS, GFAP-positive astrocytes were enlarged and their number increased in the cortex and the thalamus of the stimulated hemisphere. These findings indicate that chronic electrical stimulation can continuously activate astrocytes and result in morphological and quantitative changes. These changes may be involved in the mechanisms underlying the neuroplasticity effect induced by MCS.

  4. Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats.

    Science.gov (United States)

    Boulay, Chadwick B; Chen, Xiang Yang; Wolpaw, Jonathan R

    2015-04-01

    Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5-30 Hz), low γ (γ1; 40-85 Hz), and high γ (γ2; 100-200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs. Copyright © 2015 the American Physiological Society.

  5. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  6. Intersection of reward and memory in monkey rhinal cortex.

    Science.gov (United States)

    Clark, Andrew M; Bouret, Sebastien; Young, Adrienne M; Richmond, Barry J

    2012-05-16

    In humans and other animals, the vigor with which a reward is pursued depends on its desirability, that is, on the reward's predicted value. Predicted value is generally context-dependent, varying according to the value of rewards obtained in the recent and distant past. Signals related to reward prediction and valuation are believed to be encoded in a circuit centered around midbrain dopamine neurons and their targets in the prefrontal cortex and basal ganglia. Notably absent from this hypothesized reward pathway are dopaminergic targets in the medial temporal lobe. Here we show that a key part of the medial temporal lobe memory system previously reported to be important for sensory mnemonic and perceptual processing, the rhinal cortex (Rh), is required for using memories of previous reward values to predict the value of forthcoming rewards. We tested monkeys with bilateral Rh lesions on a task in which reward size varied across blocks of uncued trials. In this experiment, the only cues for predicting current reward value are the sizes of rewards delivered in previous blocks. Unexpectedly, monkeys with Rh ablations, but not intact controls, were insensitive to differences in predicted reward, responding as if they expected all rewards to be of equal magnitude. Thus, it appears that Rh is critical for using memory of previous rewards to predict the value of forthcoming rewards. These results are in agreement with accumulating evidence that Rh is critical for establishing the relationships between temporally interleaved events, which is a key element of episodic memory.

  7. Motor role of parietal cortex in a monkey model of hemispatial neglect.

    Science.gov (United States)

    Kubanek, Jan; Li, Jingfeng M; Snyder, Lawrence H

    2015-04-21

    Parietal cortex is central to spatial cognition. Lesions of parietal cortex often lead to hemispatial neglect, an impairment of choices of targets in space. It has been unclear whether parietal cortex implements target choice at the general cognitive level, or whether parietal cortex subserves the choice of targets of particular actions. To address this question, monkeys engaged in choice tasks in two distinct action contexts--eye movements and arm movements. We placed focused reversible lesions into specific parietal circuits using the GABAA receptor agonist muscimol and validated the lesion placement using MRI. We found that lesions on the lateral bank of the intraparietal sulcus [lateral intraparietal area (LIP)] specifically biased choices made using eye movements, whereas lesions on the medial bank of the intraparietal sulcus [parietal reach region (PRR)] specifically biased choices made using arm movements. This double dissociation suggests that target choice is implemented in dedicated parietal circuits in the context of specific actions. This finding emphasizes a motor role of parietal cortex in spatial choice making and contributes to our understanding of hemispatial neglect.

  8. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    International Nuclear Information System (INIS)

    Humphrey, A.L.; Hendrickson, A.E.

    1983-01-01

    We have used 2-deoxy-D-[ 14 C]glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli

  9. An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Mullarkey, Matthew; Doyle, Alexandra M; Mishkin, Mortimer; Fujii, Naotaka

    2014-08-15

    Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. Published by Elsevier B.V.

  10. Effect of carbamazepine (Tegretol) on seizure and EEG patterns in monkeys with alumina-induced focal motor and hippocampal foci.

    Science.gov (United States)

    David, J; Grewal, R S

    1976-12-01

    Qualitative and quantitative aspects of chronic carbamazepine (Tegretol) medication on focal seizures and associated interictal EEG abnormalities in Rhesus monkeys with alumina-induced foci in either the sensorimotor cortex or the hipocampus was investigated. In both groups of animals, carbamazepine produced qualitative control of visible seizures and reduced intracortical spike propagation, but did not cause complete normalization of the background EEG; quantitative indices, such as spike density and amount of paroxysmal discharge representative of abnormal EEG activity, were significantly reduced with respect to predrug values during medication and after cessation as well. Threshold to pentylenetetrazol was elevated by carbamazepine in both groups of epileptic monkeys. Aggressivity and other clinical manifestations in monekys with hippocampal foci were markedly reduced by carbamazepine.

  11. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  12. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys.

    Science.gov (United States)

    Wong, Agnes M F; Burkhalter, Andreas; Tychsen, Lawrence

    2005-02-01

    Suppression is a major sensorial abnormality in humans and monkeys with infantile strabismus. We previously reported evidence of metabolic suppression in the visual cortex of strabismic macaques, using the mitochondrial enzyme cytochrome oxidase as an anatomic label. The purpose of this study was to further elucidate alterations in cortical metabolic activity, with or without amblyopia. Six macaque monkeys were used in the experiments (four strabismic and two control). Three of the strabismic monkeys had naturally occurring, infantile strabismus (two esotropic, one exotropic). The fourth strabismic monkey had infantile microesotropia induced by alternating monocular occlusion in the first months of life. Ocular motor behaviors and visual acuity were tested after infancy in each animal, and development of stereopsis was recorded during infancy in one strabismic and one control monkey. Ocular dominance columns (ODCs) of the striate visual cortex (area V1) were labeled using cytochrome oxidase (CO) histochemistry alone, or CO in conjunction with an anterograde tracer ([H 3 ]proline or WGA-HRP) injected into one eye. Each of the strabismic monkeys showed inequalities of metabolic activity in ODCs of opposite ocularity, visible as rows of lighter CO staining, corresponding to ODCs of lower metabolic activity, alternating with rows of darker CO staining, corresponding to ODCs of higher metabolic activity. In monkeys who had infantile strabismus and unilateral amblyopia, lower metabolic activity was found in (suppressed) ODCs driven by the nondominant eye in each hemisphere. In monkeys who had infantile esotropia and alternating fixation (no amblyopia), metabolic activity was lower in ODCs driven by the ipsilateral eye in each hemisphere. The suppression included a monocular core zone at the center of ODCs and binocular border zones at the boundaries of ODCs. This suppression was not evident in the monocular lamina of the LGN, indicating an intracortical rather than

  13. Optogenetic Activation of the Sensorimotor Cortex Reveals "Local Inhibitory and Global Excitatory" Inputs to the Basal Ganglia.

    Science.gov (United States)

    Ozaki, Mitsunori; Sano, Hiromi; Sato, Shigeki; Ogura, Mitsuhiro; Mushiake, Hajime; Chiken, Satomi; Nakao, Naoyuki; Nambu, Atsushi

    2017-12-01

    To understand how information from different cortical areas is integrated and processed through the cortico-basal ganglia pathways, we used optogenetics to systematically stimulate the sensorimotor cortex and examined basal ganglia activity. We utilized Thy1-ChR2-YFP transgenic mice, in which channelrhodopsin 2 is robustly expressed in layer V pyramidal neurons. We applied light spots to the sensorimotor cortex in a grid pattern and examined neuronal responses in the globus pallidus (GP) and entopeduncular nucleus (EPN), which are the relay and output nuclei of the basal ganglia, respectively. Light stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GP/EPN neurons. Other response patterns lacking 1 or 2 of the components were also observed. The distribution of the cortical sites whose stimulation induced a triphasic response was confined, whereas stimulation of the large surrounding areas induced early and late excitation without inhibition. Our results suggest that cortical inputs to the GP/EPN are organized in a "local inhibitory and global excitatory" manner. Such organization seems to be the neuronal basis for information processing through the cortico-basal ganglia pathways, that is, releasing and terminating necessary information at an appropriate timing, while simultaneously suppressing other unnecessary information. © The Author 2017. Published by Oxford University Press.

  14. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  15. Type-2 diabetes mellitus reduces cortical thickness and decreases oxidative metabolism in sensorimotor regions after stroke.

    Science.gov (United States)

    Ferris, Jennifer K; Peters, Sue; Brown, Katlyn E; Tourigny, Katherine; Boyd, Lara A

    2018-05-01

    Individuals with type-2 diabetes mellitus experience poor motor outcomes after ischemic stroke. Recent research suggests that type-2 diabetes adversely impacts neuronal integrity and function, yet little work has considered how these neuronal changes affect sensorimotor outcomes after stroke. Here, we considered how type-2 diabetes impacted the structural and metabolic function of the sensorimotor cortex after stroke using volumetric magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We hypothesized that the combination of chronic stroke and type-2 diabetes would negatively impact the integrity of sensorimotor cortex as compared to individuals with chronic stroke alone. Compared to stroke alone, individuals with stroke and diabetes had lower cortical thickness bilaterally in the primary somatosensory cortex, and primary and secondary motor cortices. Individuals with stroke and diabetes also showed reduced creatine levels bilaterally in the sensorimotor cortex. Contralesional primary and secondary motor cortex thicknesses were negatively related to sensorimotor outcomes in the paretic upper-limb in the stroke and diabetes group such that those with thinner primary and secondary motor cortices had better motor function. These data suggest that type-2 diabetes alters cerebral energy metabolism, and is associated with thinning of sensorimotor cortex after stroke. These factors may influence motor outcomes after stroke.

  16. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats.

    Science.gov (United States)

    Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki

    2018-01-01

    We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

  17. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    Science.gov (United States)

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  18. Task-related activity in sensorimotor cortex in Parkinson’s disease and essential tremor: changes in beta and gamma bands

    Directory of Open Access Journals (Sweden)

    Nathan C Rowland

    2015-09-01

    Full Text Available In Parkinson’s disease patients in the OFF medication state, basal ganglia local field potentials exhibit changes in beta and gamma oscillations that correlate with reduced voluntary movement, manifested as rigidity and akinesia. However, magnetoencephalography and low-resolution electrocorticography (ECoG studies in Parkinson’s patients suggest that changes in sensorimotor cortical oscillations differ from those of the basal ganglia. To more clearly define the role of sensorimotor cortex oscillatory activity in Parkinson’s, we performed intraoperative, high-resolution (4 mm spacing ECoG recordings in 10 Parkinson’s patients (2 females, ages 47-72 undergoing deep brain stimulation (DBS lead placement in the awake, OFF medication state. We analyzed ECoG potentials during a computer-controlled reaching task designed to separate movement preparation from movement execution and compared findings to similar invasive recordings in eight patients with essential tremor (3 females, ages 59-78, a condition not associated with rigidity or akinesia. We show that 1 cortical beta spectral power at rest does not differ between Parkinson’s and essential tremor patients (p = 0.85, 2 early motor preparation in Parkinson’s patients in the OFF medication state is associated with a larger beta desynchronization compared to patients with essential tremor (p = 0.0061, and 3 cortical broadband gamma power is elevated in Parkinson’s patients compared to essential tremor patients during both rest and task recordings (p = 0.004. Our findings suggest an oscillatory profile in sensorimotor cortex of Parkinson’s patients that, in contrast to the basal ganglia, may act to promote movement to oppose the anti-kinetic bias of the dopamine-depleted state.

  19. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    Science.gov (United States)

    van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R

    2014-10-07

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.

  20. The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys

    OpenAIRE

    Gharbawie, Omar A.; Stepniewska, Iwona; Kaas, Jon H.

    2015-01-01

    The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections....

  1. Prediction of Reach Goals in Depth and Direction from the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Matteo Filippini

    2018-04-01

    Full Text Available Summary: The posterior parietal cortex is well known to mediate sensorimotor transformations during the generation of movement plans, but its ability to control prosthetic limbs in 3D environments has not yet been fully demonstrated. With this aim, we trained monkeys to perform reaches to targets located at various depths and directions and tested whether the reach goal position can be extracted from parietal signals. The reach goal location was reliably decoded with accuracy close to optimal (>90%, and this occurred also well before movement onset. These results, together with recent work showing a reliable decoding of hand grip in the same area, suggest that this is a suitable site to decode the entire prehension action, to be considered in the development of brain-computer interfaces. : Filippini et al. show that it is possible to use parietal cortex activity to predict in which direction the arm will move and how far it will reach. This opens up the possibility of neural prostheses that can accurately guide reach and grasp using signals from this part of the brain. Keywords: neuroprosthetics, offline neural decoding, reaching in depth, monkey, V6A, machine learning, visuomotor transformations, hand guidance, prehension, robotics

  2. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    International Nuclear Information System (INIS)

    Morioka, T.; Fujii, K.; Fukui, M.; Mizushima, A.; Matsumoto, S.; Hasuo, K.; Yamamoto, T.; Tobimatsu, S.

    1995-01-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  3. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  4. Use-dependent dendritic regrowth is limited after unilateral controlled cortical impact to the forelimb sensorimotor cortex.

    Science.gov (United States)

    Jones, Theresa A; Liput, Daniel J; Maresh, Erin L; Donlan, Nicole; Parikh, Toral J; Marlowe, Dana; Kozlowski, Dorothy A

    2012-05-01

    Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.

  5. Overall biological activity of sensorimotor and visual brain cortex of rabbits with early neurological disorders induced by high doses of γ-radiation

    International Nuclear Information System (INIS)

    Silin, D.Ya.

    1988-01-01

    The overall bioelectrical activity of the sensorimotor and visual brain cortex of rabbits was estimated during early neurological impairment caused by 120 Gy gamma irradiation. The characteristic changes were revealed in the amplitude, form, energy spectrum and spatial biopotential synchronization. The changes in the bioelectrical activity of the brain were associated with the clinically displayed stages of the neurological process development

  6. Encoding of temporal intervals in the rat hindlimb sensorimotor cortex

    Directory of Open Access Journals (Sweden)

    Eric Bean Knudsen

    2012-09-01

    Full Text Available The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its rate of climbing proportional to the delay period. However, it remains unclear whether these patterns of activity occur within areas of motor cortex dedicated to hindlimb movement. Moreover, the effects of behavioral training (e.g. motor tasks under different reward conditions but with similar behavioral output are not well addressed. To address this, we recorded activity from the hindlimb sensorimotor cortex (HLSMC of two groups of rats performing a skilled hindlimb press task. In one group, rats were trained only to a make a valid press within a finite window after cue presentation for reward (non-interval trained, nIT; n=5, while rats in the second group were given duration-specific cues in which they had to make presses of either short or long duration to receive reward (interval trained, IT; n=6. Using PETH analyses, we show that cells recorded from both groups showed climbing activity during the task in similar proportions (35% IT and 47% nIT, however only climbing activity from IT rats was temporally scaled to press duration. Furthermore, using single trial decoding techniques (Wiener filter, we show that press duration can be inferred using climbing activity from IT animals (R=0.61 significantly better than nIT animals (R=0.507, p<0.01, suggesting IT animals encode press duration through temporally scaled climbing activity. Thus, if temporal intervals are behaviorally relevant then the activity of climbing neurons is temporally scaled to encode the passage of time.

  7. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  8. Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction.

    OpenAIRE

    Bourgeois, J P; Jastreboff, P J; Rakic, P

    1989-01-01

    We used quantitative electron microscopy to determine the effect of precocious visual experience on the time course, magnitude, and pattern of perinatal synaptic overproduction in the primary visual cortex of the rhesus monkey. Fetuses were delivered by caesarean section 3 weeks before term, exposed to normal light intensity and day/night cycles, and killed within the first postnatal month, together with age-matched controls that were delivered at term. We found that premature visual stimulat...

  9. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    Science.gov (United States)

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  10. Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats.

    Science.gov (United States)

    Kikuchi, K; Nishino, K; Ohyu, H

    2000-03-31

    The present investigation was conducted to document a role of L-threo-3,4-dihydroxyphenylserine (L-DOPS), precursor of L-norepinephrine (NE), in the functional recovery from beam-walking performance deficits in rats after unilateral sensorimotor cortex ablation. L-DOPS was administered simultaneously with benserazide (BSZ; a peripheral aromatic amino acid decarboxylase inhibitor), and the regional contents of NE in the cerebral cortex, hippocampus, and cerebellum were assayed. Behavioral recovery was demonstrated by the rats treated with L-DOPS and BSZ, and the rate of recovery was significantly different from that of either BSZ-treated or vehicle-treated control rats. The NE tissue levels in the three discrete regions of the rat brain were significantly elevated in the experimental rats receiving both L-DOPS and BSZ. The present studies indicate that increasing NE levels by the precursor L-DOPS may be responsible for facilitating behavioral recovery from beam-walking performance deficits in rats, and further suggest that L-DOPS may become one of the candidate compounds for further clinical human trials promoting functional recovery after injuries to the cerebral cortex.

  11. Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey

    Directory of Open Access Journals (Sweden)

    Schlumbohm Christina

    2011-01-01

    Full Text Available Abstract Background Several recent studies have highlighted the important role of immunity-related molecules in synaptic plasticity processes in the developing and adult mammalian brains. It has been suggested that neuronal MHCI (major histocompatibility complex class I genes play a role in the refinement and pruning of synapses in the developing visual system. As a fast evolutionary rate may generate distinct properties of molecules in different mammalian species, we studied the expression of MHCI molecules in a nonhuman primate, the common marmoset monkey (Callithrix jacchus. Methods and results Analysis of expression levels of MHCI molecules in the developing visual cortex of the common marmoset monkeys revealed a distinct spatio-temporal pattern. High levels of expression were detected very early in postnatal development, at a stage when synaptogenesis takes place and ocular dominance columns are formed. To determine whether the expression of MHCI molecules is regulated by retinal activity, animals were subjected to monocular enucleation. Levels of MHCI heavy chain subunit transcripts in the visual cortex were found to be elevated in response to monocular enucleation. Furthermore, MHCI heavy chain immunoreactivity revealed a banded pattern in layer IV of the visual cortex in enucleated animals, which was not observed in control animals. This pattern of immunoreactivity indicated that higher expression levels were associated with retinal activity coming from the intact eye. Conclusions These data demonstrate that, in the nonhuman primate brain, expression of MHCI molecules is regulated by neuronal activity. Moreover, this study extends previous findings by suggesting a role for neuronal MHCI molecules during synaptogenesis in the visual cortex.

  12. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

    Directory of Open Access Journals (Sweden)

    Stanislava Knyazeva

    2018-01-01

    Full Text Available This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.

  13. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.

    Science.gov (United States)

    Knyazeva, Stanislava; Selezneva, Elena; Gorkin, Alexander; Aggelopoulos, Nikolaos C; Brosch, Michael

    2018-01-01

    This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

  14. Sensorimotor learning configures the human mirror system.

    Science.gov (United States)

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2007-09-04

    Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.

  15. Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys.

    Science.gov (United States)

    Shooner, Christopher; Hallum, Luke E; Kumbhani, Romesh D; García-Marín, Virginia; Kelly, Jenna G; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-09-06

    In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina ), using 96-channel "Utah" arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye. SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that

  16. Effects on executive function following damage to the prefrontal cortex in the rhesus monkey (Macaca mulatta).

    Science.gov (United States)

    Moore, Tara L; Schettler, Stephen P; Killiany, Ronald J; Rosene, Douglas L; Moss, Mark B

    2009-04-01

    Executive function is a term used to describe the cognitive processes subserved by the prefrontal cortex (PFC). An extensive body of work has characterized the effects of damage to the PFC in nonhuman primates, but it has focused primarily on the capacity of recognition and working memory. One limitation in studies of the functional parcellation of the PFC has been the absence of tests that assess executive function or its functional components. The current study used an adaptation of the Wisconsin Card Sorting Test, a classic test of frontal lobe and executive function in humans, to assess the effects of bilateral lesions in the dorsolateral PFC on executive function in the rhesus monkey (Macaca mulatta). The authors used the category set-shifting task, which requires the monkey to establish a pattern of responding to a specific category (color or shape) based on reward contingency, maintain that pattern of responding, and then shift to responding to a different category when the reward contingency changes. Rhesus monkeys with lesions of the dorsolateral PFC were impaired in abstraction, establishing a response pattern to a specific category and maintaining and shifting that response pattern on the category set-shifting task. (c) 2009 APA, all rights reserved.

  17. Gamma knife radiosurgery for arteriovenous malformations located in the sensorimotor cortex

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Kazuhiro; Iwai, Yoshiyasu; Komiyama, Masaki; Nakajima, Hideki; Yasui, Toshihiro; Nishikawa, Misao; Sakamoto, Hiroaki; Morikawa, Toshie [Osaka City General Hospital (Japan)

    2002-05-01

    The goal of this study was to define treatment results of gamma knife radiosurgery (GKS) for arteriovenous malformation (AVM) located in the sensorimotor cortex. We analyzed 27 patients followed up for at least 12 months. The onset of AVM was convulsion 10, clinical hemorrhage 7, neurological deficits 4, and headache 3. The mean diameter of the AVM nidus was 22.2 mm (range 8.5-33.6 mm) and mean volume was 7.4 ml (range 0.32-19.9 ml). According to the Spetzler-Martin scale, the AVMs were Grade II in 13, Grade III in 10, and Grade IV in 4 of the patients. GKS was performed with a mean dose of 19.0 Gy (range 14-25 Gy) to the margin of the nidus. The mean follow-up period was 29 months (range 12-72 months). Six AVMs showed complete obliteration angiographically and 5 AVMs showed obliteration on magnetic resonance image. Sixteen AVMs showed nidus shrinkage. Eight (53%) of 15 patients followed up for more than 24 months showed obliteration. Complications consisted of 32 (11.5%) of 27 patients with evidence of radiation injury to the brain parenchyma. Symptoms of slight hemiparesis resolved completely in all patients within several months. (author)

  18. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: A TMS study

    Directory of Open Access Journals (Sweden)

    Jennifer eGrau-Sánchez

    2013-09-01

    Full Text Available Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician’s brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning. Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

  19. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study.

    Science.gov (United States)

    Grau-Sánchez, Jennifer; Amengual, Julià L; Rojo, Nuria; Veciana de Las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2013-01-01

    Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

  20. Picturing words? Sensorimotor cortex activation for printed words in child and adult readers

    Science.gov (United States)

    Dekker, Tessa M.; Mareschal, Denis; Johnson, Mark H.; Sereno, Martin I.

    2014-01-01

    Learning to read involves associating abstract visual shapes with familiar meanings. Embodiment theories suggest that word meaning is at least partially represented in distributed sensorimotor networks in the brain (Barsalou, 2008; Pulvermueller, 2013). We explored how reading comprehension develops by tracking when and how printed words start activating these “semantic” sensorimotor representations as children learn to read. Adults and children aged 7–10 years showed clear category-specific cortical specialization for tool versus animal pictures during a one-back categorisation task. Thus, sensorimotor representations for these categories were in place at all ages. However, co-activation of these same brain regions by the visual objects’ written names was only present in adults, even though all children could read and comprehend all presented words, showed adult-like task performance, and older children were proficient readers. It thus takes years of training and expert reading skill before spontaneous processing of printed words’ sensorimotor meanings develops in childhood. PMID:25463817

  1. Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats.

    Science.gov (United States)

    Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E

    1997-12-30

    Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.

  2. Motor Skills Training Improves Sensorimotor Dysfunction and Increases Microtubule-Associated Protein 2 mRNA Expression in Rats with Intracerebral Hemorrhage.

    Science.gov (United States)

    Tamakoshi, Keigo; Kawanaka, Kentaro; Onishi, Hideaki; Takamatsu, Yasuyuki; Ishida, Kazuto

    2016-08-01

    In this study, we examined the effects of motor skills training on the sensorimotor function and the expression of genes associated with synaptic plasticity after intracerebral hemorrhage (ICH) in rats. Male Wistar rats were subjected to ICH or sham operation. ICH was caused by the injection of collagenase into the left striatum. Rats were randomly assigned to no training, acrobatic training, and sham groups. The acrobatic group performed 5 types of acrobatic tasks from 4 to 28 days after surgery. The forelimb sensorimotor function was evaluated over time using forepaw grasping, forelimb placing, and postural instability tests. At 14 and 29 days after the lesion, we analyzed the mRNA expression levels of microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor, and growth-associated protein 43 in the bilateral sensorimotor cortex (forelimb area) by real-time reverse transcription-polymerase chain reaction. Motor skills training in ICH rats improved the sensorimotor dysfunction significantly from the early phase. The mRNA expression level of MAP2 was upregulated in the ipsilesional sensorimotor cortex by motor skills training at 29 days after the lesion. Our results suggest that sensorimotor functional recovery following motor skills training after ICH is promoted by dendritic growth in the ipsilesional sensorimotor cortex. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode

    Directory of Open Access Journals (Sweden)

    Jürgen Krüger

    2010-05-01

    Full Text Available A brush of 64 microwires was chronically implanted in the ventral premotor cortex of a macaque monkey. Contrary to common approaches, the wires were inserted from the white matter side. This approach, by avoiding mechanical pressure on the dura and pia mater during penetration, disturbed only minimally the cortical recording site. With this approach isolated potentials and multiunit activity were recorded for more than seven years in about one third of electrodes. The indirect insertion method also provided an excellent stability within each recording session, and in some cases even allowed recording from the same neurons for several years. Histological examination of the implanted brain region shows only a very marginal damage the recording area. Advantages and problems related to long-term recording are discussed.

  4. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Science.gov (United States)

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p lateralization of SMC activation, as found in children and adults, is already present in the newborn period.

  5. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. Copyright © 2015 the authors 0270-6474/15/357374-14$15.00/0.

  6. Gesture Decoding Using ECoG Signals from Human Sensorimotor Cortex: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-01-01

    Full Text Available Electrocorticography (ECoG has been demonstrated as a promising neural signal source for developing brain-machine interfaces (BMIs. However, many concerns about the disadvantages brought by large craniotomy for implanting the ECoG grid limit the clinical translation of ECoG-based BMIs. In this study, we collected clinical ECoG signals from the sensorimotor cortex of three epileptic participants when they performed hand gestures. The ECoG power spectrum in hybrid frequency bands was extracted to build a synchronous real-time BMI system. High decoding accuracy of the three gestures was achieved in both offline analysis (85.7%, 84.5%, and 69.7% and online tests (80% and 82%, tested on two participants only. We found that the decoding performance was maintained even with a subset of channels selected by a greedy algorithm. More importantly, these selected channels were mostly distributed along the central sulcus and clustered in the area of 3 interelectrode squares. Our findings of the reduced and clustered distribution of ECoG channels further supported the feasibility of clinically implementing the ECoG-based BMI system for the control of hand gestures.

  7. Experience-induced plasticity of cutaneous maps in the primary somatosensory cortex of adult monkeys and rats.

    Science.gov (United States)

    Xerri, C; Coq, J O; Merzenich, M M; Jenkins, W M

    1996-01-01

    In a first study, the representations of skin surfaces of the hand in the primary somatosensory cortex, area 3b, were reconstructed in owl monkeys and squirrel monkeys trained to pick up food pellets from small, shallow wells, a task which required skilled use of the digits. Training sessions included limited manual exercise over a total period of a few hours of practice. From an early clumsy performance in which many retrieval attempts were required for each successful pellet retrieval, the monkeys exhibited a gradual improvement. Typically, the animals used various combinations of digits before developing a successful retrieval strategy. As the behavior came to be stereotyped, monkeys consistently engaged surfaces of the distal phalanges of one or two digits in the palpation and capture of food pellets from the smallest wells. Microelectrode mapping of the hand surfaces revealed that the glabrous skin of the fingertips predominantly involved in the dexterity task was represented over topographically expanded cortical sectors. Furthermore, cutaneous receptive fields which covered the most frequently stimulated digital tip surfaces were less than half as large as were those representing the corresponding surfaces of control digits. In a second series of experiments, Long-Evans rats were assigned to environments promoting differential tactile experience (standard, enriched, and impoverished) for 80 to 115 days from the time of weaning. A fourth group of young adult rat experienced a severe restriction of forepaw exploratory movement for either 7 or 15 days. Cortical maps derived in the primary somatosensory cortex showed that environmental enrichment induced a substantial enlargement of the cutaneous forepaw representation, and improved its spatial resolution (smaller glabrous receptive fields). In contrast, tactile impoverishment resulted in a degradation of the forepaw representation that was characterized by larger cutaneous receptive fields and the emergence of

  8. Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys.

    Science.gov (United States)

    Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-08-23

    In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is

  9. Body Topography Parcellates Human Sensory and Motor Cortex.

    Science.gov (United States)

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  10. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.

    Science.gov (United States)

    Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim

    2018-01-01

    Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.

  11. Sensory cortex underpinnings of traumatic brain injury deficits.

    Directory of Open Access Journals (Sweden)

    Dasuni S Alwis

    Full Text Available Traumatic brain injury (TBI can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex. Brain injury (n=19 was induced using an impact acceleration method and sham controls received surgery only (n=15. Animals were tested in a range of sensorimotor behaviour tasks prior to and up to 6 weeks post-injury when there were still significant sensorimotor behaviour deficits. At 8-10 weeks post-trauma, in terminal experiments, extracellular recordings were obtained from barrel cortex neurons in response to whisker motion, including motion that mimicked whisker motion observed in awake animals undertaking different tasks. In cortex, there were lamina-specific neuronal response alterations that appeared to reflect local circuit changes. Hyper-excitation was found only in supragranular layers involved in intra-areal processing and long-range integration, and only for stimulation with complex, naturalistic whisker motion patterns and not for stimulation with simple trapezoidal whisker motion. Thus TBI induces long-term directional changes in integrative sensory cortical layers that depend on the complexity of the incoming sensory information. The nature of these changes allow predictions as to what types of sensory processes may be affected in TBI and contribute to post-trauma sensorimotor deficits.

  12. A difference in [14C]deoxyglucose autoradiographic patterns in striate cortex between Macaca and Saimiri monkeys following monocular stimulation

    International Nuclear Information System (INIS)

    Hendrickson, A.E.; Wilson, J.R.

    1979-01-01

    Since the apparent absence of ocular dominance columns (ODC) in some New World primates could be caused by deficiencies of the transsynaptic autoradiographic technique, such as spillage of label in the poorly laminated dorsal lateral geniculate nucleus, the authors have examined this question using a functional autoradiographic tracing technique based on the uptake of [ 14 C]2-deoxyglucose ([ 14 C]dG) by active neurons. When only one eye is stimulated, this innovative method graphically demonstrates a repetitive pattern in Macaca monkey striate cortex which has been interpreted to be the ODC driven by the open eye. They now report on the results of a comparative study of Old World Macaca and New World Saimiri monkeys using [ 14 C]dG autoradiography in which evidence is found for repetitive patterns of [ 14 C]dG in Saimiri for layers above, but not in, layer IV. (Auth.)

  13. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    International Nuclear Information System (INIS)

    Petrides, M.; Pandya, D.N.

    1988-01-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus

  14. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey.

    Science.gov (United States)

    Petrides, M; Pandya, D N

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  15. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  16. Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction.

    Science.gov (United States)

    Bourgeois, J P; Jastreboff, P J; Rakic, P

    1989-01-01

    We used quantitative electron microscopy to determine the effect of precocious visual experience on the time course, magnitude, and pattern of perinatal synaptic overproduction in the primary visual cortex of the rhesus monkey. Fetuses were delivered by caesarean section 3 weeks before term, exposed to normal light intensity and day/night cycles, and killed within the first postnatal month, together with age-matched controls that were delivered at term. We found that premature visual stimulation does not affect the rate of synaptic accretion and overproduction. Both of these processes proceed in relation to the time of conception rather than to the time of delivery. In contrast, the size, type, and laminar distribution of synapses were significantly different between preterm and control infants. The changes and differences in these parameters correlate with the duration of visual stimulation and become less pronounced with age. If visual experience in infancy influences the maturation of the visual cortex, it must do so predominantly by strengthening, modifying, and/or eliminating synapses that have already been formed, rather than by regulating the rate of synapse production. Images PMID:2726773

  17. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Directory of Open Access Journals (Sweden)

    Makii Muthalib

    Full Text Available Neuroimaging studies have shown neuromuscular electrical stimulation (NMES-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC, premotor cortex (PMC, supplementary motor area (SMA, and secondary somatosensory area (S2, as well as regions of the prefrontal cortex (PFC known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI, and with reference to voluntary (VOL wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb and deoxygenated (HHb hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2. However, the level and area of contralateral sensorimotor network (including PFC activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  18. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Re, Rebecca; Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro

    2015-01-01

    Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  19. Motor Skills Training Enhances α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Subunit mRNA Expression in the Ipsilateral Sensorimotor Cortex and Striatum of Rats Following Intracerebral Hemorrhage.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Kazuto; Kawanaka, Kentaro; Takamatsu, Yasuyuki; Tamaki, Hiroyuki

    2017-10-01

    We investigated the effects of acrobatic training (AT) on expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits in the sensorimotor cortex and striatum after intracerebral hemorrhage (ICH). Male Wistar rats were divided into 4 groups: ICH without AT (ICH), ICH with AT (ICH + AT), sham operation without AT (SHAM), and sham operation with AT (SHAM + AT). ICH was induced by collagenase injection into the left striatum. The ICH + AT group performed 5 acrobatic tasks daily on days 4-28 post ICH. Forelimb sensorimotor function was evaluated using the forelimb placing test. On days 14 and 29, mRNA expression levels of AMPAR subunits GluR1-4 were measured by real-time reverse transcription-polymerase chain reaction. Forelimb placing test scores were significantly higher in the ICH + AT group than in the ICH group. Expression levels of all AMPAR subunit mRNAs were significantly higher in the ipsilateral sensorimotor cortex of rats in the ICH + AT group than in that of rats in the ICH group on day 29. GluR3 and GluR4 expression levels were reduced in the ipsilateral striatum of rats in the ICH group compared with that of rats in the SHAM group on day 14. These changes may play a critical role in motor skills training-induced recovery after ICH. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Pattern of chondroitin sulfate proteoglycan expression after ablation of the sensorimotor cortex of the neonatal and adult rat brain

    Directory of Open Access Journals (Sweden)

    Dacić Sanja

    2008-01-01

    Full Text Available The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs. In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.

  1. Drawing and writing: An ALE meta-analysis of sensorimotor activations.

    Science.gov (United States)

    Yuan, Ye; Brown, Steven

    2015-08-01

    Drawing and writing are the two major means of creating what are referred to as "images", namely visual patterns on flat surfaces. They share many sensorimotor processes related to visual guidance of hand movement, resulting in the formation of visual shapes associated with pictures and words. However, while the human capacity to draw is tens of thousands of years old, the capacity for writing is only a few thousand years old, and widespread literacy is quite recent. In order to compare the neural activations for drawing and writing, we conducted two activation likelihood estimation (ALE) meta-analyses for these two bodies of neuroimaging literature. The results showed strong overlap in the activation profiles, especially in motor areas (motor cortex, frontal eye fields, supplementary motor area, cerebellum, putamen) and several parts of the posterior parietal cortex. A distinction was found in the left posterior parietal cortex, with drawing showing a preference for a ventral region and writing a dorsal region. These results demonstrate that drawing and writing employ the same basic sensorimotor networks but that some differences exist in parietal areas involved in spatial processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey.

    Science.gov (United States)

    Baumann, R; van der Zwan, R; Peterhans, E

    1997-06-01

    An important task of vision is the segregation of figure and ground in situations of spatial occlusion. Psychophysical evidence suggests that the depth order at contours is defined early in visual processing. We have analysed this process in the visual cortex of the alert monkey. The animals were trained on a visual fixation task which reinforced foveal viewing. During periods of active visual fixation, we recorded the responses of single neurons in striate and prestriate cortex (areas V1, V2, and V3/V3A). The stimuli mimicked situations of spatial occlusion, usually a uniform light (or dark) rectangle overlaying a grating texture of opposite contrast. The direction of figure and ground at the borders of these rectangles was defined by the direction of the terminating grating lines (occlusion cues). Neuronal responses were analysed with respect to figure-ground direction and contrast polarity at such contours. Striate neurons often failed to respond to such stimuli, or were selective for contrast polarity; others were non-selective. Some neurons preferred a certain combination of figure-ground direction and contrast polarity. These neurons were rare both in striate and prestriate cortex. The majority of neurons signalled figure-ground direction independent of contrast polarity. These neurons were only found in prestriate cortex. We explain these responses in terms of a model which also explains neuronal signals of illusory contours. These results suggest that occlusion cues are used at an early level of processing to segregate figure and ground at contours.

  3. Effect of silhouetting and inversion on view invariance in the monkey inferotemporal cortex.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, S P

    2017-07-01

    We effortlessly recognize objects across changes in viewpoint, but we know relatively little about the features that underlie viewpoint invariance in the brain. Here, we set out to characterize how viewpoint invariance in monkey inferior temporal (IT) neurons is influenced by two image manipulations-silhouetting and inversion. Reducing an object into its silhouette removes internal detail, so this would reveal how much viewpoint invariance depends on the external contours. Inverting an object retains but rearranges features, so this would reveal how much viewpoint invariance depends on the arrangement and orientation of features. Our main findings are 1 ) view invariance is weakened by silhouetting but not by inversion; 2 ) view invariance was stronger in neurons that generalized across silhouetting and inversion; 3 ) neuronal responses to natural objects matched early with that of silhouettes and only later to that of inverted objects, indicative of coarse-to-fine processing; and 4 ) the impact of silhouetting and inversion depended on object structure. Taken together, our results elucidate the underlying features and dynamics of view-invariant object representations in the brain. NEW & NOTEWORTHY We easily recognize objects across changes in viewpoint, but the underlying features are unknown. Here, we show that view invariance in the monkey inferotemporal cortex is driven mainly by external object contours and is not specialized for object orientation. We also find that the responses to natural objects match with that of their silhouettes early in the response, and with inverted versions later in the response-indicative of a coarse-to-fine processing sequence in the brain. Copyright © 2017 the American Physiological Society.

  4. Distribution of [1-14C]acrylonitrile in rat and monkey

    International Nuclear Information System (INIS)

    Sandberg, E.Ch.; Slanina, P.

    1980-01-01

    The distribution of [1- 14 C]acrylonitrile (ACN) in rat and monkey has been studied by whole-body autoradiography, after being administered orally and intravenously to rats and orally to monkeys. Uptake of radioactivity was seen in the blood, liver, kidney, lung, adrenal cortex and stomach mucosa. (Auth.)

  5. Neural correlates of associative face memory in the anterior inferior temporal cortex of monkeys.

    Science.gov (United States)

    Eifuku, Satoshi; Nakata, Ryuzaburo; Sugimori, Michiya; Ono, Taketoshi; Tamura, Ryoi

    2010-11-10

    To investigate the neural basis of the associative aspects of facial identification, we recorded neuronal activity from the ventral, anterior inferior temporal cortex (AITv) of macaque monkeys during the performance of an asymmetrical paired-association (APA) task that required associative pairing between an abstract pattern and five different facial views of a single person. In the APA task, after one element of a pair (either an abstract pattern or a face) was presented as a sample cue, the reward-seeking monkey correctly identified the other element of the pair among various repeatedly presented test stimuli (faces or patterns) that were temporally separated by interstimulus delays. The results revealed that a substantial number of AITv neurons responded both to faces and abstract patterns, and the majority of these neurons responded selectively to a particular associative pair. It was demonstrated that in addition to the view-invariant identity of faces used in the APA task, the population of AITv neurons was also able to represent the associative pairing between faces and abstract patterns, which was acquired by training in the APA task. It also appeared that the effect of associative pairing was not so strong that the abstract pattern could be treated in a manner similar to a series of faces belonging to a unique identity. Together, these findings indicate that the AITv plays a crucial role in both facial identification and semantic associations with facial identities.

