WorldWideScience

Sample records for monitors spurious signals

  1. Spurious RF signals emitted by mini-UAVs

    Science.gov (United States)

    Schleijpen, Ric (H. M. A.); Voogt, Vincent; Zwamborn, Peter; van den Oever, Jaap

    2016-10-01

    This paper presents experimental work on the detection of spurious RF emissions of mini Unmanned Aerial Vehicles (mini-UAV). Many recent events have shown that mini-UAVs can be considered as a potential threat for civil security. For this reason the detection of mini-UAVs has become of interest to the sensor community. The detection, classification and identification chain can take advantage of different sensor technologies. Apart from the signatures used by radar and electro-optical sensor systems, the UAV also emits RF signals. These RF signatures can be split in intentional signals for communication with the operator and un-intentional RF signals emitted by the UAV. These unintentional or spurious RF emissions are very weak but could be used to discriminate potential UAV detections from false alarms. The goal of this research was to assess the potential of exploiting spurious emissions in the classification and identification chain of mini-UAVs. It was already known that spurious signals are very weak, but the focus was on the question whether the emission pattern could be correlated to the behaviour of the UAV. In this paper experimental examples of spurious RF emission for different types of mini-UAVs and their correlation with the electronic circuits in the UAVs will be shown

  2. A new type of spurious reading in TL personnel monitoring

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Stadtmann, H.; Strachotinsky, Ch.; Winker, N.

    1996-01-01

    A particularly serious type of spurious reading in automated TL personnel monitoring has been observed. These readings simulate dose values up to several mSv and can only be detected by glow curve analysis. Characteristics for these events are high artifical dose values and irregular glow curves of a particular shape. Extensive investigations to reproduce this effect purposely failed to produce any results. It can be assumed, however, that it must be some chemical surface contamination, which penetrates the sealed dosemeter bag or which is transferred from the bag to the detector. The effect can be eliminated by manual cleaning of the dosemeter cards. The importance of this observation lies in the fact that only proper glow curve evaluation can prevent the monitoring service from reporting artificial high dose readings creating lots of serious problems. The paper shows how this problem can be avoided for this kind of spurious effect, if glow curves are available and stored for every dosemeter readout. (author)

  3. Damping spurious harmonic resonances in the APS storage ring beam chamber

    International Nuclear Information System (INIS)

    Kang, Y.

    1999-01-01

    The APS storage ring beam chamber has been storing the beam up to 100 mA successfully. However, in some beam chambers, spurious signals corrupted the BPM outputs. The cause of the unwanted signals was investigated, and it was found that transverse electric (TE) longitudinal harmonic resonances of the beam chamber were responsible. The beam chambers have small height in the area between the ovid beam chamber and the antechamber. The structure behaves like a ridge waveguide so that the cut-off frequency of the waveguide mode becomes lower. The pass-band then includes the frequency around 350 MHz that is important to the beam position monitors (BPMs). The spurious harmonic resonances are damped with two types of dampers to restore the useful signals of the BPMs; coaxial loop dampers and lossy ceramic slab loading are used

  4. CHARACTERIZATION OF A SPURIOUS ONE-YEAR SIGNAL IN HARPS DATA

    Energy Technology Data Exchange (ETDEWEB)

    Dumusque, Xavier; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pepe, Francesco; Lovis, Christophe, E-mail: xdumusque@cfa.harvard.edu [Observatoire Astronomique de l’Université de Genève, 51 Chemin des Mailettes, 1290 Sauverny (Switzerland)

    2015-08-01

    The HARPS spectrograph is showing an extreme stability, close to the m s{sup −1} level, over more than 10 years of data. However, the radial velocities of some stars are contaminated by a spurious one-year signal with an amplitude that can be as high as a few m s{sup −1}. This signal is in opposition of phase with the revolution of Earth around the Sun and can be explained by the deformation of spectral lines crossing block stitchings of the CCD when the spectrum of an observed star is alternatively blueshifted and redshifted due to the motion of Earth around the Sun. This annual perturbation can be suppressed by either removing those affected spectral lines from the correlation mask used by the cross-correlation technique to derive precise radial velocities, or by simply fitting a yearly sinusoid to the radial velocity data. This is mandatory if we want to detect long-period low-amplitude signals in the HARPS radial velocities of quiet solar-type stars.

  5. Characterization of a Spurious One-year Signal in HARPS Data

    Science.gov (United States)

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Latham, David W.

    2015-08-01

    The HARPS spectrograph is showing an extreme stability, close to the m s-1 level, over more than 10 years of data. However, the radial velocities of some stars are contaminated by a spurious one-year signal with an amplitude that can be as high as a few m s-1. This signal is in opposition of phase with the revolution of Earth around the Sun and can be explained by the deformation of spectral lines crossing block stitchings of the CCD when the spectrum of an observed star is alternatively blueshifted and redshifted due to the motion of Earth around the Sun. This annual perturbation can be suppressed by either removing those affected spectral lines from the correlation mask used by the cross-correlation technique to derive precise radial velocities, or by simply fitting a yearly sinusoid to the radial velocity data. This is mandatory if we want to detect long-period low-amplitude signals in the HARPS radial velocities of quiet solar-type stars. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at the La Silla Observatory (Chile).

  6. Spurious RF signals emitted by mini-UAVs

    NARCIS (Netherlands)

    Schleijpen, R.; Voogt, V.; Zwamborn, P.; Oever, J. van den

    2016-01-01

    This paper presents experimental work on the detection of spurious RF emissions of mini Unmanned Aerial Vehicles (mini-UAV). Many recent events have shown that mini-UAVs can be considered as a potential threat for civil security. For this reason the detection of mini-UAVs has become of interest to

  7. Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses?

    DEFF Research Database (Denmark)

    Thorlund, Kristian; Devereaux, P J; Wetterslev, Jørn

    2008-01-01

    BACKGROUND: Results from apparently conclusive meta-analyses may be false. A limited number of events from a few small trials and the associated random error may be under-recognized sources of spurious findings. The information size (IS, i.e. number of participants) required for a reliable......-analyses after each included trial and evaluated their results using a conventional statistical criterion (alpha = 0.05) and two-sided Lan-DeMets monitoring boundaries. We examined the proportion of false positive results and important inaccuracies in estimates of treatment effects that resulted from the two...... approaches. RESULTS: Using the random-effects model and final data, 12 of the meta-analyses yielded P > alpha = 0.05, and 21 yielded P alpha = 0.05. The monitoring boundaries eliminated all false positives. Important inaccuracies in estimates were observed in 6 out of 21 meta-analyses using the conventional...

  8. Spurious-Free Dynamic Range of a Uniform Quantizer

    NARCIS (Netherlands)

    Oude Alink, M.S.; Kokkeler, Andre B.J.; Klumperink, Eric A.M.; Rovers, K.C.; Smit, Gerardus Johannes Maria; Nauta, Bram

    2009-01-01

    Abstract—Quantization plays an important role in many systems where analog-to-digital conversion and/or digital-to-analog conversion take place. If the quantization error is correlated with the input signal, then the spectrum of the quantization error will contain spurious peaks. Although analytical

  9. Application of a Magnetostrictive Guided wave Technique to Monitor the Evolution of Defect Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that wave patterns are clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaw. Of course, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. Once the magnetostrictive sensors are attached in the pipe permanently and the signal shape and phase can be compared to the signals before and after, we can monitor the evolution of the flow for the given period. We developed a program to subtract the guided wave signal. The program has a capability of adjusting the time scale and can minimize the noise level after subtraction. By applying the newly developed program, a notch with 2% of CSA can be detected with increased accuracy with noise reduction.

  10. Attenuation of spurious responses in electromechanical filters

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Roy H.; Hietala, Vincent M.

    2018-04-10

    A spur cancelling, electromechanical filter includes a first resonator having a first resonant frequency and one or more first spurious responses, and it also includes, electrically connected to the first resonator, a second resonator having a second resonant frequency and one or more second spurious responses. The first and second resonant frequencies are approximately identical, but the first resonator is physically non-identical to the second resonator. The difference between the resonators makes the respective spurious responses different. This allows for filters constructed from a cascade of these resonators to exhibit reduced spurious responses.

  11. Spurious solutions in few-body equations

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Gloeckle, W.

    1979-01-01

    After Faddeev and Yakubovskii showed how to write connected few-body equations which are free from discrete spurious solutions various authors have proposed different connected few-body scattering equations. Federbush first pointed out that Weinberg's formulation admits the existence of discrete spurious solutions. In this paper we investigate the possibility and consequence of the existence of spurious solutions in some of the few-body formulations. Contrary to a proof by Hahn, Kouri, and Levin and by Bencze and Tandy the channel coupling array scheme of Kouri, Levin, and Tobocman which is also the starting point of a formulation by Hahn is shown to admit spurious solutions. We can show that the set of six coupled four-body equations proposed independently by Mitra, Gillespie, Sugar, and Panchapakesan, by Rosenberg, by Alessandrini, and by Takahashi and Mishima and the seven coupled four-body equations proposed by Sloan and related by matrix multipliers to basic sets which correspond uniquely to the Schroedinger equation. These multipliers are likely to give spurious solutions to these equations. In all these cases spuriosities are shown to have no hazardous consequence if one is interested in studying the scattering problem

  12. Spurious and counterfeit drugs: a growing industry in the developing world.

    Science.gov (United States)

    Gautam, C S; Utreja, A; Singal, G L

    2009-05-01

    Spread of spurious/counterfeit/substandard drugs is a modern day menace which has been recognised internationally, especially so in developing countries. The problem assumes added significance in view of rapid globalisation. The market of spurious and counterfeit drugs is a well-organised, white collar crime. Poverty, high cost of medicines, lack of an official supply chain, legislative lacunae, easy accessibility to computerised printing technology, ineffective law enforcement machinery, and light penalties provide the counterfeiters with an enormous economic incentive without much risk. The consequences of the use of such medicines may vary from therapeutic failure to the occurrence of serious adverse events and even death. Proper drug quality monitoring, enforcement of laws and legislation, an effective and efficient regulatory environment, and awareness and vigilance on part of all stakeholders can help tackle this problem.

  13. Spurious states in boson calculations - spectre of reality

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P. (Stellenbosch Univ. (South Africa). Inst. of Theoretical Nuclear Physics); Geyer, H.B. (Stellenbosch Univ. (South Africa). Inst. of Theoretical Nuclear Physics); Dobes, J. (Inst. of Nuclear Physics, Czech Academy of Sciences, Rez (Czech Republic)); Dobaczewski, J. (Warsaw Univ. (Poland). Inst. of Theoretical Physics)

    1994-03-28

    We discuss some prevailing misconceptions about the possibility that spurious states may in general contaminate boson calculations of fermion systems on either the phenomenological or microscopic level. Amongst other things we point out that the possible appearance of spurious states is not inherently a mapping problem, but rather linked to a choice of basis in the boson Fock space. This choice is mostly dictated by convenience or the aim to make direct contact with phenomenology. Furthermore, neither well established collectivity, nor the construction of boson operators in the Marumori or OAI fashion can as such serve as a guarantee against the appearance of spurious boson states. Within an SO(12) generalisation of the Ginocchio model where collective decoupling is complete, we illustrate how spurious states may appear in an IBM-type-sdg-boson analysis. We also show how these states may be identified on the boson level. This enables us to present an example of an sdg-spectrum which, although it may be reasonably correlated with experimental data, nevertheless has the first few low lying states all spurious when interpreted from the microscopic point of view. We briefly speculate about the possibility that certain types of truncation may in fact automatically circumvent the appearance of spurious states. (orig.)

  14. Spurious states in boson calculations - spectre of reality?

    International Nuclear Information System (INIS)

    Navratil, P.; Dobaczewski, J.

    1994-01-01

    We discuss some prevailing misconceptions about the possibility that spurious states may in general contaminate boson calculations of fermion systems on either the phenomenological or microscopic level. Amongst other things we point out that the possible appearance of spurious states is not inherently a mapping problem, but rather linked to a choice of basis in the boson Fock space. This choice is mostly dictated by convenience or the aim to make direct contact with phenomenology. Furthermore, neither well established collectivity, nor the construction of boson operators in the Marumori or OAI fashion can as such serve as a guarantee against the appearance of spurious boson states. Within an SO(12) generalisation of the Ginocchio model where collective decoupling is complete, we illustrate how spurious states may appear in an IBM-type-sdg-boson analysis. We also show how these states may be identified on the boson level. This enables us to present an example of an sdg-spectrum which, although it may be reasonably correlated with experimental data, nevertheless has the first few low lying states all spurious when interpreted from the microscopic point of view. We briefly speculate about the possibility that certain types of truncation may in fact automatically circumvent the appearance of spurious states. (orig.)

  15. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely.

  16. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    International Nuclear Information System (INIS)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu

    2016-01-01

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely

  17. Spurious solutions in few-body equations. II. Numerical investigations

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1979-01-01

    A recent analytic study of spurious solutions in few-body equations by Adhikari and Gloeckle is here complemented by numerical investigations. As proposed by Adhikari and Gloeckle we study numerically the spurious solutions in the three-body Weinberg type equations and draw some general conclusions about the existence of spurious solutions in three-body equations with the Weinberg kernel and in other few-body formulations. In particular we conclude that for most of the potentials we encounter in problems of nuclear physics the three-body Weinberg type equation will not have a spurious solution which may interfere with the bound state or scattering calculation. Hence, if proven convenient, the three-body Weinberg type equation can be used in practical calculations. The same conclusion is true for the three-body channel coupling array scheme of Kouri, Levin, and Tobocman. In the case of the set of six coupled four-body equations proposed by Rosenberg et al. and the set of the Bencze-Redish-Sloan equations a careful study of the possible spurious solutions is needed before using these equations in practical calculations

  18. MDEP Common Position CP-DICWG-13. Common position on spurious actuation

    International Nuclear Information System (INIS)

    2017-01-01

    Spurious actuations produced by Instrumentation and Control (I and C) systems are a safety concern if such actuations could challenge plant safety. Spurious actuations can lead to unnecessary challenges to safety equipment, challenge the ability of safety systems to provide their intended functions, or place the plant in an un-analysed state. Spurious actuation of plant equipment can be caused by factors including, but not limited to, single failures, common cause failures, human (e.g. operator) action, maintenance errors, design errors, or missing requirements. Modern I and C systems can have inter-connectivities, dependencies and commonalities that can, if the overall I and C architecture and the individual I and C systems are not adequately developed and operated, facilitate fault propagation, leading to potential spurious actuation of one or more trains of plant equipment. Sources and contributors of spurious actuations of multiple trains of plant equipment may include inadequate independence among redundant portions of I and C systems, inappropriate allocation of I and C functions, inadequate qualification or design of supporting systems (e.g. heating, ventilation and air conditioning (HVAC) system), or non-classified systems that could have been erroneously classified. Spurious actuations are a type of hazard. Generic Common Position (GCP) DICWG-10 'Common Position on Hazard Identification and Controls for Digital Instrumentation and Control Systems' provides a set of common positions pertaining to identifying and controlling hazards in an I and C system. This common position was developed to add special considerations when identifying and controlling hazards that include spurious actuations. It is expected that GCP DICWG-10 and the common positions in this document be used together for a complete analysis of hazards and their controls (e.g. prevention of spurious actuations in the design of the system/component). Spurious actuations of concern

  19. Physical and spurious terms of two-body central potentials

    International Nuclear Information System (INIS)

    Pupyshev, V.V.

    2000-01-01

    The potential-hyperharmonic method is applied to construct the splitting of central pair interactions into physical terms, defining the total interaction, and spurious terms, contributing nothing to it. The analysis of physical conditions sufficient for spurious terms of oscillator and Coulomb interactions to exist is given. (author)

  20. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    Science.gov (United States)

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  1. Avoiding spurious submovement decompositions: a globally optimal algorithm

    International Nuclear Information System (INIS)

    Rohrer, Brandon Robinson; Hogan, Neville

    2003-01-01

    Evidence for the existence of discrete submovements underlying continuous human movement has motivated many attempts to extract them. Although they produce visually convincing results, all of the methodologies that have been employed are prone to produce spurious decompositions. Examples of potential failures are given. A branch-and-bound algorithm for submovement extraction, capable of global nonlinear minimization (and hence capable of avoiding spurious decompositions), is developed and demonstrated.

  2. Factorization properties and spurious solutions in N-body scattering theories

    International Nuclear Information System (INIS)

    Vanzani, V.

    1979-01-01

    The origin of spurious solutions in N-body scattering equations is discussed. It is shown that spurious solutions are expected because of specific factorization properties of the homogeneous equations. The equations proposed by Rosenberg, by Mitra, Gillespie, Sugar and Panchapakesan, by Takahashi and Mishima, by Alessandrini, by Sasakawa, by Sloan, Bencze and Redish, by Weinberg and van Winter and by Avishai are considered. It is explicitly shown that spurious multipliers arise from repeated employment of resolvent equations or, equiValently, from generalized iteration procedure

  3. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    Science.gov (United States)

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  4. Spurious cooperativity in alkylated succinic acids

    Science.gov (United States)

    Ben-Naim, A.

    1998-03-01

    The proton-proton correlation, as measured by the ratio between the second and the first dissociation constants of dibasic acid, is sometimes very large and far beyond what could be explained by electrostatic theories. We propose a novel interpretation of this phenomenon based on the idea of spurious cooperativity. The general theoretical framework underlying the onset of spurious cooperativity is developed first. The basic result is that whenever a binding (or dissociating) two-site (or more) system splits into a mixture of noninterconverting isomers the binding isotherm (or the titration curve) behaves as if it is more negatively cooperative compared with the genuine cooperativities of the individual isomer. The theory is applied to a specific system of α-α' dialkyl succinic acid. It is known that the Meso form of these alkylated derivatives show a normal correlation of the same order of magnitude as in succinic acid. On the other hand, the Racemic form of these alkylated derivatives shows anomalous strong negative correlations when the alkyl groups become large (e.g., isopropyl and tert butyl). It is shown that the theory of spurious cooperativity can explain the different behavior of the Racemic and the Meso forms, as well as the onset of anomalous strong negative correlations when the alkyl groups become large.

  5. The detection and estimation of spurious pulses

    International Nuclear Information System (INIS)

    1976-01-01

    Spurious pulses which may interfere with the counting of particles can sometimes easily be detected by integral counting as a function of amplification or by pulse-height analysis. However, in order to estimate their count rate, more elaborate methods based on their time relationship are needed. Direct techniques (delayed coincidences, use of a multichannel analyser in time mode, time-to-amplitude conversion) and gating techniques (simple subtraction, correlation counting, pulsed sources, modulo counting) are discussed. These techniques are compared to each other and their application to various detectors is studied as well as the influence of a dead time on spurious pulses

  6. Plant monitoring and signal validation at HFIR

    International Nuclear Information System (INIS)

    Mullens, J.A.

    1991-01-01

    This paper describes a monitoring system for the Oak Ridge National Laboratory's (ORNL'S) High Flux Isotope Reactor (HFIR). HFIR is an 85 MW pressurized water reactor designed to produce isotopes and intense neutron beams. The monitoring system is described with respect to plant signals and computer system; monitoring overview; data acquisition, logging and network distribution; signal validation; status displays; reactor condition monitoring; reactor operator aids. Future work will include the addition of more plant signals, more signal validation and diagnostic capabilities, improved status display, integration of the system with the RELAP plant simulation and graphical interface, improved operator aids, and an alarm filtering system. 8 refs., 7 figs. (MB)

  7. Spurious Excitations in Semiclassical Scattering Theory.

    Science.gov (United States)

    Gross, D. H. E.; And Others

    1980-01-01

    Shows how through proper handling of the nonuniform motion of semiclassical coordinates spurious excitation terms are eliminated. An application to the problem of nuclear Coulomb excitation is presented as an example. (HM)

  8. Non-radiation induced signals in TL dosimetry

    International Nuclear Information System (INIS)

    German, U.; Weinstein, M.

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originate in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curve and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals. (author)

  9. Martingales, the Efficient Market Hypothesis, and Spurious Stylized Facts

    OpenAIRE

    McCauley, Joseph L.; Bassler, Kevin E.; Gunaratne, Gemunu H.

    2007-01-01

    The condition for stationary increments, not scaling, detemines long time pair autocorrelations. An incorrect assumption of stationary increments generates spurious stylized facts, fat tails and a Hurst exponent H_s=1/2, when the increments are nonstationary, as they are in FX markets. The nonstationarity arises from systematic uneveness in noise traders' behavior. Spurious results arise mathematically from using a log increment with a 'sliding window'. We explain why a hard to beat market de...

  10. Robustness of binary black hole mergers in the presence of spurious radiation

    International Nuclear Information System (INIS)

    Bode, Tanja; Shoemaker, Deirdre; Herrmann, Frank; Hinder, Ian

    2008-01-01

    We present an investigation into how sensitive the last orbits and merger of binary black hole systems are to the presence of spurious radiation in the initial data. Our numerical experiments consist of a binary black hole system starting the last couple of orbits before merger with additional spurious radiation centered at the origin and fixed initial angular momentum. As the energy in the added spurious radiation increases, the binary is invariably hardened for the cases we tested; i.e., the merger of the two black holes is hastened. The change in merger time becomes significant when the additional energy provided by the spurious radiation increases the Arnowitt-Deser-Misner mass of the spacetime by about 1%. While the final masses of the black holes increase due to partial absorption of the radiation, the final spins remain constant to within our numerical accuracy. We conjecture that the spurious radiation is primarily increasing the eccentricity of the orbit and secondarily increasing the mass of the black holes while propagating out to infinity

  11. A review of spurious currents in the lattice Boltzmann method for multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    Conning Ton, Kevin; Lee, Tae Hun [The City College of the City Univ. of New York, New York (United States)

    2012-12-15

    A spurious current is a small amplitude artificial velocity field which arises from an imbalance between discretized forces in multiphase/multi component flows. If it occurs, the velocity field may persist indefinitely, preventing the achievement of a true equilibrium state. Spurious velocities can sometimes be as large as the characteristic velocities of the problem, causing severe instability and ambiguity between physical and spurious velocities. They are typically exacerbated by large values of numerical surface tension or when the two fluids being simulated have large density ratios. The resulting instability can restrict what parameters may be simulated. To varying degrees, spurious currents are found in all multiphase flow models of the lattice Boltzmann method (LBM). There have been many studies of the occurrence of the phenomenon, and many suggestions on how to eliminate it. This paper reviews the three main models of simulating multiphase/multi component flow in the lattice Boltzmann method, as well as the subsequent modifications made in order to reduce or eliminate spurious currents.

  12. Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations

    Science.gov (United States)

    Retailleau, Lise; Boué, Pierre; Stehly, Laurent; Campillo, Michel

    2017-10-01

    The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.

  13. Slope stability radar for monitoring mine walls

    Science.gov (United States)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  14. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  15. Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem

    Science.gov (United States)

    Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.

    2008-01-01

    The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.

  16. Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Directory of Open Access Journals (Sweden)

    Hasan MA

    2009-03-01

    Full Text Available Abstract Fetal electrocardiogram (FECG signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.

  17. Web monitoring of industrial signals using embedded systems

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Romero-Molano

    2016-01-01

    Full Text Available The paper presents the design of software and hardware for a system of web monitoring of industrial signals. This prototype provides a web interface which can observe in real time the status of four industrial-type signal on-off. MSP432 microcontroller is used for sampling and transmitting monitored signals to a Raspberry PI which receives by a UART link the MSP432 monitored data and presents them immediately in the front-end web application. The prototype design was verified with a pneumatic application that consists of four single-acting cylinders and it was observed an efficient synchronization between the occurrence of the triggering event or change in status of any of the monitored cylinder and web publishing.

  18. Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model

    Science.gov (United States)

    Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair

    2017-11-01

    We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.

  19. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    Science.gov (United States)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  20. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    Science.gov (United States)

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  1. A Bayesian Scoring Technique for Mining Predictive and Non-Spurious Rules

    OpenAIRE

    Batal, Iyad; Cooper, Gregory; Hauskrecht, Milos

    2012-01-01

    Rule mining is an important class of data mining methods for discovering interesting patterns in data. The success of a rule mining method heavily depends on the evaluation function that is used to assess the quality of the rules. In this work, we propose a new rule evaluation score - the Predictive and Non-Spurious Rules (PNSR) score. This score relies on Bayesian inference to evaluate the quality of the rules and considers the structure of the rules to filter out spurious rules. We present ...

  2. Spurious Numerical Solutions Of Differential Equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  3. Helmet-based physiological signal monitoring system.

    Science.gov (United States)

    Kim, Youn Sung; Baek, Hyun Jae; Kim, Jung Soo; Lee, Haet Bit; Choi, Jong Min; Park, Kwang Suk

    2009-02-01

    A helmet-based system that was able to monitor the drowsiness of a soldier was developed. The helmet system monitored the electrocardiogram, electrooculogram and electroencephalogram (alpha waves) without constraints. Six dry electrodes were mounted at five locations on the helmet: both temporal sides, forehead region and upper and lower jaw strips. The electrodes were connected to an amplifier that transferred signals to a laptop computer via Bluetooth wireless communication. The system was validated by comparing the signal quality with conventional recording methods. Data were acquired from three healthy male volunteers for 12 min twice a day whilst they were sitting in a chair wearing the sensor-installed helmet. Experimental results showed that physiological signals for the helmet user were measured with acceptable quality without any intrusions on physical activities. The helmet system discriminated between the alert and drowsiness states by detecting blinking and heart rate variability (HRV) parameters extracted from ECG. Blinking duration and eye reopening time were increased during the sleepiness state compared to the alert state. Also, positive peak values of the sleepiness state were much higher, and the negative peaks were much lower than that of the alert state. The LF/HF ratio also decreased during drowsiness. This study shows the feasibility for using this helmet system: the subjects' health status and mental states could be monitored without constraints whilst they were working.

  4. Tritium Room Air Monitor Operating Experience Review

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader; B. J. Denny

    2008-09-01

    Monitoring the breathing air in tritium facility rooms for airborne tritium is a radiological safety requirement and a best practice for personnel safety. Besides audible alarms for room evacuation, these monitors often send signals for process shutdown, ventilation isolation, and cleanup system actuation to mitigate releases and prevent tritium spread to the environment. Therefore, these monitors are important not only to personnel safety but also to public safety and environmental protection. This paper presents an operating experience review of tritium monitor performance on demand during small (1 mCi to 1 Ci) operational releases, and intentional airborne inroom tritium release tests. The tritium tests provide monitor operation data to allow calculation of a statistical estimate for the reliability of monitors annunciating in actual tritium gas airborne release situations. The data show a failure to operate rate of 3.5E-06/monitor-hr with an upper bound of 4.7E-06, a failure to alarm on demand rate of 1.4E-02/demand with an upper bound of 4.4E-02, and a spurious alarm rate of 0.1 to 0.2/monitor-yr.

  5. Robust GPS autonomous signal quality monitoring

    Science.gov (United States)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and

  6. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    Science.gov (United States)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  7. Changes in persistence, spurious regressions and the Fisher hypothesis

    DEFF Research Database (Denmark)

    Kruse, Robinson; Ventosa-Santaulària, Daniel; Noriega, Antonio E.

    Declining inflation persistence has been documented in numerous studies. When such series are analyzed in a regression framework in conjunction with other persistent time series, spurious regressions are likely to occur. We propose to use the coefficient of determination R2 as a test statistic to...

  8. A Bayesian Scoring Technique for Mining Predictive and Non-Spurious Rules.

    Science.gov (United States)

    Batal, Iyad; Cooper, Gregory; Hauskrecht, Milos

    Rule mining is an important class of data mining methods for discovering interesting patterns in data. The success of a rule mining method heavily depends on the evaluation function that is used to assess the quality of the rules. In this work, we propose a new rule evaluation score - the Predictive and Non-Spurious Rules (PNSR) score. This score relies on Bayesian inference to evaluate the quality of the rules and considers the structure of the rules to filter out spurious rules. We present an efficient algorithm for finding rules with high PNSR scores. The experiments demonstrate that our method is able to cover and explain the data with a much smaller rule set than existing methods.

  9. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  10. Linear stability analysis of collective neutrino oscillations without spurious modes

    Science.gov (United States)

    Morinaga, Taiki; Yamada, Shoichi

    2018-01-01

    Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.

  11. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  12. On the spurious pressures generated by certain GFEM solutions of the incompressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Sani, R.L.; Gresho, P.M.; Lee, R.L.

    1979-01-01

    The spurious pressures and acceptable velocities generated when using certain combinations of velocity and pressure approximations in a Galerkin finite element discretization of the primitive variable form of the incompressible Navier-Stokes equations are analyzed both theoretically and numerically for grids composed of quadrilateral finite elements. Schemes for obtaining usable pressure fields from the spurious numerical results are presented for certain cases

  13. Spurious dispersion effects at FLASH

    International Nuclear Information System (INIS)

    Prat, Eduard

    2009-07-01

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  14. Spurious dispersion effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Eduard

    2009-07-15

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  15. ZEEMAN DOPPLER MAPS: ALWAYS UNIQUE, NEVER SPURIOUS?

    Energy Technology Data Exchange (ETDEWEB)

    Stift, Martin J.; Leone, Francesco [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom)

    2017-01-01

    Numerical models of atomic diffusion in magnetic atmospheres of ApBp stars predict abundance structures that differ from the empirical maps derived with (Zeeman) Doppler mapping (ZDM). An in-depth analysis of this apparent disagreement investigates the detectability by means of ZDM of a variety of abundance structures, including (warped) rings predicted by theory, but also complex spot-like structures. Even when spectra of high signal-to-noise ratio are available, it can prove difficult or altogether impossible to correctly recover shapes, positions, and abundances of a mere handful of spots, notwithstanding the use of all four Stokes parameters and an exactly known field geometry; the recovery of (warped) rings can be equally challenging. Inversions of complex abundance maps that are based on just one or two spectral lines usually permit multiple solutions. It turns out that it can by no means be guaranteed that any of the regularization functions in general use for ZDM (maximum entropy or Tikhonov) will lead to a true abundance map instead of some spurious one. Attention is drawn to the need for a study that would elucidate the relation between the stratified, field-dependent abundance structures predicted by diffusion theory on the one hand, and empirical maps obtained by means of “canonical” ZDM, i.e., with mean atmospheres and unstratified abundances, on the other hand. Finally, we point out difficulties arising from the three-dimensional nature of the atomic diffusion process in magnetic ApBp star atmospheres.

  16. Suppression and utilization of spurious pulse occurence in organic GM-counters

    International Nuclear Information System (INIS)

    Narita, Y.; Igarashi, R.; Akagami, H.; Ozawa, Y.

    1979-01-01

    The authors have made a study of suppression and utilization of spurious pulse occurrence in organic GM-counters. Almost all spurious pulses in the organic GM-counter are the delayed pulses which occur being dependent upon the radiation intensity. The occurrence rate of the delayed pulses against the radiation intensity is affected by the intensity of the electric field in the vicinity of the cathode of the GM-counter. The occurrence of the delayed pulses can be suppressed when the electric field in the vicinity of the cathode is kept at high value. On the contrary, the occurrence of the delayed pulses can be utilized for the dosimetry of the pulsed radiation by means of increasing the space of the weak electric field in the GM-counter. (Auth.)

  17. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.

    Science.gov (United States)

    Peled, Itay; Kaminsky, Ron; Kotler, Zvi

    2015-06-01

    In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%.

  18. Restraining approach for the spurious kinematic modes in hybrid equilibrium element

    Science.gov (United States)

    Parrinello, F.

    2013-10-01

    The present paper proposes a rigorous approach for the elimination of spurious kinematic modes in hybrid equilibrium elements, for three well known mesh patches. The approach is based on the identification of the dependent equations in the set of inter-element and boundary equilibrium equations of the sides involved in the spurious kinematic mode. Then the kinematic variables related to the dependent equations are reciprocally constrained and, by application of master slave elimination method, the set of inter-element equilibrium equations is reduced to full rank. The elastic solutions produced by means of the proposed approach verify the homogeneous, the inter-element and the boundary equilibrium equations. Hybrid stress formulation is developed in a rigorous mathematical setting. The results of linear elastic analysis obtained by the proposed approach and by classical displacement based method are compared for some structural examples.

  19. A comprehensive comparison of network similarities for link prediction and spurious link elimination

    Science.gov (United States)

    Zhang, Peng; Qiu, Dan; Zeng, An; Xiao, Jinghua

    2018-06-01

    Identifying missing interactions in complex networks, known as link prediction, is realized by estimating the likelihood of the existence of a link between two nodes according to the observed links and nodes' attributes. Similar approaches have also been employed to identify and remove spurious links in networks which is crucial for improving the reliability of network data. In network science, the likelihood for two nodes having a connection strongly depends on their structural similarity. The key to address these two problems thus becomes how to objectively measure the similarity between nodes in networks. In the literature, numerous network similarity metrics have been proposed and their accuracy has been discussed independently in previous works. In this paper, we systematically compare the accuracy of 18 similarity metrics in both link prediction and spurious link elimination when the observed networks are very sparse or consist of inaccurate linking information. Interestingly, some methods have high prediction accuracy, they tend to perform low accuracy in identification spurious interaction. We further find that methods can be classified into several cluster according to their behaviors. This work is useful for guiding future use of these similarity metrics for different purposes.

  20. Unraveling spurious properties of interaction networks with tailored random networks.

    Directory of Open Access Journals (Sweden)

    Stephan Bialonski

    Full Text Available We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  1. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical-optical......-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  2. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  3. Monitoring of operational reliability of safety-related I and C subsystems at the Dukovany NPP

    International Nuclear Information System (INIS)

    Fuchs, P.; Sagl, P.; Zlamal, P.

    2007-01-01

    First, the situation existing in the data base in 1999, i.e. before the monitoring and the operational reliability monitoring concept were introduced, is highlighted. The technique of data processing is described with focus on the assessment of the relevancy of the records, component failure rate monitoring, estimation of basic statistical parameters, evaluation of the feasibility of component failure (or failure latency) detection, assessment of the mean time to repair, FMEA of the basic components (relays end measuring chains) to establish spurious signals and dangerous failure ratio. The reliability assessment of the system functions is based on structural reliability calculations (common cause failures not included). The outcomes from the operational reliability monitoring are presented in the form of a representative set of data, graphic charts and results of system function reliability assessment. Prospects for upgrading the I and C operational reliability monitoring system to the benefit of NPP Dukovany operating economy (life cycle costs evaluation, spare parts planning, RCM application) are outlined. (author)

  4. Monitoring of electric-cardio signals based on DSP

    Science.gov (United States)

    Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang

    2008-10-01

    Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.

  5. A quantitative trait locus mixture model that avoids spurious LOD score peaks.

    Science.gov (United States)

    Feenstra, Bjarke; Skovgaard, Ib M

    2004-06-01

    In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This approach can occasionally produce spurious LOD score peaks in regions of low genotype information (e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented.

  6. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Baig, A.R.

    1996-05-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important parameters of the Pakistan Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety point-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author) 12 figs

  7. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Rauf Baig, A.

    1998-01-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important reactor parameters of the Pakistan Research Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis, and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety points-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author)

  8. Spurious Shear in Weak Lensing with LSST

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.

    2012-09-19

    The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.

  9. Missing and Spurious Level Corrections for Nuclear Resonances

    International Nuclear Information System (INIS)

    Mitchell, G E; Agvaanluvsan, U; Pato, M P; Shriner, J F

    2005-01-01

    Neutron and proton resonances provide detailed level density information. However, due to experimental limitations, some levels are missed and some are assigned incorrect quantum numbers. The standard method to correct for missing levels uses the experimental widths and the Porter-Thomas distribution. