WorldWideScience

Sample records for monkey hippocampal formation

  1. Stimulus Similarity and Encoding Time Influence Incidental Recognition Memory in Adult Monkeys with Selective Hippocampal Lesions

    Science.gov (United States)

    Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne

    2011-01-01

    Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…

  2. Morphological Variations of Hippocampal Formation in Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-02-01

    Full Text Available Researchers at Hospital Sao Paulo and other centers in Brazil compared the hippocampal formation (HF morphology of healthy asymptomatic individuals (n=30 with that of patients with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS(n=68, of patients with malformations of cortical development (MCD(n=34, and of patients with morphological HF variations without other structural signs (pure MVHF(n=12.

  3. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  4. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally......Prenatal exposure to beverage alcohol is a major cause of mild mental retardation and developmental delay. In nonendangered alcohol-preferring vervet monkeys, we modeled the most common nondysmorphic form of fetal alcohol syndrome disorder with voluntary drinking during the third trimester...... and persist through infancy (5 months) and juvenile (2 years) stages. Although the volumes of hippocampal subdivisions in FAE animals are not atypical at birth, by age 2, they are only 65-70% of those estimated in age-matched controls. These data suggest that moderate, naturalistic alcohol consumption during...

  5. Hummingbirds have a greatly enlarged hippocampal formation.

    Science.gov (United States)

    Ward, Brian J; Day, Lainy B; Wilkening, Steven R; Wylie, Douglas R; Saucier, Deborah M; Iwaniuk, Andrew N

    2012-08-23

    Both field and laboratory studies demonstrate that hummingbirds (Apodiformes, Trochilidae) have exceptional spatial memory. The complexity of spatial-temporal information that hummingbirds must retain and use daily is probably subserved by the hippocampal formation (HF), and therefore, hummingbirds should have a greatly expanded HF. Here, we compare the relative size of the HF in several hummingbird species with that of other birds. Our analyses reveal that the HF in hummingbirds is significantly larger, relative to telencephalic volume, than any bird examined to date. When expressed as a percentage of telencephalic volume, the hummingbird HF is two to five times larger than that of caching and non-caching songbirds, seabirds and woodpeckers. This HF expansion in hummingbirds probably underlies their ability to remember the location, distribution and nectar content of flowers, but more detailed analyses are required to determine the extent to which this arises from an expansion of HF or a decrease in size of other brain regions.

  6. Effects of hippocampal lesions on the monkey's ability to learn large sets of object-place associations.

    Science.gov (United States)

    Belcher, Annabelle M; Harrington, Rebecca A; Malkova, Ludise; Mishkin, Mortimer

    2006-01-01

    Earlier studies found that recognition memory for object-place associations was impaired in patients with relatively selective hippocampal damage (Vargha-Khadem et al., Science 1997; 277:376-380), but was unaffected after selective hippocampal lesions in monkeys (Malkova and Mishkin, J Neurosci 2003; 23:1956-1965). A potentially important methodological difference between the two studies is that the patients were required to remember a set of 20 object-place associations for several minutes, whereas the monkeys had to remember only two such associations at a time, and only for a few seconds. To approximate more closely the task given to the patients, we trained monkeys on several successive sets of 10 object-place pairs each, with each set requiring learning across days. Despite the increased associative memory demands, monkeys given hippocampal lesions were unimpaired relative to their unoperated controls, suggesting that differences other than set size and memory duration underlie the different outcomes in the human and animal studies. (c) 2005 Wiley-Liss, Inc.

  7. Effect of carbamazepine (Tegretol) on seizure and EEG patterns in monkeys with alumina-induced focal motor and hippocampal foci.

    Science.gov (United States)

    David, J; Grewal, R S

    1976-12-01

    Qualitative and quantitative aspects of chronic carbamazepine (Tegretol) medication on focal seizures and associated interictal EEG abnormalities in Rhesus monkeys with alumina-induced foci in either the sensorimotor cortex or the hipocampus was investigated. In both groups of animals, carbamazepine produced qualitative control of visible seizures and reduced intracortical spike propagation, but did not cause complete normalization of the background EEG; quantitative indices, such as spike density and amount of paroxysmal discharge representative of abnormal EEG activity, were significantly reduced with respect to predrug values during medication and after cessation as well. Threshold to pentylenetetrazol was elevated by carbamazepine in both groups of epileptic monkeys. Aggressivity and other clinical manifestations in monekys with hippocampal foci were markedly reduced by carbamazepine.

  8. Food restriction reduces neurogenesis in the avian hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Barbara-Anne Robertson

    Full Text Available The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the

  9. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.

    Science.gov (United States)

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.

  10. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation

    Science.gov (United States)

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L.; Amaral, David G.

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused, or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger, as compared to perfusion-fixed tissue. Non-phosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well-stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. PMID:18972553

  11. Past, present, and future in hippocampal formation and memory research.

    Science.gov (United States)

    Muñoz-López, Mónica

    2015-06-01

    Over 100 years of research on the hippocampal formation has led us understand the consequences of lesions in humans, the functional networks, anatomical pathways, neuronal types and their local circuitry, receptors, molecules, intracellular cascades, and some of the physiological mechanisms underlying long-term spatial and episodic memory. In addition, complex computational models allow us to formulate sophisticated hypotheses; many of them testable with techniques recently developed unthinkable in the past. Although the neurobiology of the cognitive map is starting to be revealed today, we still face a future with many unresolved questions. The aim of this commentary is twofold. First is to point out some of the critical findings in hippocampal formation research and new challenges. Second, to briefly summarize what the anatomy of memory can tell us about how highly processed sensory information from distant cortical areas communicate with different subareas of the entorhinal cortex, dentate gyrus, and hippocampal subfields to integrate and consolidate unique episodic memory traces. © 2015 Wiley Periodicals, Inc.

  12. Spatial representation in the hippocampal formation: a history.

    Science.gov (United States)

    Moser, Edvard I; Moser, May-Britt; McNaughton, Bruce L

    2017-10-26

    Since the first place cell was recorded and the cognitive-map theory was subsequently formulated, investigation of spatial representation in the hippocampal formation has evolved in stages. Early studies sought to verify the spatial nature of place cell activity and determine its sensory origin. A new epoch started with the discovery of head direction cells and the realization of the importance of angular and linear movement-integration in generating spatial maps. A third epoch began when investigators turned their attention to the entorhinal cortex, which led to the discovery of grid cells and border cells. This review will show how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal-entorhinal systems from the 1970s until today. It is now possible to investigate how specialized cell types of these systems work together, and spatial mapping may become one of the first cognitive functions to be understood in mechanistic detail.

  13. Distribution of neurotensin receptors in the primate hippocampal region: a quantitative autoradiographic study in the monkey and the postmortem human brain

    International Nuclear Information System (INIS)

    Kohler, Christer; Radesater, A.; Chan-Palay, V.

    1987-01-01

    The distribution of [ 3 H]neurotensin ([ 3 H]NT) binding sites in the monkey and the postmortem human brain was studied by using quantitative in vitro receptor autoradiography. Biochemical experiments carried out on tissue sections of the monkey hippocampus showed that the binding of [ 3 H]NT was saturable, reversible and of high specificity. The hippocampal [ 3 H]NT binding was displaced by fragment NT 8-13 but not fragment NT 1-8 of the peptide. The anatomical analysis showed a highly heterogeneous distribution of [ 3 H]NT binding sites within both the monkey and the human hippocampal region. In both species the highest density of [ 3 H]NT binding sites was found in the presubiculum (rank order of binding density: layer 2>6>1>3, 4, 5 in both monkey and man) and the entorhinal area (monkey: layer 4>6>5>1>2>3; human: layer 1=2>5>3). The subiculum and Ammon's horn were relatively poor in [ 3 H]NT binding sites in both species. In the area dentata the highest density of [ 3 H]NT binding sites was found in the hilar region. (author)

  14. Cholinergic denervation of the hippocampal formation does not produce long-term changes in glucose metabolism

    International Nuclear Information System (INIS)

    Harrell, L.E.; Davis, J.N.

    1984-01-01

    Decreased glucose metabolism is found in Alzheimer's disease associated with a loss of cholinergic neurons. The relationship between the chronic cholinergic denervation produced by medial septal lesions and glucose metabolism was studied using 2-deoxy-D-[ 3 H]glucose in the rat hippocampal formation. Hippocampal glucose metabolism was increased 1 week after medial septal lesions. Three weeks after lesions, glucose metabolism was profoundly suppressed in all regions. By 3 months, intraregional hippocampal glucose metabolism had returned to control values. Our results demonstrate that chronic cholinergic denervation of the hippocampal formation does not result in permanent alterations of metabolic activity

  15. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    Science.gov (United States)

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  16. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    Science.gov (United States)

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  17. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    NARCIS (Netherlands)

    Liu, X.; Qin, S.; Rijpkema, M.J.P.; Luo, J.; Fernandez, G.S.E.

    2010-01-01

    BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly

  18. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise. METHODOLOGY/PRINCIPAL FINDINGS: In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten and noise (induced by high versus low distraction as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.

  19. Asymmetry of limbic structure (hippocampal formation and amygdaloidal complex at PTSD

    Directory of Open Access Journals (Sweden)

    Aida Sarač-Hadžihalilović

    2003-05-01

    Full Text Available Defining exact position of weak anatomic function which is find in a base of neurological and psychiatric disorder is just became the subject of intensive research interest. For this purposes it is important to implement structural and functional MRI techniques, also for further lightening and seeing subject of this work, more concretely connected to PTSD. Therefore, exactly MRI gives most sensitive volumetric measuring of hippocampal formation and amygdaloidal complex.The goal of this work was to research asymmetry of hippocampal formation and amygdaloidal complex to the PTSD patients.Results showed that at the axial slice length of hippocampal formation on the left and right side of all patients are significantly asymmetric. At the sagittal slice from the left side of hippocampal formation is in many cases longer than right about 50 %. At the coronal slice, there are no significant differences toward patient proportion according to symm. / asymm. of the hippocampal formation width at the right and left side. Difference in volume average of hippocampal formation between right and left side for axial and coronal slice is not statistically significant, but it is significant for sagittal slice. In about amygdaloidal complex patients with PTSD toward symm. / asymm. Amygdaloidal complex at the right and left side of axial and sagittal slice in all three measurement shows asymmetry, what is especially shown at sagittal slice. Difference in average length of amygdaloidal complex at the right and left side is not statistically significant for no one slice.Therefore, results of a new research that are used MRI, showed smaller hippocampal level at PTSD (researched by Van der Kolka 1996, Pitman 1996, Bremner et al., 1995.. Application of MRI technique in research of asymmetry of hippocampal formation and amygdaloidal complex, which we used in our research, we recommend as a template for future researches in a sense of lightening anatomic function that is

  20. Morphological variations of hippocampal formation in epilepsy: image, clinical and electrophysiological data.

    Science.gov (United States)

    Hamad, Ana Paula Andrade; Carrete, Henrique; Bianchin, Marino Muxfeldt; Ferrari-Marinho, Taissa; Lin, Katia; Yacubian, Elza Márcia Targas; Vilanova, Luiz Celso Pereira; Garzon, Eliana; Caboclo, Luís Otávio; Sakamoto, Américo Ceiki

    2013-01-01

    Morphological variations of hippocampal formation (MVHF) are observed in patients with epilepsy but also in asymptomatic individuals. The precise role of these findings in epilepsy is not yet fully understood. This study analyzes the hippocampal formation (HF) morphology of asymptomatic individuals (n = 30) and of patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS) (n = 68), patients with malformations of cortical development (MCD) (n = 34), or patients with pure morphological variations of hippocampal formation (pure MVHF) (n = 12). Main clinical and electrophysiological data of patients with MVHF were also analyzed. Morphological variations of hippocampal formation are more frequently observed in patients with MCD than in patients with MTLE-HS or in asymptomatic individuals. Patients with pure morphological variations of hippocampal formation showed higher incidence of extratemporal seizure onset. Refractoriness seems to be more associated with other abnormalities, like HS or MCD, than with the HF variation itself. Thus, although morphological HF abnormalities might play a role in epileptogenicity, they seem to contribute less to refractoriness. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum

    Science.gov (United States)

    Fernandez-Ruiz, Juan; Wang, Jin; Aigner, Thomas G.; Mishkin, Mortimer

    2001-01-01

    Visual habit formation in monkeys, assessed by concurrent visual discrimination learning with 24-h intertrial intervals (ITI), was found earlier to be impaired by removal of the inferior temporal visual area (TE) but not by removal of either the medial temporal lobe or inferior prefrontal convexity, two of TE's major projection targets. To assess the role in this form of learning of another pair of structures to which TE projects, namely the rostral portion of the tail of the caudate nucleus and the overlying ventrocaudal putamen, we injected a neurotoxin into this neostriatal region of several monkeys and tested them on the 24-h ITI task as well as on a test of visual recognition memory. Compared with unoperated monkeys, the experimental animals were unaffected on the recognition test but showed an impairment on the 24-h ITI task that was highly correlated with the extent of their neostriatal damage. The findings suggest that TE and its projection areas in the ventrocaudal neostriatum form part of a circuit that selectively mediates visual habit formation. PMID:11274442

  2. MRI volumetric measurement of hippocampal formation based on statistic parametric mapping

    International Nuclear Information System (INIS)

    Hua Jianming; Jiang Biao; Zhou Jiong; Zhang Weimin

    2010-01-01

    Objective: To study MRI volumetric measurement of hippocampal formation using statistic parametric mapping (SPM) software and to discuss the value of the method applied to Alzheimer's disease (AD). Methods: The SPM software was used to divide the three-dimensional MRI brain image into gray matter, white matter and CSF separately. The bilateral hippocampal formations in both AD group and normal control group were delineated and the volumes were measured. The SPM method was compared with conventional method based on region of interest (ROI), which was the gold standard of volume measurement. The time used in measuring the volume by these two methods were respectively recorded and compared by two independent samples't test. Moreover, 7 physicians measured the left hippocampal formation of one same control with both of the two methods. The frequency distribution and dispersion of data acquired with the two methods were evaluated using standard deviation coefficient. Results (1) The volume of the bilateral hippocampal formations with SPM method was (1.88 ± 0.07) cm 3 and (1.93 ± 0.08) cm 3 respectively in the AD group, while was (2.99 ± 0.07) cm 3 and (3.02 ± 0.06) cm 3 in the control group. The volume of bilateral hippocampal formations measured by ROI method was (1.87 ± 0.06) cm 3 and (1.91 ± 0.09) cm 3 in the AD group, while was (2.97 ± 0.08) cm 3 and (3.00 ± 0.05) cm 3 in the control group. There was no significant difference between SPM method and conventional ROI method in the AD group and the control group (t=1.500, 1.617, 1.095, 1.889, P>0.05). However, the time used for delineation and volume measurement was significantly different. The time used in SPM measurement was (38.1 ± 2.0) min, while that in ROI measurement was (55.4 ± 2.4) min (t=-25.918, P 3 respectively. The frequency distribution of hippocampal formation volume measured by SPM method and ROI method was different. The CV SPM was 7% and the CV ROI was 19%. Conclusions: The borders of

  3. Declarative memory formation in hippocampal sclerosis: an intracranial event-related potentials study.

    NARCIS (Netherlands)

    Mormann, F.; Fernandez, G.S.E.; Klaver, P.; Weber, B.; Elger, C.E.; Fell, J.

    2007-01-01

    The functional deficits associated with hippocampal sclerosis during declarative memory formation are largely unknown. In this study, we analyzed intracranial event-related potentials recorded from the medial temporal lobes of nine epilepsy patients performing a word memorization task. We used

  4. Correlation between volume and morphological changes in the hippocampal formation in Alzheimer's disease: rounding of the outline of the hippocampal body on coronal MR images

    International Nuclear Information System (INIS)

    Adachi, Michito; Sato, Takamichi; Kawakatsu, Shinobu; Ohshima, Fumi

    2012-01-01

    The aim of this study was to investigate whether the outline of the hippocampal body becomes rounded on coronal magnetic resonance imaging (MRI) as the volume of the hippocampal formation decreases in Alzheimer's disease (AD). Institutional review board approval of the study protocol was obtained, and all subjects provided informed consent for the mini-mental state examination (MMSE) and MRI. The MRI and MMSE were prospectively performed in all 103 subjects (27 men and 76 women; mean age ± standard deviation, 77.7 ± 7.8 years) who had AD or were concerned about having of dementia and who consulted our institute over 1 year. The subjects included 14 non-dementia cases (MMSE score ≥ 28) and 89 AD cases (MMSE score ≤ 27). The total volume of the bilateral hippocampal formation (VHF) was assessed with a tracing method, and the ratio of the VHF to the intracranial volume (RVHF) and the rounding ratio (RR) of the hippocampal body (mean ratio of its short dimension to the long dimension in the bilateral hippocampal body) were calculated. Using Spearman's correlation coefficient, the correlations between RR and VHF and between RR and RVHF were assessed. Correlation coefficients between RR and VHF and between RR and RVHF were -0.419 (p < 0.01) and -0.418 (p < 0.01), respectively. There was a significant negative correlation between RR and the volume of the hippocampal formation. The outline of the body of the hippocampal formation becomes rounded on coronal images as its volume decreases in AD. (orig.)

  5. Distribution of seratonin-1A receptors in the monkey and the postmortem human hippocampal region. A quantitative autoradiographic study using the selective agonist (3H)8-PH-DPAT

    International Nuclear Information System (INIS)

    Koehler, Christer; Radesaeter, A.C.; Lang, Walter; Chan-Palay, Victoria

    1986-01-01

    Serotonin-1A receptors were visualized and their anatomical distribution mapped within the monkey and the human hippocampus by using in vitro receptor autoradiography of the selective agonist ( 3 H)8-OH-N, N-dipropyl-2-aminotetralin (( 3 H)8-OH-DPAT). The results show high densities of serotonin-1A receptors hetergeneously distributed in different subfields and layers of the monkey and the human hippocampal region. High densities are found in the molecular layer of area dentata, all layers of regio superior and the subiculum, parasubiculum, and layers 2, and 4 through 6 of the entorhinal area. In the human hippocampus, a distinct band of ( 3 H)8-OH-DPAT binding sites is present in the subgranular zone of the area dentata. The similar anatomical distribution of ( 3 H)8-OH-DPAT binding sites in the monkey and the human hippocampal region suggests that the serotonin-1A receptor is phylogenetically well preserved and indicates that this receptor may mediate action(s) of serotonin in the primate, including the human hippocampal region. (author)

  6. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  7. Memory formation orchestrates the wiring of adult-born hippocampal neurons into brain circuits.

    Science.gov (United States)

    Petsophonsakul, Petnoi; Richetin, Kevin; Andraini, Trinovita; Roybon, Laurent; Rampon, Claire

    2017-08-01

    During memory formation, structural rearrangements of dendritic spines provide a mean to durably modulate synaptic connectivity within neuronal networks. New neurons generated throughout the adult life in the dentate gyrus of the hippocampus contribute to learning and memory. As these neurons become incorporated into the network, they generate huge numbers of new connections that modify hippocampal circuitry and functioning. However, it is yet unclear as to how the dynamic process of memory formation influences their synaptic integration into neuronal circuits. New memories are established according to a multistep process during which new information is first acquired and then consolidated to form a stable memory trace. Upon recall, memory is transiently destabilized and vulnerable to modification. Using contextual fear conditioning, we found that learning was associated with an acceleration of dendritic spines formation of adult-born neurons, and that spine connectivity becomes strengthened after memory consolidation. Moreover, we observed that afferent connectivity onto adult-born neurons is enhanced after memory retrieval, while extinction training induces a change of spine shapes. Together, these findings reveal that the neuronal activity supporting memory processes strongly influences the structural dendritic integration of adult-born neurons into pre-existing neuronal circuits. Such change of afferent connectivity is likely to impact the overall wiring of hippocampal network, and consequently, to regulate hippocampal function.

  8. Impaired representation of geometric relationships in humans with damage to the hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Carsten Finke

    Full Text Available The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks.

  9. Impaired representation of geometric relationships in humans with damage to the hippocampal formation.

    Science.gov (United States)

    Finke, Carsten; Ostendorf, Florian; Braun, Mischa; Ploner, Christoph J

    2011-01-01

    The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks.

  10. Neuronal response of the hippocampal formation to injury: blood flow, glucose metabolism, and protein synthesis

    International Nuclear Information System (INIS)

    Kameyama, M.; Wasterlain, C.G.; Ackermann, R.F.; Finch, D.; Lear, J.; Kuhl, D.E.

    1983-01-01

    The reaction of the hippocampal formation to entorhinal lesions was studied from the viewpoints of cerebral blood flow ([ 123 I]isopropyl-iodoamphetamine[IMP])-glucose utilization ([ 14 C]2-deoxyglucose), and protein synthesis ([ 14 C]leucine), using single- and double-label autoradiography. Researchers' studies showed decreased glucose utilization in the inner part, and increased glucose utilization in the outer part of the molecular layer of the dentate gyrus, starting 3 days after the lesion; increased uptake of [ 123 I]IMP around the lesion from 1 to 3 days postlesion; and starting 3 days after the lesion, marked decrease in [ 14 C]leucine incorporation into proteins and cell loss in the dorsal CA1 and dorsal subiculum in about one-half of the rats. These changes were present only in animals with lesions which invaded the ventral hippocampal formation in which axons of CA1 cells travel. By contrast, transsection of the 3rd and 4th cranial nerves resulted, 3 to 9 days after injury, in a striking increase in protein synthesis in the oculomotor and trochlear nuclei. These results raise the possibility that in some neurons the failure of central regeneration may result from the cell's inability to increase its rate of protein synthesis in response to axonal injury

  11. The human hippocampal formation mediates short-term memory of colour-location associations.

    Science.gov (United States)

    Finke, Carsten; Braun, Mischa; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Hoffmann, Karl-Titus; Kopp, Ute; Ploner, Christoph J

    2008-01-31

    The medial temporal lobe (MTL) has long been considered essential for declarative long-term memory, whereas the fronto-parietal cortex is generally seen as the anatomical substrate of short-term memory. This traditional dichotomy is questioned by recent studies suggesting a possible role of the MTL for short-term memory. In addition, there is no consensus on a possible specialization of MTL sub-regions for memory of associative information. Here, we investigated short-term memory for single features and feature associations in three humans with post-surgical lesions affecting the right hippocampal formation and in 10 healthy controls. We used three delayed-match-to-sample tasks with two delays (900/5000 ms) and three set sizes (2/4/6 items). Subjects were instructed to remember either colours, locations or colour-location associations. In colour-only and location-only conditions, performance of patients did not differ from controls. By contrast, a significant group difference was found in the association condition at 5000 ms delay. This difference was largely independent of set size, thus suggesting that it cannot be explained by the increased complexity of the association condition. These findings show that the hippocampal formation plays a significant role for short-term memory of simple visuo-spatial associations, and suggest a specialization of MTL sub-regions for associative memory.

  12. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    Energy Technology Data Exchange (ETDEWEB)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Nagayama, Takumi; Sunada, Kazuyoshi [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujisawa, Kenta [Department of Physics and Informatics, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512 (Japan); Nakano, Makoto [Faculty of Education and Welfare Science, Oita University, Oita 870-1192 (Japan); Sekido, Mamoru, E-mail: james@milkyway.sci.kagoshima-u.ac.jp [Kashima Space Research Center, National Institute of Information and Communications Technology, 893-1 Hirai, Kashima, Ibaraki 314-8501 (Japan)

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  13. SNAP-25 in hippocampal CA3 region is required for long-term memory formation

    International Nuclear Information System (INIS)

    Hou Qiuling; Gao Xiang; Lu Qi; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation

  14. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Valerie T. Ramírez

    2016-01-01

    Full Text Available Mastoparan-7 (Mas-7, an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX- sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95 clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC, c-Jun N-terminal kinase (JNK, and calcium-calmodulin dependent protein kinase IIα (CaMKIIα after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation.

  15. Idiopathic New Bone Formation in the Femoral Shafts of a Cynomolgus Monkey (Macaca fascicularis)

    OpenAIRE

    Lee, Jae-il; Kim, Young-suk; Kim, Myung-Jin; Hong, Sung-Hyeok

    2008-01-01

    A 6.5-y-old cynomolgus monkey was referred to the Veterinary Medical Teaching Hospital at Chungnam National University for suspected bone fracture. The monkey had been reared singly in a cage at a laboratory facility. An animal caretaker incidentally found a bone fragment protruding through the skin of the right leg. Radiographic examination revealed 2 new bone fragments clearly distinguishable from the original femurs; the fragments seemed to be inserted into both femurs. One of the new bone...

  16. Aging is accompanied by a subfield-specific reduction of serotonergic fibers in the tree shrew hippocampal formation

    NARCIS (Netherlands)

    Keuker, Jeanine I H; Keijser, Jan N.; Nyakas, Csaba; Luiten, Paul G.M.; Fuchs, Eberhard

    2005-01-01

    The hippocampal formation is a crucial structure for learning and memory, and serotonin together with other neurotransmitters is essential in these processes. Although the effects of aging on various neurotransmitter systems in the hippocampus have been extensively investigated, it is not entirely

  17. [Distribution of biogenic amines in the hippocampal formation in the rabbit].

    Science.gov (United States)

    Budantsev, A Iu; Gur'ianova, A D

    1975-06-01

    The hippocampal formation (the hippocampus and the dentate fascia) of the rabbit was studied by histochemical fluorescent method of Falk to determine localization of monoaminergic terminals containing biogenic amines: noradrenalin, dophamine and serotonin. It was shown that monoaminenergic terminals in the hippocampus were in two zones of afferent terminations: in the zone of ending of the perforating way (str. lacunosum-moleculare of fields CA1 and CA2; str. moleculare of the dentate fascia) and in the subgranular zone of the hilum where a part of septofimbrial way terminated on granular neurons of the dentate fascia, the main cellular elements of the hipocampus (pyramidal, granular and basket cells of the hippocampus) did not contain biogenic amines.

  18. Increased synthesis of heparin affin regulatory peptide in the perforant path lesioned mouse hippocampal formation

    DEFF Research Database (Denmark)

    Poulsen, F R; Lagord, C; Courty, J

    2000-01-01

    Heparin affin regulatory peptide (HARP), also known as pleiotrophin or heparin-binding growth-associated molecule, is a developmentally regulated extracellular matrix protein that induces cell proliferation and promotes neurite outgrowth in vitro as well as pre- and postsynaptic developmental...... differentiation in vivo. Here we have investigated the expression of HARP mRNA and protein in the perforant path lesioned C57B1/6 mouse hippocampal formation from 1 to 35 days after surgery. This type of lesion induces a dense anterograde and terminal axonal degeneration, activation of glial cells, and reactive...... axonal sprouting within the perforant path zones of the fascia dentata and hippocampus as well as axotomy-induced retrograde neuronal degeneration in the entorhinal cortex. Analysis of sham- and unoperated control mice showed that HARP mRNA is expressed in neurons and white and gray matter glial cells...

  19. Increased synthesis of heparin affin regulatory peptide in the perforant path lesioned mouse hippocampal formation

    DEFF Research Database (Denmark)

    Poulsen, F R; Lagord, C; Courty, J

    2000-01-01

    differentiation in vivo. Here we have investigated the expression of HARP mRNA and protein in the perforant path lesioned C57B1/6 mouse hippocampal formation from 1 to 35 days after surgery. This type of lesion induces a dense anterograde and terminal axonal degeneration, activation of glial cells, and reactive...... axonal sprouting within the perforant path zones of the fascia dentata and hippocampus as well as axotomy-induced retrograde neuronal degeneration in the entorhinal cortex. Analysis of sham- and unoperated control mice showed that HARP mRNA is expressed in neurons and white and gray matter glial cells...... as well as vascular and pial cells throughout the normal, adult brain. Lesioning induced high levels of HARP mRNA in astroglial-like cells in the denervated zones of fascia dentata and hippocampus as soon as day 2 postlesion. This expression reached maximum at day 4, and declined toward normal at day 7...

  20. Hippocampal Cortactin Levels are Reduced Following Spatial Working Memory Formation, an Effect Blocked by Chronic Calpain Inhibition.

    Science.gov (United States)

    Olson, Mikel L; Ingebretson, Anna E; Harmelink, Katherine M

    2015-06-19

    The mechanism by which the hippocampus facilitates declarative memory formation appears to involve, among other things, restructuring of the actin cytoskeleton within neuronal dendrites. One protein involved in this process is cortactin, which is an important link between extracellular signaling and cytoskeletal reorganization. In this paper, we demonstrate that total hippocampal cortactin, as well as Y421-phosphorylated cortactin are transiently reduced following spatial working memory formation in the radial arm maze (RAM). Because cortactin is a substrate of the cysteine protease calpain, we also assessed the effect of chronic calpain inhibition on RAM performance and cortactin expression. Calpain inhibition impaired spatial working memory and blocked the reduction in hippocampal cortactin levels following RAM training. These findings add to a growing body of research implicating cortactin and calpain in hippocampus-dependent memory formation.

  1. Hippocampal Cortactin Levels are Reduced Following Spatial Working Memory Formation, an Effect Blocked by Chronic Calpain Inhibition

    Directory of Open Access Journals (Sweden)

    Mikel L. Olson

    2015-06-01

    Full Text Available The mechanism by which the hippocampus facilitates declarative memory formation appears to involve, among other things, restructuring of the actin cytoskeleton within neuronal dendrites. One protein involved in this process is cortactin, which is an important link between extracellular signaling and cytoskeletal reorganization. In this paper, we demonstrate that total hippocampal cortactin, as well as Y421-phosphorylated cortactin are transiently reduced following spatial working memory formation in the radial arm maze (RAM. Because cortactin is a substrate of the cysteine protease calpain, we also assessed the effect of chronic calpain inhibition on RAM performance and cortactin expression. Calpain inhibition impaired spatial working memory and blocked the reduction in hippocampal cortactin levels following RAM training. These findings add to a growing body of research implicating cortactin and calpain in hippocampus-dependent memory formation.

  2. The hippocampal continuation (indusium griseum): its connectivity in the hedgehog tenrec and its status within the hippocampal formation of higher vertebrates.

    Science.gov (United States)

    Künzle, H

    2004-06-01

    The indusium griseum and its precallosal extension are usually considered poorly differentiated portions of the hippocampus. The connections of this so-called 'hippocampal continuation' (HCt) have only been analyzed so far in rodents, which show one of the least-developed HCt among mammals. In this study we have investigated the relatively well differentiated HCt of the small Madagascan hedgehog tenrec (Afrotheria) using histochemical and axonal transport techniques. The tenrec's HCt shows associative and commissural connections. It receives laminar specific afferents from the entorhinal cortex (collaterals from neurons projecting to the dentate area), the anterior and posterior piriform cortices as well as the supramammillary region. A few fibers also originate in the olfactory bulb and the dentate hilus. Among these input areas only the dentate hilus receives a significant reciprocal projection from the HCt. Additional HCt efferents are directed to the subcallosal septum (presumed septohippocampal nucleus), the olfactory tubercle and the islands of Calleja. With the exception of the supramammillary afferents and possible efferents to the supraoptic nucleus we failed, however, to demonstrate distinct thalamic and hypothalamic connections. A comparison of the connections of the HCt with those of the hippocampal subdivisions reveal some similarity between the HCt and the dentate area, but the overall pattern of connectivity does not permit a correlation of the HCt with the dentate area, let alone the cornu ammonis and the subiculum. This view is supported by histochemical findings in the tenrec (immunoreactivity to calcium binding proteins) as well as the rat (data taken from the literature). The HCt is therefore considered a region in its own right within the hippocampal formation. It may be tentatively correlated with the medial cortex of reptiles, while the dentate area and the cornu ammonis may have evolved de novo in mammals.

  3. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    International Nuclear Information System (INIS)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  4. The influence of the ketogenic diet on the elemental and biochemical compositions of the hippocampal formation.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Matusiak, Katarzyna; Janeczko, Krzysztof; Patulska, Agnieszka; Sandt, Christophe; Simon, Rolf; Ciarach, Malgorzata; Setkowicz, Zuzanna

    2015-08-01

    A growing body of evidence demonstrates that dietary therapies, mainly the ketogenic diet, may be highly effective in the reduction of epileptic seizures. All of them share the common characteristic of restricting carbohydrate intake to shift the predominant caloric source of the diet to fat. Catabolism of fats results in the production of ketone bodies which become alternate energy substrates to glucose. Although many mechanisms by which ketone bodies yield its anticonvulsant effect are proposed, the relationships between the brain metabolism of the ketone bodies and their neuroprotective and antiepileptogenic action still remain to be discerned. In the study, X-ray fluorescence microscopy and FTIR microspectroscopy were used to follow ketogenic diet-induced changes in the elemental and biochemical compositions of rat hippocampal formation tissue. The use of synchrotron sources of X-rays and infrared allowed us to examine changes in the accumulation and distribution of selected elements (P, S, K, Ca, Fe, Cu, Zn, and Se) and biomolecules (proteins, lipids, ketone bodies, etc.) with the micrometer spatial resolution. The comparison of rats fed with the ketogenic diet and rats fed with the standard laboratory diet showed changes in the hippocampal accumulation of P, K, Ca, and Zn. The relations obtained for Ca (increased level in CA3, DG, and its internal area) and Zn (decreased areal density in CA3 and DG) were analogous to those that we previously observed for rats in the acute phase of pilocarpine-induced seizures. Biochemical analysis of tissues taken from ketogenic diet-fed rats demonstrated increased intensity of absorption band occurring at 1740 cm(-1), which was probably the result of elevated accumulation of ketone bodies. Moreover, higher absolute and relative (3012 cm(-1)/2924 cm(-1), 3012 cm(-1)/lipid massif, and 3012 cm(-1)/amide I) intensity of the 3012-cm(-1) band resulting from increased unsaturated fatty acids content was found after the treatment

  5. Formation of cognitive structures in conditioned-reflex behavior in monkeys: Relationship with type of visual information.

    Science.gov (United States)

    Dudkin, K N; Chueva, I V

    2009-02-01

    The characteristics of learning processes and long-term memory (LTM) were studied in rhesus macaques discriminating visual stimuli (geometrical figures of different shapes, sizes, and orientations, and with different spatial relationships between image components). Trained monkeys were tested for the ability to perform invariant recognition after stimulus transformation, i.e., changes in size, shape, number of objects, and spatial relationships. Analysis of behavioral characteristics (correct solutions, refusals to decide, motor response times) revealed differences associated with the type of visual information. When monkeys discriminated between black and white geometrical figures of different shapes and orientations, as well as black-and-white figures with different shapes or orientations, the learning time was short and transformation of the stimuli had no effect on correct solutions: there was complete transfer of learning. When monkeys discriminated figures of different sizes or complex images with different spatial relationships, the learning time was significantly greater. Changes in the size and shape of figures led to significant reductions in correct solutions and significant increases in refusals to solve the task and in motor reaction times. Invariance of discrimination in this case appeared after additional training. The results obtained here showed that in conditioned reflex learning, the sensory processing of stimuli has the result that discriminatory features are formed in LTM, i.e., cognitive structures (functional neurophysiological mechanisms), these supporting the classification of visual images. The temporal conditioned link of the executive reaction is established with these. Their formation is determined by the type of sensory information and the existence in LTM of separate subsystems for spatial and non-spatial information.

  6. Preoperative MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe in epileptic patients

    International Nuclear Information System (INIS)

    Jack, C.R.; Sharbrough, F.W.; Twomey, C.; Zinsmeister, A.R.; Cascino, G.D.; Hirschorn, K.A.; Marsh, W.R.

    1989-01-01

    MR-based volume measurements of the anterior temporal lobe and hippocampal formation were performed in 36 patients who subsequently underwent surgery for medically refractory temporal lobe epilepsy. Seizure lateralization was based on standard clinical and electroencephalographic criteria. No surgical pathologic specimens contained structural lesions; epilepsy in these patients was therefore presumably due to mesial sclerosis. The right-minus-left hippocampal formation volume difference was greater than 0 in all 20 patients operated on the left side and less than 0 in all 16 patients operated on the right side. This difference completely separated the two surgical groups, while the same measurement in a group of 35 normal controls fell between the two surgical groups. Measurements of the anterior temporal to be showed a similar trend but incompletely separated controls, right- and left-sided epileptics. These results suggest that in a significant percentage of cases, MR-based volume measurements correctly identify the unilateral hippocampal atrophy that is known to occur in cases of mesial temporal sclerosis

  7. Inhibition of NKCC1 attenuated hippocampal LTP formation and inhibitory avoidance in rat.

    Directory of Open Access Journals (Sweden)

    Meng Chang Ko

    Full Text Available The loop diuretic bumetanide (Bumex is thought to have antiepileptic properties via modulate GABAA mediated signaling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signaling, we sought to investigate whether they also affect hippocampal function. The current study was performed to evaluate the possible role of NKCC1 on the hippocampal function. Brain slice extracellular recording, inhibitory avoidance, and western blot were applied in this study. Results showed that hippocampal Long-term potentiation was attenuated by suprafusion of NKCC1 inhibitor bumetanide, in a dose dependent manner. Sequent experiment result showed that Intravenous injection of bumetanide (15.2 mg/kg 30 min prior to the training session blocked inhibitory avoidance learning significantly. Subsequent control experiment's results excluded the possible non-specific effect of bumetanide on avoidance learning. We also found the phosphorylation of hippocampal MAPK was attenuated after bumetanide administration. These results suggested that hippocampal NKCC1 may via MAPK signaling cascade to possess its function.

  8. Lateral Fluid Percussion Injury Impairs Hippocampal Synaptic Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor Complex Formation

    Directory of Open Access Journals (Sweden)

    Shaun W. Carlson

    2017-10-01

    Full Text Available Traumatic brain injury (TBI and the activation of secondary injury mechanisms have been linked to impaired cognitive function, which, as observed in TBI patients and animal models, can persist for months and years following the initial injury. Impairments in neurotransmission have been well documented in experimental models of TBI, but the mechanisms underlying this dysfunction are poorly understood. Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE complex facilitates vesicular docking and neurotransmitter release in the synaptic cleft. Published studies highlight a direct link between reduced SNARE complex formation and impairments in neurotransmitter release. While alterations in the SNARE complex have been described following severe focal TBI, it is not known if deficits in SNARE complex formation manifest in a model with reduced severity. We hypothesized that lateral fluid percussion injury (lFPI reduces the abundance of SNARE proteins, impairs SNARE complex formation, and contributes to impaired neurobehavioral function. To this end, rats were subjected to lFPI or sham injury and tested for acute motor performance and cognitive function at 3 weeks post-injury. lFPI resulted in motor impairment between 1 and 5 days post-injury. Spatial acquisition and spatial memory, as assessed by the Morris water maze, were significantly impaired at 3 weeks after lFPI. To examine the effect of lFPI on synaptic SNARE complex formation in the injured hippocampus, a separate cohort of rats was generated and brains processed to evaluate hippocampal synaptosomal-enriched lysates at 1 week post-injury. lFPI resulted in a significant reduction in multiple monomeric SNARE proteins, including VAMP2, and α-synuclein, and SNARE complex abundance. The findings in this study are consistent with our previously published observations suggesting that impairments in hippocampal SNARE complex formation may contribute to

  9. Effects of a whole body gamma irradiation on GABA repartition in infant rats cerebellum and hippocampal formation

    International Nuclear Information System (INIS)

    Menetrier, F.; Vernois, Y.; Court, L.

    1992-01-01

    'Full-Text:' Thirteen-day-old rats were exposed to a single dose of 4 or 0,5 Gy of gamma at a dose rate of 0,25 Gy/min and were killed about 5h after. Fixation was achieved in situ using glutaraldehyde. For GABA immunocytochemistry transversal sections were incubated with antiserum against GABA, then with PAP and revealed with diaminobenzidine. Proliferative layers are still observed in the infant rat cerebellum (external granular layer) and hippocampal formation (subgranular layer of the dentate gyrus). When irradiation occurs a high percent of these two layers cells are pycnotic. In the normal cerebellum, no immunostaining is observed in external granular layer cell bodies. The only labelled structures are few cytoplasmic expansions coming from subjacent layers. When irradiated, a strong GABA staining appears around pycnotic cells as a network with labelled meshes. GABA staining and pycnotic cells were more especially important when the irradiation increases. Further studies are needed to specify the nature of labelled meshes. In the normal hippocampal formation, subgranular cells are not GABA stained. Staining occurs in cells which are not granule cells. They are scattered throughout cell layers of the dentate gyrus with predominance in the hilus. After irradiation, GABA repartition is not modified. After a 4 Gy whole body gamma irradiation, the inhibitory GABA system is not injured. Other amino-acid neurotransmitters such as Glutamate could be modified. (author)

  10. Poor Memory Performance in Aged Cynomolgus Monkeys with Hippocampal Atrophy, Depletion of Amyloid Beta 1-42 and Accumulation of Tau Proteins in Cerebrospinal Fluid

    DEFF Research Database (Denmark)

    Darusman, Huda S; Pandelaki, Jacub; Mulyadi, Rahmad

    2014-01-01

    , aged cynomolgus monkeys were divided into two groups to compare high-performing (n=6) and low-performing (n=6) subjects. Both groups were tested for biomarkers related to Alzheimer's disease and their brains were scanned using structural magnetic resonance imaging. RESULTS: The subjects with poor DRT......BACKGROUND: Due to their similarities in behavior and disease pathology to humans, non-human primate models are desirable to complement small animals as models for the study of age-related dementia. MATERIALS AND METHODS: Based on their performance on delayed response task (DRT) tests of memory...... performance had evidence of atrophy in the hippocampus and cortical areas, significantly lower cerebrospinal fluid levels of amyloid beta amino acid 1-42 (pperforming well on the DRT tests. CONCLUSION: Old, memory...

  11. N-acetylaspartate, choline and myoinositol concentration changes in MR spectroscopy (1H MRS) of hippocampal formation in patients with mild cognitive impairment (MCI) - preliminary study

    International Nuclear Information System (INIS)

    Pawlowska, A.; Cwikla, J.; Walecki, J.; Gabryelewicz, T.; Barcikowska, M.

    2004-01-01

    Cognitive and memory impairment are very common problems in elderly patients. Mild cognitive impairment (MCI) is known as a transitional clinical state between normal ('successful') aging and dementia. In some cases MCI may be a precursor to Alzheimer's disease (AD). Early neuronal loss and metabolic changes have been documented in previous studies in AD patients in some 'strategic ' regions of the brain, mainly in hippocampal formation. Our goal was to determine whether there are statistically significant changes in hippocampal N-acetylaspartate, choline and myoinositol levels obtained by single-voxel spectroscopy in MCI patients and normal aging and to evaluate its clinical diagnostic utility. 30 patients with MCI and 15 cognitively normal elderly subjects underwent proton MR spectroscopy at 1.5 T system. MR spectra were obtained from anterior and posterior part of hippocampal formation bilaterally, using the point-resolved spectroscopy sequence. Metabolite ratios of NAA/H 2 O, Cho/H 2 O and mI/H 2 O were calculated from the peak height measurements. Relative to the control group, patients with MCI demonstrated elevated mI/H 2 O and Cho/H 2 O ratios in both hippocampal formations. The most significant increase was observed in mI/H 2 O ratio in anterior part of left hippocampus and in Cho/H 2 O ratio in posterior part of right hippocampus, in MCI patients vs.cognitively normal elderly. There were no significant differences between mean NAA/H 2 O ratios measured in hippocampal formation in both groups. Proton MRS may be used as valuable additional tool in the evaluation of regional metabolic changes in patients with MCI. Increase of mI and Cho levels in hippocampal formation may be an early sign of cognitive impairment in elderly subjects that can be measured using MRS. (author)

  12. 3D analysis of the TCR/pMHCII complex formation in monkeys vaccinated with the first peptide inducing sterilizing immunity against human malaria.

    Directory of Open Access Journals (Sweden)

    Manuel A Patarroyo

    Full Text Available T-cell receptor gene rearrangements were studied in Aotus monkeys developing high antibody titers and sterilizing immunity against the Plasmodium falciparum malaria parasite upon vaccination with the modified synthetic peptide 24112, which was identified in the Merozoite Surface Protein 2 (MSP-2 and is known to bind to HLA-DRbeta1*0403 molecules with high capacity. Spectratyping analysis showed a preferential usage of Vbeta12 and Vbeta6 TCR gene families in 67% of HLA-DRbeta1*0403-like genotyped monkeys. Docking of peptide 24112 into the HLA-DRbeta1*0401-HA peptide-HA1.7TCR complex containing the VDJ rearrangements identified in fully protected monkeys showed a different structural signature compared to nonprotected monkeys. These striking results show the exquisite specificity of the TCR/pMHCII complex formation needed for inducing sterilizing immunity and provide important hints for a logical and rational methodology to develop multiepitopic, minimal subunit-based synthetic vaccines against infectious diseases, among them malaria.

  13. Protein tyrosine phosphatase PTP1B is involved in hippocampal synapse formation and learning.

    Directory of Open Access Journals (Sweden)

    Federico Fuentes

    Full Text Available ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B(-/- (KO mice compared to wild type (WT mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1B(fl/fl-Emx1-Cre. PTP1B(fl/fl-Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole, utilized a more efficient strategy (cued, and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.

  14. The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans.

    Science.gov (United States)

    Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan

    2013-02-01

    New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.

  15. The biochemical changes in hippocampal formation occurring in normal and seizure experiencing rats as a result of a ketogenic diet.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Janeczko, Krzysztof; Kutorasinska, Justyna; Matusiak, Katarzyna; Figiel, Henryk; Dumas, Paul; Sandt, Christophe; Setkowicz, Zuzanna

    2015-04-07

    In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared. Four groups of rats were analyzed, namely seizure experiencing animals and normal rats previously fed with ketogenic (KSE and K groups respectively) or standard laboratory diet (NSE and N groups respectively). Synchrotron radiation based Fourier-transform infrared microspectroscopy was used for the analysis of distributions of the main organic components (proteins, lipids, compounds containing phosphate group(s)) and their structural modifications as well as anomalies in creatine accumulation with micrometer spatial resolution. Infrared spectra recorded in the molecular layers of the dentate gyrus (DG) areas of normal rats on a ketogenic diet (K) presented increased intensity of the 1740 cm(-1) absorption band. This originates from the stretching vibrations of carbonyl groups and probably reflects increased accumulation of ketone bodies occurring in animals on a high fat diet compared to those fed with a standard laboratory diet (N). The comparison of K and N groups showed, moreover, elevated ratios of absorbance at 1634 and 1658 cm(-1) for DG internal layers and increased accumulation of creatine deposits in sector 3 of the Ammon's horn (CA3) hippocampal area of ketogenic diet fed rats. In multiform and internal layers of CA3, seizure experiencing animals on ketogenic diet (KSE) presented a lower ratio of absorbance at 1634 and 1658 cm(-1) compared to rats on standard laboratory diet (NSE). Moreover, in some of the examined cellular layers, the increased intensity of the 2924 cm(-1) lipid band as well as the massifs of 2800-3000 cm(-1) and 1360-1480 cm(-1), was found in KSE compared to NSE animals. The intensity of the 1740 cm(-1) band was diminished in DG molecular layers of KSE rats. The ketogenic diet did not modify the seizure induced anomalies in the unsaturation level of lipids or the number of creatine deposits.

  16. Activity of human hippocampal formation and amygdala neurons during memory testing.

    Science.gov (United States)

    Halgren, E; Babb, T L; Crandall, P H

    1978-11-01

    Single and multiple unit recordings were made from fine wires stereotaxically implanted in the hippocampus (HC), hippocampal gyrus (HCG), and amygdala (Am) of psychomotor epileptics. During a series of memory and control tests presented on slides, 21 of 155 HCG units, 15 of 59 HC units, and 2 of 54 Am units showed what appeared to be simple phasic or tonic visual responses. Twenty-seven other units, found only in the HCG, changed firing only during slides requiring a choice ('choice units'). A given choice unit responded during choices indicated verbally or manually, and during tasks requiring recall of Recent Memory, various visual discriminations, and expressions of preference. Choice units were not affected by sensory stimulation or motor activity in contexts not requiring choice. Phasically inhibited choice units had higher firing rates and lower signal-to-noise ratios than tonically excited units. Whether an electrode recorded a choice unit was unrelated to if it recorded a response to hyperventilation, or was in an area of epileptic pathology. Recordings were also made during an interview lasting several hours and eliciting a wide range of behaviors. Five of the 131 HCG units fired in repeated extended bursts, at least 50 times background during recall of word pairs or of the patient's hospital room. The unit response did not occur during numerous control tasks possessing similar overt sensory, motor, and social concomitants, but not requiring Recent Memory.

  17. Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats.

    Science.gov (United States)

    Luna-Munguía, Hiram; Meneses, Alfredo; Peña-Ortega, Fernando; Gaona, Andres; Rocha, Luisa

    2012-01-01

    Hippocampal high frequency electrical stimulation (HFS) at 130 Hz has been proposed as a therapeutical strategy to control neurological disorders such as intractable temporal lobe epilepsy (TLE). This study was carried out to determine the effects of hippocampal HFS on the memory process and the probable involvement of amino acids. Using the autoshaping task, we found that animals receiving hippocampal HFS showed augmented short-term, but not long-term memory formation, an effect blocked by bicuculline pretreatment and associated with enhanced tissue levels of amino acids in hippocampus. In addition, microdialysis experiments revealed high extracellular levels of glutamate, aspartate, glycine, taurine, and alanine during the application of hippocampal HFS. In contrast, GABA release augmented during HFS and remained elevated for more than 1 h after the stimulation was ended. HFS had minimal effects on glutamine release. The present results suggest that HFS has an activating effect on specific amino acids in normal hippocampus that may be involved in the enhanced short-term memory formation. These data further provide experimental support for the concept that hippocampus may be a promising target for focal stimulation to treat intractable seizures in humans. Copyright © 2010 Wiley Periodicals, Inc., Inc.

  18. Various ketogenic diets can differently support brain resistance against experimentally evoked seizures and seizure-induced elemental anomalies of hippocampal formation.

    Science.gov (United States)

    Chwiej, J; Patulska, A; Skoczen, A; Matusiak, K; Janeczko, K; Ciarach, M; Simon, R; Setkowicz, Z

    2017-07-01

    In this paper the influence of two different ketogenic diets (KDs) on the seizure-evoked elemental anomalies of hippocampal formation was examined. To achieve this purpose normal and pilocarpine treated rats previously fed with one of the two high fat and carbohydrate restricted diets were compared with animals on standard laboratory diet. The ketogenic ratios of the examined KDs were equal to 5:1 (KD1) and 9:1 (KD2). KD1 and standard diet fed animals presented similar patterns of seizure-evoked elemental changes in hippocampal formation. Also the analysis of behavioral data recorded after pilocarpine injection did not show any significant differences in intensity and duration of seizures between KD1 and standard diet fed animals. Higher ketogenic ratio KD2 introduced in the normal hippocampal formation prolonged changes in the accumulation of P, K, Zn and Ca. Despite this, both the intensity and duration of seizures were significantly reduced in rats fed with KD2 which suggests that its saving action on the nerve tissue may protect brain from seizure propagation. Also seizure-evoked elemental anomalies in KD2 animals were different than those observed for rats both on KD1 and standard diets. The comparison of seizure experiencing and normal rats on KD2, did not show any statistically significant differences in elemental composition of CA1 and H hippocampal areas whilst in CA3 area only Zn level changed as a result of seizures. DG was the area mostly affected by seizures in KD2 fed rats but areal densities of all examined elements increased in this hippocampal region. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Calcium regulation in long-term changes of neuronal excitability in the hippocampal formation

    Energy Technology Data Exchange (ETDEWEB)

    Mody, I.

    1985-01-01

    The regulation of calcium (Ca/sup 2 +/) was examined during long-term changes of neuronal excitability in the mammalian CNS. The preparations under investigation included the kindling model of epilepsy, a genetic form of epilepsy and long-term potentiation (LTP) of neuronal activity. The study also includes a discussion of the possible roles of a neuron-specific calcium-binding protein (CaBP). The findings are summarized as follows: (1) CaBP was found to have an unequal distribution in various cortical areas of the rat with higher levels in ventral structures. (2) The decline in CaBP was correlated to the number of evoked afterdischarges (AD's) during kindling-induced epilepsy. (3) Marked changes in CaBP levels were also found in the brains of the epileptic strain of mice (El). The induction of seizures further decreased the levels of CaBP in the El mice, indicating a possible genetic impairment of neuronal Ca/sup 2 +/ homeostasis in the El strain. (4) The levels of total hippocampal Ca/sup 2 +/ and Zn/sup 2 +/ were measured by atomic absorption spectrophotometry in control and commissural-kindled animals. (5) To measure Ca/sup 2 +/-homeostasis, the kinetic analysis of /sup 45/Ca uptake curves was undertaken in the in vitro hippocampus. (6) The kinetic analysis of /sup 45/Ca uptake curves revealed that Ca/sup 2 +/-regulation of the hippocampus is impaired following amygdala- and commissural kindling. (7). A novel form of long-term potentiation (LTP) of neuronal activity in the CA1 region of the hippocampus is described. The findings raise the possibility that the Ca/sup 2 +/ necessary for induction of LTP may be derived from an intraneuronal storage site.

  20. METABOLISM AND DNA ADDUCT FORMATION OF 2-ACETYLAMINOFLUORENE BY BLADDER EXPLANTS FROM HUMAN, DOG, MONKEY, HAMSTER AND RAT

    Science.gov (United States)

    It is concluded that bladder explants of the human, dog, monkey, hamster, and rat metabolize AAF mainly to ring-hydroxylated products, but also form small amounts of the proximate carcinogenic metabolite N-hydroxy-AAF. Neither the overall binding of AAF to bladder DNA, nor the fo...

  1. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); L.T. Strike (Lachlan); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  2. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  3. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*

    Science.gov (United States)

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert

    2016-01-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  4. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation.

    Science.gov (United States)

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert; Michaelevski, Izhak

    2016-02-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  5. Effects of amitriptyline and fluoxetine on synaptic plasticity in the dentate gyrus of hippocampal formation in rats

    Directory of Open Access Journals (Sweden)

    Ghasem Zarei

    2014-01-01

    Full Text Available Background: Several studies have been shown that antidepressant drugs have contradictory effects on cognitive processes. Therefore, the aim of this study was to investigate the effects of amitriptyline and fluoxetine on synaptic plasticity in the dentate gyrus (DG of the hippocampal formation in rat. Materials and Methods: Experimental groups were the control, the fluoxetine, and amitriptyline. The rats were treated for 21 days and then, paired pulse facilitation/inhibition (PPF/I and long-term potentiation (LTP in perforant path-DG synapses were assessed (by 400 Hz tetanization. Field excitatory post-synaptic potential (fEPSP slope and population spike (PS amplitude were measured. Results: The results of PPF/I showed that PS amplitude ratios were increased in 10-70 ms inter-stimulus intervals in the amitriptyline group compared to the control group. In the fluoxetine group, EPSP slope ratios were decreased in intervals 30, 40, and 50 ms inter-stimulus intervals compared to the control group. The PS-LTP was significantly lower in the fluoxetine and the amitriptyline groups with respect to the control group. Conclusion: The results showed that fluoxetine and amitriptyline affect synaptic plasticity in the hippocampus and these effects is probably due to the impact on the number of active neurons.

  6. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    Directory of Open Access Journals (Sweden)

    Sérgio Gomes da Silva

    Full Text Available Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task. Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation and associative (spatial learning mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning and increases BDNF levels and cell numbers in the hippocampal formation of offspring.

  7. Monkey Business

    Science.gov (United States)

    Blackwood, Christine Horvatis

    2012-01-01

    A ballerina, a gladiator, a camper, a baseball player, a surfer, and a shopper; these are just a few of the amazing monkeys that the author's seventh graders created from papier-mache. This project provided an opportunity for students to express themselves through the creation of sculptural characters based on their own interests, hobbies, and…

  8. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  9. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  10. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  11. One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey.

    Science.gov (United States)

    Malkova, Ludise; Mishkin, Mortimer

    2003-03-01

    In earlier studies of one-trial spatial memory in monkeys (Parkinson et al., 1988; Angeli et al., 1993), severe and chronic memory impairment for both object-place association and place alone was found after ablation of the hippocampal formation. The results appeared to provide the first clear-cut evidence in the monkey of the essential role of the hippocampus in spatial memory, but that interpretation neglected the inclusion in the lesion of the underlying posterior parahippocampal region. To determine the separate contributions of the hippocampus and posterior parahippocampal region to these spatial forms of one-trial memory, we trained 10 rhesus monkeys, as before, to remember the spatial positions of either two different trial-unique objects overlying two of the wells in a three-well test tray (object-place trials) or simply two of the three wells (place trials). Six of the monkeys then received ibotenic acid lesions restricted to the hippocampal formation (group H), and the four others received selective ablations of the posterior parahippocampal region (group P), comprising mainly parahippocampal cortex, parasubiculum, and presubiculum. Group H was found to be completely unaffected postoperatively on both types of trials, whereas group P sustained an impairment on both types equal in magnitude to that observed after the combined lesions in the original studies. Thus, contrary to the previous interpretation, one-trial memory for object-place association and, perhaps more fundamentally, one-trial memory for two different places appear to be critically dependent not on the hippocampal formation but rather on the posterior parahippocampal region.

  12. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

    Science.gov (United States)

    Iglesias, Juan Eugenio; Augustinack, Jean C; Nguyen, Khoa; Player, Christopher M; Player, Allison; Wright, Michelle; Roy, Nicole; Frosch, Matthew P; McKee, Ann C; Wald, Lawrence L; Fischl, Bruce; Van Leemput, Koen

    2015-07-15

    Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and

  13. Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation.

    Science.gov (United States)

    Cruz, Catarina; Meireles, Manuela; Silva, Susana M

    2017-05-01

    Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Distribution of cocaine- and amphetamine-regulated transcript in the hippocampal formation of the guinea pig and domestic pig.

    Science.gov (United States)

    Kolenkiewicz, M; Robak, A; Równiak, M; Bogus-Nowakowska, K; Całka, J; Majewski, M

    2009-02-01

    This study provides a detailed description concerning the distribution of cocaineand amphetamine-regulated transcript (CART) subunits - CART(61-102) and rhCART(28-116) - in the hippocampal formation (HF) of the guinea pig and domestic pig, focussing on the dentate gyrus (DG) and hippocampus proper (HP). Although in both studied species CART-immunoreactive (CART-IR) neuronal somata and processes were present generally in the same layers, some species-specific differences were still found. In the granular layer (GL) of both species, the ovalshaped neurons and some thick varicose fibres were encountered. In the guinea pig there was an immunoreactive "band of dots", probably representing crosssectioned terminals within the DG molecular layer (MOL), whereas in the domestic pig, some varicose fibres were detected, thus suggesting a different orientation of, at least, some nerve terminals. Furthermore, some CART-positive cells and fibres were observed in the hilus (HL) of the guinea pig, whereas in the analogical part of the domestic pig only nerve terminals were labelled. In both species, in the pyramidal layer (PL) of the hippocampus proper, CART-IR triangular somata were observed in the CA3 sector, as well as some positive processes in MOL; however, a few immunoreactive perikarya were found only in the CA1 sector of the guinea pig. As regards the localization patterns of two isoforms of CART in the guinea pig, both peptide fragments were present simultaneously in each of the labelled neurons or fibres, whereas in the domestic pig three types of fibres may be distinguished within the area of the DG. In the hilus and MOL of the dentate gyrus, there were fibres expressing both isoforms of CART in their whole length (fibres of the first type). Fibres of the second type (in GL) coexpressed both peptides only on their short segments, and the last ones (in MOL) expressed solely rhCART(28-116). These results indicate that the distribution of the two CART isoforms are

  15. Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: Evidences from neurobehavioral measures and functional and structural MRI

    Directory of Open Access Journals (Sweden)

    Christian Knöchel

    2014-01-01

    Full Text Available A potential clinical and etiological overlap between schizophrenia (SZ and bipolar disorder (BD has long been a subject of discussion. Imaging studies imply functional and structural alterations of the hippocampus in both diseases. Thus, imaging this core memory region could provide insight into the pathophysiology of these disorders and the associated cognitive deficits. To examine possible shared alterations in the hippocampus, we conducted a multi-modal assessment, including functional and structural imaging as well as neurobehavioral measures of memory performance in BD and SZ patients compared with healthy controls. We assessed episodic memory performance, using tests of verbal and visual learning (HVLT, BVMT in three groups of participants: BD patients (n = 21, SZ patients (n = 21 and matched (age, gender, education healthy control subjects (n = 21. In addition, we examined hippocampal resting state functional connectivity, hippocampal volume using voxel-based morphometry (VBM and fibre integrity of hippocampal connections using diffusion tensor imaging (DTI. We found memory deficits, changes in functional connectivity within the hippocampal network as well as volumetric reductions and altered white matter fibre integrity across patient groups in comparison with controls. However, SZ patients when directly compared with BD patients were more severely affected in several of the assessed parameters (verbal learning, left hippocampal volumes, mean diffusivity of bilateral cingulum and right uncinated fasciculus. The results of our study suggest a graded expression of verbal learning deficits accompanied by structural alterations within the hippocampus in BD patients and SZ patients, with SZ patients being more strongly affected. Our findings imply that these two disorders may share some common pathophysiological mechanisms. The results could thus help to further advance and integrate current pathophysiological models of SZ and BD.

  16. Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent.

    Science.gov (United States)

    Ding, Song-Lin

    2013-12-15

    The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. Copyright © 2013 Wiley Periodicals, Inc.

  17. Differential regulation of axon outgrowth and reinnervation by neurotrophin-3 and neurotrophin-4 in the hippocampal formation.

    Science.gov (United States)

    Hechler, Daniel; Boato, Francesco; Nitsch, Robert; Hendrix, Sven

    2010-08-01

    In this study, we investigated the hypothesis whether neurotrophins have a differential influence on neurite growth from the entorhinal cortex depending on the presence or absence of hippocampal target tissue. We investigated organotypic brain slices derived from the entorhinal-hippocampal system to analyze the effects of endogenous and recombinant neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) on neurite outgrowth and reinnervation. In the reinnervation assay, entorhinal cortex explants of transgenic mice expressing enhanced green fluorescent protein (EGFP) were co-cultured with wild-type hippocampi under the influence of recombinant NT-3 and NT-4 (500 ng/ml). Both recombinant NT-3 and NT-4 significantly increased the growth of EGFP+ nerve fibers into the target tissue. Consistently, reinnervation of the hippocampi of NT-4(-/-) and NT-3(+/-)NT-4(-/-) mice was substantially reduced. In contrast, the outgrowth assay did not exhibit reduction in axon outgrowth of NT-4(-/-) or NT-3(+/-)NT-4(-/-) cortex explants, while the application of recombinant NT-3 (500 ng/ml) induced a significant increase in the neurite extension of cortex explants. Recombinant NT-4 had no effect. In summary, only recombinant NT-3 stimulates axon outgrowth from cortex explants, while both endogenous and recombinant NT-3 and NT-4 synergistically promote reinnervation of the denervated hippocampus. These results suggest that endogenous and exogenous NT-3 and NT-4 differentially influence neurite growth depending on the presence or absence of target tissue.

  18. Conversion of Synthetic Aβ to In Vivo Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model.

    Science.gov (United States)

    Novotny, Renata; Langer, Franziska; Mahler, Jasmin; Skodras, Angelos; Vlachos, Andreas; Wegenast-Braun, Bettina M; Kaeser, Stephan A; Neher, Jonas J; Eisele, Yvonne S; Pietrowski, Marie J; Nilsson, K Peter R; Deller, Thomas; Staufenbiel, Matthias; Heimrich, Bernd; Jucker, Mathias

    2016-05-04

    The aggregation of amyloid-β peptide (Aβ) in brain is an early event and hallmark of Alzheimer's disease (AD). We combined the advantages of in vitro and in vivo approaches to study cerebral β-amyloidosis by establishing a long-term hippocampal slice culture (HSC) model. While no Aβ deposition was noted in untreated HSCs of postnatal Aβ precursor protein transgenic (APP tg) mice, Aβ deposition emerged in HSCs when cultures were treated once with brain extract from aged APP tg mice and the culture medium was continuously supplemented with synthetic Aβ. Seeded Aβ deposition was also observed under the same conditions in HSCs derived from wild-type or App-null mice but in no comparable way when HSCs were fixed before cultivation. Both the nature of the brain extract and the synthetic Aβ species determined the conformational characteristics of HSC Aβ deposition. HSC Aβ deposits induced a microglia response, spine loss, and neuritic dystrophy but no obvious neuron loss. Remarkably, in contrast to in vitro aggregated synthetic Aβ, homogenates of Aβ deposits containing HSCs induced cerebral β-amyloidosis upon intracerebral inoculation into young APP tg mice. Our results demonstrate that a living cellular environment promotes the seeded conversion of synthetic Aβ into a potent in vivo seeding-active form. In this study, we report the seeded induction of Aβ aggregation and deposition in long-term hippocampal slice cultures. Remarkably, we find that the biological activities of the largely synthetic Aβ aggregates in the culture are very similar to those observed in vivo This observation is the first to show that potent in vivo seeding-active Aβ aggregates can be obtained by seeded conversion of synthetic Aβ in a living (wild-type) cellular environment. Copyright © 2016 the authors 0270-6474/16/365084-10$15.00/0.

  19. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Science.gov (United States)

    Koizumi, So; Onozuka, Minoru

    2015-01-01

    The present study examined the effects of chewing on stress-induced long-term depression (LTD) and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior. PMID:26075223

  20. Chewing prevents stress-induced hippocampal LTD formation and anxiety-related behaviors: a possible role of the dopaminergic system.

    Science.gov (United States)

    Ono, Yumie; Koizumi, So; Onozuka, Minoru

    2015-01-01

    The present study examined the effects of chewing on stress-induced long-term depression (LTD) and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  1. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available The present study examined the effects of chewing on stress-induced long-term depression (LTD and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  2. Genome Editing of Monkey.

    Science.gov (United States)

    Liu, Zhen; Cai, Yijun; Sun, Qiang

    2017-01-01

    Gene-modified monkey models would be particularly valuable in biomedical and neuroscience research. Virus-based transgenic and programmable nucleases-based site-specific gene editing methods (TALEN, CRISPR-cas9) enable the generation of gene-modified monkeys with gain or loss of function of specific genes. Here, we describe the generation of transgenic and knock-out (KO) monkeys with high efficiency by lentivirus and programmable nucleases.

  3. Huntingtin-Interacting Protein 1-Related Protein Plays a Critical Role in Dendritic Development and Excitatory Synapse Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Lin Peng

    2017-06-01

    Full Text Available Huntingtin-interacting protein 1-related (HIP1R protein is considered to be an endocytic adaptor protein like the other two members of the Sla2 family, Sla2p and HIP1. They all contain homology domains responsible for the binding of clathrin, inositol lipids and F-actin. Previous studies have revealed that HIP1R is highly expressed in different regions of the mouse brain and localizes at synaptic structures. However, the function of HIP1R in the nervous system remains unknown. In this study, we investigated HIP1R function in cultured rat hippocampal neurons using an shRNA knockdown approach. We found that, after HIP1R knockdown, the dynamics and density of dendritic filopodia, and dendritic branching and complexity were significantly reduced in developing neurons, as well as the densities of dendritic spines and PSD95 clusters in mature neurons. Moreover, HIP1R deficiency led to significantly reduced expression of the ionotropic glutamate receptor GluA1, GluN2A and GluN2B subunits, but not the GABAA receptor α1 subunit. Similarly, HIP1R knockdown reduced the amplitude and frequency of the miniature excitatory postsynaptic current, but not of the miniature inhibitory postsynaptic current. In addition, the C-terminal proline-rich region of HIP1R responsible for cortactin binding was found to confer a dominant-negative effect on dendritic branching in cultured developing neurons, implying a critical role of cortactin binding in HIP1R function. Taken together, the results of our study suggest that HIP1R plays important roles in dendritic development and excitatory synapse formation and function.

  4. Visual performance of pigeons following hippocampal lesions.

    Science.gov (United States)

    Bingman, V P; Hodos, W

    1992-11-15

    The effect of hippocampal lesions on performance in two psychophysical measures of spatial vision (acuity and size-difference threshold) was examined in 7 pigeons. No difference between the preoperative and postoperative thresholds of the experimental birds was found. The visual performance of pigeons in the psychophysical tasks failed to reveal a role of the hippocampal formation in vision. The results argue strongly that the behavioral deficits found in pigeons with hippocampal lesions when tested in a variety of memory-related spatial tasks is not based on a defect in spatial vision but impaired spatial cognition.

  5. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  6. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation

    International Nuclear Information System (INIS)

    Quirion, R.; Chabot, J.-G.; Dore, S.; Seto, D.; Kar, S.

    1997-01-01

    Administration of kainic acid evokes acute seizure in hippocampal pathways that results in a complex sequence of functional and structural alterations resembling human temporal lobe epilepsy. The structural alterations induced by kainic acid include selective loss of neurones in CA1-CA3 subfields and the hilar region of the dentate gyrus followed by sprouting and permanent reorganization of the synaptic connections of the mossy fibre pathways. Although the neuronal degeneration and process of reactive synaptogenesis have been extensively studied, at present little is known about means to prevent pathological conditions leading to kainate-induced cell death. In the present study, to address the role of insulin-like growth factors I and II, and insulin in neuronal survival as well as synaptic reorganization following kainate-induced seizure, the time course alterations of the corresponding receptors were evaluated. Additionally, using histological preparations, the temporal profile of neuronal degeneration and hypertrophy of resident astroglial cells were also studied. [ 125 I]Insulin-like growth factor I binding was found to be decreased transiently in almost all regions of the hippocampal formation at 12 h following treatment with kainic acid. The dentate hilar region however, exhibited protracted decreases in [ 125 I]insulin-like growth factor I receptor sites throughout (i.e. 30 days) the study. [ 125 I]Insulin-like growth factor II receptor binding sites in the hippocampal formation were found to be differentially altered following systemic administration of kainic acid. A significant decrease in [ 125 I]insulin-like growth factor II receptor sites was observed in CA1 subfield and the pyramidal cell layer of the Ammon's horn at all time points studied whereas the hilar region and the stratum radiatum did not exhibit alteration at any time. A kainate-induced decrease in [ 125 I]insulin receptor binding was noted at all time points in the molecular layer of the

  7. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    Science.gov (United States)

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Augustinack, Jean C.; Nguyen, Khoa

    2015-01-01

    level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise...... datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer......'s disease subjects and elderly controls with 88% accuracy in standard resolution (1 mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification based on whole hippocampal volume (82% accuracy)....

  9. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  10. Hippocampal multimodal structural changes and subclinical depression in healthy individuals.

    Science.gov (United States)

    Spalletta, Gianfranco; Piras, Fabrizio; Caltagirone, Carlo; Fagioli, Sabrina

    2014-01-01

    Several neuroimaging studies report reduced hippocampal volume in depressed patients. However, it is still unclear if hippocampal changes in healthy individuals can be considered a risk factor for progression to clinical depression. Here, we investigated subclinical depression and its hippocampal correlates in a non-clinical sample of healthy individuals, with particular regard to gender differences. One-hundred-two participants underwent a comprehensive clinical assessment, a high-resolution T1-weighted magnetic resonance imaging and diffusion tensor imaging protocol using a 3T MRI scanner. Data of macro-(volume) and micro-(mean diffusivity, MD) structural changes of the hippocampus were analyzed with reference to the Beck Depression Inventory score. Results of multivariate regression analyses revealed reduced bilateral volume, along with increased bilateral MD in hippocampal formation predicting subclinical depressive phenomenology only in healthy males. Conversely, subclinical depressive phenomenology in healthy female was accounted for by only lower educational level, in the absence of any hippocampal structure variations. To date, this is the only evidence reporting a relationship between subclinical depressive phenomenology and changes in hippocampal formation in healthy individuals. Our findings demonstrated that reduced volume, along with increased MD in hippocampal formation, is significantly associated with subclinical depressive phenomenology in healthy males. This encourages to study the hypothesis that early macro- and microstructural changes in hippocampi associated with subclinical depression may constitute a risk factor of developing depressive disorders in males. © 2013 Elsevier B.V. All rights reserved.

  11. A histological and functional study on hippocampal formation of normal and diabetic rats [v1; ref status: indexed, http://f1000r.es/y9

    Directory of Open Access Journals (Sweden)

    Shaimaa N Amin

    2013-07-01

    Full Text Available Background: The hippocampus is a key brain area for many forms of learning and memory and is particularly sensitive to changes in glucose homeostasis. Aim of the work: To investigate in experimentally induced type 1 and 2 diabetes mellitus in rat model the effect of  diabetes mellitus on cognitive functions and related markers of hippocampal synaptic plasticity, and the possible impact of blocking N-methyl-D-aspartic acid (NMDA receptors by memantine. Materials and methods: Seven rat groups were included: non-diabetic control and non-diabetic receiving memantine; type-1 diabetic groups - untreated, treated with insulin alone and treated with insulin and memantine; and type 2 diabetic groups - untreated and memantine treated. Cognitive functions were assessed by the Morris Water Maze and passive avoidance test. Biochemical analysis was done for serum glucose, serum insulin and insulin resistance. Routine histological examination was done, together with immunohistochemistry for detection of the hippocampal learning and memory plasticity marker, namely activity regulated cytoskeletal-associated protein (Arc, and the astrocytes reactivity marker, namely glial fibrillary acidic protein (GFAP.  Results: Both type 1 and 2 untreated diabetic groups showed significantly impaired cognitive performance compared to the non-diabetic group. Treating the type 1 diabetic group with insulin alone significantly improved cognitive performance, but significantly decreased GFAP and Arc compared to the untreated type 1 group. In addition, the type 2 diabetic groups showed a significant decrease in hippocampus GFAP and Arc compared to the non-diabetic groups. Blocking NMDA receptors by memantine significantly increased cognitive performance, GFAP and Arc in the type 1 insulin-memantine group compared to the type 1-insulin group and significantly increased Arc in the type 2-memantine group compared to the untreated type 2 diabetic group. The non-diabetic group

  12. Hippocampal sclerosis in children younger than 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Kadom, Nadja [Children' s National Medical Center, Department of Diagnostic Imaging and Radiology, Washington, DC (United States); Tsuchida, Tammy; Gaillard, William D. [Children' s National Medical Center, Department of Neurology, Washington, DC (United States)

    2011-10-15

    Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology. (orig.)

  13. Hippocampal sclerosis in children younger than 2 years

    International Nuclear Information System (INIS)

    Kadom, Nadja; Tsuchida, Tammy; Gaillard, William D.

    2011-01-01

    Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology. (orig.)

  14. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews

    NARCIS (Netherlands)

    Keuker, J.I.H.; de Biurrun, G.; Luiten, P.G.M.; Fuchs, E.

    2004-01-01

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many

  15. Stress, depression and hippocampal damage

    Indian Academy of Sciences (India)

    Amongst the prime targets of stress in the brain is the hippocampus, which has high receptor ... effects on different hippocampal subfields (McEwen 1999). ... disorders, and decreases in hippocampal volume have been observed in patients of ...

  16. Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry.

    Science.gov (United States)

    Mattson, M P; Lee, R E; Adams, M E; Guthrie, P B; Kater, S B

    1988-11-01

    A coculture system consisting of input axons from entorhinal cortex explants and target hippocampal pyramidal neurons was used to demonstrate that glutamate, released spontaneously from afferent axons, can influence both dendritic geometry of target neurons and formation of presumptive synaptic sites. Dendritic outgrowth was reduced in hippocampal neurons growing on entorhinal axons when compared with neurons growing off the axons. Presumptive presynaptic sites were observed in association with hippocampal neuron dendrites and somas. HPLC analysis showed that glutamate was released from the explants in an activity- and Ca2(+)-dependent manner. The general glutamate receptor antagonist D-glutamylglycine significantly increased dendritic outgrowth in pyramidal neurons associated with entorhinal axons and reduced presumptive presynaptic sites. Tetrodotoxin and reduction of extracellular Ca2+ also promoted dendritic outgrowth and reduced the formation of presumptive synaptic sites. The results suggest that the neurotransmitter glutamate may play important roles in the development of hippocampal circuitry.

  17. What Do Monkey Calls Mean?

    Science.gov (United States)

    Schlenker, Philippe; Chemla, Emmanuel; Zuberbühler, Klaus

    2016-12-01

    A field of primate linguistics is gradually emerging. It combines general questions and tools from theoretical linguistics with rich data gathered in experimental primatology. Analyses of several monkey systems have uncovered very simple morphological and syntactic rules and have led to the development of a primate semantics that asks new questions about the division of semantic labor between the literal meaning of monkey calls, additional mechanisms of pragmatic enrichment, and the environmental context. We show that comparative studies across species may validate this program and may in some cases help in reconstructing the evolution of monkey communication over millions of years. Copyright © 2016. Published by Elsevier Ltd.

  18. Soluble human CD4 elicits an antibody response in rhesus monkeys that inhibits simian immunodeficiency virus replication

    International Nuclear Information System (INIS)

    Watanabe, Mamoru; Chen, Zheng W.; Tsubota, Hiroshi; Lord, C.I.; Levine, C.G.; Letvin, N.L.

    1991-01-01

    Rhesus monkeys infected with the simian immunodeficiency virus of macaques (SIV mac ) demonstrate significant virologic and clinical improvement as a result of treatment with human recombinant soluble CD4 (rsCD4). The authors show that human rsCD4 does not efficiently inhibit SIV mac replication in bone marrow macrophages of rhesus monkeys and does not significantly augment bone marrow hematopoietic colony formation in vitro. However, plasma of human rsCD4-treated rhesus monkeys does exhibit significant anti-SIV mac activity in vitro. Plasma of these animals efficiently blocks SIV mac replicaton in peripheral blood lymphocytes and bone marrow macrophages. It also increases granulocyte/macrophage colony formation in vitro by bone marrow cells of SIV mac -infected monkeys. This plasma and the IgG fraction of plasma from a rhesus monkey immunized with human rsCD4 in adjuvant demonstrate reactivity with a soluble form of the rhesus monkey CD4 molecule, exhibit binding to CD4 + but not CD8 + concanavalin A-activated rhesus monkey peripheral blood lymphocytes, and precipitate the CD4 molecule from surface-labeled activated rhesus monkey peripheral blood lymphocytes. Moreover, anti-viral activity is demonstrable in the IgG fraction of plasma from a human rsCD4-immunized monkey. These studies raise the possibility that a modified human CD4 molecule serving as an immunogen might elicit an antibody response that could potentially induce a beneficial therapeutic response in human immunodeficiency virus-infected individuals

  19. Updating the lamellar hypothesis of hippocampal organization

    Directory of Open Access Journals (Sweden)

    Robert S Sloviter

    2012-12-01

    Full Text Available In 1971, Andersen and colleagues proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a trisynaptic circuit lying within transverse hippocampal slices or lamellae [Andersen, Bliss, and Skrede. 1971. Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222-238]. In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the lamellar distribution of dentate granule cell axons (the mossy fibers, which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly lamellar mossy fiber pathway. The existence of pathways with translamellar distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis [Amaral and Witter. 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571-591]. We suggest that the functional implications of longitudinally-projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar

  20. Hippocampal disconnection in early Alzheimer's disease: a 7 tesla MRI study

    NARCIS (Netherlands)

    Wisse, L.E.; Reijmer, Y.D.; Telgte, A. ter; Kuijf, H.J.; Leemans, A.; Luijten, P.R.; Koek, H.L.; Geerlings, M.I.; Biessels, G.J.

    2015-01-01

    BACKGROUND: In patients with Alzheimer's disease (AD), atrophy of the entorhinal cortex (ERC) and hippocampal formation may induce degeneration of connecting white matter tracts. OBJECTIVE: We examined the association of hippocampal subfield and ERC atrophy at 7 tesla MRI with fornix and

  1. Epidurography with metrizamide in Rhesus monkeys

    International Nuclear Information System (INIS)

    Kido, D.K.; Baker, R.A.; Saubermann, A.; Salem, J.; Schoene, W.C.; Fournier, P.

    1980-01-01

    Epidurography with metrizamide was performed on 9 Rhesus monkeys; physiologic saline was substituted for metrizamide in 3 control monkeys. Metrizamide successfully outlined the epidural space without causing any adverse clinical effects or direct tissue injury. (Auth.)

  2. Spontaneous Metacognition in Rhesus Monkeys.

    Science.gov (United States)

    Rosati, Alexandra G; Santos, Laurie R

    2016-09-01

    Metacognition is the ability to think about thinking. Although monitoring and controlling one's knowledge is a key feature of human cognition, its evolutionary origins are debated. In the current study, we examined whether rhesus monkeys (Macaca mulatta; N = 120) could make metacognitive inferences in a one-shot decision. Each monkey experienced one of four conditions, observing a human appearing to hide a food reward in an apparatus consisting of either one or two tubes. The monkeys tended to search the correct location when they observed this baiting event, but engaged in information seeking-by peering into a center location where they could check both potential hiding spots-if their view had been occluded and information seeking was possible. The monkeys only occasionally approached the center when information seeking was not possible. These results show that monkeys spontaneously use information about their own knowledge states to solve naturalistic foraging problems, and thus provide the first evidence that nonhumans exhibit information-seeking responses in situations with which they have no prior experience. © The Author(s) 2016.

  3. Vicarious Learning from Human Models in Monkeys

    OpenAIRE

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo

    2012-01-01

    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was app...

  4. Get the Monkey off Your Back

    Science.gov (United States)

    Ciabattini, David; Custer, Timothy J.

    2008-01-01

    Monkeys are the problems that need solutions, the tasks that need to be accomplished, the decisions that need to be made, and the actions that need to be taken. According to a theory, people carry monkeys around on their backs until they can successfully shift their burden to someone else and the monkey leaps from one back to the next. Managers…

  5. Hippocampal MR volumetry

    Science.gov (United States)

    Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.

    1994-09-01

    Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR

  6. Vicarious learning from human models in monkeys.

    Science.gov (United States)

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo

    2012-01-01

    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  7. Vicarious learning from human models in monkeys.

    Directory of Open Access Journals (Sweden)

    Rossella Falcone

    Full Text Available We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  8. Induced Neurocysticercosis in Rhesus Monkeys (Macaca mulatta Produces Clinical Signs and Lesions Similar to Natural Disease in Man

    Directory of Open Access Journals (Sweden)

    N. Chowdhury

    2014-01-01

    Full Text Available Neurocysticercosis is a serious endemic zoonosis resulting in increased cases of seizure and epilepsy in humans. The genesis of clinical manifestations of the disease through experimental animal models is poorly exploited. The monkeys may prove useful for the purpose due to their behavior and cognitive responses mimicking man. In this study, neurocysticercosis was induced in two rhesus monkeys each with 12,000 and 6,000 eggs, whereas three monkeys were given placebo. The monkeys given higher dose developed hyperexcitability, epileptic seizures, muscular tremors, digital cramps at 10 DPI, and finally paralysis of limbs, followed by death on 67 DPI, whereas the monkeys given lower dose showed delayed and milder clinical signs. On necropsy, all the infected monkeys showed numerous cysticerci in the brain. Histopathologically, heavily infected monkeys revealed liquefactive necrosis and formation of irregular cystic cavities lined by atrophied parenchymal septa with remnants of neuropil of the cerebrum. In contrast, the monkeys infected with lower dose showed formation of typical foreign body granulomas characterized by central liquefaction surrounded by chronic inflammatory response. It was concluded that the inflammatory and immune response exerted by the host against cysticerci, in turn, led to histopathological lesions and the resultant clinical signs thereof.

  9. Formal monkey linguistics : The debate

    NARCIS (Netherlands)

    Schlenker, Philippe; Chemla, Emmanuel; Schel, Anne M.|info:eu-repo/dai/nl/413333450; Fuller, James; Gautier, Jean Pierre; Kuhn, Jeremy; Veselinović, Dunja; Arnold, Kate; Cäsar, Cristiane; Keenan, Sumir; Lemasson, Alban; Ouattara, Karim; Ryder, Robin; Zuberbühler, Klaus

    2016-01-01

    We explain why general techniques from formal linguistics can and should be applied to the analysis of monkey communication - in the areas of syntax and especially semantics. An informed look at our recent proposals shows that such techniques needn't rely excessively on categories of human language:

  10. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  11. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    Science.gov (United States)

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  12. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    DEFF Research Database (Denmark)

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc

    2011-01-01

    Cholecystokinin (CCK)-expressing basket cells encompass a subclass of inhibitory GABAergic interneurons that regulate memory-forming oscillatory network activity of the hippocampal formation in accordance to the emotional and motivational state of the animal, conveyed onto these cells by respective...... are modulated by neuropeptide Y (NPY), one of the major local neuropeptides that strongly inhibits hippocampal excitability and has significant effect on its memory function. Here, using GAD65-GFP transgenic mice for prospective identification of CCK basket cells and whole-cell patch-clamp recordings, we show...

  13. Role of adult neurogenesis in hippocampal-cortical memory consolidation

    Science.gov (United States)

    2014-01-01

    Acquired memory is initially dependent on the hippocampus (HPC) for permanent memory formation. This hippocampal dependency of memory recall progressively decays with time, a process that is associated with a gradual increase in dependency upon cortical structures. This process is commonly referred to as systems consolidation theory. In this paper, we first review how memory becomes hippocampal dependent to cortical dependent with an emphasis on the interactions that occur between the HPC and cortex during systems consolidation. We also review the mechanisms underlying the gradual decay of HPC dependency during systems consolidation from the perspective of memory erasures by adult hippocampal neurogenesis. Finally, we discuss the relationship between systems consolidation and memory precision. PMID:24552281

  14. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    Science.gov (United States)

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes.

  15. Studies on hippocampal sclerosis by 1H MRS and MRI

    International Nuclear Information System (INIS)

    Qi Jing; Du Xiangke; Luan Guoming; Wang Dehang

    2000-01-01

    Objective: To determine the relative utility of 1 H MRS and MRI for pre-surgical diagnosis of hippocampal sclerosis by the study on metabolic abnormalities and anatomical alterations in the brain of patients with temporal lobe epilepsy (TLE). Methods: 1 H MRS and MRI were performed on 8 patients with pathologically confirmed hippocampal sclerosis and 8 healthy volunteers on 2.0 T 1 H MRS/MRI system. The values of NAA, Cr and Cho were calculated by integration of their peaks and the ratios of NAA/Cr, NAA/(Cr + Cho), and Cho/Cr were measured. The volumes of both hippocampal formations in every case were observed and the differences of hippocampal formation (DHF) were analyzed. Results: The ratios of NAA/Cr, NAA/(Cr + Cho), and Cho/Cr in ipsilateral side were 0.55, 1.77 and 1.38, and in control subjects were 0.77, 1.38 and 1.06 separately. The ratios of NAA/Cr and NAA/(Cr + Cho) were decreased on ipsilateral side (t = 2.15, 4.83 separately, P 1 H MRS and MRI, seven of eight cases could be lateralized. Conclusion: 1 H MRS is sensitive to the diagnosis of neuron abnormality and coincident well with the pathological results 1 H MRS and MRI correctly lateralize most patients with hippocampal sclerosis and complement each other in final lateralization. The combination of 1 H MRS and MRI can provide useful information for pre-surgical diagnosis of hippocampal sclerosis

  16. Steroid metabolism by monkey and human spermatozoa

    International Nuclear Information System (INIS)

    Rajalakshmi, M.; Sehgal, A.; Pruthi, J.S.; Anand-Kumar, T.C.

    1983-01-01

    Freshly ejaculated spermatozoa from monkey and human were washed and incubated with tritium labelled androgens or estradiol to study the pattern of spermatozoa steroid metabolism. When equal concentrations of steroid substrates were used for incubation, monkey and human spermatozoa showed very similar pattern of steroid conversion. Spermatozoa from both species converted testosterone mainly to androstenedione, but reverse conversion of androstenedione to testosterone was negligible. Estradiol-17 beta was converted mainly to estrone. The close similarity between the spermatozoa of monkey and men in their steroid metabolic pattern indicates that the rhesus monkey could be an useful animal model to study the effect of drugs on the metabolic pattern of human spermatozoa

  17. Cup tool use by squirrel monkeys.

    Science.gov (United States)

    Buckmaster, Christine L; Hyde, Shellie A; Parker, Karen J; Lyons, David M

    2015-12-01

    Captive-born male and female squirrel monkeys spontaneously 'invented' a cup tool use technique to Contain (i.e., hold and control) food they reduced into fragments for consumption and to Contain water collected from a valve to drink. Food cup use was observed more frequently than water cup use. Observations indicate that 68% (n = 39/57) of monkeys in this population used a cup (a plastic slip cap) to Contain food, and a subset of these monkeys, 10% (n = 4/39), also used a cup to Contain water. Cup use was optional and did not replace, but supplemented, the hand/arm-to-mouth eating and direct valve drinking exhibited by all members of the population. Strategies monkeys used to bring food and cups together for food processing activity at preferred upper-level perching areas, in the arboreal-like environment in which they lived, provides evidence that monkeys may plan food processing activity with the cups. Specifically, prior to cup use monkeys obtained a cup first before food, or obtained food and a cup from the floor simultaneously, before transporting both items to upper-level perching areas. After food processing activity with cups monkeys rarely dropped the cups and more often placed the cups onto perching. Monkeys subsequently returned to use cups that they previously placed on perching after food processing activity. The latter behavior is consistent with the possibility that monkeys may keep cups at preferred perching sites for future food processing activity and merits experimental investigation. Reports of spontaneous tool use by squirrel monkeys are rare and this is the first report of population-level tool use. These findings offer insights into the cognitive abilities of squirrel monkeys and provide a new context for behavior studies with this genus and for comparative studies with other primates. © 2015 Wiley Periodicals, Inc.

  18. Spider monkey, Muriqui and Woolly monkey relationships revisited.

    Science.gov (United States)

    de Lima, Margarida Maria Celeira; Sampaio, Iracilda; Vieira, Ricardo dos Santos; Schneider, Horacio

    2007-01-01

    The taxonomic relationships among the four genera of the Atelidae family, Alouatta (Howler), Ateles (Spider), Lagothrix (Woolly) and Brachyteles (Muriqui), have been the subject of great debate. In general, almost all authors agree with the assignment of Howler monkeys as the basal genus, either in its own tribe Alouattini or in the subfamily Alouattinae, but they disagree on the associations among the other members of the family. Muriquis have been grouped with Spider monkeys based on the fact that they share various behavioral and morphological characteristics. Cladistic analyses using morphological, biochemical, karyotype and behavioral characteristics depicted a phylogenetic tree that places Howler as the basal genus and the remaining genera in an unresolved politomy. More recent studies using molecular data have suggested that Muriqui and Woolly monkeys are sister groups. However, a recent study based on nuclear and mtDNA argued that politomy is what best represents the relationships among Spider, Woolly and Muriqui. To contribute to this debate we have added new data from two nuclear genes, Transferrin and von Willebrand Factor, and using an alignment of 17,997 bp we demonstrate that a total analysis strongly supports the Muriqui-Woolly clade. A gene-to-gene approach showed that four of the eight nuclear genes provide support for the Muriqui-Woolly clade, two strongly and two moderately, while none of the eight genes provide support for any alternative arrangement. The mitochondrial genes were not able to resolve the politomy. A possible reason for the difficulty in resolving atelid relationships may be the short period of time separating each cladogenetic event in the evolutionary process that shaped this family.

  19. Reorganization of associative memory in humans with long-standing hippocampal damage.

    Science.gov (United States)

    Braun, Mischa; Finke, Carsten; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Hoffmann, Karl-Titus; Ploner, Christoph J

    2008-10-01

    Conflicting theories have been advanced to explain why hippocampal lesions affect distinct memory domains and spare others. Recent findings in monkeys suggest that lesion-induced plasticity may contribute to the seeming preservation of some of these domains. We tested this hypothesis by investigating visuo-spatial associative memory in two patient groups with similar surgical lesions to the right medial temporal lobe, but different preoperative disease courses (benign brain tumours, mean: 1.8 +/- 0.6 years, n = 5, age: 28.2 +/- 4.0 years; hippocampal sclerosis, mean: 16.8 +/- 1.9 years, n = 9, age: 38.9 +/- 4.1 years). Compared to controls (n = 14), tumour patients showed a significant delay-dependent deficit in memory of colour-location associations. No such deficit was observed in hippocampal sclerosis patients, which appeared to benefit from a compensatory mechanism that was inefficient in tumour patients. These results indicate that long-standing hippocampal damage can yield significant functional reorganization of the neural substrate underlying memory in the human brain. We suppose that this process accounts for some of the discrepancies between results from previous lesion studies of the human medial temporal lobe.

  20. Hippocampal sleep features: relations to human memory function

    Directory of Open Access Journals (Sweden)

    Michele eFerrara

    2012-04-01

    Full Text Available The recent spread of intracranial EEG recordings techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific pattern of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, NREM sleep in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep

  1. Hippocampal Sleep Features: Relations to Human Memory Function

    Science.gov (United States)

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  2. Autoshaping in Japanese Monkeys (Macaca Fuscata)

    OpenAIRE

    Itakura, Shoji; Fushimi, Takao; Asano, Toshio; Shoji, Itakura; Takao, Fushimi; Toshio, Asano

    1992-01-01

    Three Japanese monkeys were exposed to autoshaping and omission procedures. The Japanese momkeys seemed to be more sensitive to response-reinforcer contingency than to stimulus-reinforcer contingency. These results were compared with pigeons and squirrel monkeys in the previous reports.

  3. On Loss Aversion in Capuchin Monkeys

    Science.gov (United States)

    Silberberg, Alan; Roma, Peter G.; Huntsberry, Mary E.; Warren-Boulton, Frederick R.; Sakagami, Takayuki; Ruggiero, Angela M.; Suomi, Stephen J.

    2008-01-01

    Chen, Lakshminarayanan, and Santos (2006) claim to show in three choice experiments that monkeys react rationally to price and wealth shocks, but, when faced with gambles, display hallmark, human-like biases that include loss aversion. We present three experiments with monkeys and humans consistent with a reinterpretation of their data that…

  4. Hippocampal Sclerosis in Older Patients

    Science.gov (United States)

    Cykowski, Matthew D.; Powell, Suzanne Z.; Schulz, Paul E.; Takei, Hidehiro; Rivera, Andreana L.; Jackson, Robert E.; Roman, Gustavo; Jicha, Gregory A.; Nelson, Peter T.

    2018-01-01

    Context Autopsy studies of the older population (≥65 years of age), and particularly of the “oldest-old” (≥85 years of age), have identified a significant proportion (~20%) of cognitively impaired patients in which hippocampal sclerosis is the major substrate of an amnestic syndrome. Hippocampal sclerosis may also be comorbid with frontotemporal lobar degeneration, Alzheimer disease, and Lewy body disease. Until recently, the terms hippocampal sclerosis of aging or hippocampal sclerosis dementia were applied in this context. Recent discoveries have prompted a conceptual expansion of hippocampal sclerosis of aging because (1) cellular inclusions of TAR DNA-binding protein 43 kDa (TDP-43) are frequent; (2) TDP-43 pathology may be found outside hippocampus; and (3) brain arteriolosclerosis is a common, possibly pathogenic, component. Objective To aid pathologists with recent recommendations for diagnoses of common neuropathologies in older persons, particularly hippocampal sclerosis, and highlight the recent shift in diagnostic terminology from HS-aging to cerebral age-related TDP-43 with sclerosis (CARTS). Data Sources Peer-reviewed literature and 5 autopsy examples that illustrate common age-related neuropathologies, including CARTS, and emphasize the importance of distinguishing CARTS from late-onset frontotemporal lobar degeneration with TDP-43 pathology and from advanced Alzheimer disease with TDP-43 pathology. Conclusions In advanced old age, the substrates of cognitive impairment are often multifactorial. This article demonstrates common and frequently comorbid neuropathologic substrates of cognitive impairment in the older population, including CARTS, to aid those practicing in this area of pathology. PMID:28467211

  5. Relation between hippocampal damage and cerebral cortical function in Alzheimer's disease

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Sakurai, Hirofumi; Iwamoto, Toshihiko; Takasaki, Masaru

    2000-01-01

    We investigated the relation between hippocampal damage and cerebral cortical dysfunction in Alzheimer's disease (AD) using MRI and SPECT. Nineteen patients with AD and 10 control subjects were studied. Hippocampal damage (including hippocampal formation, entorhinal cortex, and parahippocampal white matter) was assessed to evaluate the severity of atrophy and the magnetization transfer ratio (MTR) and cerebral cortical dysfunction was evaluated by quantitative cerebral blood flow (CBF) measurements using SPECT with 99mTc-ECD. Compared with controls, patients with AD had significantly more atrophy of the medial temporal lobe and a decrease in MTRs of the hippocampus and parahippocampus. There were significant correlations between the severity of hippocampal damage and regional CBF in temporoparietal lobes. Mini-Mental State Examination scores significantly correlated with the severity of hippocampal damage and regional CBFs in temporoparietal lobes. These results suggest that the functional effect of hippocampal damage occurs in temporoparietal lobes in AD, probably due to neuronal disconnections between hippocampal areas (including the entorhinal cortex) and temporoparietal lobes. (author)

  6. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  7. Building hippocampal circuits to learn and remember: insights into the development of human memory.

    Science.gov (United States)

    Lavenex, Pierre; Banta Lavenex, Pamela

    2013-10-01

    The hippocampal formation is essential for the processing of episodic memories for autobiographical events that happen in unique spatiotemporal contexts. Interestingly, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. From 2 to 7 years of age, there are fewer memories than predicted based on a forgetting function alone, a phenomenon known as childhood amnesia. Here, we discuss the postnatal maturation of the primate hippocampal formation with the goal of characterizing the development of the neurobiological substrates thought to subserve the emergence of episodic memory. Distinct regions, layers and cells of the hippocampal formation exhibit different profiles of structural and molecular development during early postnatal life. The protracted period of neuronal addition and maturation in the dentate gyrus is accompanied by the late maturation of specific layers in different hippocampal regions that are located downstream from the dentate gyrus, particularly CA3. In contrast, distinct layers in several hippocampal regions, particularly CA1, which receive direct projections from the entorhinal cortex, exhibit an early maturation. In addition, hippocampal regions that are more highly interconnected with subcortical structures, including the subiculum, presubiculum, parasubiculum and CA2, mature even earlier. These findings, together with our studies of the development of human spatial memory, support the hypothesis that the differential maturation of distinct hippocampal circuits might underlie the differential emergence of specific "hippocampus-dependent" memory processes, culminating in the emergence of episodic memory concomitant with the maturation of all hippocampal circuits. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Nuclear weapon testing and the monkey business

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1978-01-01

    Reasons for India's total ban on the export of rhesus monkeys to U.S. have been explained. The major reason is that some of the animals were used in nuclear weapon related radiation experiments. This was a clear violation of a stricture in the agreement about supply of monkeys. The stricture prohibited the use of animals for research concerning military operations, including nuclear weapon testing. It is pleaded that a strict enforcement of strictures rather than a total ban on the export of monkeys would be better in the interest of advancement of knowledge in human medicine and disease control. (M.G.B.)

  9. Impairment on a self-ordered working memory task in patients with early-acquired hippocampal atrophy

    Directory of Open Access Journals (Sweden)

    Sharon Geva

    2016-08-01

    Full Text Available One of the features of both adult-onset and developmental forms of amnesia resulting from bilateral medial temporal lobe damage, or even from relatively selective damage to the hippocampus, is the sparing of working memory. Recently, however, a number of studies have reported deficits on working memory tasks in patients with damage to the hippocampus and in macaque monkeys with neonatal hippocampal lesions. These studies suggest that successful performance on working memory tasks with high memory load require the contribution of the hippocampus. Here we compared performance on a working memory task (the Self-ordered Pointing Task, between patients with early onset hippocampal damage and a group of healthy controls. Consistent with the findings in the monkeys with neonatal lesions, we found that the patients were impaired on the task, but only on blocks of trials with intermediate memory load. Importantly, only intermediate to high memory load blocks yielded significant correlations between task performance and hippocampal volume. Additionally, we found no evidence of proactive interference in either group, and no evidence of an effect of time since injury on performance. We discuss the role of the hippocampus and its interactions with the prefrontal cortex in serving working memory.

  10. Impairment on a self-ordered working memory task in patients with early-acquired hippocampal atrophy.

    Science.gov (United States)

    Geva, Sharon; Cooper, Janine M; Gadian, David G; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2016-08-01

    One of the features of both adult-onset and developmental forms of amnesia resulting from bilateral medial temporal lobe damage, or even from relatively selective damage to the hippocampus, is the sparing of working memory. Recently, however, a number of studies have reported deficits on working memory tasks in patients with damage to the hippocampus and in macaque monkeys with neonatal hippocampal lesions. These studies suggest that successful performance on working memory tasks with high memory load require the contribution of the hippocampus. Here we compared performance on a working memory task (the Self-ordered Pointing Task), between patients with early onset hippocampal damage and a group of healthy controls. Consistent with the findings in the monkeys with neonatal lesions, we found that the patients were impaired on the task, but only on blocks of trials with intermediate memory load. Importantly, only intermediate to high memory load blocks yielded significant correlations between task performance and hippocampal volume. Additionally, we found no evidence of proactive interference in either group, and no evidence of an effect of time since injury on performance. We discuss the role of the hippocampus and its interactions with the prefrontal cortex in serving working memory. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Comparison of Hippocampal Volume in Dementia Subtypes

    International Nuclear Information System (INIS)

    Vijayakumar, Avinash; Vijayakumar, Abhishek

    2012-01-01

    Aims. To examine the relationship between different types of dementia and hippocampal volume. Methods. Hippocampal volume was measured using FL3D sequence magnetic resonance imaging in 26 Alzheimer's, vascular dementia, mixed dementia, and normal pressure hydrocephalus patients and 15 healthy controls and also hippocampal ratio, analyzed. Minimental scale was used to stratify patients on cognitive function impairments. Results. Hippocampal volume and ratio was reduced by 25% in Alzheimer's disease, 21% in mixed dementia, 11% in vascular dementia and 5% in normal pressure hydrocephalus in comparison to control. Also an asymmetrical decrease in volume of left hippocampus was noted. The severity of dementia increased in accordance to decreasing hippocampal volume. Conclusion. Measurement in hippocampal volume may facilitate in differentiating different types of dementia and in disease progression. There was a correlation between hippocampal volume and severity of cognitive impairment

  12. Hippocampal Abnormalities and Seizure Recurrence

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-08-01

    Full Text Available Hippocampal volumetry and T2 relaxometry were performed on 84 consecutive patients (adolescents and adults with partial epilepsy submitted to antiepileptic drug (AED withdrawal after at least 2 years of seizure control, in a study at State University of Campinas-UNICAMP, Brazil.

  13. Hemopoiesis in monkeys in the course of and after total chronic irradiation

    International Nuclear Information System (INIS)

    Dzhikikidze, Eh.E.; Kosichenko, L.P.; Kuksova, M.I.

    1992-01-01

    Morphological and cytogenetic changes in blood-formation system of 2 types of monkeys were studied following chronic prolonged irradiation with low daily doses and considerable integral radiation load. Peak decrease of total leukocyte number of 1 mkl in both groups of monkeys at the expense of neutrophils was observed at integral dose of 10.78 Gy and was caused by decrease of index of neutrophil maturation. Violations of hereditary structures of bone marrow cells and peripheric blood lymphocytes were stable. Structural chromosomal aberrations remained in monkeys of both groups up to natural animal death. Quantitative and qualitative violations were less pronounced in macaca rhesus than in hamadryas baboons. This fact revealed high radiosensitivity of the baboons

  14. Executive function is less sensitive to estradiol than spatial memory: performance on an analog of the card sorting test in ovariectomized aged rhesus monkeys.

    Science.gov (United States)

    Lacreuse, A; Chhabra, R K; Hall, M J; Herndon, J G

    2004-09-30

    Functions supported by the frontal lobes are particularly sensitive to the detrimental effects of aging. Recent studies on postmenopausal women find that estrogen replacement therapy benefits performance on tasks dependent on the frontal lobes. To determine whether estrogen has a similar influence in a rhesus monkey model of menopause, we tested five aged, long-term ovariectomized rhesus monkeys in a modified version of the Wisconsin Card Sort test which had been adapted to the nonhuman primate. In this test, monkeys had to select 3-D objects based either on color (blue, red, yellow) or shape (block, tube, cup) and had to be able to switch their response as a function of reinforcement contingencies. The monkeys were treated with placebo and ethinyl estradiol (EE2, 450 ng/kg/day) in alternation with each successive test. Contrary to our hypothesis, estradiol treatment did not affect performance. Because previous studies in the same monkeys [Neurobiol. Aging 23 (2002) 589] had shown that EE2 improves performance on a spatial memory task dependent on the hippocampus, but not on another task dependent upon the frontal lobes (the delayed response), we conclude that executive processes may be less sensitive to the effects of estradiol than hippocampal-dependent tasks.

  15. Reduced hippocampal volume is associated with overgeneralization of negative context in individuals with PTSD.

    Science.gov (United States)

    Levy-Gigi, Einat; Szabo, Csilla; Richter-Levin, Gal; Kéri, Szabolcs

    2015-01-01

    Previous studies demonstrated reduced hippocampal volume in individuals with posttraumatic stress disorder (PTSD). However, the functional role the hippocampus plays in PTSD symptomatology is still unclear. The aim of the present study was to explore generalization learning and its connection to hippocampal volume in individuals with and without PTSD. Animal and human models argue that hippocampal deficit may result in failure to process contextual information. Therefore we predicted associations between reduced hippocampal volume and overgeneralization of context in individuals with PTSD. We conducted MRI scans of bilateral hippocampal and amygdala formations as well as intracranial and total brain volumes. Generalization was measured using a novel-learning paradigm, which separately evaluates generalization of cue and context in conditions of negative and positive outcomes. As expected, MRI scans indicated reduced hippocampal volume in PTSD compared to non-PTSD participants. Behavioral results revealed a selective deficit in context generalization learning in individuals with PTSD, F(1, 43) = 8.27, p < .01, η(p)² = .16. Specifically, as predicted, while generalization of cue was spared in both groups, individuals with PTSD showed overgeneralization of negative context. Hence, they could not learn that a previously negative context is later associated with a positive outcome, F(1, 43) = 7.33, p = .01, η(p)² = .15. Most importantly, overgeneralization of negative context significantly correlated with right and left hippocampal volume (r = .61, p = .000; r = .5, p = .000). Finally, bilateral hippocampal volume provided the strongest prediction of overgeneralization of negative context. Reduced hippocampal volume may account for the difficulty of individuals with PTSD to differentiate negative and novel conditions and hence may facilitate reexperiencing symptoms. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  16. Cytogenesis in the monkey retina

    International Nuclear Information System (INIS)

    La Vail, M.M.; Rapaport, D.H.; Rakic, P.

    1991-01-01

    Time of cell origin in the retina of the rhesus monkey (Macaca mulatta) was studied by plotting the number of heavily radiolabeled nuclei in autoradiograms prepared from 2- to 6-month-old animals, each of which was exposed to a pulse of 3H-thymidine (3H-TdR) on a single embryonic (E) or postnatal (P) day. Cell birth in the monkey retina begins just after E27, and approximately 96% of cells are generated by E120. The remaining cells are produced during the last (approximately 45) prenatal days and into the first several weeks after birth. Cell genesis begins near the fovea, and proceeds towards the periphery. Cell division largely ceases in the foveal and perifoveal regions by E56. Despite extensive overlap, a class-specific sequence of cell birth was observed. Ganglion and horizontal cells, which are born first, have largely congruent periods of cell genesis with the peak between E38 and E43, and termination around E70. The first labeled cones were apparent by E33, and their highest density was achieved between E43 and E56, tapering to low values at E70, although some cones are generated in the far periphery as late as E110. Amacrine cells are next in the cell birth sequence and begin genesis at E43, reach a peak production between E56 and E85, and cease by E110. Bipolar cell birth begins at the same time as amacrines, but appears to be separate from them temporally since their production reaches a peak between E56 and E102, and persists beyond the day of birth. Mueller cells and rod photoreceptors, which begin to be generated at E45, achieve a peak, and decrease in density at the same time as bipolar cells, but continue genesis at low density on the day of birth. Thus, bipolar, Mueller, and rod cells have a similar time of origin

  17. Basic Math in Monkeys and College Students

    OpenAIRE

    Beran, Michael J

    2008-01-01

    Recent behavioral and neuroimaging studies with humans and monkeys provide compelling evidence of shared numerical capacities across species. Our understanding of the emergence of human mathematical competence is well-served by these kinds of comparative assessments.

  18. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  19. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  20. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  1. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy

    International Nuclear Information System (INIS)

    Kazda, Tomas; Slampa, Pavel; Laack, Nadia N; Jancalek, Radim; Pospisil, Petr; Sevela, Ondrej; Prochazka, Tomas; Vrzal, Miroslav; Burkon, Petr; Slavik, Marek; Hynkova, Ludmila

    2014-01-01

    The goal of this review is to summarize the rationale for and feasibility of hippocampal sparing techniques during brain irradiation. Radiotherapy is the most effective non-surgical treatment of brain tumors and with the improvement in overall survival for these patients over the last few decades, there is an effort to minimize potential adverse effects leading to possible worsening in quality of life, especially worsening of neurocognitive function. The hippocampus and associated limbic system have long been known to be important in memory formation and pre-clinical models show loss of hippocampal stem cells with radiation as well as changes in architecture and function of mature neurons. Cognitive outcomes in clinical studies are beginning to provide evidence of cognitive effects associated with hippocampal dose and the cognitive benefits of hippocampal sparing. Numerous feasibility planning studies support the feasibility of using modern radiotherapy systems for hippocampal sparing during brain irradiation. Although results of the ongoing phase II and phase III studies are needed to confirm the benefit of hippocampal sparing brain radiotherapy on neurocognitive function, it is now technically and dosimetrically feasible to create hippocampal sparing treatment plans with appropriate irradiation of target volumes. The purpose of this review is to provide a brief overview of studies that provide a rationale for hippocampal avoidance and provide summary of published feasibility studies in order to help clinicians prepare for clinical usage of these complex and challenging techniques

  2. Newly Identified CYP2C93 Is a Functional Enzyme in Rhesus Monkey, but Not in Cynomolgus Monkey

    OpenAIRE

    Uno, Yasuhiro; Uehara, Shotaro; Kohara, Sakae; Iwasaki, Kazuhide; Nagata, Ryoichi; Fukuzaki, Koichiro; Utoh, Masahiro; Murayama, Norie; Yamazaki, Hiroshi

    2011-01-01

    Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP) 2C76 that does not have a human ortholog and is partly responsible for species differences in drug metabolism between cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus monkey and rhesus monkey. The CYP2C9...

  3. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting

    NARCIS (Netherlands)

    Gispen, W.H.; Proper, E.A.; Jansen, G.H.; Veelen, C.W. van; Rijen, P.C. van; Graan, P.N.E. de

    2001-01-01

    Abstract. In patients suffering from temporal lobe epilepsy (TLE) a highly variable degree of hippocampal sclerosis (HS) can be observed. For standard neuropathological evaluation after hippocampal resection, neuronal cell loss in the hippocampal subareas is assessed (Wyler score 0-4) [Wyler et al.

  4. Hippocampal effects of neuronostatin on memory, anxiety-like behavior and food intake in rats.

    Science.gov (United States)

    Carlini, V P; Ghersi, M; Gabach, L; Schiöth, H B; Pérez, M F; Ramirez, O A; Fiol de Cuneo, M; de Barioglio, S R

    2011-12-01

    A 13-amino acid peptide named neuronostatin (NST) encoded in the somatostatin pro-hormone has been recently reported. It is produced throughout the body, particularly in brain areas that have significant actions over the metabolic and autonomic regulation. The present study was performed in order to elucidate the functional role of NST on memory, anxiety-like behavior and food intake and the hippocampal participation in these effects. When the peptide was intra-hippocampally administered at 3.0 nmol/μl, it impaired memory retention in both, object recognition and step-down test. Also, this dose blocked the hippocampal long-term potentiation (LTP) generation. When NST was intra-hippocampally administered at 0.3 nmol/μl and 3.0 nmol/μl, anxiolytic effects were observed. Also, the administration in the third ventricle at the higher dose (3.0 nmol/μl) induced similar effects, and both doses reduced food intake. The main result of the present study is the relevance of the hippocampal formation in the behavioral effects induced by NST, and these effects could be associated to a reduced hippocampal synaptic plasticity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Somatosensory deficits in monkeys treated with misonidazole

    International Nuclear Information System (INIS)

    Maurissen, J.P.J.; Conroy, P.J.; Passalacqua, W.; Von Burg, R.; Weiss, B.; Sutherland, R.M.

    1981-01-01

    Misonidazole, a hypoxic cell radiosensitizer, can produce peripheral sensory disorders in humans. It has been studied in monkeys with a computer-controlled system for evaluating vibration sensitivity. Monkeys were trained to report when vibration was stimulating the finger tip. Sinusoidal vibrations of several frequencies were presented. Two monkeys were dosed with misonidazole and their vibration sensitivity tested. They received a dose of 3 g/m 2 (about 180 mg/kg) twice weekly over a period of 6 to 10 weeks. An amplitude-frequency detection function was determined for each monkey before and after drug treatment. An analysis of covariance comparing polynomial regressions was performed. A significant difference (p < 0.001) was found between control and experimental curves in both monkeys. Pharmacokinetic data indicated a half-life of the drug in blood of about 4 to 5 hr. The overall half-life for elimination did not increase throughout prolonged treatment with msonidazole. Neither motor nor sensory nerve conduction velocity was reduced after treatment

  6. Monkey Bites among US Military Members, Afghanistan, 2011

    Science.gov (United States)

    Baker, Katheryn A.

    2012-01-01

    Bites from Macaca mulatta monkeys, native to Afghanistan, can cause serious infections. To determine risk for US military members in Afghanistan, we reviewed records for September–December 2011. Among 126 animal bites and exposures, 10 were monkey bites. Command emphasis is vital for preventing monkey bites; provider training and bite reporting promote postexposure treatment. PMID:23017939

  7. Basic math in monkeys and college students.

    Science.gov (United States)

    Cantlon, Jessica F; Brannon, Elizabeth M

    2007-12-01

    Adult humans possess a sophisticated repertoire of mathematical faculties. Many of these capacities are rooted in symbolic language and are therefore unlikely to be shared with nonhuman animals. However, a subset of these skills is shared with other animals, and this set is considered a cognitive vestige of our common evolutionary history. Current evidence indicates that humans and nonhuman animals share a core set of abilities for representing and comparing approximate numerosities nonverbally; however, it remains unclear whether nonhuman animals can perform approximate mental arithmetic. Here we show that monkeys can mentally add the numerical values of two sets of objects and choose a visual array that roughly corresponds to the arithmetic sum of these two sets. Furthermore, monkeys' performance during these calculations adheres to the same pattern as humans tested on the same nonverbal addition task. Our data demonstrate that nonverbal arithmetic is not unique to humans but is instead part of an evolutionarily primitive system for mathematical thinking shared by monkeys.

  8. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Radiation-induced emesis in monkeys

    International Nuclear Information System (INIS)

    Mattsson, J.L.; Yochmowitz, M.G.

    1980-01-01

    To determine the emesis ED 50 for 60 Co radiation, 15 male rhesus monkeys were exposed to whole-body radiation doses ranging from 350 to 550 rad midline tissue dose. An up-and-down sequence of exposures was used. Step size between doses was 50 rad, and dose rate was 20 rad/min. There had been no access to food for 1 to 2 h. The ED 50 +- SE was found to be 446 +- 27 rad. To determine the effect of motion on emesis ED 50 , six more monkeys were exposed to 60 Co radiation as above, except that the chair in which they were seated was oscillated forward and backward 5 to 15 0 (pitch axis) at a variable rate not exceeding 0.3 Hz. Radioemesis ED 50 +- SE with motion was 258 +- 19 rad, a value significantly lower (P < 0.01) than for stationary monkeys

  10. Default Mode of Brain Function in Monkeys

    Science.gov (United States)

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A.; Buckner, Randy L.; Vanduffel, Wim

    2013-01-01

    Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment. PMID:21900574

  11. Vascular origin of vildagliptin-induced skin effects in Cynomolgus monkeys: pathomechanistic role of peripheral sympathetic system and neuropeptide Y.

    Science.gov (United States)

    Hoffmann, Peter; Bentley, Phil; Sahota, Pritam; Schoenfeld, Heidi; Martin, Lori; Longo, Linda; Spaet, Robert; Moulin, Pierre; Pantano, Serafino; Dubost, Valerie; Lapadula, Dan; Burkey, Bryan; Kaushik, Virendar; Zhou, Wei; Hayes, Michael; Flavahan, Nick; Chibout, Salah-Dine; Busch, Steve

    2014-06-01

    The purpose of this article is to characterize skin lesions in cynomolgus monkeys following vildagliptin (dipeptidyl peptidase-4 inhibitor) treatment. Oral vildagliptin administration caused dose-dependent and reversible blister formation, peeling and flaking skin, erosions, ulcerations, scabs, and sores involving the extremities at ≥5 mg/kg/day and necrosis of the tail and the pinnae at ≥80 mg/kg/day after 3 weeks of treatment. At the affected sites, the media and the endothelium of dermal arterioles showed hypertrophy/hyperplasia. Skin lesion formation was prevented by elevating ambient temperature. Vildagliptin treatment also produced an increase in blood pressure and heart rate likely via increased sympathetic tone. Following treatment with vildagliptin at 80 mg/kg/day, the recovery time after lowering the temperature in the feet of monkeys and inducing cold stress was prolonged. Ex vivo investigations showed that small digital arteries from skin biopsies of vildagliptin-treated monkeys exhibited an increase in neuropeptide Y-induced vasoconstriction. This finding correlated with a specific increase in NPY and in NPY1 receptors observed in the skin of vildagliptin-treated monkeys. Present data provide evidence that skin effects in monkeys are of vascular origin and that the effects on the NPY system in combination with increased peripheral sympathetic tone play an important pathomechanistic role in the pathogenesis of cutaneous toxicity. © 2014 by The Author(s).

  12. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  13. An Entamoeba sp. strain isolated from rhesus monkey is virulent but genetically different from Entamoeba histolytica.

    Science.gov (United States)

    Tachibana, Hiroshi; Yanagi, Tetsuo; Pandey, Kishor; Cheng, Xun-Jia; Kobayashi, Seiki; Sherchand, Jeevan B; Kanbara, Hiroji

    2007-06-01

    An Entamoeba sp. strain, P19-061405, was isolated from a rhesus monkey in Nepal and characterized genetically. The strain was initially identified as Entamoeba histolytica using PCR amplification of peroxiredoxin genes. However, sequence analysis of the 18S rRNA gene showed a 0.8% difference when compared to the reference E. histolytica HM-1:IMSS human strain. Differences were also observed in the 5.8S rRNA gene and the internal transcribed spacer (ITS) regions 1 and 2, and analysis of the serine-rich protein gene from the monkey strain showed unique codon usages compared to E. histolytica isolated from humans. The amino acid sequences of two hexokinases and two glucose phosphate isomerases also differed from those of E. histolytica. Isoenzyme analyses of these enzymes in the monkey strain showed different electrophoretic mobility patterns compared with E. histolytica isolates. Analysis of peroxiredoxin genes indicated the presence of at least seven different types of protein, none of which were identical to proteins in E. histolytica. When the trophozoites from the monkey strain were inoculated into the livers of hamsters, formation of amebic abscesses was observed 7 days after the injection. These results demonstrate that the strain is genetically different from E. histolytica and is virulent. Revival of the name Entamoeba nuttalli is proposed for the organism.

  14. Analysis of prostate-specific antigen transcripts in chimpanzees, cynomolgus monkeys, baboons, and African green monkeys.

    Directory of Open Access Journals (Sweden)

    James N Mubiru

    Full Text Available The function of prostate-specific antigen (PSA is to liquefy the semen coagulum so that the released sperm can fuse with the ovum. Fifteen spliced variants of the PSA gene have been reported in humans, but little is known about alternative splicing in nonhuman primates. Positive selection has been reported in sex- and reproductive-related genes from sea urchins to Drosophila to humans; however, there are few studies of adaptive evolution of the PSA gene. Here, using polymerase chain reaction (PCR product cloning and sequencing, we study PSA transcript variant heterogeneity in the prostates of chimpanzees (Pan troglodytes, cynomolgus monkeys (Macaca fascicularis, baboons (Papio hamadryas anubis, and African green monkeys (Chlorocebus aethiops. Six PSA variants were identified in the chimpanzee prostate, but only two variants were found in cynomolgus monkeys, baboons, and African green monkeys. In the chimpanzee the full-length transcript is expressed at the same magnitude as the transcripts that retain intron 3. We have found previously unidentified splice variants of the PSA gene, some of which might be linked to disease conditions. Selection on the PSA gene was studied in 11 primate species by computational methods using the sequences reported here for African green monkey, cynomolgus monkey, baboon, and chimpanzee and other sequences available in public databases. A codon-based analysis (dN/dS of the PSA gene identified potential adaptive evolution at five residue sites (Arg45, Lys70, Gln144, Pro189, and Thr203.

  15. Hippocampal projections to the ventral striatum: from spatial memory to motivated behavior

    NARCIS (Netherlands)

    van der Meer, M.M.A; Ito, R.; Lansink, C.S.; Pennartz, C.M.A.; Derdikman, D.; Knierim, J.J.

    2014-01-01

    Multiple regions of the hippocampal formation project to the ventral striatum, a central node in brain circuits that subserve aspects of motivation. These projections emphasize information flow from the ventral (temporal) pole of the hippocampus and interact with converging projections and

  16. Canine distemper outbreak in rhesus monkeys, China.

    Science.gov (United States)

    Qiu, Wei; Zheng, Ying; Zhang, Shoufeng; Fan, Quanshui; Liu, Hua; Zhang, Fuqiang; Wang, Wei; Liao, Guoyang; Hu, Rongliang

    2011-08-01

    Since 2006, canine distemper outbreaks have occurred in rhesus monkeys at a breeding farm in Guangxi, People's Republic of China. Approximately 10,000 animals were infected (25%-60% disease incidence); 5%-30% of infected animals died. The epidemic was controlled by vaccination. Amino acid sequence analysis of the virus indicated a unique strain.

  17. Responsiveness in Behaving Monkeys and Human Subjects

    Science.gov (United States)

    1993-07-31

    Status of Current Research - Statement of Work Each study involving awake , behaving monkey neurophysiological recording used a behavioral paradigm that...anesthesia. A craniotomy was performed at approximately A+ 14.5mm. The recording chamber then was fixed to the skull at a lateral angle of 8’ from

  18. Nutritional and health status of woolly monkeys

    NARCIS (Netherlands)

    Ange-van Heugten, K.D.; Timmer, S.; Jansen, W.L.; Verstegen, M.W.A.

    2008-01-01

    Woolly monkeys (Lagothrix lagotricha and L. flavicauda) are threatened species in the wild and in captivity. Numerous zoological institutions have historically kept Lagothrix lagotricha spp., but only a few of them have succeeded in breeding populations. Therefore the majority of institutions that

  19. Canine Distemper Outbreak in Rhesus Monkeys, China

    Science.gov (United States)

    Qiu, Wei; Zheng, Ying; Zhang, Shoufeng; Fan, Quanshui; Liu, Hua; Zhang, Fuqiang; Wang, Wei; Liao, Guoyang

    2011-01-01

    Since 2006, canine distemper outbreaks have occurred in rhesus monkeys at a breeding farm in Guangxi, People’s Republic of China. Approximately 10,000 animals were infected (25%–60% disease incidence); 5%–30% of infected animals died. The epidemic was controlled by vaccination. Amino acid sequence analysis of the virus indicated a unique strain. PMID:21801646

  20. Computing Arm Movements with a Monkey Brainet.

    Science.gov (United States)

    Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2015-07-09

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.

  1. Integrase of Mason-Pfizer monkey virus

    Czech Academy of Sciences Publication Activity Database

    Snášel, Jan; Krejčík, Zdeněk; Jenčová, Věra; Rosenberg, Ivan; Ruml, Tomáš; Alexandratos, J.; Gustchina, A.; Pichová, Iva

    2005-01-01

    Roč. 272, č. 1 (2005), s. 203-216 ISSN 1742-464X R&D Projects: GA AV ČR(CZ) IAA4055304 Institutional research plan: CEZ:AV0Z4055905 Keywords : integrase * Mason-Pfizer monkey virus * HIV-1 Subject RIV: CE - Biochemistry

  2. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory.

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C

    2016-11-23

    The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long

  3. Evaluation of drug-induced hematotoxicity using novel in vitro monkey CFU-GM and BFU-E colony assays.

    Science.gov (United States)

    Goto, Koichi; Goto, Mayumi; Ando-Imaoka, Masako; Kai, Kiyonori; Mori, Kazuhiko

    2017-01-01

    In order to evaluate drug-induced hematotoxicity in monkey cells in vitro, colony-forming unit-granulocyte, macrophage (CFU-GM), and burst-forming unit-erythroid (BFU-E) colony assays were established using mononuclear cells in the bone marrow collected from male cynomolgus monkeys. Furthermore, the effects of doxorubicin, chloramphenicol, and linezolid on CFU-GM and BFU-E colony formation were investigated using established monkey CFU-GM and BFU-E colony assays in comparison with those on human CFU-GM and BFU-E colonies acquired from human umbilical cord blood cells. Bone marrow mononuclear cells were collected from the ischial or iliac bone of male cynomolgus monkeys. The cells were subsequently processed by density gradient separation at 1.067, 1.070, or 1.077 g/mL for CFU-GM or 1.077 g/mL for BFU-E, and then cultured in methylcellulose medium for 9 or 13 days, respectively. A sufficient number of CFU-GM colonies were formed from mononuclear cells processed at a density of 1.070 g/mL. Moreover, the number of BFU-E colonies from the cells processed at a density of 1.077 g/mL was sufficient for the colony assay. The number of CFU-GM or BFU-E colonies decreased after treatment with the drugs of interest in a concentration-dependent manner. Compared with human CFU-GM, monkey CFU-GM were more sensitive to chloramphenicol and resistant to doxorubicin, whereas monkey BFU-E were more sensitive to all compounds in comparison to the sensitivity of human BFU-E. In conclusion, monkey CFU-GM and BFU-E colony assays were established and considered useful tools to evaluate the differences in drug-induced hematotoxicity between species.

  4. Peripheral refraction in normal infant rhesus monkeys

    Science.gov (United States)

    Hung, Li-Fang; Ramamirtham, Ramkumar; Huang, Juan; Qiao-Grider, Ying; Smith, Earl L.

    2008-01-01

    Purpose To characterize peripheral refractions in infant monkeys. Methods Cross-sectional data for horizontal refractions were obtained from 58 normal rhesus monkeys at 3 weeks of age. Longitudinal data were obtained for both the vertical and horizontal meridians from 17 monkeys. Refractive errors were measured by retinoscopy along the pupillary axis and at eccentricities of 15, 30, and 45 degrees. Axial dimensions and corneal power were measured by ultrasonography and keratometry, respectively. Results In infant monkeys, the degree of radial astigmatism increased symmetrically with eccentricity in all meridians. There were, however, initial nasal-temporal and superior-inferior asymmetries in the spherical-equivalent refractive errors. Specifically, the refractions in the temporal and superior fields were similar to the central ametropia, but the refractions in the nasal and inferior fields were more myopic than the central ametropia and the relative nasal field myopia increased with the degree of central hyperopia. With age, the degree of radial astigmatism decreased in all meridians and the refractions became more symmetrical along both the horizontal and vertical meridians; small degrees of relative myopia were evident in all fields. Conclusions As in adult humans, refractive error varied as a function of eccentricity in infant monkeys and the pattern of peripheral refraction varied with the central refractive error. With age, emmetropization occurred for both central and peripheral refractive errors resulting in similar refractions across the central 45 degrees of the visual field, which may reflect the actions of vision-dependent, growth-control mechanisms operating over a wide area of the posterior globe. PMID:18487366

  5. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  6. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction.

    Science.gov (United States)

    Mantor, Duangkamol; Pratchayasakul, Wasana; Minta, Wanitchaya; Sutham, Wissuta; Palee, Siripong; Sripetchwandee, Jirapas; Kerdphoo, Sasiwan; Jaiwongkum, Thidarat; Sriwichaiin, Sirawit; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-04-17

    Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity. Copyright © 2017. Published by Elsevier Inc.

  7. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  8. Unilateral hippocampal inactivation or lesion selectively impairs remote contextual fear memory.

    Science.gov (United States)

    Zhou, Heng; Zhou, Qixin; Xu, Lin

    2016-10-01

    Contextual fear memory depends on the hippocampus, but the role of unilateral hippocampus in this type of memory remains unclear. Herein, pharmacological inactivation or excitotoxic lesions were used to study the role of unilateral hippocampus in the stages of contextual fear memory. The pharmacological experiments revealed that compared with the control groups, unilateral hippocampal blockade did not impair 1-day recent memory following learning, whereas bilateral hippocampal blockade significantly impaired this memory. The lesion experiments showed that compared with the control groups, the formed contextual fear memory was retained for 7 days and that 30-day remote memory was markedly reduced in unilateral hippocampal lesion groups. These results indicate that an intact bilateral hippocampus is required for the formation of remote memory and that unilateral hippocampus is sufficient for recent contextual fear memory.

  9. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory.

    Science.gov (United States)

    O'Mara, S M; Commins, S; Anderson, M

    2000-01-01

    This paper reviews investigations of synaptic plasticity in the major, and underexplored, pathway from hippocampal area CA1 to the subiculum. This brain area is the major synaptic relay for the majority of hippocampal area CA1 neurons, making the subiculum the last relay of the hippocampal formation prior to the cortex. The subiculum thus has a very major role in mediating hippocampal-cortical interactions. We demonstrate that the projection from hippocampal area CA1 to the subiculum sustains plasticity on a number of levels. We show that this pathway is capable of undergoing both long-term potentiation (LTP) and paired-pulse facilitation (PPF, a short-term plastic effect). Although we failed to induce long-term depression (LTD) of this pathway with low-frequency stimulation (LFS) and two-pulse stimulation (TPS), both protocols can induce a "late-developing" potentiation of synaptic transmission. We further demonstrate that baseline synaptic transmission can be dissociated from paired-pulse stimulation of the same pathway; we also show that it is possible, using appropriate protocols, to change PPF to paired-pulse depression, thus revealing subtle and previously undescribed mechanisms which regulate short-term synaptic plasticity. Finally, we successfully recorded from individual subicular units in the freely-moving animal, and provide a description of the characteristics of such neurons in a pellet-chasing task. We discuss the implications of these findings in relation to theories of the biological consolidation of memory.

  10. An association between human hippocampal volume and topographical memory in healthy young adults.

    Directory of Open Access Journals (Sweden)

    Tom eHartley

    2012-12-01

    Full Text Available The association between human hippocampal structure and topographical memory was investigated in healthy adults (N=30. Structural MR images were acquired, and voxel-based morphometry (VBM was used to estimate local gray matter volume throughout the brain. A complementary automated mesh-based segmentation approach was used to independently isolate and measure specified structures including the hippocampus. Topographical memory was assessed using a version of the Four Mountains Task, a short test designed to target hippocampal spatial function. Each item requires subjects to briefly study a landscape scene before recognizing the depicted place from a novel viewpoint and under altered non-spatial conditions when presented amongst similar alternative scenes. Positive correlations between topographical memory performance and hippocampal volume were observed in both VBM and segmentation-based analyses. Score on the topographical memory task was also correlated with the volume of some subcortical structures, extra-hippocampal gray matter and total brain volume, with the most robust and extensive covariation seen in circumscribed neocortical regions in the insula and anterior temporal lobes. Taken together with earlier findings, the results suggest that global variations in brain morphology affect the volume of the hippocampus and its specific contribution to topographical memory. We speculate that behavioral variation might arise directly through the impact of resource constraints on spatial representations in the hippocampal formation and its inputs, and perhaps indirectly through an increased reliance on non-allocentric strategies.

  11. Hippocampal activation during face-name associative memory encoding: blocked versus permuted design

    International Nuclear Information System (INIS)

    De Vogelaere, Frederick; Vingerhoets, Guy; Santens, Patrick; Boon, Paul; Achten, Erik

    2010-01-01

    The contribution of the hippocampal subregions to episodic memory through the formation of new associations between previously unrelated items such as faces and names is established but remains under discussion. Block design studies in this area of research generally tend to show posterior hippocampal activation during encoding of novel associational material while event-related studies emphasize anterior hippocampal involvement. We used functional magnetic resonance imaging to assess the involvement of anterior and posterior hippocampus in the encoding of novel associational material compared to the viewing of previously seen associational material. We used two different experimental designs, a block design and a permuted block design, and applied it to the same associative memory task to perform valid statistical comparisons. Our results indicate that the permuted design was able to capture more anterior hippocampal activation compared to the block design, which emphasized more posterior hippocampal involvement. These differences were further investigated and attributed to a combination of the polymodal stimuli we used and the experimental design. Activation patterns during encoding in both designs occurred along the entire longitudinal axis of the hippocampus, but with different centers of gravity. The maximal activated voxel in the block design was situated in the posterior half of the hippocampus while in the permuted design this was located in the anterior half. (orig.)

  12. Hippocampal activation during face-name associative memory encoding: blocked versus permuted design

    Energy Technology Data Exchange (ETDEWEB)

    De Vogelaere, Frederick; Vingerhoets, Guy [Ghent University, Laboratory for Neuropsychology, Department of Neurology, Ghent (Belgium); Santens, Patrick; Boon, Paul [Ghent University Hospital, Department of Neurology, Ghent (Belgium); Achten, Erik [Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2010-01-15

    The contribution of the hippocampal subregions to episodic memory through the formation of new associations between previously unrelated items such as faces and names is established but remains under discussion. Block design studies in this area of research generally tend to show posterior hippocampal activation during encoding of novel associational material while event-related studies emphasize anterior hippocampal involvement. We used functional magnetic resonance imaging to assess the involvement of anterior and posterior hippocampus in the encoding of novel associational material compared to the viewing of previously seen associational material. We used two different experimental designs, a block design and a permuted block design, and applied it to the same associative memory task to perform valid statistical comparisons. Our results indicate that the permuted design was able to capture more anterior hippocampal activation compared to the block design, which emphasized more posterior hippocampal involvement. These differences were further investigated and attributed to a combination of the polymodal stimuli we used and the experimental design. Activation patterns during encoding in both designs occurred along the entire longitudinal axis of the hippocampus, but with different centers of gravity. The maximal activated voxel in the block design was situated in the posterior half of the hippocampus while in the permuted design this was located in the anterior half. (orig.)

  13. Head Rotation Detection in Marmoset Monkeys

    Science.gov (United States)

    Simhadri, Sravanthi

    Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection. The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per

  14. Cavernous angioma associated with ipsilateral hippocampal sclerosis

    International Nuclear Information System (INIS)

    Okujava, M.; Ebner, A.; Schmitt, J.; Woermann, F.G.

    2002-01-01

    We report two cases with extratemporal cavernous angioma (CA) and coexisting ipsilateral hippocampal sclerosis. Classically dual pathology is defined as the association of hippocampal sclerosis with an extrahippocampal lesion. Subtle changes in hippocampus might be overlooked in the presence of an unequivocal extrahippocampal abnormality. Seizure outcome after epilepsy surgery in cases with dual pathology is less favourable if only one of the lesions is removed. Dual pathology must always be considered in diagnostic imaging of patients with intractable epilepsy and CA. (orig.)

  15. Cavernous angioma associated with ipsilateral hippocampal sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Okujava, M [Institute of Radiology and Interventional Diagnostics, Tbilisi (Georgia); Ebner, A; Schmitt, J; Woermann, F G [Bethel Epilepsy Centre, Mara Hospital, Bielefeld (Germany)

    2002-07-01

    We report two cases with extratemporal cavernous angioma (CA) and coexisting ipsilateral hippocampal sclerosis. Classically dual pathology is defined as the association of hippocampal sclerosis with an extrahippocampal lesion. Subtle changes in hippocampus might be overlooked in the presence of an unequivocal extrahippocampal abnormality. Seizure outcome after epilepsy surgery in cases with dual pathology is less favourable if only one of the lesions is removed. Dual pathology must always be considered in diagnostic imaging of patients with intractable epilepsy and CA. (orig.)

  16. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    International Nuclear Information System (INIS)

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-01-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production

  17. Hemorrhoids: an experimental model in monkeys

    Directory of Open Access Journals (Sweden)

    Plapler Hélio

    2006-01-01

    Full Text Available PURPOSE: Hemorrhoids are a matter of concern due to a painful outcome. We describe a simple, easy and reliable experimental model to produce hemorrhoids in monkeys. METHODS: 14 monkeys (Cebus apella were used. After general anesthesia, hemorrhoids were induced by ligation of the inferior hemorrhoidal vein, which is very alike to humans. The vein was located through a perianal incision, dissected and ligated with a 3-0 vicryl. The skin was sutured with a 4-0 catgut thread. Animals were kept in appropriate cages and evaluated daily. RESULTS: Nine days later there were hemorrhoidal piles in the anus in fifty percent (50% of the animals. Outcome was unremarkable. There was no bleeding and all animals showed no signs of pain or suffering. CONCLUSION: This is an affordable and reliable experimental model to induce hemorrhoids for experimental studies.

  18. Radioprotective effectiveness of adeturone in monkey experiments

    International Nuclear Information System (INIS)

    Nikolov, I.; Pantev, T.; Rogozkin, P.; Chertkov, K.; Dikovenko, E.; Kosarenkov, V.

    1976-01-01

    The radioprotective effect of adeturone (adenosine triphsophate salt of AET) was tested on 28 monkeys (Macaca mulata). The animals were gamma-irradiated (cobalt 60) with a dose of 680 R (17,6 R/min, LDsub(100/18)). Adeturone was administered intravenously for 5 minutes, from 6 to 15 minutes before irradiation in a dose of 150 mg/kg (1/2 of thr maximal tolerable dose). It was found that adeturone administration before the absolute lethal irradiation will ensure survival of 50 % of the monkeys. Radiation sickness in protected animals runs a milder course as shown by the duration of the latency period, the manifestation of the hemorrhagic syndrome, the leukopenia and erythrocytes in the peripheral blood. Some symptoms do not appear at all (diarrhoea) or develop later(hyperthermia, hypodynamia). (A.B.)

  19. Contributions of Lateral and Orbital Frontal Regions to Abstract Rule Acquisition and Reversal in Monkeys

    Science.gov (United States)

    La Camera, Giancarlo; Bouret, Sebastien; Richmond, Barry J.

    2018-01-01

    The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established. PMID:29615854

  20. What do monkeys' music choices mean?

    Science.gov (United States)

    Lamont, Alexandra M

    2005-08-01

    McDermott and Hauser have recently shown that although monkeys show some types of preferences for sound, preferences for music are found only in humans. This suggests that music might be a relatively recent adaptation in human evolution. Here, I focus on the research methods used by McDermott and Hauser, and consider the findings in relation to infancy research and music psychology.

  1. Placental Transport of Zidovudine in the Rhesus Monkey

    OpenAIRE

    Ridgway III, Louis E.; King, Thomas S.; Henderson, George I.; Schenker, Steven; Schenken, Robert S.

    1993-01-01

    Objective: This study was undertaken to characterize the pharmacokinetics of zidovudine (ZDV) and ZDV-glucuronide (ZDVG) in the material and :fetal circulations of the rhesus monkey. Methods: Cannulas were placed in the maternal external jugular and the fetal internal jugular and carotid artery in 8 pregnant monkeys at .120–130 days gestation. ZDV (3.5 mg/kg) was administered to 5 monkeys and ZDVG (3.5 mg/kg) to 3 monkeys as single intravenous bolus infusions through the maternal catheter. Ma...

  2. Perceived control in rhesus monkeys (Macaca mulatta) - Enhanced video-task performance

    Science.gov (United States)

    Washburn, David A.; Hopkins, William D.; Rumbaugh, Duane M.

    1991-01-01

    This investigation was designed to determine whether perceived control effects found in humans extend to rhesus monkeys (Macaca mulatta) tested in a video-task format, using a computer-generated menu program, SELECT. Choosing one of the options in SELECT resulted in presentation of five trials of a corresponding task and subsequent return to the menu. In Experiments 1-3, the animals exhibited stable, meaningful response patterns in this task (i.e., they made choices). In Experiment 4, performance on tasks that were selected by the animals significantly exceeded performance on identical tasks when assigned by the experimenter under comparable conditions (e.g., time of day, order, variety). The reliable and significant advantage for performance on selected tasks, typically found in humans, suggests that rhesus monkeys were able to perceive the availability of choices.

  3. A three-plane architectonic atlas of the rat hippocampal region.

    Science.gov (United States)

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  4. Adaptive emotional memory: the key hippocampal-amygdalar interaction.

    Science.gov (United States)

    Desmedt, Aline; Marighetto, Aline; Richter-Levin, Gal; Calandreau, Ludovic

    2015-01-01

    For centuries philosophical and clinical studies have emphasized a fundamental dichotomy between emotion and cognition, as, for instance, between behavioral/emotional memory and explicit/representative memory. However, the last few decades cognitive neuroscience have highlighted data indicating that emotion and cognition, as well as their underlying neural networks, are in fact in close interaction. First, it turns out that emotion can serve cognition, as exemplified by its critical contribution to decision-making or to the enhancement of episodic memory. Second, it is also observed that reciprocally cognitive processes as reasoning, conscious appraisal or explicit representation of events can modulate emotional responses, like promoting or reducing fear. Third, neurobiological data indicate that reciprocal amygdalar-hippocampal influences underlie such mutual regulation of emotion and cognition. While supporting this view, the present review discusses experimental data, obtained in rodents, indicating that the hippocampal and amygdalar systems not only regulate each other and their functional outcomes, but also qualify specific emotional memory representations through specific activations and interactions. Specifically, we review consistent behavioral, electrophysiological, pharmacological, biochemical and imaging data unveiling a direct contribution of both the amygdala and hippocampal-septal system to the identification of the predictor of a threat in different situations of fear conditioning. Our suggestion is that these two brain systems and their interplay determine the selection of relevant emotional stimuli, thereby contributing to the adaptive value of emotional memory. Hence, beyond the mutual quantitative regulation of these two brain systems described so far, we develop the idea that different activations of the hippocampus and amygdala, leading to specific configurations of neural activity, qualitatively impact the formation of emotional memory

  5. Moxibustion upregulates hippocampal progranulin expression

    Directory of Open Access Journals (Sweden)

    Tao Yi

    2016-01-01

    Full Text Available In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4 and Zusanli (ST36, bilateral were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  6. Behavioral inhibition in childhood predicts smaller hippocampal volume in adolescent offspring of parents with panic disorder

    Science.gov (United States)

    Schwartz, C E; Kunwar, P S; Hirshfeld-Becker, D R; Henin, A; Vangel, M G; Rauch, S L; Biederman, J; Rosenbaum, J F

    2015-01-01

    Behavioral inhibition (BI) is a genetically influenced behavioral profile seen in 15–20% of 2-year-old children. Children with BI are timid with people, objects and situations that are novel or unfamiliar, and are more reactive physiologically to these challenges as evidenced by higher heart rate, pupillary dilation, vocal cord tension and higher levels of cortisol. BI predisposes to the later development of anxiety, depression and substance abuse. Reduced hippocampal volumes have been observed in anxiety disorders, depression and posttraumatic stress disorder. Animal models have demonstrated that chronic stress can damage the hippocampal formation and implicated cortisol in these effects. We, therefore, hypothesized that the hippocampi of late adolescents who had been behaviorally inhibited as children would be smaller compared with those who had not been inhibited. Hippocampal volume was measured with high-resolution structural magnetic resonance imaging in 43 females and 40 males at 17 years of age who were determined to be BI+ or BI− based on behaviors observed in the laboratory as young children. BI in childhood predicted reduced hippocampal volumes in the adolescents who were offspring of parents with panic disorder, or panic disorder with comorbid major depression. We discuss genetic and environmental factors emanating from both child and parent that may explain these findings. To the best of our knowledge, this is the first study to demonstrate a relationship between the most extensively studied form of temperamentally based human trait anxiety, BI, and hippocampal structure. The reduction in hippocampal volume, as reported by us, suggests a role for the hippocampus in human trait anxiety and anxiety disorder that warrants further investigation. PMID:26196438

  7. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis.

    Directory of Open Access Journals (Sweden)

    Christina Spilker

    2016-03-01

    Full Text Available Jacob, the protein encoded by the Nsmf gene, is involved in synapto-nuclear signaling and docks an N-Methyl-D-Aspartate receptor (NMDAR-derived signalosome to nuclear target sites like the transcription factor cAMP-response-element-binding protein (CREB. Several reports indicate that mutations in NSMF are related to Kallmann syndrome (KS, a neurodevelopmental disorder characterized by idiopathic hypogonadotropic hypogonadism (IHH associated with anosmia or hyposmia. It has also been reported that a protein knockdown results in migration deficits of Gonadotropin-releasing hormone (GnRH positive neurons from the olfactory bulb to the hypothalamus during early neuronal development. Here we show that mice that are constitutively deficient for the Nsmf gene do not present phenotypic characteristics related to KS. Instead, these mice exhibit hippocampal dysplasia with a reduced number of synapses and simplification of dendrites, reduced hippocampal long-term potentiation (LTP at CA1 synapses and deficits in hippocampus-dependent learning. Brain-derived neurotrophic factor (BDNF activation of CREB-activated gene expression plays a documented role in hippocampal CA1 synapse and dendrite formation. We found that BDNF induces the nuclear translocation of Jacob in an NMDAR-dependent manner in early development, which results in increased phosphorylation of CREB and enhanced CREB-dependent Bdnf gene transcription. Nsmf knockout (ko mice show reduced hippocampal Bdnf mRNA and protein levels as well as reduced pCREB levels during dendritogenesis. Moreover, BDNF application can rescue the morphological deficits in hippocampal pyramidal neurons devoid of Jacob. Taken together, the data suggest that the absence of Jacob in early development interrupts a positive feedback loop between BDNF signaling, subsequent nuclear import of Jacob, activation of CREB and enhanced Bdnf gene transcription, ultimately leading to hippocampal dysplasia.

  8. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    Directory of Open Access Journals (Sweden)

    Melanie Laßek

    2016-04-01

    Full Text Available The hallmarks of Alzheimer's disease (AD are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.

  9. Survival of mossy cells of the hippocampal dentate gyrus in humans with mesial temporal lobe epilepsy.

    Science.gov (United States)

    Seress, László; Abrahám, Hajnalka; Horváth, Zsolt; Dóczi, Tamás; Janszky, József; Klemm, Joyce; Byrne, Richard; Bakay, Roy A E

    2009-12-01

    Hippocampal sclerosis can be identified in most patients with mesial temporal lobe epilepsy (TLE). Surgical removal of the sclerotic hippocampus is widely performed to treat patients with drug-resistant mesial TLE. In general, both epilepsy-prone and epilepsy-resistant neurons are believed to be in the hippocampal formation. The hilar mossy cells of the hippocampal dentate gyrus are usually considered one of the most vulnerable types of neurons. The aim of this study was to clarify the fate of mossy cells in the hippocampus in epileptic humans. Of the 19 patients included in this study, 15 underwent temporal lobe resection because of drug-resistant TLE. Four patients were used as controls because they harbored tumors that had not invaded the hippocampus and they had experienced no seizures. Histological evaluation of resected hippocampal tissues was performed using immunohistochemistry. Mossy cells were identified in the control as well as the epileptic hippocampi by using cocaine- and amphetamine-regulated transcript peptide immunohistochemistry. In most cases the number of mossy cells was reduced and thorny excrescences were smaller in the epileptic hippocampi than in controls; however, there was a significant loss of pyramidal cells and a partial loss of granule cells in the same epileptic hippocampi in which mossy cell loss was apparent. The loss of mossy cells could be correlated with the extent of hippocampal sclerosis, patient age at seizure onset, duration of epilepsy, and frequency of seizures. In many cases large numbers of mossy cells were present in the hilus of the dentate gyrus when most pyramidal neurons of the CA1 and CA3 areas of the Ammon's horn were lost, suggesting that mossy cells may not be more vulnerable to epileptic seizures than the hippocampal pyramidal neurons.

  10. Monkeying around: Use of Survey Monkey as a Tool for School Social Work

    Science.gov (United States)

    Massat, Carol Rippey; McKay, Cassandra; Moses, Helene

    2009-01-01

    This article describes the use of an online survey tool called Survey Monkey, which can be used by school social workers and school social work educators for evaluation of practice, needs assessment, and program evaluation. Examples of questions are given. Principles of writing good survey questions are described. (Contains 2 tables and 1…

  11. Locomotor Anatomy and Behavior of Patas Monkeys (Erythrocebus patas with Comparison to Vervet Monkeys (Cercopithecus aethiops

    Directory of Open Access Journals (Sweden)

    Adrienne L. Zihlman

    2013-01-01

    Full Text Available Patas monkeys (Erythrocebus patas living in African savanna woodlands and grassland habitats have a locomotor system that allows them to run fast, presumably to avoid predators. Long fore- and hindlimbs, long foot bones, short toes, and a digitigrade foot posture were proposed as anatomical correlates with speed. In addition to skeletal proportions, soft tissue and whole body proportions are important components of the locomotor system. To further distinguish patas anatomy from other Old World monkeys, a comparative study based on dissection of skin, muscle, and bone from complete individuals of patas and vervet monkeys (Cercopithecus aethiops was undertaken. Analysis reveals that small adjustments in patas skeletal proportions, relative mass of limbs and tail, and specific muscle groups promote efficient sagittal limb motion. The ability to run fast is based on a locomotor system adapted for long distance walking. The patas’ larger home range and longer daily range than those of vervets give them access to highly dispersed, nutritious foods, water, and sleeping trees. Furthermore, patas monkeys have physiological adaptations that enable them to tolerate and dissipate heat. These features all contribute to the distinct adaptation that is the patas monkeys’ basis for survival in grassland and savanna woodland areas.

  12. Transmission of naturally occurring lymphoma in macaque monkeys.

    OpenAIRE

    Hunt, R D; Blake, B J; Chalifoux, L V; Sehgal, P K; King, N W; Letvin, N L

    1983-01-01

    Spontaneously occurring rhesus monkey lymphomas were transmitted into healthy rhesus monkeys by using tumor cell suspensions. The naturally arising tumors included an immunoblastic sarcoma and an undifferentiated lymphoma. Recipient animals developed undifferentiated lymphomas, poorly differentiated lymphomas, or parenchymal lymphoproliferative abnormalities suggestive of early lesions of lymphoma. Some of these animals developed such opportunistic infections as cytomegalovirus hepatitis and ...

  13. Evaluation of diabetes determinants in woolly monkeys (Lagothrix lagotricha)

    NARCIS (Netherlands)

    Ange-van Heugten, K.D.; Burns, R.; Verstegen, M.W.A.; Jansen, W.L.; Ferket, P.R.; Heugten, E.

    2007-01-01

    Woolly monkeys (Lagothrix lagotricha) are a threatened specie in the wild with limited successful management in captivity due to diagnosed hypertension and suspected diabetic conditions. Six woolly monkeys with known hypertension problems were tested to determine if diabetes mellitus and current

  14. Perceptual Learning: 12-Month-Olds' Discrimination of Monkey Faces

    Science.gov (United States)

    Fair, Joseph; Flom, Ross; Jones, Jacob; Martin, Justin

    2012-01-01

    Six-month-olds reliably discriminate different monkey and human faces whereas 9-month-olds only discriminate different human faces. It is often falsely assumed that perceptual narrowing reflects a permanent change in perceptual abilities. In 3 experiments, ninety-six 12-month-olds' discrimination of unfamiliar monkey faces was examined. Following…

  15. Test-retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and Alzheimer's disease populations.

    Science.gov (United States)

    Worker, Amanda; Dima, Danai; Combes, Anna; Crum, William R; Streffer, Johannes; Einstein, Steven; Mehta, Mitul A; Barker, Gareth J; C R Williams, Steve; O'daly, Owen

    2018-04-01

    The hippocampal formation is a complex brain structure that is important in cognitive processes such as memory, mood, reward processing and other executive functions. Histological and neuroimaging studies have implicated the hippocampal region in neuropsychiatric disorders as well as in neurodegenerative diseases. This highly plastic limbic region is made up of several subregions that are believed to have different functional roles. Therefore, there is a growing interest in imaging the subregions of the hippocampal formation rather than modelling the hippocampus as a homogenous structure, driving the development of new automated analysis tools. Consequently, there is a pressing need to understand the stability of the measures derived from these new techniques. In this study, an automated hippocampal subregion segmentation pipeline, released as a developmental version of Freesurfer (v6.0), was applied to T1-weighted magnetic resonance imaging (MRI) scans of 22 healthy older participants, scanned on 3 separate occasions and a separate longitudinal dataset of 40 Alzheimer's disease (AD) patients. Test-retest reliability of hippocampal subregion volumes was assessed using the intra-class correlation coefficient (ICC), percentage volume difference and percentage volume overlap (Dice). Sensitivity of the regional estimates to longitudinal change was estimated using linear mixed effects (LME) modelling. The results show that out of the 24 hippocampal subregions, 20 had ICC scores of 0.9 or higher in both samples; these regions include the molecular layer, granule cell layer of the dentate gyrus, CA1, CA3 and the subiculum (ICC > 0.9), whilst the hippocampal fissure and fimbria had lower ICC scores (0.73-0.88). Furthermore, LME analysis of the independent AD dataset demonstrated sensitivity to group and individual differences in the rate of volume change over time in several hippocampal subregions (CA1, molecular layer, CA3, hippocampal tail, fissure and presubiculum

  16. A computational theory of the hippocampal cognitive map.

    Science.gov (United States)

    O'Keefe, J

    1990-01-01

    Evidence from single unit and lesion studies suggests that the hippocampal formation acts as a spatial or cognitive map (O'Keefe and Nadel, 1978). In this chapter, I summarise some of the unit recording data and then outline the most recent computational version of the cognitive map theory. The novel aspects of the present version of the theory are that it identifies two allocentric parameters, the centroid and the eccentricity, which can be calculated from the array of cues in an environment and which can serve as the bases for an allocentric polar co-ordinate system. Computations within this framework enable the animal to identify its location within an environment, to predict the location which will be reached as a result of any specific movement from that location, and conversely, to calculate the spatial transformation necessary to go from the current location to a desired location. Aspects of the model are identified with the information provided by cells in the hippocampus and dorsal presubiculum. The hippocampal place cells are involved in the calculation of the centroid and the presubicular direction cells in the calculation of the eccentricity.

  17. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    Science.gov (United States)

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  18. Radioimmunoassay of parathyroid hormone (parathyrin) in monkey and man

    International Nuclear Information System (INIS)

    Hargis, G.K.; Williams, G.A.; Reynolds, W.A.; Kawahara, W.; Jackson, B.; Bowser, E.N.; Pitkin, R.M.

    1977-01-01

    A radioimmunoassay for rhesus monkey and human innumoreactive parathyrin was developed in which a selected anti-bovine parathyrin antiserum, radioiodinated purified bovine parathyrin tracer, and human parathyroid tissue-culture media standards were used. The resulting data indicate that the method is sensitive, specific, accurate and reproducible; it is valid for both the rhesus monkey and the human; the serum immunoreactive parathyrin concentration of the monkey is essentially the same as that in man; monkey immunoreactive parathyrin responds to changes in serum calcium concentration similarly to that in man; and the rhesus monkey is therefore a suitable species in which to study parathyroid physiology, from which conclusions can be applied to the human

  19. Neurotoxic response of infant monkeys to methylmercury

    Energy Technology Data Exchange (ETDEWEB)

    Willes, R.F.; Truelove, J.F.; Nera, E.A.

    1978-02-01

    Four infant monkeys were dosed orally with 500 ..mu..g Hg/kg body wt./day (as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28 to 29 days of treatment; the blood Hg levels were 8.0 to 9.4 ..mu..g Hg/g blood. Dosing was terminated at 28 to 29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35 to 43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver followed by occipital cortex and renal cortex. The mean blood/brain ratio was 0.21 +- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.

  20. Neurotoxic response of infant monkeys to methylmercury.

    Science.gov (United States)

    Willes, R F; Truelove, J F; Nera, E A

    1978-02-01

    Four infant monkeys were dosed orally with 500 microgram Hg/kg body wt./day /as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28--29 days of treatment; the blood Hg levels were 8.0--9.4 microgram Hg/g blood. Dosing was terminated at 28--29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35--43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver (55.8 +/- 3.2 microgram Hg/g) followed by occipital cortex (35.6 +/- 4.8 microgram Hg/g) renal cortex (32.8 +/- 1.6 microgram Hg/g). The frontal and temporal cortices had 27.0 +/- 3.4 and 29.6 +/- 4.9 microgram Hg/g respectively while the cerebellar Hg concentration averaged 13.0 +/- 1.5 microgram Hg/g. The mean blood/brain ratio was 0.21 +/- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.

  1. Face Pareidolia in the Rhesus Monkey.

    Science.gov (United States)

    Taubert, Jessica; Wardle, Susan G; Flessert, Molly; Leopold, David A; Ungerleider, Leslie G

    2017-08-21

    Face perception in humans and nonhuman primates is rapid and accurate [1-4]. In the human brain, a network of visual-processing regions is specialized for faces [5-7]. Although face processing is a priority of the primate visual system, face detection is not infallible. Face pareidolia is the compelling illusion of perceiving facial features on inanimate objects, such as the illusory face on the surface of the moon. Although face pareidolia is commonly experienced by humans, its presence in other species is unknown. Here we provide evidence for face pareidolia in a species known to possess a complex face-processing system [8-10]: the rhesus monkey (Macaca mulatta). In a visual preference task [11, 12], monkeys looked longer at photographs of objects that elicited face pareidolia in human observers than at photographs of similar objects that did not elicit illusory faces. Examination of eye movements revealed that monkeys fixated the illusory internal facial features in a pattern consistent with how they view photographs of faces [13]. Although the specialized response to faces observed in humans [1, 3, 5-7, 14] is often argued to be continuous across primates [4, 15], it was previously unclear whether face pareidolia arose from a uniquely human capacity. For example, pareidolia could be a product of the human aptitude for perceptual abstraction or result from frequent exposure to cartoons and illustrations that anthropomorphize inanimate objects. Instead, our results indicate that the perception of illusory facial features on inanimate objects is driven by a broadly tuned face-detection mechanism that we share with other species. Published by Elsevier Ltd.

  2. Psychophysical chromatic mechanisms in macaque monkey.

    Science.gov (United States)

    Stoughton, Cleo M; Lafer-Sousa, Rosa; Gagin, Galina; Conway, Bevil R

    2012-10-24

    Chromatic mechanisms have been studied extensively with psychophysical techniques in humans, but the number and nature of the mechanisms are still controversial. Appeals to monkey neurophysiology are often used to sort out the competing claims and to test hypotheses arising from the experiments in humans, but psychophysical chromatic mechanisms have never been assessed in monkeys. Here we address this issue by measuring color-detection thresholds in monkeys before and after chromatic adaptation, employing a standard approach used to determine chromatic mechanisms in humans. We conducted separate experiments using adaptation configured as either flickering full-field colors or heterochromatic gratings. Full-field colors would favor activity within the visual system at or before the arrival of retinal signals to V1, before the spatial transformation of color signals by the cortex. Conversely, gratings would favor activity within the cortex where neurons are often sensitive to spatial chromatic structure. Detection thresholds were selectively elevated for the colors of full-field adaptation when it modulated along either of the two cardinal chromatic axes that define cone-opponent color space [L vs M or S vs (L + M)], providing evidence for two privileged cardinal chromatic mechanisms implemented early in the visual-processing hierarchy. Adaptation with gratings produced elevated thresholds for colors of the adaptation regardless of its chromatic makeup, suggesting a cortical representation comprised of multiple higher-order mechanisms each selective for a different direction in color space. The results suggest that color is represented by two cardinal channels early in the processing hierarchy and many chromatic channels in brain regions closer to perceptual readout.

  3. Taurine increases hippocampal neurogenesis in aging mice

    Directory of Open Access Journals (Sweden)

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  4. Caffeine Increases Hippocampal Sharp Waves in Vitro.

    Science.gov (United States)

    Watanabe, Yusuke; Ikegaya, Yuji

    2017-01-01

    Caffeine promotes memory consolidation. Memory consolidation is thought to depend at least in part on hippocampal sharp waves (SWs). In the present study, we investigated the effect of bath-application of caffeine in spontaneously occurring SWs in mouse acute hippocampal slices. Caffeine induced an about 100% increase in the event frequency of SWs at concentrations of 60 and 200 µM. The effect of caffeine was reversible after washout of caffeine and was mimicked by an adenosine A 1 receptor antagonist, but not by an A 2A receptor antagonist. Caffeine increased SWs even in dentate-CA3 mini-slices without the CA2 regions, in which adenosine A 1 receptors are abundantly expressed in the hippocampus. Thus, caffeine facilitates SWs by inhibiting adenosine A 1 receptors in the hippocampal CA3 region or the dentate gyrus.

  5. Total lymphoid irradiation in rhesus monkeys

    International Nuclear Information System (INIS)

    Vriesendorp, H.M.; Maat, B.; Hogeweg, B.

    Total lymphoid irradiation (TLI) consists of three contiguous fields, a mantle, an inverted Y and a spleen field. TLI induces a state of immunosuppression in patients with Hodgkin disease or in small rodents. Infusion of allogeneic bone marrow cells into mice after TLI led to the development split haemopoietic chimerism and indefinite survival of skin grafts from the bone marrow donor. A protocol for TLI was developed for rhesus monkeys to attempt to verify these interesting observations in a pre-clinical animal model. (Auth.)

  6. Distribution and abundance of sacred monkeys in Igboland, southern Nigeria.

    Science.gov (United States)

    Baker, Lynne R; Tanimola, Adebowale A; Olubode, Oluseun S; Garshelis, David L

    2009-07-01

    Although primates are hunted on a global scale, some species are protected against harassment and killing by taboos or religious doctrines. Sites where the killing of sacred monkeys or the destruction of sacred groves is forbidden may be integral to the conservation of certain species. In 2004, as part of a distribution survey of Sclater's guenon (Cercopithecus sclateri) in southern Nigeria, we investigated reports of sacred monkeys in the Igbo-speaking region of Nigeria. We confirmed nine new sites where primates are protected as sacred: four with tantalus monkeys (Chlorocebus tantalus) and five with mona monkeys (Cercopithecus mona). During 2004-2006, we visited two communities (Akpugoeze and Lagwa) previously known to harbor sacred populations of Ce. sclateri to estimate population abundance and trends. We directly counted all groups and compared our estimates with previous counts when available. We also estimated the size of sacred groves and compared these with grove sizes reported in the literature. The mean size of the sacred groves in Akpugoeze (2.06 ha, n = 10) was similar to others in Africa south of the Sahel, but larger than the average grove in Lagwa (0.49 ha, n = 15). We estimated a total population of 124 Sclater's monkeys in 15 groups in Lagwa and 193 monkeys in 20 groups in Akpugoeze. The Akpugoeze population was relatively stable over two decades, although the proportion of infants declined, and the number of groups increased. As Sclater's monkey does not occur in any official protected areas, sacred populations are important to the species' long-term conservation. Despite the monkeys' destruction of human crops, most local people still adhere to the custom of not killing monkeys. These sites represent ideal locations in which to study the ecology of Sclater's monkey and human-wildlife interactions. (c) 2009 Wiley-Liss, Inc.

  7. Adult hippocampal neurogenesis and cognitive aging

    Directory of Open Access Journals (Sweden)

    Román Darío Moreno Fernández

    2013-12-01

    Full Text Available Aging is a normal developmental process associated with neurobiological changes leading to cognitive alterations with preserved, impaired, and enhanced functions. Evidence from animal and human studies is reviewed to explore the potential role of hippocampal plasticity on age-related cognitive changes with special attention to adult hippocampal neurogenesis. Results from lesion and stimulation strategies, as well as correlation data, support either a direct or modulatory role for adult newborn neurons in cognition at advanced ages. Further research on this topic may help to develop new treatments and to improve the quality of life of older people.

  8. First North American fossil monkey and early Miocene tropical biotic interchange

    Science.gov (United States)

    Bloch, Jonathan I.; Woodruff, Emily D.; Wood, Aaron R.; Rincon, Aldo F.; Harrington, Arianna R.; Morgan, Gary S.; Foster, David A.; Montes, Camilo; Jaramillo, Carlos A.; Jud, Nathan A.; Jones, Douglas S.; MacFadden, Bruce J.

    2016-05-01

    New World monkeys (platyrrhines) are a diverse part of modern tropical ecosystems in North and South America, yet their early evolutionary history in the tropics is largely unknown. Molecular divergence estimates suggest that primates arrived in tropical Central America, the southern-most extent of the North American landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3-4 million years ago (Ma). The complete absence of primate fossils from Central America has, however, limited our understanding of their history in the New World. Here we present the first description of a fossil monkey recovered from the North American landmass, the oldest known crown platyrrhine, from a precisely dated 20.9-Ma layer in the Las Cascadas Formation in the Panama Canal Basin, Panama. This discovery suggests that family-level diversification of extant New World monkeys occurred in the tropics, with new divergence estimates for Cebidae between 22 and 25 Ma, and provides the oldest fossil evidence for mammalian interchange between South and North America. The timing is consistent with recent tectonic reconstructions of a relatively narrow Central American Seaway in the early Miocene epoch, coincident with over-water dispersals inferred for many other groups of animals and plants. Discovery of an early Miocene primate in Panama provides evidence for a circum-Caribbean tropical distribution of New World monkeys by this time, with ocean barriers not wholly restricting their northward movements, requiring a complex set of ecological factors to explain their absence in well-sampled similarly aged localities at higher latitudes of North America.

  9. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH.

    Science.gov (United States)

    Kang, Yu; Zheng, Bo; Shen, Bin; Chen, Yongchang; Wang, Lei; Wang, Jianying; Niu, Yuyu; Cui, Yiqiang; Zhou, Jiankui; Wang, Hong; Guo, Xuejiang; Hu, Bian; Zhou, Qi; Sha, Jiahao; Ji, Weizhi; Huang, Xingxu

    2015-12-20

    Mutations in the DAX1 locus cause X-linked adrenal hypoplasia congenita (AHC) and hypogonadotropic hypogonadism (HH), which manifest with primary adrenal insufficiency and incomplete or absent sexual maturation, respectively. The associated defects in spermatogenesis can range from spermatogenic arrest to Sertoli cell only syndrome. Conclusions from Dax1 knockout mouse models provide only limited insight into AHC/HH disease mechanisms, because mouse models exhibit more extensive abnormalities in testicular development, including disorganized and incompletely formed testis cords with decreased number of peritubular myoid cells and male-to-female sex reversal. We previously reported successful clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome targeting in cynomolgus monkeys. Here, we describe a male fetal monkey in which targeted genome editing using CRISPR/Cas9 produced Dax1-null mutations in most somatic tissues and in the gonads. This DAX1-deficient monkey displayed defects in adrenal gland development and abnormal testis architecture with small cords, expanded blood vessels and extensive fibrosis. Sertoli cell formation was not affected. This phenotype strongly resembles findings in human patients with AHC-HH caused by mutations in DAX1. We further detected upregulation of Wnt/β-catenin-VEGF signaling in the fetal Dax1-deficient testis, suggesting abnormal activation of signaling pathways in the absence of DAX1 as one mechanism of AHC-HH. Our study reveals novel insight into the role of DAX1 in HH and provides proof-of-principle for the generation of monkey models of human disease via CRISPR/Cas9-mediated gene targeting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Hippocampal Sclerosis of Aging Can Be Segmental: Two Cases and Review of the Literature

    Science.gov (United States)

    Ighodaro, Eseosa T.; Jicha, Gregory A.; Schmitt, Frederick A.; Neltner, Janna H.; Abner, Erin L.; Kryscio, Richard J.; Smith, Charles D.; Duplessis, Taylor; Anderson, Sonya; Patel, Ela; Bachstetter, Adam; Van Eldik, Linda J.; Nelson, Peter T.

    2015-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a neurodegenerative disease that mimics Alzheimer disease (AD) clinically and has a prevalence rivaling AD in advanced age. Whereas clinical biomarkers are not yet optimized, HS-Aging has distinctive pathological features that distinguish it from other diseases with “hippocampal sclerosis” pathology, such as epilepsy, cerebrovascular perturbations, and frontotemporal lobar degeneration. By definition, HS-Aging brains show neuronal cell loss and gliosis in the hippocampal formation out of proportion to AD-type pathology; it is strongly associated with aberrant TDP-43 pathology and arteriolosclerosis. Here, we describe 2 cases of “segmental” HS-Aging in which “sclerosis” in the hippocampus was evident only in a subset of brain sections by hematoxylin and eosin (H&E) stain. In these cases, TDP-43 pathology was more widespread on immunostained sections than the neuronal cell loss and gliosis seen in H&E stains. The 2 patients were cognitively intact at baseline and were tracked longitudinally over a decade using cognitive studies with at least 1 neuroimaging scan. We discuss the relevant HS-Aging literature, which indicates the need for a clearer consensus-based delineation of “hippocampal sclerosis” and TDP-43 pathologies in aged subjects. PMID:26083567

  11. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2013-07-01

    Full Text Available Scientific studies addressing anatomical variations in meditators’ brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM. To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls, where meditators have been practicing close to twenty years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentate, entorhinal cortex, subiculum as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri- hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators – perhaps due to an attenuated release of stress hormones and decreased neurotoxicity.

  13. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    Science.gov (United States)

    Luders, Eileen; Kurth, Florian; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2013-01-01

    Scientific studies addressing anatomical variations in meditators' brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to 20 years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentata, entorhinal cortex, subiculum) as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri-) hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators—perhaps due to an attenuated release of stress hormones and decreased neurotoxicity. PMID:23847572

  14. Hippocampal adaptive response following extensive neuronal loss in an inducible transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Kristoffer Myczek

    Full Text Available Neuronal loss is a common component of a variety of neurodegenerative disorders (including Alzheimer's, Parkinson's, and Huntington's disease and brain traumas (stroke, epilepsy, and traumatic brain injury. One brain region that commonly exhibits neuronal loss in several neurodegenerative disorders is the hippocampus, an area of the brain critical for the formation and retrieval of memories. Long-lasting and sometimes unrecoverable deficits caused by neuronal loss present a unique challenge for clinicians and for researchers who attempt to model these traumas in animals. Can these deficits be recovered, and if so, is the brain capable of regeneration following neuronal loss? To address this significant question, we utilized the innovative CaM/Tet-DT(A mouse model that selectively induces neuronal ablation. We found that we are able to inflict a consistent and significant lesion to the hippocampus, resulting in hippocampally-dependent behavioral deficits and a long-lasting upregulation in neurogenesis, suggesting that this process might be a critical part of hippocampal recovery. In addition, we provide novel evidence of angiogenic and vasculature changes following hippocampal neuronal loss in CaM/Tet-DTA mice. We posit that angiogenesis may be an important factor that promotes neurogenic upregulation following hippocampal neuronal loss, and both factors, angiogenesis and neurogenesis, can contribute to the adaptive response of the brain for behavioral recovery.

  15. Schizophrenia: Evidence Implicating Hippocampal GluN2B protein and REST Epigenetics in Psychosis Pathophysiology

    Science.gov (United States)

    Tamminga, Carol A.; Zukin, R. Suzanne

    2017-01-01

    The hippocampus is strongly implicated in the psychotic symptoms of schizophrenia. Functionally, basal hippocampal activity (perfusion) is elevated in schizophrenic psychosis, as measured with positron emission tomography (PET) and with magnetic resonance (MR) perfusion techniques, while hippocampal activation to memory tasks is reduced. Subfield-specific hippocampal molecular pathology exists in human psychosis tissue which could underlie this neuronal hyperactivity, including increased GluN2B-containing NMDA receptors in hippocampal CA3, along with increased postsynaptic density protein-95 (PSD-95) along with augmented dendritic spines on the pyramidal neuron apical dendrites. We interpret these observations to implicate a reduction in the influence of a ubiquitous gene repressor, repressor element-1 silencing transcription factor (REST) in psychosis; REST is involved in the age-related maturation of the NMDA receptor from GluN2B- to GluN2A-containing NMDA receptors through epigenetic remodeling. These CA3 changes in psychosis leave the hippocampus liable to pathological increases in neuronal activity, feedforward excitation and false memory formation, sometimes with psychotic content. PMID:26211447

  16. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.

    Science.gov (United States)

    Nokia, Miriam S; Mikkonen, Jarno E; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  17. Memory impairment in multiple sclerosis: Relevance of hippocampal activation and hippocampal connectivity

    NARCIS (Netherlands)

    Hulst, H.E.; Schoonheim, M.M.; van Geest, Q.; Uitdehaag, B.M.J.; Barkhof, F.; Geurts, J.J.G.

    2015-01-01

    Background: Memory impairment is frequent in multiple sclerosis (MS), but it is unclear what functional brain changes underlie this cognitive deterioration. Objective: To investigate functional hippocampal activation and connectivity, in relation to memory performance in MS. Methods: Structural and

  18. RAT HIPPOCAMPAL LACTATE EFFLUX DURING ELECTROCONVULSIVE SHOCK OR STRESS IS DIFFERENTLY DEPENDENT ON ENTORHINAL CORTEX AND ADRENAL INTEGRITY

    NARCIS (Netherlands)

    KRUGERS, HJ; JAARSMA, D; KORF, J

    The role of the entorhinal cortex and the adrenal gland in rat hippocampal lactate formation was assessed during and after a short-lasting immobilization stress and electroconvulsive shock (ECS). Extracellular lactate was measured on-line using microdialysis and enzyme reactions (a technique named

  19. Scleral Biomechanics in the Aging Monkey Eye

    Science.gov (United States)

    Girard, Michaël J. A.; Suh, J-K. Francis; Bottlang, Michael; Burgoyne, Claude F.; Downs, J. Crawford

    2010-01-01

    Purpose To investigate the age-related differences in the inhomogeneous, anisotropic, nonlinear biomechanical properties of posterior sclera from old (22.9 ± 5.3 years) and young (1.5 ± 0.7 years) rhesus monkeys. Methods The posterior scleral shell of each eye was mounted on a custom-built pressurization apparatus, then intraocular pressure (IOP) was elevated from 5 to 45 mmHg while the 3D displacements of the scleral surface were measured using speckle interferometry. Each scleral shell geometry was digitally reconstructed from data generated by a 3D digitizer (topography) and 20 MHz ultrasounds (thickness). An inverse finite element (FE) method incorporating a fiber-reinforced constitutive model was used to extract a unique set of biomechanical properties for each eye. Displacements, thickness, stress, strain, tangent modulus, structural stiffness, and preferred collagen fiber orientation were mapped for each posterior sclera. Results The model yielded 3-D deformations of posterior sclera that matched well with those observed experimentally. The posterior sclera exhibited inhomogeneous, anisotropic, nonlinear mechanical behavior. The sclera was significantly thinner (p = 0.038), and tangent modulus and structural stiffness were significantly higher in old monkeys (p biomechanics, and potentially contribute to age-related susceptibility to glaucomatous vision loss. PMID:19494203

  20. Explicit information reduces discounting behavior in monkeys

    Directory of Open Access Journals (Sweden)

    John ePearson

    2010-12-01

    Full Text Available Animals are notoriously impulsive in common laboratory experiments, preferring smaller, sooner rewards to larger, delayed rewards even when this reduces average reward rates. By contrast, the same animals often engage in natural behaviors that require extreme patience, such as food caching, stalking prey, and traveling long distances to high quality food sites. One possible explanation for this discrepancy is that standard laboratory delay discounting tasks artificially inflate impulsivity by subverting animals’ common learning strategies. To test this idea, we examined choices made by rhesus macaques in two variants of a standard delay discounting task. In the conventional variant, post-reward delays were uncued and adjusted to render total trial length constant; in the second, all delays were cued explicitly. We found that measured discounting was significantly reduced in the cued task, with discount rates well below those reported in studies using the standard uncued design. When monkeys had complete information, their decisions were more consistent with a strategy of reward rate maximization. These results indicate that monkeys, and perhaps other animals, are more patient than is normally assumed, and that laboratory measures of delay discounting may overstate impulsivity.

  1. Subarachnoid administration of iohexol in cynomolgus monkeys

    International Nuclear Information System (INIS)

    Drobeck, H.P.; Mayes, B.A.; Barbolt, T.A.; Fabian, R.J.; Kimball, J.P.; Slighter, R.R. Jr.

    1986-01-01

    A non-ionic diagnostic medium, iohexol, was administered by subarachnoid injection to groups of six cynomolgus monkeys and compared with the vehicle, physiologically normal saline, and/or saline of equal osmolality to determine its potential for increasing total protein and leucocyte levels in cerebrospinal fluid. Also investigated was the effect of repeated spinal taps not subsequently followed by the intrathecal injection of test or control articles. In the monkey, unlike man, low-level leucocyte counts were consistently observed following initial withdrawal of spinal fluid. Elevated leucocyte and total protein levels were observed in the present investigations one day to a week after intrathecal injection of radiopaque, vehicle or saline solution. Total protein returned to normal levels earlier than did leucocyte counts. However, repeated needle puncture alone was found to be sufficient to cause an elevation of leucocytes 3 to 4 times the baseline level, while inflammatory effects were observed histologically only when autopsy was performed soon after the final spinal tap. (orig.)

  2. Marmoset monkeys evaluate third-party reciprocity.

    Science.gov (United States)

    Kawai, Nobuyuki; Yasue, Miyuki; Banno, Taku; Ichinohe, Noritaka

    2014-05-01

    Many non-human primates have been observed to reciprocate and to understand reciprocity in one-to-one social exchanges. A recent study demonstrated that capuchin monkeys are sensitive to both third-party reciprocity and violation of reciprocity; however, whether this sensitivity is a function of general intelligence, evidenced by their larger brain size relative to other primates, remains unclear. We hypothesized that highly pro-social primates, even with a relatively smaller brain, would be sensitive to others' reciprocity. Here, we show that common marmosets discriminated between human actors who reciprocated in social exchanges with others and those who did not. Monkeys accepted rewards less frequently from non-reciprocators than they did from reciprocators when the non-reciprocators had retained all food items, but they accepted rewards from both actors equally when they had observed reciprocal exchange between the actors. These results suggest that mechanisms to detect unfair reciprocity in third-party social exchanges do not require domain-general higher cognitive ability based on proportionally larger brains, but rather emerge from the cooperative and pro-social tendencies of species, and thereby suggest this ability evolved in multiple primate lineages. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert

    2003-01-01

    irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21...... that blocked neurogenesis contributes to the reported deleterious side effects of this treatment, consisting of memory impairment, dysphoria and lethargy....

  4. Hippocampal insulin resistance and cognitive dysfunction

    NARCIS (Netherlands)

    Biessels, Geert Jan; Reagan, Lawrence P.

    2015-01-01

    Clinical studies suggest a link between type 2 diabetes mellitus (T2DM) and insulin resistance (IR) and cognitive dysfunction, but there are significant gaps in our knowledge of the mechanisms underlying this relationship. Animal models of IR help to bridge these gaps and point to hippocampal IR as

  5. Hippocampal Abnormalities after Prolonged Febrile Convulsions

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available Hippocampal volume and T2 relaxation times were determined in an MRI study of 14 children with prolonged febrile convulsions (PFC who were investigated, 1 within 5 days of a PFC, and 2 at follow-up 4-8 months after the acute study, at the Institute of Child Health, University College, and Great Ormond Street Hospital, London, UK.

  6. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  7. Hippocampal gamma oscillations increase with memory load

    NARCIS (Netherlands)

    Van Vugt, Marieke K.; Schulze-Bonhage, Andreas; Litt, Brian; Brandt, Armin; Kahana, Michael J.

    2010-01-01

    Although the hippocampus plays a crucial role in encoding and retrieval of contextually mediated episodic memories, considerable controversy surrounds the role of the hippocampus in short-term or working memory. To examine both hippocampal and neocortical contributions to working memory function, we

  8. Dissociation of item and source memory in rhesus monkeys.

    Science.gov (United States)

    Basile, Benjamin M; Hampton, Robert R

    2017-09-01

    Source memory, or memory for the context in which a memory was formed, is a defining characteristic of human episodic memory and source memory errors are a debilitating symptom of memory dysfunction. Evidence for source memory in nonhuman primates is sparse despite considerable evidence for other types of sophisticated memory and the practical need for good models of episodic memory in nonhuman primates. A previous study showed that rhesus monkeys confused the identity of a monkey they saw with a monkey they heard, but only after an extended memory delay. This suggests that they initially remembered the source - visual or auditory - of the information but forgot the source as time passed. Here, we present a monkey model of source memory that is based on this previous study. In each trial, monkeys studied two images, one that they simply viewed and touched and the other that they classified as a bird, fish, flower, or person. In a subsequent memory test, they were required to select the image from one source but avoid the other. With training, monkeys learned to suppress responding to images from the to-be-avoided source. After longer memory intervals, monkeys continued to show reliable item memory, discriminating studied images from distractors, but made many source memory errors. Monkeys discriminated source based on study method, not study order, providing preliminary evidence that our manipulation of retention interval caused errors due to source forgetting instead of source confusion. Finally, some monkeys learned to select remembered images from either source on cue, showing that they did indeed remember both items and both sources. This paradigm potentially provides a new model to study a critical aspect of episodic memory in nonhuman primates. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hippocampal sclerosis in advanced age: clinical and pathological features.

    Science.gov (United States)

    Nelson, Peter T; Schmitt, Frederick A; Lin, Yushun; Abner, Erin L; Jicha, Gregory A; Patel, Ela; Thomason, Paula C; Neltner, Janna H; Smith, Charles D; Santacruz, Karen S; Sonnen, Joshua A; Poon, Leonard W; Gearing, Marla; Green, Robert C; Woodard, John L; Van Eldik, Linda J; Kryscio, Richard J

    2011-05-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer's disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer's Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n=106). For individuals aged≥95 years at death (n=179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of 'definite' Alzheimer's disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n=10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar degeneration TAR

  10. Alzheimer's disease susceptibility genes APOE and TOMM40, and hippocampal volumes in the Lothian birth cohort 1936.

    Directory of Open Access Journals (Sweden)

    Donald M Lyall

    Full Text Available The APOE ε and TOMM40 rs10524523 ('523' variable length poly-T repeat gene loci have been significantly and independently associated with Alzheimer's disease (AD related phenotypes such as age of clinical onset. Hippocampal atrophy has been significantly associated with memory impairment, a characteristic of AD. The current study aimed to test for independent effects of APOE ε and TOMM40 '523' genotypes on hippocampal volumes as assessed by brain structural MRI in a relatively large sample of community-dwelling older adults. As part of a longitudinal study of cognitive ageing, participants in the Lothian Birth Cohort 1936 underwent genotyping for APOE ε2/ε3/ε4 status and TOMM40 '523' poly-T repeat length, and detailed structural brain MRI at a mean age of 72.7 years (standard deviation = 0.7, N range = 624 to 636. No significant effects of APOE ε or TOMM40 523 genotype were found on hippocampal volumes when analysed raw, or when adjusted for either intracranial or total brain tissue volumes. In summary, in a large community-dwelling sample of older adults, we found no effects of APOE ε or TOMM40 523 genotypes on hippocampal volumes. This is discrepant with some previous reports of significant association between APOE and left/right hippocampal volumes, and instead echoes other reports that found no association. Previous significant findings may partly reflect type 1 error. Future studies should carefully consider: 1 their specific techniques in adjusting for brain size; 2 assessing more detailed sub-divisions of the hippocampal formation; and 3 testing whether significant APOE-hippocampal associations are independent of generalised brain atrophy.

  11. Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis) social learning.

    Science.gov (United States)

    Hopper, Lm; Holmes, An; Williams, LE; Brosnan, Sf

    2013-01-01

    Although the social learning abilities of monkeys have been well documented, this research has only focused on a few species. Furthermore, of those that also incorporated dissections of social learning mechanisms, the majority studied either capuchins (Cebus apella) or marmosets (Callithrix jacchus). To gain a broader understanding of how monkeys gain new skills, we tested squirrel monkeys (Saimiri boliviensis) which have never been studied in tests of social learning mechanisms. To determine whether S. boliviensis can socially learn, we ran "open diffusion" tests with monkeys housed in two social groups (N = 23). Over the course of 10 20-min sessions, the monkeys in each group observed a trained group member retrieving a mealworm from a bidirectional task (the "Slide-box"). Two thirds (67%) of these monkeys both learned how to operate the Slide-box and they also moved the door significantly more times in the direction modeled by the trained demonstrator than the alternative direction. To tease apart the underlying social learning mechanisms we ran a series of three control conditions with 35 squirrel monkeys that had no previous experience with the Slide-box. The first replicated the experimental open diffusion sessions but without the inclusion of a trained model, the second was a no-information control with dyads of monkeys, and the third was a 'ghost' display shown to individual monkeys. The first two controls tested for the importance of social support (mere presence effect) and the ghost display showed the affordances of the task to the monkeys. The monkeys showed a certain level of success in the group control (54% of subjects solved the task on one or more occasions) and paired controls (28% were successful) but none were successful in the ghost control. We propose that the squirrel monkeys' learning, observed in the experimental open diffusion tests, can be best described by a combination of social learning mechanisms in concert; in this case, those

  12. Comment on "Monkey vocal tracts are speech-ready".

    Science.gov (United States)

    Lieberman, Philip

    2017-07-01

    Monkey vocal tracts are capable of producing monkey speech, not the full range of articulate human speech. The evolution of human speech entailed both anatomy and brains. Fitch, de Boer, Mathur, and Ghazanfar in Science Advances claim that "monkey vocal tracts are speech-ready," and conclude that "…the evolution of human speech capabilities required neural change rather than modifications of vocal anatomy." Neither premise is consistent either with the data presented and the conclusions reached by de Boer and Fitch themselves in their own published papers on the role of anatomy in the evolution of human speech or with the body of independent studies published since the 1950s.

  13. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    constants using data recorded during 240 min of FDOPA circulation in normal monkeys and in monkeys with unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions. Use of the extended models increased the magnitudes of K(D)(i) and k(D)(3) in striatum; in the case of k(D)(3), variance...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  14. Audiovisual integration facilitates monkeys' short-term memory.

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2016-07-01

    Many human behaviors are known to benefit from audiovisual integration, including language and communication, recognizing individuals, social decision making, and memory. Exceptionally little is known about the contributions of audiovisual integration to behavior in other primates. The current experiment investigated whether short-term memory in nonhuman primates is facilitated by the audiovisual presentation format. Three macaque monkeys that had previously learned an auditory delayed matching-to-sample (DMS) task were trained to perform a similar visual task, after which they were tested with a concurrent audiovisual DMS task with equal proportions of auditory, visual, and audiovisual trials. Parallel to outcomes in human studies, accuracy was higher and response times were faster on audiovisual trials than either unisensory trial type. Unexpectedly, two subjects exhibited superior unimodal performance on auditory trials, a finding that contrasts with previous studies, but likely reflects their training history. Our results provide the first demonstration of a bimodal memory advantage in nonhuman primates, lending further validation to their use as a model for understanding audiovisual integration and memory processing in humans.

  15. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Mark W. Burke

    2016-10-01

    Full Text Available Fetal alcohol exposure (FAE alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus to (1 investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2 determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years. Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.

  16. Neutrophilic nodules in the intestinal walls of Japanese monkeys associated with the neutrophil chemotactic activity of larval extracts and secretions of Oesophagostomum aculeatum.

    Science.gov (United States)

    Horii, Y; Ishii, A; Owhashi, M; Miyoshi, M; Usui, M

    1985-01-01

    High neutrophil chemotactic activity was detected in the culture medium from Oesophagostomum aculeatum larvae in vitro using blind-well chambers with Millipore filters, and guinea pig leucocytes as indicator cells. Neutrophil chemotactic activity was also detected in the extract from larval worms in a dose dependent fashion. This activity was detected in the low molecular weight fractions adjacent to a sodium chloride marker by gel filtration on Sephadex G200. These results were further confirmed with monkey neutrophils. The possible role of this activity in the formation of granulomatous lesions rich in neutrophils found in O aculeatum infections in the Japanese monkey is discussed.

  17. Functional implications of hippocampal degeneration in early Alzheimer's disease: a combined DTI and PET study

    International Nuclear Information System (INIS)

    Yakushev, Igor; Mueller, Matthias J.; Schermuly, Ingrid; Fellgiebel, Andreas; Schreckenberger, Matthias; Cumming, Paul; Stoeter, Peter; Gerhard, Alex

    2011-01-01

    Hypometabolism of the posterior cingulate cortex (PCC) in early Alzheimer's disease (AD) is thought to arise in part due to AD-specific neuronal damage to the hippocampal formation. Here, we explored the association between microstructural alterations within the hippocampus and whole-brain glucose metabolism in subjects with AD, also in relation to episodic memory impairment. Twenty patients with early AD (Mini-Mental State Examination 25.7 ± 1.7) were studied with [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography and diffusion tensor imaging. Episodic memory performance was assessed using the free delayed verbal recall task (DVR). Voxel-wise relative FDG uptake was correlated to diffusivity indices of the hippocampus, followed by extraction of FDG uptake values from significant clusters. Linear regression analysis was performed to test for unique contributions of diffusivity and metabolic indices in the prediction of memory function. Diffusivity in the left anterior hippocampus negatively correlated with FDG uptake primarily in the left anterior hippocampus, parahippocampal gyrus and the PCC (p< 0.005). The same correlation pattern was found for right hippocampal diffusivity (p< 0.05). In linear regression analysis, left anterior hippocampal diffusivity and FDG uptake from the PCC cluster were the only significant predictors for performance on DVR, together explaining 60.6% of the variance. We found an inverse association between anterior hippocampal diffusivity and PCC glucose metabolism, which was in turn strongly related to episodic memory performance in subjects with early AD. These findings support the diaschisis hypothesis of AD and implicate a dysfunction of structures along the hippocampal output pathways as a significant contributor to the genesis of episodic memory impairment. (orig.)

  18. Beyond dizziness: virtual navigation, spatial anxiety and hippocampal volume in bilateral vestibulopathy

    Directory of Open Access Journals (Sweden)

    Olympia eKremmyda

    2016-03-01

    Full Text Available Bilateral vestibulopathy (BVP is defined as the impairment or loss of function of either the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular nerve section exhibit difficulties in spatial memory and navigation and show a loss of hippocampal volume. In clinical practice, most patients do not have a complete loss of function but rather an asymmetrical residual functioning of the vestibular system. The purpose of the current study was to investigate navigational ability and hippocampal atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and a group of age- and gender- matched healthy controls were examined. Self-reported questionnaires on spatial anxiety and wayfinding were used to assess the applied strategy of wayfinding and quality of life. Spatial memory and navigation were tested directly using a virtual Morris Water Maze Task. The hippocampal volume of these two groups was evaluated by voxel-based morphometry. In the patients, the questionnaire showed a higher spatial anxiety and the Morris Water Maze Task a delayed spatial learning performance. MRI revealed a significant decrease in the gray matter mid-hippocampal volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63 and posterior parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87 compared to those of healthy controls. In addition, a decrease in hippocampal formation volume correlated with a more dominant route-finding strategy. Our current findings demonstrate that even partial bilateral vestibular loss leads to anatomical and functional

  19. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys

    DEFF Research Database (Denmark)

    Nemati, Shiva Nemati; Jabbari, Reza; Hajinasrollah, Mostafa

    2014-01-01

    , therefore, to explore the efficacy of adult monkey NSC (mNSC) in a primate SCI model. MATERIALS AND METHODS: In this experimental study, isolated mNSCs were analyzed by flow cytometry, immunocytochemistry, and RT-PCR. Next, BrdU-labeled cells were transplanted into a SCI model. The SCI animal model...... on Tarlov's scale and our established behavioral tests for monkeys. CONCLUSION: Our findings have indicated that mNSCs can facilitate recovery in contusion SCI models in rhesus macaque monkeys. Additional studies are necessary to determine the im- provement mechanisms after cell transplantation....

  20. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kaori Yamauchi

    Full Text Available BACKGROUND: Mouse embryonic stem (ES cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. METHODS AND FINDINGS: To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis. VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. CONCLUSION: VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the

  1. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  2. Thermoregulatory Responses of Febrile Monkeys During Microwave Exposure

    National Research Council Canada - National Science Library

    Adair, E

    1997-01-01

    .... In a controlled ambient temperature of 26 degrees C, autonomic mechanisms of heat production and heat loss were measured in febrile squirrel monkeys during 30-min exposures to 450 or 2450 MHz CW MW...

  3. Single subcutaneous dosing of cefovecin in rhesus monkeys (Macaca mulatta)

    DEFF Research Database (Denmark)

    Bakker, J.; Thuesen, Line Risager; Braskamp, G.

    2011-01-01

    was to determine whether cefovecin is a suitable antibiotic to prevent skin wound infection in rhesus monkeys. Therefore, the pharmacokinetics (PK) of cefovecin after a single subcutaneous injection at 8 mg/kg bodyweight in four rhesus monkeys (Macaca mulatta) and sensitivity of bacterial isolates from fresh skin...... wounds were determined. After administration, blood, urine, and feces were collected, and concentrations of cefovecin were determined. Further, the minimum inhibitory concentrations (MIC) for bacteria isolated from fresh skin wounds of monkeys during a health control program were determined. The mean...... maximum plasma concentration (C(max) ) of cefovecin was 78 µg/mL and was achieved after 57 min. The mean apparent long elimination half-life (t½) was 6.6 h and excretion occurred mainly via urine. The MIC for the majority of the bacteria examined was >100 µg/mL. The PK of cefovecin in rhesus monkeys...

  4. jMonkeyEngine 3.0 cookbook

    CERN Document Server

    Edén, Rickard

    2014-01-01

    If you are a jMonkey developer or a Java developer who is interested to delve further into the game making process to expand your skillset and create more technical games, then this book is perfect for you.

  5. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    Science.gov (United States)

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preference transitivity and symbolic representation in capuchin monkeys (Cebus apella.

    Directory of Open Access Journals (Sweden)

    Elsa Addessi

    Full Text Available BACKGROUND: Can non-human animals comprehend and employ symbols? The most convincing empirical evidence comes from language-trained apes, but little is known about this ability in monkeys. Tokens can be regarded as symbols since they are inherently non-valuable objects that acquire an arbitrarily assigned value upon exchange with an experimenter. Recent evidence suggested that capuchin monkeys, which diverged from the human lineage 35 million years ago, can estimate, represent and combine token quantities. A fundamental and open question is whether monkeys can reason about symbols in ways similar to how they reason about real objects. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined this broad question in the context of economic choice behavior. Specifically, we assessed whether, in a symbolic context, capuchins' preferences satisfy transitivity--a fundamental trait of rational decision-making. Given three options A, B and C, transitivity holds true if A > or = B, B > or = C and A > or = C (where > or = indicates preference. In this study, we trained monkeys to exchange three types of tokens for three different foods. We then compared choices monkeys made between different types of tokens with choices monkeys made between the foods. Qualitatively, capuchins' preferences revealed by the way of tokens were similar to those measured with the actual foods. In particular, when choosing between tokens, monkeys displayed strict economic preferences and their choices satisfied transitivity. Quantitatively, however, values measured by the way of tokens differed systematically from those measured with the actual foods. In particular, for any pair of foods, the relative value of the preferred food increased when monkeys chose between the corresponding tokens. CONCLUSIONS/SIGNIFICANCE: These results indicate that indeed capuchins are capable of treating tokens as symbols. However, as they do so, capuchins experience the cognitive burdens imposed by symbolic

  7. Depth perception from moving cast shadow in macaque monkey.

    Science.gov (United States)

    Mizutani, Saneyuki; Usui, Nobuo; Yokota, Takanori; Mizusawa, Hidehiro; Taira, Masato; Katsuyama, Narumi

    2015-07-15

    In the present study, we investigate whether the macaque monkey can perceive motion in depth using a moving cast shadow. To accomplish this, we conducted two experiments. In the first experiment, an adult Japanese monkey was trained in a motion discrimination task in depth by binocular disparity. A square was presented on the display so that it appeared with a binocular disparity of 0.12 degrees (initial position), and moved toward (approaching) or away from (receding) the monkey for 1s. The monkey was trained to discriminate the approaching and receding motion of the square by GO/delayed GO-type responses. The monkey showed a significantly high accuracy rate in the task, and the performance was maintained when the position, color, and shape of the moving object were changed. In the next experiment, the change in the disparity was gradually decreased in the motion discrimination task. The results showed that the performance of the monkey declined as the distance of the approaching and receding motion of the square decreased from the initial position. However, when a moving cast shadow was added to the stimulus, the monkey responded to the motion in depth induced by the cast shadow in the same way as by binocular disparity; the reward was delivered randomly or given in all trials to prevent the learning of the 2D motion of the shadow in the frontal plane. These results suggest that the macaque monkey can perceive motion in depth using a moving cast shadow as well as using binocular disparity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Monkey Feeding Assay for Testing Emetic Activity of Staphylococcal Enterotoxin.

    Science.gov (United States)

    Seo, Keun Seok

    2016-01-01

    Staphylococcal enterotoxins (SEs) are unique bacterial toxins that cause gastrointestinal toxicity as well as superantigenic activity. Since systemic administration of SEs induces superantigenic activity leading to toxic shock syndrome that may mimic enterotoxic activity of SEs such as vomiting and diarrhea, oral administration of SEs in the monkey feeding assay is considered as a standard method to evaluate emetic activity of SEs. This chapter summarizes and discusses practical considerations of the monkey feeding assay used in studies characterizing classical and newly identified SEs.

  9. Present and potential distribution of Snub-nosed Monkey

    DEFF Research Database (Denmark)

    Nüchel, Jonas; Bøcher, Peder Klith; Svenning, Jens-Christian

    are the Snub-nosed Monkeys (Rhinopithecus), a temperate-subtropical East Asian genus. We use species distribution modeling to assess the following question of key relevancy for conservation management of Rhinopithecus; 1. Which climatic factors determine the present distribution of Rhinopithecus within...... distribution of Rhinopithecus within the region, considering climate, habitat availability and the locations of nature reserves. Keywords: biodiversity, biogeography, conservation, China, snub-nosed monkey, rhinopithecus, primates, species distribution modeling...

  10. Control of Working Memory in Rhesus Monkeys (Macaca mulatta)

    Science.gov (United States)

    Tu, Hsiao-Wei; Hampton, Robert R.

    2014-01-01

    Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, while discrimination accuracy was equivalent in the two cue conditions. We also tested monkeys with lists of two consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25436219

  11. Intrapericardial Denervation: Responses to Water Immersion in Rhesus Monkeys

    Science.gov (United States)

    McKeever, Kenneth H.; Keil, Lanny C.; Sandler, Harold

    1995-01-01

    Eleven anesthetized rhesus monkeys were used to study cardiovascular, renal, and endocrine alterations associated with 120 min of head-out water immersion. Five animals underwent complete intrapericardial denervation using the Randall technique, while the remaining six monkeys served as intact controls. Each animal was chronically instrumented with an electromagnetic flow probe on the ascending aorta, a strain gauge pressure transducer implanted in the apex of the left ventricle (LV), and electrocardiogram leads anchored to the chest wall and LV. During immersion, LV end-diastolic pressure, urine flow, glomerular filtration rate, sodium excretion, and circulating atrial natriuretic peptide (ANP) each increased (P less than 0.05) for intact and denervated monkeys. There were no alterations in free water clearance in either group during immersion, yet fractional excretion of free water increased (P less than 0.05) in the intact monkeys. Plasma renin activity (PRA) decreased (P less than 0.05) during immersion in intact monkeys but not the denervated animals. Plasma vasopressin (PVP) concentration decreased (P less than 0.05) during the first 30 min of immersion in both groups but was not distinguishable from control by 60 min of immersion in denervated monkeys. These data demonstrate that complete cardiac denervation does not block the rise in plasma ANP or prevent the natriuresis associated with head-out water immersion. The suppression of PVP during the first minutes of immersion after complete cardiac denervation suggests that extracardiac sensing mechanisms associated with the induced fluid shifts may be responsible for the findings.

  12. Specific multi-nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats.

    Science.gov (United States)

    Cansev, Mehmet; van Wijk, Nick; Turkyilmaz, Mesut; Orhan, Fulya; Sijben, John W C; Broersen, Laus M

    2015-01-01

    Fortasyn Connect (FC) is a specific nutrient combination designed to target synaptic dysfunction in Alzheimer's disease by providing neuronal membrane precursors and other supportive nutrients. The aim of the present study was to investigate the effects of FC on hippocampal cholinergic neurotransmission in association with its effects on synaptic membrane formation in aged rats. Eighteen-month-old male Wistar rats were randomized to receive a control diet for 4 weeks or an FC-enriched diet for 4 or 6 weeks. At the end of the dietary treatments, acetylcholine (ACh) release was investigated by in vivo microdialysis in the right hippocampi. On completion of microdialysis studies, the rats were sacrificed, and the left hippocampi were obtained to determine the levels of choline, ACh, membrane phospholipids, synaptic proteins, and choline acetyltransferase. Our results revealed that supplementation with FC diet for 4 or 6 weeks, significantly enhanced basal and stimulated hippocampal ACh release and ACh tissue levels, along with levels of phospholipids. Feeding rats the FC diet for 6 weeks significantly increased the levels of choline acetyltransferase, the presynaptic marker Synapsin-1, and the postsynaptic marker PSD-95, but decreased levels of Nogo-A, a neurite outgrowth inhibitor. These data show that the FC diet enhances hippocampal cholinergic neurotransmission in aged rats and suggest that this effect is mediated by enhanced synaptic membrane formation. These data provide further insight into cellular and molecular mechanisms by which FC may support memory processes in Alzheimer's disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A mental retardation gene, motopsin/neurotrypsin/prss12, modulates hippocampal function and social interaction.

    Science.gov (United States)

    Mitsui, Shinichi; Osako, Yoji; Yokoi, Fumiaki; Dang, Mai T; Yuri, Kazunari; Li, Yuqing; Yamaguchi, Nozomi

    2009-12-01

    Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions, including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin's function in the mammalian brain, motopsin knockout (KO) mice were generated. Motopsin KO mice did not have significant deficits in memory formation, as tested using the Morris water maze, passive avoidance and Y-maze tests. A social recognition test showed that the motopsin KO mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin KO mice spent a longer time investigating a familiar mouse than wild-type (WT) mice did. In a resident-intruder test, motopsin KO mice showed prolonged social interaction as compared with WT mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin KO mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP-responsive element-binding protein (CREB) in hippocampal neurons of WT mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons.

  14. Newly identified CYP2C93 is a functional enzyme in rhesus monkey, but not in cynomolgus monkey.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Uno

    Full Text Available Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP 2C76 that does not have a human ortholog and is partly responsible for species differences in drug metabolism between cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus monkey and rhesus monkey. The CYP2C93 cDNA contained an open reading frame of 490 amino acids approximately 84-86% identical to human CYP2Cs. CYP2C93 was located in the genomic region, which corresponded to the intergenic region in the human genome, indicating that CYP2C93 does not correspond to any human genes. CYP2C93 mRNA was expressed predominantly in the liver among 10 tissues analyzed. The CYP2C93 proteins heterologously expressed in Escherichia coli metabolized human CYP2C substrates, diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbutamide. In addition to a normal transcript (SV1, an aberrantly spliced transcript (SV2 lacking exon 2 was identified, which did not give rise to a functional protein due to frameshift and a premature termination codon. Mini gene assay revealed that the genetic variant IVS2-1G>T at the splice site of intron 1, at least partly, accounted for the exon-2 skipping; therefore, this genotype would influence CYP2C93-mediated drug metabolism. SV1 was expressed in 6 of 11 rhesus monkeys and 1 of 8 cynomolgus monkeys, but the SV1 in the cynomolgus monkey was nonfunctional due to a rare null genotype (c.102T>del. These results suggest that CYP2C93 can play roles as a drug-metabolizing enzyme in rhesus monkeys (not in cynomolgus monkeys, although its relative contribution to drug metabolism has yet to be validated.

  15. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  16. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  17. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    Science.gov (United States)

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  18. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy

    Directory of Open Access Journals (Sweden)

    Eleni Paizanis

    2007-01-01

    Full Text Available There is a growing body of evidence that neural stem cells reside in the adult central nervous system where neurogenesis occurs throughout lifespan. Neurogenesis concerns mainly two areas in the brain: the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone, where it is controlled by several trophic factors and neuroactive molecules. Neurogenesis is involved in processes such as learning and memory and accumulating evidence implicates hippocampal neurogenesis in the physiopathology of depression. We herein review experimental and clinical data demonstrating that stress and antidepressant treatments affect neurogenesis in opposite direction in rodents. In particular, the stimulation of hippocampal neurogenesis by all types of antidepressant drugs supports the view that neuroplastic phenomena are involved in the physiopathology of depression and underlie—at least partly—antidepressant therapy.

  19. A Compressed Sensing Perspective of Hippocampal Function

    Directory of Open Access Journals (Sweden)

    Panagiotis ePetrantonakis

    2014-08-01

    Full Text Available Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS. The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e. of the original data set. In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.

  20. TRPC3 channels critically regulate hippocampal excitability and contextual fear memory.

    Science.gov (United States)

    Neuner, Sarah M; Wilmott, Lynda A; Hope, Kevin A; Hoffmann, Brian; Chong, Jayhong A; Abramowitz, Joel; Birnbaumer, Lutz; O'Connell, Kristen M; Tryba, Andrew K; Greene, Andrew S; Savio Chan, C; Kaczorowski, Catherine C

    2015-03-15

    Memory formation requires de novo protein synthesis, and memory disorders may result from misregulated synthesis of critical proteins that remain largely unidentified. Plasma membrane ion channels and receptors are likely candidates given their role in regulating neuron excitability, a candidate memory mechanism. Here we conduct targeted molecular monitoring and quantitation of hippocampal plasma membrane proteins from mice with intact or impaired contextual fear memory to identify putative candidates. Here we report contextual fear memory deficits correspond to increased Trpc3 gene and protein expression, and demonstrate TRPC3 regulates hippocampal neuron excitability associated with memory function. These data provide a mechanistic explanation for enhanced contextual fear memory reported herein following knockdown of TRPC3 in hippocampus. Collectively, TRPC3 modulates memory and may be a feasible target to enhance memory and treat memory disorders. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Metabolism in vitro 3H-testosterone in testis, epididymis and sex accessories of the rhesus monkey

    International Nuclear Information System (INIS)

    Arora-Dinkar, Renu; Dinakar, N.; Prasad, M.R.N.

    1977-01-01

    Metabolism of 3 H-testosterone in the reproductive organs of intact, castrated and cyproterone acetate treated rhesus monkeys was studied in vitro. The main androgen metabolite in the epididymis, ductus deferens, seminal vesicles, prostate and bulb-urethral glands of the intact monkeys was 5-α-dihydrotestosterone (DHT). Testosterone was not metabolized in slices of the testis, indicating very little 5-α-reductase activity in this organ. Bilateral castration caused a decrease in the metabolism of 3 H-testosterone in all tissues studied. The decrease was greater in the caput than in the corpus and cauda epididymides. Treatment with cyproterone acetate did not affect the formation of DHT in the ductus deferens and accessory glands. Azoospermia, following administration of cyproterone acetate, had little effect on the metabolism of 3 H-testosterone in the corpus and cauda epididymides; however, in the caput region the extent of formation of DHT was markedly reduced. These results are discussed in relation to the influence of spermatozoa, testicular fluid and testicular and peripheral androgens on the metabolism of 3 H-testosterone in epididymis of the monkey. (author)

  2. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  3. Insular and Hippocampal Gray Matter Volume Reductions in Patients with Major Depressive Disorder

    Science.gov (United States)

    Kugel, Harald; Krug, Axel; Schöning, Sonja; Ohrmann, Patricia; Uhlmann, Christina; Postert, Christian; Suslow, Thomas; Heindel, Walter; Arolt, Volker; Kircher, Tilo; Dannlowski, Udo

    2014-01-01

    Background Major depressive disorder is a serious psychiatric illness with a highly variable and heterogeneous clinical course. Due to the lack of consistent data from previous studies, the study of morphometric changes in major depressive disorder is still a major point of research requiring additional studies. The aim of the study presented here was to characterize and quantify regional gray matter abnormalities in a large sample of clinically well-characterized patients with major depressive disorder. Methods For this study one-hundred thirty two patients with major depressive disorder and 132 age- and gender-matched healthy control participants were included, 35 with their first episode and 97 with recurrent depression. To analyse gray matter abnormalities, voxel-based morphometry (VBM8) was employed on T1 weighted MRI data. We performed whole-brain analyses as well as a region-of-interest approach on the hippocampal formation, anterior cingulate cortex and amygdala, correlating the number of depressive episodes. Results Compared to healthy control persons, patients showed a strong gray-matter reduction in the right anterior insula. In addition, region-of-interest analyses revealed significant gray-matter reductions in the hippocampal formation. The observed alterations were more severe in patients with recurrent depressive episodes than in patients with a first episode. The number of depressive episodes was negatively correlated with gray-matter volume in the right hippocampus and right amygdala. Conclusions The anterior insula gray matter structure appears to be strongly affected in major depressive disorder and might play an important role in the neurobiology of depression. The hippocampal and amygdala volume loss cumulating with the number of episodes might be explained either by repeated neurotoxic stress or alternatively by higher relapse rates in patients showing hippocampal atrophy. PMID:25051163

  4. Characterization of Mason--Pfizer monkey virus-induced cell fusion

    International Nuclear Information System (INIS)

    Chatterjee, S.; Hunter, E.

    1979-01-01

    The characteristics and requirements of multinucleate cell (syncytium) induction by Mason--Pfizer monkey virus (M-PMV) on human and non-human primate cells have been investigated. Multinucleate cell induction by this D-type retrovirus shows single-hit kinetics on human foreskin and rhesus monkey fetal lung cells. The peak of syncytium-forming activity in an isopycnic sucrose gradient coincides with the peak of M-PMV virions as assessed by electron microscopy and analysis of viral polypeptides. Unlike the paramyxoviruses, M-PMV does not induce early cell fusion when added in high concentrations to the target cells. Furthermore, multinucleate cell formation is maximal 48 hr postinfection and the size of the syncytia remains constant after this time. Ultraviolet irradiation of M-PMV reduces its ability to form syncytia and to replicate with single-hit kinetics, suggesting that a functional viral genome is required for syncytium formation. Proviral DNA synthesis and assembly of virions are not necessary for cell fusion since the addition of cytosine arabinoside at concentrations which block virus replication has little effect on multinucleate cell formation. Moreover both multinucleate cells lacking detectable intracellular virus polypeptides, and groups of individual, nonfused but brightly staining cells can be observed in immunofluorescence assays at times when multinucleate cell formation is maximal. Cell fusion is inhibited by the addition of cycloheximide during the first 12 hr of infection, suggesting that de novo protein synthesis is required for multinucleate cell formation. The possibility that the translation of genomic RNA yields a fusion-inducing product is discussed

  5. Wave aberrations in rhesus monkeys with vision-induced ametropias

    Science.gov (United States)

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.

    2007-01-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347

  6. Serotonin shapes risky decision making in monkeys.

    Science.gov (United States)

    Long, Arwen B; Kuhn, Cynthia M; Platt, Michael L

    2009-12-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in part due to the lack of a good animal model. We used dietary rapid tryptophan depletion (RTD) to acutely lower brain serotonin in three macaques performing a simple gambling task for fluid rewards. To confirm the efficacy of RTD experiments, we measured total plasma tryptophan using high-performance liquid chromatography (HPLC) with electrochemical detection. Reducing brain serotonin synthesis decreased preference for the safe option in a gambling task. Moreover, lowering brain serotonin function significantly decreased the premium required for monkeys to switch their preference to the risky option, suggesting that diminished serotonin signaling enhances the relative subjective value of the risky option. These results implicate serotonin in risk-sensitive decision making and, further, suggest pharmacological therapies for treating pathological risk preferences in disorders such as problem gambling and addiction.

  7. Rhesus monkeys attribute perceptions to others.

    Science.gov (United States)

    Flombaum, Jonathan I; Santos, Laurie R

    2005-03-08

    Paramount among human cognitive abilities is the capacity to reason about what others think, want, and see--a capacity referred to as a theory of mind (ToM). Despite its importance in human cognition, the extent to which other primates share human ToM capacities has for decades remained a mystery. To date, primates [1, 2] have performed poorly in behavioral tasks that require ToM abilities, despite the fact that some macaques are known to encode social stimuli at the level of single neurons [3-5]. Here, we presented rhesus macaques with a more ecologically relevant ToM task in which subjects could "steal" a contested grape from one of two human competitors. In six experiments, monkeys selectively retrieved the grape from an experimenter who was incapable of seeing the grape rather than an experimenter who was visually aware. These results suggest that rhesus macaques possess an essential component of ToM: the ability to deduce what others perceive on the basis of where they are looking. These results converge with new findings illustrating the importance of competitive paradigms in apes [6]. Moreover, they raise the possibility that, in primates, cortical cells thought to encode where others are looking [7] may encode what those individuals see as well.

  8. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    Science.gov (United States)

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Analogical reasoning in a capuchin monkey (Cebus apella).

    Science.gov (United States)

    Kennedy, Erica Hoy; Fragaszy, Dorothy M

    2008-05-01

    Previous evidence has suggested that analogical reasoning (recognizing similarities among object relations when the objects themselves are dissimilar) is limited to humans and apes. This study investigated whether capuchin monkeys (Cebus apella) can use analogical reasoning to solve a 3-dimensional search task. The task involved hiding a food item under 1 of 2 or 3 plastic cups of different sizes and then allowing subjects to search for food hidden under the cup of analogous size in their own set of cups. Four monkeys were exposed to a series of relational matching tasks. If subjects reached criterion on these tasks, they were exposed to relational transfer tasks involving novel stimuli. Three of the monkeys failed to reach criterion on the basic relational matching tasks and therefore were not tested further. One monkey, however, revealed above-chance performance on a series of transfer tasks with 3 novel stimuli. This evidence suggests that contrary to previous arguments, a member of a New World monkey species can solve an analogical problem. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  10. [Monkey-pox, a model of emergent then reemergent disease].

    Science.gov (United States)

    Georges, A J; Matton, T; Courbot-Georges, M C

    2004-01-01

    The recent emergence of monkey pox in the United States of America highlights the problem (known for other infectious agents) of dissemination of pathogens outside their endemic area, and of subsequent global threats of variable gravity according to agents. It is a real emergency since monkey pox had been confined to Africa for several decades, where small epidemics occurred from time to time, monkey pox is a "miniature smallpox" which, in Africa, evolves on an endemic (zoonotic) mode with, as reservoirs, several species of wild rodents (mainly squirrels) and some monkey species. It can be accidentally transmitted to man then develops as epidemics, sometimes leading to death. The virus was imported in 2003 in the United States of America, via Gambia rats and wild squirrels (all African species), and infected prairie dogs (which are now in fashion as pets), then crossed the species barrier to man. In the United States of America, screening campaigns, epidemiological investigations, and subsequent treatments led to a rapid control of the epidemic, which is a model of emergent disease for this country. Therapeutic and preventive measures directly applicable to monkey pox are discussed. They can also be applied against other pox virus infections (including smallpox). The risk of criminal introduction of pox viruses is discussed since it is, more than ever, a real worldwide threat.

  11. Economic choices reveal probability distortion in macaque monkeys.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-02-18

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. Copyright © 2015 Stauffer et al.

  12. Responses of squirrel monkeys to their experimentally modified mobbing calls

    Science.gov (United States)

    Fichtel, Claudia; Hammerschmidt, Kurt

    2003-05-01

    Previous acoustic analyses suggested emotion-correlated changes in the acoustic structure of squirrel monkey (Saimiri sciureus) vocalizations. Specifically, calls given in aversive contexts were characterized by an upward shift in frequencies, often accompanied by an increase in amplitude. In order to test whether changes in frequencies or amplitude are indeed relevant for conspecific listeners, playback experiments were conducted in which either frequencies or amplitude of mobbing calls were modified. Latency and first orienting response were measured in playback experiments with six adult squirrel monkeys. After broadcasting yaps with increased frequencies or amplitude, squirrel monkeys showed a longer orienting response towards the speaker than after the corresponding control stimuli. Furthermore, after broadcasting yaps with decreased frequencies or amplitude, squirrel monkeys showed a shorter orienting response towards the speaker than after the corresponding manipulated calls with higher frequencies or amplitude. These results suggest that changes in frequencies or amplitude were perceived by squirrel monkeys, indicating that the relationship between call structure and the underlying affective state of the caller agreed with the listener's assessment of the calls. However, a simultaneous increase in frequencies and amplitude did not lead to an enhanced response, compared to each single parameter. Thus, from the receiver's perspective, both call parameters may mutually replace each other.

  13. Evaluation of monkey intraocular pressure by rebound tonometer

    Science.gov (United States)

    Yu, Wenhan; Cao, Guiqun; Qiu, Jinghua; Ma, Jia; Li, Ni; Yu, Man; Yan, Naihong; Chen, Lei; Pang, Iok-Hou

    2009-01-01

    Purpose To evaluate the usefulness of the TonoVet™ rebound tonometer in measuring intraocular pressure (IOP) of monkeys. Methods The accuracy of the TonoVet™ rebound tonometer was determined in cannulated eyes of anesthetized rhesus monkeys where IOP was controlled by adjusting the height of a connected perfusate reservoir. To assess the applicability of the equipment through in vivo studies, the diurnal fluctuation of IOP and effects of IOP-lowering compounds were evaluated in monkeys. Results IOP readings generated by the TonoVet™ tonometer correlated very well with the actual pressure in the cannulated monkey eye. The linear correlation had a slope of 0.922±0.014 (mean±SEM, n=4), a y-intercept of 3.04±0.61, and a correlation coefficient of r2=0.97. Using this method, diurnal IOP fluctuation of the rhesus monkey was demonstrated. The tonometer was also able to detect IOP changes induced by pharmacologically active compounds. A single topical ocular instillation (15 μg) of the rho kinase inhibitor, H1152, produced a 5–6 mmHg reduction (pmonkey eye. PMID:19898690

  14. Monkey brain damage from radiation in the therapeutic range

    International Nuclear Information System (INIS)

    Nakagaki, H.; Brunhart, G.; Kemper, T.L.; Caveness, W.F.

    1976-01-01

    Twelve Macaca mulatta monkeys received 200 rads of supervoltage radiation to the whole brain per day, 5 days a week. The course in four monkeys was 4 weeks for a total dose of 4000 rads; in four monkeys, 6 weeks for 6000 rads; and in four monkeys, 8 weeks for 8000 rads. Four unirradiated monkeys served as controls. One from each group, sacrificed at 6 and 12 months from start of irradiation, is reported here. The results from 4000 rads were negligible; those from 8000 rads, profound, with gross brain destruction. The results from 6000 rads, within the therapeutic range, included at 6 months punctate necrotic lesions, 1 mm or less, widely scattered but with a predilection for the forebrain white matter. The reaction to these lesions ranged from an early macrophage response to calcification. Some were accompanied by focal edema. There were occasional examples of vascular endothelial proliferation. In addition, there were patches of dilated capillaries or telangiectasia. Twelve months after 6000 rads there were a few mineralized lesions and innumerable minute deposits of calcium and iron. A more active process was suggested by widely disseminated areas of telangiectasia, 6 to 12 mm in extent. The clinical course from this exposure included papilledema from the third to the sixth month and depressed visual evoked response accompanied by delta activity in the electroencephalogram from the sixth to the twelfth month

  15. BDNF val(66)met affects hippocampal volume and emotion-related hippocampal memory activity

    NARCIS (Netherlands)

    Molendijk, M. L.; van Tol, M-J; Penninx, B. W. J. H.; van der Wee, N. J. A.; Aleman, A.; Veltman, D. J.; Spinhoven, P.; Elzinga, B. M.

    2012-01-01

    The val(66)met polymorphism on the BDNF gene has been reported to explain individual differences in hippocampal volume and memory-related activity. These findings, however, have not been replicated consistently and no studies to date controlled for the potentially confounding impact of early life

  16. Hippocampal EEG and behaviour in dog. I. Hippocampal EEG correlates of gross motor behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    It was shown that rewarding spectral shifts (i.e. increase in amplitude or peak frequency of the hippocampal EEG) causes a solitary dog to show increased motor behaviour. Rewarded spectral shifts concurred with a variety of behavioural transitions. It was found that statistically significant

  17. Parkia biglobosa Improves Mitochondrial Functioning and Protects against Neurotoxic Agents in Rat Brain Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Kayode Komolafe

    2014-01-01

    Full Text Available Objective. Methanolic leaf extracts of Parkia biglobosa, PBE, and one of its major polyphenolic constituents, catechin, were investigated for their protective effects against neurotoxicity induced by different agents on rat brain hippocampal slices and isolated mitochondria. Methods. Hippocampal slices were preincubated with PBE (25, 50, 100, or 200 µg/mL or catechin (1, 5, or 10 µg/mL for 30 min followed by further incubation with 300 µM H2O2, 300 µM SNP, or 200 µM PbCl2 for 1 h. Effects of PBE and catechin on SNP- or CaCl2-induced brain mitochondrial ROS formation and mitochondrial membrane potential (ΔΨm were also determined. Results. PBE and catechin decreased basal ROS generation in slices and blunted the prooxidant effects of neurotoxicants on membrane lipid peroxidation and nonprotein thiol contents. PBE rescued hippocampal cellular viability from SNP damage and caused a significant boost in hippocampus Na+, K+-ATPase activity but with no effect on the acetylcholinesterase activity. Both PBE and catechin also mitigated SNP- or CaCl2-dependent mitochondrial ROS generation. Measurement by safranine fluorescence however showed that the mild depolarization of the ΔΨm by PBE was independent of catechin. Conclusion. The results suggest that the neuroprotective effect of PBE is dependent on its constituent antioxidants and mild mitochondrial depolarization propensity.

  18. Temporal lobe developmental malformations and epilepsy: dual pathology and bilateral hippocampal abnormalities.

    Science.gov (United States)

    Ho, S S; Kuzniecky, R I; Gilliam, F; Faught, E; Morawetz, R

    1998-03-01

    Temporal lobe developmental malformations (TLDM) with focal cortical dysplasia and balloon cells may coexist with mesial temporal sclerosis. The true incidence of this dual pathology is unknown. Our aim was to assess the frequency of amygdala (AM)-hippocampal abnormality in a homogeneous population with this specific developmental malformation. MRI-based volumetry of the AM and hippocampal formation (HF) in 30 patients with unilateral TLDM and intractable partial epilepsy was performed. A volume normalization process defined a normal range of HF and AM volumes in control subjects, and enabled the detection of bilateral volume loss. Normalized volumes detected HF atrophy in 26 patients (nine unilateral and 17 bilateral) and AM atrophy in 18 patients (three unilateral and 15 bilateral). Visual analysis detected unilateral HF abnormality in 21 patients and bilateral abnormality in two. When compared with a group of patients with temporal lobe epilepsy and pure hippocampal sclerosis (N = 92), where volumetry revealed bilateral HF atrophy in 18%, a significant difference in the frequency of bilateral HF atrophy was found (p Dual pathology is frequent in patients with TLDM (87%), and the AM-HF abnormality is often bilateral (57%). Our data suggest that more widespread and potentially epileptogenic lesions coexist with visibly detectable unilateral TLDM. This has implications for the selection of patients for temporal lobe surgery and may influence surgical strategies.

  19. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1

    Directory of Open Access Journals (Sweden)

    Chun-Lei Wang

    2012-10-01

    VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.

  20. Comparative plasma lipidome between human and cynomolgus monkey: are plasma polar lipids good biomarkers for diabetic monkeys?

    Directory of Open Access Journals (Sweden)

    Guanghou Shui

    Full Text Available BACKGROUND: Non-human primates (NHP are now being considered as models for investigating human metabolic diseases including diabetes. Analyses of cholesterol and triglycerides in plasma derived from NHPs can easily be achieved using methods employed in humans. Information pertaining to other lipid species in monkey plasma, however, is lacking and requires comprehensive experimental analysis. METHODOLOGIES/PRINCIPAL FINDINGS: We examined the plasma lipidome from 16 cynomolgus monkey, Macaca fascicularis, using liquid chromatography coupled with mass spectrometry (LC/MS. We established novel analytical approaches, which are based on a simple gradient elution, to quantify polar lipids in plasma including (i glycerophospholipids (phosphatidylcholine, PC; phosphatidylethanolamine, PE; phosphatidylinositol, PI; phosphatidylglycerol, PG; phosphatidylserine, PS; phosphatidic acid, PA; (ii sphingolipids (sphingomyelin, SM; ceramide, Cer; Glucocyl-ceramide, GluCer; ganglioside mannoside 3, GM3. Lipidomic analysis had revealed that the plasma of human and cynomolgus monkey were of similar compositions, with PC, SM, PE, LPC and PI constituting the major polar lipid species present. Human plasma contained significantly higher levels of plasmalogen PE species (p<0.005 and plasmalogen PC species (p<0.0005, while cynomolgus monkey had higher levels of polyunsaturated fatty acyls (PUFA in PC, PE, PS and PI. Notably, cynomolgus monkey had significantly lower levels of glycosphingolipids, including GluCer (p<0.0005 and GM(3 (p<0.0005, but higher level of Cer (p<0.0005 in plasma than human. We next investigated the biochemical alterations in blood lipids of 8 naturally occurring diabetic cynomolgus monkeys when compared with 8 healthy controls. CONCLUSIONS: For the first time, we demonstrated that the plasma of human and cynomolgus monkey were of similar compositions, but contained different mol distribution of individual molecular species. Diabetic monkeys

  1. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference.

    Science.gov (United States)

    Zeithamova, Dagmar; Dominick, April L; Preston, Alison R

    2012-07-12

    Memory enables flexible use of past experience to inform new behaviors. Although leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants' ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Hippocampal “Time Cells”: Time versus Path Integration

    Science.gov (United States)

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  3. Neural Monkey: An Open-source Tool for Sequence Learning

    Directory of Open Access Journals (Sweden)

    Helcl Jindřich

    2017-04-01

    Full Text Available In this paper, we announce the development of Neural Monkey – an open-source neural machine translation (NMT and general sequence-to-sequence learning system built over the TensorFlow machine learning library. The system provides a high-level API tailored for fast prototyping of complex architectures with multiple sequence encoders and decoders. Models’ overall architecture is specified in easy-to-read configuration files. The long-term goal of the Neural Monkey project is to create and maintain a growing collection of implementations of recently proposed components or methods, and therefore it is designed to be easily extensible. Trained models can be deployed either for batch data processing or as a web service. In the presented paper, we describe the design of the system and introduce the reader to running experiments using Neural Monkey.

  4. Movement disorders induced in monkeys by chronic haloperidol treatment

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, B; Santelli, S; Lusink, G

    1977-01-01

    After several months of treatment, Cebus apella, Cebus albifrons, and Saimiri sciurea monkeys maintained on haloperidol, in doses of 0.5 or 1.0 mg/kg orally 5 days per week, began to display severe movement disorders, typically 1 to 6 h post-drug. Cebus monkeys exhibited violent, uncontrolled movements that flung the animals about the cage. Such episodes usually lasted only a few minutes, recurring several times during the period following drug ingestion. Writhing and bizarre postures dominated the response in S. sciurea. Cessation of drug treatment produced no distinctive after-effects. When tested as long as 508 days after the last administration, however, Cebus monkeys responded to haloperidol with several episodes of hyperkinesis, even at challenge doses considerably lower than those in the original treatment.

  5. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  6. Hippocampal nicotinic receptors have a modulatory role for ethanol and MDMA interaction in memory retrieval.

    Science.gov (United States)

    Rostami, Maryam; Rezayof, Ameneh; Alijanpour, Sakineh; Sharifi, Khadijeh Alsadat

    2017-08-15

    The aim of the current study was to examine the effect of dorsal hippocampal nicotinic acetylcholine receptors (nAChRs) activation on the functional interaction between ethanol and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) in memory retrieval. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated and memory retrieval was measured in a step-down type passive avoidance apparatus. Post-training or pre-test systemic administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol reversed pre-training ethanol-induced amnesia, suggesting ethanol state-dependent learning. Pre-test intra-CA1 microinjection of different doses of MDMA (0.25-1µg/mouse) with an ineffective dose of ethanol (0.25g/kg, i.p.) also induced amnesia. Interestingly, pre-test intra-CA1 microinjection of MDMA (0.25-1µg/mouse) potentiated ethanol state-dependent learning. On the other hand, the activation of the dorsal hippocampal nAChRs by pre-test microinjection of nicotine (0.1-1µg/mouse, intra-CA1) improved amnesia induced by the co-administration of MDMD and ethanol. It is important to note that intra-CA1 microinjection of the same doses of MDMA or nicotine could not affect memory formation by itself. Pre-test intra-CA1 microinjection of nicotine (0.3-0.9µg/mouse) could not reverse amnesia induced by pre-training administration of ethanol while this treatment enhanced MDMA response on ethanol state-dependent learning. Thus, it can be concluded that there may be functional interactions among ethanol, MDMA and nicotine via the dorsal hippocampal nicotinic acetylcholine receptor mechanism in memory retrieval and drug state-dependent learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease

    Science.gov (United States)

    Smith, Charles D.; Abner, Erin L.; Wilfred, Bernard J.; Wang, Wang-Xia; Neltner, Janna H.; Baker, Michael; Fardo, David W.; Kryscio, Richard J.; Scheff, Stephen W.; Jicha, Gregory A.; Jellinger, Kurt A.; Van Eldik, Linda J.; Schmitt, Frederick A.

    2013-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a causative factor in a large proportion of elderly dementia cases. The current definition of HS-Aging rests on pathologic criteria: neuronal loss and gliosis in the hippocampal formation that is out of proportion to AD-type pathology. HS-Aging is also strongly associated with TDP-43 pathology. HS-Aging pathology appears to be most prevalent in the oldest-old: autopsy series indicate that 5–30 % of nonagenarians have HS-Aging pathology. Among prior studies, differences in study design have contributed to the study-to-study variability in reported disease prevalence. The presence of HS-Aging pathology correlates with significant cognitive impairment which is often misdiagnosed as AD clinically. The antemortem diagnosis is further confounded by other diseases linked to hippocampal atrophy including frontotemporal lobar degeneration and cerebrovascular pathologies. Recent advances characterizing the neurocognitive profile of HS-Aging patients have begun to provide clues that may help identify living individuals with HS-Aging pathology. Structural brain imaging studies of research subjects followed to autopsy reveal hippocampal atrophy that is substantially greater in people with eventual HS-Aging pathology, compared to those with AD pathology alone. Data are presented from individuals who were followed with neurocognitive and neuroradiologic measurements, followed by neuropathologic evaluation at the University of Kentucky. Finally, we discuss factors that are hypothesized to cause or modify the disease. We conclude that the published literature on HS-Aging provides strong evidence of an important and under-appreciated brain disease of aging. Unfortunately, there is no therapy or preventive strategy currently available. PMID:23864344

  8. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  9. Alzheimer's Disease Diagnostic Performance of a Multi-Atlas Hippocampal Segmentation Method using the Harmonized Hippocampal Protocol

    DEFF Research Database (Denmark)

    Anker, Cecilie Benedicte; Sørensen, Lauge; Pai, Akshay

    PURPOSE Hippocampal volumetry is the most widely used structural MRI biomarker of Alzheimer’s disease (AD), and state-of-the-art, automatic hippocampal segmentation can be obtained using longitudinal FreeSurfer. In this study, we compare the diagnostic AD performance of a single time point, multi...

  10. Comparative imaging study on monkeys with hemi-parkinsonism

    International Nuclear Information System (INIS)

    Wang Wei; Yu Xiaoping; Mao Jun; Liu Sheng; Wang Xiaoyi; Peng Guangchun; Wang Ruiwen

    2003-01-01

    Objective: To study the imaging appearance of experimental Parkinson's disease (PD) and to evaluate the different medical imaging exams on PD. Methods: CT, MRI, SPECT (dopamine transporter imaging and regional cerebral blood flow imaging, DAT imaging and rCBF imaging), and PET (glucose metabolism imaging) were performed on 8 monkeys before and after the infusion of MPTP into unilateral internal carotid artery to develop hemi-Parkinsonism models. Results: Hemi-Parkinsonism models were successfully induced on all 8 monkeys. On DAT imaging, the uptake values of the lesioned striatums decreased obviously after the MPTP treatment and were lower than that of the contralateral ones. The glucose metabolic rates of the lesioned striatums and thalamus in PD models were lower, compared to that of the healthy monkeys and that of the contralateral sides of themselves. Neither DAT nor glucose metabolism abnormalities was found on both the contralateral sides of the healthy and PD monkeys. On MRI images before MPTP treatment, only 4 of 8 PD models showed hypointense in bilateral globus pallidus. No abnormal MRI findings occurred in the first 2 months after injection of MPTP. At tile third month, hypointense appeared in globus pallidus of three monkeys. Enlarged hyposignal region in globus pallidus were found in three models. Of the above 6 monkeys, two appeared hypointense in putamina. Substantia nigra demonstrated no abnormalities before and after MPTP treatment. All rCBF and CT images were normal. Conclusion: The decreased density of DAT and decreased glucose metabolism on experimental PD can be showed early by DAT imaging and glucose metabolism imaging, MRI can show abnormal signal in the basal ganglia of PD but it is later than DAT and glucose metabolism imaging. CT and rCBF find no abnormality on PD

  11. Socialization of adult owl monkeys (Aotus sp.) in Captivity.

    Science.gov (United States)

    Williams, Lawrence E; Coke, C S; Weed, J L

    2017-01-01

    Social housing has often been recommended as one-way to address the psychological well-being of captive non-human primates. Published reports have examined methods to socialize compatible animals by forming pairs or groups. Successful socialization rates vary depending on the species, gender, and environment. This study presents a retrospective look at pairing attempts in two species of owl monkeys, Aotus nancymaae and A. azarae, which live in monogamous pairs in the wild. The results of 477 pairing attempt conducted with captive, laboratory housed owl monkeys and 61 hr of behavioral observations are reported here. The greatest success pairing these owl monkeys occurred with opposite sex pairs, with an 82% success rate. Opposite sex pairs were more successful when females were older than males. Female-female pairs were more successful than male-male (MM) pairs (62% vs 40%). Successful pairs stayed together between 3 and 7 years before the animals were separated due to social incompatibility. Vigilance, eating, and sleeping during introductions significantly predicted success, as did the performance of the same behavior in both animals. The results of this analysis show that it is possible to give captive owl monkeys a social alternative even if species appropriate social partners (i.e., opposite sex partners) are not available. The focus of this report is a description of one potential way to enhance the welfare of a specific new world primate, the owl monkey, under laboratory conditions. More important is how the species typical social structure of owl monkeys in nature affects the captive management of this genus. Am. J. Primatol. 79:e22521, 2017. © 2015 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Reproductive function of monkeys subjected to chronic irradiation

    International Nuclear Information System (INIS)

    Artem'eva, N.S.; Kosichenko, L.P.; Andreeva, A.V.; Zvereva, G.A.

    1976-01-01

    Marked functional disorders have been detected in reproductive glands of eight female monkeys (as compared to twelve control animals) subjected to protracted (up to eight years) irradiation (cumulative doses 826-3282 R). Irradiated monkeys exhibited a drastically decreased reproductive capacity, early menopause and sterility. Irradiation of preadolescent animals inhibited, in most cases, the puberty processes and disturbed sex cycles. Structural disorders in sex glands, inhibition of the processes of maturation and ovulation of folloculi, death of the mass of germ cells, atypical vegetations of the integmentary epithelium, sclerosing and cystic degeneration of the glandular tissue have been revealed

  13. "Zeroing" in on mathematics in the monkey brain.

    Science.gov (United States)

    Beran, Michael J

    2016-03-01

    A new study documented that monkeys showed selective neuronal responding to the concept of zero during a numerical task, and that there were two distinct classes of neurons that coded the absence of stimuli either through a discrete activation pattern (zero or not zero) or a continuous one for which zero was integrated with other numerosities in the relative rate of activity. These data indicate that monkeys, like humans, have a concept of zero that is part of their analog number line but that also may have unique properties compared to other numerosities.

  14. Comparison of Object Recognition Behavior in Human and Monkey

    Science.gov (United States)

    Rajalingham, Rishi; Schmidt, Kailyn

    2015-01-01

    Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to

  15. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    Science.gov (United States)

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  16. Hippocampal sclerosis in advanced age: clinical and pathological features

    Science.gov (United States)

    Schmitt, Frederick A.; Lin, Yushun; Abner, Erin L.; Jicha, Gregory A.; Patel, Ela; Thomason, Paula C.; Neltner, Janna H.; Smith, Charles D.; Santacruz, Karen S.; Sonnen, Joshua A.; Poon, Leonard W.; Gearing, Marla; Green, Robert C.; Woodard, John L.; Van Eldik, Linda J.; Kryscio, Richard J.

    2011-01-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer’s disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer’s Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n = 106). For individuals aged ≥95 years at death (n = 179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of ‘definite’ Alzheimer’s disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n = 10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar

  17. Differential expression of alpha-synuclein in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Katsutoshi Taguchi

    Full Text Available α-Synuclein is the major pathological component of synucleinopathies including Parkinson's disease and dementia with Lewy bodies. Recent studies have demonstrated that α-synuclein also plays important roles in the release of synaptic vesicles and synaptic membrane recycling in healthy neurons. However, the precise relationship between the pathogenicity and physiological functions of α-synuclein remains to be elucidated. To address this issue, we investigated the subcellular localization of α-synuclein in normal and pathological conditions using primary mouse hippocampal neuronal cultures. While some neurons expressed high levels of α-synuclein in presynaptic boutons and cell bodies, other neurons either did not or only very weakly expressed the protein. These α-synuclein-negative cells were identified as inhibitory neurons by immunostaining with specific antibodies against glutamic acid decarboxylase (GAD, parvalbumin, and somatostatin. In contrast, α-synuclein-positive synapses were colocalized with the excitatory synapse marker vesicular glutamate transporter-1. This expression profile of α-synuclein was conserved in the hippocampus in vivo. In addition, we found that while presynaptic α-synuclein colocalizes with synapsin, a marker of presynaptic vesicles, it is not essential for activity-dependent membrane recycling induced by high potassium treatment. Exogenous supply of preformed fibrils generated by recombinant α-synuclein was shown to promote the formation of Lewy body (LB -like intracellular aggregates involving endogenous α-synuclein. GAD-positive neurons did not form LB-like aggregates following treatment with preformed fibrils, however, exogenous expression of human α-synuclein allowed intracellular aggregate formation in these cells. These results suggest the presence of a different mechanism for regulation of the expression of α-synuclein between excitatory and inhibitory neurons. Furthermore, α-synuclein expression

  18. Quantitative Comparison of 21 Protocols for Labeling Hippocampal Subfields and Parahippocampal Cortical Subregions in In Vivo MRI: Towards Developing a Harmonized Segmentation Protocol

    DEFF Research Database (Denmark)

    Yushkevich, Paul A.; Amaral, Robert S.C.; Augustinack, Jean C.

    2015-01-01

    Objective: An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1 − 3, and the subiculum) and subregions of the parahippocampal gyrus...

  19. Hippocampal and diencephalic pathology in developmental amnesia.

    Science.gov (United States)

    Dzieciol, Anna M; Bachevalier, Jocelyne; Saleem, Kadharbatcha S; Gadian, David G; Saunders, Richard; Chong, W K Kling; Banks, Tina; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-01-01

    Developmental amnesia (DA) is a selective episodic memory disorder associated with hypoxia-induced bilateral hippocampal atrophy of early onset. Despite the systemic impact of hypoxia-ischaemia, the resulting brain damage was previously reported to be largely limited to the hippocampus. However, the thalamus and the mammillary bodies are parts of the hippocampal-diencephalic network and are therefore also at risk of injury following hypoxic-ischaemic events. Here, we report a neuroimaging investigation of diencephalic damage in a group of 18 patients with DA (age range 11-35 years), and an equal number of controls. Importantly, we uncovered a marked degree of atrophy in the mammillary bodies in two thirds of our patients. In addition, as a group, patients had mildly reduced thalamic volumes. The size of the anterior-mid thalamic (AMT) segment was correlated with patients' visual memory performance. Thus, in addition to the hippocampus, the diencephalic structures also appear to play a role in the patients' memory deficit. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Reference values of clinical chemistry and hematology parameters in rhesus monkeys (Macaca mulatta).

    Science.gov (United States)

    Chen, Younan; Qin, Shengfang; Ding, Yang; Wei, Lingling; Zhang, Jie; Li, Hongxia; Bu, Hong; Lu, Yanrong; Cheng, Jingqiu

    2009-01-01

    Rhesus monkey models are valuable to the studies of human biology. Reference values for clinical chemistry and hematology parameters of rhesus monkeys are required for proper data interpretation. Whole blood was collected from 36 healthy Chinese rhesus monkeys (Macaca mulatta) of either sex, 3 to 5 yr old. Routine chemistry and hematology parameters, and some special coagulation parameters including thromboelastograph and activities of coagulation factors were tested. We presented here the baseline values of clinical chemistry and hematology parameters in normal Chinese rhesus monkeys. These data may provide valuable information for veterinarians and investigators using rhesus monkeys in experimental studies.

  1. Delayed response task performance as a function of age in cynomolgus monkeys (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Darusman, H S; Call, J; Sajuthi, D

    2014-01-01

    We compared delayed response task performance in young, middle-aged, and old cynomolgus monkeys using three memory tests that have been used with non-human primates. Eighteen cynomolgus monkeys-6 young (4-9 years), 6 middle-aged (10-19 years), and 6 old (above 20 years)-were tested. In general......, the old monkeys scored significantly worse than did the animals in the two other age groups. Longer delays between stimulus presentation and response increased the performance differences between the old and younger monkeys. The old monkeys in particular showed signs of impaired visuo-spatial memory...

  2. Long term lung clearance and cellular retention of cadmium in rats and monkeys

    International Nuclear Information System (INIS)

    Oberdorster, G.; Cox, C.; Baggs, R.

    1987-01-01

    The paper describes experiments to determine the long term lung clearance and cellular retention of cadmium in rats and monkeys. The rats and monkeys were exposed to 109 Cd Cl 2 aerosols, and one monkey was exposed to 115 CdO particles. The thoracic activity of the respective Cd isotopes was measured with time after exposure, for both species. Accumulation of 109 Cd in the kidneys of the monkeys exposed to 109 Cd Cl 2 was also examined, and autoradiographs of lung sections of these monkeys were also prepared. The results showed that the cadmium accumulated differently in the lungs of the rats and primates. (U.K.)

  3. Emergence of Cryptosporidium hominis Monkey Genotype II and Novel Subtype Family Ik in the Squirrel Monkey (Saimiri sciureus) in China.

    Science.gov (United States)

    Liu, Xuehan; Xie, Na; Li, Wei; Zhou, Ziyao; Zhong, Zhijun; Shen, Liuhong; Cao, Suizhong; Yu, Xingming; Hu, Yanchuan; Chen, Weigang; Peng, Gangneng

    2015-01-01

    A single Cryptosporidium isolate from a squirrel monkey with no clinical symptoms was obtained from a zoo in Ya'an city, China, and was genotyped by PCR amplification and DNA sequencing of the small-subunit ribosomal RNA (SSU rRNA), 70-kDa heat shock protein (HSP70), Cryptosporidium oocyst wall protein, and actin genes. This multilocus genetic characterization determined that the isolate was Cryptosporidium hominis, but carried 2, 10, and 6 nucleotide differences in the SSU rRNA, HSP70, and actin loci, respectively, which is comparable to the variations at these loci between C. hominis and the previously reported monkey genotype (2, 3, and 3 nucleotide differences). Phylogenetic studies, based on neighbor-joining and maximum likelihood methods, showed that the isolate identified in the current study had a distinctly discordant taxonomic status, distinct from known C. hominis and also from the monkey genotype, with respect to the three loci. Restriction fragment length polymorphisms of the SSU rRNA gene obtained from this study were similar to those of known C. hominis but clearly differentiated from the monkey genotype. Further subtyping was performed by sequence analysis of the gene encoding the 60-kDa glycoprotein (gp60). Maximum homology of only 88.3% to C. hominis subtype IdA10G4 was observed for the current isolate, and phylogenetic analysis demonstrated that this particular isolate belonged to a novel C. hominis subtype family, IkA7G4. This study is the first to report C. hominis infection in the squirrel monkey and, based on the observed genetic characteristics, confirms a new C. hominis genotype, monkey genotype II. Thus, these results provide novel insights into genotypic variation in C. hominis.

  4. Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains

    OpenAIRE

    Rachael D. Rubin; Hillary Schwarb; Heather D. Lucas; Michael R. Dulas; Neal J. Cohen

    2017-01-01

    The hippocampus has long been known to be a critical component of the memory system involved in the formation and use of long-term declarative memory. However, recent findings have revealed that the reach of hippocampal contributions extends to a variety of domains and tasks that require the flexible use of cognitive and social behavior, including domains traditionally linked to prefrontal cortex (PFC), such as decision-making. In addition, the prefrontal cortex (PFC) has gained traction as a...

  5. The archetype enhancer of simian virus 40 DNA is duplicated during virus growth in human cells and rhesus monkey kidney cells but not in green monkey kidney cells

    International Nuclear Information System (INIS)

    O'Neill, Frank J.; Greenlee, John E.; Carney, Helen

    2003-01-01

    Archetype SV40, obtained directly from its natural host, is characterized by a single 72-bp enhancer element. In contrast, SV40 grown in cell culture almost invariably exhibits partial or complete duplication of the enhancer region. This distinction has been considered important in studies of human tumor material, since SV40-associated tumor isolates have been described having a single enhancer region, suggesting natural infection as opposed to possible contamination by laboratory strains of virus. However, the behavior of archetypal SV40 in cultured cells has never been methodically studied. In this study we reengineered nonarchetypal 776-SV40 to contain a single 72-bp enhancer region and used this reengineered archetypal DNA to transfect a number of simian and human cell lines. SV40 DNA recovered from these cells was analyzed by restriction endonuclease analysis, PCR, and DNA sequencing. Reengineered archetype SV40 propagated in green monkey TC-7 or BSC-1 kidney cells remained without enhancer region duplication even after extensive serial virus passage. Archetype SV40 grown in all but one of the rhesus or human cell lines initially appeared exclusively archetypal. However, when virus from these cell types was transferred to green monkey cells, variants with partial enhancer duplication appeared after as little as a single passage. These findings suggest (1) that virus with a single 72-bp enhancer may persist in cultured cells of simian and human origin; (2) that variants with partially duplicated enhancer regions may arise within cell lines in quantities below limits of detection; (3) that these variants may enjoy a selective advantage in cell types other than those from which they arose (e.g., green monkey kidney cells); and (4) that certain cell lines may support a selective growth advantage for the variants without supporting their formation. Our data indicate that enhancer duplication may also occur in human as well as rhesus kidney cells. Thus, detection of

  6. Cortisol, Cytokines, and Hippocampal Volume in the Elderly

    Directory of Open Access Journals (Sweden)

    Keith Daniel Sudheimer

    2014-07-01

    Full Text Available Separate bodies of literature report that elevated pro-inflammatory cytokines and cortisol negatively affect hippocampal structure and cognitive functioning, particularly in older adults. Although interactions between cytokines and cortisol occur through a variety of known mechanisms, few studies consider how their interactions affect brain structure. In this preliminary study, we assess the impact of interactions between circulating levels of IL-1Beta, IL-6, IL-8, IL-10, IL-12, TNF-alpha, and waking cortisol on hippocampal volume. Twenty-eight community-dwelling older adults underwent blood draws for quantification of circulating cytokines and saliva collections to quantify the cortisol awakening response. Hippocampal volume measurements were made using structural magnetic resonance imaging. Elevated levels of waking cortisol in conjunction with higher concentrations of IL-6 and TNF-alpha were associated with smaller hippocampal volumes. In addition, independent of cortisol, higher levels of IL-1beta and TNF-alpha were also associated with smaller hippocampal volumes. These data provide preliminary evidence that higher cortisol, in conjunction with higher IL-6 and TNF-alpha, are associated with smaller hippocampal volume in older adults. We suggest that the dynamic balance between the hypothalamic-pituitary adrenal axis and inflammation processes may explain hippocampal volume reductions in older adults better than either set of measures do in isolation.

  7. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    Science.gov (United States)

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  8. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1

    Directory of Open Access Journals (Sweden)

    A. Rory McQuiston

    2014-09-01

    Full Text Available Acetylcholine release in the central nervous system (CNS has an important role in attention, recall and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB. Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors and astrocytes. A significant portion of acetylcholine’s effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.

  9. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  10. Hippocampal sclerosis: correlation of MR imaging findings with surgical outcome

    International Nuclear Information System (INIS)

    Kim, Yoon Hee; Chang, Kee Hyun; Kim, Kyung Won; Han, Moon Hee; Park, Sung Ho; Nam, Hyun Woo; Choi, Kyu Ho; Cho, Woo Ho

    2001-01-01

    Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p 0.05). Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator

  11. Evaluating the habitat of the critically endangered Kipunji monkey ...

    African Journals Online (AJOL)

    Effective conservation of threatened species requires a good understanding of their habitat. Most primates are threatened by tropical forest loss. One population of the critically endangered kipunji monkey Rungwecebus kipunji occurs in a restricted part of one forest in southern Tanzania. This restricted range is something of ...

  12. Phylogenetic tests of a Cercopithecus monkey hybrid reveal X ...

    African Journals Online (AJOL)

    A captive Cercopithecus nictitans × C. cephus male was examined at loci on the X- and Y-chromosomes as a test of previously described phylogenetic methods for identifying hybrid Cercopithecus monkeys. The results confirm the reliability of such assays, indicating that they can be of immediate utility for studies of wild ...

  13. Food and Feeding Habits of Mona Monkey Cercopithecus Mona in ...

    African Journals Online (AJOL)

    The feeding habits of mona monkey Cercopithecus mona in Ayede/Isan forest reserve, Ayede, Ekiti State, Nigeria were studied for six months. Direct observation was used in the data collection. The study area was visited two days per week between 0600-1100hours and 1600-1800hours for the six months in the forest ...

  14. Discovery of a Cynomolgus Monkey Family With Retinitis Pigmentosa.

    Science.gov (United States)

    Ikeda, Yasuhiro; Nishiguchi, Koji M; Miya, Fuyuki; Shimozawa, Nobuhiro; Funatsu, Jun; Nakatake, Shunji; Fujiwara, Kohta; Tachibana, Takashi; Murakami, Yusuke; Hisatomi, Toshio; Yoshida, Shigeo; Yasutomi, Yasuhiro; Tsunoda, Tatsuhiko; Nakazawa, Toru; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2018-02-01

    To accelerate the development of new therapies, an inherited retinal degeneration model in a nonhuman primate would be useful to confirm the efficacy in preclinical studies. In this study, we describe the discovery of retinitis pigmentosa in a cynomolgus monkey (Macaca fascicularis) pedigree. First, screening with fundus photography was performed on 1443 monkeys at the Tsukuba Primate Research Center. Ophthalmic examinations, such as indirect ophthalmoscopy, ERGs using RETeval, and optic coherent tomography (OCT) measurement, were then performed to confirm diagnosis. Retinal degeneration with cystoid macular edema was observed in both eyes of one 14-year-old female monkey. In her examinations, the full-field ERGs were nonrecordable and the outer layer of the retina in the parafoveal area was not visible on OCT imaging. Moreover, less frequent pigmentary retinal anomalies also were observed in her 3-year-old nephew. His full-field ERGs were almost nonrecordable and the outer layer was not visible in the peripheral retina. His father was her cousin (the son of her mother's older brother) and his mother was her younger half-sibling sister with a different father. The hereditary nature is highly probable (autosomal recessive inheritance suspected). However, whole-exome analysis performed identified no pathogenic mutations in these monkeys.

  15. The Monkey Kid: A Personal Glimpse into the Cultural Revolution

    Directory of Open Access Journals (Sweden)

    Anita M. Andrew

    2011-04-01

    Full Text Available Wang, Xiao-Yen (Director/Writer, 'The Monkey Kid '(1995. San Francisco, Calif.: Beijing–San Francisco Film Group. Also released in France by Les Films du Parodoxe under the title, 'La Mome Singe '(1997. 95 minutes. Mandarin Chinese with English subtitles.

  16. GLP-1 receptor localization in monkey and human tissue

    DEFF Research Database (Denmark)

    Pyke, Charles; Heller, R Scott; Kirk, Rikke K

    2014-01-01

    and increase heart rate. Using a new monoclonal antibody for immunohistochemistry, we detected GLP-1 receptor (GLP-1R) in important target organs in humans and monkeys. In the pancreas, GLP-1R was predominantly localized in β-cells with a markedly weaker expression in acinar cells. Pancreatic ductal epithelial...

  17. Response of sublethally irradiated monkeys to a replicating viral antigen

    International Nuclear Information System (INIS)

    Hilmas, D.E.; Spertzel, R.O.

    1975-01-01

    Temporal effects of exposure to sublethal, total-body x radiation (400 R) on responses to vaccination with the attenuated Venezuelan equine encephalomyelitis vaccine virus, TC-83, were examined in rhesus monkeys. Viremia, often with delayed onset, was prolonged even when irradiation preceded vaccination by 28 days. Virus titers were increased, particularly in groups irradiated 4 or 7 days before vaccination. Delay in appearance of hemagglutination-inhibition and serum-neutralizing antibody correlated closely with persistence of viremia in irradiated-vaccinated monkeys. The temporal course of antibody response was markedly affected by the interval between irradiation and injection of this replicating antigen. With longer intervals between irradiation and vaccination, the somewhat depressed antibody responses approached normal or surpassed those of nonirradiated monkeys. Vaccination 14 days after radiation exposure resulted in lethality to 8 of 12 monkeys, apparently as a result of secondary infection. The additional lymphopenic stress due to the effect of TC-83, superimposed on the severely depressed hematopoietic competence at 14 days, undoubtedly contributed to this increased susceptibility to latent infection

  18. Call Combinations in Monkeys: Compositional or Idiomatic Expressions?

    Science.gov (United States)

    Arnold, Kate; Zuberbuhler, Klaus

    2012-01-01

    Syntax is widely considered the feature that most decisively sets human language apart from other natural communication systems. Animal vocalisations are generally considered to be holistic with few examples of utterances meaning something other than the sum of their parts. Previously, we have shown that male putty-nosed monkeys produce call…

  19. Toxoplasmosis in a colony of New World monkeys

    DEFF Research Database (Denmark)

    Dietz, H.H.; Henriksen, P.; Bille-Hansen, Vivi

    1997-01-01

    In a colony of New World monkeys five tamarins (Saguinus oedipus, Saguinus labiatus and Leontopithecus rosal. rosal.), three marmosets (Callithrix jacchus and Callithrix pygmaea) and one saki (Pithecia pithecia) died suddenly. The colony comprised 16 marmosets, 10 tamarins and three sakis. The ma...

  20. Risky business: rhesus monkeys exhibit persistent preferences for risky options.

    Science.gov (United States)

    Xu, Eric R; Kralik, Jerald D

    2014-01-01

    Rhesus monkeys have been shown to prefer risky over safe options in experiential decision-making tasks. These findings might be due, however, to specific contextual factors, such as small amounts of fluid reward and minimal costs for risk-taking. To better understand the factors affecting decision-making under risk in rhesus monkeys, we tested multiple factors designed to increase the stakes including larger reward amounts, distinct food items rather than fluid reward, a smaller number of trials per session, and risky options with greater variation that also included non-rewarded outcomes. We found a consistent preference for risky options, except when the expected value of the safe option was greater than the risky option. Thus, with equivalent mean utilities between the safe and risky options, rhesus monkeys appear to have a robust preference for the risky options in a broad range of circumstances, akin to the preferences found in human children and some adults in similar tasks. One account for this result is that monkeys make their choices based on the salience of the largest payoff, without integrating likelihood and value across trials. A related idea is that they fail to override an impulsive tendency to select the option with the potential to obtain the highest possible outcome. Our results rule out strict versions of both accounts and contribute to an understanding of the diversity of risky decision-making among primates.

  1. Servants, Managers and Monkeys: New Perspectives on Leadership

    Science.gov (United States)

    Buskey, Frederick C.

    2014-01-01

    In this article the author questions whether the understanding of teaching and leading is the same today as it was last year? The chances are that the concept of what it means to be a teacher and a leader has changed. After describing three leadership types: servants, managers, and monkeys, Buskey suggest several things that are needed to improve…

  2. Can monkeys make investments based on maximized pay-off?

    Directory of Open Access Journals (Sweden)

    Sophie Steelandt

    2011-03-01

    Full Text Available Animals can maximize benefits but it is not known if they adjust their investment according to expected pay-offs. We investigated whether monkeys can use different investment strategies in an exchange task. We tested eight capuchin monkeys (Cebus apella and thirteen macaques (Macaca fascicularis, Macaca tonkeana in an experiment where they could adapt their investment to the food amounts proposed by two different experimenters. One, the doubling partner, returned a reward that was twice the amount given by the subject, whereas the other, the fixed partner, always returned a constant amount regardless of the amount given. To maximize pay-offs, subjects should invest a maximal amount with the first partner and a minimal amount with the second. When tested with the fixed partner only, one third of monkeys learned to remove a maximal amount of food for immediate consumption before investing a minimal one. With both partners, most subjects failed to maximize pay-offs by using different decision rules with each partner' quality. A single Tonkean macaque succeeded in investing a maximal amount to one experimenter and a minimal amount to the other. The fact that only one of over 21 subjects learned to maximize benefits in adapting investment according to experimenters' quality indicates that such a task is difficult for monkeys, albeit not impossible.

  3. Structural study of Mason-Pfizer monkey virus protease

    Czech Academy of Sciences Publication Activity Database

    Veverka, V.; Bauerová, Helena; Hrabal, R.; Pichová, Iva

    2002-01-01

    Roč. 269, - (2002), s. 57-58 ISSN 0014-2956. [Meeting of the Federation of European Biochemical Societies /28./. 20.10.2002-25.10.2002, Istanbul] R&D Projects: GA ČR GA203/00/1241 Institutional research plan: CEZ:AV0Z4055905 Keywords : Mason-Pfizer monkey virus Subject RIV: CE - Biochemistry

  4. Implicit and Explicit Learning Mechanisms Meet in Monkey Prefrontal Cortex.

    Science.gov (United States)

    Chafee, Matthew V; Crowe, David A

    2017-10-11

    In this issue, Loonis et al. (2017) provide the first description of unique synchrony patterns differentiating implicit and explicit forms of learning in monkey prefrontal networks. Their results have broad implications for how prefrontal networks integrate the two learning mechanisms to control behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Laminar Differences in Associative Memory Signals in Monkey Perirhinal Cortex.

    Science.gov (United States)

    Vogels, Rufin

    2016-10-19

    New research published in Neuron describes assignment of cortical layer to single neurons recorded in awake monkeys. Applying the procedure to perirhinal cortex, Koyano et al. (2016) found marked and unsuspected differences among layers in the coding of associative memory signals. Copyright © 2016. Published by Elsevier Inc.

  6. Monkeys Exhibit Prospective Memory in a Computerized Task

    Science.gov (United States)

    Evans, Theodore A.; Beran, Michael J.

    2012-01-01

    Prospective memory (PM) involves forming intentions, retaining those intentions, and later executing those intended responses at the appropriate time. Few studies have investigated this capacity in animals. Monkeys performed a computerized task that assessed their ability to remember to make a particular response if they observed a PM cue embedded…

  7. Play Initiating Behaviors and Responses in Red Colobus Monkeys

    Science.gov (United States)

    Worch, Eric A.

    2012-01-01

    Red colobus monkeys are playful primates, making them an important species in which to study animal play. The author examines play behaviors and responses in the species for its play initiation events, age differences in initiating frequency and initiating behavior, and the types of social play that result from specific initiating behaviors. Out…

  8. Dynamic ensemble coding of saccades in the monkey superior colliculus.

    NARCIS (Netherlands)

    Goossens, H.H.L.M.; Opstal, A.J. van

    2006-01-01

    The deeper layers of the midbrain superior colliculus (SC) contain a topographic motor map in which a localized population of cells is recruited for each saccade, but how the brain stem decodes the dynamic SC output is unclear. Here we analyze saccade-related responses in the monkey SC to test a new

  9. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    International Nuclear Information System (INIS)

    Stanley, H.A.; Reese, R.T.

    1985-01-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using 125 T-antibodies were done

  10. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Jardim, Anaclara Prada; Corso, Jeana Torres; Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Comper, Sandra Mara; Lancellotti, Carmen Lúcia Penteado; Centeno, Ricardo Silva; Carrete, Henrique; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2016-12-01

    To correlate hippocampal volumes obtained from brain structural imaging with histopathological patterns of hippocampal sclerosis (HS), in order to predict surgical outcome. Patients with mesial temporal lobe epilepsy (MTLE) with HS were selected. Clinical data were assessed pre-operatively and surgical outcome in the first year post surgery. One block of mid hippocampal body was selected for HS classification according to ILAE criteria. NeuN-immunoreactive cell bodies were counted within hippocampal subfields, in four randomly visual fields, and cell densities were transformed into z-score values. FreeSurfer processing of 1.5T brain structural images was used for subcortical and cortical volumetric estimation of the ipsilateral hippocampus. Univariate analysis of variance and Pearson's correlation test were applied for statistical analyses. Sixty-two cases (31 female, 32 right HS) were included. ILAE type 1 HS was identified in 48 patients, type 2 in eight, type 3 in two, and four had no-HS. Better results regarding seizure control, i.e. ILAE 1, were achieved by patients with type 1 HS (58.3%). Patients with types 1 and 2 had smaller hippocampal volumes compared to those with no-HS (p<0.001 and p=0.004, respectively). Positive correlation was encountered between hippocampal volumes and CA1, CA3, CA4, and total estimated neuronal densities. CA2 was the only sector which did not correlate its neuronal density with hippocampal volume (p=0.390). This is the first study correlating hippocampal volume on MRI submitted to FreeSurfer processing with ILAE patterns of HS and neuronal loss within each hippocampal subfield, a fundamental finding to anticipate surgical prognosis for patients with drug-resistant MTLE and HS. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Functional implications of hippocampal degeneration in early Alzheimer's disease: a combined DTI and PET study

    Energy Technology Data Exchange (ETDEWEB)

    Yakushev, Igor; Mueller, Matthias J.; Schermuly, Ingrid; Fellgiebel, Andreas [University Medical Center Mainz, Department of Psychiatry and Psychotherapy, Mainz (Germany); Schreckenberger, Matthias [University Medical Center Mainz, Department of Nuclear Medicine, Mainz (Germany); Cumming, Paul [University of Munich, Department of Nuclear Medicine, Munich (Germany); Stoeter, Peter [University Medical Center Mainz, Institute of Neuroradiology, Mainz (Germany); Gerhard, Alex [University Medical Center Mainz, Department of Psychiatry and Psychotherapy, Mainz (Germany); University of Manchester, Wolfson Molecular Imaging Centre, Manchester (United Kingdom)

    2011-12-15

    Hypometabolism of the posterior cingulate cortex (PCC) in early Alzheimer's disease (AD) is thought to arise in part due to AD-specific neuronal damage to the hippocampal formation. Here, we explored the association between microstructural alterations within the hippocampus and whole-brain glucose metabolism in subjects with AD, also in relation to episodic memory impairment. Twenty patients with early AD (Mini-Mental State Examination 25.7 {+-} 1.7) were studied with [{sup 18}F]fluorodeoxyglucose (FDG) positron emission tomography and diffusion tensor imaging. Episodic memory performance was assessed using the free delayed verbal recall task (DVR). Voxel-wise relative FDG uptake was correlated to diffusivity indices of the hippocampus, followed by extraction of FDG uptake values from significant clusters. Linear regression analysis was performed to test for unique contributions of diffusivity and metabolic indices in the prediction of memory function. Diffusivity in the left anterior hippocampus negatively correlated with FDG uptake primarily in the left anterior hippocampus, parahippocampal gyrus and the PCC (p< 0.005). The same correlation pattern was found for right hippocampal diffusivity (p< 0.05). In linear regression analysis, left anterior hippocampal diffusivity and FDG uptake from the PCC cluster were the only significant predictors for performance on DVR, together explaining 60.6% of the variance. We found an inverse association between anterior hippocampal diffusivity and PCC glucose metabolism, which was in turn strongly related to episodic memory performance in subjects with early AD. These findings support the diaschisis hypothesis of AD and implicate a dysfunction of structures along the hippocampal output pathways as a significant contributor to the genesis of episodic memory impairment. (orig.)

  12. A toxicity profile of osteoprotegerin in the cynomolgus monkey.

    Science.gov (United States)

    Smith, Brenda B; Cosenza, Mary Ellen; Mancini, Audrey; Dunstan, Colin; Gregson, Richard; Martin, Steven W; Smith, Susan Y; Davis, Harold

    2003-01-01

    Osteoprotegerin (OPG) is a novel secreted glycoprotein of the tumor necrosis factor (TNF) receptor superfamily that acts as an antiresorptive agent inhibiting osteoclast maturation. OPG acts by competitively inhibiting the association of the OPG ligand with the RANK receptor on osteoclasts and osteoclast precursors. This inhibition of osteoclasts can lead to excess accumulation of newly synthesized bone and cartilage in vivo. The purpose of this study was to investigate the potential toxicity of a human recombinant form of OPG in the young cynomolgus monkey. OPG was administered by intravenous (i.v.) or subcutaneous (s.c.) injection three times per week for either 4 or 13 weeks. There were no deaths during the study, no clinical signs related to treatment, no effect on body weight, appetence, or ophthalmology. No toxicologically relevant changes in routine laboratory investigations, organ weights, or gross or histopathological findings were observed. Serum ionized calcium and phosphorus were decreased at all dose levels. Evaluations were performed to monitor biochemical markers of bone resorption (N-telopeptide [NTx], deoxypyridinoline [DPD]), bone formation (skeletal alkaline phosphatase [sALP], osteocalcin [OC]), parathyroid hormone [PTH], and bone density of the proximal tibia and distal radius in vivo. Dose-related decreases in NTx and/or DPD were observed at each dose level, with up to a 90% decrease in NTx noted for animals treated i.v. or s.c. at 15 mg/kg. Similar decreases were observed for sALP and OC. PTH was increased for animals treated at 5 and 15 mg/kg (i.v. or s.c.). Trabecular bone density was increased for the majority of males and females treated i.v. or s.c. at 15 mg/kg and males treated i.v. at 5 mg/kg. Microscopic examination of the sternebrae revealed corresponding increases in bone. Decreases in markers of bone turnover, and corresponding increases in bone density, were consistent with the pharmacological action of OPG as an osteoclast

  13. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    Science.gov (United States)

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2

  14. Tau protein and adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Almudena eFuster-Matanzo

    2012-07-01

    Full Text Available Tau protein is a microtubule associated protein found in the axonal compartment that stabilizes neuronal microtubules under normal physiological conditions. Tau metabolism has attracted much attention because of its role in neurodegenerative disorders called tauopathies, mainly Alzheimer disease. Here, we review recent findings suggesting that axonal outgrowth in subgranular zone during adult hippocampal neurogenesis requires a dynamic microtubule network and tau protein facilitates to maintain that dynamic cytoskeleton. Those functions are carried out in part by tau isoform with only three microtubule-binding domains (without exon 10 and by presence of hypherphosphorylated tau forms. Thus, tau is a good marker and a valuable tool to study new axons in adult neurogenesis.

  15. Spatial relational memory requires hippocampal adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  16. Gene-environment effects on hippocampal neurodevelopment

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    Mental disorders like schizophrenia and autism put a heavy load on today’s societies, creating a steady call for revealing underlying disease mechanisms and the development of effective treatments. The etiology of major psychiatric illnesses is complex involving gene by environment susceptibility...... factors. Hence, a deeper understanding is needed of how cortical neurodevelopmental deficiencies can arise from such gene-environment interactions. The convergence of genetic and environmental risk factors is a recent field of research. It is now clear that disease, infection and stress factors may...... and antipsychotics mediate their effects on hippocampal neurodevelopment through deregulation of the Zbtb20 gene. A short presentation of the status of this work will shown....

  17. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum.

    Science.gov (United States)

    McDonald, Robert J; Jones, Jana; Richards, Blake; Hong, Nancy S

    2006-09-01

    The objectives of this research were to further delineate the neural circuits subserving proposed memory-based behavioural subsystems in the hippocampal formation. These studies were guided by anatomical evidence showing a topographical organization of the hippocampal formation. Briefly, perpendicular to the medial/lateral entorhinal cortex division there is a second system of parallel circuits that separates the dorsal and ventral hippocampus. Recent work from this laboratory has provided evidence that the hippocampus incidentally encodes a context-specific inhibitory association during acquisition of a visual discrimination task. One question that emerges from this dataset is whether the dorsal or ventral hippocampus makes a unique contribution to this newly described function. Rats with neurotoxic lesions of the dorsal or ventral hippocampus were assessed on the acquisition of the visual discrimination task. Following asymptotic performance they were given reversal training in either the same or a different context from the original training. The results showed that the context-specific inhibition effect is mediated by a circuit that includes the ventral but not the dorsal hippocampus. Results from a control procedure showed that rats with either dorso-lateral striatum damage or dorsal hippocampal lesions were impaired on a tactile/spatial discrimination. Taken together, the results represent a double dissociation of learning and memory function between the ventral and dorsal hippocampus. The formation of an incidental inhibitory association was dependent on ventral but not dorsal hippocampal circuitry, and the opposite dependence was found for the spatial component of a tactile/spatial discrimination.

  18. Glucocorticoid effects on hippocampal protein synthesis

    International Nuclear Information System (INIS)

    Schlatter, L.K.

    1988-01-01

    Following subcutaneous injection of rats with 5 mg corticosterone, hippocampal slices in vitro show increased [ 35 S]-methionine labeling of a cytosolic protein with an apparent molecular weight (M r ) of 35,000 and an isoelectric point (IEP) of 6.6. This labeling is temporally consistent with a transcriptional event, and is steroid- and tissue-specific. The pear serum concentration of steroid occurs one hour or less following the injection. Maximal labeling of this protein is reached whenever serum corticosterone values are approximately 100 ng/ml. When endogenous corticosterone levels are elevated to 100 ng/ml through stressors or exogenous ACTH injections the same maximal increase in synthesis of the 35,000 M r protein is observed. Adrenalectomy prevents the observed response from occurring following stressor application or ACTH injections. Comparison of the increases observed after administration of the type 2 receptor agonist RU 28362 and aldosterone, which has a higher affinity for the type 1 receptor, shows a 50-fold greater sensitivity of the response to the type 2 receptor agonist. Synthesis of this protein following serum increases of steroid possibly correlates to the theorized function of the type 2 receptor feedback regulation. The similar protein in the liver has an IEP of 6.8 and a slightly higher M r . A second hippocampal protein with an M r of 46,000 and an IEP of 6.2 is also increased in labeling. Two additional liver proteins, one of Mr 53,000 (IEP of 6.2) and the other with an M r of 45,000 (IEP of 8.7-7.8) are increased in the liver following glucocorticoid administration

  19. Hippocampal damage and memory impairment in congenital cyanotic heart disease.

    Science.gov (United States)

    Muñoz-López, Mónica; Hoskote, Aparna; Chadwick, Martin J; Dzieciol, Anna M; Gadian, David G; Chong, Kling; Banks, Tina; de Haan, Michelle; Baldeweg, Torsten; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-04-01

    Neonatal hypoxia can lead to hippocampal atrophy, which can lead, in turn, to memory impairment. To test the generalizability of this causal sequence, we examined a cohort of 41 children aged 8-16, who, having received the arterial switch operation to correct for transposition of the great arteries, had sustained significant neonatal cyanosis but were otherwise neurodevelopmentally normal. As predicted, the cohort had significant bilateral reduction of hippocampal volumes relative to the volumes of 64 normal controls. They also had significant, yet selective, impairment of episodic memory as measured by standard tests of memory, despite relatively normal levels of intelligence, academic attainment, and verbal fluency. Across the cohort, degree of memory impairment was correlated with degree of hippocampal atrophy suggesting that even as early as neonatal life no other structure can fully compensate for hippocampal injury and its special role in serving episodic long term memory. © 2017 Wiley Periodicals, Inc. © 2017 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  20. Extent of hippocampal atrophy predicts degree of deficit in recall.

    Science.gov (United States)

    Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-13

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.

  1. DEVELOPMENTAL HYPOTHYROIDISM IMPAIRS HIPPOCAMPAL LEARNING AND SYNAPTIC TRANSMISSION IN VIVO.

    Science.gov (United States)

    A number of environmental chemicals have been reported to alter thyroid hormone (TH) function. It is well established that severe hypothyroidism during critical periods of brain development leads to alterations in hippocampal structure and learning deficits, yet evaluation of ...

  2. Comparative metabolism of honokiol in mouse, rat, dog, monkey, and human hepatocytes.

    Science.gov (United States)

    Jeong, Hyeon-Uk; Kim, Ju-Hyun; Kong, Tae Yeon; Choi, Won Gu; Lee, Hye Suk

    2016-04-01

    Honokiol has antitumor, antioxidative, anti-inflammatory, and antithrombotic effects. Here we aimed to identify the metabolic profile of honokiol in mouse, rat, dog, monkey, and human hepatocytes and to characterize the enzymes responsible for the glucuronidation and sulfation of honokiol. Honokiol had a high hepatic extraction ratio in all five species, indicating that it was extensively metabolized. A total of 32 metabolites, including 17 common and 15 different metabolites, produced via glucuronidation, sulfation, and oxidation of honokiol allyl groups were tentatively identified using liquid chromatography-high resolution quadrupole Orbitrap mass spectrometry. Glucuronidation of honokiol to M8 (honokiol-4-glucuronide) and M9 (honokiol-2'-glucuronide) was the predominant metabolic pathway in hepatocytes of all five species; however, interspecies differences between 4- and 2'-glucuronidation of honokiol were observed. UGT1A1, 1A8, 1A9, 2B15, and 2B17 played major roles in M8 formation, whereas UGT1A7 and 1A9 played major roles in M9 formation. Human cDNA-expressed SULT1C4 played a major role in M10 formation (honokiol-2'-sulfate), whereas SULT1A1*1, 1A1*2, and 1A2 played major roles in M11 formation (honokiol-4-sulfate). In conclusion, honokiol metabolism showed interspecies differences.

  3. Rhesus monkeys see who they hear: spontaneous cross-modal memory for familiar conspecifics.

    Directory of Open Access Journals (Sweden)

    Ikuma Adachi

    Full Text Available Rhesus monkeys gather much of their knowledge of the social world through visual input and may preferentially represent this knowledge in the visual modality. Recognition of familiar faces is clearly advantageous, and the flexibility and utility of primate social memory would be greatly enhanced if visual memories could be accessed cross-modally either by visual or auditory stimulation. Such cross-modal access to visual memory would facilitate flexible retrieval of the knowledge necessary for adaptive social behavior. We tested whether rhesus monkeys have cross-modal access to visual memory for familiar conspecifics using a delayed matching-to-sample procedure. Monkeys learned visual matching of video clips of familiar individuals to photographs of those individuals, and generalized performance to novel videos. In crossmodal probe trials, coo-calls were played during the memory interval. The calls were either from the monkey just seen in the sample video clip or from a different familiar monkey. Even though the monkeys were trained exclusively in visual matching, the calls influenced choice by causing an increase in the proportion of errors to the picture of the monkey whose voice was heard on incongruent trials. This result demonstrates spontaneous cross-modal recognition. It also shows that viewing videos of familiar monkeys activates naturally formed memories of real monkeys, validating the use of video stimuli in studies of social cognition in monkeys.

  4. Erythropoietin enhances hippocampal response during memory retrieval in humans

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla; O'Sullivan, Ursula; Harmer, Catherine J

    2007-01-01

    Although erythropoietin (Epo) is best known for its effects on erythropoiesis, recent evidence suggests that it also has neurotrophic and neuroprotective properties in animal models of hippocampal function. Such an action in humans would make it an intriguing novel compound for the treatment....... This is consistent with upregulation of hippocampal BDNF and neurotrophic actions found in animals and highlights Epo as a promising candidate for treatment of psychiatric disorders....

  5. Comparison with hippocampal atrophy and hypoperfusion in Alzheimer's disease

    International Nuclear Information System (INIS)

    Chung, YA; Kim, SH; Chung, SK; Juh, RH; Sohn, HS; Suh, TS; Choe, BY

    2004-01-01

    Objective: Hypoperfusion and hippocampal atropy of the medial temporal lobe are peculiarity of Alzheimer's disease (AD). The manual ROI (region of interest) technique for hippocampal volume estimation is specific and sensitive for the detection of hippocampal atrophy. In patients with AD reported a significant correlation between hippocampal volume and hypoperfusion. This study investigated correlations between atrophy distinct medial temporal lobe structure and hypoperfusion in hippocampal volumetry. Methods: The hippocampi were individually outlined on Tl-weighted volumetry MRI and calculated with MATLAB in 12 patients with AD. All volume measurements were performed by a segmentation technique with a combination of tracing and thresholding. The volume of a given structure in each slice was obtained by automatically counting the number of pixels within the segmented regions and multiplying the number by a voxel size. In order to permit direct regional comparisons, both of each patient's Tc- 99m ECD SPECT was then registered to the patient's MRI. Delineation continued anteriorly in each contiguous slice reaching the head of the hippocampus, which was distinguished from the overlying amygdala by the presence of the alveus or uncal recess. The right hippocampus (RH) was measured first, followed by the left hippocampus (LH). The accuracy of registration was investigated in a validation study with developed brain phantom. Results:The mean total intracranial volume of the AD was significantly smaller volume (1492.9 cm 3 ) and hypo perfused than those in normal subjects. The mean hippocampal volumes were 2.01 cm 3 and l.99 cm 3 for the RH and LH. The correlations between volume and hypoperfusion in the affected hippocampi were found to be significant; especially the medial temporal lobe is markedly hypo perfused. Conclusion: Volumetry is the most sensitive tool for the detection of hippocampal abnormality in AD, and significant correlation between asymmetry in

  6. Damage of hippocampal neurons in rats with chronic alcoholism

    OpenAIRE

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons i...

  7. The effects of hormones and physical exercise on hippocampal structural plasticity.

    Science.gov (United States)

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Correlation of pharmacodynamic activity, pharmacokinetics, and anti-product antibody responses to anti-IL-21R antibody therapeutics following IV administration to cynomolgus monkeys

    Directory of Open Access Journals (Sweden)

    Spaulding Vikki

    2010-04-01

    Full Text Available Abstract Background Anti-IL-21R antibodies are potential therapeutics for the treatment of autoimmune diseases. This study evaluated correlations between the pharmacodynamic (PD activity, pharmacokinetics, and anti-product antibody responses of human anti-IL-21R antibodies Ab-01 and Ab-02 following IV administration to cynomolgus monkeys. Methods The PD assay was based on the ability of recombinant human IL-21 (rhuIL-21 to induce expression of the IL-2RA gene in cynomolgus monkey whole blood samples ex vivo. Monkeys screened for responsiveness to rhuIL-21 stimulation using the PD assay, were given a single 10 mg/kg IV dosage of Ab-01, Ab-02, or a control antibody (3/group, and blood samples were evaluated for PD activity (inhibition of IL-2RA expression for up to 148 days. Anti-IL-21R antibody concentrations and anti-product antibody responses were measured in serum using immunoassays and flow cytometry. Results Following IV administration of Ab-01 and Ab-02 to cynomolgus monkeys, PD activity was observed as early as 5 minutes (first time point sampled. This PD activity had good correlation with the serum concentrations and anti-product antibody responses throughout the study. The mean terminal half-life (t1/2 was ~10.6 and 2.3 days for Ab-01 and Ab-02, respectively. PD activity was lost at ~5-13 weeks for Ab-01 and at ~2 weeks for Ab-02, when serum concentrations were relatively low. The estimated minimum concentrations needed to maintain PD activity were ~4-6 nM for Ab-01 and ~2.5 nM for Ab-02, and were consistent with the respective KD values for binding to human IL-21R. For Ab-01, there was noticeable inter-animal variability in t1/2 values (~6-14 days and the resulting PD profiles, which correlated with the onset of anti-product antibody formation. While all three Ab-01-dosed animals were positive for anti-Ab-01 antibodies, only one monkey (with the shortest t1/2 and the earliest loss of PD activity had evidence of neutralizing anti-Ab-01

  9. Hippocampal lesions, contextual retrieval, and autoshaping in pigeons.

    Science.gov (United States)

    Richmond, Jenny; Colombo, Michael

    2002-02-22

    Both pigeons and rats with damage to the hippocampus are slow to acquire an autoshaped response and emit fewer overall responses than control animals. Experiment 1 explored the possibility that the autoshaping deficit was due to an impairment in contextual retrieval. Pigeons were trained for 14 days on an autoshaping task in which a red stimulus was followed by reinforcement in context A, and a green stimulus was followed by reinforcement in context B. On day 15, the subjects were given a context test in which the red and green stimuli were presented simultaneously in context A and then later in context B. Both control and hippocampal animals showed context specificity, that is, they responded more to the red stimulus in context A and to the green stimulus in context B. In Experiment 2 we video-recorded the control and hippocampal animals performing the autoshaping task. Hippocampal animals tended to miss-peck the key more often than control animals. In addition, the number of missed pecks increased across days for hippocampal animals but not for control animals, suggesting that while the control animals increased their pecking accuracy, the hippocampal animals actually decreased their pecking accuracy. Our findings suggest that impairments in moving through space may underlie the hippocampal autoshaping deficit.

  10. Preliminary evidence of hippocampal damage in chronic users of ecstasy.

    Science.gov (United States)

    den Hollander, Bjørnar; Schouw, Marieke; Groot, Paul; Huisman, Henk; Caan, Matthan; Barkhof, Frederik; Reneman, Liesbeth

    2012-01-01

    Various studies have shown that ecstasy (3,4-methylenedioxymethamphetamine) users display significant memory impairments, whereas their performance on other cognitive tests is generally normal. The hippocampus plays an essential role in short-term memory. There are, however, no structural human data on the effects of ecstasy on the hippocampus. The objective of this study was to investigate whether the hippocampal volume of chronic ecstasy users is reduced when compared with healthy polydrug-using controls, as an indicator of hippocampal damage. The hippocampus was manually outlined in volumetric MRI scans in 10 male ecstasy users (mean age 25.4 years) and seven healthy age- and gender-matched control subjects (21.3 years). Other than the use of ecstasy, there were no statistically significant differences between both groups in exposure to other drugs of abuse and alcohol. The ecstasy users were on average drug-free for more than 2 months and had used on average 281 tablets over the past six and a half years. The hippocampal volume in the ecstasy using group was on average 10.5% smaller than the hippocampal volume in the control group (p=0.032). These data provide preliminary evidence that ecstasy users may be prone to incurring hippocampal damage, in line with previous reports of acute hippocampal sclerosis and subsequent atrophy in chronic users of this drug.

  11. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  12. Influence of dietary zinc on convulsive seizures and hippocampal NADPH diaphorase-positive neurons in seizure susceptible EL mouse.

    Science.gov (United States)

    Nagatomo, I; Akasaki, Y; Uchida, M; Kuchiiwa, S; Nakagawa, S; Takigawa, M

    1998-04-13

    Adequate, high and deficient dietary levels of zinc (Zn) were compared in seizure-susceptible EL mice with respect to convulsions and to nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase-positive hippocampal neurons. Diaphorase positivity is associated with nitric oxide (NO) production. Convulsive seizures in the EL mice given the various diets did not differ over 1-4 weeks, but convulsions in EL mice given the Zn-deficient diet for 4 weeks were more effectively suppressed by injection of zonisamide (ZNS) (75 mg/kg intraperitoneally) than in mice receiving high- or adequate-Zn diet for the same period. Numbers of NADPH diaphorase-positive neurons in the CA1/CA2 region of the hippocampal formation were significantly higher in mice given the Zn-deficient diet for 4 weeks than in mice fed adequate Zn. Mice receiving the high-Zn diet for the same period had significantly fewer NADPH diaphorase-positive neurons in the subiculum than mice with adequate Zn. These results suggest that Zn deficiency inhibits convulsive seizures of EL mice, and that dietary Zn influences numbers of NO producing neurons in the hippocampal formation. Copyright 1998 Elsevier Science B.V.

  13. Placental Transport of Zidovudine in the Rhesus Monkey

    Science.gov (United States)

    King, Thomas S.; Henderson, George I.; Schenker, Steven; Schenken, Robert S.

    1993-01-01

    Objective: This study was undertaken to characterize the pharmacokinetics of zidovudine (ZDV) and ZDV-glucuronide (ZDVG) in the material and :fetal circulations of the rhesus monkey. Methods: Cannulas were placed in the maternal external jugular and the fetal internal jugular and carotid artery in 8 pregnant monkeys at .120–130 days gestation. ZDV (3.5 mg/kg) was administered to 5 monkeys and ZDVG (3.5 mg/kg) to 3 monkeys as single intravenous bolus infusions through the maternal catheter. Maternal and fetal blood , samples were collected every 20 min for the first 2 h and then every hour for the next 4 h. Maternal and fetal concentrations of ZDV and ZDVG were determined using high, performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Results: In monkeys who received ZDV, the terminal half-life (T1/2) for ZDV was 37±15 and 33 ± 13 min in the maternal and fetal compartments, respectively. The apparent T1/2 for maternal ZDVG was 124 ± 44 and 142 ± 50 min in the maternal and fetal compartments, respectively. Peak levels of ZDV and ZDVG in the fetal compartment were reached 40 min after injection. The mean fetal/maternal concentration ratios for ZDV and ZDVG ranged from 0.20 ± 0.20 at 20 min to a maximum of 0.74 ± 1.0 at 120 min and from 0.28 ± 0.08 at 20 min to 1.4 ± 1.3 at 180 min, respectively. In monkeys who received ZDVG, the T1/2 for ZDWG in the maternal and fetal compartments was 47 ± 26 and 119 ± 164 min, respectively. ZDVG reached its peak in the fetal compartment at 60 min post-injection. The fetal/maternal rafio ranged from 0.08 ± 0.11 at 20 min to 4.2 ± 4.2 at 180 min post-injection. Conclusions: These data demonstrate that 1) ZDV and ZDVG rapidly cross the placenta to the fetal compartment, 2) ZDV crosses more rapidly than ZDVG, and 3) some metabolism of ZDV to ZDVG occurs in the fetal compartment. PMID:18475334

  14. Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD.

    Science.gov (United States)

    Moorthi, P; Premkumar, P; Priyanka, R; Jayachandran, K S; Anusuyadevi, M

    2015-08-20

    Among vertebrates hippocampus forms the major component of the brain in consolidating information from short-term memory to long-term memory. Aging is considered as the major risk factor for memory impairment in sporadic Alzheimer's disease (SAD) like pathology. Present study thus aims at investigating whether age-specific degeneration of neuronal-circuits in hippocampal formation (neural-layout of Subiculum-hippocampus proper-dentate gyrus (DG)-entorhinal cortex (EC)) results in cognitive impairment. Furthermore, the neuroprotective effect of Resveratrol (RSV) was attempted to study in the formation of hippocampal neuronal-circuits. Radial-Arm-Maze was conducted to evaluate hippocampal-dependent spatial and learning memory in control and experimental rats. Nissl staining of frontal cortex (FC), subiculum, hippocampal-proper (CA1→CA2→CA3→CA4), DG, amygdala, cerebellum, thalamus, hypothalamus, layers of temporal and parietal lobe of the neocortex were examined for pathological changes in young and aged wistar rats, with and without RSV. Hippocampal trisynaptic circuit (EC layerII→DG→CA3→CA1) forming new memory and monosynaptic circuit (EC→CA1) that strengthen old memories were found disturbed in aged rats. Loss of Granular neuron observed in DG and polymorphic cells of CA4 can lead to decreased mossy fibers disturbing neural-transmission (CA4→CA3) in perforant pathway. Further, intensity of nissl granules (stratum lacunosum moleculare (SLM)-SR-SO) of CA3 pyramidal neurons was decreased, disturbing the communication in schaffer collaterals (CA3-CA1) during aging. We also noticed disarranged neuronal cell layer in Subiculum (presubiculum (PrS)-parasubiculum (PaS)), interfering output from hippocampus to prefrontal cortex (PFC), EC, hypothalamus, and amygdala that may result in interruption of thought processes. We conclude from our observations that poor memory performance of aged rats as evidenced through radial arm maze (RAM) analysis was due to the

  15. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  16. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  17. Human-Rhesus Monkey conflict at Rampur Village under Monohardi Upazila in Narsingdi District of Bangladesh

    Directory of Open Access Journals (Sweden)

    M.F. Ahsan

    2014-06-01

    Full Text Available Human-Rhesus monkey conflicts were recorded at Rampur Village under Khidirpur Union Parishad of Monohardi upazila under Narsingdi District in Bangladesh from April to September 2012. There were three groups of Rhesus monkeys living in the area. The focal study group comprised 26 individuals (4 adult males, 6 adult females, 10 juveniles and 6 infants. The monkeys consumed parts of 10 plant species. From the questionnaire survey, it was found that the greatest damage caused by monkeys was on betel leaf vines and the least damage on vegetables. Eighty percent respondents opted to conserve the monkeys and 20% opined status quo. Some restricted areas (especially khas lands may be identified and planted with some fruit trees for survival of monkeys and for reducing conflicts with humans.

  18. Captive spider monkeys (Ateles geoffroyi) arm-raise to solicit allo-grooming.

    Science.gov (United States)

    Scheel, Matthew H; Edwards, Dori

    2012-03-01

    Old World monkeys solicit allo-grooming from conspecifics. However, there are relatively few studies of allo-grooming among spider monkeys, and descriptions of allo-grooming solicitation among spider monkeys are anecdotal. In this study, eighty-one hours of video, shot over eight weeks, captured 271 allo-grooming bouts among small groups of captive spider monkeys. Six of eight monkeys made heretofore unreported arm-raises that solicited higher than normal rates of allo-grooming. Allo-grooming bout durations following arm-raises also tended to be longer than bouts not preceded by arm-raises. The efficacy of the arm-raise at soliciting allo-grooming suggests spider monkeys are capable of intentional communication. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Phenobarbital treatments lower DDT body burden in rhesus monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, P.W.; Clark, C.R.; Gee, S.J.; Krieger, R.I.

    1981-01-01

    Decreased DDT, DDD, DDE in blood and DDA in urine followed phenobarbital treatments (10 mg/kg/day, 11 days, intramuscular (im)) in three male rhesus monkeys (Macaca mulatta). Animals were fed DDT diets containing up to 500 ppm DDT during a 3-year period. Induction of liver monooxygenases was confirmed by reduced in vivo antipyrine plasma half-life and increased in vitro oxidation rates of dihydroisodrin, p-nitroanisole and benz(alpha)pyrene by homogenates of liver obtained from closed needle biopsy. Chlorohydrocarbon blood levels significantly decreased during the induction period (days 1-11). Concentrations on day 28 were at or below pre-DDT exposure levels. Urine DDA gradually decreased in all monkeys from days 16 to 28.

  20. Metabolic alkalosis during immobilization in monkeys (M. nemestrina)

    Science.gov (United States)

    Young, D. R.; Yeh, I.; Swenson, R. S.

    1983-01-01

    The systemic and renal acid-base response of monkeys during ten weeks of immobilization was studied. By three weeks of immobilization, arterial pH and bicarbonate concentrations were elevated (chronic metabolic alkalosis). Net urinary acid excretion increased in immobilized animals. Urinary bicarbonate excretion decreased during the first three weeks of immobilization, and then returned to control levels. Sustained increases in urinary ammonium excretion were seen throughout the time duration of immobilization. Neither potassium depletion nor hypokalemia was observed. Most parameters returned promptly to the normal range during the first week of recovery. Factors tentatively associated with changes in acid-base status of monkeys include contraction of extracellular fluid volume, retention of bicarbonate, increased acid excretion, and possible participation of extrarenal buffers.

  1. Selection and Pairing of ’Normal’ Rhesus Monkeys (Macaca mulatta) for Research.

    Science.gov (United States)

    1978-11-08

    week intervals. Fecal bacteriological cultures did not detect any Salmonella or Shigella car- riers in the population. The male monkeys ranged in age...1Special Roert 78-6 LVEL•$ SELECTION AND PAIRING OF "NORMAL" RHESUS MONKEYS (Macaca mulatto) FOR RESEARC Matthew J. Kessler, James L. Kupper, James D...public release; distribution unlimited. SELECTION AND PAIRING OF "NORMAL" RHESUS MONKEYS (Macaca mulatta) FOR RESEARCH Matthew J. Kessler, James L

  2. Streptococcus oralis cerebral abscess following monkey bite in a 2-month-old infant.

    Science.gov (United States)

    Thiagarajan, Srinivasan; Krishnamurthy, Sriram; Raghavan, Renitha; Mahadevan, Subramanian; Madhugiri, Venkatesh S; Sistla, Sujatha

    2016-05-01

    Although cerebral abscesses caused by animal bites have been reported, they are extremely rare in infants and have not been described following monkey bite. A 55-day-old male infant presented with a multi-loculated Streptococcus oralis cerebral abscess following a monkey bite on the scalp. There was a clinical response to antibiotic therapy and repeated surgical aspiration followed by a ventriculoperitoneal shunt. This is the first report of a patient with a brain abscess following a monkey bite.

  3. Pathogenesis of Rift Valley Fever in Rhesus Monkeys: Role of Interferon Response

    Science.gov (United States)

    1990-01-01

    hemorrhagic fever characterized by epistaxis, petechial to purpuric cutaneous lesions, anorexia, and vomiting prior to death. The 14 remaining monkeys survived...DMI, FILE Copy Arch Virol (1990) 110: 195-212 Amhivesirology ( by Springer-Verlag 1990 00 N Pathogenesis of Rift Valley fever in rhesus monkeys: (NI...inoculated intravenously with Rift Valley fever (RVF) virus presented clinical disease syndromes similar to human cases of RVF. All 17 infected monkeys

  4. Habitat quality of the woolly spider monkey (Brachyteles hypoxanthus).

    Science.gov (United States)

    da Silva Júnior, Wilson Marcelo; Alves Meira-Neto, João Augusto; da Silva Carmo, Flávia Maria; Rodrigues de Melo, Fabiano; Santana Moreira, Leandro; Ferreira Barbosa, Elaine; Dias, Luiz Gustavo; da Silva Peres, Carlos Augusto

    2009-01-01

    This study examines how habitat structure affects the home range use of a group of Brachyteles hypoxanthus in the Brigadeiro State Park, Brazil. It has been reported that most of the annual feeding time of woolly spider monkeys is spent eating leaves, but they prefer fruits when available. We hypothesise that the protein-to-fibre ratio (PF; best descriptor of habitat quality for folivorous primates) is a better descriptor of habitat quality and abundance for these primates than the structural attributes of forests (basal area is the best descriptor of habitat quality for frugivorous primates of Africa and Asia). We evaluated plant community structure, successional status, and PF of leaf samples from the dominant tree populations, both within the core and from a non-core area of the home range of our study group. Forest structure was a combination of stem density and basal area of dominant tree populations. The core area had larger trees, a higher forest basal area, and higher stem density than the non-core area. Mean PF did not differ significantly between these sites, although PF was influenced by differences in tree regeneration guilds. Large-bodied monkeys could be favoured by later successional stages of forests because larger trees and denser stems prevent the need for a higher expenditure of energy for locomotion as a consequence of vertical travel when the crowns of trees are disconnected in early successional forests. Forest structure variables (such as basal area of trees) driven by succession influence woolly spider monkey abundance in a fashion similar to frugivorous monkeys of Asia and Africa, and could explain marked differences in ranging behaviour and home range use by B. hypoxanthus. Copyright 2009 S. Karger AG, Basel.

  5. A neural substrate for object permanence in monkey inferotemporal cortex

    OpenAIRE

    Puneeth, NC; Arun, SP

    2016-01-01

    We take it for granted that objects continue to exist after being occluded. This knowledge ? known as object permanence ? is present even in childhood, but its neural basis is not fully understood. Here, we show that monkey inferior temporal (IT) neurons carry potential signals of object permanence even in animals that received no explicit behavioral training. We compared two conditions with identical visual stimulation: the same object emerged from behind an occluder as expected following it...

  6. Event-based proactive interference in rhesus monkeys.

    Science.gov (United States)

    Devkar, Deepna T; Wright, Anthony A

    2016-10-01

    Three rhesus monkeys (Macaca mulatta) were tested in a same/different memory task for proactive interference (PI) from prior trials. PI occurs when a previous sample stimulus appears as a test stimulus on a later trial, does not match the current sample stimulus, and the wrong response "same" is made. Trial-unique pictures (scenes, objects, animals, etc.) were used on most trials, except on trials where the test stimulus matched potentially interfering sample stimulus from a prior trial (1, 2, 4, 8, or 16 trials prior). Greater interference occurred when fewer trials separated interference and test. PI functions showed a continuum of interference. Delays between sample and test stimuli and intertrial intervals were manipulated to test how PI might vary as a function of elapsed time. Contrary to a similar study with pigeons, these time manipulations had no discernable effect on the monkey's PI, as shown by compete overlap of PI functions with no statistical differences or interactions. These results suggested that interference was strictly based upon the number of intervening events (trials with other pictures) without regard to elapsed time. The monkeys' apparent event-based interference was further supported by retesting with a novel set of 1,024 pictures. PI from novel pictures 1 or 2 trials prior was greater than from familiar pictures, a familiar set of 1,024 pictures. Moreover, when potentially interfering novel stimuli were 16 trials prior, performance accuracy was actually greater than accuracy on baseline trials (no interference), suggesting that remembering stimuli from 16 trials prior was a cue that this stimulus was not the sample stimulus on the current trial-a somewhat surprising conclusion particularly given monkeys.

  7. Pharmacokinetics of bisphenol A in neonatal and adult rhesus monkeys

    International Nuclear Information System (INIS)

    Doerge, Daniel R.; Twaddle, Nathan C.; Woodling, Kellie A.; Fisher, Jeffrey W.

    2010-01-01

    Bisphenol A (BPA) is a high-production volume industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 is controversial because of the potential for endocrine disruption, particularly during perinatal development, as suggested by in vitro, experimental animal, and epidemiological studies. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal rhesus monkeys by oral (PND 5, 35, 70) and intravenous injection (PND 77) routes using d6-BPA to avoid sample contamination. The concentration-time profiles observed in adult monkeys following oral administration of 100 μg/kg bw were remarkably similar to those previously reported in human volunteers given a similar dose; moreover, minimal pharmacokinetic differences were observed between neonatal and adult monkeys for the receptor-active aglycone form of BPA. Circulating concentrations of BPA aglycone were quite low following oral administration (< 1% of total), which reflects the redundancy of active UDP-glucuronosyl transferase isoforms in both gut and liver. No age-related changes were seen in internal exposure metrics for aglycone BPA in monkeys, a result clearly different from developing rats where significant inverse age-related changes, based on immaturity of Phase II metabolism and renal excretion, were recently reported. These observations imply that any toxicological effect observed in rats from early postnatal exposures to BPA could over-predict those possible in primates of the same age, based on significantly higher internal exposures and overall immaturity at birth.

  8. Monkey alcohol tissue research resource: banking tissues for alcohol research.

    Science.gov (United States)

    Daunais, James B; Davenport, April T; Helms, Christa M; Gonzales, Steven W; Hemby, Scott E; Friedman, David P; Farro, Jonathan P; Baker, Erich J; Grant, Kathleen A

    2014-07-01

    An estimated 18 million adults in the United States meet the clinical criteria for diagnosis of alcohol abuse or alcoholism, a disorder ranked as the third leading cause of preventable death. In addition to brain pathology, heavy alcohol consumption is comorbid with damage to major organs including heart, lungs, liver, pancreas, and kidneys. Much of what is known about risk for and consequences of heavy consumption derive from rodent or retrospective human studies. The neurobiological effects of chronic intake in rodent studies may not easily translate to humans due to key differences in brain structure and organization between species, including a lack of higher-order cognitive functions, and differences in underlying prefrontal cortical neural structures that characterize the primate brain. Further, rodents do not voluntarily consume large quantities of ethanol (EtOH) and they metabolize it more rapidly than primates. The basis of the Monkey Alcohol Tissue Research Resource (MATRR) is that nonhuman primates, specifically monkeys, show a range of drinking excessive amounts of alcohol (>3.0 g/kg or a 12 drink equivalent per day) over long periods of time (12 to 30 months) with concomitant pathological changes in endocrine, hepatic, and central nervous system (CNS) processes. The patterns and range of alcohol intake that monkeys voluntarily consume parallel what is observed in humans with alcohol use disorders and the longitudinal experimental design spans stages of drinking from the EtOH-naïve state to early exposure through chronic abuse. Age- and sex-matched control animals self-administer an isocaloric solution under identical operant procedures. The MATRR is a unique postmortem tissue bank that provides CNS and peripheral tissues, and associated bioinformatics from monkeys that self-administer EtOH using a standardized experimental paradigm to the broader alcohol research community. This resource provides a translational platform from which we can better

  9. Autoprocessing of Mason-Pfizer monkey virus protease

    Czech Academy of Sciences Publication Activity Database

    Bauerová, Helena; Rumlová, Michaela; Hunter, E.; Ruml, T.; Pichová, Iva

    2001-01-01

    Roč. 77, č. 2 (2001), s. 131-133 ISSN 0168-1702 R&D Projects: GA ČR GA203/00/1241; GA AV ČR IAA4055904 Grant - others:Fogarty International Award(US) TW00050 Institutional research plan: CEZ:AV0Z4055905 Keywords : Mason-Pfizer monkey virus Subject RIV: CE - Biochemistry Impact factor: 1.806, year: 2001

  10. Fast optical signal not detected in awake behaving monkeys.

    Science.gov (United States)

    Radhakrishnan, Harsha; Vanduffel, Wim; Deng, Hong Ping; Ekstrom, Leeland; Boas, David A; Franceschini, Maria Angela

    2009-04-01

    While the ability of near-infrared spectroscopy (NIRS) to measure cerebral hemodynamic evoked responses (slow optical signal) is well established, its ability to measure non-invasively the 'fast optical signal' is still controversial. Here, we aim to determine the feasibility of performing NIRS measurements of the 'fast optical signal' or Event-Related Optical Signals (EROS) under optimal experimental conditions in awake behaving macaque monkeys. These monkeys were implanted with a 'recording well' to expose the dura above the primary visual cortex (V1). A custom-made optical probe was inserted and fixed into the well. The close proximity of the probe to the brain maximized the sensitivity to changes in optical properties in the cortex. Motion artifacts were minimized by physical restraint of the head. Full-field contrast-reversing checkerboard stimuli were presented to monkeys trained to perform a visual fixation task. In separate sessions, two NIRS systems (CW4 and ISS FD oximeter), which previously showed the ability to measure the fast signal in human, were used. In some sessions EEG was acquired simultaneously with the optical signal. The increased sensitivity to cortical optical changes with our experimental setup was quantified with 3D Monte Carlo simulations on a segmented MRI monkey head. Averages of thousands of stimuli in the same animal, or grand averages across the two animals and across repeated sessions, did not lead to detection of the fast optical signal using either amplitude or phase of the optical signal. Hemodynamic responses and visual evoked potentials were instead always detected with single trials or averages of a few stimuli. Based on these negative results, despite the optimal experimental conditions, we doubt the usefulness of non-invasive fast optical signal measurements with NIRS.

  11. Role of adult hippocampal neurogenesis in stress resilience

    Directory of Open Access Journals (Sweden)

    Brunno R. Levone

    2015-01-01

    Full Text Available There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders.

  12. Longitudinal study of hippocampal volumes in heavy cannabis users.

    Science.gov (United States)

    Koenders, L; Lorenzetti, V; de Haan, L; Suo, C; Vingerhoets, Wam; van den Brink, W; Wiers, R W; Meijer, C J; Machielsen, Mwj; Goudriaan, A E; Veltman, D J; Yücel, M; Cousijn, J

    2017-08-01

    Cannabis exposure, particularly heavy cannabis use, has been associated with neuroanatomical alterations in regions rich with cannabinoid receptors such as the hippocampus in some but not in other (mainly cross-sectional) studies. However, it remains unclear whether continued heavy cannabis use alters hippocampal volume, and whether an earlier age of onset and/or a higher dosage exacerbate these changes. Twenty heavy cannabis users (mean age 21 years, range 18-24 years) and 23 matched non-cannabis using healthy controls were submitted to a comprehensive psychological assessment and magnetic resonance imaging scan at baseline and at follow-up (average of 39 months post-baseline; standard deviation=2.4). Cannabis users started smoking around 16 years and smoked on average five days per week. A novel aspect of the current study is that hippocampal volume estimates were obtained from manual tracing the hippocampus on T1-weighted anatomical magnetic resonance imaging scans, using a previously validated protocol. Compared to controls, cannabis users did not show hippocampal volume alterations at either baseline or follow-up. Hippocampal volumes increased over time in both cannabis users and controls, following similar trajectories of increase. Cannabis dose and age of onset of cannabis use did not affect hippocampal volumes. Continued heavy cannabis use did not affect hippocampal neuroanatomical changes in early adulthood. This contrasts with prior evidence on alterations in this region in samples of older adult cannabis users. In young adults using cannabis at this level, cannabis use may not be heavy enough to affect hippocampal neuroanatomy.

  13. Associative reinstatement memory measures hippocampal function in Parkinson's Disease.

    Science.gov (United States)

    Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat

    2016-09-01

    In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD

  14. Cognitive performance of juvenile monkeys after chronic fluoxetine treatment.

    Science.gov (United States)

    Golub, Mari S; Hackett, Edward P; Hogrefe, Casey E; Leranth, Csaba; Elsworth, John D; Roth, Robert H

    2017-08-01

    Potential long term effects on brain development are a concern when drugs are used to treat depression and anxiety in childhood. In this study, male juvenile rhesus monkeys (three-four years of age) were dosed with fluoxetine or vehicle (N=16/group) for two years. Histomorphometric examination of cortical dendritic spines conducted after euthanasia at one year postdosing (N=8/group) suggested a trend toward greater dendritic spine synapse density in prefrontal cortex of the fluoxetine-treated monkeys. During dosing, subjects were trained for automated cognitive testing, and evaluated with a test of sustained attention. After dosing was discontinued, sustained attention, recognition memory and cognitive flexibility were evaluated. Sustained attention was affected by fluoxetine, both during and after dosing, as indexed by omission errors. Response accuracy was not affected by fluoxetine in post-dosing recognition memory and cognitive flexibility tests, but formerly fluoxetine-treated monkeys compared to vehicle controls had more missed trial initiations and choices during testing. Drug treatment also interacted with genetic and environmental variables: MAOA genotype (high- and low transcription rate polymorphisms) and testing location (upper or lower tier of cages). Altered development of top-down cortical regulation of effortful attention may be relevant to this pattern of cognitive test performance after juvenile fluoxetine treatment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Capuchin monkeys do not show human-like pricing effects

    Science.gov (United States)

    Catapano, Rhia; Buttrick, Nicholas; Widness, Jane; Goldstein, Robin; Santos, Laurie R.

    2014-01-01

    Recent work in judgment and decision-making has shown that a good's price can have irrational effects on people's preferences. People tend to prefer goods that cost more money and assume that such expensive goods will be more effective, even in cases where the price of the good is itself arbitrary. Although much work has documented the existence of these pricing effects, unfortunately little work has addressed where these price effects come from in the first place. Here we use a comparative approach to distinguish between different accounts of this bias and to explore the origins of these effects. Specifically, we test whether brown capuchin monkeys (Cebus apella) are also susceptible to pricing effects within the context of an experimentally trained token economy. Using a capuchin population previously trained in a token market, we explored whether monkeys used price as an indicator of value across four experiments. Although monkeys demonstrated an understanding of which goods had which prices (consistently shifting preferences to cheaper goods when prices were increased), we observed no evidence that such price information affected their valuation of different kinds of goods. These results suggest that human pricing effects may involve more sophisticated human-unique cognitive capacities, such as an understanding of market forces and signaling. PMID:25520677

  16. Capuchin monkeys do not show human-like pricing effects

    Directory of Open Access Journals (Sweden)

    Rhia eCatapano

    2014-12-01

    Full Text Available Recent work in judgment and decision-making has shown that a good’s price can have irrational effects on people’s preferences. People tend to prefer goods that cost more money and assume that such expensive goods will be more effective, even in cases where the price of the good is itself arbitrary. Although much work has documented the existence of these pricing effects, unfortunately little work has addressed where these price effects come from in the first place. Here we use a comparative approach to distinguish between different accounts of this bias and to explore the origins of these effects. Specifically, we test whether brown capuchin monkeys (Cebus apella are also susceptible to pricing effects within the context of an experimentally trained token economy. Using a capuchin population previously trained in a token market, we explored whether monkeys used price as an indicator of value across four experiments. Although monkeys demonstrated an understanding of which goods had which prices (consistently shifting preferences to cheaper goods when prices were increased, we observed no evidence that such price information affected their valuation of different kinds of goods. These results suggest that human price effects may involve more sophisticated human-unique cognitive capacities, such as an understanding of market forces and signaling.

  17. [Blood plasma volume dynamics in monkeys during immersion].

    Science.gov (United States)

    Krotov, V P; Burkovskaia, T E; Dotsenko, M A; Gordeev, Iu V; Nosovskiĭ, A M; Chel'naia, N A

    2004-01-01

    Dynamics of blood plasma volume (PV) was studied with indirect methods (hematocrit count, hemoglobin, total protein and high-molecular protein) during 9-d immersion of monkeys Macaca mulatta. The animals were donned in waterproof suits, motor restrained in space seat liners and immersed down to the xiphisternum. Two monkeys were immersed in the bath at one time. The suits were changed every day under ketamine (10 mg/kg of body mass). There were two groups with 12 animals in each. The first group was kept in the bath 3 days and the second--9 days. Prior to the experiment, the animals had been trained to stay in the seat liner put down into the dry bath. It was shown that already two days of exposure to the hydrostatic forces (approximately 15 mm Hg) and absence of negative pressure breathing reduced PV by 18-20% on the average in all animals. Subsequent PV dynamics was individual by character; however, PV deficit persisted during 4 days of immersion in the whole group. In this period, albumin filtration was increased significantly, whereas high-molecular protein filtration was increased to a less degree. During the remaining days in immersion PV regained normal values. Ten days of readaptation (reclined positioning of monkeys brought back into cage) raised VP beyond baseline values. This phenomenon can be attributed to the necessity to provide appropriate venous return and sufficient blood supply of organs and tissues following extension of blood vessels capacity.

  18. Prenatal methylmercury exposure affects spatial vision in adult monkeys

    International Nuclear Information System (INIS)

    Burbacher, Thomas M.; Grant, Kimberly S.; Mayfield, David B.; Gilbert, Steven G.; Rice, Deborah C.

    2005-01-01

    Decades of research have demonstrated that exposure to methylmercury (MeHg), a ubiquitous environmental pollutant, can have both early and long-term neurobehavioral consequences in exposed offspring. The present study assessed visual functioning in adult macaque monkeys (Macaca fascicularis) exposed in utero to 0, 50, 70, or 90 μg/kg/day of MeHg hydroxide. Twenty-one full-term, normal birth weight offspring (9 controls, 12 exposed) were tested at approximately 11-14.5 years of age on a visual contrast sensitivity task. A forced-choice tracking procedure was utilized with spatial frequencies of 1, 4, 10, and 20 cycles per degree of visual angle. On each test session, a single spatial frequency was presented across five levels of contrast, each differing by 3 dB. Methylmercury-exposed monkeys exhibited reduced contrast sensitivity thresholds, particularly at the higher spatial frequencies. The degree of visual impairment was not related to MeHg body burden or clearance and almost half of the exposed animals were unimpaired. The results from this study demonstrate that chronic in utero MeHg exposure, at subclinical levels, is associated with permanent adverse effects on spatial vision in adult monkeys

  19. De novo DNA methylation during monkey pre-implantation embryogenesis.

    Science.gov (United States)

    Gao, Fei; Niu, Yuyu; Sun, Yi Eve; Lu, Hanlin; Chen, Yongchang; Li, Siguang; Kang, Yu; Luo, Yuping; Si, Chenyang; Yu, Juehua; Li, Chang; Sun, Nianqin; Si, Wei; Wang, Hong; Ji, Weizhi; Tan, Tao

    2017-04-01

    Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis.

  20. Electrons at the monkey saddle: A multicritical Lifshitz point

    Science.gov (United States)

    Shtyk, A.; Goldstein, G.; Chamon, C.

    2017-01-01

    We consider two-dimensional interacting electrons at a monkey saddle with dispersion ∝px3-3 pxpy2 . Such a dispersion naturally arises at the multicritical Lifshitz point when three Van Hove saddles merge in an elliptical umbilic elementary catastrophe, which we show can be realized in biased bilayer graphene. A multicritical Lifshitz point of this kind can be identified by its signature Landau level behavior Em∝(Bm ) 3 /2 and related oscillations in thermodynamic and transport properties, such as de Haas-Van Alphen and Shubnikov-de Haas oscillations, whose period triples as the system crosses the singularity. We show, in the case of a single monkey saddle, that the noninteracting electron fixed point is unstable to interactions under the renormalization-group flow, developing either a superconducting instability or non-Fermi-liquid features. Biased bilayer graphene, where there are two non-nested monkey saddles at the K and K' points, exhibits an interplay of competing many-body instabilities, namely, s -wave superconductivity, ferromagnetism, and spin- and charge-density waves.

  1. Capuchin monkeys do not show human-like pricing effects.

    Science.gov (United States)

    Catapano, Rhia; Buttrick, Nicholas; Widness, Jane; Goldstein, Robin; Santos, Laurie R

    2014-01-01

    Recent work in judgment and decision-making has shown that a good's price can have irrational effects on people's preferences. People tend to prefer goods that cost more money and assume that such expensive goods will be more effective, even in cases where the price of the good is itself arbitrary. Although much work has documented the existence of these pricing effects, unfortunately little work has addressed where these price effects come from in the first place. Here we use a comparative approach to distinguish between different accounts of this bias and to explore the origins of these effects. Specifically, we test whether brown capuchin monkeys (Cebus apella) are also susceptible to pricing effects within the context of an experimentally trained token economy. Using a capuchin population previously trained in a token market, we explored whether monkeys used price as an indicator of value across four experiments. Although monkeys demonstrated an understanding of which goods had which prices (consistently shifting preferences to cheaper goods when prices were increased), we observed no evidence that such price information affected their valuation of different kinds of goods. These results suggest that human pricing effects may involve more sophisticated human-unique cognitive capacities, such as an understanding of market forces and signaling.

  2. Molecular characterization of Blastocystis isolates from children and rhesus monkeys in Kathmandu, Nepal.

    Science.gov (United States)

    Yoshikawa, Hisao; Wu, Zhiliang; Pandey, Kishor; Pandey, Basu Dev; Sherchand, Jeevan Bahadur; Yanagi, Tetsuo; Kanbara, Hiroji

    2009-03-23

    To investigate the possible transmission of Blastocystis organisms between local rhesus monkeys and children in Kathmandu, Nepal, we compared the subtype (ST) and sequence of Blastocystis isolates from children with gastrointestinal symptoms and local rhesus monkeys. Twenty and 10 Blastocystis isolates were established from 82 and 10 fecal samples obtained from children and monkeys, respectively. Subtype analysis with seven sequence-tagged site (STS) primers indicated that the prevalence of Blastocystis sp. ST1, ST2 and ST3 was 20%, 20% and 60% in the child isolates, respectively. In contrast to human isolates, ST3 was not found in monkey isolates and the prevalence of ST1 and ST2 was 50% and 70%, respectively, including three mixed STs1 and 2 and one isolate not amplified by any STS primers, respectively. Since Blastocystis sp. ST2 has been reported as the most dominant genotype in the survey of Blastocystis infection among the various monkey species, sequence comparison of the 150bp variable region of the small subunit rRNA (SSU rRNA) gene was conducted among ST2 isolates of humans and monkeys. Sequence alignment of 24 clones developed from ST2 isolates of 4 humans and 4 monkeys showed three distinct subgroups, defined as ST2A, ST2B and ST2C. These three subgroups were shared between the child and monkey isolates. These results suggest that the local rhesus monkeys are a possible source of Blastocystis sp. ST2 infection of humans in Kathmandu.

  3. A preliminary report on oral fat tolerance test in rhesus monkeys

    OpenAIRE

    Wu, Di; Liu, Qingsu; Wei, Shiyuan; Zhang, Yu Alex; Yue, Feng

    2014-01-01

    Background Oral fat tolerance test (OFTT) has been widely used to assess the postprandial lipemia in human beings, but there is few studies concerning OFTT in nonhuman primates. This study is designed to explore the feasibility of OFTT in rhesus monkeys. Methods In a cross-over study, a total of 8 adult female rhesus monkeys were fed with normal monkey diet (NND), high sugar high fat diet (HHD), and extremely high fat diet (EHD), respectively. Each monkey consumed NND, HHD and EHD respectivel...

  4. Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae).

    Science.gov (United States)

    Schelegle, E S; Gershwin, L J; Miller, L A; Fanucchi, M V; Van Winkle, L S; Gerriets, J P; Walby, W F; Omlor, A M; Buckpitt, A R; Tarkington, B K; Wong, V J; Joad, J P; Pinkerton, K B; Wu, R; Evans, M J; Hyde, D M; Plopper, C G

    2001-01-01

    To establish whether allergic asthma could be induced experimentally in a nonhuman primate using a common human allergen, three female rhesus monkeys (Macaca mulatta) were sensitized with house dust mite (Dermatophagoides farinae) allergen (HDMA) by subcutaneous injection, followed by four intranasal sensitizations, and exposure to allergen aerosol 3 hours per day, 3 days per week for up to 13 weeks. Before aerosol challenge, all three monkeys skin-tested positive for HDMA. During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment. Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys. After aerosol challenge, serum levels of histamine were elevated in sensitized monkeys. Sensitized monkeys exhibited increased levels of HDMA-specific IgE in serum, numbers of eosinophils and exfoliated cells within lavage, and elevated CD25 expression on circulating CD4(+) lymphocytes. Intrapulmonary bronchi of sensitized monkeys had focal mucus cell hyperplasia, interstitial infiltrates of eosinophils, and thickening of the basement membrane zone. We conclude that a model of allergic asthma can be induced in rhesus monkeys using a protocol consisting of subcutaneous injection, intranasal instillation, and aerosol challenge with HDMA.

  5. Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Daniela Camargos Costa

    2014-08-01

    Full Text Available Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4% and in wild Alouatta clamitans monkeys (n = 20, 35% from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease.

  6. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study

    International Nuclear Information System (INIS)

    Tsai, Ping-Fang; Yang, Chi-Cheng; Chuang, Chi-Cheng; Huang, Ting-Yi; Wu, Yi-Ming; Pai, Ping-Ching; Tseng, Chen-Kan; Wu, Tung-Ho; Shen, Yi-Liang; Lin, Shinn-Yn

    2015-01-01

    Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT). Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study. Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD 2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that

  7. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus.

    Science.gov (United States)

    Pousti, Farideh; Ahmadi, Ramesh; Mirahmadi, Fatemeh; Hosseinmardi, Narges; Rohampour, Kambiz

    2018-01-01

    Recent studies have suggested the involvement of some metabolic hormones in memory formation and synaptic plasticity. Insulin dysfunction is known as an essential process in the pathogenesis of sporadic Alzheimer's disease (AD). In this study we examined whether adiponectin (ADN), as an insulin-sensitizing adipokine, could affect hippocampal synaptic plasticity. Field potential recordings were performed on intracerebroventricular (icv) cannulated urethane anesthetized rats. After baseline recording from dentate gyrus (DG) and 10min prior to high/low frequency stimulation (HFS/LFS), 10μl icv ADN (600nm) were injected. The slope of field excitatory postsynaptic potentials (fEPSP) and the amplitude of population spikes (PS) were recorded in response to perforanth path (PP) stimulation. Paired pulse stimuli and ADN injection without any stimulation protocols were also evaluated. Application of ADN before HFS increased PS amplitude recorded in DG significantly (P≤0.05) in comparison to HFS only group. ADN suppressed the potency of LFS to induce long-term depression (LTD), causing a significant difference between fEPSP slope (P≤0.05) and PS amplitude (P≤0.01) between ADN+LFS and ADN group. Paired pulse stimuli applied at 20ms intervals showed more paired pulse facilitation (PPF), when applied after ADN (P≤0.05). ADN induced a chemical long-term potentiation (LTP) in which fEPSP slope and PS amplitude increased significantly (P≤0.01 and P≤0.05, respectively). It is concluded that ADN is able to potentiate the HFS-induced LTP and suppress LFS-induced LTD. ADN caused a chemical LTP, when applied without any tetanic protocol. ADN may enhance the presynaptic release probability. Copyright © 2017. Published by Elsevier B.V.

  8. Serotonin dependent masking of hippocampal sharp wave ripples.

    Science.gov (United States)

    ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe

    2016-02-01

    Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Soledad Ferreras

    2017-11-01

    Full Text Available Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant’s effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine–induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine’s effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

  10. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    Science.gov (United States)

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016

  11. Microglia modulate hippocampal neural precursor activity in response to exercise and aging.

    Science.gov (United States)

    Vukovic, Jana; Colditz, Michael J; Blackmore, Daniel G; Ruitenberg, Marc J; Bartlett, Perry F

    2012-05-09

    Exercise has been shown to positively augment adult hippocampal neurogenesis; however, the cellular and molecular pathways mediating this effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the adult brain. Here, we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia and abolished when these cells were selectively removed from hippocampal cultures. Conversely, microglia from the hippocampi of animals that had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also investigated the role of CX(3)CL1, a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a blocking antibody against the CX(3)CL1 receptor, CX(3)CR1, but not control IgG, dramatically reduced the neurosphere formation frequency in mice that had exercised. While an increase in soluble CX(3)CL1 was observed following running, reduced levels of this chemokine were found in the aged brain. Lower levels of CX(3)CL1 with advancing age correlated with the natural decline in neural precursor cell activity, a state that could be partially alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and opposing influence on neural precursor cell activity within the hippocampus, and that signaling through the CX(3)CL1-CX(3)CR1 axis critically contributes toward this process.

  12. Cortical and hippocampal correlates of deliberation during model-based decisions for rewards in humans.

    Directory of Open Access Journals (Sweden)

    Aaron M Bornstein

    Full Text Available How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward - such as when planning routes using a cognitive map or chess moves using predicted countermoves - and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to

  13. Prefrontal-hippocampal interactions for spatial navigation.

    Science.gov (United States)

    Ito, Hiroshi T

    2018-04-01

    Animals have the ability to navigate to a desired location by making use of information about environmental landmarks and their own movements. While decades of neuroscience research have identified neurons in the hippocampus and parahippocampal structures that represent an animal's position in space, it is still largely unclear how an animal can choose the next movement direction to reach a desired goal. As the goal destination is typically located somewhere outside of the range of sensory perception, the animal is required to rely on the internal metric of space to estimate the direction and distance of the destination to plan a next action. Therefore, the hippocampal spatial map should interact with action-planning systems in other cortical regions. In accordance with this idea, several recent studies have indicated the importance of functional interactions between the hippocampus and the prefrontal cortex for goal-directed navigation. In this paper, I will review these studies and discuss how an animal can estimate its future positions correspond to a next movement. Investigation of the navigation problem may further provide general insights into internal models of the brain for action planning. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  14. Tactile modulation of hippocampal place fields.

    Science.gov (United States)

    Gener, Thomas; Perez-Mendez, Lorena; Sanchez-Vives, Maria V

    2013-12-01

    Neural correlates of spatial representation can be found in the activity of the hippocampal place cells. These neurons are characterized by firing whenever the animal is located in a particular area of the space, the place field. Place fields are modulated by sensory cues, such as visual, auditory, or olfactory cues, being the influence of visual inputs the most thoroughly studied. Tactile information gathered by the whiskers has a prominent representation in the rat cerebral cortex. However, the influence of whisker-detected tactile cues on place fields remains an open question. Here we studied place fields in an enriched tactile environment where the remaining sensory cues were occluded. First, place cells were recorded before and after blockade of tactile transmission by means of lidocaine applied on the whisker pad. Following tactile deprivation, the majority of place cells decreased their firing rate and their place fields expanded. We next rotated the tactile cues and 90% of place fields rotated with them. Our results demonstrate that tactile information is integrated into place cells at least in a tactile-enriched arena and when other sensory cues are not available. Copyright © 2013 Wiley Periodicals, Inc.

  15. Juvenile Hippocampal CA2 Region Expresses Aggrecan

    Directory of Open Access Journals (Sweden)

    Asako Noguchi

    2017-05-01

    Full Text Available Perineuronal nets (PNNs are distributed primarily around inhibitory interneurons in the hippocampus, such as parvalbumin-positive interneurons. PNNs are also present around excitatory neurons in some brain regions and prevent plasticity in these neurons. A recent study demonstrated that PNNs also exist around mouse hippocampal pyramidal cells, which are the principle type of excitatory neurons, in the CA2 subregion and modulate the excitability and plasticity of these neurons. However, the development of PNNs in the CA2 region during postnatal maturation was not fully investigated. This study found that a main component of PNNs, aggrecan, existed in the pyramidal cell layer of the putative CA2 subarea prior to the appearance of the CA2 region, which was defined by the CA2 marker protein regulator of G protein signaling 14 (RGS14. We also found that aggrecan immunoreactivity was more evident in the anterior sections of the CA2 area than the posterior sections, which suggests that the function of CA2 PNNs varies along the anterior-posterior axis.

  16. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  17. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  18. Do you see what I see? A comparative investigation of the Delboeuf illusion in humans (Homo sapiens), rhesus monkeys (Macaca mulatta), and capuchin monkeys (Cebus apella).

    Science.gov (United States)

    Parrish, Audrey E; Brosnan, Sarah F; Beran, Michael J

    2015-10-01

    Studying visual illusions is critical to understanding typical visual perception. We investigated whether rhesus monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella) perceived the Delboeuf illusion in a similar manner as human adults (Homo sapiens). To test this, in Experiment 1, we presented monkeys and humans with a relative discrimination task that required subjects to choose the larger of 2 central dots that were sometimes encircled by concentric rings. As predicted, humans demonstrated evidence of the Delboeuf illusion, overestimating central dots when small rings surrounded them and underestimating the size of central dots when large rings surrounded them. However, monkeys did not show evidence of the illusion. To rule out an alternate explanation, in Experiment 2, we presented all species with an absolute classification task that required them to classify a central dot as "small" or "large." We presented a range of ring sizes to determine whether the Delboeuf illusion would occur for any dot-to-ring ratios. Here, we found evidence of the Delboeuf illusion in all 3 species. Humans and monkeys underestimated central dot size to a progressively greater degree with progressively larger rings. The Delboeuf illusion now has been extended to include capuchin monkeys and rhesus monkeys, and through such comparative investigations we can better evaluate hypotheses regarding illusion perception among nonhuman animals. (c) 2015 APA, all rights reserved).

  19. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol.

    Science.gov (United States)

    Boccardi, Marina; Bocchetta, Martina; Morency, Félix C; Collins, D Louis; Nishikawa, Masami; Ganzola, Rossana; Grothe, Michel J; Wolf, Dominik; Redolfi, Alberto; Pievani, Michela; Antelmi, Luigi; Fellgiebel, Andreas; Matsuda, Hiroshi; Teipel, Stefan; Duchesne, Simon; Jack, Clifford R; Frisoni, Giovanni B

    2015-02-01

    The European Alzheimer's Disease Consortium and Alzheimer's Disease Neuroimaging Initiative (ADNI) Harmonized Protocol (HarP) is a Delphi definition of manual hippocampal segmentation from magnetic resonance imaging (MRI) that can be used as the standard of truth to train new tracers, and to validate automated segmentation algorithms. Training requires large and representative data sets of segmented hippocampi. This work aims to produce a set of HarP labels for the proper training and certification of tracers and algorithms. Sixty-eight 1.5 T and 67 3 T volumetric structural ADNI scans from different subjects, balanced by age, medial temporal atrophy, and scanner manufacturer, were segmented by five qualified HarP tracers whose absolute interrater intraclass correlation coefficients were 0.953 and 0.975 (left and right). Labels were validated as HarP compliant through centralized quality check and correction. Hippocampal volumes (mm(3)) were as follows: controls: left = 3060 (standard deviation [SD], 502), right = 3120 (SD, 897); mild cognitive impairment (MCI): left = 2596 (SD, 447), right = 2686 (SD, 473); and Alzheimer's disease (AD): left = 2301 (SD, 492), right = 2445 (SD, 525). Volumes significantly correlated with atrophy severity at Scheltens' scale (Spearman's ρ = segmentation algorithms. The publicly released labels will allow the widespread implementation of the standard segmentation protocol. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  20. Memory reconsolidation mediates the updating of hippocampal memory content

    Directory of Open Access Journals (Sweden)

    Jonathan L C Lee

    2010-11-01

    Full Text Available The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that separates the learning of pure context from footshock-motivated contextual fear learning, I demonstrate doubly dissociable hippocampal mechanisms of initial context learning and subsequent updating of the neutral contextual representation to incorporate the footshock. Contextual memory consolidation was dependent upon BDNF expression in the dorsal hippocampus, whereas the footshock modification of the contextual representation required the expression of Zif268. These mechanisms match those previously shown to be selectively involved in hippocampal memory consolidation and reconsolidation, respectively. Moreover, memory reactivation is a necessary step in modifying memory content, as inhibition of hippocampal synaptic protein degradation also prevented the footshock-mediated memory modification. Finally, dorsal hippocampal knockdown of Zif268 impaired the reconsolidation of the pure contextual memory only under conditions of weak context memory training, as well as failing to disrupt contextual freezing when a strong contextual fear memory is reactivated by further conditioning. Therefore, an adaptive function of the reactivation and reconsolidation process is to enable the updating of memory content.

  1. Remote semantic memory is impoverished in hippocampal amnesia.

    Science.gov (United States)

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hippocampal and Amygdalar Volumes in Dissociative Identity Disorder

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J.; Bremner, J. Douglas

    2011-01-01

    Objective Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. Method The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Results Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. Conclusions The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects. PMID:16585437

  3. Hippocampal and amygdalar volumes in dissociative identity disorder.

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J; Bremner, J Douglas

    2006-04-01

    Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects.

  4. Hippocampal functional connectivity and episodic memory in early childhood.

    Science.gov (United States)

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L; Redcay, Elizabeth

    2016-06-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Qualitative and Quantitative Hippocampal MRI Assessments in Intractable Epilepsy

    Directory of Open Access Journals (Sweden)

    Paramdeep Singh

    2013-01-01

    Full Text Available Aims. To acquire normative data of hippocampal volumes and T2 relaxation times, to evaluate and compare qualitative and quantitative assessments in evaluating hippocampi in patients with different durations of intractable epilepsy, and to propose an imaging protocol based on performance of these techniques. Methods. MRI analysis was done in 50 nonepileptic controls and 30 patients with intractable epilepsy on 1.5T scanner. Visual assessment and hippocampal volumetry were done on oblique coronal IR/T2W and T1W MP-RAGE images, respectively. T2 relaxation times were measured using 16-echo Carr-Purcell-Meiboom-Gill sequence. Volumetric data was normalized for variation in head size between individuals. Patients were divided into temporal ( and extratemporal ( groups based on clinical and EEG localization. Results. In controls, right hippocampal volume was slightly more than the left with no effect of age or gender. In TLE patients, hippocampal volumetry provided maximum concordance with EEG. Visual assessment of unilateral pathology concurred well with measured quantitative values but poorly in cases with bilateral pathologies. There were no significant differences of mean values between extratemporal group and controls group. Quantitative techniques detected mild abnormalities, undetected on visual assessment. Conclusions. Quantitative techniques are more sensitive to diagnose bilateral and mild unilateral hippocampal abnormalities.

  6. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Science.gov (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  7. Hippocampal lesions impair performance on a conditional delayed matching and non-matching to position task in the rat.

    Science.gov (United States)

    Sloan, Hazel L; Döbrössy, Màtè; Dunnett, Stephen B

    2006-08-10

    The hippocampus is thought to be involved in a range of cognitive processes, from the ability to acquire new memories, to the ability to learn about spatial relationships. Humans and monkeys with damage to the hippocampus are typically impaired on delayed matching to sample tasks, of which the operant delayed matching to position task (DMTP) is a rat analogue. The reported effects of hippocampal damage on DMTP vary, ranging from delay-dependent deficits to no deficit whatsoever. The present study investigates a novel memory task; the conditional delayed matching/non-matching to position task (CDM/NMTP) in the Skinner box. CDM/NMTP uses the presence of specific stimulus cues to signify whether a particular trial is matching or non-matching in nature. Thus, it incorporates both the task contingencies within one session, and supplements the requirement for remembering the side of the lever in the sample phase with attending to the stimulus and remembering the conditional discrimination for the rule. Rats were trained preoperatively and the effects of bilateral excitotoxic lesions of the hippocampus were examined on postoperative retention of the task. Rats with lesions of the hippocampus incurred a significant impairment on the task that was manifest at all delays intervals. Despite a bias towards matching during training, trials of either type were performed with equivalent accuracy and neither rule was affected differentially by the lesion. This task may prove useful in determining the cognitive roles of a range of brain areas.

  8. Inter-relationships among Diet, Obesity and Hippocampal-dependent Cognitive Function

    OpenAIRE

    Davidson, Terry L.; Hargrave, Sara L.; Swithers, Susan E.; Sample, Camille H.; Fu, Xue; Kinzig, Kimberly P.; Zheng, Wei

    2013-01-01

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD...

  9. SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions.

    Science.gov (United States)

    Singer, Maxine; Winocour, Ernest

    2011-04-10

    The available monkey genomic data banks were examined in order to determine the chromosomal locations of the host DNA inserts in 8 host-substituted SV40 variant DNAs. Five of the 8 variants contained more than one linked monkey DNA insert per tandem repeat unit and in all cases but one, the 19 monkey DNA inserts in the 8 variants mapped to different locations in the monkey genome. The 50 parental DNAs (32 monkey and 18 SV40 DNA segments) which spanned the crossover and flanking regions that participated in monkey/monkey and monkey/SV40 recombinations were characterized by substantial levels of microhomology of up to 8 nucleotides in length; the parental DNAs also exhibited direct and inverted repeats at or adjacent to the crossover sequences. We discuss how the host-substituted SV40 variants arose and the nature of the recombination mechanisms involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Hippocampal neurogenesis and cortical cellular plasticity in Wahlberg's epauletted fruit bat: a qualitative and quantitative study.

    Science.gov (United States)

    Gatome, Catherine W; Mwangi, Deter K; Lipp, Hans-Peter; Amrein, Irmgard

    2010-01-01

    Species-specific characteristics of neuronal plasticity emerging from comparative studies can address the functional relevance of hippocampal or cortical plasticity in the light of ecological adaptation and evolutionary history of a given species. Here, we present a quantitative and qualitative analysis of neurogenesis in young and adult free-living Wahlberg's epauletted fruit bats. Using the markers for proliferating cell nuclear antigen (PCNA), bromodeoxyuridine (BrdU), doublecortin (DCX) and polysialic acid neural cell adhesion molecule (PSA-NCAM), our findings in the hippocampus, olfactory bulb and cortical regions are described and compared to reports in other mammals. Expressed as a percentage of the total number of granule cells, PCNA- and BrdU-positive cells accounted for 0.04 in young to 0.01% in adult animals; DCX-positive cells for 0.05 (young) to 0.01% (adult); PSA-NCAM-positive cells for 0.1 (young) to 0.02% (adult), and pyknotic cells for 0.007 (young) to 0.005% (adult). The numbers were comparable to other long-lived, late-maturing mammals such as primates. A significant increase in the total granule cell number from young to adult animals demonstrated the successful formation and integration of new cells. In adulthood, granule cell number appeared stable and was surprisingly low in comparison to other species. Observations in the olfactory bulb and rostral migratory stream were qualitatively similar to descriptions in other species. In the ventral horn of the lateral ventricle, we noted prominent expression of DCX and PSA-NCAM forming a temporal migratory stream targeting the piriform cortex, possibly reflecting the importance of olfaction to these species. Low, but persistent hippocampal neurogenesis in non-echolocating fruit bats contrasted the findings in echolocating microbats, in which hippocampal neurogenesis was largely absent. Together with the observed intense cortical plasticity in the olfactory system of fruit bats we suggest a

  11. Spatial memory impairment is associated with hippocampal insulin signals in ovariectomized rats.

    Science.gov (United States)

    Wang, Fang; Song, Yan-Feng; Yin, Jie; Liu, Zi-Hua; Mo, Xiao-Dan; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Estrogen influences memory formation and insulin sensitivity. Meanwhile, glucose utilization directly affects learning and memory, which are modulated by insulin signals. Therefore, this study investigated whether or not the effect of estrogen on memory is associated with the regulatory effect of this hormone on glucose metabolism. The relative expression of estrogen receptor β (ERβ) and glucose transporter type 4 (GLUT4) in the hippocampus of rats were evaluated by western blot. Insulin level was assessed by ELISA and quantitative RT-PCR, and spatial memory was tested by the Morris water maze. Glucose utilization in the hippocampus was measured by 2-NBDG uptake analysis. Results showed that ovariectomy impaired the spatial memory of rats. These impairments are similar as the female rats treated with the ERβ antagonist tamoxifen (TAM). Estrogen blockade by ovariectomy or TAM treatment obviously decreased glucose utilization. This phenomenon was accompanied by decreased insulin level and GLUT4 expression in the hippocampus. The female rats were neutralized with hippocampal insulin with insulin antibody, which also impaired memory and local glucose consumption. These results indicated that estrogen blockade impaired the spatial memory of the female rats. The mechanisms by which estrogen blockade impaired memory partially contributed to the decline in hippocampal insulin signals, which diminished glucose consumption.

  12. Separate elements of episodic memory subserved by distinct hippocampal-prefrontal connections.

    Science.gov (United States)

    Barker, Gareth R I; Banks, Paul J; Scott, Hannah; Ralph, G Scott; Mitrophanous, Kyriacos A; Wong, Liang-Fong; Bashir, Zafar I; Uney, James B; Warburton, E Clea

    2017-02-01

    Episodic memory formation depends on information about a stimulus being integrated within a precise spatial and temporal context, a process dependent on the hippocampus and prefrontal cortex. Investigations of putative functional interactions between these regions are complicated by multiple direct and indirect hippocampal-prefrontal connections. Here application of a pharmacogenetic deactivation technique enabled us to investigate the mnemonic contributions of two direct hippocampal-medial prefrontal cortex (mPFC) pathways, one arising in the dorsal CA1 (dCA1) and the other in the intermediate CA1 (iCA1). While deactivation of either pathway impaired episodic memory, the resulting pattern of mnemonic deficits was different: deactivation of the dCA1→mPFC pathway selectively disrupted temporal order judgments while iCA1→mPFC pathway deactivation disrupted spatial memory. These findings reveal a previously unsuspected division of function among CA1 neurons that project directly to the mPFC. Such subnetworks may enable the distinctiveness of contextual information to be maintained in an episodic memory circuit.

  13. Disinhibition mediates a form of hippocampal long-term potentiation in area CA1.

    Directory of Open Access Journals (Sweden)

    Jake Ormond

    Full Text Available The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs followed rapidly by feedforward (disynaptic inhibitory postsynaptic potentials (IPSPs. Long-term potentiation (LTP of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs, required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.

  14. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.

    Science.gov (United States)

    Kohara, Keigo; Pignatelli, Michele; Rivest, Alexander J; Jung, Hae-Yoon; Kitamura, Takashi; Suh, Junghyup; Frank, Dominic; Kajikawa, Koichiro; Mise, Nathan; Obata, Yuichi; Wickersham, Ian R; Tonegawa, Susumu

    2014-02-01

    The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.

  15. Acupuncture Prevents the Impairment of Hippocampal LTP Through β1-AR in Vascular Dementia Rats.

    Science.gov (United States)

    Xiao, Ling-Yong; Wang, Xue-Rui; Yang, Jing-Wen; Ye, Yang; Zhu, Wen; Cao, Yan; Ma, Si-Ming; Liu, Cun-Zhi

    2018-02-13

    It is widely accepted that the synaptic dysfunction and synapse loss contribute to the cognitive deficits of vascular dementia (VD) patients. We have previously reported that acupuncture improved cognitive function in rats with VD. However, the mechanisms involved in acupuncture improving cognitive ability remain to be elucidated. The present study aims to investigate the pathways and molecules involved in the neuroprotective effect of acupuncture. We assessed the effects of acupuncture on hippocampal long-term potentiation (LTP), the most prominent cellular model of memory formation. Acupuncture enhanced LTP and norepinephrine (NE) levels in the hippocampus. Inhibition of the β-adrenergic receptor (AR), but not the α-AR, was able to block the effects of acupuncture on hippocampal LTP. Furthermore, inhibition of β1-AR, not β2-AR, abolished the enhanced LTP induced by acupuncture. The expression analysis revealed a significant upregulation of β1-AR and unchanged β2-AR with acupuncture, which supported the above findings. Specifically, increased β1-ARs in the dentate gyrus were expressed on neurons exclusively. Taken together, the present data supports a beneficial role of acupuncture in synaptic plasticity challenged with VD. A likely mechanism is the increase of NE and activation of β1-AR in the hippocampus.

  16. NeuroD2 regulates the development of hippocampal mossy fiber synapses

    Directory of Open Access Journals (Sweden)

    Wilke Scott A

    2012-02-01

    Full Text Available Abstract Background The assembly of neural circuits requires the concerted action of both genetically determined and activity-dependent mechanisms. Calcium-regulated transcription may link these processes, but the influence of specific transcription factors on the differentiation of synapse-specific properties is poorly understood. Here we characterize the influence of NeuroD2, a calcium-dependent transcription factor, in regulating the structural and functional maturation of the hippocampal mossy fiber (MF synapse. Results Using NeuroD2 null mice and in vivo lentivirus-mediated gene knockdown, we demonstrate a critical role for NeuroD2 in the formation of CA3 dendritic spines receiving MF inputs. We also use electrophysiological recordings from CA3 neurons while stimulating MF axons to show that NeuroD2 regulates the differentiation of functional properties at the MF synapse. Finally, we find that NeuroD2 regulates PSD95 expression in hippocampal neurons and that PSD95 loss of function in vivo reproduces CA3 neuron spine defects observed in NeuroD2 null mice. Conclusion These experiments identify NeuroD2 as a key transcription factor that regulates the structural and functional differentiation of MF synapses in vivo.

  17. Neural 17β-estradiol facilitates long-term potentiation in the hippocampal CA1 region.

    Science.gov (United States)

    Grassi, S; Tozzi, A; Costa, C; Tantucci, M; Colcelli, E; Scarduzio, M; Calabresi, P; Pettorossi, V E

    2011-09-29

    In the hippocampal formation many neuromodulators are possibly implied in the synaptic plasticity such as the long-term potentiation (LTP) induced by high-frequency stimulation (HFS) of afferent fibers. We investigated the involvement of locally synthesized neural 17β-estradiol (nE(2)) in the induction of HFS-LTP in hippocampal slices from male rats by stimulating the Schaffer collateral fibers and recording the evoked field excitatory postsynaptic potential (fEPSP) in the CA1 region. We demonstrated that either the blockade of nE(2) synthesis by the aromatase inhibitor letrozole, or the antagonism of E(2) receptors (ERs) by ICI 182,780 did not prevent the induction of HFS-LTP, but reduced its amplitude by ∼60%, without influencing its maintenance. Moreover, letrozole and ICI 182,780 did not affect the first short-term post-tetanic component of LTP and the paired-pulse facilitation (PPF). These findings demonstrate that nE(2) plays an important role in the induction phase of HFS-dependent LTP. Since the basal responses were not affected by the blocking agents, we suggest that the synthesis of nE(2) is induced or enhanced by HFS through aromatase activation. In this context, the local production of nE(2) seems to be a very effective mechanism to modulate the amplitude of LTP. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Functional magnetic resonance imaging of hippocampal activation during silent mantra meditation.

    Science.gov (United States)

    Engström, Maria; Pihlsgård, Johan; Lundberg, Peter; Söderfeldt, Birgitta

    2010-12-01

    The objective of the present study was to investigate whether moderately experienced meditators activate hippocampus and the prefrontal cortex during silent mantra meditation, as has been observed in earlier studies on subjects with several years of practice. Subjects with less than 2 years of meditation practice according to the Kundalini yoga or Acem tradition were examined by functional magnetic resonance imaging during silent mantra meditation, using an on-off block design. Whole-brain as well as region-of-interest analyses were performed. The most significant activation was found in the bilateral hippocampus/parahippocampal formations. Other areas with significant activation were the bilateral middle cingulate cortex and the bilateral precentral cortex. No activation in the anterior cingulate cortex was found, and only small activation clusters were observed in the prefrontal cortex. In conclusion, the main finding in this study was the significant activation in the hippocampi, which also has been correlated with meditation in several previous studies on very experienced meditators. We propose that the hippocampus is activated already after moderate meditation practice and also during different modes of meditation, including relaxation. The role of hippocampal activity during meditation should be further clarified in future studies, especially by investigating whether the meditation-correlated hippocampal activity is related to memory consolidation.

  19. Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2

    Directory of Open Access Journals (Sweden)

    Elodie De Bruyckere

    2018-04-01

    Full Text Available Structural and functional plasticity of synapses are critical neuronal mechanisms underlying learning and memory. While activity-dependent regulation of synaptic strength has been extensively studied, much less is known about the transcriptional control of synapse maintenance and plasticity. Hippocampal mossy fiber (MF synapses connect dentate granule cells to CA3 pyramidal neurons and are important for spatial memory formation and consolidation. The transcription factor Bcl11b/Ctip2 is expressed in dentate granule cells and required for postnatal hippocampal development. Ablation of Bcl11b/Ctip2 in the adult hippocampus results in impaired adult neurogenesis and spatial memory. The molecular mechanisms underlying the behavioral impairment remained unclear. Here we show that selective deletion of Bcl11b/Ctip2 in the adult mouse hippocampus leads to a rapid loss of excitatory synapses in CA3 as well as reduced ultrastructural complexity of remaining mossy fiber boutons (MFBs. Moreover, a dramatic decline of long-term potentiation (LTP of the dentate gyrus-CA3 (DG-CA3 projection is caused by adult loss of Bcl11b/Ctip2. Differential transcriptomics revealed the deregulation of genes associated with synaptic transmission in mutants. Together, our data suggest Bcl11b/Ctip2 to regulate maintenance and function of MF synapses in the adult hippocampus.

  20. Tiagabine improves hippocampal long-term depression in rat pups subjected to prenatal inflammation.

    Directory of Open Access Journals (Sweden)

    Aline Rideau Batista Novais

    Full Text Available Maternal inflammation during pregnancy is associated with the later development of cognitive and behavioral impairment in the offspring, reminiscent of the traits of schizophrenia or autism spectrum disorders. Hippocampal long-term potentiation and long-term depression of glutamatergic synapses are respectively involved in memory formation and consolidation. In male rats, maternal inflammation with lipopolysaccharide (LPS led to a premature loss of long-term depression, occurring between 12 and 25 postnatal days instead of after the first postnatal month, and aberrant occurrence of long-term potentiation. We hypothesized this would be related to GABAergic system impairment. Sprague Dawley rats received either LPS or isotonic saline ip on gestational day 19. Male offspring's hippocampus was studied between 12 and 25 postnatal days. Morphological and functional analyses demonstrated that prenatal LPS triggered a deficit of hippocampal GABAergic interneurons, associated with presynaptic GABAergic transmission deficiency in male offspring. Increasing ambient GABA by impairing GABA reuptake with tiagabine did not interact with the low frequency-induced long-term depression in control animals but fully prevented its impairment in male offspring of LPS-challenged dams. Tiagabine furthermore prevented the aberrant occurrence of paired-pulse triggered long-term potentiation in these rats. Deficiency in GABA seems to be central to the dysregulation of synaptic plasticity observed in juvenile in utero LPS-challenged rats. Modulating GABAergic tone may be a possible therapeutic strategy at this developmental stage.

  1. Local inhibition of hippocampal nitric oxide synthase does not impair place learning in the Morris water escape task in rats.

    Science.gov (United States)

    Blokland, A; de Vente, J; Prickaerts, J; Honig, W; Markerink-van Ittersum, M; Steinbusch, H

    1999-01-01

    Recent studies have provided evidence that nitric oxide (NO) has a role in certain forms of memory formation. Spatial learning is one of the cognitive abilities that has been found to be impaired after systemic administration of an NO-synthase inhibitor. As the hippocampus has a pivotal role in spatial orientation, the present study examined the role of hippocampal NO in spatial learning and reversal learning in a Morris task in adult rats. It was found that N omega-nitro-L-arginine infusions into the dorsal hippocampus affected the manner in which the rats were searching the submerged platform during training, but did not affect the efficiency to find the spatial location of the escape platform. Hippocampal NO-synthase inhibition did not affect the learning of a new platform position in the same water tank (i.e. reversal learning). Moreover, no treatment effects were observed in the probe trials (i.e. after acquisition and after reversal learning), indicating that the rats treated with N omega-nitro-L-arginine had learned the spatial location of the platform. These findings were obtained under conditions where the NO synthesis in the dorsal hippocampus was completely inhibited. On the basis of the present data it was concluded that hippocampal NO is not critically involved in place learning in rats.

  2. Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains.

    Science.gov (United States)

    Rubin, Rachael D; Schwarb, Hillary; Lucas, Heather D; Dulas, Michael R; Cohen, Neal J

    2017-07-12

    The hippocampus has long been known to be a critical component of the memory system involved in the formation and use of long-term declarative memory. However, recent findings have revealed that the reach of hippocampal contributions extends to a variety of domains and tasks that require the flexible use of cognitive and social behavior, including domains traditionally linked to prefrontal cortex (PFC), such as decision-making. In addition, the prefrontal cortex (PFC) has gained traction as a necessary part of the memory system. These findings challenge the conventional characterizations of hippocampus and PFC as being circumscribed to traditional cognitive domains. Here, we emphasize that the ability to parsimoniously account for the breadth of hippocampal and PFC contributions to behavior, in terms of memory function and beyond, requires theoretical advances in our understanding of their characteristic processing features and mental representations. Notably, several literatures exist that touch upon this issue, but have remained disjointed because of methodological differences that necessarily limit the scope of inquiry, as well as the somewhat artificial boundaries that have been historically imposed between domains of cognition. In particular, this article focuses on the contribution of relational memory theory as an example of a framework that describes both the representations and processes supported by the hippocampus, and further elucidates the role of the hippocampal-PFC network to a variety of behaviors.

  3. Evidence for holistic episodic recollection via hippocampal pattern completion.

    Science.gov (United States)

    Horner, Aidan J; Bisby, James A; Bush, Daniel; Lin, Wen-Jing; Burgess, Neil

    2015-07-02

    Recollection is thought to be the hallmark of episodic memory. Here we provide evidence that the hippocampus binds together the diverse elements forming an event, allowing holistic recollection via pattern completion of all elements. Participants learn complex 'events' from multiple overlapping pairs of elements, and are tested on all pairwise associations. At encoding, element 'types' (locations, people and objects/animals) produce activation in distinct neocortical regions, while hippocampal activity predicts memory performance for all within-event pairs. When retrieving a pairwise association, neocortical activity corresponding to all event elements is reinstated, including those incidental to the task. Participant's degree of incidental reinstatement correlates with their hippocampal activity. Our results suggest that event elements, represented in distinct neocortical regions, are bound into coherent 'event engrams' in the hippocampus that enable episodic recollection--the re-experiencing or holistic retrieval of all aspects of an event--via a process of hippocampal pattern completion and neocortical reinstatement.

  4. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Ning-Ning Song

    2017-06-01

    Full Text Available The central serotonin (5-HT system is the main target of selective serotonin reuptake inhibitors (SSRIs, the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1 mice with altered central 5-HT levels from embryonic stages, (2 mice with deletion of 5-HT receptors from embryonic stages, and (3 mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.

  5. Sampling the Mouse Hippocampal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Lisa Basler

    2017-12-01

    Full Text Available Sampling is a critical step in procedures that generate quantitative morphological data in the neurosciences. Samples need to be representative to allow statistical evaluations, and samples need to deliver a precision that makes statistical evaluations not only possible but also meaningful. Sampling generated variability should, e.g., not be able to hide significant group differences from statistical detection if they are present. Estimators of the coefficient of error (CE have been developed to provide tentative answers to the question if sampling has been “good enough” to provide meaningful statistical outcomes. We tested the performance of the commonly used Gundersen-Jensen CE estimator, using the layers of the mouse hippocampal dentate gyrus as an example (molecular layer, granule cell layer and hilus. We found that this estimator provided useful estimates of the precision that can be expected from samples of different sizes. For all layers, we found that a smoothness factor (m of 0 generally provided better estimates than an m of 1. Only for the combined layers, i.e., the entire dentate gyrus, better CE estimates could be obtained using an m of 1. The orientation of the sections impacted on CE sizes. Frontal (coronal sections are typically most efficient by providing the smallest CEs for a given amount of work. Applying the estimator to 3D-reconstructed layers and using very intense sampling, we observed CE size plots with m = 0 to m = 1 transitions that should also be expected but are not often observed in real section series. The data we present also allows the reader to approximate the sampling intervals in frontal, horizontal or sagittal sections that provide CEs of specified sizes for the layers of the mouse dentate gyrus.

  6. Cannabinoids modulate hippocampal memory and plasticity.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2010-10-01

    Considerable evidence demonstrates that cannabinoid agonists impair whereas cannabinoid antagonists improve memory and plasticity. However, recent studies suggest that the effects of cannabinoids on learning do not necessarily follow these simple patterns, particularly when emotional memory processes are involved. We investigated the involvement of the cannabinoid system in hippocampal learning and plasticity using the fear-related inhibitory avoidance (IA) and the non-fear-related spatial learning paradigms, and cellular models of learning and memory, i.e., long-term potentiation (LTP) and long-term depression (LTD). We found that microinjection into the CA1 of the CB1/CB2 receptor agonist WIN55,212-2 (5 μg/side) and an inhibitor of endocannabinoid reuptake and breakdown AM404 (200 ng/side) facilitated the extinction of IA, while the CB1 receptor antagonist AM251 (6 ng/side) impaired it. WIN55,212-2 and AM251 did not affect IA conditioning, while AM404 enhanced it, probably due to a drug-induced increase in pain sensitivity. However, in the water maze, systemic or local CA1 injections of AM251, WIN55,212-2, and AM404 all impaired spatial learning. We also found that i.p. administration of WIN55,212-2 (0.5 mg/kg), AM404 (10 mg/kg), and AM251 (2 mg/kg) impaired LTP in the Schaffer collateral-CA1 projection, whereas AM404 facilitated LTD. Our findings suggest diverse effects of the cannabinoid system on CA1 memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect of cannabinoid activation and deactivation, respectively. Moreover, they provide preclinical support for the suggestion that targeting the endocannabinoid system may aid in the treatment of disorders associated with impaired extinction-like processes, such as post-traumatic stress disorder. © 2009 Wiley-Liss, Inc.

  7. Socioeconomic status, cognition, and hippocampal sclerosis.

    Science.gov (United States)

    Baxendale, Sallie; Heaney, Dominic

    2011-01-01

    Poorer surgical outcomes in patients with low socioeconomic status have previously been reported, but the mechanisms underlying this pattern are unknown. Lower socioeconomic status may be a proxy marker for the limited economic opportunities associated with compromised cognitive function. The aim of this study was to examine the preoperative neuropsychological characteristics of patients with unilateral hippocampal sclerosis (HS) and their relationship to socioeconomic status. Two hundred ninety-two patients with medically intractable temporal lobe epilepsy and unilateral HS completed tests of memory and intellectual function prior to surgery. One hundred thirty-one had right HS (RHS), and 161 had left HS (LHS). The socioeconomic status of each participant was determined via the Index of Multiple Deprivation (IMD) associated with their postcode. The IMD was not associated with age at the time of assessment, age at onset of epilepsy, or duration of active epilepsy. The RHS and LHS groups did not differ on the IMD. The IMD was negatively correlated with all neuropsychological test scores in the LHS group. In the RHS group, the IMD was not significantly correlated with any of the neuropsychological measures. There were no significant correlations in the RHS group. Regression analyses suggested that IMD score explained 3% of variance in the measures of intellect, but 8% of the variance in verbal learning in the LHS group. The IMD explained 1% or less of the variance in neuropsychological scores in the RHS group. Controlling for overall level of intellectual function, the IMD score explained a small but significant proportion of the variance in verbal learning in the LHS group and visual learning for the RHS group. Our findings suggest that patients living in an area with a high IMD enter surgery with greater focal deficits associated with their epilepsy and more widespread cognitive deficits if they have LHS. Further work is needed to establish the direction of the

  8. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis

    Science.gov (United States)

    Thom, M; Martinian, L; Catarino, C; Yogarajah, M; Koepp, M J.; Caboclo, L; Sisodiya, S M.

    2009-01-01

    Background: Hippocampal sclerosis (HS) is the most common surgical pathology associated with mesial temporal lobe epilepsy (MTLE). HS is typically characterized by mossy fiber sprouting (MFS) and reorganization of neuropeptide Y (NPY) fiber networks in the dentate gyrus. One potential cause of postoperative seizure recurrence following temporal lobe surgery may be the presence of seizure-associated bilateral hippocampal damage. We aimed to investigate patterns of hippocampal abnormalities in a postmortem series as identified by NPY and dynorphin immunohistochemistry. Methods: Analysis of dentate gyrus fiber reorganization, using dynorphin (to demonstrate MFS) and NPY immunohistochemistry, was carried out in a postmortem epilepsy series of 25 cases (age range 21–96 years). In 9 patients, previously refractory seizures had become well controlled for up to 34 years prior to death. Results: Bilateral MFS or abnormal NPY patterns were seen in 15 patients including those with bilateral symmetric, asymmetric, and unilateral HS by conventional histologic criteria. MFS and NPY reorganization was present in all classical HS cases, more variably in atypical HS, present in both MTLE and non-MTLE syndromes and with seizure histories of up to 92 years, despite seizure remission in some patients. Conclusion: Synaptic reorganization in the dentate gyrus may be a bilateral, persistent process in epilepsy. It is unlikely to be sufficient to generate seizures and more likely to represent a seizure-induced phenomenon. GLOSSARY AED = antiepileptic drug; CA1p = CA1-predominant hippocampal sclerosis; CHS = classical hippocampal sclerosis; EFG = end folium gliosis; EFS = end folium sclerosis; GCD = granule cell dispersion; GCL = granule cell layer; HS = hippocampal sclerosis; MFS = mossy fiber sprouting; MTLE = mesial temporal lobe epilepsy; NPY = neuropeptide Y; ROI = region of interest; SE = status epilepticus; TLE = temporal lobe epilepsy. PMID:19710404

  9. Spectroscopic evidence of hippocampal abnormalities in neocortical epilepsy

    Science.gov (United States)

    Mueller, S. G.; Laxer, K. D.; Cashdollar, N.; Lopez, R. C.; Weiner, M. W.

    2009-01-01

    Lesional neocortical epilepsy (NE) can be associated with hippocampal sclerosis or hippocampal spectroscopic abnormalities without atrophy (dual pathology). In this study, magnetic resonance spectroscopic imaging (MRSI) was used to determine the frequency of hippocampal damage/dysfunction in NE with and without structural lesion. Sixteen patients with NE [seven temporal NE (NE-T), nine extratemporal (NE-ET)] and 16 controls were studied with a 2D MRSI sequence (Repetition time/echo time (TR/TE) = 1800/135 ms) covering both hippocampi. Seven NE patients had MR visible lesions (NE-Les), nine had normal MRI (NE-no). In each hippocampus, 12 voxels were uniformly selected. In controls, mean (± SD) NAA/(Cr + Cho) values for each voxel were calculated and voxels with NAA/(Cr + Cho) ≤ (mean in controls – 2SD in controls) were defined as ‘pathological’ in patients. Eight of 16 NE patients had at least two ‘pathological’ voxel (mean 2.5, range 2–5) in one hippocampus. Four were NE-Les and four NE-no. Three (43%) NE-T patients, had evidence for hippocampal damage/dysfunction and five (56%) had NE-ET. The ipsilateral hippocampus was affected in six of eight NE patients. Evidence for unilateral hippocampal damage/dysfunction was demonstrated in 50% of the NE patients. The type of NE, i.e. NE-Les or NE-no, NE-T or NE-ET, had no influence on the occurrence of hippocampal damage/dysfunction. PMID:16618342

  10. Roles of hippocampal subfields in verbal and visual episodic memory.

    Science.gov (United States)

    Zammit, Andrea R; Ezzati, Ali; Zimmerman, Molly E; Lipton, Richard B; Lipton, Michael L; Katz, Mindy J

    2017-01-15

    Selective hippocampal (HC) subfield atrophy has been reported in older adults with mild cognitive impairment and Alzheimer's disease. The goal of this study was to investigate the associations between the volume of hippocampal subfields and visual and verbal episodic memory in cognitively normal older adults. This study was conducted on a subset of 133 participants from the Einstein Aging Study (EAS), a community-based study of non-demented older adults systematically recruited from the Bronx, N.Y. All participants completed comprehensive EAS neuropsychological assessment. Visual episodic memory was assessed using the Complex Figure Delayed Recall subtest from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Verbal episodic memory was assessed using Delayed Recall from the Free and Cued Selective Reminding Test (FCSRT). All participants underwent 3T MRI brain scanning with subsequent automatic measurement of the hemispheric hippocampal subfield volumes (CA1, CA2-CA3, CA4-dente gyrus, presubiculum, and subiculum). We used linear regressions to model the association between hippocampal subfield volumes and visual and verbal episodic memory tests while adjusting for age, sex, education, and total intracranial volume. Participants had a mean age of 78.9 (SD=5.1) and 60.2% were female. Total hippocampal volume was associated with Complex Figure Delayed Recall (β=0.31, p=0.001) and FCSRT Delayed Recall (β=0.27, p=0.007); subiculum volume was associated with Complex Figure Delayed Recall (β=0.27, p=0.002) and FCSRT Delayed Recall (β=0.24, p=0.010); CA1 was associated with Complex Figure Delayed Recall (β=0.26, pepisodic memory. Our results suggest that hippocampal subfields have sensitive roles in the process of visual and verbal episodic memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biogeography of squirrel monkeys (genus Saimiri): South-central Amazon origin and rapid pan-Amazonian diversification of a lowland primate.

    Science.gov (United States)

    Lynch Alfaro, Jessica W; Boubli, Jean P; Paim, Fernanda P; Ribas, Camila C; Silva, Maria Nazareth F da; Messias, Mariluce R; Röhe, Fabio; Mercês, Michelle P; Silva Júnior, José S; Silva, Claudia R; Pinho, Gabriela M; Koshkarian, Gohar; Nguyen, Mai T T; Harada, Maria L; Rabelo, Rafael M; Queiroz, Helder L; Alfaro, Michael E; Farias, Izeni P

    2015-01-01

    The squirrel monkey, Saimiri, is a pan-Amazonian Pleistocene radiation. We use statistical phylogeographic methods to create a mitochondrial DNA-based timetree for 118 squirrel monkey samples across 68 localities spanning all Amazonian centers of endemism, with the aim of better understanding (1) the effects of rivers as barriers to dispersal and distribution; (2) the area of origin for modern Saimiri; (3) whether ancestral Saimiri was a lowland lake-affiliated or an upland forest taxa; and (4) the effects of Pleistocene climate fluctuation on speciation. We also use our topology to help resolve current controversies in Saimiri taxonomy and species relationships. The Rondônia and Inambari centers in the southern Amazon were recovered as the most likely areas of origin for Saimiri. The Amazon River proved a strong barrier to dispersal, and squirrel monkey expansion and diversification was rapid, with all speciation events estimated to occur between 1.4 and 0.6Ma, predating the last three glacial maxima and eliminating climate extremes as the main driver of squirrel monkey speciation. Saimiri expansion was concentrated first in central and western Amazonia, which according to the "Young Amazon" hypothesis was just becoming available as floodplain habitat with the draining of the Amazon Lake. Squirrel monkeys also expanded and diversified east, both north and south of the Amazon, coincident with the formation of new rivers. This evolutionary history is most consistent with a Young Amazon Flooded Forest Taxa model, suggesting Saimiri has always maintained a lowland wetlands niche and was able to greatly expand its range with the transition from a lacustrine to a riverine system in Amazonia. Saimiri vanzolinii was recovered as the sister group to one clade of Saimiri ustus, discordant with the traditional Gothic vs. Roman morphological division of squirrel monkeys. We also found paraphyly within each of the currently recognized species: S. sciureus, S. ustus, and S

  13. Differences in behaviour and physiology between adult surrogate-reared and mother-reared Cynomolgous monkeys (Macaca fascicularis)

    NARCIS (Netherlands)

    Luijk, I.A.F. van; Timmermans, P.J.A.; Sweep, C.G.J.; Willems, J.; Vossen, J.M.H.

    2000-01-01

    Previous studies of the effects of rearing conditions on exploratory behaviour revealed that 80% of monkeys reared in peer groups with surrogate mothers developed neophobia, whereas only 15 % of mother-reared monkeys did. Young surrogate-reared and, especially, isolated rhesus monkeys are known to

  14. No effects of dioxin singly on limb malformations in macaque monkeys through epidemiological and treated studies

    Energy Technology Data Exchange (ETDEWEB)

    Asaoka, Kazuo; Iida, Hiroko [Kyoto Univ. (Japan). Primate Research Insitute, Dept. of Molecular and Cellular Biochemistry; Watanabe, Kunio [Kyoto Univ. (Japan). Primate Research Institute, Field Research Center; Goda, Hiroshi [Towa Kagaku Co., Ltd. (Japan); Ihara, Toshio; Nagata, Ryoichi [Shin Nippon Biomedical Laboratories, Ltd. (Japan). Safety Research Facility; Yasuda, Mineo [Hiroshima International Univ. (Japan). Fac. of Health Sciences, Dept. of Clinical Engineering; Kubata, Shunichiro [Tokyo Univ. (Japan). Dept. of Life Science, Graduate School of Arts and Sciences

    2004-09-15

    Human populations exposed with highly dioxin were suspected to be caused immunological dysfunctions, carcinogenesis, and developmental and reproductive dysfunctions. Because of species resemblances, the dioxin effects have been investigating using monkeys as a model for assessment of dioxin exposure on human health. Since 1957 the limb malformations of monkeys in Japan have been reported. The higher frequency of them was found in provisional groups of monkeys who were given the same kind of food for human. The chromosomal abnormalities are excluded from the factor for the congenital limb malformations that are still producing in Japan. In this study, the relations between dioxin and the limb malformations of macaque monkeys were estimated by the epidemiological and administered researches. The dioxin levels in monkeys were measured at two districts that one has the provisional groups including monkeys with limb malformations and the other has breeding groups never seeing the malformations for a long time. TEQ was calculated by the levels of dioxin isomers in the monkeys and the values show no difference between the two places and between the individuals with and without the limb malformations. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was administered via subcutaneous to pregnant rhesus monkeys from the day 20 of gestation to the day 90 after birth. The exposed babies, including the offspring and died in neonatal, had observed normal limbs in the range of 30-300 ng TCDD /kg of body weight.

  15. Rod photoreceptors express GPR55 in the adult vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    . Yet, its formal classification is still a matter of debate. CB1R and CB2R expression patterns are well described for rodent and monkey retinas. In the monkey retina, CB1R has been localized in its neural (cone photoreceptor, horizontal, bipolar, amacrine and ganglion cells) and CB2R in glial...

  16. Macaque monkeys can learn token values from human models through vicarious reward.

    Science.gov (United States)

    Bevacqua, Sara; Cerasti, Erika; Falcone, Rossella; Cervelloni, Milena; Brunamonti, Emiliano; Ferraina, Stefano; Genovesio, Aldo

    2013-01-01

    Monkeys can learn the symbolic meaning of tokens, and exchange them to get a reward. Monkeys can also learn the symbolic value of a token by observing conspecifics but it is not clear if they can learn passively by observing other actors, e.g., humans. To answer this question, we tested two monkeys in a token exchange paradigm in three experiments. Monkeys learned token values through observation of human models exchanging them. We used, after a phase of object familiarization, different sets of tokens. One token of each set was rewarded with a bit of apple. Other tokens had zero value (neutral tokens). Each token was presented only in one set. During the observation phase, monkeys watched the human model exchange tokens and watched them consume rewards (vicarious rewards). In the test phase, the monkeys were asked to exchange one of the tokens for food reward. Sets of three tokens were used in the first experiment and sets of two tokens were used in the second and third experiments. The valuable token was presented with different probabilities in the observation phase during the first and second experiments in which the monkeys exchanged the valuable token more frequently than any of the neutral tokens. The third experiments examined the effect of unequal probabilities. Our results support the view that monkeys can learn from non-conspecific actors through vicarious reward, even a symbolic task like the token-exchange task.

  17. Plasma disappearance, urine excretion, and tissue distribution of ribavirin in rats and rhesus monkeys

    International Nuclear Information System (INIS)

    Ferrara, E.A.; Oishi, J.S.; Wannemacher, R.W. Jr.; Stephen, E.L.

    1981-01-01

    Ribavirin has been shown to have broad-spectrum antiviral. To study its tissue distribution and disappearance rate, a single dose of 10 mg/kg which contained 10 microCi of [14C]ribavirin was injected intravenously into rhesus monkeys and intramuscularly into monkeys and rats. Except for peak plasma concentrations and the initial phases of the plasma disappearance and urine excretion curves, no significant difference was observed between plasma, tissue, or urine values for intramuscularly or intravenously injected monkeys. Plasma disappearance curves were triphasic; plasma concentrations of ribavirin were similar for both monkeys and rats. Rats excreted ribavirin in the urine more rapidly and to a greater extent (82% excreted in 24 h) than did monkeys (60% excreted in 72 h). In the rat, only 3% of the injected [14C]ribavirin was detected in expired CO2. Therefore, for both species, urine was the major route for the elimination of labeled ribavirin and its metabolites from the body. In monkeys, the amount of parent drug in blood cells increased through 48 h and remained stable for 72 h, whereas in rats, ribavirin decreased at a rate similar to the plasma disappearance curve. Concentrations of ribavirin at 8 h were consistently higher in monkeys than in rats for all tissues except the brain. Thus, these differences in blood cellular components and organ content and in urine excretion suggested that there was greater tissue retention of ribavirin in monkeys than in rats

  18. Distribution of [1-14C]acrylonitrile in rat and monkey

    International Nuclear Information System (INIS)

    Sandberg, E.Ch.; Slanina, P.

    1980-01-01

    The distribution of [1- 14 C]acrylonitrile (ACN) in rat and monkey has been studied by whole-body autoradiography, after being administered orally and intravenously to rats and orally to monkeys. Uptake of radioactivity was seen in the blood, liver, kidney, lung, adrenal cortex and stomach mucosa. (Auth.)

  19. Hypothalamic-Pituitary-Adrenal Axis Physiology and Cognitive Control of Behavior in Stress Inoculated Monkeys

    Science.gov (United States)

    Parker, Karen J.; Buckmaster, Christine L.; Lindley, Steven E.; Schatzberg, Alan F.; Lyons, David M.

    2012-01-01

    Monkeys exposed to stress inoculation protocols early in life subsequently exhibit diminished neurobiological responses to moderate psychological stressors and enhanced cognitive control of behavior during juvenile development compared to non-inoculated monkeys. The present experiments extended these findings and revealed that stress inoculated…

  20. Hemopoietic stem cells in rhesus monkeys : surface antigens, radiosensitivity, and responses to GM-CSF

    NARCIS (Netherlands)

    J.J. Wielenga (Jenne)

    1990-01-01

    textabstractRhesus monkeys (Macaca mulatta) were bred at the Primate Center TNO, Rijswijk, The Netherlands!. Both male and female animals were used for the experiments. The monkeys weighed 2.5-4 kg and were 2-4 years old at the time of the experiment. They were all typed for RhLA-A, -B and -DR

  1. Hippocampal MRI volumetry at 3 Tesla: reliability and practical guidance.

    Science.gov (United States)

    Jeukens, Cécile R L P N; Vlooswijk, Mariëlle C G; Majoie, H J Marian; de Krom, Marc C T F M; Aldenkamp, Albert P; Hofman, Paul A M; Jansen, Jacobus F A; Backes, Walter H

    2009-09-01

    Although volumetry of the hippocampus is considered to be an established technique, protocols reported in literature are not described in great detail. This article provides a complete and detailed protocol for hippocampal volumetry applicable to T1-weighted magnetic resonance (MR) images acquired at 3 Tesla, which has become the standard for structural brain research. The protocol encompasses T1-weighted image acquisition at 3 Tesla, anatomic guidelines for manual hippocampus delineation, requirements of delineation software, reliability measures, and criteria to assess and ensure sufficient reliability. Moreover, the validity of the correction for total intracranial volume size was critically assessed. The protocol was applied by 2 readers to the MR images of 36 patients with cryptogenic localization-related epilepsy, 4 patients with unilateral hippocampal sclerosis, and 20 healthy control subjects. The uncorrected hippocampal volumes were 2923 +/- 500 mm3 (mean +/- SD) (left) and 3120 +/- 416 mm3 (right) for the patient group and 3185 +/- 411 mm3 (left) and 3302 +/- 411 mm3 (right) for the healthy control group. The volume of the 4 pathologic hippocampi of the patients with unilateral hippocampal sclerosis was 2980 +/- 422 mm3. The inter-reader reliability values were determined: intraclass-correlation-coefficient (ICC) = 0.87 (left) and 0.86 (right), percentage volume difference (VD) = 7.0 +/- 4.7% (left) and 6.0 +/- 3.8% (right), and overlap ratio (OR) = 0.82 +/- 0.04 (left) and 0.82 +/- 0.03 (right). The positive Pearson correlation between hippocampal volume and total intracranial volume was found to be low: r = 0.48 (P = 0.03, left) and r = 0.62 (P = 0.004, right) and did not significantly reduce the volumetric variances, showing the limited benefit of the brain size correction. A protocol was described to determine hippocampal volumes based on 3 Tesla MR images with high inter-reader reliability. Although the reliability of hippocampal volumetry at 3 Tesla

  2. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder

    DEFF Research Database (Denmark)

    Ahdidan, Jamila; Foldager, Leslie; Rosenberg, Raben

    2013-01-01

    Objective: The main aim of the present study was to replicate a previous finding in major depressive disorder (MDD) of association between reduced hippocampal volume and the long variant of the di- and triallelic serotonin transporter polymorphism in SLC6A4 on chromosome 17q11.2. Secondarily, we...... that we aimed to replicate, and no significant associations with the serotonin transporter polymorphism were found. Conclusions: The present quantitative and morphometric MRI study was not able to replicate the previous finding of association between reduced hippocampal volume in depressed patients...... and the serotonin transporter polymorphism....

  3. Inhibitory effects of caffeine on hippocampal neurogenesis and function.

    Science.gov (United States)

    Han, Myoung-Eun; Park, Kyu-Hyun; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Kim, Hak-Jin; Oh, Sae-Ock

    2007-05-18

    Caffeine is one of the most extensively consumed psychostimulants in the world. However, compared to short-term effects of caffeine, the long-term effects of caffeine consumption on learning and memory are poorly characterized. The present study found that long-term consumption of low dose caffeine (0.3 g/L) slowed hippocampus-dependent learning and impaired long-term memory. Caffeine consumption for 4 weeks also significantly reduced hippocampal neurogenesis compared to controls. From these results, we concluded that long-term consumption of caffeine could inhibit hippocampus-dependent learning and memory partially through inhibition of hippocampal neurogenesis.

  4. Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer's disease in vivo.

    Directory of Open Access Journals (Sweden)

    Katherine E Davis

    Full Text Available Mouse Alzheimer's disease (AD models develop age- and region-specific pathology throughout the hippocampal formation. One recently established pathological correlate is an increase in hippocampal excitability in vivo. Hippocampal pathology also produces episodic memory decline in human AD and we have shown a similar episodic deficit in 3xTg AD model mice aged 3-6 months. Here, we tested whether hippocampal synaptic dysfunction accompanies this cognitive deficit by probing dorsal CA1 and DG synaptic responses in anaesthetized, 4-6 month-old 3xTgAD mice. As our previous reports highlighted a decline in episodic performance in aged control mice, we included aged cohorts for comparison. CA1 and DG responses to low-frequency perforant path stimulation were comparable between 3xTgAD and controls at both age ranges. As expected, DG recordings in controls showed paired-pulse depression; however, paired-pulse facilitation was observed in DG and CA1 of young and old 3xTgAD mice. During stimulus trains both short-latency (presumably monosynaptic: 'direct' and long-latency (presumably polysynaptic: 're-entrant' responses were observed. Facilitation of direct responses was modest in 3xTgAD animals. However, re-entrant responses in DG and CA1 of young 3xTgAD mice developed earlier in the stimulus train and with larger amplitude when compared to controls. Old mice showed less DG paired-pulse depression and no evidence for re-entrance. In summary, DG and CA1 responses to low-frequency stimulation in all groups were comparable, suggesting no loss of synaptic connectivity in 3xTgAD mice. However, higher-frequency activation revealed complex change in synaptic excitability in DG and CA1 of 3xTgAD mice. In particular, short-term plasticity in DG and CA1 was facilitated in 3xTgAD mice, most evidently in younger animals. In addition, re-entrance was facilitated in young 3xTgAD mice. Overall, these data suggest that the episodic-like memory deficit in 3xTgAD mice

  5. DNA methylation regulates neurophysiological spatial representation in memory formation

    Directory of Open Access Journals (Sweden)

    Eric D. Roth

    2015-04-01

    Full Text Available Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here, we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single-unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together, our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  6. DNA methylation regulates neurophysiological spatial representation in memory formation.

    Science.gov (United States)

    Roth, Eric D; Roth, Tania L; Money, Kelli M; SenGupta, Sonda; Eason, Dawn E; Sweatt, J David

    2015-04-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  7. Intranasal oxytocin enhances socially-reinforced learning in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Lisa A Parr

    2014-09-01

    Full Text Available There are currently no drugs approved for the treatment of social deficits associated with autism spectrum disorders (ASD. One hypothesis for these deficits is that individuals with ASD lack the motivation to attend to social cues because those cues are not implicitly rewarding. Therefore, any drug that could enhance the rewarding quality of social stimuli could have a profound impact on the treatment of ASD, and other social disorders. Oxytocin (OT is a neuropeptide that has been effective in enhancing social cognition and social reward in humans. The present study examined the ability of OT to selectively enhance learning after social compared to nonsocial reward in rhesus monkeys, an important species for modeling the neurobiology of social behavior in humans. Monkeys were required to learn an implicit visual matching task after receiving either intranasal (IN OT or Placebo (saline. Correct trials were rewarded with the presentation of positive and negative social (play faces/threat faces or nonsocial (banana/cage locks stimuli, plus food. Incorrect trials were not rewarded. Results demonstrated a strong effect of socially-reinforced learning, monkeys’ performed significantly better when reinforced with social versus nonsocial stimuli. Additionally, socially-reinforced learning was significantly better and occurred faster after IN-OT compared to placebo treatment. Performance in the IN-OT, but not Placebo, condition was also significantly better when the reinforcement stimuli were emotionally positive compared to negative facial expressions. These data support the hypothesis that OT may function to enhance prosocial behavior in primates by increasing the rewarding quality of emotionally positive, social compared to emotionally negative or nonsocial images. These data also support the use of the rhesus monkey as a model for exploring the neurobiological basis of social behavior and its impairment.

  8. Derivation and characterization of monkey embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2004-06-01

    Full Text Available Abstract Embryonic stem (ES cell based therapy carries great potential in the treatment of neurodegenerative diseases. However, before clinical application is realized, the safety, efficacy and feasibility of this therapeutic approach must be established in animal models. The rhesus macaque is physiologically and phylogenetically similar to the human, and therefore, is a clinically relevant animal model for biomedical research, especially that focused on neurodegenerative conditions. Undifferentiated monkey ES cells can be maintained in a pluripotent state for many passages, as characterized by a collective repertoire of markers representing embryonic cell surface molecules, enzymes and transcriptional factors. They can also be differentiated into lineage-specific phenotypes of all three embryonic germ layers by epigenetic protocols. For cell-based therapy, however, the quality of ES cells and their progeny must be ensured during the process of ES cell propagation and differentiation. While only a limited number of primate ES cell lines have been studied, it is likely that substantial inter-line variability exists. This implies that diverse ES cell lines may differ in developmental stages, lineage commitment, karyotypic normalcy, gene expression, or differentiation potential. These variables, inherited genetically and/or induced epigenetically, carry obvious complications to therapeutic applications. Our laboratory has characterized and isolated rhesus monkey ES cell lines from in vitro produced blastocysts. All tested cell lines carry the potential to form pluripotent embryoid bodies and nestin-positive progenitor cells. These ES cell progeny can be differentiated into phenotypes representing the endodermal, mesodermal and ectodermal lineages. This review article describes the derivation of monkey ES cell lines, characterization of the undifferentiated phenotype, and their differentiation into lineage-specific, particularly neural, phenotypes

  9. The nucleus pararaphales in the human, chimpanzee, and macaque monkey.

    Science.gov (United States)

    Baizer, Joan S; Weinstock, Nadav; Witelson, Sandra F; Sherwood, Chet C; Hof, Patrick R

    2013-03-01

    The human cerebral cortex and cerebellum are greatly expanded compared to those of other mammals, including the great apes. This expansion is reflected in differences in the size and organization of precerebellar brainstem structures, such as the inferior olive. In addition, there are cell groups unique to the human brainstem. One such group may be the nucleus pararaphales (PRa); however, there is disagreement among authors about the size and location of this nucleus in the human brainstem. The name "pararaphales" has also been used for neurons in the medulla shown to project to the flocculus in the macaque monkey. We have re-examined the existence and status of the PRa in eight humans, three chimpanzees, and four macaque monkeys using Nissl-stained sections as well as immunohistochemistry. In the human we found a cell group along the midline of the medulla in all cases; it had the form of interrupted cell columns and was variable among cases in rostrocaudal and dorsoventral extent. Cells and processes were highly immunoreactive for non-phosphorylated neurofilament protein (NPNFP); somata were immunoreactive to the synthetic enzyme for nitric oxide, nitric oxide synthase, and for calretinin. In macaque monkey, there was a much smaller oval cell group with NPNFP immunoreactivity. In the chimpanzee, we found a region of NPNFP-immunoreactive cells and fibers similar to what was observed in macaques. These results suggest that the "PRa" in the human may not be the same structure as the flocculus-projecting cell group described in the macaque. The PRa, like the arcuate nucleus, therefore may be unique to humans.

  10. Traditions in spider monkeys are biased towards the social domain.

    Directory of Open Access Journals (Sweden)

    Claire J Santorelli

    Full Text Available Cross-site comparison studies of behavioral variation can provide evidence for traditions in wild species once ecological and genetic factors are excluded as causes for cross-site differences. These studies ensure behavior variants are considered within the context of a species' ecology and evolutionary adaptations. We examined wide-scale geographic variation in the behavior of spider monkeys (Ateles geoffroyi across five long-term field sites in Central America using a well established ethnographic cross-site survey method. Spider monkeys possess a relatively rare social system with a high degree of fission-fusion dynamics, also typical of chimpanzees (Pan troglodytes and humans (Homo sapiens. From the initial 62 behaviors surveyed 65% failed to meet the necessary criteria for traditions. The remaining 22 behaviors showed cross-site variation in occurrence ranging from absent through to customary, representing to our knowledge, the first documented cases of traditions in this taxon and only the second case of multiple traditions in a New World monkey species. Of the 22 behavioral variants recorded across all sites, on average 57% occurred in the social domain, 19% in food-related domains and 24% in other domains. This social bias contrasts with the food-related bias reported in great ape cross-site comparison studies and has implications for the evolution of human culture. No pattern of geographical radiation was found in relation to distance across sites. Our findings promote A. geoffroyi as a model species to investigate traditions with field and captive based experiments and emphasize the importance of the social domain for the study of animal traditions.

  11. The effects of tradition on problem solving by two wild populations of bearded capuchin monkeys in a probing task.

    Science.gov (United States)

    Cardoso, Raphael Moura; Ottoni, Eduardo B

    2016-11-01

    The effects of culture on individual cognition have become a core issue among cultural primatologists. Field studies with wild populations provide evidence on the role of social cues in the ontogeny of tool use in non-human primates, and on the transmission of such behaviours over generations through socially biased learning. Recent experimental studies have shown that cultural knowledge may influence problem solving in wild populations of chimpanzees. Here, we present the results from a field experiment comparing the performance of bearded capuchin monkeys (Sapajus libidinosus) from two wild savannah populations with distinct toolkits in a probing task. Only the population that already exhibited the customary use of probing tools succeeded in solving the new problem, suggesting that their cultural repertoire shaped their approach to the new task. Moreover, only this population, which uses stone tools in a broader range of contexts, tried to use them to solve the problem. Social interactions can affect the formation of learning sets and they affect the performance of the monkeys in problem solving. We suggest that behavioural traditions affect the ways non-human primates solve novel foraging problems using tools. © 2016 The Author(s).

  12. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    Science.gov (United States)

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. ‘‘What's wrong with my monkey?''

    DEFF Research Database (Denmark)

    Olsson, I. Anna S.; Sandøe, Peter

    2010-01-01

    in marmosets in some areas of research. The mainstream, broadly utilitarian view of animal research suggests that such a transition will not give rise to greater ethical problems than those presently faced. It can be argued that using marmosets rather than mice will not result in more animal suffering......, readily available in the way that transgenic laboratory mice are currently, prompts excitement in the scientific community; but the idea of monkeys being bred to carry diseases is also contentious. We structure an ethical analysis of the transgenic marmoset case around three questions: whether...

  14. Aggression and conflict management at fusion in spider monkeys.

    Science.gov (United States)

    Aureli, Filippo; Schaffner, Colleen M

    2007-04-22

    In social systems characterized by a high degree of fission-fusion dynamics, members of a large community are rarely all together, spending most of their time in smaller subgroups with flexible membership. Although fissioning into smaller subgroups is believed to reduce conflict among community members, fusions may create conflict among individuals from joining subgroups. Here, we present evidence for aggressive escalation at fusion and its mitigation by the use of embraces in wild spider monkeys (Ateles geoffroyi). Our findings provide the first systematic evidence for conflict management at fusion and may have implications for the function of human greetings.

  15. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    Science.gov (United States)

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as

  16. Emesis in monkeys following exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Middleton, G.R.; Young, R.W.

    1975-01-01

    There were 129 male rhesus monkeys (Macaca mulatta) exposed to prompt radiations (neutron/gamma = 0.4 and pulse width = 50 ms) ranging from 700 to 5600 rad (midhead dose). The animals were fasted 18 h preexposure and observed for incidence of vomiting for 2 h postexposure. For doses less than 1000 rads, the number of animals that vomited increased directly with dose. Above 1000 rads, the number of animals that vomited decreased with increasing dose. The total number of vomits per dose group followed a nearly identical pattern to the incidence of emesis. In all dose groups, most of the emetic episodes occurred between 20 and 50 min postirradiation

  17. The rhesus monkey (Macaca mulatta) as a flight candidate

    Science.gov (United States)

    Debourne, M. N. G.; Bourne, G. H.; Mcclure, H. M.

    1977-01-01

    The intelligence and ruggedness of rhesus monkeys, as well as the abundance of normative data on their anatomy, physiology, and biochemistry, and the availability of captive bred animals qualify them for selection as candidates for orbital flight and weightlessness studies. Baseline data discussed include: physical characteristics, auditory thresholds, visual accuity, blood, serological taxomony, immunogenetics, cytogenics, circadian rhythms, respiration, cardiovascular values, corticosteroid response to charr restraint, microscopy of tissues, pathology, nutrition, and learning skills. Results from various tests used to establish the baseline data are presented in tables.

  18. [Hybrids of human and monkey adenoviruses (adeno-adeno hybrids) that can reproduce in monkey cells: biological and molecular genetic peculiarities].

    Science.gov (United States)

    Grinenko, N F; Savitskaia, N V; Pashvykina, G V; Al'tshteĭn, A D

    2003-06-01

    A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.

  19. The Effect of Extremely Low Frequency Electromagnetic Fields on Visual Learning & Memory and Anatomical Structures of the Brain in Male Rhesus Monkeys

    Directory of Open Access Journals (Sweden)

    Elahe Tekieh

    2018-04-01

    Full Text Available Background: Humans in modern societies expose to substantially elevated levels of electromagnetic field (EMF emissions with different frequencies.The neurobiological effects of EMF have been the subject of debate and intensive research over the past few decades. Therefore, we evaluated the effects of EMF on visual learning and anatomical dimensions of the hippocampus and the prefrontal area (PFA in male Rhesus monkeys. Materials and Methods:In this study, four rhesus monkeys were irradiated by 0.7 microtesla ELF-EMF either at 5 or 30 Hz, 4 h a day, for 30 days. Alterations in visual learning and memory were assessed before and after irradiation phase by using a box designed that cchallenging animals for gaining rewards Also, the monkeys’ brains were scanned by using MRI technique one week before and one week after irradiation. The monkeys were anesthetized by intramuscular injection of ketamine hydrochloride (10–20 mg/kg and xylazine (0.2–0.4 mg/kg, and scanned with a 3-Tesla Magnetom, in axial, sagittal, and coronal planes using T2 weight­ed protocol with a slice thickness of 3 mm. The anatomical changes of hippocampus and the prefrontal area (PFA was measured by volumetric study. Results: Electromagnetic field exposure at a frequency of 30 Hz reduced the number of correct responses in the learning process and delayed memory formation in the two tested monkeys. While, ELF-EMF at 5 Hz had no effect on the visual learning and memory changes. No anatomical changes were found in the prefrontal area and the hippocampus at both frequencies. Conclusion: ELF-EMF irradiation at 30 Hz adversely affected visual learning and memory, pprobably through these changes apply through effects on other factors except changes in brain structure and anatomy.

  20. The Monkey Puzzle: A Systematic Review of Studies of Stress, Social Hierarchies, and Heart Disease in Monkeys

    Science.gov (United States)

    Petticrew, Mark; Davey Smith, George

    2012-01-01

    Background It is often suggested that psychosocial factors, such as stress, or one's social position, may play an important role in producing social gradients in human disease. Evidence in favour of this model of health inequalities has relied, in part, on studies of the health effects of the natural social hierarchies found among non-human primates. This study aimed to assess the strength of this evidence. Methodology/Principal Findings A systematic review was carried out to identify all studies of psychosocial factors and coronary artery disease (CAD) in non-human primates. We searched databases (MEDLINE, PsycInfo, EMBASE, and Primatelit from inception to November 2010) to identify experimental and observational studies of the impact of social reorganisation, social instability, and disruption of dominance hierarchies on primate CAD outcomes. We also handsearched bibliographies and examined the citations to those studies in public health articles. Fourteen studies were found which presented evidence on CAD and social status and/or psychosocial stress. These suggested that the association between social status and disease may be sex-specific: in female monkeys dominant status may be protective, with subordinate females having a greater extent of atherosclerosis. In male monkeys the reverse may be the case. Conclusions/Significance Overall, non-human primate studies present only limited evidence for an association between social status and CAD, Despite this, there is selective citation of individual non-human primate studies in reviews and commentaries relating to human disease aetiology. Such generalisation of data from monkey studies to human societies does not appear warranted. PMID:22470414

  1. Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress.

    Directory of Open Access Journals (Sweden)

    Peter Vestergaard-Poulsen

    Full Text Available Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.

  2. Ripples Make Waves: Binding Structured Activity and Plasticity in Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Josef H. L. P. Sadowski

    2011-01-01

    Full Text Available Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus.

  3. Impaired Odor Recognition Memory in Patients with Hippocampal Lesions

    Science.gov (United States)

    Levy, Daniel A.; Squire, Larry R.; Hopkins, Ramona O.

    2004-01-01

    In humans, impaired recognition memory following lesions thought to be limited to the hippocampal region has been demonstrated for a wide variety of tasks. However, the importance of the human hippocampus for olfactory recognition memory has scarcely been explored. We evaluated the ability of memory-impaired patients with damage thought to be…

  4. Evaluating Alzheimer's disease progression using rate of regional hippocampal atrophy.

    Directory of Open Access Journals (Sweden)

    Edit Frankó

    Full Text Available Alzheimer's disease (AD is characterized by neurofibrillary tangle and neuropil thread deposition, which ultimately results in neuronal loss. A large number of magnetic resonance imaging studies have reported a smaller hippocampus in AD patients as compared to healthy elderlies. Even though this difference is often interpreted as atrophy, it is only an indirect measurement. A more direct way of measuring the atrophy is to use repeated MRIs within the same individual. Even though several groups have used this appropriate approach, the pattern of hippocampal atrophy still remains unclear and difficult to relate to underlying pathophysiology. Here, in this longitudinal study, we aimed to map hippocampal atrophy rates in patients with AD, mild cognitive impairment (MCI and elderly controls. Data consisted of two MRI scans for each subject. The symmetric deformation field between the first and the second MRI was computed and mapped onto the three-dimensional hippocampal surface. The pattern of atrophy rate was similar in all three groups, but the rate was significantly higher in patients with AD than in control subjects. We also found higher atrophy rates in progressive MCI patients as compared to stable MCI, particularly in the antero-lateral portion of the right hippocampus. Importantly, the regions showing the highest atrophy rate correspond to those that were described to have the highest burden of tau deposition. Our results show that local hippocampal atrophy rate is a reliable biomarker of disease stage and progression and could also be considered as a method to objectively evaluate treatment effects.

  5. PirB regulates asymmetries in hippocampal circuitry.

    Directory of Open Access Journals (Sweden)

    Hikari Ukai

    Full Text Available Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B. By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB, an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.

  6. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  7. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention.

    Science.gov (United States)

    Kim, Ah Hyun; Chun, Hye Jeong; Lee, Seulah; Kim, Hyung Sik; Lee, Jaewon

    2017-08-01

    Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is commonly used in commercial and household products, such as, computers, televisions, mobile phones, and electronic boards. TBBPA can accumulate in human body fluids, and it has been reported that TBBPA possesses endocrine disruptive activity. However, the neurotoxic effect of TBBPA on hippocampal neurogenesis has not yet been investigated. Accordingly, the present study was undertaken to evaluate the effect of TBBPA on adult hippocampal neurogenesis and cognitive function. Male C57BL/6 mice were orally administrated vehicle or TBBPA (20 mg/kg, 100 mg/kg, or 500 mg/kg daily) for two weeks. TBBPA was observed to significantly and dose-dependently reduce the survival of newly generated cells in the hippocampus but not to affect the proliferation of newly generated cells. Numbers of hippocampal BrdU and NeuN positive cells were dose-dependently reduced by TBBPA, indicating impaired neurogenesis in the hippocampus. Interestingly, glial activation without neuronal death was observed in hippocampi exposed to TBBPA. Furthermore, memory retention was found to be adversely affected by TBBPA exposure by a mechanism involving suppression of the BDNF-CREB signaling pathway. The study suggests high dose TBBPA disrupts hippocampal neurogenesis and induces associated memory deficits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  9. Early detection of Alzheimer's disease using MRI hippocampal texture

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Igel, Christian; Hansen, Naja Liv

    2016-01-01

    the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = −0.25, p ...

  10. Hippocampal declarative memory supports gesture production: Evidence from amnesia.

    Science.gov (United States)

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2016-12-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action - supported by motor areas of the brain - is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. HIPPOCAMPAL SCLEROSIS IN EPILEPSY AND CHILDHOOD FEBRILE SEIZURES

    NARCIS (Netherlands)

    KUKS, JBM; COOK, MJ; FISH, DR; STEVENS, JM; SHORVON, SD

    1993-01-01

    The connection between hippocampal sclerosis and childhood febrile seizures (CFS) is a contentious issue in the study of epilepsy. We investigated 107 patients with drug-resistant epilepsy by high-resolution volumetric magnetic resonance imaging (MRI). 20 had a history of CFS, 45 had focal (26) or

  12. Adult hippocampal neurogenesis in natural populations of mammals.

    Science.gov (United States)

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    Science.gov (United States)

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  14. Hippocampal development in youth with a history of childhood maltreatment.

    Science.gov (United States)

    Paquola, Casey; Bennett, Maxwell R; Hatton, Sean N; Hermens, Daniel F; Groote, Inge; Lagopoulos, Jim

    2017-08-01

    Childhood maltreatment (CM) is associated with enhanced risk of psychiatric illness and reduced subcortical grey matter in adulthood. The hippocampus and amygdala, due to their involvement in stress and emotion circuitries, have been subject to extensive investigations regarding the effect of CM. However, the complex relationship between CM, subcortical grey matter and mental illness remains poorly understood partially due to a lack of longitudinal studies. Here we used segmentation and linear mixed effect modelling to examine the impact of CM on hippocampal and amygdala development in young people with emerging mental illness. A total of 215 structural magnetic resonance imaging (MRI) scans were acquired from 123 individuals (age: 14-28 years, 79 female), 52 of whom were scanned twice or more. Hippocampal and amygdala volumes increased linearly with age, and their developmental trajectories were not moderated by symptom severity. However, exposure to CM was associated with significantly stunted right hippocampal growth. This finding bridges the gap between child and adult research in the field and provides novel evidence that CM is associated with disrupted hippocampal development in youth. Although CM was associated with worse symptom severity, we did not find evidence that CM-induced structural abnormalities directly underpin psychopathology. This study has important implications for the psychiatric treatment of individuals with CM since they are clinically and neurobiologically distinct from their peers who were not maltreated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice.

    Science.gov (United States)

    Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M

    2016-07-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Evaluation of 89 compounds for identification of substrates for cynomolgus monkey CYP2C76, a new bupropion/nifedipine oxidase.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Shimizu, Makiko; Uehara, Shotaro; Fujino, Hideki; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-01-01

    Cynomolgus monkeys are widely used in preclinical studies during drug development because of their evolutionary closeness to humans, including their cytochrome P450s (P450s). Most cynomolgus monkey P450s are almost identical (≥90%) to human P450s; however, CYP2C76 has low sequence identity (approximately 80%) to any human CYP2Cs. Although CYP2C76 has no ortholog in humans and is partly responsible for species differences in drug metabolism between cynomolgus monkeys and humans, a broad evaluation of potential substrates for CYP2C76 has not yet been conducted. In this study, a screening of 89 marketed compounds, including human CYP2C and non-CYP2C substrates or inhibitors, was conducted to find potential CYP2C76 substrates. Among the compounds screened, 19 chemicals were identified as substrates for CYP2C76, including substrates for human CYP1A2 (7-ethoxyresorufin), CYP2B6 (bupropion), CYP2D6 (dextromethorphan), and CYP3A4/5 (dextromethorphan and nifedipine), and inhibitors for CYP2B6 (sertraline, clopidogrel, and ticlopidine), CYP2C8 (quercetin), CYP2C19 (ticlopidine and nootkatone), and CYP3A4/5 (troleandomycin). CYP2C76 metabolized a wide variety of the compounds with diverse structures. Among them, bupropion and nifedipine showed high selectivity to CYP2C76. As for nifedipine, CYP2C76 formed methylhydroxylated nifedipine, which was not produced by monkey CYP2C9, CYP2C19, or CYP3A4, as identified by mass spectrometry and estimated by a molecular docking simulation. This unique oxidative metabolite formation of nifedipine could be one of the selective marker reactions of CYP2C76 among the major CYP2Cs and CYP3As tested. These results suggest that monkey CYP2C76 contributes to bupropion hydroxylation and formation of different nifedipine oxidative metabolites as a result of its relatively large substrate cavity. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Lentivirus-mediated RNA interference of vascular endothelial growth factor in monkey eyes with iris neovascularization.

    Science.gov (United States)

    Yuan, Meng-Ke; Tao, Yong; Yu, Wen-Zhen; Kai, Wang; Jiang, Yan-Rong

    2010-08-25

    To explore the in vivo anti-angiogenesis effects resulting from lentivirus-mediated RNAi of vascular endothelial growth factor (VEGF) in monkeys with iris neovascularization (INV). Five specific recombinant lentiviral vectors for RNA interference, targeting Macaca mulatta VEGFA, were designed and the one with best knock down efficacy (LV-GFP-VEGFi1) in H1299 cells and RF/6A cells was selected by real-time PCR for in vivo use. A laser-induced retinal vein occlusion model was established in one eye of seven cynomolgus monkeys. In monkeys number 1, 3, and 5 (Group 1), the virus (1x10(8) particles) was intravitreally injected into the preretinal space of the animal's eye immediately after laser coagulation; and in monkeys number 2, 4, and 6 (Group 2), the virus (1x10(8) particles) was injected at 10 days after laser coagulation. In monkey number 7, a blank control injection was performed. In monkeys number 1 and 2, virus without RNAi sequence was used; in monkeys number 3 and 4, virus with nonspecific RNAi sequence was used; and in monkeys 5 and 6, LV-GFP-VEGFi1 was used. In monkey number 5, at 23 days after laser treatment, no obvious INV was observed, while fluorescein angiography of the iris revealed high fluorescence at the margin of pupil and point posterior synechiae. At 50 days after laser treatment, only a slight ectropion uvea was found. However, in the other eyes, obvious INV or hyphema was observed. The densities of new iridic vessels all significantly varied: between monkey number 5 and number 3 (36.01+/-4.49/mm(2) versus 48.68+/-9.30/mm(2), p=0.025), between monkey number 3 and monkey number 7 (48.68+/-9.30/mm(2) versus 74.38+/-9.23/mm(2), p=0.002), and between monkey number 5 and number 7 (36.01+/-4.49/mm(2) versus 74.38+/-9.23/mm(2), p<0.001). Lentivirus-mediated RNAi of VEGF may be a new strategy to treat iris neovascularization, while further studies are needed to investigate the long-term effect.

  18. Intersection of reward and memory in monkey rhinal cortex.

    Science.gov (United States)

    Clark, Andrew M; Bouret, Sebastien; Young, Adrienne M; Richmond, Barry J

    2012-05-16

    In humans and other animals, the vigor with which a reward is pursued depends on its desirability, that is, on the reward's predicted value. Predicted value is generally context-dependent, varying according to the value of rewards obtained in the recent and distant past. Signals related to reward prediction and valuation are believed to be encoded in a circuit centered around midbrain dopamine neurons and their targets in the prefrontal cortex and basal ganglia. Notably absent from this hypothesized reward pathway are dopaminergic targets in the medial temporal lobe. Here we show that a key part of the medial temporal lobe memory system previously reported to be important for sensory mnemonic and perceptual processing, the rhinal cortex (Rh), is required for using memories of previous reward values to predict the value of forthcoming rewards. We tested monkeys with bilateral Rh lesions on a task in which reward size varied across blocks of uncued trials. In this experiment, the only cues for predicting current reward value are the sizes of rewards delivered in previous blocks. Unexpectedly, monkeys with Rh ablations, but not intact controls, were insensitive to differences in predicted reward, responding as if they expected all rewards to be of equal magnitude. Thus, it appears that Rh is critical for using memory of previous rewards to predict the value of forthcoming rewards. These results are in agreement with accumulating evidence that Rh is critical for establishing the relationships between temporally interleaved events, which is a key element of episodic memory.

  19. Meaningful gesture in monkeys? Investigating whether mandrills create social culture.

    Directory of Open Access Journals (Sweden)

    Mark E Laidre

    Full Text Available BACKGROUND: Human societies exhibit a rich array of gestures with cultural origins. Often these gestures are found exclusively in local populations, where their meaning has been crafted by a community into a shared convention. In nonhuman primates like African monkeys, little evidence exists for such culturally-conventionalized gestures. METHODOLOGY/PRINCIPAL FINDINGS: Here I report a striking gesture unique to a single community of mandrills (Mandrillus sphinx among nineteen studied across North America, Africa, and Europe. The gesture was found within a community of 23 mandrills where individuals old and young, female and male covered their eyes with their hands for periods which could exceed 30 min, often while simultaneously raising their elbow prominently into the air. This 'Eye covering' gesture has been performed within the community for a decade, enduring deaths, removals, and births, and it persists into the present. Differential responses to Eye covering versus controls suggested that the gesture might have a locally-respected meaning, potentially functioning over a distance to inhibit interruptions as a 'do not disturb' sign operates. CONCLUSIONS/SIGNIFICANCE: The creation of this gesture by monkeys suggests that the ability to cultivate shared meanings using novel manual acts may be distributed more broadly beyond the human species. Although logistically difficult with primates, the translocation of gesturers between communities remains critical to experimentally establishing the possible cultural origin and transmission of nonhuman gestures.

  20. Bimatoprost Effects on Aqueous Humor Dynamics in Monkeys

    Directory of Open Access Journals (Sweden)

    David F. Woodward

    2010-01-01

    Full Text Available The effects of bimatoprost on aqueous humor dynamics were quantified in monkey eyes. Uveoscleral outflow was measured by the anterior chamber perfusion method, using FITC-dextran. Total outflow facility was determined by the two-level constant pressure method. Aqueous flow was measured with a scanning ocular fluorophotometer. Uveoscleral outflow was 0.96±0.19 L min−1 in vehicle-treated eyes and 1.37±0.27 L min−1 (=6; <.05 in eyes that received bimatoprost 0.01% b.i.d. × 5 days. Bimatoprost had no effect on total outflow facility, which was 0.42±0.05 L min−1 at baseline and 0.42±0.04 L min−1 after bimatoprost treatment. Bimatoprost had no significant effect on aqueous humor flow. This study demonstrates that bimatoprost increases uveoscleral outflow but not total outflow facility or aqueous humor flow, indicating that it lowers intraocular pressure in ocular normotensive monkeys by a mechanism that exclusively involves uveoscleral outflow.

  1. Electrical Microstimulation of the Superior Colliculus in Strabismic Monkeys.

    Science.gov (United States)

    Fleuriet, Jérome; Walton, Mark M G; Ono, Seiji; Mustari, Michael J

    2016-06-01

    Visually guided saccades are disconjugate in human and nonhuman strabismic primates. The superior colliculus (SC) is a region of the brain topographically organized in visual and motor maps where the saccade goal is spatially coded. The present study was designed to investigate if a site of stimulation on the topographic motor map was evoking similar or different saccade vectors for each eye. We used microelectrical stimulation (MS) of the SC in two strabismic (one esotrope and one exotrope) and two control macaques under binocular and monocular viewing conditions. We compared the saccade amplitudes and directions for each SC site and each condition independently of the fixating eye and then between each fixating eye. A comparison with disconjugacies of visually guided saccades was also performed. We observed different saccade vectors for the two eyes in strabismic monkeys, but conjugate saccades in normal monkeys. Evoked saccade vectors for the left eye when that eye was fixating the target were different from those of the right eye when it was fixating. The disconjugacies evoked by the MS were not identical but similar to those observed for visually guided saccades especially for the dominant eye. Our results suggest that, in strabismus, the saccade generator does not interpret activation of a single location of the SC as the same desired displacement for each eye. This finding is important for advancing understanding of the development of neural circuits in strabismus. French Abstract.

  2. Color discrimination in the tufted capuchin monkey, Sapajus spp.

    Science.gov (United States)

    Goulart, Paulo Roney Kilpp; Bonci, Daniela Maria Oliveira; Galvão, Olavo de Faria; Silveira, Luiz Carlos de Lima; Ventura, Dora Fix

    2013-01-01

    The present study evaluated the efficacy of an adapted version of the Mollon-Reffin test for the behavioral investigation of color vision in capuchin monkeys. Ten tufted capuchin monkeys (Sapajus spp., formerly referred to as Cebus apella) had their DNA analyzed and were characterized as the following: one trichromat female, seven deuteranope dichromats (six males and one female), and two protanope males, one of which was identified as an "ML protanope." For their behavioral characterization, all of the subjects were tested at three regions of the Commission International de l'Eclairage (CIE) 1976 u'v' diagram, with each test consisting of 20 chromatic variation vectors that were radially distributed around the chromaticity point set as the test background. The phenotypes inferred from the behavioral data were in complete agreement with those predicted from the genetic analysis, with the threshold distribution clearly differentiating between trichromats and dichromats and the estimated confusion lines characteristically converging for deuteranopes and the "classic" protanope. The discrimination pattern of the ML protanope was intermediate between protan and deutan, with confusion lines horizontally oriented and parallel to each other. The observed phenotypic differentiation confirmed the efficacy of the Mollon-Reffin test paradigm as a useful tool for evaluating color discrimination in nonhuman primates. Especially noteworthy was the demonstration of behavioral segregation between the "classic" and "ML" protanopes, suggesting identifiable behavioral consequences of even slight variations in the spectral sensitivity of M/L photopigments in dichromats.

  3. Two processes support visual recognition memory in rhesus monkeys.

    Science.gov (United States)

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-11-29

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans.

  4. Monkeys fail to reciprocate in an exchange task.

    Science.gov (United States)

    Pelé, Marie; Thierry, Bernard; Call, Josep; Dufour, Valérie

    2010-09-01

    Exchanges form the basis of human economies. Animals too can engage in reciprocal interactions but they do not barter goods like humans, which raises the question of the abilities necessary for trading to occur. Previous studies have shown that non-human primates can exchange food with human partners. Here, we tested the ability of brown capuchin monkeys and Tonkean macaques to reciprocate in a task requiring two conspecifics to exchange tokens in order to obtain rewards from an experimenter. We recorded 56 transfers between subjects in capuchin monkeys and 10 in Tonkean macaques. All transfers were passive in both species. Capuchins preferentially picked up tokens valuable for them in the partner's compartment. They tended to manipulate the partner-valued tokens more often than the no-value ones, leading to more opportunities for these tokens to end up within reach of the partner. Despite optimal conditions where values of goods were defined and known by partners, however, none of the pairs tested engaged in short-term reciprocal interactions. These results indicate that calculated reciprocity was difficult if not impossible in the animals tested.