  6. Temporal Dynamics of Sensorimotor Networks in Effort-Based Cost-Benefit Valuation: Early Emergence and Late Net Value Integration.

    Science.gov (United States)

    Harris, Alison; Lim, Seung-Lark

    2016-07-06

    Although physical effort can impose significant costs on decision-making, when and how effort cost information is incorporated into choice remains contested, reflecting a larger debate over the role of sensorimotor networks in specifying behavior. Serial information processing models, in which motor circuits simply implement the output of cognitive systems, hypothesize that effort cost factors into decisions relatively late, via integration with stimulus values into net (combined) value signals in dorsomedial frontal cortex (dmFC). In contrast, ethology-inspired approaches suggest a more active role for the dorsal sensorimotor stream, with effort cost signals emerging rapidly after stimulus onset. Here we investigated the time course of effort cost integration using event-related potentials in hungry human subjects while they made decisions about expending physical effort for appetitive foods. Consistent with the ethological perspective, we found that effort cost was represented from as early as 100-250 ms after stimulus onset, localized to dorsal sensorimotor regions including middle cingulate, somatosensory, and motor/premotor cortices. However, examining the same data time-locked to motor output revealed net value signals combining stimulus value and effort cost approximately -400 ms before response, originating from sensorimotor areas including dmFC, precuneus, and posterior parietal cortex. Granger causal connectivity analysis of the motor effector signal in the time leading to response showed interactions between these sensorimotor regions and ventrolateral prefrontal cortex, a structure associated with adjusting behavior-response mappings. These results suggest that rapid activation of sensorimotor regions interacts with cognitive valuation systems, producing a net value signal reflecting both physical effort and reward contingencies. Although physical effort imposes a cost on choice, when and how effort cost influences neural correlates of decision

  7. The posterior parietal cortex as integrative hub for whisker sensorimotor information

    NARCIS (Netherlands)

    Mohan, Hemanth; de Haan, Roel; Mansvelder, Huibert D; de Kock, Christiaan P J

    2018-01-01

    Our daily life consists of a continuous interplay between incoming sensory information and outgoing motor plans. Particularly during goal-directed behavior and active exploration of the sensory environment, brain circuits are merging sensory and motor signals. This is referred to as sensorimotor

  8. Monkey prefrontal neurons during Sternberg task performance: full contents of working memory or most recent item?

    Science.gov (United States)

    Konecky, R O; Smith, M A; Olson, C R

    2017-06-01

    To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or

  9. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal app...

  10. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence.

    Science.gov (United States)

    Bhattacharyya, Pallab K; Phillips, Micheal D; Stone, Lael A; Lowe, Mark J

    2011-04-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm(3) voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay.

    Science.gov (United States)

    Fourneau, Julie; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan

    2018-05-28

    In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and postsynaptic levels, characterized by a reduction of phosphorylation (synapsin1, AMPAR GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of OGT/OGA enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect presynaptic neurotransmitter release. Associated with other pre- and postsynaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, synapsin1 O-GlcNAcylation/phosphorylation interplay also appears to be involved in this synaptic plasticity by finely regulating neural activity

  12. [Neuronal activity of monkey dorso-lateral premotor cortex during tasks of figure recognition guided motor sequence vs memorized spatial motor sequence].

    Science.gov (United States)

    Chen, Y C; Huang, F D; Chen, N H; Shou, J Y; Wu, L

    1998-04-01

    In the last 2-3 decades the role of the premotor cortex (PM) of monkey in memorized spatial sequential (MSS) movements has been amply investigated. However, it is as yet not known whether PM participates in the movement sequence behaviour guided by recognition of visual figures (i.e. the figure-recognition sequence, FRS). In the present work three monkeys were trained to perform both FRS and MSS tasks. Postmortem examination showed that 202 cells were in the dorso-lateral premotor cortex. Among 111 cells recorded during the two tasks, more than 50% changed their activity during the cue periods in either task. During the response period, the ratios of cells with changes of firing rate in both FRS and MSS were high and roughly equal to each other, while during the image period, the proportion in the FRS (83.7%) was significantly higher than that in the MSS (66.7%). Comparison of neuronal activities during same motor sequence of two different tasks showed that during the image periods PM neuronal activities were more closely related to the FRS task, while during the cue periods no difference could be found. Analysis of cell responses showed that the neurons with longer latency were much more in MSS than in FRS in either cue or image period. The present results indicate that the premotor cortex participates in FRS motor sequence as well as in MSS and suggest that the dorso-lateral PM represents another subarea in function shared by both FRS and MSS tasks. However, in view of the differences of PM neuronal responses in cue or image periods of FRS and MSS tasks, it seems likely that neural networks involved in FRS and MSS tasks are different.

  13. Effects of anesthesia upon 18F-FDG uptake in rhesus monkey brains

    International Nuclear Information System (INIS)

    Itoh, Takashi; Wakahara, Shunichi; Nakano, Takayuki; Suzuki, Kazutoshi; Kobayashi, Kaoru; Inoue, Osamu

    2005-01-01

    The kinetics of 18 F-fluorodeoxyglucose ( 18 F-FDG) in the monkey brain were monitored, and comparisons were made between the conscious state and when under ketamine and pentobarbital anesthesia. Rhesus monkeys were intravenously injected with 18 F-FDG and followed by 60 min of PET scanning. In the conscious state, the 18 F-FDG concentration reached a plateau 5 min after intravenous injection. Under ketamine anesthesia, the 18 F-FDG concentration gradually increased with time in all monitored regions. At 60 min after injection, the concentration in the striatum was about 3.2 times greater than that in the conscious state, and about 4.5 times greater in the cerebral cortex. Under pentobarbital anesthesia, the 18 F-FDG concentration in the occipital cortex was slightly lower. These findings demonstrate that 18 F-FDG concentration in the monkey brain is significantly affected by anesthesia. The results also imply the existence of a short-term regulation mechanism for hexokinase activity in intact monkey brain. (author)

  14. PET measured evoked cerebral blood flow responses in an awake monkey

    International Nuclear Information System (INIS)

    Perlmutter, J.S.; Lich, L.L.; Margenau, W.; Buchholz, S.

    1991-01-01

    We have developed a method to measure task-related regional cerebral blood flow (BF) responses in an awake, trained monkey using positron emission tomography (PET) and H215O. We trained an animal with operant conditioning using only positive reinforcement to climb unassisted into a modified primate chair that was then positioned in the PET scanner. A special headholder and acrylic skull cap permitted precise placement and accurate repositioning. We measured BF qualitatively with bolus injection of H215O and 40-s scan. Each session included scans at rest interposed with scans during vibration of a forepaw. Regional responses were identified using subtraction image analysis. After global normalization, a resting image was subtracted on a pixel-by-pixel basis from a comparable image collected during vibration. The region of peak response occurred in contralateral sensorimotor cortex with a mean magnitude of 11.6% (+/- 3.2%) of the global mean value for 10 separate experiments, significantly greater than the mean qualitative BF change (0.4 +/- 3.6%; p less than 0.00001) in the same region for seven rest-rest pairs. This newly developed technique forms the basis for a wide variety of experiments

  15. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.

    Directory of Open Access Journals (Sweden)

    Christian Klaes

    Full Text Available According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action

  16. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  17. Neural correlates of memory retrieval in the prefrontal cortex.

    Science.gov (United States)

    Nácher, Verónica; Ojeda, Sabiela; Cadarso-Suárez, Carmen; Roca-Pardiñas, Javier; Acuña, Carlos

    2006-08-01

    Working memory includes short-term representations of information that were recently experienced or retrieved from long-term representations of sensory stimuli. Evidence is presented here that working memory activates the same dorsolateral prefrontal cortex neurons that: (a) maintained recently perceived visual stimuli; and (b) retrieved visual stimuli from long-term memory (LTM). Single neuron activity was recorded in the dorsolateral prefrontal cortex while trained monkeys discriminated between two orientated lines shown sequentially, separated by a fixed interstimulus interval. This visual task required the monkey to compare the orientation of the second line with the memory trace of the first and to decide the relative orientation of the second. When the behavioural task required the monkey to maintain in working memory a first stimulus that continually changed from trial to trial, the discharge in these cells was related to the parameters--the orientation--of the memorized item. Then, what the monkey had to recall from memory was manipulated by switching to another task in which the first stimulus was not shown, and had to be retrieved from LTM. The discharge rates of the same neurons also varied depending on the parameters of the memorized stimuli, and their response was progressively delayed as the monkey performed the task. These results suggest that working memory activates dorsolateral prefrontal cortex neurons that maintain parametrical visual information in short-term and LTM, and that the contents of working memory cannot be limited to what has recently happened in the sensory environment.

  18. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2017-01-01

    Full Text Available Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI. The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11 and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11 were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1 and left primary motor cortex (BA4, and left BA1 and left somatosensory association cortex (BA5 was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI

  19. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex.

    Science.gov (United States)

    Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture

    2004-01-01

    Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.

  20. Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Nikolaos Petsas

    Full Text Available OBJECTIVES: Examination of sensorimotor activation alone in multiple sclerosis (MS patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation. Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients. METHODS: 13 relapsing remitting-MS patients (RRMS, 18 secondary progressive-MS patients (SPMS and 15 healthy controls (HC underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV from both T1- and T2-weighted images. RESULTS: Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HCsensorimotor areas was reduced in both patient groups with respect to HC. Deactivation of posterior cortical areas belonging to the default mode network (DMN, was increased in RRMS, but not in SPMS, with respect to HC. The amount of activation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV. CONCLUSION: In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher

  1. Protein expression of MEF2C during the critical period for visual development in vervet monkeys

    OpenAIRE

    Bernad, Daniel M; Lachance, Pascal E; Chaudhuri, Avijit

    2008-01-01

    During the early development of the visual cortex, there is a critical period when neuronal connections are highly sensitive to changes in visual input. Deprivation of visual stimuli during the critical period elicits robust anatomical and physiological rearrangements in the monkey visual cortex and serves as an excellent model for activity-dependent neuroplasticity. DNA microarray experiments were previously performed in our lab to analyze gene expression patterns in area V1 of vervet monkey...

  2. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  3. A case of polymicrogyria in macaque monkey: impact on anatomy and function of the motor system

    Directory of Open Access Journals (Sweden)

    Rouiller Eric M

    2009-12-01

    Full Text Available Abstract Background Polymicrogyria is a malformation of the cerebral cortex often resulting in epilepsy or mental retardation. It remains unclear whether this pathology affects the structure and function of the corticospinal (CS system. The anatomy and histology of the brain of one macaque monkey exhibiting a spontaneous polymicrogyria (PMG monkey were examined and compared to the brain of normal monkeys. The CS tract was labelled by injecting a neuronal tracer (BDA unilaterally in a region where low intensity electrical microstimulation elicited contralateral hand movements (presumably the primary motor cortex in the PMG monkey. Results The examination of the brain showed a large number of microgyri at macro- and microscopic levels, covering mainly the frontoparietal regions. The layered cortical organization was locally disrupted and the number of SMI-32 stained pyramidal neurons in the cortical layer III of the presumed motor cortex was reduced. We compared the distribution of labelled CS axons in the PMG monkey at spinal cervical level C5. The cumulated length of CS axon arbors in the spinal grey matter was not significantly different in the PMG monkey. In the red nucleus, numerous neurons presented large vesicles. We also assessed its motor performances by comparing its capacity to execute a complex reach and grasp behavioral task. The PMG monkey exhibited an increase of reaction time without any modification of other motor parameters, an observation in line with a normal CS tract organisation. Conclusion In spite of substantial cortical malformations in the frontal and parietal lobes, the PMG monkey exhibits surprisingly normal structure and function of the corticospinal system.

  4. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.

    Science.gov (United States)

    Baxter, Mark G; Gaffan, David; Kyriazis, Diana A; Mitchell, Anna S

    2007-10-17

    The orbital prefrontal cortex is thought to be involved in behavioral flexibility in primates, and human neuroimaging studies have identified orbital prefrontal activation during episodic memory encoding. The goal of the present study was to ascertain whether deficits in strategy implementation and episodic memory that occur after ablation of the entire prefrontal cortex can be ascribed to damage to the orbital prefrontal cortex. Rhesus monkeys were preoperatively trained on two behavioral tasks, the performance of both of which is severely impaired by the disconnection of frontal cortex from inferotemporal cortex. In the strategy implementation task, monkeys were required to learn about two categories of objects, each associated with a different strategy that had to be performed to obtain food reward. The different strategies had to be applied flexibly to optimize the rate of reward delivery. In the scene memory task, monkeys learned 20 new object-in-place discrimination problems in each session. Monkeys were tested on both tasks before and after bilateral ablation of orbital prefrontal cortex. These lesions impaired new scene learning but had no effect on strategy implementation. This finding supports a role for the orbital prefrontal cortex in memory but places limits on the involvement of orbital prefrontal cortex in the representation and implementation of behavioral goals and strategies.

  5. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Directory of Open Access Journals (Sweden)

    Lukas Scheef

    Full Text Available Functional magnetic resonance imaging (fMRI in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD responses in sensorimotor cortex (SMC. Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level.Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL. Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected.Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13. Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC increase in tSNR, as compared to the 'adult' MR-coil.Our findings strengthen the

  6. Sensorimotor integration in chronic stroke: Baseline differences and response to sensory training.

    Science.gov (United States)

    Brown, Katlyn E; Neva, Jason L; Feldman, Samantha J; Staines, W Richard; Boyd, Lara A

    2018-01-01

    The integration of somatosensory information from the environment into the motor cortex to inform movement is essential for motor function. As motor deficits commonly persist into the chronic phase of stroke recovery, it is important to understand potential contributing factors to these deficits, as well as their relationship with motor function. To date the impact of chronic stroke on sensorimotor integration has not been thoroughly investigated. The current study aimed to comprehensively examine the influence of chronic stroke on sensorimotor integration, and determine whether sensorimotor integration can be modified with an intervention. Further, it determined the relationship between neurophysiological measures of sensorimotor integration and motor deficits post-stroke. Fourteen individuals with chronic stroke and twelve older healthy controls participated. Motor impairment and function were quantified in individuals with chronic stroke. Baseline neurophysiology was assessed using nerve-based measures (short- and long-latency afferent inhibition, afferent facilitation) and vibration-based measures of sensorimotor integration, which paired vibration with single and paired-pulse TMS techniques. Neurophysiological assessment was performed before and after a vibration-based sensory training paradigm to assess changes within these circuits. Vibration-based, but not nerve-based measures of sensorimotor integration were different in individuals with chronic stroke, as compared to older healthy controls, suggesting that stroke differentially impacts integration of specific types of somatosensory information. Sensorimotor integration was behaviourally relevant in that it related to both motor function and impairment post-stroke. Finally, sensory training modulated sensorimotor integration in individuals with chronic stroke and controls. Sensorimotor integration is differentially impacted by chronic stroke based on the type of afferent feedback. However, both nerve

  7. Attention modulates the responses of simple cells in monkey primary visual cortex.

    Science.gov (United States)

    McAdams, Carrie J; Reid, R Clay

    2005-11-23

    Spatial attention has long been postulated to act as a spotlight that increases the salience of visual stimuli at the attended location. We examined the effects of attention on the receptive fields of simple cells in primary visual cortex (V1) by training macaque monkeys to perform a task with two modes. In the attended mode, the stimuli relevant to the animal's task overlay the receptive field of the neuron being recorded. In the unattended mode, the animal was cued to attend to stimuli outside the receptive field of that neuron. The relevant stimulus, a colored pixel, was briefly presented within a white-noise stimulus, a flickering grid of black and white pixels. The receptive fields of the neurons were mapped by correlating spikes with the white-noise stimulus in both attended and unattended modes. We found that attention could cause significant modulation of the visually evoked response despite an absence of significant effects on the overall firing rates. On further examination of the relationship between the strength of the visual stimulation and the firing rate, we found that attention appears to cause multiplicative scaling of the visually evoked responses of simple cells, demonstrating that attention reaches back to the initial stages of visual cortical processing.

  8. Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players.

    Science.gov (United States)

    Schwenkreis, Peter; El Tom, Susan; Ragert, Patrick; Pleger, Burkhard; Tegenthoff, Martin; Dinse, Hubert R

    2007-12-01

    As a model for use-dependent plasticity, the brains of professional musicians have been extensively studied to examine structural and functional adaptation to unique requirements of skilled performance. Here we provide a combination of data on motor performance and hand representation in the primary motor and somatosensory cortex of professional violin players, with the aim of assessing possible behavioural consequences of sensorimotor cortical asymmetries. We studied 15 healthy right-handed professional violin players and 35 healthy nonmusician controls. Motor and somatosensory cortex asymmetry was assessed by recording the motor output map after transcranial magnetic stimulation from a small hand muscle, and by dipole source localization of somatosensory evoked potentials after electrical stimulation of the median and ulnar nerves. Motor performance was examined using a series of standardized motor tasks covering different aspects of hand function. Violin players showed a significant right-larger-than-left asymmetry of the motor and somatosensory cortex, whereas nonmusician controls showed no significant interhemispheric difference. The amount of asymmetry in the motor and somatosensory cortices of musicians was significantly correlated. At the behavioural level, motor performance did not significantly differ between musicians and nonmusicians. The results support a use-dependent enlargement of the left hand representation in the sensorimotor cortex of violin players. However, these cortical asymmetries were not paralleled by accompanying altered asymmetries at a behavioural level, suggesting that the reorganisation might be task-specific and does not lead to improved motor abilities in general.

  9. Structural and functional hyperconnectivity within the sensorimotor system in xenomelia.

    Science.gov (United States)

    Hänggi, Jürgen; Vitacco, Deborah A; Hilti, Leonie M; Luechinger, Roger; Kraemer, Bernd; Brugger, Peter

    2017-03-01

    Xenomelia is a rare condition characterized by the persistent and compulsive desire for the amputation of one or more physically healthy limbs. We highlight the neurological underpinnings of xenomelia by assessing structural and functional connectivity by means of whole-brain connectome and network analyses of regions previously implicated in empirical research in this condition. We compared structural and functional connectivity between 13 xenomelic men with matched controls using diffusion tensor imaging combined with fiber tractography and resting state functional magnetic resonance imaging. Altered connectivity in xenomelia within the sensorimotor system has been predicted. We found subnetworks showing structural and functional hyperconnectivity in xenomelia compared with controls. These subnetworks were lateralized to the right hemisphere and mainly comprised by nodes belonging to the sensorimotor system. In the connectome analyses, the paracentral lobule, supplementary motor area, postcentral gyrus, basal ganglia, and the cerebellum were hyperconnected to each other, whereas in the xenomelia-specific network analyses, hyperconnected nodes have been found in the superior parietal lobule, primary and secondary somatosensory cortex, premotor cortex, basal ganglia, thalamus, and insula. Our study provides empirical evidence of structural and functional hyperconnectivity within the sensorimotor system including those regions that are core for the reconstruction of a coherent body image. Aberrant connectivity is a common response to focal neurological damage. As exemplified here, it may affect different brain regions differentially. Due to the small sample size, our findings must be interpreted cautiously and future studies are needed to elucidate potential associations between hyperconnectivity and limb disownership reported in xenomelia.

  10. Double-bouquet cells in the monkey and human cerebral cortex with special reference to areas 17 and 18.

    Science.gov (United States)

    DeFelipe, Javier; Ballesteros-Yáñez, Inmaculada; Inda, Maria Carmen; Muñoz, Alberto

    2006-01-01

    The detailed microanatomical study of the human cerebral cortex began in 1899 with the experiments of Santiago Ramón y Cajal, who applied the Golgi method to define the structure of the visual, motor, auditory and olfactory cortex. In the first article of this series, he described a special type of interneuron in the visual cortex capable of exerting its influence in the vertical dimension. These neurons are now more commonly referred to as double-bouquet cells (DBCs). The DBCs are readily distinguished owing to their characteristic axons that give rise to tightly interwoven bundles of long, vertically oriented axonal collaterals resembling a horsetail (DBC horsetail). Nevertheless, the most striking characteristic of these neurons is that they are so numerous and regularly distributed that the DBC horsetails form a microcolumnar structure. In addition, DBCs establish hundreds of inhibitory synapses within a very narrow column of cortical tissue. These features have generated considerable interest in DBCs over recent years, principally among those researchers interested in the analysis of cortical circuits. In the present chapter, we shall discuss the morphology, synaptic connections and neurochemical features of DBCs that have been defined through the study of these cells in different cortical areas and species. We will mainly consider the immunocytochemical studies of DBCs that have been carried out in the visual cortex (areas 17 and 18) of human and macaque monkey. We will see that there are important differences in the morphology, number and distribution of DBC horsetails between areas 17 and 18 in the primate. This suggests important differences in the microcolumnar organization between these areas, the functional significance of which awaits detailed correlative physiological and microanatomical studies.

  11. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  12. Space representation for eye movements is more contralateral in monkeys than in humans

    OpenAIRE

    Kagan, Igor; Iyer, Asha; Lindner, Axel; Andersen, Richard A.

    2010-01-01

    Contralateral hemispheric representation of sensory inputs (the right visual hemifield in the left hemisphere and vice versa) is a fundamental feature of primate sensorimotor organization, in particular the visuomotor system. However, many higher-order cognitive functions in humans show an asymmetric hemispheric lateralization—e.g., right brain specialization for spatial processing—necessitating a convergence of information from both hemifields. Electrophysiological studies in monkeys and fun...

  13. Prediction suppression in monkey inferotemporal cortex depends on the conditional probability between images.

    Science.gov (United States)

    Ramachandran, Suchitra; Meyer, Travis; Olson, Carl R

    2016-01-01

    When monkeys view two images in fixed sequence repeatedly over days and weeks, neurons in area TE of the inferotemporal cortex come to exhibit prediction suppression. The trailing image elicits only a weak response when presented following the leading image that preceded it during training. Induction of prediction suppression might depend either on the contiguity of the images, as determined by their co-occurrence and captured in the measure of joint probability P(A,B), or on their contingency, as determined by their correlation and as captured in the measures of conditional probability P(A|B) and P(B|A). To distinguish between these possibilities, we measured prediction suppression after imposing training regimens that held P(A,B) constant but varied P(A|B) and P(B|A). We found that reducing either P(A|B) or P(B|A) during training attenuated prediction suppression as measured during subsequent testing. We conclude that prediction suppression depends on contingency, as embodied in the predictive relations between the images, and not just on contiguity, as embodied in their co-occurrence. Copyright © 2016 the American Physiological Society.

  14. Differential encoding of factors influencing predicted reward value in monkey rostral anterior cingulate cortex.

    Science.gov (United States)

    Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka

    2012-01-01

    The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.

  15. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey.

    Science.gov (United States)

    Schüz, A; Demianenko, G P

    1995-01-01

    Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.

  16. Expression of glial fibrillar acidic protein in the sensorimotor cortex of the cerebral hemispheres in the modeling of transient ischemia against the background of previous sensitization by brain antigen and immunocorrection

    Directory of Open Access Journals (Sweden)

    L. M. Yaremenko

    2017-12-01

    Full Text Available Aim. In order to analyze the dynamics of expression of glial fibrillar acidic protein in the sensorimotor cortex of the large hemispheres in the simulation of transient ischemia against the background of previous sensitization by brain antigen and immunocorrection. Materials and methods. The study is conducted on 185 male mature white rats from Wistar line weighing 260-290 g, in which the damage of the brain was modulated. The brain for study was taken on the 1st, 3rd, 10th, 30th and 90th days after the start of the experiment. The histological, immunohistochemical, morphometric and statistical methods were used. Results. Observations have shown that sensitization by the brain antigen causes neurodegenerative changes in the sensorimotor cortex and a moderate increase in the number of GFAP+-gliocytes, which is gradually increasing. The discirculatory changes that occurred with PO and BCA against the background of previous sensitization practically do not lead to changes in the number of GFAP+-cells. Against the background of sensitization by brain antigen, brain ischemia leads to an increase in the number of gliocytes that are GFAP labeled. In the affected hemisphere, their number reaches a maximum in the end of the acute period of ischemia, after which it decreases. But even in 3 months after transient vascular lesion, there are almost twice as many as in conditionally intact rats. This can be a factor that will significantly affect the function of brain regions after a vascular accident. The increase in the number of GFAP+-gliocytes in the contralateral hemisphere allows us to speak about a certain systemic response of astrocytic glia after ischemic trauma. An early reaction to increase of the number of labeled astrocytes just a day after ischemic attack suggests that some of this type of gliocytes does not expresses GFAP under normal conditions. The action of Imunofan in MEAs results in a less significant decrease in manifestations of

  17. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  19. Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey.

    Science.gov (United States)

    Chen, Jessie; Reitzen, Shari D; Kohlenstein, Jane B; Gardner, Esther P

    2009-12-01

    Studies of hand manipulation neurons in posterior parietal cortex of monkeys suggest that their spike trains represent objects by the hand postures needed for grasping or by the underlying patterns of muscle activation. To analyze the role of hand kinematics and object properties in a trained prehension task, we correlated the firing rates of neurons in anterior area 5 with hand behaviors as monkeys grasped and lifted knobs of different shapes and locations in the workspace. Trials were divided into four classes depending on the approach trajectory: forward, lateral, and local approaches, and regrasps. The task factors controlled by the animal-how and when he used the hand-appeared to play the principal roles in modulating firing rates of area 5 neurons. In all, 77% of neurons studied (58/75) showed significant effects of approach style on firing rates; 80% of the population responded at higher rates and for longer durations on forward or lateral approaches that included reaching, wrist rotation, and hand preshaping prior to contact, but only 13% distinguished the direction of reach. The higher firing rates in reach trials reflected not only the arm movements needed to direct the hand to the target before contact, but persisted through the contact, grasp, and lift stages. Moreover, the approach style exerted a stronger effect on firing rates than object features, such as shape and location, which were distinguished by half of the population. Forty-three percent of the neurons signaled both the object properties and the hand actions used to acquire them. However, the spread in firing rates evoked by each knob on reach and no-reach trials was greater than distinctions between different objects grasped with the same approach style. Our data provide clear evidence for synergies between reaching and grasping that may facilitate smooth, coordinated actions of the arm and hand.

  20. Sensorimotor Network Crucial for Inferring Amusement from Smiles.

    Science.gov (United States)

    Paracampo, Riccardo; Tidoni, Emmanuele; Borgomaneri, Sara; di Pellegrino, Giuseppe; Avenanti, Alessio

    2017-11-01

    Understanding whether another's smile reflects authentic amusement is a key challenge in social life, yet, the neural bases of this ability have been largely unexplored. Here, we combined transcranial magnetic stimulation (TMS) with a novel empathic accuracy (EA) task to test whether sensorimotor and mentalizing networks are critical for understanding another's amusement. Participants were presented with dynamic displays of smiles and explicitly requested to infer whether the smiling individual was feeling authentic amusement or not. TMS over sensorimotor regions representing the face (i.e., in the inferior frontal gyrus (IFG) and ventral primary somatosensory cortex (SI)), disrupted the ability to infer amusement authenticity from observed smiles. The same stimulation did not affect performance on a nonsocial task requiring participants to track the smiling expression but not to infer amusement. Neither TMS over prefrontal and temporo-parietal areas supporting mentalizing, nor peripheral control stimulations, affected performance on either task. Thus, motor and somatosensory circuits for controlling and sensing facial movements are causally essential for inferring amusement from another's smile. These findings highlight the functional relevance of IFG and SI to amusement understanding and suggest that EA abilities may be grounded in sensorimotor networks for moving and feeling the body. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Psychophysical chromatic mechanisms in macaque monkey.

    Science.gov (United States)

    Stoughton, Cleo M; Lafer-Sousa, Rosa; Gagin, Galina; Conway, Bevil R

    2012-10-24

    Chromatic mechanisms have been studied extensively with psychophysical techniques in humans, but the number and nature of the mechanisms are still controversial. Appeals to monkey neurophysiology are often used to sort out the competing claims and to test hypotheses arising from the experiments in humans, but psychophysical chromatic mechanisms have never been assessed in monkeys. Here we address this issue by measuring color-detection thresholds in monkeys before and after chromatic adaptation, employing a standard approach used to determine chromatic mechanisms in humans. We conducted separate experiments using adaptation configured as either flickering full-field colors or heterochromatic gratings. Full-field colors would favor activity within the visual system at or before the arrival of retinal signals to V1, before the spatial transformation of color signals by the cortex. Conversely, gratings would favor activity within the cortex where neurons are often sensitive to spatial chromatic structure. Detection thresholds were selectively elevated for the colors of full-field adaptation when it modulated along either of the two cardinal chromatic axes that define cone-opponent color space [L vs M or S vs (L + M)], providing evidence for two privileged cardinal chromatic mechanisms implemented early in the visual-processing hierarchy. Adaptation with gratings produced elevated thresholds for colors of the adaptation regardless of its chromatic makeup, suggesting a cortical representation comprised of multiple higher-order mechanisms each selective for a different direction in color space. The results suggest that color is represented by two cardinal channels early in the processing hierarchy and many chromatic channels in brain regions closer to perceptual readout.

  2. Neuronal synchronization in human parietal cortex during saccade planning

    NARCIS (Netherlands)

    Werf, J. van der; Buchholz, V.N.; Jensen, O.; Medendorp, W.P.

    2009-01-01

    Neuropsychological and neuroimaging studies have implicated the human posterior parietal cortex (PPC) in sensorimotor integration and saccade planning However, the temporal dynamics of the underlying physiology and its relationship to observations in non-human primates have been difficult to pin

  3. Vertical organization of gamma-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex

    International Nuclear Information System (INIS)

    DeFelipe, J.; Jones, E.G.

    1985-01-01

    Light and electron microscopic methods were used to examine the neurons in the monkey cerebral cortex labeled autoradiographically following the uptake and transport of [ 3 H]-gamma-aminobutyric acid (GABA). Nonpyramidal cell somata in the sensory-motor areas and primary visual area (area 17) were labeled close to the injection site and at distances of 1 to 1.5 mm beyond the injection site, indicating labeling by retrograde axoplasmic transport. This labeling occurred preferentially in the vertical dimension of the cortex. Prior injections of colchicine, an inhibitor of axoplasmic transport, abolished all labeling of somata except those within the injection site. In each area, injections of superficial layers (I to III) produced labeling of clusters of cell somata in layer V, and injections of the deep layers (V and VI) produced labeling of clusters of cell somata in layers II and III. In area 17, injections of the superficial layers produced dense retrograde cell labeling in three bands: in layers IVC, VA, and VI. Vertically oriented chains of silver grains linked the injection sites with the resulting labeled cell clusters. In all areas, the labeling of cells in the horizontal dimension was insignificant. Electron microscopic examination of labeled neurons confirms that the neurons labeled at a distance from an injection site are nonpyramidal neurons, many with somata so small that they would be mistaken for neuroglial cells light microscopically. They receive few axosomatic synapses, most of which have symmetric membrane thickenings. The vertical chains of silver grains overlie neuronal processes identifiable as both dendrites and myelinated axons, but unmyelinated axons may also be included. The clusters of [ 3 H]GABA-labeled cells are joined to one another and to adjacent unlabeled cells by junctional complexes, including puncta adherentia and multi-lamellar cisternal complexes

  4. Neurotoxic response of infant monkeys to methylmercury

    Energy Technology Data Exchange (ETDEWEB)

    Willes, R.F.; Truelove, J.F.; Nera, E.A.

    1978-02-01

    Four infant monkeys were dosed orally with 500 ..mu..g Hg/kg body wt./day (as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28 to 29 days of treatment; the blood Hg levels were 8.0 to 9.4 ..mu..g Hg/g blood. Dosing was terminated at 28 to 29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35 to 43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver followed by occipital cortex and renal cortex. The mean blood/brain ratio was 0.21 +- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.

  5. Peripheral nerve injury induces glial activation in primary motor cortex

    OpenAIRE

    Julieta Troncoso; Julieta Troncoso; Efraín Buriticá; Efraín Buriticá

    2015-01-01

    Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to eithe...

  6. Learning a New Selection Rule in Visual and Frontal Cortex.

    Science.gov (United States)

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.

  7. Implicit and Explicit Learning Mechanisms Meet in Monkey Prefrontal Cortex.

    Science.gov (United States)

    Chafee, Matthew V; Crowe, David A

    2017-10-11

    In this issue, Loonis et al. (2017) provide the first description of unique synchrony patterns differentiating implicit and explicit forms of learning in monkey prefrontal networks. Their results have broad implications for how prefrontal networks integrate the two learning mechanisms to control behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Distribution of an 125I-labelled chloroquine analogue in a pregnant macaca monkey

    International Nuclear Information System (INIS)

    Dencker, L.; Lindquist, N.G.; Ullberg, S.

    1975-01-01

    Whole body autoradiography of a pregnant monkey (Macaca irus) of late gestation was performed 72 h after an intravenous injection of the 125 I-labelled chloroquine analogue 4-(3-dimethylaminopropylamino)-7-iodoquinoline (DAPQ). The overall distribution pattern in the monkey was similar to that which was earlier observed in rodents. A few species differences, however, were found in the monkey as compared to the rodents: a high accumulation in the inner part of the adrenal cortex, a high level in the central nervous system, and generally a higher retention in the tissues. The accumulation in the cortex may be of significance for the cortisone-like effects of the 4-aminoquinolines in rheumatoid arthritis and allied conditions. The fact that no accumulation was found in the adrenal cortex of mice and rats indicates that these species may not be appropriate in studies on the mechanisms involved in the anti-inflammatory action of the 4-aminoquinolines. As was earlier observed in small rodents the melanin containing structures accumulated the drug. In both the mother and the fetus a high concentration was thus seen in the uveal tract of the eye, in the inner ear (in the stria vascularis of the cochlea and the planum semilunatum of the ampullae) and in the hair follicles. This accumulation can be related to reported disturbances-also transplacentally induced-in vision and hearing

  9. Comprehensive analysis of area-specific and time-dependent changes in gene expression in the motor cortex of macaque monkeys during recovery from spinal cord injury.

    Science.gov (United States)

    Higo, Noriyuki; Sato, Akira; Yamamoto, Tatsuya; Oishi, Takao; Nishimura, Yukio; Murata, Yumi; Onoe, Hirotaka; Isa, Tadashi; Kojima, Toshio

    2018-05-01

    The present study aimed to assess the molecular bases of cortical compensatory mechanisms following spinal cord injury in primates. To accomplish this, comprehensive changes in gene expression were investigated in the bilateral primary motor cortex (M1), dorsal premotor cortex (PMd), and ventral premotor cortex (PMv) after a unilateral lesion of the lateral corticospinal tract (l-CST). At 2 weeks after the lesion, a large number of genes exhibited altered expression levels in the contralesional M1, which is directly linked to the lesioned l-CST. Gene ontology and network analyses indicated that these changes in gene expression are involved in the atrophy and plasticity changes observed in neurons. Orchestrated gene expression changes were present when behavioral recovery was attained 3 months after the lesion, particularly among the bilateral premotor areas, and a large number of these genes are involved in plasticity. Moreover, several genes abundantly expressed in M1 of intact monkeys were upregulated in both the PMd and PMv after the l-CST lesion. These area-specific and time-dependent changes in gene expression may underlie the molecular mechanisms of functional recovery following a lesion of the l-CST. © 2018 Wiley Periodicals, Inc.

  10. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    Science.gov (United States)

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.

    Science.gov (United States)

    Hage, Steffen R; Nieder, Andreas

    2015-05-06

    Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.

  12. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    International Nuclear Information System (INIS)

    Pandya, D.N.; Seltzer, B.

    1982-01-01

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer

  13. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E. [Vienna Medical Univ. (Austria). Dept. of Neurology; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D. [Vienna Medical Univ. (Austria). Dept. of Neuroradiology

    2011-11-15

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 {+-} 3.1 on a visual analog scale and decreased to 1.8 {+-} 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  14. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.

    Science.gov (United States)

    Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna

    2017-08-01

    One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  16. Symmetry of fMRI activation in the primary sensorimotor cortex during unilateral chewing.

    Science.gov (United States)

    Lotze, M; Domin, M; Kordass, B

    2017-05-01

    Functional magnetic resonance imaging (fMRI) is one of the most advanced techniques to analyze the cerebral effects on many behavior aspects of the oral system such as chewing and mastication. Studies on imaging of the cerebral representation of chewing demonstrated differential results with respect to cortical lateralization during unilateral chewing. The aim of our study is to clarify the effects of cerebral responses during unilateral chewing. We used fMRI to compare brain activities during occlusal function in centric occlusion on natural teeth and chewing on a gum located on the right or the left teeth in 15 healthy subjects. Group data were performed by Talairach normalization and in addition by an assignment of activation maxima to individual anatomical landmarks in order to avoid possible loss of spatial preciseness of activation sites by normalization procedures. Evaluation of group data by Talairach normalization revealed representation sites for occlusal movements in bilateral primary (S1) and secondary (S2) somatosensory cortices, primary motor (M1) and premotor cortices, supplementary motor area (SMA) and medial cingulate gyrus, bilateral anterior cerebellar hemispheres and vermis, insula, orbitofrontal cortex, thalamus, and left pallidum. Right-sided chewing showed no differential activation to left-sided chewing, and both showed activation in areas also involved in bilateral occlusion. Both techniques, the one based on group normalization and the one based on an individual evaluation method, revealed remarkable low differences in activation maximum location in the primary motor, the primary and secondary somatosensory cortices, and the anterior cerebellar lobe. All chewing movements tested involved bilateral sensorimotor activation without a significant lateralization of activation intensities. Overall, a general lateralization of occlusion movements to the dominant side could not be verified in the present study. Chewing on the left or on the right

  17. A probabilistic map of the human ventral sensorimotor cortex using electrical stimulation.

    Science.gov (United States)

    Breshears, Jonathan D; Molinaro, Annette M; Chang, Edward F

    2015-08-01

    The human ventral sensorimotor cortex (vSMC) is involved in facial expression, mastication, and swallowing, as well as the dynamic and highly coordinated movements of human speech production. However, vSMC organization remains poorly understood, and previously published population-driven maps of its somatotopy do not accurately reflect the variability across individuals in a quantitative, probabilistic fashion. The goal of this study was to describe the responses to electrical stimulation of the vSMC, generate probabilistic maps of function in the vSMC, and quantify the variability across individuals. Photographic, video, and stereotactic MRI data of intraoperative electrical stimulation of the vSMC were collected for 33 patients undergoing awake craniotomy. Stimulation sites were converted to a 2D coordinate system based on anatomical landmarks. Motor, sensory, and speech stimulation responses were reviewed and classified. Probabilistic maps of stimulation responses were generated, and spatial variance was quantified. In 33 patients, the authors identified 194 motor, 212 sensory, 61 speech-arrest, and 27 mixed responses. Responses were complex, stereotyped, and mostly nonphysiological movements, involving hand, orofacial, and laryngeal musculature. Within individuals, the presence of oral movement representations varied; however, the dorsal-ventral order was always preserved. The most robust motor responses were jaw (probability 0.85), tongue (0.64), lips (0.58), and throat (0.52). Vocalizations were seen in 6 patients (0.18), more dorsally near lip and dorsal throat areas. Sensory responses were spatially dispersed; however, patients' subjective reports were highly precise in localization within the mouth. The most robust responses included tongue (0.82) and lips (0.42). The probability of speech arrest was 0.85, highest 15-20 mm anterior to the central sulcus and just dorsal to the sylvian fissure, in the anterior precentral gyrus or pars opercularis. The

  18. Sporadic Premature Aging in a Japanese Monkey: A Primate Model for Progeria

    Science.gov (United States)

    Oishi, Takao; Imai, Hiroo; Go, Yasuhiro; Imamura, Masanori; Hirai, Hirohisa; Takada, Masahiko

    2014-01-01

    In our institute, we have recently found a child Japanese monkey who is characterized by deep wrinkles of the skin and cataract of bilateral eyes. Numbers of analyses were performed to identify symptoms representing different aspects of aging. In this monkey, the cell cycle of fibroblasts at early passage was significantly extended as compared to a normal control. Moreover, both the appearance of senescent cells and the deficiency in DNA repair were observed. Also, pathological examination showed that this monkey has poikiloderma with superficial telangiectasia, and biochemical assay confirmed that levels of HbA1c and urinary hyaluronan were higher than those of other (child, adult, and aged) monkey groups. Of particular interest was that our MRI analysis revealed expansion of the cerebral sulci and lateral ventricles probably due to shrinkage of the cerebral cortex and the hippocampus. In addition, the conduction velocity of a peripheral sensory but not motor nerve was lower than in adult and child monkeys, and as low as in aged monkeys. However, we could not detect any individual-unique mutations of known genes responsible for major progeroid syndromes. The present results indicate that the monkey suffers from a kind of progeria that is not necessarily typical to human progeroid syndromes. PMID:25365557

  19. Fast optical signal not detected in awake behaving monkeys.

    Science.gov (United States)

    Radhakrishnan, Harsha; Vanduffel, Wim; Deng, Hong Ping; Ekstrom, Leeland; Boas, David A; Franceschini, Maria Angela

    2009-04-01

    While the ability of near-infrared spectroscopy (NIRS) to measure cerebral hemodynamic evoked responses (slow optical signal) is well established, its ability to measure non-invasively the 'fast optical signal' is still controversial. Here, we aim to determine the feasibility of performing NIRS measurements of the 'fast optical signal' or Event-Related Optical Signals (EROS) under optimal experimental conditions in awake behaving macaque monkeys. These monkeys were implanted with a 'recording well' to expose the dura above the primary visual cortex (V1). A custom-made optical probe was inserted and fixed into the well. The close proximity of the probe to the brain maximized the sensitivity to changes in optical properties in the cortex. Motion artifacts were minimized by physical restraint of the head. Full-field contrast-reversing checkerboard stimuli were presented to monkeys trained to perform a visual fixation task. In separate sessions, two NIRS systems (CW4 and ISS FD oximeter), which previously showed the ability to measure the fast signal in human, were used. In some sessions EEG was acquired simultaneously with the optical signal. The increased sensitivity to cortical optical changes with our experimental setup was quantified with 3D Monte Carlo simulations on a segmented MRI monkey head. Averages of thousands of stimuli in the same animal, or grand averages across the two animals and across repeated sessions, did not lead to detection of the fast optical signal using either amplitude or phase of the optical signal. Hemodynamic responses and visual evoked potentials were instead always detected with single trials or averages of a few stimuli. Based on these negative results, despite the optimal experimental conditions, we doubt the usefulness of non-invasive fast optical signal measurements with NIRS.

  20. Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study.

    Science.gov (United States)

    Simonyan, Kristina; Ludlow, Christy L

    2010-11-01

    Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD.

  1. Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent.

    Science.gov (United States)

    Ding, Song-Lin

    2013-12-15

    The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. Copyright © 2013 Wiley Periodicals, Inc.

  2. Deontological Dilemma Response Tendencies and Sensorimotor Representations of Harm to Others

    Directory of Open Access Journals (Sweden)

    Leonardo Christov-Moore

    2017-12-01

    Full Text Available The dual process model of moral decision-making suggests that decisions to reject causing harm on moral dilemmas (where causing harm saves lives reflect concern for others. Recently, some theorists have suggested such decisions actually reflect self-focused concern about causing harm, rather than witnessing others suffering. We examined brain activity while participants witnessed needles pierce another person’s hand, versus similar non-painful stimuli. More than a month later, participants completed moral dilemmas where causing harm either did or did not maximize outcomes. We employed process dissociation to independently assess harm-rejection (deontological and outcome-maximization (utilitarian response tendencies. Activity in the posterior inferior frontal cortex (pIFC while participants witnessed others in pain predicted deontological, but not utilitarian, response tendencies. Previous brain stimulation studies have shown that the pIFC seems crucial for sensorimotor representations of observed harm. Hence, these findings suggest that deontological response tendencies reflect genuine other-oriented concern grounded in sensorimotor representations of harm.

  3. Deontological Dilemma Response Tendencies and Sensorimotor Representations of Harm to Others.

    Science.gov (United States)

    Christov-Moore, Leonardo; Conway, Paul; Iacoboni, Marco

    2017-01-01

    The dual process model of moral decision-making suggests that decisions to reject causing harm on moral dilemmas (where causing harm saves lives) reflect concern for others. Recently, some theorists have suggested such decisions actually reflect self-focused concern about causing harm, rather than witnessing others suffering. We examined brain activity while participants witnessed needles pierce another person's hand, versus similar non-painful stimuli. More than a month later, participants completed moral dilemmas where causing harm either did or did not maximize outcomes. We employed process dissociation to independently assess harm-rejection (deontological) and outcome-maximization (utilitarian) response tendencies. Activity in the posterior inferior frontal cortex (pIFC) while participants witnessed others in pain predicted deontological, but not utilitarian, response tendencies. Previous brain stimulation studies have shown that the pIFC seems crucial for sensorimotor representations of observed harm. Hence, these findings suggest that deontological response tendencies reflect genuine other-oriented concern grounded in sensorimotor representations of harm.

  4. Contributions of Lateral and Orbital Frontal Regions to Abstract Rule Acquisition and Reversal in Monkeys

    Science.gov (United States)

    La Camera, Giancarlo; Bouret, Sebastien; Richmond, Barry J.

    2018-01-01

    The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established. PMID:29615854

  5. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    International Nuclear Information System (INIS)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E.; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D.

    2011-01-01

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 ± 3.1 on a visual analog scale and decreased to 1.8 ± 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  6. Dopamine D2 receptors in the cerebral cortex: Distribution and pharmacological characterization with [3H]raclopride

    International Nuclear Information System (INIS)

    Lidow, M.S.; Goldman-Rakic, P.S.; Rakic, P.; Innis, R.B.

    1989-01-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D 1 receptors in the cortex have been well documented. Comparable information on cortical D 2 sites is lacking. The authors report here the results of binding studied in the cortex and neostriatum of rat and monkey using the D 2 selective antagonist [ 3 H]raclopride. In both structures [ 3 H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D 2 receptors. D 2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study established the presence and widespread distribution of dopamine D 2 receptors in the cortex

  7. Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer's disease monkey model induced by intracerebroventricular injection of streptozotocin.

    Science.gov (United States)

    Lee, Youngjeon; Kim, Young-Hyun; Park, Sang-Je; Huh, Jae-Won; Kim, Sang-Hyun; Kim, Sun-Uk; Kim, Ji-Su; Jeong, Kang-Jin; Lee, Kyoung-Min; Hong, Yonggeun; Lee, Sang-Rae; Chang, Kyu-Tae

    2014-01-01

    We reported previously that the intracerebroventricular streptozotocin (icv-STZ)-treated cynomolgus monkey showed regionally specific glucose hypometabolism in FDG-PET imaging, similar to that observed in the early stages of sporadic Alzheimer's disease (sAD). However, further pathological analyses of this model at the molecular level are needed to validate it as a feasible model for sAD. Two cynomolgus monkeys were injected with 2 mg/kg STZ into the cerebellomedullary cistern at day 1, 7 and 14. Two control monkeys were given normal saline. At 5 months after injection, the expression levels of genes encoding 9 upstream molecules in insulin/insulin-like growth factor (IGF) signaling and markers for 4 cell-type populations in the frontal cortex, hippocampus, posterior cingulate, precuneus, and occipital cortex of control and icv-STZ treated cynomolgus monkeys were examined. Real-time quantitative PCR analyses demonstrated that the overall mRNA expression of insulin/IGF signaling-related genes was mainly impaired in the anterior part of the cerebrum, frontal cortex, and hippocampus, similar to the early stage of sAD. The changes were accompanied by the loss of oligodendrocytes and neurons. The posterior part of the cerebrum did not show degenerative alterations. The present study provides important fundamental information on the icv-STZ monkey model for sAD. These results may help guide future studies using this model for the investigation of pathological mechanisms and the development of drugs for sAD.

  8. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  9. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    Science.gov (United States)

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  10. A neural substrate for object permanence in monkey inferotemporal cortex

    OpenAIRE

    Puneeth, NC; Arun, SP

    2016-01-01

    We take it for granted that objects continue to exist after being occluded. This knowledge ? known as object permanence ? is present even in childhood, but its neural basis is not fully understood. Here, we show that monkey inferior temporal (IT) neurons carry potential signals of object permanence even in animals that received no explicit behavioral training. We compared two conditions with identical visual stimulation: the same object emerged from behind an occluder as expected following it...

  11. Associations between Parity, Hair Hormone Profiles during Pregnancy and Lactation, and Infant Development in Rhesus Monkeys (Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Amanda M Dettmer

    Full Text Available Studies examining hormones throughout pregnancy and lactation in women have been limited to single, or a few repeated, short-term measures of endocrine activity. Furthermore, potential differences in chronic hormonal changes across pregnancy/lactation between first-time and experienced mothers are not well understood, especially as they relate to infant development. Hormone concentrations in hair provide long-term assessments of hormone production, and studying these measures in non-human primates allows for repeated sampling under controlled conditions that are difficult to achieve in humans. We studied hormonal profiles in the hair of 26 female rhesus monkeys (Macaca mulatta, n=12 primiparous, to determine the influences of parity on chronic levels of cortisol (hair cortisol concentration, HCC and progesterone (hair progesterone concentration, HPC during early- to mid-pregnancy (PREG1, in late pregnancy/early lactation (PREG2/LACT1, and in peak lactation (LACT2. We also assessed infants' neurobehavioral development across the first month of life. After controlling for age and stage of pregnancy at the first hair sampling period, we found that HCCs overall peaked in PREG2/LACT1 (p=0.02, but only in primiparous monkeys (p<0.001. HPCs declined across pregnancy and lactation for all monkeys (p<0.01, and primiparous monkeys had higher HPCs overall than multiparous monkeys (p=0.02. Infants of primiparous mothers had lower sensorimotor reflex scores (p=0.02 and tended to be more irritable (p=0.05 and less consolable (p=0.08 in the first month of life. Moreover, across all subjects, HCCs in PREG2/LACT1 were positively correlated with irritability (r(s=0.43, p=0.03 and negatively correlated with sensorimotor scores (r(s=-0.41, p=0.04. Together, the present results indicate that primiparity influences both chronic maternal hormonal profiles and infant development. These effects may, in part, reflect differential reproductive and maternal effort in

  12. Neurotoxic response of infant monkeys to methylmercury.

    Science.gov (United States)

    Willes, R F; Truelove, J F; Nera, E A

    1978-02-01

    Four infant monkeys were dosed orally with 500 microgram Hg/kg body wt./day /as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28--29 days of treatment; the blood Hg levels were 8.0--9.4 microgram Hg/g blood. Dosing was terminated at 28--29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35--43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver (55.8 +/- 3.2 microgram Hg/g) followed by occipital cortex (35.6 +/- 4.8 microgram Hg/g) renal cortex (32.8 +/- 1.6 microgram Hg/g). The frontal and temporal cortices had 27.0 +/- 3.4 and 29.6 +/- 4.9 microgram Hg/g respectively while the cerebellar Hg concentration averaged 13.0 +/- 1.5 microgram Hg/g. The mean blood/brain ratio was 0.21 +/- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.

  13. Individual differences in laughter perception reveal roles for mentalizing and sensorimotor systems in the evaluation of emotional authenticity.

    Science.gov (United States)

    McGettigan, C; Walsh, E; Jessop, R; Agnew, Z K; Sauter, D A; Warren, J E; Scott, S K

    2015-01-01

    Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to the deliberate, Emitted Laughs, suggesting an obligatory attempt to determine others' mental states when laughter is perceived as less genuine. In contrast, passive perception of authentic Evoked Laughs was associated with greater activity in bilateral superior temporal gyri. An individual differences analysis found that greater accuracy on a post hoc test of authenticity judgments of laughter predicted the magnitude of passive listening responses to laughter in amPFC, as well as several regions in sensorimotor cortex (in line with simulation accounts of emotion perception). These medial prefrontal and sensorimotor sites showed enhanced positive connectivity with cortical and subcortical regions during listening to involuntary laughter, indicating a complex set of interacting systems supporting the automatic emotional evaluation of heard vocalizations. © The Author 2013. Published by Oxford University Press.

  14. Towards a sensorimotor aesthetics of performing art.

    Science.gov (United States)

    Calvo-Merino, B; Jola, C; Glaser, D E; Haggard, P

    2008-09-01

    The field of neuroaesthetics attempts to identify the brain processes underlying aesthetic experience, including but not limited to beauty. Previous neuroaesthetic studies have focussed largely on paintings and music, while performing arts such as dance have been less studied. Nevertheless, increasing knowledge of the neural mechanisms that represent the bodies and actions of others, and which contribute to empathy, make a neuroaesthetics of dance timely. Here, we present the first neuroscientific study of aesthetic perception in the context of the performing arts. We investigated brain areas whose activity during passive viewing of dance stimuli was related to later, independent aesthetic evaluation of the same stimuli. Brain activity of six naïve male subjects was measured using fMRI, while they watched 24 dance movements, and performed an irrelevant task. In a later session, participants rated each movement along a set of established aesthetic dimensions. The ratings were used to identify brain regions that were more active when viewing moves that received high average ratings than moves that received low average ratings. This contrast revealed bilateral activity in the occipital cortices and in right premotor cortex. Our results suggest a possible role of visual and sensorimotor brain areas in an automatic aesthetic response to dance. This sensorimotor response may explain why dance is widely appreciated in so many human cultures.

  15. The effect of learning on the function of monkey extrastriate visual cortex.

    Directory of Open Access Journals (Sweden)

    Gregor Rainer

    2004-02-01

    Full Text Available One of the most remarkable capabilities of the adult brain is its ability to learn and continuously adapt to an ever-changing environment. While many studies have documented how learning improves the perception and identification of visual stimuli, relatively little is known about how it modifies the underlying neural mechanisms. We trained monkeys to identify natural images that were degraded by interpolation with visual noise. We found that learning led to an improvement in monkeys' ability to identify these indeterminate visual stimuli. We link this behavioral improvement to a learning-dependent increase in the amount of information communicated by V4 neurons. This increase was mediated by a specific enhancement in neural activity. Our results reveal a mechanism by which learning increases the amount of information that V4 neurons are able to extract from the visual environment. This suggests that V4 plays a key role in resolving indeterminate visual inputs by coordinated interaction between bottom-up and top-down processing streams.

  16. Effects of Dopamine D2/D3 Blockade on Human Sensory and Sensorimotor Gating in Initially Antipsychotic-Naive, First-Episode Schizophrenia Patients

    DEFF Research Database (Denmark)

    Düring, Signe; Glenthøj, Birte Y; Andersen, Gitte Saltoft

    2014-01-01

    It has been suggested that psychophysiological measures of sensory and sensorimotor gating, P50 gating and prepulse inhibition of the startle reflex (PPI), underlie core features of schizophrenia and are linked to dopaminergic pathways in the striatum and prefrontal cortex. In the present study, ...

  17. The effect of rTMS over the inferior parietal lobule on EEG sensorimotor reactivity differs according to self-reported traits of autism in typically developing individuals.

    Science.gov (United States)

    Puzzo, Ignazio; Cooper, Nicholas R; Cantarella, Simona; Fitzgerald, Paul B; Russo, Riccardo

    2013-12-06

    Previous research suggested that EEG markers of mirror neuron system activation may differ, in the normal population as a function of different levels of the autistic spectrum quotient; (AQ). The present study aimed at modulating the EEG sensorimotor reactivity induced by hand movement observation by means of repetitive transcranial magnetic stimulation (rTMS) applied to the inferior parietal lobule. We examined how the resulting rTMS modulation differed in relation to the self-reported autistic traits in the typically developing population. Results showed that during sham stimulation, all participants had significantly greater sensorimotor alpha reactivity (motor cortex-C electrodes) when observing hand movements compared to static hands. This sensorimotor alpha reactivity difference was reduced during active rTMS stimulation. Results also revealed that in the average AQ group at sham there was a significant increase in low beta during hand movement than static hand observation (pre-motor areas-FC electrodes) and that (like alpha over the C electrodes) this difference is abolished when active rTMS is delivered. Participants with high AQ scores showed no significant difference in low beta sensorimotor reactivity between active and sham rTMS during static hand or hand movement observation. These findings suggest that unlike sham, active rTMS over the IPL modulates the oscillatory activity of the low beta frequency of a distal area, namely the anterior sector of the sensorimotor cortex, when participants observe videos of static hand. Importantly, this modulation differs according to the degree of self-reported traits of autism in a typically developing population. © 2013 Elsevier B.V. All rights reserved.

  18. Decision salience signals in posterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Sarah eHeilbronner

    2011-04-01

    Full Text Available Despite its phylogenetic antiquity and clinical importance, the posterior cingulate cortex (CGp remains an enigmatic nexus of attention, memory, motivation, and decision making. Here we show that CGp neurons track decision salience—the degree to which an option differs from a standard—but not the subjective value of a decision. To do this, we recorded the spiking activity of CGp neurons in monkeys choosing between options varying in reward-related risk, delay to reward, and social outcomes, each of which varied in level of decision salience. Firing rates were higher when monkeys chose the risky option, consistent with their risk-seeking preferences, but were also higher when monkeys chose the delayed and social options, contradicting their preferences. Thus, across decision contexts, neuronal activity was uncorrelated with how much monkeys valued a given option, as inferred from choice. Instead, neuronal activity signaled the deviation of the chosen option from the standard, independently of how it differed. The observed decision salience signals suggest a role for CGp in the flexible allocation of neural resources to motivationally significant information, akin to the role of attention in selective processing of sensory inputs.

  19. The Crossed Projection to the Striatum in Two Species of Monkey and in Humans: Behavioral and Evolutionary Significance

    DEFF Research Database (Denmark)

    Innocenti, Giorgio M.; Dyrby, Tim Bjørn; Andersen, Kasper Winther

    2017-01-01

    The corpus callosum establishes the anatomical continuity between the 2 hemispheres and coordinates their activity. Using histological tracing, single axon reconstructions, and diffusion tractography, we describe a callosal projection to n caudatus and putamen in monkeys and humans. In both species......, the origin of this projection is more restricted than that of the ipsilateral projection. In monkeys, it consists of thin axons (0.4–0.6 µm), appropriate for spatial and temporal dispersion of subliminal inputs. For prefrontal cortex, contralateral minus ipsilateral delays to striatum calculated from axon...... diameters and conduction distance are monkey and, by extrapolation,

  20. Eye muscle proprioception is represented bilaterally in the sensorimotor cortex

    DEFF Research Database (Denmark)

    Balslev, Daniela; Albert, Neil B; Miall, Chris

    2011-01-01

    eye after a virtual lesion with rTMS over the left somatosensory area. However, it is possible that the proprioceptive representation of the EOM extends to other brain sites, which were not examined in these previous studies. The aim of this fMRI study was to sample the whole brain to identify...... the proprioceptive representation for the left and the right eye separately. Data were acquired while passive eye movement was used to stimulate EOM proprioceptors in the absence of a motor command. We also controlled for the tactile stimulation of the eyelid by removing from the analysis voxels activated by eyelid......The cortical representation of eye position is still uncertain. In the monkey a proprioceptive representation of the extraocular muscles (EOM) of an eye were recently found within the contralateral central sulcus. In humans, we have previously shown a change in the perceived position of the right...

  1. The Computational Sensorimotor Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Computational Sensorimotor Systems Lab focuses on the exploration, analysis, modeling and implementation of biological sensorimotor systems for both scientific...

  2. Comparison of Object Recognition Behavior in Human and Monkey

    Science.gov (United States)

    Rajalingham, Rishi; Schmidt, Kailyn

    2015-01-01

    Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to

  3. Responsiveness of sensorimotor cortex during pharmacological intervention with bromazepam.

    Science.gov (United States)

    Cunha, Marlo; Portela, Cláudio; Bastos, Victor H; Machado, Dionis; Machado, Sergio; Velasques, Bruna; Budde, Henning; Cagy, Maurício; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro

    2008-12-19

    The aim of this study was to investigate the influence of bromazepam on EEG and the motor learning process when healthy subjects were submitted to a typewriting task. We investigated bromazepam due to its abuse by various populations and its prevalent clinical use among older individuals which are more sensitive to the negative effects of long half-life benzodiazepines. A randomized double-blind design was used with subjects divided into three groups: placebo (n=13), bromazepam 3mg (n=13) and bromazepam 6 mg (n=13). EEG data comprising theta, alpha and beta bands was recorded before, during and after the motor task. Our results showed a lower relative power value in the theta band in the Br 6 mg group when compared with PL. We also observed a reduction in relative power in the beta band in the Br 3mg and Br 6 mg when compared with PL group. These findings suggest that Br can contribute to a reduced working memory load in areas related to attention processes. On the other hand, it produces a higher cortical activation in areas associated with sensory integration. Such areas are responsible for accomplishing the motor learning task. The results are an example of the usefulness of integrating electrophysiological data, sensorimotor activity and a pharmacological approach to aid in our understanding of cerebral changes produced by external agents.

  4. The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain

    Science.gov (United States)

    Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael

    2011-01-01

    One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal

  5. Sensorimotor learning in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Lalonde, R; Strazielle, C

    2011-04-15

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex and neocortex were compared with non-ataxic controls on two tests of motor coordination: rotorod and grid climbing. Even at the minimal speed of 4 rpm and unlike controls, none of the Dab1(scm) mutants reached criterion on the constant speed rotorod. In contrast, Dab1(scm) mutants improved their performances on the vertical grid over the course of the same number of trials. Thus, despite massive cerebellar degeneration, sensorimotor learning for equilibrium is still possible, indicating the potential usefulness of the grid-climbing test in determining residual functions in mice with massive cerebellar damage. Copyright © 2010. Published by Elsevier B.V.

  6. The neurophysiology of figure^ground segregation in primary visual cortex

    NARCIS (Netherlands)

    Lamme, V.A.F.

    1995-01-01

    Recorded neuronal activity in the monkey primary visual cortex while Ss were viewing full screen arrays of either oriented line segments or moving random dots. Almost every cell gave a significantly larger response for texture elements perceived as a figure (FI) than for background elements. Cell

  7. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    OpenAIRE

    Akiko Nishio; Naokazu Goda; Hidehiko Komatsu

    2012-01-01

    The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT) cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task...

  8. Adults with sensorimotor disorders: Enhanced physiological and psychological development following specific sensorimotor training

    Directory of Open Access Journals (Sweden)

    Mats eNiklasson

    2015-04-01

    Full Text Available The aim of the study was to investigate, for the first time, if it is possible to integrate primary reflexes in adults with sensorimotor disorders through sensorimotor therapy. Participants consisted of 14 adults, 1 man and 13 women, with an average age of 35 years who completed a sensorimotor therapy program over three years. They were compared with a reference group of 100 youngsters spanning from 11 to 17 years. Procedures were the same for both youngsters and adults including regular visits to a therapist and training approximately 15 minutes each day at home throughout therapy. Assessments of sensorimotor abilities were made before and after the therapy. Results showed significant improvements on all measurements with regard to treatment for both age groups and the main picture indicated small differences between age groups. After therapy adults were better on balance and orientation tests while the youngsters performed better on sports related gross motor movements, processing of speech sounds and had acquired a better relation between visual skills and vestibular function. Conclusions were that motor problems do not disappear with age and that the same diagnostic instruments and treatment methods can be used for both children and adults with sensorimotor difficulties.

  9. Functional activity of the sensorimotor cortex and cerebellum relates to cervical dystonia symptoms.

    Science.gov (United States)

    Burciu, Roxana G; Hess, Christopher W; Coombes, Stephen A; Ofori, Edward; Shukla, Priyank; Chung, Jae Woo; McFarland, Nikolaus R; Wagle Shukla, Aparna; Okun, Michael S; Vaillancourt, David E

    2017-09-01

    Cervical dystonia (CD) is the most common type of focal dystonia, causing abnormal movements of the neck and head. In this study, we used noninvasive imaging to investigate the motor system of patients with CD and uncover the neural correlates of dystonic symptoms. Furthermore, we examined whether a commonly prescribed anticholinergic medication in CD has an effect on the dystonia-related brain abnormalities. Participants included 16 patients with CD and 16 healthy age-matched controls. We collected functional MRI scans during a force task previously shown to extensively engage the motor system, and diffusion and T1-weighted MRI scans from which we calculated free-water and brain tissue densities. The dystonia group was also scanned ca. 2 h after a 2-mg dose of trihexyphenidyl. Severity of dystonia was assessed pre- and post-drug using the Burke-Fahn-Marsden Dystonia Rating Scale. Motor-related activity in CD was altered relative to controls in the primary somatosensory cortex, cerebellum, dorsal premotor and posterior parietal cortices, and occipital cortex. Most importantly, a regression model showed that increased severity of symptoms was associated with decreased functional activity of the somatosensory cortex and increased activity of the cerebellum. Structural imaging measures did not differ between CD and controls. The single dose of trihexyphenidyl altered the fMRI signal in the somatosensory cortex but not in the cerebellum. Symptom severity was not significantly reduced post-treatment. Findings show widespread changes in functional brain activity in CD and most importantly that dystonic symptoms relate to disrupted activity in the somatosensory cortex and cerebellum. Hum Brain Mapp 38:4563-4573, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study.

    Science.gov (United States)

    Kober, Silvia Erika; Witte, Matthias; Stangl, Matthias; Väljamäe, Aleksander; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In the present study, we investigated how the electrical activity in the sensorimotor cortex contributes to improved cognitive processing capabilities and how SMR (sensorimotor rhythm, 12-15Hz) neurofeedback training modulates it. Previous evidence indicates that higher levels of SMR activity reduce sensorimotor interference and thereby promote cognitive processing. Participants were randomly assigned to two groups, one experimental (N=10) group receiving SMR neurofeedback training, in which they learned to voluntarily increase SMR, and one control group (N=10) receiving sham feedback. Multiple cognitive functions and electrophysiological correlates of cognitive processing were assessed before and after 10 neurofeedback training sessions. The experimental group but not the control group showed linear increases in SMR power over training runs, which was associated with behavioural improvements in memory and attentional performance. Additionally, increasing SMR led to a more salient stimulus processing as indicated by increased N1 and P3 event-related potential amplitudes after the training as compared to the pre-test. Finally, functional brain connectivity between motor areas and visual processing areas was reduced after SMR training indicating reduced sensorimotor interference. These results indicate that SMR neurofeedback improves stimulus processing capabilities and consequently leads to improvements in cognitive performance. The present findings contribute to a better understanding of the mechanisms underlying SMR neurofeedback training and cognitive processing and implicate that SMR neurofeedback might be an effective cognitive training tool. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Altered figure-ground perception in monkeys with an extra-striate lesion.

    Science.gov (United States)

    Supèr, Hans; Lamme, Victor A F

    2007-11-05

    The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.

  12. The development of object recognition memory in rhesus macaques with neonatal lesions of the perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Alyson Zeamer

    2015-02-01

    Full Text Available To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed an increase in novelty preference between 1.5 and 6 months of age similar to controls, although at these two ages, performance remained significantly poorer than that of control animals. With age, performance in animals with neonatal perirhinal lesions deteriorated as compared to that of controls. In contrast to the lack of novelty preference in monkeys with perirhinal lesions acquired in adulthood, novelty preference in the neonatally operated animals remained above chance at all delays and all ages. The data suggest that, although incidental recognition memory processes can be supported by the perirhinal cortex in early infancy, other temporal cortical areas may support these processes in the absence of a functional perirhinal cortex early in development. The neural substrates mediating incidental recognition memory processes appear to be more widespread in early infancy than in adulthood.

  13. Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy.

    Directory of Open Access Journals (Sweden)

    Fuqing Zhou

    Full Text Available Decreases in metabolites and increased motor-related, but decreased sensory-related activation of the sensorimotor cortex (SMC have been observed in patients with cervical myelopathy (CM using advanced MRI techniques. However, the nature of intrinsic neuronal activity in the SMC, and the relationship between cerebral function and structural damage of the spinal cord in patients with CM are not fully understood. The purpose of this study was to assess intrinsic neuronal activity by calculating the regional amplitude of low frequency fluctuations (ALFF using resting-state functional MRI (rs-fMRI, and correlations with clinical and imaging indices. Nineteen patients and 19 age- and sex-matched healthy subjects underwent rs-fMRI scans. ALFF measurements were performed in the SMC, a key brain network likely to impaired or reorganized patients with CM. Compared with healthy subjects, increased amplitude of cortical low-frequency oscillations (LFO was observed in the right precentral gyrus, right postcentral gyrus, and left supplementary motor area. Furthermore, increased z-ALFF values in the right precentral gyrus and right postcentral gyrus correlated with decreased fractional anisotropy values at the C2 level, which indicated increased intrinsic neuronal activity in the SMC corresponding to the structural impairment in the spinal cord of patients with CM. These findings suggest a complex and diverging relationship of cortical functional reorganization and distal spinal anatomical compression in patients with CM and, thus, add important information in understanding how spinal cord integrity may be a factor in the intrinsic covariance of spontaneous low-frequency fluctuations of BOLD signals involved in cortical plasticity.

  14. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    International Nuclear Information System (INIS)

    Tessa, Carlo; Vignali, Claudio; Lucetti, Claudio; Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario; Cecchi, Paolo; Baldacci, Filippo; Giannelli, Marco; Bonuccelli, Ubaldo

    2012-01-01

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  15. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  16. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  17. A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse

    Science.gov (United States)

    Radulovic, Jelena

    2016-01-01

    Retrosplenial cortex (RSC) is a dorsomedial parietal area involved in a range of cognitive functions, including episodic memory, navigation, and spatial memory. Anatomically, the RSC receives inputs from dorsal hippocampal networks and in turn projects to medial neocortical areas. A particularly prominent projection extends rostrally to the posterior secondary motor cortex (M2), suggesting a functional corticocortical link from the RSC to M2 and thus a bridge between hippocampal and neocortical networks involved in mnemonic and sensorimotor aspects of navigation. We investigated the cellular connectivity in this RSC→M2 projection in the mouse using optogenetic photostimulation, retrograde labeling, and electrophysiology. Axons from RSC formed monosynaptic excitatory connections onto M2 pyramidal neurons across layers and projection classes, including corticocortical/intratelencephalic neurons (reciprocally and callosally projecting) in layers 2–6, pyramidal tract neurons (corticocollicular, corticopontine) in layer 5B, and, to a lesser extent, corticothalamic neurons in layer 6. In addition to these direct connections, disynaptic connections were made via posterior parietal cortex (RSC→PPC→M2) and anteromedial thalamus (RSC→AM→M2). In the reverse direction, axons from M2 monosynaptically excited M2-projecting corticocortical neurons in the RSC, especially in the superficial layers of the dysgranular region. These findings establish an excitatory RSC→M2 corticocortical circuit that engages diverse types of excitatory projection neurons in the downstream area, suggesting a basis for direct communication from dorsal hippocampal networks involved in spatial memory and navigation to neocortical networks involved in diverse aspects of sensorimotor integration and motor control. SIGNIFICANCE STATEMENT Corticocortical pathways interconnect cortical areas extensively, but the cellular connectivity in these pathways remains largely uncharacterized. Here, we

  18. Circuit mechanisms of sensorimotor learning

    Science.gov (United States)

    Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki

    2016-01-01

    SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902

  19. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  20. Music-supported therapy induces plasticity in the sensorimotor cortex in chronic stroke: a single-case study using multimodal imaging (fMRI-TMS).

    Science.gov (United States)

    Rojo, Nuria; Amengual, Julian; Juncadella, Montserrat; Rubio, Francisco; Camara, Estela; Marco-Pallares, Josep; Schneider, Sabine; Veciana, Misericordia; Montero, Jordi; Mohammadi, Bahram; Altenmüller, Eckart; Grau, Carles; Münte, Thomas F; Rodriguez-Fornells, Antoni

    2011-01-01

    Music-Supported Therapy (MST) has been developed recently in order to improve the use of the affected upper extremity after stroke. This study investigated the neuroplastic mechanisms underlying effectiveness in a patient with chronic stroke. MST uses musical instruments, a midi piano and an electronic drum set emitting piano sounds, to retrain fine and gross movements of the paretic upper extremity. Data are presented from a patient with a chronic stroke (20 months post-stroke) with residual right-sided hemiparesis who took part in 20 MST sessions over the course of 4 weeks. Post-therapy, a marked improvement of movement quality, assessed by 3D movement analysis, was observed. Moreover, functional magnetic resonance imaging (fMRI) of a sequential hand movement revealed distinct therapy-related changes in the form of a reduction of excess contralateral and ipsilateral activations. This was accompanied by changes in cortical excitability evidenced by transcranial magnetic stimulation (TMS). Functional MRI in a music listening task suggests that one of the effects of MST is the task-dependent coupling of auditory and motor cortical areas. The MST appears to be a useful neurorehabilitation tool in patients with chronic stroke and leads to neural reorganization in the sensorimotor cortex.

  1. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    Science.gov (United States)

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  2. Sensorimotor cortex ablation induces time-dependent response of ACTH cells in adult rats: behavioral, immunohistomorphometric and hormonal study.

    Science.gov (United States)

    Lavrnja, Irena; Trifunovic, Svetlana; Ajdzanovic, Vladimir; Pekovic, Sanja; Bjelobaba, Ivana; Stojiljkovic, Mirjana; Milosevic, Verica

    2014-02-10

    Traumatic brain injury (TBI) represents a serious event with far reaching complications, including pituitary dysfunction. Pars distalis corticotropes (ACTH cells), that represent the active module of hypothalamo-pituitary-adrenocortical axis, seem to be affected as well. Since pituitary failure after TBI has been associated with neurobehavioral impairments the aim of this study was to evaluate the effects of TBI on recovery of motor functions, morphology and secretory activity of ACTH cells in the pituitary of adult rats. Wistar male rats, initially exposed to sensorimotor cortex ablation (SCA), were sacrificed at the 2nd, 7th, 14th and 30th days post-surgery (dps). A beam walking test was used to evaluate the recovery of motor functions. Pituitary glands and blood were collected for morphological and hormonal analyses. During the first two weeks post-injury increased recovery of locomotor function was detected, reaching almost the control value at day 30. SCA induces significant increase of pituitary weights compared to their time-matched controls. The volume of ACTH-immunopositive cells was reduced at the 7th dps, while at the 14th dps their volume was enlarged, in comparison to corresponding sham controls. Volume density of ACTH cells was increased only at 14th dps, while at day 30 this increase was insignificant. The plasma level of ACTH transiently increased after the injury. The most pronounced changes were observed at the 7th and 14th dps, and were followed by decrease toward control levels at the 30th dps. Thus, temporal changes in the hypothalamic-pituitary-adrenal axis after traumatic brain injury appear to correlate with the recovery process. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  4. Spatial Attention and Temporal Expectation Under Timed Uncertainty Predictably Modulate Neuronal Responses in Monkey V1

    Science.gov (United States)

    Sharma, Jitendra; Sugihara, Hiroki; Katz, Yarden; Schummers, James; Tenenbaum, Joshua; Sur, Mriganka

    2015-01-01

    The brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration. Monkeys covertly attended to a spot that remained unchanged for a fixed period and then abruptly disappeared at variable times, prompting a lever release for reward. We show that monkeys responded progressively faster and performed better as the trial duration increased. Neural responses also followed monkey's task engagement—there was an early, but short duration, response facilitation, followed by a late but sustained increase during the time monkeys expected the attention spot to disappear. This late attentional modulation was significantly and negatively correlated with the reaction time and was well explained by a modified hazard function. Such bimodal, time-dependent changes were, however, absent in a task that did not require explicit attentional engagement. Thus, V1 neurons carry reliable signals of attention and temporal expectation that correlate with predictable influences on monkeys' behavioral responses. PMID:24836689

  5. Contemporary sensorimotor theory

    CERN Document Server

    Martin, Andrew

    2014-01-01

    This book analyzes the philosophical foundations of sensorimotor theory and discusses the most recent applications of sensorimotor theory to human computer interaction, child’s play, virtual reality, robotics, and linguistics. Why does a circle look curved and not angular? Why does red not sound like a bell? Why, as I interact with the world, is there something it is like to be me? An analytic philosopher might suggest: ``if we ponder the concept of circle we find that it is the essence of a circle to be round’’. However, where does this definition come from? Was it set in stone by the Gods, in other words by divine arbiters of circleness, redness and consciousness? Particularly, with regard to visual consciousness, a first attempt to explain why our conscious experience of the world appears as it does has been attributed to Kevin O’Regan and Alva Noe, who published their sensorimotor account of vision and visual consciousness in 2001. Starting with a chapter by Kevin O’Regan, Contemporary Sensorimo...

  6. Diminished modulation of preparatory sensorimotor mu rhythm predicts attention-deficit/hyperactivity disorder severity.

    Science.gov (United States)

    Ter Huurne, N; Lozano-Soldevilla, D; Onnink, M; Kan, C; Buitelaar, J; Jensen, O

    2017-08-01

    Attention-deficit/hyperactivity disorder (ADHD) is characterized by problems in regulating attention and in suppressing disruptive motor activity, i.e. hyperactivity and impulsivity. We recently found evidence that aberrant distribution of posterior α band oscillations (8-12 Hz) is associated with attentional problems in ADHD. The sensorimotor cortex also produces strong 8-12 Hz band oscillations, namely the μ rhythm, and is thought to have a similar inhibitory function. Here, we now investigate whether problems in distributing α band oscillations in ADHD generalize to the μ rhythm in the sensorimotor domain. In a group of adult ADHD (n = 17) and healthy control subjects (n = 18; aged 21-40 years) oscillatory brain activity was recorded using magnetoencephalography during a visuo-spatial attention task. Subjects had to anticipate a target with unpredictable timing and respond by pressing a button. Preparing a motor response, the ADHD group failed to increase hemispheric μ lateralization with relatively higher μ power in sensorimotor regions not engaged in the task, as the controls did (F 1,33 = 8.70, p = 0.006). Moreover, the ADHD group pre-response μ lateralization not only correlated positively with accuracy (r s = 0.64, p = 0.0052) and negatively with intra-individual reaction time variability (r s = -0.52, p = 0.033), but it also correlated negatively with the score on an ADHD rating scale (r s = -0.53, p = 0.028). We suggest that ADHD is associated with an inability to sufficiently inhibit task-irrelevant sensorimotor areas by means of modulating μ oscillatory activity. This could explain disruptive motor activity in ADHD. These results provide further evidence that impaired modulation of α band oscillations is involved in the pathogenesis of ADHD.

  7. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia

    Science.gov (United States)

    Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568

  8. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  9. Postnatal Developmental Trajectories of Neural Circuits in the Primate Prefrontal Cortex: Identifying Sensitive Periods for Vulnerability to Schizophrenia

    Science.gov (United States)

    Hoftman, Gil D.; Lewis, David A.

    2011-01-01

    Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia. PMID:21505116

  10. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.

    Science.gov (United States)

    Mysoet, Julien; Dupont, Erwan; Bastide, Bruno; Canu, Marie-Hélène

    2015-09-01

    In the adult rat, sensorimotor restriction by hindlimb unloading (HU) is known to induce impairments in motor behavior as well as a disorganization of somatosensory cortex (shrinkage of the cortical representation of the hindpaw, enlargement of the cutaneous receptive fields, decreased cutaneous sensibility threshold). Recently, our team has demonstrated that IGF-1 level was decreased in the somatosensory cortex of rats submitted to a 14-day period of HU. To determine whether IGF-1 is involved in these plastic mechanisms, a chronic cortical infusion of this substance was performed by means of osmotic minipump. When administered in control rats, IGF-1 affects the size of receptive fields and the cutaneous threshold, but has no effect on the somatotopic map. In addition, when injected during the whole HU period, IGF-1 is interestingly implied in cortical changes due to hypoactivity: the shrinkage of somatotopic representation of hindlimb is prevented, whereas the enlargement of receptive fields is reduced. IGF-1 has no effect on the increase in neuronal response to peripheral stimulation. We also explored the functional consequences of IGF-1 level restoration on tactile sensory discrimination. In HU rats, the percentage of paw withdrawal after a light tactile stimulation was decreased, whereas it was similar to control level in HU-IGF-1 rats. Taken together, the data clearly indicate that IGF-1 plays a key-role in cortical plastic mechanisms and in behavioral alterations induced by a decrease in sensorimotor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey

    International Nuclear Information System (INIS)

    Kisvarday, Z.F.; Cowey, A.; Smith, A.D.; Somogyi, P.

    1989-01-01

    The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread

  12. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey

    Energy Technology Data Exchange (ETDEWEB)

    Kisvarday, Z.F.; Cowey, A.; Smith, A.D.; Somogyi, P.

    1989-02-01

    The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread.

  13. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    Science.gov (United States)

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  14. The contribution of the human posterior parietal cortex to episodic memory

    OpenAIRE

    Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio

    2017-01-01

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, poten...

  15. Effects of Anodal High-Definition Transcranial Direct Current Stimulation on Bilateral Sensorimotor Cortex Activation During Sequential Finger Movements: An fNIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Ward, Tomas; Perrey, Stephane

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive electrical brain stimulation technique that can modulate cortical neuronal excitability and activity. This study utilized functional near infrared spectroscopy (fNIRS) neuroimaging to determine the effects of anodal high-definition (HD)-tDCS on bilateral sensorimotor cortex (SMC) activation. Before (Pre), during (Online), and after (Offline) anodal HD-tDCS (2 mA, 20 min) targeting the left SMC, eight healthy subjects performed a simple finger sequence (SFS) task with their right or left hand in an alternating blocked design (30-s rest and 30-s SFS task, repeated five times). In order to determine the level of bilateral SMC activation during the SFS task, an Oxymon MkIII fNIRS system was used to measure from the left and right SMC, changes in oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin concentration values. The fNIRS data suggests a finding that compared to the Pre condition both the "Online" and "Offline" anodal HD-tDCS conditions induced a significant reduction in bilateral SMC activation (i.e., smaller decrease in HHb) for a similar motor output (i.e., SFS tap rate). These findings could be related to anodal HD-tDCS inducing a greater efficiency of neuronal transmission in the bilateral SMC to perform the same SFS task.

  16. 31P saturation transfer and phosphocreatine imaging in the monkey brain

    International Nuclear Information System (INIS)

    Mora, B.; Narasimhan, P.T.; Ross, B.D.; Allman, J.; Barker, P.B.

    1991-01-01

    31 P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the γ-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the γ-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response

  17. P1-5: Effect of Luminance Contrast on the Color Selective Responses in the Inferior Temporal Cortex Neurons of the Macaque Monkey

    Directory of Open Access Journals (Sweden)

    Tomoyuki Namima

    2012-10-01

    Full Text Available Although the relationship between color signal and luminance signal is an important problem in visual perception, relatively little is known about how the luminance contrast affects the responses of color selective neurons in the visual cortex. In this study, we examined this problem in the inferior temporal (IT of the awake monkey performing a visual fixation task. Single neuron activities were recorded from the anterior and posterior color selective regions in IT cortex (AITC and PITC identified in previous studies where color selective neurons are accumulated. Color stimuli consisted of 28 stimuli that evenly distribute across the gamut of the CRT display defined on the CIE- xychromaticity diagram at two different luminance levels (5 cd/m 2or 20 cd/m 2 and 2 stimuli at white points. The background was maintained at 10 cd/m 2gray. We found that the effect of luminance contrast on the color selectivity was markedly different between AITC and PITC. When we examined the correlation between the responses to the bright stimuli and those to the dark stimuli with the same chromaticity coordinates, most AITC neurons exhibited high correlation whereas many PITC neurons showed no correlation or only weak correlation. In PITC, the effect was specifically large for neutral colors (white, gray, black and for colors with low saturation. These results indicate that the effect of luminance contrast on the color selective responses differs across different areas and suggest that the separation between color signal and luminance signal involves a higher stage of the cortical color processing.

  18. 10 Hz rTMS over right parietal cortex alters sense of agency during self-controlled movements

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Karabanov, Anke N; Christensen, Mark Schram

    2014-01-01

    A large body of fMRI and lesion-literature has provided evidence that the Inferior Parietal Cortex (IPC) is important for sensorimotor integration and sense of agency (SoA). We used repetitive transcranial magnetic stimulation (rTMS) to explore the role of the IPC during a validated SoA detection...

  19. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke.

    Directory of Open Access Journals (Sweden)

    Huijuan Xu

    Full Text Available It remains uncertain if the contralesional primary sensorimotor cortex (CL_PSMC contributes to motor recovery after stroke. Here we investigated longitudinal changes in the resting-state functional connectivity (rsFC of the CL_PSMC and their association with motor recovery. Thirteen patients who had experienced subcortical stroke underwent a series of resting-state fMRI and clinical assessments over a period of 1 year at 5 time points, i.e., within the first week, at 2 weeks, 1 month, 3 months, and 1 year after stroke onset. Thirteen age- and gender-matched healthy subjects were recruited as controls. The CL_PSMC was defined as a region centered at the voxel that had greatest activation during hand motion task. The dynamic changes in the rsFCs of the CL_PSMC within the whole brain were evaluated and correlated with the Motricity Index (MI scores. Compared with healthy controls, the rsFCs of the CL_PSMC with the bilateral PSMC were initially decreased, then gradually increased, and finally restored to the normal level 1 year later. Moreover, the dynamic change in the inter-hemispheric rsFC between the bilateral PSMC in these patients was positively correlated with the MI scores. However, the intra-hemispheric rsFC of the CL_PSMC was not correlated with the MI scores. This study shows dynamic changes in the rsFCs of the CL_PSMC after stroke and suggests that the increased inter-hemispheric rsFC between the bilateral PSMC may facilitate motor recovery in stroke patients. However, generalization of our findings is limited by the small sample size of our study and needs to be confirmed.

  20. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

    Directory of Open Access Journals (Sweden)

    Pineda Jaime A

    2008-10-01

    ?" In this review, we argue from an anatomical, physiological, modeling, and functional perspectives that a critical component of the human mirror neuron system is sensorimotor cortex. Not only are sensorimotor transformations necessary for computing the patterns of muscle activation and kinematics during action observation but they provide potential answers to the development, correspondence and control problems.

  1. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

    Science.gov (United States)

    Pineda, Jaime A

    2008-01-01

    from an anatomical, physiological, modeling, and functional perspectives that a critical component of the human mirror neuron system is sensorimotor cortex. Not only are sensorimotor transformations necessary for computing the patterns of muscle activation and kinematics during action observation but they provide potential answers to the development, correspondence and control problems. PMID:18928566

  2. Effects of muscarinic blockade in perirhinal cortex during visual recognition

    Science.gov (United States)

    Tang, Yi; Mishkin, Mortimer; Aigner, Thomas G.

    1997-01-01

    Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored. PMID:9356507

  3. From rule to response: neuronal processes in the premotor and prefrontal cortex.

    Science.gov (United States)

    Wallis, Jonathan D; Miller, Earl K

    2003-09-01

    The ability to use abstract rules or principles allows behavior to generalize from specific circumstances (e.g., rules learned in a specific restaurant can subsequently be applied to any dining experience). Neurons in the prefrontal cortex (PFC) encode such rules. However, to guide behavior, rules must be linked to motor responses. We investigated the neuronal mechanisms underlying this process by recording from the PFC and the premotor cortex (PMC) of monkeys trained to use two abstract rules: "same" or "different." The monkeys had to either hold or release a lever, depending on whether two successively presented pictures were the same or different, and depending on which rule was in effect. The abstract rules were represented in both regions, although they were more prevalent and were encoded earlier and more strongly in the PMC. There was a perceptual bias in the PFC, relative to the PMC, with more PFC neurons encoding the presented pictures. In contrast, neurons encoding the behavioral response were more prevalent in the PMC, and the selectivity was stronger and appeared earlier in the PMC than in the PFC.

  4. Dramatic loss of Ube3A expression during aging of the mammalian cortex

    Directory of Open Access Journals (Sweden)

    Kate Williams

    2010-05-01

    Full Text Available Neurobiological studies of aging are beginning to link functional changes with a loss of experience-dependent plasticity. In the visual system, age-related functional changes include decreases in visual acuity, orientation selectivity, motion perception, and ocular dominance plasticity. A recent paper has shown that Ube3A, an E3 ubiquitin ligase that is absent in Angelman's Syndrome, is required for experience-dependent plasticity during development of the visual cortex. Knocking out Ube3A during development leads to rigidity of ocular dominance plasticity that is strikingly similar to the reduced plasticity seen in older animals. Furthermore, ubiquitin ligases have been linked with age-related neurodegenerative disorders and longevity. Ubiquitin ligases selectively mark proteins for degradation, and a balance between synaptic proteins and their degradation is important for neural transmission and plasticity. This led us to ask whether normal aging is characterized by a loss of Ube3A in the cortex. We used Western blot analysis in order to quantify Ube3A expression across the life span of humans, macaque monkeys, and cats. We found that Ube3A expression declines across the lifespan in human, monkey, and cat cortex. The losses were substantial (50-80% in all areas studied which includes V1, V3, V4, frontal, and auditory cortex. In addition, when compared with other synaptic proteins there was a selective loss of Ube3A in human cortex. The progressive loss of Ube3A expression during cortical aging is an important new finding. Furthermore, the selective loss of Ube3A in human cortex highlights a specific vulnerability in human brain aging that may signify a dramatic shift in cortical function and plasticity.

  5. Developing Personalized Sensorimotor Adaptability Countermeasures for Spaceflight

    Science.gov (United States)

    Mulavara, A. P.; Seidler, R. D.; Peters, B.; Cohen, H. S.; Wood, S.; Bloomberg, J. J.

    2016-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. In this paper we will be presenting results from our ground-based study that show how behavioral, brain imaging and genomic data may be used to predict individual differences in sensorimotor adaptability to novel sensorimotor environments. This approach will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive capacity, brain structure, functional capacities, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes.

  6. Cognitive performance of juvenile monkeys after chronic fluoxetine treatment.

    Science.gov (United States)

    Golub, Mari S; Hackett, Edward P; Hogrefe, Casey E; Leranth, Csaba; Elsworth, John D; Roth, Robert H

    2017-08-01

    Potential long term effects on brain development are a concern when drugs are used to treat depression and anxiety in childhood. In this study, male juvenile rhesus monkeys (three-four years of age) were dosed with fluoxetine or vehicle (N=16/group) for two years. Histomorphometric examination of cortical dendritic spines conducted after euthanasia at one year postdosing (N=8/group) suggested a trend toward greater dendritic spine synapse density in prefrontal cortex of the fluoxetine-treated monkeys. During dosing, subjects were trained for automated cognitive testing, and evaluated with a test of sustained attention. After dosing was discontinued, sustained attention, recognition memory and cognitive flexibility were evaluated. Sustained attention was affected by fluoxetine, both during and after dosing, as indexed by omission errors. Response accuracy was not affected by fluoxetine in post-dosing recognition memory and cognitive flexibility tests, but formerly fluoxetine-treated monkeys compared to vehicle controls had more missed trial initiations and choices during testing. Drug treatment also interacted with genetic and environmental variables: MAOA genotype (high- and low transcription rate polymorphisms) and testing location (upper or lower tier of cages). Altered development of top-down cortical regulation of effortful attention may be relevant to this pattern of cognitive test performance after juvenile fluoxetine treatment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. P1-27: Localizing Regions Activated by Surface Gloss in Macaque Visual Cortex by fMRI

    Directory of Open Access Journals (Sweden)

    Gouki Okazawa

    2012-10-01

    Full Text Available Surface properties of objects such as gloss provide important information about the states or materials of objects in our visual experiences. Previous studies have shown that there are cortical regions responding to shapes, colors, faces etc. in the macaque visual cortex. However, we still lack the information about where the surface properties are processed in the macaque visual cortex. In this study, we examined whether there are regions activated by surface gloss, an important surface property, in the macaque visual cortex by using functional magnetic resonance imaging (fMRI. We trained two monkeys to fixate on a small spot on the screen in MRI scanner, while the images of glossy and matte objects were presented. As a control condition for low-level image features, such as spatial frequency or luminance contrast, we generated scrambled images by locally randomizing the luminance phases of images using wavelet filters. By contrasting the responses to glossy images to those to matte and scrambled images, we found the activation in wide regions along the ventral visual pathway including V1, V2, V3, V4, and the posterior part of the inferior temporal (IT cortex. In one monkey, we also found the activations in the central part of IT cortex. In another control experiment, we manipulated the image contrasts and found that the responses in these regions cannot be explained simply by the image contrasts. These results suggest that surface gloss is processed along the ventral pathway and, in the IT cortex there are distinct regions processing surface gloss.

  8. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  9. A Balanced Comparison of Object Invariances in Monkey IT Neurons.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, Sripati P

    2017-01-01

    Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity.

  10. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Science.gov (United States)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  11. A neural substrate for object permanence in monkey inferotemporal cortex.

    Science.gov (United States)

    Puneeth, N C; Arun, S P

    2016-08-03

    We take it for granted that objects continue to exist after being occluded. This knowledge - known as object permanence - is present even in childhood, but its neural basis is not fully understood. Here, we show that monkey inferior temporal (IT) neurons carry potential signals of object permanence even in animals that received no explicit behavioral training. We compared two conditions with identical visual stimulation: the same object emerged from behind an occluder as expected following its occlusion, or unexpectedly after occlusion of a different object. Some neurons produced a larger (surprise) signal when the object emerged unexpectedly, whereas other neurons produced a larger (match) signal when the object reappeared as expected. Neurons carrying match signals also reinstated selective delay period activity just before the object emerged. Thus, signals related to object permanence are present in IT neurons and may arise through an interplay of memory and match computations.

  12. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex.

    Science.gov (United States)

    Takeuchi, Daigo; Hirabayashi, Toshiyuki; Tamura, Keita; Miyashita, Yasushi

    2011-03-18

    The primate temporal cortex implements visual long-term memory. However, how its interlaminar circuitry executes cognitive computations is poorly understood. Using linear-array multicontact electrodes, we simultaneously recorded unit activities across cortical layers in the perirhinal cortex of macaques performing a pair-association memory task. Cortical layers were estimated on the basis of current source density profiles with histological verifications, and the interlaminar signal flow was determined with cross-correlation analysis between spike trains. During the cue period, canonical "feed-forward" signals flowed from granular to supragranular layers and from supragranular to infragranular layers. During the delay period, however, the signal flow reversed to the "feed-back" direction: from infragranular to supragranular layers. This reversal of signal flow highlights how the temporal cortex differentially recruits its laminar circuits for sensory and mnemonic processing.

  13. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tessa, Carlo; Vignali, Claudio [Versilia Hospital, AUSL Versilia, Division of Radiology, Camaiore (Italy); Lucetti, Claudio [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario [University of Florence, Radiodiagnostic Section, Department of Clinical Physiopathology, Florence (Italy); Cecchi, Paolo; Baldacci, Filippo [University of Pisa, Department of Neuroscience, Pisa (Italy); Giannelli, Marco [Azienda Ospedaliero-Universitaria Pisana, Unit of Medical Physics, Pisa (Italy); Bonuccelli, Ubaldo [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); University of Pisa, Department of Neuroscience, Pisa (Italy)

    2012-03-15

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  14. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    Science.gov (United States)

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as

  16. Augmentation of Sensorimotor Adaptability Using Stochastic Resonance Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts experience sensorimotor dysfunction during adaption to g-transitions that occur when entering and exiting microgravity. These sensorimotor disturbances...

  17. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.

    Science.gov (United States)

    Izquierdo, Alicia; Murray, Elisabeth A

    2007-01-31

    Neuropsychological studies in nonhuman primates have led to the view that the amygdala plays an essential role in stimulus-reward association. The main evidence in support of this idea is that bilateral aspirative or radiofrequency lesions of the amygdala yield severe impairments on object reversal learning, a task that assesses the ability to shift choices of objects based on the presence or absence of food reward (i.e., reward contingency). The behavioral effects of different lesion techniques, however, can vary. The present study therefore evaluated the effects of selective, excitotoxic lesions of the amygdala in rhesus monkeys on object reversal learning. For comparison, we tested the same monkeys on a task known to be sensitive to amygdala damage, the reinforcer devaluation task. Contrary to previous results based on less selective lesion techniques, monkeys with complete excitotoxic amygdala lesions performed object reversal learning as quickly as controls. As predicted, however, the same operated monkeys were impaired in making object choices after devaluation of the associated food reinforcer. The results suggest two conclusions. First, the results demonstrate that the amygdala makes a selective contribution to stimulus-reward association; the amygdala is critical for guiding object choices after changes in reward value but not after changes in reward contingency. Second, the results implicate a critical contribution to object reversal learning of structures nearby the amygdala, perhaps the subjacent rhinal cortex.

  18. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  19. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    Science.gov (United States)

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  20. Dorsal premotor cortex: neural correlates of reach target decisions based on a color-location matching rule and conflicting sensory evidence

    OpenAIRE

    Coallier, Émilie; Michelet, Thomas; Kalaska, John F.

    2015-01-01

    We recorded single-neuron activity in dorsal premotor (PMd) and primary motor cortex (M1) of two monkeys in a reach-target selection task. The monkeys chose between two color-coded potential targets by determining which target's color matched the predominant color of a multicolored checkerboard-like Decision Cue (DC). Different DCs contained differing numbers of colored squares matching each target. The DCs provided evidence about the correct target ranging from unambiguous (one color only) t...

  1. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus

    Directory of Open Access Journals (Sweden)

    Zakaria Ouhaz

    2018-02-01

    Full Text Available The mediodorsal nucleus of the thalamus (MD has been implicated in executive functions (such as planning, cognitive control, working memory, and decision-making because of its significant interconnectivity with the prefrontal cortex (PFC. Yet, whilst the roles of the PFC have been extensively studied, how the MD contributes to these cognitive functions remains relatively unclear. Recently, causal evidence in monkeys has demonstrated that in everyday tasks involving rapid updating (e.g., while learning something new, making decisions, or planning the next move, the MD and frontal cortex are working in close partnership. Furthermore, researchers studying the MD in rodents have been able to probe the underlying mechanisms of this relationship to give greater insights into how the frontal cortex and MD might interact during the performance of these essential tasks. This review summarizes the circuitry and known neuromodulators of the MD, and considers the most recent behavioral, cognitive, and neurophysiological studies conducted in monkeys and rodents; in total, this evidence demonstrates that MD makes a critical contribution to cognitive functions. We propose that communication occurs between the MD and the frontal cortex in an ongoing, fluid manner during rapid cognitive operations, via the means of efference copies of messages passed through transthalamic routes; the conductance of these messages may be modulated by other brain structures interconnected to the MD. This is similar to the way in which other thalamic structures have been suggested to carry out forward modeling associated with rapid motor responding and visual processing. Given this, and the marked thalamic pathophysiology now identified in many neuropsychiatric disorders, we suggest that changes in the different subdivisions of the MD and their interconnections with the cortex could plausibly give rise to a number of the otherwise disparate symptoms (including changes to olfaction

  2. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    Science.gov (United States)

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  3. A deficit in face-voice integration in developing vervet monkeys exposed to ethanol during gestation.

    Directory of Open Access Journals (Sweden)

    Shahin Zangenehpour

    Full Text Available Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet monkey model of fetal alcohol exposure (FAE provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting. Recent work has revealed a significant reduction of the neuronal population in the frontal lobes of these monkeys. We used an intersensory matching procedure to investigate audiovisual perception of socially relevant stimuli in young FAE vervet monkeys. Here we show a domain-specific deficit in audiovisual integration of socially relevant stimuli. When FAE monkeys were shown a pair of side-by-side videos of a monkey concurrently presenting two different calls along with a single audio track matching the content of one of the calls, they were not able to match the correct video to the single audio track. This was manifest by their average looking time being equally spent towards both the matching and non-matching videos. However, a group of normally developing monkeys exhibited a significant preference for the non-matching video. This inability to integrate and thereby discriminate audiovisual stimuli was confined to the integration of faces and voices as revealed by the monkeys' ability to match a dynamic face to a complex tone or a black-and-white checkerboard to a pure tone, presumably based on duration and/or onset-offset synchrony. Together, these results suggest that prenatal ethanol exposure negatively affects a specific domain of audiovisual integration. This deficit is confined to the integration of information that is presented by the face and the voice and does not affect more elementary aspects of sensory integration.

  4. A deficit in face-voice integration in developing vervet monkeys exposed to ethanol during gestation.

    Science.gov (United States)

    Zangenehpour, Shahin; Javadi, Pasha; Ervin, Frank R; Palmour, Roberta M; Ptito, Maurice

    2014-01-01

    Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet monkey model of fetal alcohol exposure (FAE) provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting. Recent work has revealed a significant reduction of the neuronal population in the frontal lobes of these monkeys. We used an intersensory matching procedure to investigate audiovisual perception of socially relevant stimuli in young FAE vervet monkeys. Here we show a domain-specific deficit in audiovisual integration of socially relevant stimuli. When FAE monkeys were shown a pair of side-by-side videos of a monkey concurrently presenting two different calls along with a single audio track matching the content of one of the calls, they were not able to match the correct video to the single audio track. This was manifest by their average looking time being equally spent towards both the matching and non-matching videos. However, a group of normally developing monkeys exhibited a significant preference for the non-matching video. This inability to integrate and thereby discriminate audiovisual stimuli was confined to the integration of faces and voices as revealed by the monkeys' ability to match a dynamic face to a complex tone or a black-and-white checkerboard to a pure tone, presumably based on duration and/or onset-offset synchrony. Together, these results suggest that prenatal ethanol exposure negatively affects a specific domain of audiovisual integration. This deficit is confined to the integration of information that is presented by the face and the voice and does not affect more elementary aspects of sensory integration.

  5. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches. Copyright 1998 Academic Press.

  6. Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery

    Directory of Open Access Journals (Sweden)

    Ronald B. Willemse

    2016-01-01

    Conclusions: MEG localization of sensorimotor cortex activation was more successful for the hand compared to the foot. In patients with neural lesions, there were signs of brain reorganization as measured by more frequent ipsilateral motor cortical activation of the foot in addition to the traditional sensory and motor activation patterns in the contralateral hemisphere. The presence of ipsilateral neural reorganization, especially around the foot motor area, suggests that careful mapping of the hand and foot in both contralateral and ipsilateral hemispheres prior to surgery might minimize postoperative deficits.

  7. Cortico-cortical connections of areas 44 and 45B in the macaque monkey.

    Science.gov (United States)

    Frey, Stephen; Mackey, Scott; Petrides, Michael

    2014-04-01

    In the human brain, areas 44 and 45 constitute Broca's region, the ventrolateral frontal region critical for language production. The homologues of these areas in the macaque monkey brain have been established by direct cytoarchitectonic comparison with the human brain. The cortical areas that project monosynaptically to areas 44 and 45B in the macaque monkey brain require clarification. Fluorescent retrograde tracers were placed in cytoarchitectonic areas 44 and 45B of the macaque monkey, as well as in the anterior part of the inferior parietal lobule and the superior temporal gyrus. The results demonstrate that ipsilateral afferent connections of area 44 arise from local frontal areas, including rostral premotor cortical area 6, from secondary somatosensory cortex, the caudal insula, and the cingulate motor region. Area 44 is strongly linked with the anterior inferior parietal lobule (particularly area PFG and the adjacent anterior intraparietal sulcus). Input from the temporal lobe is limited to the fundus of the superior temporal sulcus extending caudal to the central sulcus. There is also input from the sulcal part of area Tpt in the upper bank of the superior temporal sulcus. Area 45B shares some of the connections of area 44, but can be distinguished from area 44 by input from the caudal inferior parietal lobule (area PG) and significant input from the part of the superior temporal sulcus that extends anterior to the central sulcus. Area 45B also receives input from visual association cortex that is not observed in area 44. The results have provided a clarification of the relative connections of areas 44 and 45B of the ventrolateral frontal region which, in the human brain, subserves certain aspects of language processing. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  9. Single neurons in prefrontal cortex encode abstract rules.

    Science.gov (United States)

    Wallis, J D; Anderson, K C; Miller, E K

    2001-06-21

    The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the 'rules' for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.

  10. Countermeasures to Enhance Sensorimotor Adaptability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. C.; Miller, C. A.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The goal of our current project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation to novel gravitational environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. We have conducted a series of studies that have shown: Training using a combination of modified visual flow and support surface motion during treadmill walking enhances locomotor adaptability to a novel sensorimotor environment. Trained individuals become more proficient at performing multiple competing tasks while walking during adaptation to novel discordant sensorimotor conditions. Trained subjects can retain their increased level of adaptability over a six months period. SA training is effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. The structure of individual training sessions can be optimized to promote fast/strategic motor learning. Training sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that customized training prescriptions can be developed to enhance

  11. PET measurement of FK506 concentration in a monkey model of stroke

    International Nuclear Information System (INIS)

    Murakami, Yoshihiro; Takamatsu, Hiroyuki; Noda, Akihiro; Osoda, Kazuhiko; Nishimura, Shintaro

    2007-01-01

    Introduction: The immunosuppressive agent FK506 (tacrolimus) has neuroprotective properties in an experimental model of cerebral ischemia. To improve the accuracy of clinical studies in acute stroke, a clinical dose setting should be based on the brain concentration, but not on the blood concentration of agents in humans. We have already established a measurement method using PET for FK506 concentration in the normal monkey brain, which could be applicable for human study; however, under ischemic conditions, in this study, we aimed to examine the brain concentration of FK506 in a monkey model of stroke. Methods: Studies were performed on six male cynomolgus monkeys (Macaca fascicularis) and a middle cerebral artery (MCA) occlusion model was used. Regional cerebral blood flow (rCBF) was measured by an intravenous injection of [ 15 O]H 2 O 165 min after MCA occlusion. FK506 (0.1 mg/kg) containing [ 11 C]FK506 was intravenously injected into the monkeys 180 min after MCA occlusion, and dynamic PET images were acquired for 30 min after administration. FK506 concentrations in the brain were calculated in moles per liter (M) units using the specific activity of injected FK506. Results: MCA occlusion produced ischemia, confirmed by rCBF measurement before the administration of [ 11 C]FK506. Fifteen minutes after FK506 (0.1 mg/kg) administration, the concentrations in the contralateral and ipsilateral cortex were 22.4±6.4 and 19.7±4.0 ng/g, respectively. Conclusion: We successfully measured the brain concentration of FK506 in a monkey model of stroke. The difference between the contralateral and ipsilateral concentrations of FK506 was not significant. This characteristic that FK506 readily penetrates ischemic tissue as well as normal tissue might explain the neuroprotective effect of FK506 in the ischemic brain and is suitable for the treatment of stroke patients

  12. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates.

    Science.gov (United States)

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-07-20

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.

  13. Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita

    Science.gov (United States)

    Miyashita, Yasushi; Chang, Han Soo

    1988-01-01

    It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.

  14. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    Science.gov (United States)

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  16. Sensorimotor abilities predict on-field performance in professional baseball.

    Science.gov (United States)

    Burris, Kyle; Vittetoe, Kelly; Ramger, Benjamin; Suresh, Sunith; Tokdar, Surya T; Reiter, Jerome P; Appelbaum, L Gregory

    2018-01-08

    Baseball players must be able to see and react in an instant, yet it is hotly debated whether superior performance is associated with superior sensorimotor abilities. In this study, we compare sensorimotor abilities, measured through 8 psychomotor tasks comprising the Nike Sensory Station assessment battery, and game statistics in a sample of 252 professional baseball players to evaluate the links between sensorimotor skills and on-field performance. For this purpose, we develop a series of Bayesian hierarchical latent variable models enabling us to compare statistics across professional baseball leagues. Within this framework, we find that sensorimotor abilities are significant predictors of on-base percentage, walk rate and strikeout rate, accounting for age, position, and league. We find no such relationship for either slugging percentage or fielder-independent pitching. The pattern of results suggests performance contributions from both visual-sensory and visual-motor abilities and indicates that sensorimotor screenings may be useful for player scouting.

  17. Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans.

    Science.gov (United States)

    Wymbs, Nicholas F; Bassett, Danielle S; Mucha, Peter J; Porter, Mason A; Grafton, Scott T

    2012-06-07

    Motor chunking facilitates movement production by combining motor elements into integrated units of behavior. Previous research suggests that chunking involves two processes: concatenation, aimed at the formation of motor-motor associations between elements or sets of elements, and segmentation, aimed at the parsing of multiple contiguous elements into shorter action sets. We used fMRI to measure the trial-wise recruitment of brain regions associated with these chunking processes as healthy subjects performed a cued-sequence production task. A dynamic network analysis identified chunking structure for a set of motor sequences acquired during fMRI and collected over 3 days of training. Activity in the bilateral sensorimotor putamen positively correlated with chunk concatenation, whereas a left-hemisphere frontoparietal network was correlated with chunk segmentation. Across subjects, there was an aggregate increase in chunk strength (concatenation) with training, suggesting that subcortical circuits play a direct role in the creation of fluid transitions across chunks. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia.

    Science.gov (United States)

    Coullon, Gaelle S L; Emir, Uzay E; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-09-01

    Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, (1)H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. Copyright © 2015 the American Physiological Society.

  19. Customizing Countermeasure Prescriptions using Predictive Measures of Sensorimotor Adaptability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Miller, C. A.; Batson, C. D.; Wood, S. J.; Guined, J. R.; Cohen, H. S.; Buccello-Stout, R.; DeDios, Y. E.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functional tasks during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of a countermeasure comprised of a training program designed to enhance sensorimotor adaptability. Due to this inherent individual variability we need to develop predictive measures of sensorimotor adaptability that will allow us to predict, before actual space flight, which crewmember will experience challenges in adaptive capacity. Thus, obtaining this information will allow us to design and implement better sensorimotor adaptability training countermeasures that will be customized for each crewmember's unique adaptive capabilities. Therefore the goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to design sensorimotor adaptability training countermeasures that are customized for each crewmember's individual sensorimotor adaptive characteristics. To achieve these goals we are currently pursuing the following specific aims: Aim 1: Determine whether behavioral metrics of individual sensory bias predict sensorimotor adaptability. For this aim, subjects perform tests that delineate individual sensory biases in tests of visual, vestibular, and proprioceptive function. Aim 2: Determine if individual capability for strategic and plastic-adaptive responses predicts sensorimotor adaptability. For this aim, each subject's strategic and plastic-adaptive motor learning abilities are assessed using

  20. Sensorimotor modulation of mood and depression: In search of an optimal mode of stimulation

    Directory of Open Access Journals (Sweden)

    RESIT eCANBEYLI

    2013-07-01

    Full Text Available Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multi-modal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research.

  1. Loss of laterality in chronic cocaine users: an fMRI investigation of sensorimotor control.

    Science.gov (United States)

    Hanlon, Colleen A; Wesley, Michael J; Roth, Alicia J; Miller, Mack D; Porrino, Linda J

    2010-01-30

    Movement disturbances are often overlooked consequences of chronic cocaine abuse. The purpose of this study was to systematically investigate sensorimotor performance in chronic cocaine users and characterize changes in brain activity among movement-related regions of interest (ROIs) in these users. Functional magnetic resonance imaging data were collected from 14 chronic cocaine users and 15 age- and gender-matched controls. All participants performed a sequential finger-tapping task with their dominant, right hand interleaved with blocks of rest. For each participant, percent signal change from rest was calculated for seven movement-related ROIs in both the left and right hemisphere. Cocaine users had significantly longer reaction times and higher error rates than controls. Whereas the controls used a left-sided network of motor-related brain areas to perform the task, cocaine users activated a less lateralized pattern of brain activity. Users had significantly more activity in the ipsilateral (right) motor and premotor cortical areas, anterior cingulate cortex and the putamen than controls. These data demonstrate that, in addition to the cognitive and affective consequences of chronic cocaine abuse, there are also pronounced alterations in sensorimotor control in these individuals, which are associated with functional alterations throughout movement-related neural networks.

  2. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.

    Science.gov (United States)

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja

    2016-08-10

    The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published

  3. Reduced Structural Connectivity in Frontostriatal White Matter Tracts in the Associative Loop in Schizophrenia.

    Science.gov (United States)

    Levitt, James J; Nestor, Paul G; Levin, Laura; Pelavin, Paula; Lin, Pan; Kubicki, Marek; McCarley, Robert W; Shenton, Martha E; Rathi, Yogesh

    2017-11-01

    The striatum receives segregated and integrative white matter tracts from the cortex facilitating information processing in the cortico-basal ganglia network. The authors examined both types of input tracts in the striatal associative loop in chronic schizophrenia patients and healthy control subjects. Structural and diffusion MRI scans were acquired on a 3-T system from 26 chronic schizophrenia patients and 26 matched healthy control subjects. Using FreeSurfer, the associative cortex was parcellated into ventrolateral prefrontal cortex and dorsolateral prefrontal cortex subregions. The striatum was manually parcellated into its associative and sensorimotor functional subregions. Fractional anisotropy and normalized streamlines, an estimate of fiber counts, were assessed in four frontostriatal tracts (dorsolateral prefrontal cortex-associative striatum, dorsolateral prefrontal cortex-sensorimotor striatum, ventrolateral prefrontal cortex-associative striatum, and ventrolateral prefrontal cortex-sensorimotor striatum). Furthermore, these measures were correlated with a measure of cognitive control, the Trail-Making Test, Part B. Results showed reduced fractional anisotropy and fewer streamlines in chronic schizophrenia patients for all four tracts, both segregated and integrative. Post hoc t tests showed reduced fractional anisotropy in the left ventrolateral prefrontal cortex-associative striatum and left ventrolateral prefrontal cortex-sensorimotor striatum and fewer normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum and in the left and right ventrolateral prefrontal cortex-sensorimotor striatum in chronic schizophrenia patients. Furthermore, normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum negatively correlated with Trail-Making Test, Part B, time spent in healthy control subjects but not in chronic schizophrenia patients. These findings demonstrated that structural connectivity is

  4. Neural mechanisms of memory retrieval: role of the prefrontal cortex.

    Science.gov (United States)

    Hasegawa, I

    2000-01-01

    In the primate brain, long-term memory is stored in the neocortical association area which is also engaged in sensory perception. The coded representation of memory is retrieved via interactions of hierarchically different cortical areas along bottom-up and top-down anatomical connections. The functional significance of the fronto-cortical top-down neuronal projections has been relevantly assessed in a new experimental paradigm using posterior-split-brain monkeys. When the splenium of the corpus callosum and the anterior commissure were selectively split, the bottom-up visual signal originating from the unilateral striate cortex could not reach the contralateral visual cortical areas. In this preparation, long-term memory acquired through visual stimulus-stimulus association learning was prevented from transferring across hemispheres. Nonetheless, following the presentation of a visual cue to one hemisphere, the prefrontal cortex could instruct the contralateral hemisphere to retrieve the correct stimulus specified by the cue. These results support the hypothesis that the prefrontal cortex can regulate memory recall in the absence of bottom-up sensory input. In humans, functional neuroimaging studies have revealed activation of a distributed neural network, including the prefrontal cortex, during memory retrieval tasks. Thus, the prefrontal cortex is consistently involved in retrieval of long-term memory in primates.

  5. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson's disease.

    Science.gov (United States)

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Vanwersch, Raymond A P; Estevao, Dave L; Tass, Peter A

    2017-08-01

    Neurofeedback may enhance compensatory brain mechanisms. EEG-based sensorimotor rhythm neurofeedback training was suggested to be beneficial in Parkinson's disease. In a placebo-controlled study in parkinsonian nonhuman primates we here show that sensorimotor rhythm neurofeedback training reduces MPTP-induced parkinsonian symptoms and both ON and OFF scores during classical L-DOPA treatment. Our findings encourage further development of sensorimotor rhythm neurofeedback training as adjunct therapy for Parkinson's disease which might help reduce L-DOPA-induced side effects.

  6. Connectivity-based parcellation of the human orbitofrontal cortex.

    Science.gov (United States)

    Kahnt, Thorsten; Chang, Luke J; Park, Soyoung Q; Heinzle, Jakob; Haynes, John-Dylan

    2012-05-02

    The primate orbitofrontal cortex (OFC) is involved in reward processing, learning, and decision making. Research in monkeys has shown that this region is densely connected with higher sensory, limbic, and subcortical regions. Moreover, a parcellation of the monkey OFC into two subdivisions has been suggested based on its intrinsic anatomical connections. However, in humans, little is known about any functional subdivisions of the OFC except for a rather coarse medial/lateral distinction. Here, we used resting-state fMRI in combination with unsupervised clustering techniques to investigate whether OFC subdivisions can be revealed based on their functional connectivity profiles with other brain regions. Examination of different cluster solutions provided support for a parcellation into two parts as observed in monkeys, but it also highlighted a much finer hierarchical clustering of the orbital surface. Specifically, we identified (1) a medial, (2) a posterior-central, (3) a central, and (4-6) three lateral clusters spanning the anterior-posterior gradient. Consistent with animal tracing studies, these OFC clusters were connected to other cortical regions such as prefrontal, temporal, and parietal cortices but also subcortical areas in the striatum and the midbrain. These connectivity patterns provide important implications for identifying specific functional roles of OFC subdivisions for reward processing, learning, and decision making. Moreover, this parcellation schema can provide guidance to report results in future studies.

  7. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex

    DEFF Research Database (Denmark)

    Moisa, Marius; Siebner, Hartwig R; Pohmann, Rolf

    2012-01-01

    Primate electrophysiological and lesion studies indicate a prominent role of the left dorsal premotor cortex (PMd) in action selection based on learned sensorimotor associations. Here we applied transcranial magnetic stimulation (TMS) to human left PMd at low or high intensity while right...... to directly assess how stimulation of left PMd modulates task-related brain activity depending on the mode of movement selection. Relative to passive viewing, both tasks activated a frontoparietal motor network. Compared with low-intensity TMS, high-intensity TMS of left PMd was associated with an increase...

  8. Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys

    Science.gov (United States)

    Málková, Ludise; Mishkin, Mortimer; Suomi, Stephen J.; Bachevalier, Jocelyne

    2010-01-01

    Socioemotional abnormalities, including low levels of social interaction and high levels of self-directed activity, were reported when rhesus monkeys with neonatal ablations of either the medial temporal lobe (AH) or the inferior temporal cortex (TE) were paired with unoperated peers at two and six months of age, though these abnormalities were more severe in the AH group (Bachevalier et al., 2001). As they reached adulthood (Experiment 1), the same monkeys were re-evaluated in the same dyads and their reactivity to novel toys, social status, and reactions to separation from age-matched peers were also assessed. Group TE now showed few if any of the abnormal behaviors observed when they were infants. By contrast, Group AH continued to display low levels of social interaction, high levels of self-directed activity and submissive behavior, and reduced responses to separation, although they reacted normally to novel toys. To determine whether this degree of socioemotional impairment was less severe than that produced by the same damage in adulthood, we assessed dyadic social interactions of monkeys raised until adulthood in laboratory conditions similar to those of the earlier groups and then given the AH ablation (Experiment 2). Two months postoperatively these adult-lesioned monkeys showed a small reduction in social interactions that became more pronounced six months postoperatively, yet remained less severe than that seen in the infant-lesioned monkeys. Also, except for an increase in food and water consumption throughout this 6-month period, they showed no other socioemotional effects. The finding that neonatal AH lesions produce more severe socioemotional disturbances than the same lesion in adulthood is the reverse of the effect commonly reported for other cognitive functions after cerebral damage. PMID:21133531

  9. Resolving the organization of the third tier visual cortex in primates: a hypothesis-based approach.

    Science.gov (United States)

    Angelucci, Alessandra; Rosa, Marcello G P

    2015-01-01

    As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the "third tier" visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the "multiple-areas" model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.

  10. Early self-managed focal sensorimotor rehabilitative training enhances functional mobility and sensorimotor function in patients following total knee replacement: a controlled clinical trial.

    Science.gov (United States)

    Moutzouri, Maria; Gleeson, Nigel; Coutts, Fiona; Tsepis, Elias; John, Gliatis

    2018-02-01

    To assess the effects of early self-managed focal sensorimotor training compared to functional exercise training after total knee replacement on functional mobility and sensorimotor function. A single-blind controlled clinical trial. University Hospital of Rion, Greece. A total of 52 participants following total knee replacement. The primary outcome was the Timed Up and Go Test and the secondary outcomes were balance, joint position error, the Knee Outcome Survey Activities of Daily Living Scale, and pain. Patients were assessed on three separate occasions (presurgery, 8 weeks post surgery, and 14 weeks post surgery). Participants were randomized to either focal sensorimotor exercise training (experimental group) or functional exercise training (control group). Both groups received a 12-week home-based programme prescribed for 3-5 sessions/week (35-45 minutes). Consistently greater improvements ( F 2,98  = 4.3 to 24.8; P effect size range of 1.3-6.5. Overall, the magnitude of improvements in functional mobility and sensorimotor function endorses using focal sensorimotor training as an effective mode of rehabilitation following knee replacement.

  11. Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery.

    Directory of Open Access Journals (Sweden)

    Tatsuya Yamamoto

    Full Text Available We previously reported that secreted phosphoprotein 1 (SPP1 mRNA is expressed in neurons whose axons form the corticospinal tract (CST of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further examine this hypothesis, we evaluated the expression of SPP1 mRNA in the motor cortex from three viewpoints: species differences, postnatal development, and functional/structural changes of the CST after a lesion of the lateral CST (l-CST at the mid-cervical level. The density of SPP1-positive neurons in layer V of the primary motor cortex (M1 was much greater in species with highly developed corticospinal systems (i.e., rhesus macaque, capuchin monkey, and humans than in those with less developed corticospinal systems (i.e., squirrel monkey, marmoset, and rat. SPP1-positive neurons in the macaque monkey M1 increased logarithmically in layer V during postnatal development, following a time course consistent with the increase in conduction velocity of the CST. After an l-CST lesion, SPP1-positive neurons increased in layer V of the ventral premotor cortex, in which compensatory changes in CST function/structure may occur, which positively correlated with the extent of finger dexterity recovery. These results further support the concept that the expression of SPP1 may reflect functional or structural specialization of highly developed corticospinal systems in certain primate species.

  12. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.

    Science.gov (United States)

    Bi, H; Zhang, B; Tao, X; Harwerth, R S; Smith, E L; Chino, Y M

    2011-09-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.

  13. Genome Editing of Monkey.

    Science.gov (United States)

    Liu, Zhen; Cai, Yijun; Sun, Qiang

    2017-01-01

    Gene-modified monkey models would be particularly valuable in biomedical and neuroscience research. Virus-based transgenic and programmable nucleases-based site-specific gene editing methods (TALEN, CRISPR-cas9) enable the generation of gene-modified monkeys with gain or loss of function of specific genes. Here, we describe the generation of transgenic and knock-out (KO) monkeys with high efficiency by lentivirus and programmable nucleases.

  14. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission

    OpenAIRE

    Unichenko, Petr; Kirischuk, Sergei; Yang, Jenq-Wei; Baumgart, Jan; Roskoden, Thomas; Schneider, Patrick; Sommer, Angela; Horta, Guilherme; Radyushkin, Konstantin; Nitsch, Robert; Vogt, Johannes; Luhmann, Heiko J.

    2016-01-01

    Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discriminatio...

  15. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey.

    Science.gov (United States)

    Yuan, Jihong; Zhang, Dongdong; Wang, Lei; Liu, Mengyuan; Mao, Jian; Yin, Yu; Ye, Xiaoying; Liu, Na; Han, Jihong; Gao, Yingdai; Cheng, Tao; Keefe, David L; Liu, Lin

    2013-11-01

    Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age. Copyright © 2013 AlphaMed Press.

  16. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2012-06-07

    In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2015-04-01

    Full Text Available We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline and after each intervention (post-local, post-global, we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI.Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  18. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    Science.gov (United States)

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  19. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  20. iTBS-induced LTP-like plasticity parallels oscillatory activity changes in the primary sensory and motor areas of macaque monkeys.

    Science.gov (United States)

    Papazachariadis, Odysseas; Dante, Vittorio; Verschure, Paul F M J; Del Giudice, Paolo; Ferraina, Stefano

    2014-01-01

    Recently, neuromodulation techniques based on the use of repetitive transcranial magnetic stimulation (rTMS) have been proposed as a non-invasive and efficient method to induce in vivo long-term potentiation (LTP)-like aftereffects. However, the exact impact of rTMS-induced perturbations on the dynamics of neuronal population activity is not well understood. Here, in two monkeys, we examine changes in the oscillatory activity of the sensorimotor cortex following an intermittent theta burst stimulation (iTBS) protocol. We first probed iTBS modulatory effects by testing the iTBS-induced facilitation of somatosensory evoked potentials (SEP). Then, we examined the frequency information of the electrocorticographic signal, obtained using a custom-made miniaturised multi-electrode array for electrocorticography, after real or sham iTBS. We observed that iTBS induced facilitation of SEPs and influenced spectral components of the signal, in both animals. The latter effect was more prominent on the θ band (4-8 Hz) and the high γ band (55-90 Hz), de-potentiated and potentiated respectively. We additionally found that the multi-electrode array uniformity of β (13-26 Hz) and high γ bands were also afflicted by iTBS. Our study suggests that enhanced cortical excitability promoted by iTBS parallels a dynamic reorganisation of the interested neural network. The effect in the γ band suggests a transient local modulation, possibly at the level of synaptic strength in interneurons. The effect in the θ band suggests the disruption of temporal coordination on larger spatial scales.

  1. iTBS-induced LTP-like plasticity parallels oscillatory activity changes in the primary sensory and motor areas of macaque monkeys.

    Directory of Open Access Journals (Sweden)

    Odysseas Papazachariadis

    Full Text Available Recently, neuromodulation techniques based on the use of repetitive transcranial magnetic stimulation (rTMS have been proposed as a non-invasive and efficient method to induce in vivo long-term potentiation (LTP-like aftereffects. However, the exact impact of rTMS-induced perturbations on the dynamics of neuronal population activity is not well understood. Here, in two monkeys, we examine changes in the oscillatory activity of the sensorimotor cortex following an intermittent theta burst stimulation (iTBS protocol. We first probed iTBS modulatory effects by testing the iTBS-induced facilitation of somatosensory evoked potentials (SEP. Then, we examined the frequency information of the electrocorticographic signal, obtained using a custom-made miniaturised multi-electrode array for electrocorticography, after real or sham iTBS. We observed that iTBS induced facilitation of SEPs and influenced spectral components of the signal, in both animals. The latter effect was more prominent on the θ band (4-8 Hz and the high γ band (55-90 Hz, de-potentiated and potentiated respectively. We additionally found that the multi-electrode array uniformity of β (13-26 Hz and high γ bands were also afflicted by iTBS. Our study suggests that enhanced cortical excitability promoted by iTBS parallels a dynamic reorganisation of the interested neural network. The effect in the γ band suggests a transient local modulation, possibly at the level of synaptic strength in interneurons. The effect in the θ band suggests the disruption of temporal coordination on larger spatial scales.

  2. Behavioral Consequences of a Bifacial Map in the Mouse Somatosensory Cortex.

    Science.gov (United States)

    Tsytsarev, Vassiliy; Arakawa, Hiroyuki; Zhao, Shuxin; Chédotal, Alain; Erzurumlu, Reha S

    2017-07-26

    The whisker system is an important sensory organ with extensive neural representations in the brain of the mouse. Patterned neural modules (barrelettes) in the ipsilateral principal sensory nucleus of the trigeminal nerve (PrV) correspond to the whiskers. Axons of the PrV barrelette neurons cross the midline and confer the whisker-related patterning to the contralateral ventroposteromedial nucleus of the thalamus, and subsequently to the cortex. In this way, specific neural modules called barreloids and barrels in the contralateral thalamus and cortex represent each whisker. Partial midline crossing of the PrV axons, in a conditional Robo3 mutant ( Robo3 R3-5 cKO ) mouse line, leads to the formation of bilateral whisker maps in the ventroposteromedial, as well as the barrel cortex. We used voltage-sensitive dye optical imaging and somatosensory and motor behavioral tests to characterize the consequences of bifacial maps in the thalamocortical system. Voltage-sensitive dye optical imaging verified functional, bilateral whisker representation in the barrel cortex and activation of distinct cortical loci following ipsilateral and contralateral stimulation of the specific whiskers. The mutant animals were comparable with the control animals in sensorimotor tests. However, they showed noticeable deficits in all of the whisker-dependent or -related tests, including Y-maze exploration, horizontal surface approach, bridge crossing, gap crossing, texture discrimination, floating in water, and whisking laterality. Our results indicate that bifacial maps along the thalamocortical system do not offer a functional advantage. Instead, they lead to impairments, possibly due to the smaller size of the whisker-related modules and interference between the ipsilateral and contralateral whisker representations in the same thalamus and cortex. SIGNIFICANCE STATEMENT The whisker sensory system plays a quintessentially important role in exploratory behavior of mice and other nocturnal

  3. Newly Identified CYP2C93 Is a Functional Enzyme in Rhesus Monkey, but Not in Cynomolgus Monkey

    OpenAIRE

    Uno, Yasuhiro; Uehara, Shotaro; Kohara, Sakae; Iwasaki, Kazuhide; Nagata, Ryoichi; Fukuzaki, Koichiro; Utoh, Masahiro; Murayama, Norie; Yamazaki, Hiroshi

    2011-01-01

    Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP) 2C76 that does not have a human ortholog and is partly responsible for species differences in drug metabolism between cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus monkey and rhesus monkey. The CYP2C9...

  4. Normalization of sensorimotor integration by repetitive transcranial magnetic stimulation in cervical dystonia

    NARCIS (Netherlands)

    Zittel, S.; Helmich, R.C.G.; Demiralay, C.; Munchau, A.; Baumer, T.

    2015-01-01

    Previous studies indicated that sensorimotor integration and plasticity of the sensorimotor system are impaired in dystonia patients. We investigated motor evoked potential amplitudes and short latency afferent inhibition to examine corticospinal excitability and cortical sensorimotor integration,

  5. The nucleus pararaphales in the human, chimpanzee, and macaque monkey.

    Science.gov (United States)

    Baizer, Joan S; Weinstock, Nadav; Witelson, Sandra F; Sherwood, Chet C; Hof, Patrick R

    2013-03-01

    The human cerebral cortex and cerebellum are greatly expanded compared to those of other mammals, including the great apes. This expansion is reflected in differences in the size and organization of precerebellar brainstem structures, such as the inferior olive. In addition, there are cell groups unique to the human brainstem. One such group may be the nucleus pararaphales (PRa); however, there is disagreement among authors about the size and location of this nucleus in the human brainstem. The name "pararaphales" has also been used for neurons in the medulla shown to project to the flocculus in the macaque monkey. We have re-examined the existence and status of the PRa in eight humans, three chimpanzees, and four macaque monkeys using Nissl-stained sections as well as immunohistochemistry. In the human we found a cell group along the midline of the medulla in all cases; it had the form of interrupted cell columns and was variable among cases in rostrocaudal and dorsoventral extent. Cells and processes were highly immunoreactive for non-phosphorylated neurofilament protein (NPNFP); somata were immunoreactive to the synthetic enzyme for nitric oxide, nitric oxide synthase, and for calretinin. In macaque monkey, there was a much smaller oval cell group with NPNFP immunoreactivity. In the chimpanzee, we found a region of NPNFP-immunoreactive cells and fibers similar to what was observed in macaques. These results suggest that the "PRa" in the human may not be the same structure as the flocculus-projecting cell group described in the macaque. The PRa, like the arcuate nucleus, therefore may be unique to humans.

  6. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.

    Science.gov (United States)

    Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-11-01

    In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.

  7. Sensorimotor gating deficits in multiple system atrophy

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Biernat, Heidi Bryde; Nikolic, Miki

    2014-01-01

    Prepulse inhibition (PPI) of the auditory blink reflex is a measure of sensorimotor gating, which reflects an organism's ability to filter out irrelevant sensory information. PPI has never been studied in patients with multiple system atrophy (MSA), although sensorimotor deficits are frequently a...... associated with synucleinopathies. We investigated whether alterations in PPI were more pronounced in MSA compared with Parkinson's disease (PD), idiopathic rapid eye movement sleep behavior disorder (iRBD) and healthy controls....

  8. Modeling vocalization with ECoG cortical activity recorded during vocal production in the macaque monkey.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Fujii, Naotaka; Averbeck, Bruno B; Mishkin, Mortimer

    2014-01-01

    Vocal production is an example of controlled motor behavior with high temporal precision. Previous studies have decoded auditory evoked cortical activity while monkeys listened to vocalization sounds. On the other hand, there have been few attempts at decoding motor cortical activity during vocal production. Here we recorded cortical activity during vocal production in the macaque with a chronically implanted electrocorticographic (ECoG) electrode array. The array detected robust activity in motor cortex during vocal production. We used a nonlinear dynamical model of the vocal organ to reduce the dimensionality of `Coo' calls produced by the monkey. We then used linear regression to evaluate the information in motor cortical activity for this reduced representation of calls. This simple linear model accounted for circa 65% of the variance in the reduced sound representations, supporting the feasibility of using the dynamical model of the vocal organ for decoding motor cortical activity during vocal production.

  9. Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia

    OpenAIRE

    Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.; Chino, Y. M.

    2011-01-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative eff...

  10. Learning to perceive in the sensorimotor approach: Piaget's theory of equilibration interpreted dynamically.

    Science.gov (United States)

    Di Paolo, Ezequiel Alejandro; Barandiaran, Xabier E; Beaton, Michael; Buhrmann, Thomas

    2014-01-01

    if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? According to the sensorimotor approach, perception involves mastery of regular sensorimotor co-variations that depend on the agent and the environment, also known as the "laws" of sensorimotor contingencies (SMCs). In this sense, perception involves enacting relevant sensorimotor skills in each situation. It is important for this proposal that such skills can be learned and refined with experience and yet up to this date, the sensorimotor approach has had no explicit theory of perceptual learning. The situation is made more complex if we acknowledge the open-ended nature of human learning. In this paper we propose Piaget's theory of equilibration as a potential candidate to fulfill this role. This theory highlights the importance of intrinsic sensorimotor norms, in terms of the closure of sensorimotor schemes. It also explains how the equilibration of a sensorimotor organization faced with novelty or breakdowns proceeds by re-shaping pre-existing structures in coupling with dynamical regularities of the world. This way learning to perceive is guided by the equilibration of emerging forms of skillful coping with the world. We demonstrate the compatibility between Piaget's theory and the sensorimotor approach by providing a dynamical formalization of equilibration to give an explicit micro-genetic account of sensorimotor learning and, by extension, of how we learn to perceive. This allows us to draw important lessons in the form of general principles for open-ended sensorimotor learning, including the need for an intrinsic normative evaluation by the agent itself. We also explore implications of our micro-genetic account at the personal level.

  11. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey.

    Science.gov (United States)

    Kisvarday, Z F; Cowey, A; Smith, A D; Somogyi, P

    1989-02-01

    The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread. The bottom 50-80 microns of layer IVC-beta contains neurons with a very focused projection, apparently exclusively to the layer III

  12. Cup tool use by squirrel monkeys.

    Science.gov (United States)

    Buckmaster, Christine L; Hyde, Shellie A; Parker, Karen J; Lyons, David M

    2015-12-01

    Captive-born male and female squirrel monkeys spontaneously 'invented' a cup tool use technique to Contain (i.e., hold and control) food they reduced into fragments for consumption and to Contain water collected from a valve to drink. Food cup use was observed more frequently than water cup use. Observations indicate that 68% (n = 39/57) of monkeys in this population used a cup (a plastic slip cap) to Contain food, and a subset of these monkeys, 10% (n = 4/39), also used a cup to Contain water. Cup use was optional and did not replace, but supplemented, the hand/arm-to-mouth eating and direct valve drinking exhibited by all members of the population. Strategies monkeys used to bring food and cups together for food processing activity at preferred upper-level perching areas, in the arboreal-like environment in which they lived, provides evidence that monkeys may plan food processing activity with the cups. Specifically, prior to cup use monkeys obtained a cup first before food, or obtained food and a cup from the floor simultaneously, before transporting both items to upper-level perching areas. After food processing activity with cups monkeys rarely dropped the cups and more often placed the cups onto perching. Monkeys subsequently returned to use cups that they previously placed on perching after food processing activity. The latter behavior is consistent with the possibility that monkeys may keep cups at preferred perching sites for future food processing activity and merits experimental investigation. Reports of spontaneous tool use by squirrel monkeys are rare and this is the first report of population-level tool use. These findings offer insights into the cognitive abilities of squirrel monkeys and provide a new context for behavior studies with this genus and for comparative studies with other primates. © 2015 Wiley Periodicals, Inc.

  13. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

    Directory of Open Access Journals (Sweden)

    Hui-Xin eQi

    2014-05-01

    Full Text Available In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b. However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord

  14. The contribution of the human posterior parietal cortex to episodic memory.

    Science.gov (United States)

    Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio

    2017-02-17

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.

  15. Learning to perceive in the sensorimotor approach: Piaget's theory of equilibration interpreted dynamically

    Directory of Open Access Journals (Sweden)

    Ezequiel Alejandro Di Paolo

    2014-07-01

    Full Text Available Learning to perceive faces a classical paradox: if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? According to the sensorimotor approach, perception involves mastery of regular sensorimotor co-variations that depend on the agent and the environment, also known as the ‘laws’ of sensorimotor contingencies. In this sense, perception involves enacting relevant sensorimotor skills in each situation. It is important for this proposal that such skills can be learned and refined with experience and yet up to this date, the sensorimotor approach has had no explicit theory of perceptual learning. The situation is made more complex if we acknowledge the open-ended nature of human learning. In this paper we propose Piaget’s theory of equilibration as a potential candidate to fulfill this role. This theory highlights the importance of intrinsic sensorimotor norms, in terms of the closure of sensorimotor schemes. It also explains how the equilibration of a sensorimotor organization faced with novelty or breakdowns proceeds by re-shaping pre-existing structures in coupling with dynamical regularities of the world. This way learning to perceive is guided by the equilibration of emerging forms of skillful coping with the world. We demonstrate the compatibility between Piaget’s theory and the sensorimotor approach by providing a dynamical formalization of equilibration to give an explicit micro-genetic account of sensorimotor learning and, by extension, of how we learn to perceive. This allows us to draw important lessons in the form of general principles for open-ended sensorimotor learning, including the need for an intrinsic normative evaluation by the agent itself. We also explore implications of our micro-genetic account at the personal level.

  16. Functional and structural balances of homologous sensorimotor regions in multiple sclerosis fatigue

    DEFF Research Database (Denmark)

    Cogliati Dezza, I; Zito, G; Tomasevic, L

    2015-01-01

    regions-known to be crucial for sensorimotor networks effectiveness-decrease with MS fatigue increase. Functional connectivity measures at rest and during a simple motor task (weak handgrip of either the right or left hand) were derived from primary sensorimotor areas electroencephalographic recordings......Fatigue in multiple sclerosis (MS) is a highly disabling symptom. Among the central mechanisms behind it, an involvement of sensorimotor networks is clearly evident from structural and functional studies. We aimed at assessing whether functional/structural balances of homologous sensorimotor...... in 27 mildly disabled MS patients. Structural MRI-derived inter-hemispheric asymmetries included the cortical thickness of Rolandic regions and the volume of thalami. Fatigue symptoms increased together with the functional inter-hemispheric imbalance of sensorimotor homologous areas activities at rest...

  17. Early Stages of Melody Processing: Stimulus-Sequence and Task-Dependent Neuronal Activity in Monkey Auditory Cortical Fields A1 and R

    Science.gov (United States)

    Yin, Pingbo; Mishkin, Mortimer; Sutter, Mitchell; Fritz, Jonathan B.

    2008-01-01

    To explore the effects of acoustic and behavioral context on neuronal responses in the core of auditory cortex (fields A1 and R), two monkeys were trained on a go/no-go discrimination task in which they learned to respond selectively to a four-note target (S+) melody and withhold response to a variety of other nontarget (S−) sounds. We analyzed evoked activity from 683 units in A1/R of the trained monkeys during task performance and from 125 units in A1/R of two naive monkeys. We characterized two broad classes of neural activity that were modulated by task performance. Class I consisted of tone-sequence–sensitive enhancement and suppression responses. Enhanced or suppressed responses to specific tonal components of the S+ melody were frequently observed in trained monkeys, but enhanced responses were rarely seen in naive monkeys. Both facilitatory and suppressive responses in the trained monkeys showed a temporal pattern different from that observed in naive monkeys. Class II consisted of nonacoustic activity, characterized by a task-related component that correlated with bar release, the behavioral response leading to reward. We observed a significantly higher percentage of both Class I and Class II neurons in field R than in A1. Class I responses may help encode a long-term representation of the behaviorally salient target melody. Class II activity may reflect a variety of nonacoustic influences, such as attention, reward expectancy, somatosensory inputs, and/or motor set and may help link auditory perception and behavioral response. Both types of neuronal activity are likely to contribute to the performance of the auditory task. PMID:18842950

  18. Anatomical pathways for auditory memory II: Information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Directory of Open Access Journals (Sweden)

    Monica eMunoz-Lopez

    2015-05-01

    Full Text Available Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 minutes. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 seconds. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys’ auditory memory performance. It is possible, therefore, that the anatomical pathways differ. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC. We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG, and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY and anterograde (10% BDA 10,000 MW tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex, and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  19. Signaling equilibria in sensorimotor interactions.

    Science.gov (United States)

    Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A

    2015-08-01

    Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Syntactic Structures as Descriptions of Sensorimotor Processes

    Directory of Open Access Journals (Sweden)

    Alistair Knott

    2014-02-01

    Full Text Available In this paper I propose a hypothesis linking elements of a model of theoretical syntax with neural mechanisms in the domain of sensorimotor processing. The syntactic framework I adopt to express this linking hypothesis is Chomsky’s Minimalism: I propose that the language-independent ’Logical Form’ (LF of a sentence reporting a concrete episode in the world can be interpreted as a detailed description of the sensorimotor processes involved in apprehending that episode. The hypothesis is motivated by a detailed study of one particular episode, in which an agent grasps a target object. There are striking similarities between the LF structure of transitive sentences describing this episode and the structure of the sensorimotor processes through which it is apprehended by an observer. The neural interpretation of Minimalist LF structure allows it to incorporate insights from empiricist accounts of syntax, relating to sentence processing and to the learning of syntactic constructions.

  1. Addressing Anger Using Sensorimotor Psychotherapy and Cognitive Behaviour Therapy

    Science.gov (United States)

    Flynn, Sarah M.

    2010-01-01

    A young woman initiated counselling services at a community agency to address her explosive anger that was a remnant of childhood physical and emotional abuse. Sensorimotor psychotherapy was used to help this client learn how to monitor and regulate her sensorimotor processes. In conjunction with this approach, Cognitive behavioural therapy was…

  2. Risk-sensitivity in Bayesian sensorimotor integration.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

  3. Different patterns of auditory cortex activation revealed by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Formisano, E.; Pepino, A.; Bracale, M.; Di Salle, F.; Lanfermann, H.; Zanella, F.E.

    1998-01-01

    In the last few years, functional Magnetic Resonance Imaging (fMRI) has been widely accepted as an effective tool for mapping brain activities in both the sensorimotor and the cognitive field. The present work aims to assess the possibility of using fMRI methods to study the cortical response to different acoustic stimuli. Furthermore, we refer to recent data collected at Frankfurt University on the cortical pattern of auditory hallucinations. Healthy subjects showed broad bilateral activation, mostly located in the transverse gyrus of Heschl. The analysis of the cortical activation induced by different stimuli has pointed out a remarkable difference in the spatial and temporal features of the auditory cortex response to pulsed tones and pure tones. The activated areas during episodes of auditory hallucinations match the location of primary auditory cortex as defined in control measurements with the same patients and in the experiments on healthy subjects. (authors)

  4. Repetitive tactile stimulation changes resting-state functional connectivity – implications for treatment of sensorimotor decline

    Directory of Open Access Journals (Sweden)

    Frank eFreyer

    2012-05-01

    Full Text Available Neurological disorders and physiological aging can lead to a decline of perceptual abilities. In contrast to the conventional therapeutic approach that comprises intensive training and practicing, passive repetitive sensory stimulation (RSS has recently gained increasing attention as an alternative to countervail the sensory decline by improving perceptual abilities without the need of active participation. A particularly effective type of high-frequency RSS, utilizing Hebbian learning principles, improves perceptual acuity as well as sensorimotor functions and has been successfully applied to treat chronic stroke patients and elderly subjects. High-frequency RSS has been shown to induce plastic changes of somatosensory cortex such as representational map reorganization, but its impact on the brain’s ongoing network activity and resting-state functional connectivity has not been investigated so far. Here, we applied high-frequency RSS in healthy human subjects and analyzed resting state Electroencephalography (EEG functional connectivity patterns before and after RSS by means of imaginary coherency (ImCoh, a frequency-specific connectivity measure which is known to reduce overestimation biases due to volume conduction and common reference. Thirty minutes of passive high-frequency RSS lead to significant ImCoh-changes of the resting state mu-rhythm in the individual upper alpha frequency band within distributed sensory and motor cortical areas. These stimulation induced distributed functional connectivity changes likely underlie the previously observed improvement in sensorimotor integration.

  5. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

    Directory of Open Access Journals (Sweden)

    Chia-Hsiung Cheng

    2018-03-01

    Full Text Available Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG, a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI and of beta rebound oscillation in the primary motor cortex (MI in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1 amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound

  6. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

    Science.gov (United States)

    Cheng, Chia-Hsiung; Lin, Mei-Yin; Yang, Shiou-Han

    2018-01-01

    Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA)’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG), a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG) to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI) and of beta rebound oscillation in the primary motor cortex (MI) in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound power, which was

  7. Sensory experience modifies feature map relationships in visual cortex

    Science.gov (United States)

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531

  8. Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories

    OpenAIRE

    Antzoulatos, Evan G.; Miller, Earl K.

    2011-01-01

    Learning to classify diverse experiences into meaningful groups, like categories, is fundamental to normal cognition. To understand its neural basis, we simultaneously recorded from multiple electrodes in the lateral prefrontal cortex and dorsal striatum, two interconnected brain structures critical for learning. Each day, monkeys learned to associate novel, abstract dot-based categories with a right vs. left saccade. Early on, when they could acquire specific stimulus-response associations, ...

  9. Maps of space in human frontoparietal cortex.

    Science.gov (United States)

    Jerde, Trenton A; Curtis, Clayton E

    2013-12-01

    Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  11. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  12. Spontaneous Metacognition in Rhesus Monkeys.

    Science.gov (United States)

    Rosati, Alexandra G; Santos, Laurie R

    2016-09-01

    Metacognition is the ability to think about thinking. Although monitoring and controlling one's knowledge is a key feature of human cognition, its evolutionary origins are debated. In the current study, we examined whether rhesus monkeys (Macaca mulatta; N = 120) could make metacognitive inferences in a one-shot decision. Each monkey experienced one of four conditions, observing a human appearing to hide a food reward in an apparatus consisting of either one or two tubes. The monkeys tended to search the correct location when they observed this baiting event, but engaged in information seeking-by peering into a center location where they could check both potential hiding spots-if their view had been occluded and information seeking was possible. The monkeys only occasionally approached the center when information seeking was not possible. These results show that monkeys spontaneously use information about their own knowledge states to solve naturalistic foraging problems, and thus provide the first evidence that nonhumans exhibit information-seeking responses in situations with which they have no prior experience. © The Author(s) 2016.

  13. Figure–ground organization and the emergence of proto-objects in the visual cortex

    OpenAIRE

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields, but in addition their responses a...

  14. Vicarious learning from human models in monkeys.

    Science.gov (United States)

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo

    2012-01-01

    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  15. Decoding a Decision Process in the Neuronal Population of Dorsal Premotor Cortex.

    Science.gov (United States)

    Rossi-Pool, Román; Zainos, Antonio; Alvarez, Manuel; Zizumbo, Jerónimo; Vergara, José; Romo, Ranulfo

    2017-12-20

    When trained monkeys discriminate the temporal structure of two sequential vibrotactile stimuli, dorsal premotor cortex (DPC) showed high heterogeneity among its neuronal responses. Notably, DPC neurons coded stimulus patterns as broader categories and signaled them during working memory, comparison, and postponed decision periods. Here, we show that such population activity can be condensed into two major coding components: one that persistently represented in working memory both the first stimulus identity and the postponed informed choice and another that transiently coded the initial sensory information and the result of the comparison between the two stimuli. Additionally, we identified relevant signals that coded the timing of task events. These temporal and task-parameter readouts were shown to be strongly linked to the monkeys' behavior when contrasted to those obtained in a non-demanding cognitive control task and during error trials. These signals, hidden in the heterogeneity, were prominently represented by the DPC population response. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Intrinsic frequency biases and profiles across human cortex.

    Science.gov (United States)

    Mellem, Monika S; Wohltjen, Sophie; Gotts, Stephen J; Ghuman, Avniel Singh; Martin, Alex

    2017-11-01

    Recent findings in monkeys suggest that intrinsic periodic spiking activity in selective cortical areas occurs at timescales that follow a sensory or lower order-to-higher order processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D, Wang XJ. Nat Neurosci 17: 1661-1663, 2014). It has not yet been fully explored if a similar timescale hierarchy is present in humans. Additionally, these measures in the monkey studies have not addressed findings that rhythmic activity within a brain area can occur at multiple frequencies. In this study we investigate in humans if regions may be biased toward particular frequencies of intrinsic activity and if a full cortical mapping still reveals an organization that follows this hierarchy. We examined the spectral power in multiple frequency bands (0.5-150 Hz) from task-independent data using magnetoencephalography (MEG). We compared standardized power across bands to find regional frequency biases. Our results demonstrate a mix of lower and higher frequency biases across sensory and higher order regions. Thus they suggest a more complex cortical organization that does not simply follow this hierarchy. Additionally, some regions do not display a bias for a single band, and a data-driven clustering analysis reveals a regional organization with high standardized power in multiple bands. Specifically, theta and beta are both high in dorsal frontal cortex, whereas delta and gamma are high in ventral frontal cortex and temporal cortex. Occipital and parietal regions are biased more narrowly toward alpha power, and ventral temporal lobe displays specific biases toward gamma. Thus intrinsic rhythmic neural activity displays a regional organization but one that is not necessarily hierarchical. NEW & NOTEWORTHY The organization of rhythmic neural activity is not well understood. Whereas it has been postulated that rhythms are organized in a hierarchical manner across

  17. Upper extremity sensorimotor control among collegiate football players.

    Science.gov (United States)

    Laudner, Kevin G

    2012-03-01

    Injuries stemming from shoulder instability are very common among athletes participating in contact sports, such as football. Previous research has shown that increased laxity negatively affects the function of the sensorimotor system potentially leading to a pathological cycle of shoulder dysfunction. Currently, there are no data detailing such effects among football players. Therefore, the purpose of this study was to examine the differences in upper extremity sensorimotor control among football players compared with that of a control group. Forty-five collegiate football players and 70 male control subjects with no previous experience in contact sports participated. All the subjects had no recent history of upper extremity injury. Each subject performed three 30-second upper extremity balance trials on each arm. The balance trials were conducted in a single-arm push-up position with the test arm in the center of a force platform and the subjects' feet on a labile device. The trials were averaged, and the differences in radial area deviation between groups were analyzed using separate 1-way analyses of variance (p football players showed significantly more radial area deviation of the dominant (0.41 ± 1.23 cm2, p = 0.02) and nondominant arms (0.47 ± 1.63 cm2, p = 0.03) when compared with the control group. These results suggest that football players may have decreased sensorimotor control of the upper extremity compared with individuals with no contact sport experience. The decreased upper extremity sensorimotor control among the football players may be because of the frequent impacts accumulated during football participation. Football players may benefit from exercises that target the sensorimotor system. These findings may also be beneficial in the evaluation and treatment of various upper extremity injuries among football players.

  18. Newly identified CYP2C93 is a functional enzyme in rhesus monkey, but not in cynomolgus monkey.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Uno

    Full Text Available Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP 2C76 that does not have a human ortholog and is partly responsible for species differences in drug metabolism between cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus monkey and rhesus monkey. The CYP2C93 cDNA contained an open reading frame of 490 amino acids approximately 84-86% identical to human CYP2Cs. CYP2C93 was located in the genomic region, which corresponded to the intergenic region in the human genome, indicating that CYP2C93 does not correspond to any human genes. CYP2C93 mRNA was expressed predominantly in the liver among 10 tissues analyzed. The CYP2C93 proteins heterologously expressed in Escherichia coli metabolized human CYP2C substrates, diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbutamide. In addition to a normal transcript (SV1, an aberrantly spliced transcript (SV2 lacking exon 2 was identified, which did not give rise to a functional protein due to frameshift and a premature termination codon. Mini gene assay revealed that the genetic variant IVS2-1G>T at the splice site of intron 1, at least partly, accounted for the exon-2 skipping; therefore, this genotype would influence CYP2C93-mediated drug metabolism. SV1 was expressed in 6 of 11 rhesus monkeys and 1 of 8 cynomolgus monkeys, but the SV1 in the cynomolgus monkey was nonfunctional due to a rare null genotype (c.102T>del. These results suggest that CYP2C93 can play roles as a drug-metabolizing enzyme in rhesus monkeys (not in cynomolgus monkeys, although its relative contribution to drug metabolism has yet to be validated.

  19. Different patterns of auditory cortex activation revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Formisano, E; Pepino, A; Bracale, M [Department of Electronic Engineering, Biomedical Unit, Universita di Napoli, Federic II, Italy, Via Claudio 21, 80125 Napoli (Italy); Di Salle, F [Department of Biomorphological and Functional Sciences, Radiologucal Unit, Universita di Napoli, Federic II, Italy, Via Claudio 21, 80125 Napoli (Italy); Lanfermann, H; Zanella, F E [Department of Neuroradiology, J.W. Goethe Universitat, Frankfurt/M. (Germany)

    1999-12-31

    In the last few years, functional Magnetic Resonance Imaging (fMRI) has been widely accepted as an effective tool for mapping brain activities in both the sensorimotor and the cognitive field. The present work aims to assess the possibility of using fMRI methods to study the cortical response to different acoustic stimuli. Furthermore, we refer to recent data collected at Frankfurt University on the cortical pattern of auditory hallucinations. Healthy subjects showed broad bilateral activation, mostly located in the transverse gyrus of Heschl. The analysis of the cortical activation induced by different stimuli has pointed out a remarkable difference in the spatial and temporal features of the auditory cortex response to pulsed tones and pure tones. The activated areas during episodes of auditory hallucinations match the location of primary auditory cortex as defined in control measurements with the same patients and in the experiments on healthy subjects. (authors) 17 refs., 4 figs.

  20. The role of sensorimotor difficulties in autism spectrum conditions

    Directory of Open Access Journals (Sweden)

    Penelope Hannant

    2016-08-01

    Full Text Available AbstractIn addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC also incorporate sensorimotor difficulties; repetitive motor movements and atypical reactivity to sensory input (APA, 2013. This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. Firstly, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Secondly, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Thirdly, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviours such as effectively coordinating eye contact with speech and gesture, interpreting others’ behaviour and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC, and their contribution to the development and maintenance of ASC.

  1. How infants' reaches reveal principles of sensorimotor decision making

    Science.gov (United States)

    Dineva, Evelina; Schöner, Gregor

    2018-01-01

    In Piaget's classical A-not-B-task, infants repeatedly make a sensorimotor decision to reach to one of two cued targets. Perseverative errors are induced by switching the cue from A to B, while spontaneous errors are unsolicited reaches to B when only A is cued. We argue that theoretical accounts of sensorimotor decision-making fail to address how motor decisions leave a memory trace that may impact future sensorimotor decisions. Instead, in extant neural models, perseveration is caused solely by the history of stimulation. We present a neural dynamic model of sensorimotor decision-making within the framework of Dynamic Field Theory, in which a dynamic instability amplifies fluctuations in neural activation into macroscopic, stable neural activation states that leave memory traces. The model predicts perseveration, but also a tendency to repeat spontaneous errors. To test the account, we pool data from several A-not-B experiments. A conditional probabilities analysis accounts quantitatively how motor decisions depend on the history of reaching. The results provide evidence for the interdependence among subsequent reaching decisions that is explained by the model, showing that by amplifying small differences in activation and affecting learning, decisions have consequences beyond the individual behavioural act.

  2. Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys.

    Science.gov (United States)

    Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L; Nishimoto, Shinji; Ohzawa, Izumi; Chino, Yuzo M

    2014-10-08

    Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. Copyright © 2014 the authors 0270-6474/14/3413840-15$15.00/0.

  3. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  4. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Science.gov (United States)

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  5. Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey.

    Science.gov (United States)

    Tanji, Kazuyo; Leopold, David A; Ye, Frank Q; Zhu, Charles; Malloy, Megan; Saunders, Richard C; Mishkin, Mortimer

    2010-01-01

    The monkey's auditory cortex includes a core region on the supratemporal plane (STP) made up of the tonotopically organized areas A1, R, and RT, together with a surrounding belt and a lateral parabelt region. The functional studies that yielded the tonotopic maps and corroborated the anatomical division into core, belt, and parabelt typically used low-amplitude pure tones that were often restricted to threshold-level intensities. Here we used functional magnetic resonance imaging in awake rhesus monkeys to determine whether, and if so how, the tonotopic maps and the pattern of activation in core, belt, and parabelt are affected by systematic changes in sound intensity. Blood oxygenation level-dependent (BOLD) responses to groups of low- and high-frequency pure tones 3-4 octaves apart were measured at multiple sound intensity levels. The results revealed tonotopic maps in the auditory core that reversed at the putative areal boundaries between A1 and R and between R and RT. Although these reversals of the tonotopic representations were present at all intensity levels, the lateral spread of activation depended on sound amplitude, with increasing recruitment of the adjacent belt areas as the intensities increased. Tonotopic organization along the STP was also evident in frequency-specific deactivation (i.e. "negative BOLD"), an effect that was intensity-specific as well. Regions of positive and negative BOLD were spatially interleaved, possibly reflecting lateral inhibition of high-frequency areas during activation of adjacent low-frequency areas, and vice versa. These results, which demonstrate the strong influence of tonal amplitude on activation levels, identify sound intensity as an important adjunct parameter for mapping the functional architecture of auditory cortex.

  6. Decision-Making in the Ventral Premotor Cortex Harbinger of Action

    Science.gov (United States)

    Pardo-Vazquez, Jose L.; Padron, Isabel; Fernandez-Rey, Jose; Acuña, Carlos

    2011-01-01

    Although the premotor (PM) cortex was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement, or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor (PMv) cortex, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision-making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute, and evaluate the outcomes of the subjects’ choices. PMID:21991249

  7. Decision-making in the ventral premotor cortex harbinger of action

    Directory of Open Access Journals (Sweden)

    José L. ePardo-Vázquez

    2011-09-01

    Full Text Available Although the premotor cortex (PM was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor cortex (PMv, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute and evaluate the outcomes of the subjects’ choices.

  8. Defective cerebellar control of cortical plasticity in writer’s cramp

    Science.gov (United States)

    Hubsch, Cecile; Roze, Emmanuel; Popa, Traian; Russo, Margherita; Balachandran, Ammu; Pradeep, Salini; Mueller, Florian; Brochard, Vanessa; Quartarone, Angelo; Degos, Bertrand; Vidailhet, Marie; Kishore, Asha

    2013-01-01

    A large body of evidence points to a role of basal ganglia dysfunction in the pathophysiology of dystonia, but recent studies indicate that cerebellar dysfunction may also be involved. The cerebellum influences sensorimotor adaptation by modulating sensorimotor plasticity of the primary motor cortex. Motor cortex sensorimotor plasticity is maladaptive in patients with writer’s cramp. Here we examined whether putative cerebellar dysfunction in dystonia is linked to these patients’ maladaptive plasticity. To that end we compared the performances of patients and healthy control subjects in a reaching task involving a visuomotor conflict generated by imposing a random deviation (−40° to 40°) on the direction of movement of the mouse/cursor. Such a task is known to involve the cerebellum. We also compared, between patients and healthy control subjects, how the cerebellum modulates the extent and duration of an ongoing sensorimotor plasticity in the motor cortex. The cerebellar cortex was excited or inhibited by means of repeated transcranial magnetic stimulation before artificial sensorimotor plasticity was induced in the motor cortex by paired associative stimulation. Patients with writer’s cramp were slower than the healthy control subjects to reach the target and, after having repeatedly adapted their trajectories to the deviations, they were less efficient than the healthy control subjects to perform reaching movement without imposed deviation. It was interpreted as impaired washing-out abilities. In healthy subjects, cerebellar cortex excitation prevented the paired associative stimulation to induce a sensorimotor plasticity in the primary motor cortex, whereas cerebellar cortex inhibition led the paired associative stimulation to be more efficient in inducing the plasticity. In patients with writer’s cramp, cerebellar cortex excitation and inhibition were both ineffective in modulating sensorimotor plasticity. In patients with writer’s cramp, but not

  9. Reward value-based gain control: divisive normalization in parietal cortex.

    Science.gov (United States)

    Louie, Kenway; Grattan, Lauren E; Glimcher, Paul W

    2011-07-20

    The representation of value is a critical component of decision making. Rational choice theory assumes that options are assigned absolute values, independent of the value or existence of other alternatives. However, context-dependent choice behavior in both animals and humans violates this assumption, suggesting that biological decision processes rely on comparative evaluation. Here we show that neurons in the monkey lateral intraparietal cortex encode a relative form of saccadic value, explicitly dependent on the values of the other available alternatives. Analogous to extra-classical receptive field effects in visual cortex, this relative representation incorporates target values outside the response field and is observed in both stimulus-driven activity and baseline firing rates. This context-dependent modulation is precisely described by divisive normalization, indicating that this standard form of sensory gain control may be a general mechanism of cortical computation. Such normalization in decision circuits effectively implements an adaptive gain control for value coding and provides a possible mechanistic basis for behavioral context-dependent violations of rationality.

  10. Vicarious learning from human models in monkeys.

    Directory of Open Access Journals (Sweden)

    Rossella Falcone

    Full Text Available We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  11. Get the Monkey off Your Back

    Science.gov (United States)

    Ciabattini, David; Custer, Timothy J.

    2008-01-01

    Monkeys are the problems that need solutions, the tasks that need to be accomplished, the decisions that need to be made, and the actions that need to be taken. According to a theory, people carry monkeys around on their backs until they can successfully shift their burden to someone else and the monkey leaps from one back to the next. Managers…

  12. The Functional Organization and Cortical Connections of Motor Cortex in Squirrels

    Science.gov (United States)

    Cooke, Dylan F.; Padberg, Jeffrey; Zahner, Tony

    2012-01-01

    Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed “F,” possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages. PMID:22021916

  13. Exercise Effects on the Brain and Sensorimotor Function in Bed Rest

    Science.gov (United States)

    Koppelmans, V.; Cassady, K.; De Dios, Y. E.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, R. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; hide

    2016-01-01

    using both a region of interest (ROI, or seed-to-voxel) approach as well as a whole brain intrinsic connectivity (i.e., voxel-to-voxel) analysis. For the ROI analysis we selected 11 ROIs of brain regions that are involved in sensorimotor function (i.e., L. Insular C., L. Putamen, R. Premotor C., L.+R. Primary Motor C., R. Vestibular C., L. Posterior Cingulate G., R. Cerebellum Lobule V + VIIIb + Crus I, and the R. Superior Parietal G.) and correlated their time course of brain activation during rest with all other voxels in the brain. The whole brain connectivity analysis tests changes in the strength of the global connectivity pattern between each voxel and the rest of the brain. Functional mobility was assessed using an obstacle course. Vestibular contribution to balance was measured using Neurocom Sensory Organization Test 5. Behavioral measures were assessed pre-HDBR, and 0, 8 and 12 days post-HDBR. Linear mixed models were used to test for effects of time, group, and group-by-time interactions. Family-wise error corrected VBM revealed significantly larger increases in GM volume in the right primary motor cortex in bed rest control subjects than in bed rest exercise subjects. No other significant group by time interactions in gray matter changes with bed rest were observed. Functional connectivity MRI revealed that the increase in connectivity during bed rest of the left putamen with the bilateral midsagittal precunes and the right cingulate gyrus was larger in bed rest control subjects than in bed rest exercise subjects. Furthermore, the increase in functional connectivity with bed rest of the right premotor cortex with the right inferior frontal gyrus and the right primary motor cortex with the bilateral premotor cortex was smaller in bed rest control subjects than in bed rest exercise subjects. Functional mobility performance was less affected by HDBR in exercise subjects than in control subjects and post HDBR exercise subjects recovered faster than control

  14. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    Science.gov (United States)

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.

  15. Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers.

    Science.gov (United States)

    Hamill, Terence G; Krause, Stephen; Ryan, Christine; Bonnefous, Celine; Govek, Steve; Seiders, T Jon; Cosford, Nicholas D P; Roppe, Jeffrey; Kamenecka, Ted; Patel, Shil; Gibson, Raymond E; Sanabria, Sandra; Riffel, Kerry; Eng, Waisi; King, Christopher; Yang, Xiaoqing; Green, Mitchell D; O'Malley, Stacey S; Hargreaves, Richard; Burns, H Donald

    2005-06-15

    Three metabotropic glutamate receptor subtype 5 (mGluR5) PET tracers have been labeled with either carbon-11 or fluorine-18 and their in vitro and in vivo behavior in rhesus monkey has been characterized. Each of these tracers share the common features of high affinity for mGluR5 (0.08-0.23 nM vs. rat mGluR5) and moderate lipophilicity (log P 2.8-3.4). Compound 1b was synthesized using a Suzuki or Stille coupling reaction with [11C]MeI. Compounds 2b and 3b were synthesized by a SNAr reaction using a 3-chlorobenzonitrile precursor. Autoradiographic studies in rhesus monkey brain slices using 2b and 3b showed specific binding in cortex, caudate, putamen, amygdala, hippocampus, most thalamic nuclei, and lower binding in the cerebellum. PET imaging studies in monkey showed that all three tracers readily enter the brain and provide an mGluR5-specific signal in all gray matter regions, including the cerebellum. The specific signal observed in the cerebellum was confirmed by the autoradiographic studies and saturation binding experiments that showed tracer binding in the cerebellum of rhesus monkeys. In vitro metabolism studies using the unlabeled compounds showed that 1a, 2a, and 3a are metabolized slower by human liver microsomes than by monkey liver microsomes. In vivo metabolism studies showed 3b to be long-lived in rhesus plasma with only one other more polar metabolite observed. (c) 2005 Wiley-Liss, Inc.

  16. Cognitive Control Signals in Posterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2010-12-01

    Full Text Available Efficiently shifting between tasks is a central function of cognitive control. The role of the default network—a constellation of areas with high baseline activity that declines during task performance—in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing towards the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the CGp. To test this idea, we recorded the activity of single neurons in posterior cingulate cortex (CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex (LIP, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain..

  17. Social Sensorimotor Contingencies

    OpenAIRE

    Bütepage, Judith

    2016-01-01

    As the field of robotics advances, more robots are employed in our everyday environment. Thus, the implementation of robots that can actively engage in physical collaboration and naturally interact with humans is of high importance. In order to achieve this goal, it is necessary to study human interaction and social cognition and how these aspects can be implemented in robotic agents. The theory of social sensorimotor contingencies hypothesises that many aspects of human-human interaction de...

  18. Dorsal premotor cortex is involved in switching motor plans

    Science.gov (United States)

    Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul

    2012-01-01

    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on

  19. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans.

    Science.gov (United States)

    Balaram, Pooja; Young, Nicole A; Kaas, Jon H

    2014-09-01

    The layers and sublayers of primary visual cortex, or V1, in primates are easily distinguishable compared to those in other cortical areas, and are especially distinct in anthropoid primates - monkeys, apes, and humans - where they also vary in histological appearance. This variation in primate-specific specialization has led to a longstanding confusion over the identity of layer 4 and its proposed sublayers in V1. As the application of different histological markers relate to the issue of defining and identifying layers and sublayers, we applied four traditional and four more recent histological markers to brain sections of V1 and adjoining secondary visual cortex (V2) in macaque monkeys, chimpanzees, and humans in order to compare identifiable layers and sublayers in both cortical areas across these species. The use of Nissl, neuronal nuclear antigen (NeuN), Gallyas myelin, cytochrome oxidase (CO), acetylcholinesterase (AChE), nonphosphorylated neurofilament H (SMI-32), parvalbumin (PV), and vesicular glutamate transporter 2 (VGLUT2) preparations support the conclusion that the most popular scheme of V1 lamination, that of Brodmann, misidentifies sublayers of layer 3 (3Bβ and 3C) as sublayers of layer 4 (4A and 4B), and that the specialized sublayer of layer 3 in monkeys, 3Bβ, is not present in humans. These differences in interpretation are important as they relate to the proposed functions of layer 4 in primate species, where layer 4 of V1 is a layer that receives and processes information from the visual thalamus, and layer 3 is a layer that transforms and distributes information to other cortical areas.

  20. Processing and Integration of Contextual Information in Monkey Ventrolateral Prefrontal Neurons during Selection and Execution of Goal-Directed Manipulative Actions.

    Science.gov (United States)

    Bruni, Stefania; Giorgetti, Valentina; Bonini, Luca; Fogassi, Leonardo

    2015-08-26

    The prefrontal cortex (PFC) is deemed to underlie the complexity, flexibility, and goal-directedness of primates' behavior. Most neurophysiological studies performed so far investigated PFC functions with arm-reaching or oculomotor tasks, thus leaving unclear whether, and to which extent, PFC neurons also play a role in goal-directed manipulative actions, such as those commonly used by primates during most of their daily activities. Here we trained two macaques to perform or withhold grasp-to-eat and grasp-to-place actions, depending on the combination of two subsequently presented cues: an auditory go/no-go cue (high/low tone) and a visually presented target (food/object). By varying the order of presentation of the two cues, we could segment and independently evaluate the processing and integration of contextual information allowing the monkey to make a decision on whether or not to act, and what action to perform. We recorded 403 task-related neurons from the ventrolateral prefrontal cortex (VLPFC): unimodal sensory-driven (37%), motor-related (21%), unimodal sensory-and-motor (23%), and multisensory (19%) neurons. Target and go/no-go selectivity characterized most of the recorded neurons, particularly those endowed with motor-related discharge. Interestingly, multisensory neurons appeared to encode a behavioral decision independently from the sensory modality of the stimulus allowing the monkey to make it: some of them reflected the decision to act or refraining from acting (56%), whereas others (44%) encoded the decision to perform (or withhold) a specific action (e.g., grasp-to-eat). Our findings indicate that VLPFC neurons play a role in the processing of contextual information underlying motor decision during goal-directed manipulative actions. We demonstrated that macaque ventrolateral prefrontal cortex (VLPFC) neurons show remarkable selectivity for different aspects of the contextual information allowing the monkey to select and execute goal

  1. Upregulation of Aβ42 in the Brain and Bodily Fluids of Rhesus Monkeys with Aging.

    Science.gov (United States)

    Zhao, Qiao; Lu, Jing; Yao, Zitong; Wang, Shubo; Zhu, Liming; Wang, Ju; Chen, Baian

    2017-01-01

    The cerebral accumulation of amyloid beta (Aβ) is one of the key pathological hallmarks of Alzheimer's disease (AD). Aβ is also found in bodily fluids such as the cerebrospinal fluid (CSF) and plasma. However, the significance of Aβ accumulation in the brain and different bodily pools, as well as its correlation with aging and cerebral amyloid pathology, is not completely understood. To better understand this question, we selected the rhesus monkey, which is phylogenetically and physiologically highly similar to the human, as a model to study. We quantified the levels of the two main Aβ isoforms (Aβ42 and Aβ40) in different sections of the brain (frontal cortex, temporal cortex, and hippocampus) and bodily fluids (CSF and plasma) of rhesus monkeys at different developmental phases (young, 5-9 years of age; mature, 10-19 years of age; and old, 21-24 years of age). We found that the levels of neuronal and insoluble Aβ42 increased significantly in the brain with aging, suggesting that this specific isoform might be directly involved in aging and AD-like pathophysiology. There was no significant change in the Aβ40 level in the brain with aging. In addition, the Aβ42 level, but not the Aβ40 level, in both the CSF and plasma increased with aging. We also identified a positive correlation between Aβ42 in the CSF and plasma and Aβ42 in the brain. Taken collectively, our results indicate that there is an association between Aβ accumulation and age. These results support the increased incidence of AD with aging.

  2. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.

    Science.gov (United States)

    van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R

    2018-05-04

    Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    Science.gov (United States)

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  4. Analysis of prostate-specific antigen transcripts in chimpanzees, cynomolgus monkeys, baboons, and African green monkeys.

    Directory of Open Access Journals (Sweden)

    James N Mubiru

    Full Text Available The function of prostate-specific antigen (PSA is to liquefy the semen coagulum so that the released sperm can fuse with the ovum. Fifteen spliced variants of the PSA gene have been reported in humans, but little is known about alternative splicing in nonhuman primates. Positive selection has been reported in sex- and reproductive-related genes from sea urchins to Drosophila to humans; however, there are few studies of adaptive evolution of the PSA gene. Here, using polymerase chain reaction (PCR product cloning and sequencing, we study PSA transcript variant heterogeneity in the prostates of chimpanzees (Pan troglodytes, cynomolgus monkeys (Macaca fascicularis, baboons (Papio hamadryas anubis, and African green monkeys (Chlorocebus aethiops. Six PSA variants were identified in the chimpanzee prostate, but only two variants were found in cynomolgus monkeys, baboons, and African green monkeys. In the chimpanzee the full-length transcript is expressed at the same magnitude as the transcripts that retain intron 3. We have found previously unidentified splice variants of the PSA gene, some of which might be linked to disease conditions. Selection on the PSA gene was studied in 11 primate species by computational methods using the sequences reported here for African green monkey, cynomolgus monkey, baboon, and chimpanzee and other sequences available in public databases. A codon-based analysis (dN/dS of the PSA gene identified potential adaptive evolution at five residue sites (Arg45, Lys70, Gln144, Pro189, and Thr203.

  5. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    Science.gov (United States)

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Vicarious Learning from Human Models in Monkeys

    OpenAIRE

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo

    2012-01-01

    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was app...

  7. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement.

    Science.gov (United States)

    Eaton, Ryan W; Libey, Tyler; Fetz, Eberhard E

    2017-03-01

    Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1-3 min separated by 3-10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering

  8. Comparative plasma lipidome between human and cynomolgus monkey: are plasma polar lipids good biomarkers for diabetic monkeys?

    Directory of Open Access Journals (Sweden)

    Guanghou Shui

    Full Text Available BACKGROUND: Non-human primates (NHP are now being considered as models for investigating human metabolic diseases including diabetes. Analyses of cholesterol and triglycerides in plasma derived from NHPs can easily be achieved using methods employed in humans. Information pertaining to other lipid species in monkey plasma, however, is lacking and requires comprehensive experimental analysis. METHODOLOGIES/PRINCIPAL FINDINGS: We examined the plasma lipidome from 16 cynomolgus monkey, Macaca fascicularis, using liquid chromatography coupled with mass spectrometry (LC/MS. We established novel analytical approaches, which are based on a simple gradient elution, to quantify polar lipids in plasma including (i glycerophospholipids (phosphatidylcholine, PC; phosphatidylethanolamine, PE; phosphatidylinositol, PI; phosphatidylglycerol, PG; phosphatidylserine, PS; phosphatidic acid, PA; (ii sphingolipids (sphingomyelin, SM; ceramide, Cer; Glucocyl-ceramide, GluCer; ganglioside mannoside 3, GM3. Lipidomic analysis had revealed that the plasma of human and cynomolgus monkey were of similar compositions, with PC, SM, PE, LPC and PI constituting the major polar lipid species present. Human plasma contained significantly higher levels of plasmalogen PE species (p<0.005 and plasmalogen PC species (p<0.0005, while cynomolgus monkey had higher levels of polyunsaturated fatty acyls (PUFA in PC, PE, PS and PI. Notably, cynomolgus monkey had significantly lower levels of glycosphingolipids, including GluCer (p<0.0005 and GM(3 (p<0.0005, but higher level of Cer (p<0.0005 in plasma than human. We next investigated the biochemical alterations in blood lipids of 8 naturally occurring diabetic cynomolgus monkeys when compared with 8 healthy controls. CONCLUSIONS: For the first time, we demonstrated that the plasma of human and cynomolgus monkey were of similar compositions, but contained different mol distribution of individual molecular species. Diabetic monkeys

  9. Fetal Origin of Sensorimotor Behavior

    Directory of Open Access Journals (Sweden)

    Jaqueline Fagard

    2018-05-01

    Full Text Available The aim of this article is to track the fetal origin of infants’ sensorimotor behavior. We consider development as the self-organizing emergence of complex forms from spontaneously generated activity, governed by the innate capacity to detect and memorize the consequences of spontaneous activity (contingencies, and constrained by the sensory and motor maturation of the body. In support of this view, we show how observations on fetuses and also several fetal experiments suggest that the fetus’s first motor activity allows it to feel the space around it and to feel its body and the consequences of its movements on its body. This primitive motor babbling gives way progressively to sensorimotor behavior which already possesses most of the characteristics of infants’ later behavior: repetition of actions leading to sensations, intentionality, some motor control and oriented reactions to sensory stimulation. In this way the fetus can start developing a body map and acquiring knowledge of its limited physical and social environment.

  10. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right......-handed subjects to test if this procedure could modulate M1 excitability and PPC–M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...

  11. Enhancing Functional Performance using Sensorimotor Adaptability Training Programs

    Science.gov (United States)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.

  12. Hand-in-hand advances in biomedical engineering and sensorimotor restoration.

    Science.gov (United States)

    Pisotta, Iolanda; Perruchoud, David; Ionta, Silvio

    2015-05-15

    Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Sensorimotor integration and psychopathology: motor control abnormalities related to psychiatric disorders.

    Science.gov (United States)

    Velasques, Bruna; Machado, Sergio; Paes, Flávia; Cunha, Marlo; Sanfim, Antonio; Budde, Henning; Cagy, Mauricio; Anghinah, Renato; Basile, Luis F; Piedade, Roberto; Ribeiro, Pedro

    2011-12-01

    Recent evidence is reviewed to examine relationships among sensorimotor and cognitive aspects in some important psychiatry disorders. This study reviews the theoretical models in the context of sensorimotor integration and the abnormalities reported in the most common psychiatric disorders, such as Alzheimer's disease, autism spectrum disorder and squizophrenia. The bibliographical search used Pubmed/Medline, ISI Web of Knowledge, Cochrane data base and Scielo databases. The terms chosen for the search were: Alzheimer's disease, AD, autism spectrum disorder, and Squizophrenia in combination with sensorimotor integration. Fifty articles published in English and were selected conducted from 1989 up to 2010. We found that the sensorimotor integration process plays a relevant role in elementary mechanisms involved in occurrence of abnormalities in most common psychiatric disorders, participating in the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of consciously goal-directed motor outputs. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but some studies support a central mechanism. Sensorimotor integration seems to play a significant role in the disturbances of motor control, like deficits in the feedforward mechanism, typically seen in AD, autistic and squizophrenic patients.

  14. Playing the electric light orchestra--how electrical stimulation of visual cortex elucidates the neural basis of perception.

    Science.gov (United States)

    Cicmil, Nela; Krug, Kristine

    2015-09-19

    Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the 'causal map' of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.

  15. Playing the electric light orchestra—how electrical stimulation of visual cortex elucidates the neural basis of perception

    Science.gov (United States)

    Cicmil, Nela; Krug, Kristine

    2015-01-01

    Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making. PMID:26240421

  16. Improving Sensorimotor Function Using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Mulavara, A. P.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transition phases. Post flight sensorimotor changes may include postural and gait instability, spatial disorientation, and visual performance decrements, all of which can degrade operational capabilities of the astronauts and endanger the crew. Crewmember safety would be improved if these detrimental effects of spaceflight could be mitigated by a sensorimotor countermeasure and even further if adaptation to baseline could be facilitated. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor performance through stochastic resonance (SR). The SR phenomenon occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. Two studies have been initiated to investigate the beneficial effects and potential practical usage of SVS. In both studies, electrical vestibular stimulation is applied via electrodes on the mastoid processes using a constant current stimulator. The first study aims to determine the repeatability of the effect of vestibular stimulation on sensorimotor performance and perception in order to better understand the practical use of SVS. The beneficial effect of low levels of SVS on balance performance has been shown in the past. This research uses the same balance task repeated multiple times within a day and across days to study the repeatability of the stimulation effects. The balance test consists of 50 sec trials in which the subject stands with his or her feet together, arms crossed, and eyes closed on compliant foam. Varying levels of SVS, ranging from 0-700 micro A, are applied across different trials. The subject-specific optimal SVS level is that which results in the best balance performance as measured by inertial

  17. Intertrial Variability in the Premotor Cortex Accounts for Individual Differences in Peripersonal Space.

    Science.gov (United States)

    Ferri, Francesca; Costantini, Marcello; Huang, Zirui; Perrucci, Mauro Gianni; Ferretti, Antonio; Romani, Gian Luca; Northoff, Georg

    2015-12-16

    We live in a dynamic environment, constantly confronted with approaching objects that we may either avoid or be forced to address. A multisensory and sensorimotor interface, the peripersonal space (PPS), mediates every physical interaction between our body and the environment. Behavioral investigations show high variability in the extension of PPS across individuals, but there is a lack of evidence on the neural underpinnings of these large individual differences. Here, we used approaching auditory stimuli and fMRI to capture the individual boundary of PPS and examine its neural underpinnings. Precisely, we tested the hypothesis that intertrial variability (ITV) in brain regions coding PPS predicts individual differences of its boundary at the behavioral level. Selectively in the premotor cortex, we found that ITV, rather than trial-averaged amplitude, of BOLD responses to far rather than near dynamic stimuli predicts the individual extension of PPS. Our results provide the first empirical support for the relevance of ITV of brain responses for individual differences in human behavior. Peripersonal space (PPS) is a multisensory and sensorimotor interface mediating every physical interaction between the body and the environment. A major characteristic of the boundary of PPS in humans is the extremely high variability of its location across individuals. We show that interindividual differences in the extension of the PPS are predicted by variability of BOLD responses in the premotor cortex to far stimuli approaching our body. Our results provide the first empirical support to the relevance of variability of evoked responses for human behavior and its variance across individuals. Copyright © 2015 the authors 0270-6474/15/3516328-12$15.00/0.

  18. Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Sabbah, P; de, Schonen S; Leveque, C; Gay, S; Pfefer, F; Nioche, C; Sarrazin, J L; Barouti, H; Tadie, M; Cordoliani, Y S

    2002-01-01

    Residual activation of the cortex was investigated in nine patients with complete spinal cord injury between T6 and L1 by functional magnetic resonance imaging (fMRI). Brain activations were recorded under four conditions: (1) a patient attempting to move his toes with flexion-extension, (2) a patient imagining the same movement, (3) passive proprio-somesthesic stimulation of the big toes without visual control, and (4) passive proprio-somesthesic stimulation of the big toes with visual control by the patient. Passive proprio-somesthesic stimulation of the toes generated activation posterior to the central sulcus in the three patients who also showed a somesthesic evoked potential response to somesthesic stimulation. When performed under visual control, activations were observed in two more patients. In all patients, activations were found in the cortical areas involved in motor control (i.e., primary sensorimotor cortex, premotor regions and supplementary motor area [SMA]) during attempts to move or mental imagery of these tasks. It is concluded that even several years after injury with some local cortical reorganization, activation of lower limb cortical networks can be generated either by the attempt to move, the mental evocation of the action, or the visual feedback of a passive proprio-somesthesic stimulation.

  19. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    Science.gov (United States)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  20. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    Science.gov (United States)

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-06-10

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

  1. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning

    Directory of Open Access Journals (Sweden)

    Pierre-Michel Bernier

    2017-05-01

    Full Text Available The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.

  2. Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys

    Directory of Open Access Journals (Sweden)

    Cerkevich CM

    2014-09-01

    Full Text Available Christina M Cerkevich,1 David C Lyon,2 Pooja Balaram,3 Jon H Kaas3 1Department of Neurobiology, University of Pittsburgh School of Medicine, Systems Neuroscience Institute, Pittsburgh, PA, USA; 2Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; 3Department of Psychology, Vanderbilt University, Nashville, TN, USA Abstract: To better reveal the pattern of corticotectal projections to the superficial layers of the superior colliculus (SC, we made a total of ten retrograde tracer injections into the SC of three macaque monkeys (Macaca mulatta. The majority of these injections were in the superficial layers of the SC, which process visual information. To isolate inputs to the purely visual layers in the superficial SC from those inputs to the motor and multisensory layers deeper in the SC, two injections were placed to include the intermediate and deep layers of the SC. In another case, an injection was placed in the medial pulvinar, a nucleus not known to be strongly connected with visual cortex, to identify possible projections from tracer spread past the lateral boundary of the SC. Four conclusions are supported by the results: 1 all early visual areas of cortex, including V1, V2, V3, and the middle temporal area, project to the superficial layers of the SC; 2 with the possible exception of the frontal eye field, few areas of cortex outside of the early visual areas project to the superficial SC, although many do, however, project to the intermediate and deep layers of the SC; 3 roughly matching retinotopy is conserved in the projections of visual areas to the SC; and 4 the projections from different visual areas are similarly dense, although projections from early visual areas appear somewhat denser than those of higher order visual areas in macaque cortex. Keywords: visual cortex, superior colliculus, frontal eye field, posterior parietal cortex, visual system

  3. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2015-03-01

    This study aimed at a deeper understanding of which cognitive and motivational aspects of tasks affect auditory cortical activity. To this end we trained two macaque monkeys to perform two different tasks on the same audiovisual stimulus and to do this with two different sizes of water rewards. The monkeys had to touch a bar after a tone had been turned on together with an LED, and to hold the bar until either the tone (auditory task) or the LED (visual task) was turned off. In 399 multiunits recorded from core fields of auditory cortex we confirmed that during task engagement neurons responded to auditory and non-auditory stimuli that were task-relevant, such as light and water. We also confirmed that firing rates slowly increased or decreased for several seconds during various phases of the tasks. Responses to non-auditory stimuli and slow firing changes were observed during both the auditory and the visual task, with some differences between them. There was also a weak task-dependent modulation of the responses to auditory stimuli. In contrast to these cognitive aspects, motivational aspects of the tasks were not reflected in the firing, except during delivery of the water reward. In conclusion, the present study supports our previous proposal that there are two response types in the auditory cortex that represent the timing and the type of auditory and non-auditory elements of a auditory tasks as well the association between elements. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. What Do Monkey Calls Mean?

    Science.gov (United States)

    Schlenker, Philippe; Chemla, Emmanuel; Zuberbühler, Klaus

    2016-12-01

    A field of primate linguistics is gradually emerging. It combines general questions and tools from theoretical linguistics with rich data gathered in experimental primatology. Analyses of several monkey systems have uncovered very simple morphological and syntactic rules and have led to the development of a primate semantics that asks new questions about the division of semantic labor between the literal meaning of monkey calls, additional mechanisms of pragmatic enrichment, and the environmental context. We show that comparative studies across species may validate this program and may in some cases help in reconstructing the evolution of monkey communication over millions of years. Copyright © 2016. Published by Elsevier Ltd.

  5. Finger tapping and pre-attentive sensorimotor timing in adults with ADHD.

    Science.gov (United States)

    Hove, Michael J; Gravel, Nickolas; Spencer, Rebecca M C; Valera, Eve M

    2017-12-01

    Sensorimotor timing deficits are considered central to attention-deficit/hyperactivity disorder (ADHD). However, the tasks establishing timing impairments often involve interconnected processes, including low-level sensorimotor timing and higher level executive processes such as attention. Thus, the source of timing deficits in ADHD remains unclear. Low-level sensorimotor timing can be isolated from higher level processes in a finger-tapping task that examines the motor response to unexpected shifts of metronome onsets. In this study, adults with ADHD and ADHD-like symptoms (n = 25) and controls (n = 26) performed two finger-tapping tasks. The first assessed tapping variability in a standard tapping task (metronome-paced and unpaced). In the other task, participants tapped along with a metronome that contained unexpected shifts (±15, 50 ms); the timing adjustment on the tap following the shift captures pre-attentive sensorimotor timing (i.e., phase correction) and thus should be free of potential higher order confounds (e.g., attention). In the standard tapping task, as expected, the ADHD group had higher timing variability in both paced and unpaced tappings. However, in the pre-attentive task, performance did not differ between the ADHD and control groups. Together, results suggest that low-level sensorimotor timing and phase correction are largely preserved in ADHD and that some timing impairments observed in ADHD may stem from higher level factors (such as sustained attention).

  6. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  7. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    Science.gov (United States)

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. Copyright © 2015 the authors 0270-6474/15/351468-13$15.00/0.

  8. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans

    Directory of Open Access Journals (Sweden)

    Balaram P

    2014-09-01

    Full Text Available Pooja Balaram, Nicole A Young, Jon H Kaas Department of Psychology, Vanderbilt University, Nashville, TN, USA Abstract: The layers and sublayers of primary visual cortex, or V1, in primates are easily distinguishable compared to those in other cortical areas, and are especially distinct in anthropoid primates – monkeys, apes, and humans – where they also vary in histological appearance. This variation in primate-specific specialization has led to a longstanding confusion over the identity of layer 4 and its proposed sublayers in V1. As the application of different histological markers relate to the issue of defining and identifying layers and sublayers, we applied four traditional and four more recent histological markers to brain sections of V1 and adjoining secondary visual cortex (V2 in macaque monkeys, chimpanzees, and humans in order to compare identifiable layers and sublayers in both cortical areas across these species. The use of Nissl, neuronal nuclear antigen (NeuN, Gallyas myelin, cytochrome oxidase (CO, acetylcholinesterase (AChE, nonphosphorylated neurofilament H (SMI-32, parvalbumin (PV, and vesicular glutamate transporter 2 (VGLUT2 preparations support the conclusion that the most popular scheme of V1 lamination, that of Brodmann, misidentifies sublayers of layer 3 (3Bβ and 3C as sublayers of layer 4 (4A and 4B, and that the specialized sublayer of layer 3 in monkeys, 3Bβ, is not present in humans. These differences in interpretation are important as they relate to the proposed functions of layer 4 in primate species, where layer 4 of V1 is a layer that receives and processes information from the visual thalamus, and layer 3 is a layer that transforms and distributes information to other cortical areas. Keywords: area 17, area 18, cortical layers, histology, immunohistochemistry

  9. Epidurography with metrizamide in Rhesus monkeys

    International Nuclear Information System (INIS)

    Kido, D.K.; Baker, R.A.; Saubermann, A.; Salem, J.; Schoene, W.C.; Fournier, P.

    1980-01-01

    Epidurography with metrizamide was performed on 9 Rhesus monkeys; physiologic saline was substituted for metrizamide in 3 control monkeys. Metrizamide successfully outlined the epidural space without causing any adverse clinical effects or direct tissue injury. (Auth.)

  10. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited

    Directory of Open Access Journals (Sweden)

    Shintaro eFunahashi

    2015-02-01

    Full Text Available Working memory is one of key concepts to understand functions of the prefrontal cortex. Delay-period activity is an important neural correlate to understand the role of working memory in prefrontal functions. The importance of delay-period activity is that this activity can encode not only visuospatial information but also a variety of information including non-spatial visual features, auditory and tactile stimuli, task rules, expected reward, and numerical quantity. This activity also participates in a variety of information processing including sensory-to-motor information transformation. These mnemonic features of delay-period activity enable to perform various important operations that the prefrontal cortex participates in, such as executive controls, and therefore, support the notion that working memory is an important function to understand prefrontal functions. On the other hand, although experiments using manual versions of the delayed-response task had revealed many important findings, an oculomotor version of this task enabled us to use multiple cue positions, exclude postural orientation during the delay period, and further prove the importance of mnemonic functions of the prefrontal cortex. In addition, monkeys with unilateral lesions exhibited specific impairment only in the performance of memory-guided saccades directed toward visual cues in the visual field contralateral to the lesioned hemisphere. This result indicates that memories for visuospatial coordinates in each hemifield are processed primarily in the contralateral prefrontal cortex. This result further strengthened the idea of mnemonic functions of the prefrontal cortex. Thus, the mnemonic functions of the prefrontal cortex and delay-period activity may not need to be reconsidered, but should be emphasized.

  11. Sensorimotor performance in euthymic bipolar disorder: the MPraxis (PennCNP analysis

    Directory of Open Access Journals (Sweden)

    Maila de C. Neves

    2014-09-01

    Full Text Available Background: Sensorimotor deficits are an important phenomenological facet observed in patients with bipolar disorder (BD. However, there is little research on this topic. We hypothesize that the MPraxis test can be used to screen for motor impairments in BD aiming movements. Method: The MPraxis, which is a quick and easy-to-apply computerized test, measures sensorimotor control. During the test, the participant must move the computer mouse cursor over an ever-shrinking green box and click on it once. We predict that the MPraxis test is capable of detecting differences in sensorimotor performance between patients with BD and controls. We assessed 21 euthymic type I BD patients, without DSM-IV-TR Axis I comorbidity, and 21 healthy controls. Results and conclusions: Compared to the controls, the patients with BD presented a lower response time in their movements in all conditions. Our results showed sensorimotor deficits in BD and suggested that the MPraxis test can be used to screen for motor impairments in patients with euthymic BD.

  12. Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

    Science.gov (United States)

    Ito, T; Inoue, K; Takada, M

    2015-12-03

    Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  14. Steroid metabolism by monkey and human spermatozoa

    International Nuclear Information System (INIS)

    Rajalakshmi, M.; Sehgal, A.; Pruthi, J.S.; Anand-Kumar, T.C.

    1983-01-01

    Freshly ejaculated spermatozoa from monkey and human were washed and incubated with tritium labelled androgens or estradiol to study the pattern of spermatozoa steroid metabolism. When equal concentrations of steroid substrates were used for incubation, monkey and human spermatozoa showed very similar pattern of steroid conversion. Spermatozoa from both species converted testosterone mainly to androstenedione, but reverse conversion of androstenedione to testosterone was negligible. Estradiol-17 beta was converted mainly to estrone. The close similarity between the spermatozoa of monkey and men in their steroid metabolic pattern indicates that the rhesus monkey could be an useful animal model to study the effect of drugs on the metabolic pattern of human spermatozoa

  15. Placental Transport of Zidovudine in the Rhesus Monkey

    OpenAIRE

    Ridgway III, Louis E.; King, Thomas S.; Henderson, George I.; Schenker, Steven; Schenken, Robert S.

    1993-01-01

    Objective: This study was undertaken to characterize the pharmacokinetics of zidovudine (ZDV) and ZDV-glucuronide (ZDVG) in the material and :fetal circulations of the rhesus monkey. Methods: Cannulas were placed in the maternal external jugular and the fetal internal jugular and carotid artery in 8 pregnant monkeys at .120–130 days gestation. ZDV (3.5 mg/kg) was administered to 5 monkeys and ZDVG (3.5 mg/kg) to 3 monkeys as single intravenous bolus infusions through the maternal catheter. Ma...

  16. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    Science.gov (United States)

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  17. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  18. Neural predictors of sensorimotor adaptation rate and savings.

    Science.gov (United States)

    Cassady, Kaitlin; Ruitenberg, Marit; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos Castenada, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2018-04-01

    In this study, we investigate whether individual variability in the rate of visuomotor adaptation and multiday savings is associated with differences in regional gray matter volume and resting-state functional connectivity. Thirty-four participants performed a manual adaptation task during two separate test sessions, on average 9 days apart. Functional connectivity strength between sensorimotor, dorsal cingulate, and temporoparietal regions of the brain was found to predict the rate of learning during the early phase of the adaptation task. In contrast, default mode network connectivity strength was found to predict both the rate of learning during the late adaptation phase and savings. As for structural predictors, greater gray matter volume in temporoparietal and occipital regions predicted faster early learning, whereas greater gray matter volume in superior posterior regions of the cerebellum predicted faster late learning. These findings suggest that the offline neural predictors of early adaptation may facilitate the cognitive aspects of sensorimotor adaptation, supported by the involvement of temporoparietal and cingulate networks. The offline neural predictors of late adaptation and savings, including the default mode network and the cerebellum, likely support the storage and modification of newly acquired sensorimotor representations. © 2017 Wiley Periodicals, Inc.

  19. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    Science.gov (United States)

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  20. One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey.

    Science.gov (United States)

    Malkova, Ludise; Mishkin, Mortimer

    2003-03-01

    In earlier studies of one-trial spatial memory in monkeys (Parkinson et al., 1988; Angeli et al., 1993), severe and chronic memory impairment for both object-place association and place alone was found after ablation of the hippocampal formation. The results appeared to provide the first clear-cut evidence in the monkey of the essential role of the hippocampus in spatial memory, but that interpretation neglected the inclusion in the lesion of the underlying posterior parahippocampal region. To determine the separate contributions of the hippocampus and posterior parahippocampal region to these spatial forms of one-trial memory, we trained 10 rhesus monkeys, as before, to remember the spatial positions of either two different trial-unique objects overlying two of the wells in a three-well test tray (object-place trials) or simply two of the three wells (place trials). Six of the monkeys then received ibotenic acid lesions restricted to the hippocampal formation (group H), and the four others received selective ablations of the posterior parahippocampal region (group P), comprising mainly parahippocampal cortex, parasubiculum, and presubiculum. Group H was found to be completely unaffected postoperatively on both types of trials, whereas group P sustained an impairment on both types equal in magnitude to that observed after the combined lesions in the original studies. Thus, contrary to the previous interpretation, one-trial memory for object-place association and, perhaps more fundamentally, one-trial memory for two different places appear to be critically dependent not on the hippocampal formation but rather on the posterior parahippocampal region.

  1. Autoshaping in Japanese Monkeys (Macaca Fuscata)

    OpenAIRE

    Itakura, Shoji; Fushimi, Takao; Asano, Toshio; Shoji, Itakura; Takao, Fushimi; Toshio, Asano

    1992-01-01

    Three Japanese monkeys were exposed to autoshaping and omission procedures. The Japanese momkeys seemed to be more sensitive to response-reinforcer contingency than to stimulus-reinforcer contingency. These results were compared with pigeons and squirrel monkeys in the previous reports.

  2. Somatosensory deficits in monkeys treated with misonidazole

    International Nuclear Information System (INIS)

    Maurissen, J.P.J.; Conroy, P.J.; Passalacqua, W.; Von Burg, R.; Weiss, B.; Sutherland, R.M.

    1981-01-01

    Misonidazole, a hypoxic cell radiosensitizer, can produce peripheral sensory disorders in humans. It has been studied in monkeys with a computer-controlled system for evaluating vibration sensitivity. Monkeys were trained to report when vibration was stimulating the finger tip. Sinusoidal vibrations of several frequencies were presented. Two monkeys were dosed with misonidazole and their vibration sensitivity tested. They received a dose of 3 g/m 2 (about 180 mg/kg) twice weekly over a period of 6 to 10 weeks. An amplitude-frequency detection function was determined for each monkey before and after drug treatment. An analysis of covariance comparing polynomial regressions was performed. A significant difference (p < 0.001) was found between control and experimental curves in both monkeys. Pharmacokinetic data indicated a half-life of the drug in blood of about 4 to 5 hr. The overall half-life for elimination did not increase throughout prolonged treatment with msonidazole. Neither motor nor sensory nerve conduction velocity was reduced after treatment

  3. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    Directory of Open Access Journals (Sweden)

    Akiko Nishio

    2012-10-01

    Full Text Available The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task. We found that there exist neurons in the lower bank of the superior temporal sulcus that selectively responded to specific stimuli. The selectivity was largely maintained when the object shape or illumination condition was changed. In contrast, neural selectivity was lost when the pixels of objects were randomly rearranged. In the former manipulation of the stimuli, gloss perceptions were maintained, whereas in the latter manipulation, gloss perception was dramatically changed. These results indicate that these IT neurons selectively responded to gloss, not to the irrelevant local image features or average luminance or color. Next, to understand how the responses of gloss selective neurons are related to perceived gloss, responses of gloss selective neurons were mapped in perceptual gloss space in which glossiness changes uniformly. I found that responses of most gloss selective neurons can be explained by linear combinations of two parameters that are shown to be important for gloss perception. This result suggests that the responses of gloss selective neurons of IT cortex are closely related to gloss perception.

  4. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    International Nuclear Information System (INIS)

    Arichi, T.; Edwards, A.D.; Counsell, S.J.; Mondi, V.; Tusor, N.; Merchant, N.; Allievi, A.G.; Burdet, E.; Chew, A.T.; Martinez-Biarge, M.; Cowan, F.M.

    2014-01-01

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  5. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    Energy Technology Data Exchange (ETDEWEB)

    Arichi, T.; Edwards, A.D. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Counsell, S.J.; Mondi, V.; Tusor, N.; Merchant, N. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Allievi, A.G.; Burdet, E. [Imperial College London, Department of Bioengineering, London (United Kingdom); Chew, A.T. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom); Martinez-Biarge, M.; Cowan, F.M. [Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom)

    2014-11-15

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  6. The Crossed Projection to the Striatum in Two Species of Monkey and in Humans: Behavioral and Evolutionary Significance.

    Science.gov (United States)

    Innocenti, Giorgio M; Dyrby, Tim B; Andersen, Kasper Winther; Rouiller, Eric M; Caminiti, Roberto

    2017-06-01

    The corpus callosum establishes the anatomical continuity between the 2 hemispheres and coordinates their activity. Using histological tracing, single axon reconstructions, and diffusion tractography, we describe a callosal projection to n caudatus and putamen in monkeys and humans. In both species, the origin of this projection is more restricted than that of the ipsilateral projection. In monkeys, it consists of thin axons (0.4-0.6 µm), appropriate for spatial and temporal dispersion of subliminal inputs. For prefrontal cortex, contralateral minus ipsilateral delays to striatum calculated from axon diameters and conduction distance are <2 ms in the monkey and, by extrapolation, <4 ms in humans. This delay corresponds to the performance in Poffenberger's paradigm, a classical attempt to estimate central conduction delays, with a neuropsychological task. In both species, callosal cortico-striatal projections originate from prefrontal, premotor, and motor areas. In humans, we discovered a new projection originating from superior parietal lobule, supramarginal, and superior temporal gyrus, regions engaged in language processing. This projection crosses in the isthmus the lesion of which was reported to dissociate syntax and prosody. The projection might originate from an overproduction of callosal projections in development, differentially pruned depending on species. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. An autoradiographic study of the projections of the central nucleus of the monkey amygdala

    International Nuclear Information System (INIS)

    Price, J.L.; Amaral, D.G.

    1981-01-01

    The efferent connections of the central nucleus of the monkey amygdala have been studied using the autoradiographic method for tracing axonal projections. Small injections of 3H-amino-acids which are largely confined to the central nucleus lead to the labeling of several brainstem nuclei as far caudally as the spinomedullary junction. A number of intra-amygdaloid connections between the basal and lateral nuclei of the amygdala and the central nucleus are also described. The present findings, taken together with recently reported widespread projections from the temporal association cortex to the amygdala, point out a potentially trisynaptic route between neocortical association regions and a variety of brainstem nuclei, many of which are related to autonomic function

  8. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds.

    Science.gov (United States)

    Wright, W Geoffrey

    2014-01-01

    Technological advances that involve human sensorimotor processes can have both intended and unintended effects on the central nervous system (CNS). This mini review focuses on the use of virtual environments (VE) to augment brain functions by enhancing perception, eliciting automatic motor behavior, and inducing sensorimotor adaptation. VE technology is becoming increasingly prevalent in medical rehabilitation, training simulators, gaming, and entertainment. Although these VE applications have often been shown to optimize outcomes, whether it be to speed recovery, reduce training time, or enhance immersion and enjoyment, there are inherent drawbacks to environments that can potentially change sensorimotor calibration. Across numerous VE studies over the years, we have investigated the effects of combining visual and physical motion on perception, motor control, and adaptation. Recent results from our research involving exposure to dynamic passive motion within a visually-depicted VE reveal that short-term exposure to augmented sensorimotor discordance can result in systematic aftereffects that last beyond the exposure period. Whether these adaptations are advantageous or not, remains to be seen. Benefits as well as risks of using VE-driven sensorimotor stimulation to enhance brain processes will be discussed.

  9. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds

    Directory of Open Access Journals (Sweden)

    W. Geoffrey Wright

    2014-04-01

    Full Text Available Technological advances that involve human sensorimotor processes can have both intended and unintended effects on the central nervous system (CNS. This mini-review focuses on the use of virtual environments (VE to augment brain functions by enhancing perception, eliciting automatic motor behavior, and inducing sensorimotor adaptation. VE technology is becoming increasingly prevalent in medical rehabilitation, training simulators, gaming, and entertainment. Although these VE applications have often been shown to optimize outcomes, whether it be to speed recovery, reduce training time, or enhance immersion and enjoyment, there are inherent drawbacks to environments that can potentially change sensorimotor calibration. Across numerous VE studies over the years, we have investigated the effects of combining visual and physical motion on perception, motor control, and adaptation. Recent results from our research involving exposure to dynamic passive motion within a visually-depicted VE reveal that short-term exposure to augmented sensorimotor discordance can result in systematic aftereffects that last beyond the exposure period. Whether these adaptations are advantageous or not, remains to be seen. Benefits as well as risks of using VE-driven sensorimotor stimulation to enhance brain processes will be discussed.

  10. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex.

    Science.gov (United States)

    Koyano, Kenji W; Takeda, Masaki; Matsui, Teppei; Hirabayashi, Toshiyuki; Ohashi, Yohei; Miyashita, Yasushi

    2016-10-19

    The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neural representation of the sensorimotor speech-action-repository

    Directory of Open Access Journals (Sweden)

    Cornelia eEckers

    2013-04-01

    Full Text Available A speech-action-repository (SAR or mental syllabary has been proposed as a central module for sensorimotor processing of syllables. In this approach, syllables occurring frequently within language are assumed to be stored as holistic sensorimotor patterns, while non-frequent syllables need to be assembled from sub-syllabic units. Thus, frequent syllables are processed efficiently and quickly during production or perception by a direct activation of their sensorimotor patterns. Whereas several behavioral psycholinguistic studies provided evidence in support of the existence of a syllabary, fMRI studies have failed to demonstrate its neural reality. In the present fMRI study a reaction paradigm using homogeneous vs. heterogeneous syllable blocks are used during overt vs. covert speech production and auditory vs. visual presentation modes. Two complementary data analyses were performed: (1 in a logical conjunction, activation for syllable processing independent of input modality and response mode was assessed, in order to support the assumption of existence of a supramodal hub within a SAR. (2 In addition priming effects in the BOLD response in homogeneous vs. heterogeneous blocks were measured in order to identify brain regions, which indicate reduced activity during multiple production/perception repetitions of a specific syllable in order to determine state maps. Auditory-visual conjunction analysis revealed an activation network comprising bilateral precentral gyrus and left inferior frontal gyrus (area 44. These results are compatible with the notion of a supramodal hub within the SAR. The main effect of homogeneity priming revealed an activation pattern of areas within frontal, temporal, and parietal lobe. These findings are taken to represent sensorimotor state maps of the SAR. In conclusion, the present study provided preliminary evidence for a SAR.

  12. Beyond the sensorimotor plasticity: cognitive expansion of prism adaptation in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Carine eMICHEL

    2016-01-01

    Full Text Available Sensorimotor plasticity allows us to maintain an efficient motor behavior in reaction to environmental changes. One of the classical models for the study of sensorimotor plasticity is prism adaptation. It consists of pointing to visual targets while wearing prismatic lenses that shift the visual field laterally. The conditions of the development of the plasticity and the sensorimotor after-effects have been extensively studied for more than a century. However, the interest taken in this phenomenon was considerably increased since the demonstration of neglect rehabilitation following prism adaptation by Rossetti and his colleagues in 1998. Mirror effects, i.e. simulation of neglect in healthy individuals, were observed for the first time by Colent and collaborators in 2000. The present review focuses on the expansion of prism adaptation to cognitive functions in healthy individuals during the last 15 years. Cognitive after-effects have been shown in numerous tasks even in those that are not intrinsically spatial in nature. Altogether, these results suggest the existence of a strong link between low-level sensorimotor plasticity and high-level cognitive functions and raise important questions about the mechanisms involved in producing unexpected cognitive effects following prism adaptation. Implications for the functional mechanisms and neuroanatomical network of prism adaptation are discussed to explain how sensorimotor plasticity may affect cognitive processes.

  13. [Hybrids of human and monkey adenoviruses (adeno-adeno hybrids) that can reproduce in monkey cells: biological and molecular genetic peculiarities].

    Science.gov (United States)

    Grinenko, N F; Savitskaia, N V; Pashvykina, G V; Al'tshteĭn, A D

    2003-06-01

    A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.

  14. Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC of the macaque monkey.

    Directory of Open Access Journals (Sweden)

    Hiroaki Ishida

    Full Text Available The posterior inner perisylvian region including the secondary somatosensory cortex (area SII and the adjacent region of posterior insular cortex (pIC has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip both in light and in dark conditions. Our results showed that 70% (n = 33/48 of task related neurons within SII/pIC were only activated during monkeys' active hand-manipulation. Of those 33 neurons, 15 (45% began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48 of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE and precision grasping (PG execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object.

  15. Monkey Bites among US Military Members, Afghanistan, 2011

    Science.gov (United States)

    Baker, Katheryn A.

    2012-01-01

    Bites from Macaca mulatta monkeys, native to Afghanistan, can cause serious infections. To determine risk for US military members in Afghanistan, we reviewed records for September–December 2011. Among 126 animal bites and exposures, 10 were monkey bites. Command emphasis is vital for preventing monkey bites; provider training and bite reporting promote postexposure treatment. PMID:23017939

  16. Chronic marijuana smoke exposure in the rhesus monkey. IV: Neurochemical effects and comparison to acute and chronic exposure to delta-9-tetrahydrocannabinol (THC) in rats.

    Science.gov (United States)

    Ali, S F; Newport, G D; Scallet, A C; Paule, M G; Bailey, J R; Slikker, W

    1991-11-01

    THC is the major psychoactive constituent of marijuana and is known to produce psychopharmacological effects in humans. These studies were designed to determine whether acute or chronic exposure to marijuana smoke or THC produces in vitro or in vivo neurochemical alterations in rat or monkey brain. For the in vitro study, THC was added (1-100 nM) to membranes prepared from different regions of the rat brain and muscarinic cholinergic (MCh) receptor binding was measured. For the acute in vivo study, rats were injected IP with vehicle, 1, 3, 10, or 30 mg THC/kg and sacrificed 2 h later. For the chronic study, rats were gavaged with vehicle or 10 or 20 mg THC/kg daily, 5 days/week for 90 days and sacrificed either 24 h or 2 months later. Rhesus monkeys were exposed to the smoke of a single 2.6% THC cigarette once a day, 2 or 7 days a week for 1 year. Approximately 7 months after the last exposure, animals were sacrificed by overdose with pentobarbital for neurochemical analyses. In vitro exposure to THC produced a dose-dependent inhibition of MCh receptor binding in several brain areas. This inhibition of MCh receptor binding, however, was also observed with two other nonpsychoactive derivatives of marijuana, cannabidiol and cannabinol. In the rat in vivo study, we found no significant changes in MCh or other neurotransmitter receptor binding in hippocampus, frontal cortex or caudate nucleus after acute or chronic exposure to THC. In the monkey brain, we found no alterations in the concentration of neurotransmitters in caudate nucleus, frontal cortex, hypothalamus or brain stem.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Cerebral cortex activation mapping upon electrical muscle stimulation by 32-channel time-domain functional near-infrared spectroscopy.

    Science.gov (United States)

    Re, Rebecca; Muthalib, Makii; Contini, Davide; Zucchelli, Lucia; Torricelli, Alessandro; Spinelli, Lorenzo; Caffini, Matteo; Ferrari, Marco; Quaresima, Valentina; Perrey, Stephane; Kerr, Graham

    2013-01-01

    The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.

  18. Multimodal assessment of sensorimotor shoulder function in patients with untreated anterior shoulder instability and asymptomatic handball players.

    Science.gov (United States)

    Mornieux, Guillaume; Hirschmüller, Anja; Gollhofer, Albert; Südkamp, Norbert P; Maier, Dirk

    2018-04-01

    Functional evaluation of sensorimotor function of the shoulder joint is important for guidance of sports-specific training, prevention and rehabilitation of shoulder instability. Such assessment should be multimodal and comprise all qualities of sensorimotor shoulder function. This study evaluates feasibility of such multimodal assessment of glenohumeral sensorimotor function in patients with shoulder instability and handball players. Nine patients with untreated anterior instability of their dominant shoulder and 15 asymptomatic recreational handball players performed proprioceptive joint position sense and dynamic stabilization evaluations on an isokinetic device, as well as a functional throwing performance task. Outcome measures were analysed individually and equally weighted in a Shoulder-Specific Sensorimotor Index (S-SMI). Finally, isokinetic strength evaluations were conducted. We observed comparable sensorimotor functions of unstable dominant shoulders compared to healthy, contralateral shoulders (e.g. P=0.59 for S-SMI). Handball players demonstrated superior sensorimotor function of their dominant shoulders exhibiting a significantly higher throwing performance and S-SMI (P0.22). The present study proves feasibility of multimodal assessment of shoulder sensorimotor function in overhead athletes and patients with symptomatic anterior shoulder instability. Untreated shoulder instability led to a loss of dominance-related sensorimotor superiority indicating functional internal rotation deficiency. Dominant shoulders of handball players showed a superior overall sensorimotor function but weakness of dominant internal rotation constituting a risk factor for occurrence of posterior superior impingement syndrome. The S-SMI could serve as a diagnostic tool for guidance of sports-specific training, prevention and rehabilitation of shoulder instability.

  19. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    Science.gov (United States)

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  20. Safety and feasibility of transcranial direct current stimulation (tDCS) combined with sensorimotor retraining in chronic low back pain: a protocol for a pilot randomised controlled trial.

    Science.gov (United States)

    Ouellette, Adam Louis; Liston, Matthew B; Chang, Wei-Ju; Walton, David M; Wand, Benedict Martin; Schabrun, Siobhan M

    2017-08-21

    Chronic low back pain (LBP) is a common and costly health problem yet current treatments demonstrate at best, small effects. The concurrent application of treatments with synergistic clinical and mechanistic effects may improve outcomes in chronic LBP. This pilot trial aims to (1) determine the feasibility, safety and perceived patient response to a combined transcranial direct current stimulation (tDCS) and sensorimotor retraining intervention in chronic LBP and (2) provide data to support a sample size calculation for a fully powered trial should trends of effectiveness be present. A pilot randomised, assessor and participant-blind, sham-controlled trial will be conducted. Eighty participants with chronic LBP will be randomly allocated to receive either (1) active tDCS + sensorimotor retraining or (2) sham tDCS + sensorimotor retraining. tDCS (active or sham) will be applied to the primary motor cortex for 20 min immediately prior to 60 min of supervised sensorimotor retraining twice per week for 10 weeks. Participants in both groups will complete home exercises three times per week. Feasibility, safety, pain, disability and pain system function will be assessed immediately before and after the 10-week intervention. Analysis of feasibility and safety will be performed using descriptive statistics. Statistical analyses will be conducted based on intention-to-treat and per protocol and will be used to determine trends for effectiveness. Ethical approval has been gained from the institutional human research ethics committee (H10184). Written informed consent will be provided by all participants. Results from this pilot study will be submitted for publication in peer-reviewed journals. ACTRN12616000624482. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Pramipexole Modulates Interregional Connectivity Within the Sensorimotor Network.

    Science.gov (United States)

    Ye, Zheng; Hammer, Anke; Münte, Thomas F

    2017-05-01

    Pramipexole is widely prescribed to treat Parkinson's disease but has been reported to cause impulse control disorders such as pathological gambling. Recent neurocomputational models suggested that D2 agonists may distort functional connections between the striatum and the motor cortex, resulting in impaired reinforcement learning and pathological gambling. To examine how D2 agonists modulate the striatal-motor connectivity, we carried out a pharmacological resting-state functional magnetic resonance imaging study with a double-blind randomized within-subject crossover design. We analyzed the medication-induced changes of network connectivity and topology with two approaches, an independent component analysis (ICA) and a graph theoretical analysis (GTA). The ICA identified the sensorimotor network (SMN) as well as other classical resting-state networks. Within the SMN, the connectivity between the right caudate nucleus and other cortical regions was weaker under pramipexole than under placebo. The GTA measured the topological properties of the whole-brain network at global and regional levels. Both the whole-brain network under placebo and that under pramipexole were identified as small-world networks. The two whole-brain networks were similar in global efficiency, clustering coefficient, small-world index, and modularity. However, the degree of the right caudate nucleus decreased under pramipexole mainly due to the loss of the connectivity with the supplementary motor area, paracentral lobule, and precentral and postcentral gyrus of the SMN. The two network analyses consistently revealed that pramipexole weakened the functional connectivity between the caudate nucleus and the SMN regions.

  2. Synchronization in primate cerebellar granule cell layer local field potentials: Basic anisotropy and dynamic changes during active expectancy

    Directory of Open Access Journals (Sweden)

    Richard Courtemanche

    2009-07-01

    Full Text Available The cerebellar cortex is remarkable for its organizational regularity, out of which task-related neural networks should emerge. So, in Purkinje cells, both complex and simple spike network patterns are evident in sensorimotor behavior. However, task-related patterns of activity in the granule cell layer (GCL have been less studied. We recorded local field potential (LFP activity simultaneously in pairs of GCL sites in monkeys performing an active expectancy (lever-press task, in passive expectancy, and at rest. LFP sites were selected when they showed strong 10-25 Hz oscillations; pair orientation was in stereotaxic sagittal and coronal (mainly, and diagonal. As shown previously, LFP oscillations at each site were modulated during the lever-press task. Synchronization across LFP pairs showed an evident basic anisotropy at rest: sagittal pairs of LFPs were better synchronized (more than double the cross-correlation coefficients than coronal pairs, and more than diagonal pairs. On the other hand, this basic anisotropy was modifiable: during the active expectancy condition, where sagittal and coronal orientations were tested, synchronization of LFP pairs would increase just preceding movement, most notably for the coronal pairs. This lateral extension of synchronization was not observed in passive expectancy. The basic pattern of synchronization at rest, favoring sagittal synchrony, thus seemed to adapt in a dynamic fashion, potentially extending laterally to include more cerebellar cortex elements. This dynamic anisotropy in LFP synchronization could underlie GCL network organization in the context of sensorimotor tasks.

  3. Relationships Between Vestibular Measures as Potential Predictors for Spaceflight Sensorimotor Adaptation

    Science.gov (United States)

    Clark, T. K.; Peters, B.; Gadd, N. E.; De Dios, Y. E.; Wood, S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Introduction: During space exploration missions astronauts are exposed to a series of novel sensorimotor environments, requiring sensorimotor adaptation. Until adaptation is complete, sensorimotor decrements occur, affecting critical tasks such as piloted landing or docking. Of particularly interest are locomotion tasks such as emergency vehicle egress or extra-vehicular activity. While nearly all astronauts eventually adapt sufficiently, it appears there are substantial individual differences in how quickly and effectively this adaptation occurs. These individual differences in capacity for sensorimotor adaptation are poorly understood. Broadly, we aim to identify measures that may serve as pre-flight predictors of and individual's adaptation capacity to spaceflight-induced sensorimotor changes. As a first step, since spaceflight is thought to involve a reinterpretation of graviceptor cues (e.g. otolith cues from the vestibular system) we investigate the relationships between various measures of vestibular function in humans. Methods: In a set of 15 ground-based control subjects, we quantified individual differences in vestibular function using three measures: 1) ocular vestibular evoked myogenic potential (oVEMP), 2) computerized dynamic posturography and 3) vestibular perceptual thresholds. oVEMP responses are elicited using a mechanical stimuli approach. Computerized dynamic posturography was used to quantify Sensory Organization Tests (SOTs), including SOT5M which involved performing pitching head movements while balancing on a sway-reference support surface with eyes closed. We implemented a vestibular perceptual threshold task using the tilt capabilities of the Tilt-Translation Sled (TTS) at JSC. On each trial, the subject was passively roll-tilted left ear down or right ear down in the dark and verbally provided a forced-choice response regarding which direction they felt tilted. The motion profile was a single-cycle sinusoid of angular acceleration with a

  4. Loss of inhibition in sensorimotor networks in focal hand dystonia

    Directory of Open Access Journals (Sweden)

    Cecile Gallea

    2018-01-01

    Interpretation: Impairments of GABAergic neurotransmission in the cerebellum and the sensorimotor cortical areas could explain different aspects of loss of inhibitory control in FHD, the former being involved in maladaptive plasticity, the latter in surround inhibition. Reorganization of the inferior prefrontal cortices, part of the associative network, might be compensatory for the loss of inhibitory control in sensorimotor circuits. These findings suggest that cerebellar and cerebral GABAergic abnormalities could play a role in the functional imbalance of striato-cerebello-cortical loops in dystonia.

  5. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys

    DEFF Research Database (Denmark)

    Nemati, Shiva Nemati; Jabbari, Reza; Hajinasrollah, Mostafa

    2014-01-01

    , therefore, to explore the efficacy of adult monkey NSC (mNSC) in a primate SCI model. MATERIALS AND METHODS: In this experimental study, isolated mNSCs were analyzed by flow cytometry, immunocytochemistry, and RT-PCR. Next, BrdU-labeled cells were transplanted into a SCI model. The SCI animal model...... on Tarlov's scale and our established behavioral tests for monkeys. CONCLUSION: Our findings have indicated that mNSCs can facilitate recovery in contusion SCI models in rhesus macaque monkeys. Additional studies are necessary to determine the im- provement mechanisms after cell transplantation....

  6. Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward.

    Science.gov (United States)

    Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel

    2017-07-05

    The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inhibitory rTMS applied on somatosensory cortex in Wilson's disease patients with hand dystonia.

    Science.gov (United States)

    Lozeron, Pierre; Poujois, Aurélia; Meppiel, Elodie; Masmoudi, Sana; Magnan, Thierry Peron; Vicaut, Eric; Houdart, Emmanuel; Guichard, Jean-Pierre; Trocello, Jean-Marc; Woimant, France; Kubis, Nathalie

    2017-10-01

    Hand dystonia is a common complication of Wilson's disease (WD), responsible for handwriting difficulties and disability. Alteration of sensorimotor integration and overactivity of the somatosensory cortex have been demonstrated in dystonia. This study investigated the immediate after effect of an inhibitory repetitive transcranial magnetic stimulation (rTMS) applied over the somatosensory cortex on the writing function in WD patients with hand dystonia. We performed a pilot prospective randomized double-blind sham-controlled crossover rTMS study. A 20-min 1-Hz rTMS session, stereotaxically guided, was applied over the left somatosensory cortex in 13 WD patients with right dystonic writer's cramp. After 3 days, each patient was crossed-over to the alternative treatment. Patients were clinically evaluated before and immediately after each rTMS session with the Unified Wilson's Disease rating scale (UWDRS), the Writers' Cramp Rating Scale (WCRS), a specifically designed scale for handwriting difficulties in Wilson's disease patients (FAR, flow, accuracy, and rhythmicity evaluation), and a visual analog scale (VAS) for handwriting discomfort. No significant change in UWDRS, WCRS, VAS, or FAR scores was observed in patients treated with somatosensory inhibitory rTMS compared to the sham protocol. The FAR negatively correlated with UWDRS (r = -0.6; P = 0.02), but not with the WCRS score, disease duration, MRI diffusion lesions, or with atrophy scores. In our experimental conditions, a single inhibitory rTMS session applied over somatosensory cortex did not improve dystonic writer cramp in WD patients.

  8. Callosal connections of dorso-lateral premotor cortex.

    Science.gov (United States)

    Marconi, B; Genovesio, A; Giannetti, S; Molinari, M; Caminiti, R

    2003-08-01

    This study investigated the organization of the callosal connections of the two subdivisions of the monkey dorsal premotor cortex (PMd), dorso-rostral (F7) and dorso-caudal (F2). In one animal, Fast blue and Diamidino yellow were injected in F7 and F2, respectively; in a second animal, the pattern of injections was reversed. F7 and F2 receive a major callosal input from their homotopic counterpart. The heterotopic connections of F7 originate mainly from F2, with smaller contingent from pre-supplementary motor area (pre-SMA, F6), area 8 (frontal eye fields), and prefrontal cortex (area 46), while those of F2 originate from F7, with smaller contributions from ventral premotor areas (F5, F4), SMA-proper (F3), and primary motor cortex (M1). Callosal cells projecting homotopically are mostly located in layers II-III, those projecting heterotopically occupy layers II-III and V-VI. A spectral analysis was used to characterize the spatial fluctuations of the distribution of callosal neurons, in both F7 and F2, as well as in adjacent cortical areas. The results revealed two main periodic components. The first, in the domain of the low spatial frequencies, corresponds to periodicities of cell density with peak-to-peak distances of approximately 10 mm, and suggests an arrangement of callosal cells in the form of 5-mm wide bands. The second corresponds to periodicities of approximately 2 mm, and probably reflects a 1-mm columnar-like arrangement. Coherency and phase analyses showed that, although similar in their spatial arrangements, callosal cells projecting to dorsal premotor areas are segregated in the tangential cortical domain.

  9. Tactile stimulation interventions: influence of stimulation parameters on sensorimotor behavior and neurophysiological correlates in healthy and clinical samples.

    Science.gov (United States)

    Parianen Lesemann, Franca H; Reuter, Eva-Maria; Godde, Ben

    2015-04-01

    The pure exposure to extensive tactile stimulation, without the requirement of attention or active training, has been revealed to enhance sensorimotor functioning presumably due to an induction of plasticity in the somatosensory cortex. The induced effects, including increased tactile acuity and manual dexterity have repeatedly been observed in basic as well as clinical research. However, results vary greatly in respect to the strength and direction of the effects on the behavioral and on the brain level. Multiple evidences show that differences in the stimulation protocols (e.g., two vs. multiple stimulation sites) and parameters (e.g., duration, frequency, and amplitude) might contribute to this variability of effects. Nevertheless, stimulation protocols have not been comprehensively compared yet. Identifying favorable parameters for tactile stimulation interventions is especially important because of its possible application as a treatment option for patients suffering from sensory loss, maladaptive plasticity, or certain forms of motor impairment. This review aims to compare the effects of different tactile stimulation protocols and to assess possible implications for tactile interventions. Our goal is to identify ways of optimizing stimulation protocols to improve sensorimotor performance. To this end, we reviewed research on tactile stimulation in the healthy population, with a focus on the effectiveness of the applied parameters regarding psychophysiological measures. We discuss the association of stimulation-induced changes on the behavioral level with alterations in neural representations and response characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality

    Directory of Open Access Journals (Sweden)

    Hrishikesh M. Rao

    2018-02-01

    Full Text Available Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting.

  11. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality.

    Science.gov (United States)

    Rao, Hrishikesh M; Khanna, Rajan; Zielinski, David J; Lu, Yvonne; Clements, Jillian M; Potter, Nicholas D; Sommer, Marc A; Kopper, Regis; Appelbaum, Lawrence G

    2018-01-01

    Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting.

  12. On Loss Aversion in Capuchin Monkeys

    Science.gov (United States)

    Silberberg, Alan; Roma, Peter G.; Huntsberry, Mary E.; Warren-Boulton, Frederick R.; Sakagami, Takayuki; Ruggiero, Angela M.; Suomi, Stephen J.

    2008-01-01

    Chen, Lakshminarayanan, and Santos (2006) claim to show in three choice experiments that monkeys react rationally to price and wealth shocks, but, when faced with gambles, display hallmark, human-like biases that include loss aversion. We present three experiments with monkeys and humans consistent with a reinterpretation of their data that…

  13. Radioimmunoassay of parathyroid hormone (parathyrin) in monkey and man

    International Nuclear Information System (INIS)

    Hargis, G.K.; Williams, G.A.; Reynolds, W.A.; Kawahara, W.; Jackson, B.; Bowser, E.N.; Pitkin, R.M.

    1977-01-01

    A radioimmunoassay for rhesus monkey and human innumoreactive parathyrin was developed in which a selected anti-bovine parathyrin antiserum, radioiodinated purified bovine parathyrin tracer, and human parathyroid tissue-culture media standards were used. The resulting data indicate that the method is sensitive, specific, accurate and reproducible; it is valid for both the rhesus monkey and the human; the serum immunoreactive parathyrin concentration of the monkey is essentially the same as that in man; monkey immunoreactive parathyrin responds to changes in serum calcium concentration similarly to that in man; and the rhesus monkey is therefore a suitable species in which to study parathyroid physiology, from which conclusions can be applied to the human

  14. Influence of the language dominant hemisphere on the activation region of the cerebral cortex during mastication

    International Nuclear Information System (INIS)

    Matsushima, Yasuhiko

    2005-01-01

    We used functional magnetic resonance imaging (fMRI) to examine the relationship of the activation region of the cerebral cortex during mastication with the language dominant hemisphere. Twelve healthy subjects were asked to chew a special gum 50 times on each side of the mouth, the gum changed color, becoming a deeper red, as it was chewed. The depth of red of the chewed gum was used to ascertain the habitual masticatory side. Measurements were also performed on a conventional whole body 1.5 T clinical scanner using a single shot, multislice echo-planar imaging sequence. The subjects were asked to masticate first on the right side, and then on the left side. As well, they were instructed to do a shiritori test, which is a word game. Computer analysis of the fMRI was done using statistical parametric mapping (SPM) 99 software (p<0.001, paired t-test). We found that the sensorimotor cortex activated by masticatory movements always contains language dominant hemisphere. (author)

  15. Spider monkey, Muriqui and Woolly monkey relationships revisited.

    Science.gov (United States)

    de Lima, Margarida Maria Celeira; Sampaio, Iracilda; Vieira, Ricardo dos Santos; Schneider, Horacio

    2007-01-01

    The taxonomic relationships among the four genera of the Atelidae family, Alouatta (Howler), Ateles (Spider), Lagothrix (Woolly) and Brachyteles (Muriqui), have been the subject of great debate. In general, almost all authors agree with the assignment of Howler monkeys as the basal genus, either in its own tribe Alouattini or in the subfamily Alouattinae, but they disagree on the associations among the other members of the family. Muriquis have been grouped with Spider monkeys based on the fact that they share various behavioral and morphological characteristics. Cladistic analyses using morphological, biochemical, karyotype and behavioral characteristics depicted a phylogenetic tree that places Howler as the basal genus and the remaining genera in an unresolved politomy. More recent studies using molecular data have suggested that Muriqui and Woolly monkeys are sister groups. However, a recent study based on nuclear and mtDNA argued that politomy is what best represents the relationships among Spider, Woolly and Muriqui. To contribute to this debate we have added new data from two nuclear genes, Transferrin and von Willebrand Factor, and using an alignment of 17,997 bp we demonstrate that a total analysis strongly supports the Muriqui-Woolly clade. A gene-to-gene approach showed that four of the eight nuclear genes provide support for the Muriqui-Woolly clade, two strongly and two moderately, while none of the eight genes provide support for any alternative arrangement. The mitochondrial genes were not able to resolve the politomy. A possible reason for the difficulty in resolving atelid relationships may be the short period of time separating each cladogenetic event in the evolutionary process that shaped this family.

  16. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Tariq Waseem Chohan

    2014-09-01

    Full Text Available Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1 and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET and wild-type (WT mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV and the dentate gyrus (DG of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.

  17. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    The discovery of directional tuned neurons in the primary motor cortex has advanced motor research in several domains. For instance, in the area of brain machine interface (BMI), researchers have exploited the robust characteristic of tuned motor neurons to allow monkeys to learn control of various machines. In the first chapter of this work we examine whether this phenomena can be observed using the less invasive method of recording electrocorticographic signals (ECoG) from the surface of a human's brain. Our findings reveal that individual ECoG channels contain complex movement information about the neuronal population. While some ECoG channels are tuned to hand movement direction (direction specific channels), others are associated to movement but do not contain information regarding movement direction (non-direction specific channels). More specifically, directionality can vary temporally and by frequency within one channel. In addition, a handful of channels contain no significant information regarding movement at all. These findings strongly suggest that directional and non-directional regions of cortex can be identified with ECoG and provide solutions to decoding movement at the signal resolution provided by ECoG. In the second chapter we examine the influence of movement context on movement reconstruction accuracy. We recorded neuronal signals recorded from electro-corticography (ECoG) during performance of cued- and self-initiated movements. ECoG signals were used to train a reconstruction algorithm to reconstruct continuous hand movement. We found that both cued- and self-initiated movements could be reconstructed with similar accuracy from the ECoG data. However, while an algorithm trained on the cued task could reconstruct performance on a subsequent cued trial, it failed to reconstruct self-initiated arm movement. The same task-specificity was observed when the algorithm was trained with self-initiated movement data and tested on the cued task. Thus

  18. Cortical activation in patients with functional hemispherectomy.

    Science.gov (United States)

    Leonhardt, G; Bingel, U; Spiekermann, G; Kurthen, M; Müller, S; Hufnagel, A

    2001-10-01

    Functional hemispherectomy, a safe and effective therapeutical procedure in medically intractable epilepsy, offers the chance to investigate a strictly unilateral cortical activation in ipsilateral limb movement. We assessed the pattern of cortical activation in a group of patients following functional hemispherectomy. We measured regional cerebral blood flow (rCBF) in 6 patients postoperatively and 6 normal subjects with positron emission tomography using 15[O]H2O as a tracer. Brain activation was achieved by passive elbow movements of the affected arm. Analysis of group results and between-group comparisons were performed with statistical parametric mapping, (SPM96). In normal subjects brain activation was found contralaterally in the cranial sensorimotor cortex and the supplementary motor area and ipsilaterally in the inferior parietal cortex. In patients significant rCBF increases were found in the inferior parietal cortex, caudal sensorimotor cortex and the supplementary motor area ipsilaterally. The activation was weaker than in normal subjects. Compared with normal subjects patients showed additional activation in the premotor cortex, caudal sensorimotor cortex and the inferior parietal cortex of the remaining hemisphere. Less activation compared with normal subjects was found in the cranial sensorimotor cortex and the supplementary motor area. A functional network connecting the inferior parietal cortex, premotor cortex and the supplementary motor area as well as the existence of ipsilateral projections originating from these regions may explain why these areas are predominantly involved in reorganization confined to a single hemisphere.

  19. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  20. Information processing occurs via critical avalanches in a model of the primary visual cortex

    International Nuclear Information System (INIS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Tragtenberg, M. H. R.; Pinto, L. T.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit. (paper)

  1. Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains.

    Science.gov (United States)

    Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun

    2016-02-23

    We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.

  2. Sensorimotor Functional and Structural Networks after Intracerebral Stem Cell Grafts in the Ischemic Mouse Brain.

    Science.gov (United States)

    Green, Claudia; Minassian, Anuka; Vogel, Stefanie; Diedenhofen, Michael; Beyrau, Andreas; Wiedermann, Dirk; Hoehn, Mathias

    2018-02-14

    Past investigations on stem cell-mediated recovery after stroke have limited their focus on the extent and morphological development of the ischemic lesion itself over time or on the integration capacity of the stem cell graft ex vivo However, an assessment of the long-term functional and structural improvement in vivo is essential to reliably quantify the regenerative capacity of cell implantation after stroke. We induced ischemic stroke in nude mice and implanted human neural stem cells (H9 derived) into the ipsilateral cortex in the acute phase. Functional and structural connectivity changes of the sensorimotor network were noninvasively monitored using magnetic resonance imaging for 3 months after stem cell implantation. A sharp decrease of the functional sensorimotor network extended even to the contralateral hemisphere, persisting for the whole 12 weeks of observation. In mice with stem cell implantation, functional networks were stabilized early on, pointing to a paracrine effect as an early supportive mechanism of the graft. This stabilization required the persistent vitality of the stem cells, monitored by bioluminescence imaging. Thus, we also observed deterioration of the early network stabilization upon vitality loss of the graft after a few weeks. Structural connectivity analysis showed fiber-density increases between the cortex and white matter regions occurring predominantly on the ischemic hemisphere. These fiber-density changes were nearly the same for both study groups. This motivated us to hypothesize that the stem cells can influence, via early paracrine effect, the functional networks, while observed structural changes are mainly stimulated by the ischemic event. SIGNIFICANCE STATEMENT In recent years, research on strokes has made a shift away from a focus on immediate ischemic effects and towards an emphasis on the long-range effects of the lesion on the whole brain. Outcome improvements in stem cell therapies also require the understanding of

  3. Virtual Reality Training: "Cybersickness" and Effects on Sensorimotor Functions

    Science.gov (United States)

    Harm, Deborah L.; Taylor, Laura C.

    2003-01-01

    The overall goal of this study is to examine the extent to which exposure to virtual reality (VR) systems produces motion sickness and disrupts sensorimotor functions. Two of the major problems in using VRs are: 1) potential "cybersickness", a form of motion sickness, and 2) maladaptive sensorimotor coordination following virtual environment (VE) training. It is likely that users will eventually adapt to any unpleasant perceptual experiences in a virtual environment. However the most critical problem for training applications is that sensorimotor coordination strategies learned in the VE may not be similar to the responses required in the real environment. This study will evaluate and compare responses to the two types of VR delivery systems (head-mounted display [HMD] and a dome-projection system [DOME]), two exposure duration periods (30 minutes or 60 minutes), and repeated exposures (3 sessions). Specific responses that we will examine include cybersickness severity and symptom patterns, and several sensorimotor functions (eye-hea.d and eye-head-hand coordination, and postural equilibrium). To date, all hardware and software acquisition, development, integration and testing has been completed. A database has been developed and tested for the input, management and storage of all questionnaire data. All data analysis scripts have been developed and tested. Data was collected from 20 subjects in a pilot study that was conducted to determine the amount of training necessary to achieve a stable performance level. Seven subjects are currently enrolled in the study designed to examine the effects of exposure to VE systems on postural control. Data has been collected from two subjects, and it is expected that the results from ten subjects will be presented.

  4. Two Mechanisms of Sensorimotor Set Adaptation to Inclined Stance

    Directory of Open Access Journals (Sweden)

    Kyoung-Hyun Lee

    2017-10-01

    Full Text Available Orientation of posture relative to the environment depends on the contributions from the somatosensory, vestibular, and visual systems mixed in varying proportions to produce a sensorimotor set. Here, we probed the sensorimotor set composition using a postural adaptation task in which healthy adults stood on an inclined surface for 3 min. Upon returning to a horizontal surface, participants displayed a range of postural orientations – from an aftereffect that consisted of a large forward postural lean to an upright stance with little or no aftereffect. It has been hypothesized that the post-incline postural change depends on each individual’s sensorimotor set: whether the set was dominated by the somatosensory or vestibular system: Somatosensory dominance would cause the lean aftereffect whereas vestibular dominance should steer stance posture toward upright orientation. We investigated the individuals who displayed somatosensory dominance by manipulating their attention to spatial orientation. We introduced a distraction condition in which subjects concurrently performed a difficult arithmetic subtraction task. This manipulation altered the time course of their post-incline aftereffect. When not distracted, participants returned to upright stance within the 3-min period. However, they continued leaning forward when distracted. These results suggest that the mechanism of sensorimotor set adaptation to inclined stance comprises at least two components. The first component reflects the dominant contribution from the somatosensory system. Since the postural lean was observed among these subjects even when they were not distracted, it suggests that the aftereffect is difficult to overcome. The second component includes a covert attentional component which manifests as the dissipation of the aftereffect and the return of posture to upright orientation.

  5. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  6. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    Science.gov (United States)

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  7. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning

    Science.gov (United States)

    Brincat, Scott L.

    2016-01-01

    As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with “internal” memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)—regions critical for sensory associations—of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11–27 Hz) oscillatory power and synchrony associated with “top-down” or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. SIGNIFICANCE STATEMENT As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired “top-down” knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. PMID:27629722

  8. A predictive processing theory of sensorimotor contingencies: Explaining the puzzle of perceptual presence and its absence in synesthesia.

    Science.gov (United States)

    Seth, Anil K

    2014-01-01

    Normal perception involves experiencing objects within perceptual scenes as real, as existing in the world. This property of "perceptual presence" has motivated "sensorimotor theories" which understand perception to involve the mastery of sensorimotor contingencies. However, the mechanistic basis of sensorimotor contingencies and their mastery has remained unclear. Sensorimotor theory also struggles to explain instances of perception, such as synesthesia, that appear to lack perceptual presence and for which relevant sensorimotor contingencies are difficult to identify. On alternative "predictive processing" theories, perceptual content emerges from probabilistic inference on the external causes of sensory signals, however, this view has addressed neither the problem of perceptual presence nor synesthesia. Here, I describe a theory of predictive perception of sensorimotor contingencies which (1) accounts for perceptual presence in normal perception, as well as its absence in synesthesia, and (2) operationalizes the notion of sensorimotor contingencies and their mastery. The core idea is that generative models underlying perception incorporate explicitly counterfactual elements related to how sensory inputs would change on the basis of a broad repertoire of possible actions, even if those actions are not performed. These "counterfactually-rich" generative models encode sensorimotor contingencies related to repertoires of sensorimotor dependencies, with counterfactual richness determining the degree of perceptual presence associated with a stimulus. While the generative models underlying normal perception are typically counterfactually rich (reflecting a large repertoire of possible sensorimotor dependencies), those underlying synesthetic concurrents are hypothesized to be counterfactually poor. In addition to accounting for the phenomenology of synesthesia, the theory naturally accommodates phenomenological differences between a range of experiential states

  9. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  10. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    Science.gov (United States)

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  11. Sensorimotor Learning: Neurocognitive Mechanisms and Individual Differences.

    Science.gov (United States)

    Seidler, R D; Carson, R G

    2017-07-13

    Here we provide an overview of findings and viewpoints on the mechanisms of sensorimotor learning presented at the 2016 Biomechanics and Neural Control of Movement (BANCOM) conference in Deer Creek, OH. This field has shown substantial growth in the past couple of decades. For example it is now well accepted that neural systems outside of primary motor pathways play a role in learning. Frontoparietal and anterior cingulate networks contribute to sensorimotor adaptation, reflecting strategic aspects of exploration and learning. Longer term training results in functional and morphological changes in primary motor and somatosensory cortices. Interestingly, re-engagement of strategic processes once a skill has become well learned may disrupt performance. Efforts to predict individual differences in learning rate have enhanced our understanding of the neural, behavioral, and genetic factors underlying skilled human performance. Access to genomic analyses has dramatically increased over the past several years. This has enhanced our understanding of cellular processes underlying the expression of human behavior, including involvement of various neurotransmitters, receptors, and enzymes. Surprisingly our field has been slow to adopt such approaches in studying neural control, although this work does require much larger sample sizes than are typically used to investigate skill learning. We advocate that individual differences approaches can lead to new insights into human sensorimotor performance. Moreover, a greater understanding of the factors underlying the wide range of performance capabilities seen across individuals can promote personalized medicine and refinement of rehabilitation strategies, which stand to be more effective than "one size fits all" treatments.

  12. Radiation-induced emesis in monkeys

    International Nuclear Information System (INIS)

    Mattsson, J.L.; Yochmowitz, M.G.

    1980-01-01

    To determine the emesis ED 50 for 60 Co radiation, 15 male rhesus monkeys were exposed to whole-body radiation doses ranging from 350 to 550 rad midline tissue dose. An up-and-down sequence of exposures was used. Step size between doses was 50 rad, and dose rate was 20 rad/min. There had been no access to food for 1 to 2 h. The ED 50 +- SE was found to be 446 +- 27 rad. To determine the effect of motion on emesis ED 50 , six more monkeys were exposed to 60 Co radiation as above, except that the chair in which they were seated was oscillated forward and backward 5 to 15 0 (pitch axis) at a variable rate not exceeding 0.3 Hz. Radioemesis ED 50 +- SE with motion was 258 +- 19 rad, a value significantly lower (P < 0.01) than for stationary monkeys

  13. Dissociation of item and source memory in rhesus monkeys.

    Science.gov (United States)

    Basile, Benjamin M; Hampton, Robert R

    2017-09-01

    Source memory, or memory for the context in which a memory was formed, is a defining characteristic of human episodic memory and source memory errors are a debilitating symptom of memory dysfunction. Evidence for source memory in nonhuman primates is sparse despite considerable evidence for other types of sophisticated memory and the practical need for good models of episodic memory in nonhuman primates. A previous study showed that rhesus monkeys confused the identity of a monkey they saw with a monkey they heard, but only after an extended memory delay. This suggests that they initially remembered the source - visual or auditory - of the information but forgot the source as time passed. Here, we present a monkey model of source memory that is based on this previous study. In each trial, monkeys studied two images, one that they simply viewed and touched and the other that they classified as a bird, fish, flower, or person. In a subsequent memory test, they were required to select the image from one source but avoid the other. With training, monkeys learned to suppress responding to images from the to-be-avoided source. After longer memory intervals, monkeys continued to show reliable item memory, discriminating studied images from distractors, but made many source memory errors. Monkeys discriminated source based on study method, not study order, providing preliminary evidence that our manipulation of retention interval caused errors due to source forgetting instead of source confusion. Finally, some monkeys learned to select remembered images from either source on cue, showing that they did indeed remember both items and both sources. This paradigm potentially provides a new model to study a critical aspect of episodic memory in nonhuman primates. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system

  15. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    Science.gov (United States)

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.

    Science.gov (United States)

    Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K

    2018-01-30

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.

  17. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

    Science.gov (United States)

    Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin

    2014-05-28

    Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.

  18. Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex.

    Science.gov (United States)

    Wang, Feng; Chen, Minggui; Yan, Yin; Zhaoping, Li; Li, Wu

    2015-09-30

    Visual perception is influenced by attention deployed voluntarily or triggered involuntarily by salient stimuli. Modulation of visual cortical processing by voluntary or endogenous attention has been extensively studied, but much less is known about how involuntary or exogenous attention affects responses of visual cortical neurons. Using implanted microelectrode arrays, we examined the effects of exogenous attention on neuronal responses in the primary visual cortex (V1) of awake monkeys. A bright annular cue was flashed either around the receptive fields of recorded neurons or in the opposite visual field to capture attention. A subsequent grating stimulus probed the cue-induced effects. In a fixation task, when the cue-to-probe stimulus onset asynchrony (SOA) was visual fields weakened or diminished both the physiological and behavioral cueing effects. Our findings indicate that exogenous attention significantly modulates V1 responses and that the modulation strength depends on both novelty and task relevance of the stimulus. Significance statement: Visual attention can be involuntarily captured by a sudden appearance of a conspicuous object, allowing rapid reactions to unexpected events of significance. The current study discovered a correlate of this effect in monkey primary visual cortex. An abrupt, salient, flash enhanced neuronal responses, and shortened the animal's reaction time, to a subsequent visual probe stimulus at the same location. However, the enhancement of the neural responses diminished after repeated exposures to this flash if the animal was not required to react to the probe. Moreover, a second, simultaneous, flash at another location weakened the neuronal and behavioral effects of the first one. These findings revealed, beyond the observations reported so far, the effects of exogenous attention in the brain. Copyright © 2015 the authors 0270-6474/15/3513419-11$15.00/0.

  19. Depth perception from moving cast shadow in macaque monkey.

    Science.gov (United States)

    Mizutani, Saneyuki; Usui, Nobuo; Yokota, Takanori; Mizusawa, Hidehiro; Taira, Masato; Katsuyama, Narumi

    2015-07-15

    In the present study, we investigate whether the macaque monkey can perceive motion in depth using a moving cast shadow. To accomplish this, we conducted two experiments. In the first experiment, an adult Japanese monkey was trained in a motion discrimination task in depth by binocular disparity. A square was presented on the display so that it appeared with a binocular disparity of 0.12 degrees (initial position), and moved toward (approaching) or away from (receding) the monkey for 1s. The monkey was trained to discriminate the approaching and receding motion of the square by GO/delayed GO-type responses. The monkey showed a significantly high accuracy rate in the task, and the performance was maintained when the position, color, and shape of the moving object were changed. In the next experiment, the change in the disparity was gradually decreased in the motion discrimination task. The results showed that the performance of the monkey declined as the distance of the approaching and receding motion of the square decreased from the initial position. However, when a moving cast shadow was added to the stimulus, the monkey responded to the motion in depth induced by the cast shadow in the same way as by binocular disparity; the reward was delivered randomly or given in all trials to prevent the learning of the 2D motion of the shadow in the frontal plane. These results suggest that the macaque monkey can perceive motion in depth using a moving cast shadow as well as using binocular disparity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Neuropeptide Y-immunoreactive neurons in the cerebral cortex of humans and other haplorrhine primates

    Science.gov (United States)

    Raghanti, Mary Ann; Conley, Tiffini; Sudduth, Jessica; Erwin, Joseph M.; Stimpson, Cheryl D.; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    We examined the distribution of neurons immunoreactive for neuropeptide Y (NPY) in the posterior part of the superior temporal cortex (Brodmann's area 22 or area Tpt) of humans and nonhuman haplorrhine primates. NPY has been implicated in learning and memory and the density of NPY-expressing cortical neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and Alzheimer's disease. Due to the role that NPY plays in both cognition and neurodegenerative diseases, we tested the hypothesis that the density of cortical and interstitial neurons expressing NPY was increased in humans relative to other primate species. The study sample included great apes (chimpanzee and gorilla), Old World monkeys (pigtailed macaque, moor macaque, and baboon) and New World monkeys (squirrel monkey and capuchin). Stereologic methods were used to estimate the density of NPY-immunoreactive (-ir) neurons in layers I-VI of area Tpt and the subjacent white matter. Adjacent Nissl-stained sections were used to calculate local densities of all neurons. The ratio of NPY-ir neurons to total neurons within area Tpt and the total density of NPY-ir neurons within the white matter were compared among species. Overall, NPY-ir neurons represented only an average of 0.006% of the total neuron population. While there were significant differences among species, phylogenetic trends in NPY-ir neuron distributions were not observed and humans did not differ from other primates. However, variation among species warrants further investigation into the distribution of this neuromodulator system. PMID:23042407

  1. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  2. Sensorimotor Learning in a Computerized Athletic Training Battery.

    Science.gov (United States)

    Krasich, Kristina; Ramger, Ben; Holton, Laura; Wang, Lingling; Mitroff, Stephen R; Gregory Appelbaum, L

    2016-01-01

    Sensorimotor abilities are crucial for performance in athletic, military, and other occupational activities, and there is great interest in understanding learning in these skills. Here, behavioral performance was measured over three days as twenty-seven participants practiced multiple sessions on the Nike SPARQ Sensory Station (Nike, Inc., Beaverton, Oregon), a computerized visual and motor assessment battery. Wrist-worn actigraphy was recorded to monitor sleep-wake cycles. Significant learning was observed in tasks with high visuomotor control demands but not in tasks of visual sensitivity. Learning was primarily linear, with up to 60% improvement, but did not relate to sleep quality in this normal-sleeping population. These results demonstrate differences in the rate and capacity for learning across perceptual and motor domains, indicating potential targets for sensorimotor training interventions.

  3. Nuclear weapon testing and the monkey business

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1978-01-01

    Reasons for India's total ban on the export of rhesus monkeys to U.S. have been explained. The major reason is that some of the animals were used in nuclear weapon related radiation experiments. This was a clear violation of a stricture in the agreement about supply of monkeys. The stricture prohibited the use of animals for research concerning military operations, including nuclear weapon testing. It is pleaded that a strict enforcement of strictures rather than a total ban on the export of monkeys would be better in the interest of advancement of knowledge in human medicine and disease control. (M.G.B.)

  4. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    Science.gov (United States)

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  5. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration.

    Science.gov (United States)

    Murphy, Karagh; James, Logan S; Sakata, Jon T; Prather, Jonathan F

    2017-08-01

    Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies. Copyright © 2017 the American Physiological Society.

  6. Modulation of sensorimotor circuits during retrieval of negative Autobiographical Memories: Exploring the impact of personality dimensions.

    Science.gov (United States)

    Mineo, Ludovico; Concerto, Carmen; Patel, Dhaval; Mayorga, Tyrone; Chusid, Eileen; Infortuna, Carmenrita; Aguglia, Eugenio; Sarraf, Yasmin; Battaglia, Fortunato

    2018-02-01

    Autobiographical Memory (AM) retrieval refers to recollection of experienced past events. Previous Transcranial Magnetic Stimulation (TMS) studies have shown that presentation of emotional negative stimuli affects human motor cortex excitability resulting in larger motor evoked potentials (MEPs). Up to date no TMS studies have been carried out in order to investigate the effect of personal memories with negative emotional value on corticospinal excitability. In this study we hypothesized that negative AM retrieval will modulate corticomotor excitability and sensorimotor integration as determined by TMS neurophysiological parameters. Furthermore, we investigated whether TMS responses during retrieval of negative AM are associated with specific personality traits. Twelve healthy subjects were asked to recall either a negative or a neutral AM across two different days in a randomized order. During this memory retrieval, the following TMS parameters were recorded: MEPs; Short- interval intracortical inhibition (SICI) and Intracortical facilitation (ICF); Short-latency afferent inhibition (SAI) and Long- latency afferent inhibition (LAI). Personality traits were assessed by using the Big Five scale. Statistical analysis was performed using factorial ANOVAs and multiple linear regression models. When compared to retrieval of neutral AM, recollection of negative AM induced a larger increase in MEP amplitude, an increase in ICF, and a decrease in SAI. The neuroticism personality trait was a significant predictor of the MEP amplitude increase during retrieval of negative AM. Altogether these results indicate that cortical excitability and sensorimotor integration are selectively modulated by the valence of AM. These results provide the first TMS evidence that the modulatory effect of the AM retrieval is associated with specific personality traits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Directional character of spreading of vasogenic cerebral edema after radiation damage in rhesus monkeys, and effects of removal of the primary lesion

    International Nuclear Information System (INIS)

    Wakisaka, Shinichiro; Iguchi, Takahiko; Nakagaki, Hiroyuki; Tanaka, Akira; Black, P.; O'Neill, R.R.; Caveness, W.F.

    1986-01-01

    Five pubescent rhesus monkeys were exposed to 35 Gy of orthovoltage x-irradiation in a single dose to the right visual cortex. Twenty to 36 weeks later the irradiated region broke down rather abruptly. Steep rise of cerebrospinal fluid (CSF) protein and lactic dehydrogenase (LDH) indicated disruption of blood brain barrier (BBB) and tissue breakdown. Visual evoked response (VER), funduscopic and clinical findings suggested disfunction of neural tissues and increased intracranial pressure. Extraordinary brain swelling and distortion were observed at the time of sacrifice. The most striking finding was that the ipsilateral middle and inferior temporal gyri, where radiation did not affect directly, were selectively swollen and edematous sparing the superior temporal gyrus. Corticocortical neuronal connections between visual cortex and inferior convexity of the temporal lobe has been demonstrated by Kuypers et al. Our previous studies also disclosed selective swelling of other remote visual association areas, i. e., ipsilateral lateral geniculate body and uncinate fasciculus. Thus, edema fluid might propagate from the site of the lesion through the anatomic pathways. In the group of monkeys, which received surgical removals of damaged right occipital lobes where BBB was disrupted, CSF protein and LDH drastically returned to the normal base line values after the surgery. Furthermore, no swelling of ipsilateral middle and inferior temporal gyri was observed in this group at the time of sacrifice, indicating that spreaded vasogenic edema could be subdued by removing the primary lesion. (author)

  8. Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis) social learning.

    Science.gov (United States)

    Hopper, Lm; Holmes, An; Williams, LE; Brosnan, Sf

    2013-01-01

    Although the social learning abilities of monkeys have been well documented, this research has only focused on a few species. Furthermore, of those that also incorporated dissections of social learning mechanisms, the majority studied either capuchins (Cebus apella) or marmosets (Callithrix jacchus). To gain a broader understanding of how monkeys gain new skills, we tested squirrel monkeys (Saimiri boliviensis) which have never been studied in tests of social learning mechanisms. To determine whether S. boliviensis can socially learn, we ran "open diffusion" tests with monkeys housed in two social groups (N = 23). Over the course of 10 20-min sessions, the monkeys in each group observed a trained group member retrieving a mealworm from a bidirectional task (the "Slide-box"). Two thirds (67%) of these monkeys both learned how to operate the Slide-box and they also moved the door significantly more times in the direction modeled by the trained demonstrator than the alternative direction. To tease apart the underlying social learning mechanisms we ran a series of three control conditions with 35 squirrel monkeys that had no previous experience with the Slide-box. The first replicated the experimental open diffusion sessions but without the inclusion of a trained model, the second was a no-information control with dyads of monkeys, and the third was a 'ghost' display shown to individual monkeys. The first two controls tested for the importance of social support (mere presence effect) and the ghost display showed the affordances of the task to the monkeys. The monkeys showed a certain level of success in the group control (54% of subjects solved the task on one or more occasions) and paired controls (28% were successful) but none were successful in the ghost control. We propose that the squirrel monkeys' learning, observed in the experimental open diffusion tests, can be best described by a combination of social learning mechanisms in concert; in this case, those

  9. Analogical reasoning in a capuchin monkey (Cebus apella).

    Science.gov (United States)

    Kennedy, Erica Hoy; Fragaszy, Dorothy M

    2008-05-01

    Previous evidence has suggested that analogical reasoning (recognizing similarities among object relations when the objects themselves are dissimilar) is limited to humans and apes. This study investigated whether capuchin monkeys (Cebus apella) can use analogical reasoning to solve a 3-dimensional search task. The task involved hiding a food item under 1 of 2 or 3 plastic cups of different sizes and then allowing subjects to search for food hidden under the cup of analogous size in their own set of cups. Four monkeys were exposed to a series of relational matching tasks. If subjects reached criterion on these tasks, they were exposed to relational transfer tasks involving novel stimuli. Three of the monkeys failed to reach criterion on the basic relational matching tasks and therefore were not tested further. One monkey, however, revealed above-chance performance on a series of transfer tasks with 3 novel stimuli. This evidence suggests that contrary to previous arguments, a member of a New World monkey species can solve an analogical problem. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  10. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    International Nuclear Information System (INIS)

    Stanley, H.A.; Reese, R.T.

    1985-01-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using 125 T-antibodies were done

  11. Distribution and abundance of sacred monkeys in Igboland, southern Nigeria.

    Science.gov (United States)

    Baker, Lynne R; Tanimola, Adebowale A; Olubode, Oluseun S; Garshelis, David L

    2009-07-01

    Although primates are hunted on a global scale, some species are protected against harassment and killing by taboos or religious doctrines. Sites where the killing of sacred monkeys or the destruction of sacred groves is forbidden may be integral to the conservation of certain species. In 2004, as part of a distribution survey of Sclater's guenon (Cercopithecus sclateri) in southern Nigeria, we investigated reports of sacred monkeys in the Igbo-speaking region of Nigeria. We confirmed nine new sites where primates are protected as sacred: four with tantalus monkeys (Chlorocebus tantalus) and five with mona monkeys (Cercopithecus mona). During 2004-2006, we visited two communities (Akpugoeze and Lagwa) previously known to harbor sacred populations of Ce. sclateri to estimate population abundance and trends. We directly counted all groups and compared our estimates with previous counts when available. We also estimated the size of sacred groves and compared these with grove sizes reported in the literature. The mean size of the sacred groves in Akpugoeze (2.06 ha, n = 10) was similar to others in Africa south of the Sahel, but larger than the average grove in Lagwa (0.49 ha, n = 15). We estimated a total population of 124 Sclater's monkeys in 15 groups in Lagwa and 193 monkeys in 20 groups in Akpugoeze. The Akpugoeze population was relatively stable over two decades, although the proportion of infants declined, and the number of groups increased. As Sclater's monkey does not occur in any official protected areas, sacred populations are important to the species' long-term conservation. Despite the monkeys' destruction of human crops, most local people still adhere to the custom of not killing monkeys. These sites represent ideal locations in which to study the ecology of Sclater's monkey and human-wildlife interactions. (c) 2009 Wiley-Liss, Inc.

  12. Origins of the specialization for letters and numbers in ventral occipitotemporal cortex.

    Science.gov (United States)

    Hannagan, Thomas; Amedi, Amir; Cohen, Laurent; Dehaene-Lambertz, Ghislaine; Dehaene, Stanislas

    2015-07-01

    Deep in the occipitotemporal cortex lie two functional regions, the visual word form area (VWFA) and the number form area (NFA), which are thought to play a special role in letter and number recognition, respectively. We review recent progress made in characterizing the origins of these symbol form areas in children or adults, sighted or blind subjects, and humans or monkeys. We propose two non-mutually-exclusive hypotheses on the origins of the VWFA and NFA: the presence of a connectivity bias, and a sensitivity to shape features. We assess the explanatory power of these hypotheses, describe their consequences, and offer several experimental tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Lateralization of the posterior parietal cortex for internal monitoring of self- versus externally generated movements.

    Science.gov (United States)

    Ogawa, Kenji; Inui, Toshio

    2007-11-01

    Internal monitoring or state estimation of movements is essential for human motor control to compensate for inherent delays and noise in sensorimotor loops. Two types of internal estimation of movements exist: self-generated movements, and externally generated movements. We used functional magnetic resonance imaging to investigate differences in brain activity for internal monitoring of self- versus externally generated movements during visual occlusion. Participants tracked a sinusoidally moving target with a mouse cursor. On some trials, vision of either target (externally generated) or cursor (self-generated) movement was transiently occluded, during which subjects continued tracking by estimating current position of either the invisible target or cursor on screen. Analysis revealed that both occlusion conditions were associated with increased activity in the presupplementary motor area and decreased activity in the right lateral occipital cortex compared to a control condition with no occlusion. Moreover, the right and left posterior parietal cortex (PPC) showed greater activation during occlusion of target and cursor movements, respectively. This study suggests lateralization of the PPC for internal monitoring of internally versus externally generated movements, fully consistent with previously reported clinical findings.

  14. Locomotor Anatomy and Behavior of Patas Monkeys (Erythrocebus patas with Comparison to Vervet Monkeys (Cercopithecus aethiops

    Directory of Open Access Journals (Sweden)

    Adrienne L. Zihlman

    2013-01-01

    Full Text Available Patas monkeys (Erythrocebus patas living in African savanna woodlands and grassland habitats have a locomotor system that allows them to run fast, presumably to avoid predators. Long fore- and hindlimbs, long foot bones, short toes, and a digitigrade foot posture were proposed as anatomical correlates with speed. In addition to skeletal proportions, soft tissue and whole body proportions are important components of the locomotor system. To further distinguish patas anatomy from other Old World monkeys, a comparative study based on dissection of skin, muscle, and bone from complete individuals of patas and vervet monkeys (Cercopithecus aethiops was undertaken. Analysis reveals that small adjustments in patas skeletal proportions, relative mass of limbs and tail, and specific muscle groups promote efficient sagittal limb motion. The ability to run fast is based on a locomotor system adapted for long distance walking. The patas’ larger home range and longer daily range than those of vervets give them access to highly dispersed, nutritious foods, water, and sleeping trees. Furthermore, patas monkeys have physiological adaptations that enable them to tolerate and dissipate heat. These features all contribute to the distinct adaptation that is the patas monkeys’ basis for survival in grassland and savanna woodland areas.

  15. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex

    Directory of Open Access Journals (Sweden)

    Florian Mormann

    2008-05-01

    Full Text Available Theta oscillations in the medial temporal lobe (MTL of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i within the entorhinal cortex, (ii within the hippocampus, and (iii between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval.

  16. Default Mode of Brain Function in Monkeys

    Science.gov (United States)

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A.; Buckner, Randy L.; Vanduffel, Wim

    2013-01-01

    Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment. PMID:21900574

  17. Captive spider monkeys (Ateles geoffroyi) arm-raise to solicit allo-grooming.

    Science.gov (United States)

    Scheel, Matthew H; Edwards, Dori

    2012-03-01

    Old World monkeys solicit allo-grooming from conspecifics. However, there are relatively few studies of allo-grooming among spider monkeys, and descriptions of allo-grooming solicitation among spider monkeys are anecdotal. In this study, eighty-one hours of video, shot over eight weeks, captured 271 allo-grooming bouts among small groups of captive spider monkeys. Six of eight monkeys made heretofore unreported arm-raises that solicited higher than normal rates of allo-grooming. Allo-grooming bout durations following arm-raises also tended to be longer than bouts not preceded by arm-raises. The efficacy of the arm-raise at soliciting allo-grooming suggests spider monkeys are capable of intentional communication. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex

    Science.gov (United States)

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction. PMID:23029483

  19. Effect of sensorimotor training on balance in elderly patients with knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Amal F. Ahmed

    2011-10-01

    Full Text Available Osteoarthritis (OA is a chronic disabling disease that generates many impairments of functional health status. Impairments of balance are recognized in patients with knee OA. This study investigated the short term effect of sensorimotor training on balance in elderly patients with knee OA, and whether these changes were associated with impairment of functional performance. In addition the possible independent predictors of impaired balance were determined. Forty female patients with knee OA were divided into two equal groups. The control group received a traditional exercise programme and the study group received sensorimotor training in addition to traditional exercises. Blind assessment was conducted at the beginning of the study and after 6 weeks of training to measure balance [in the form of overall stability index (OSI, medial/lateral stability index (MLSI, anterior/posterior stability index (APSI], perceived pain, proprioception acuity, knee extensor muscle torque, and functional disability. For the sensorimotor group, statistically significant improvements were recorded in all measured parameters, while the traditional exercise group recorded significant improvement only on measures of perceived pain, proprioception acuity, muscle torque, and functional disability, and non-significant changes on all balance measurements. Furthermore, the sensorimotor group produced significantly better improvement than the traditional group. The main predictor of balance was proprioception. The classic traditional exercise programme used in the management of knee OA is not enough for improving balance. Addition of sensorimotor training to the rehabilitation programme of these patients could produce more positive effects on balance and functional activity levels. The association between balance, proprioception and functional activity should be considered when treating knee OA.

  20. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    International Nuclear Information System (INIS)

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-01-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production

  1. How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex?

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen; Markowitz, Jeffrey

    2011-12-01

    All primates depend for their survival on being able to rapidly learn about and recognize objects. Objects may be visually detected at multiple positions, sizes, and viewpoints. How does the brain rapidly learn and recognize objects while scanning a scene with eye movements, without causing a combinatorial explosion in the number of cells that are needed? How does the brain avoid the problem of erroneously classifying parts of different objects together at the same or different positions in a visual scene? In monkeys and humans, a key area for such invariant object category learning and recognition is the inferotemporal cortex (IT). A neural model is proposed to explain how spatial and object attention coordinate the ability of IT to learn invariant category representations of objects that are seen at multiple positions, sizes, and viewpoints. The model clarifies how interactions within a hierarchy of processing stages in the visual brain accomplish this. These stages include the retina, lateral geniculate nucleus, and cortical areas V1, V2, V4, and IT in the brain's What cortical stream, as they interact with spatial attention processes within the parietal cortex of the Where cortical stream. The model builds upon the ARTSCAN model, which proposed how view-invariant object representations are generated. The positional ARTSCAN (pARTSCAN) model proposes how the following additional processes in the What cortical processing stream also enable position-invariant object representations to be learned: IT cells with persistent activity, and a combination of normalizing object category competition and a view-to-object learning law which together ensure that unambiguous views have a larger effect on object recognition than ambiguous views. The model explains how such invariant learning can be fooled when monkeys, or other primates, are presented with an object that is swapped with another object during eye movements to foveate the original object. The swapping procedure is

  2. The Influence of Gravito-Inertial Force on Sensorimotor Integration and Reflexive Responses

    Science.gov (United States)

    Curthoys, Ian S.; Guedry, Fred E.; Merfeld, Daniel M.; Watt, Doug G. D.; Tomko, David L.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Sensorimotor responses (e.g.. eye movements, spinal reflexes, etc depend upon the interpretation of the neural signals from the sensory systems. Since neural signals from the otoliths may represent either tilt (gravity) or translation (linear inertial force), sensory signals from the otolith organs are necessarily somewhat ambiguous. Therefore. the neural responses to changing otolith signals depend upon the context of the stimulation (e.g- active vs. passive, relative orientation of gravity, etc.) as well as upon other sensory signals (e.g., vision. canals, etc.). This session will focus upon the -role -played by the sensory signals from the otolith organs in producing efficient sensorimotor and behavioral responses. Curthoys will show the influence of the peripheral anatomy and physiology. Tomko will discuss the influence of tilt and translational otolith signals on eye movements. Merfeld will demonstrate the rate otolith organs play during the interaction of sensory signals from the canals and otoliths. Watt will show the influence of the otoliths on spinal/postural responses. Guedry will discuss the contribution of vestibular information to "path of movement"' perception and to the development of a stable vertical reference. Sensorimotor responses to the ambiguous inertial force stimulation provide an important tool to investigate how the nervous system processes patterns of sensory information and yields functional sensorimotor responses.

  3. Towards a unified scheme of cortical lamination for primary visual cortex of primates: insights from NeuN and VGLUT2 immunoreactivity

    Directory of Open Access Journals (Sweden)

    Pooja eBalaram

    2014-08-01

    Full Text Available Primary visual cortex (V1 is clearly distinguishable from other cortical areas by its distinctive pattern of neocortical lamination across mammalian species. In some mammals, primates in particular, the layers of V1 are further divided into a number of sublayers based on their anatomical and functional characteristics. While these sublayers are easily recognizable across a range of primates, the exact number of divisions in each layer and their relative position within the depth of V1 has been inconsistently reported, largely due to conflicting schemes of nomenclature for the V1 layers. This conflict centers on the definition of layer 4 in primate V1, and the subdivisions of layer 4 that can be consistently identified across primate species. Brodmann’s (1909 laminar scheme for V1 delineates three subdivisions of layer 4 in primates, based on cellular morphology and geniculate inputs in anthropoid monkeys. In contrast, Hässler’s (1967 laminar scheme delineates a single layer 4 and multiple subdivisions of layer 3, based on comparisons of V1 lamination across the primate lineage. In order to clarify laminar divisions in primate visual cortex, we performed NeuN and VGLUT2 immunohistochemistry in V1 of chimpanzees, Old World macaque monkeys, New World squirrel, owl, and marmoset monkeys, prosimian galagos and mouse lemurs, and nonprimate, but highly visual, tree shrews. By comparing the laminar divisions identified by each method across species, we find that Hässler’s (1967 laminar scheme for V1 provides a more consistent representation of neocortical layers across all primates, including humans, and facilitates comparisons of V1 lamination with nonprimate species. These findings, along with many others, support the consistent use of Hässler’s laminar scheme in V1 research.

  4. Correlated inter-regional variations in low frequency local field potentials and resting state BOLD signals within S1 cortex of monkeys.

    Science.gov (United States)

    Wilson, George H; Yang, Pai-Feng; Gore, John C; Chen, Li Min

    2016-08-01

    The hypothesis that specific frequency components of the spontaneous local field potentials (LFPs) underlie low frequency fluctuations of resting state fMRI (rsfMRI) signals was tested. The previous analyses of rsfMRI signals revealed differential inter-regional correlations among areas 3a, 3b, and 1 of primary somatosensory cortex (S1) in anesthetized monkeys (Wang et al. [2013]: Neuron 78:1116-1126). Here LFP band(s) which correlated between S1 regions, and how these inter-regional correlation differences covaried with rsfMRI signals were examined. LFP signals were filtered into seven bands (delta, theta, alpha, beta, gamma low, gamma high, and gamma very high), and then a Hilbert transformation was applied to obtain measures of instantaneous amplitudes and temporal lags between regions of interest (ROI) digit-digit pairs (areas 3b-area 1, area 3a-area 1, area 3a-area 3b) and digit-face pairs (area 3b-face, area 1-face, and area 3a-face). It was found that variations in the inter-regional correlation strengths between digit-digit and digit-face pairs in the delta (1-4 Hz), alpha (9-14 Hz), beta (15-30 Hz), and gamma (31-50 Hz) bands parallel those of rsfMRI signals to varying degrees. Temporal lags between digit-digit area pairs varied across LFP bands, with area 3a mostly leading areas 1/2 and 3b. In summary, the data demonstrates that the low and middle frequency range (1-50 Hz) of spontaneous LFP signals similarly covary with the low frequency fluctuations of rsfMRI signals within local circuits of S1, supporting a neuronal electrophysiological basis of rsfMRI signals. Inter-areal LFP temporal lag differences provided novel insights into the directionality of information flow among S1 areas at rest. Hum Brain Mapp 37:2755-2766, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Long-range traveling waves of activity triggered by local dichoptic stimulation in V1 of behaving monkeys

    Science.gov (United States)

    Yang, Zhiyong; Heeger, David J.; Blake, Randolph

    2014-01-01

    Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785

  6. Characterisation of the appearance of radioactive metabolites in monkey and human plasma from the 5-HT1A receptor radioligand, [carbonyl-11C]WAY-100635 - explanation of high signal contrast in PET and an aid to biomathematical modelling

    International Nuclear Information System (INIS)

    Osman, Safiye; Lundkvist, Camilla; Pike, Victor W.; Halldin, Christer; McCarron, Julie A.; Swahn, Carl-Gunnar; Farde, Lars; Ginovart, Nathalie; Luthra, Sajinder K.; Gunn, Roger N.; Bench, Christopher J.; Sargent, Peter A.; Grasby, Paul M.

    1998-01-01

    N-(2-(4-(2-Methoxy-phenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide (WAY-100635), labelled in its amido carbonyl group with 11 C (t 1/2 = 20.4 min), is a promising radioligand for the study of brain 5-HT 1A receptors with positron emission tomography (PET). Thus, in PET experiments in six cynomolgus monkeys and seven healthy male volunteers, [carbonyl- 11 C]WAY-100635 was taken up avidly by brain. Radioactivity was retained in regions rich in 5-HT 1A receptors, such as occipital cortex, temporal cortex and raphe nuclei, but cleared rapidly from cerebellum, a region almost devoid of 5-HT 1A receptors. [Carbonyl- 11 C]WAY-100635 provides about 3- and 10-fold higher signal contrast (receptor-specific to nonspecific binding) than [O-methyl- 11 C]WAY-100635 in receptor-rich areas of monkey and human brain, respectively. To elucidate the effect of label position on radioligand behaviour and to aid in the future biomathematical interpretation of the kinetics of regional cerebral radioactivity uptake in terms of receptor-binding parameters, HPLC was used to measure [carbonyl- 11 C]WAY-100635 and its radioactive metabolites in plasma at various times after intravenous injection. Radioactivity cleared rapidly from monkey and human plasma. Parent radioligand represented 19% of the radioactivity in monkey plasma at 47 min and 8% of the radioactivit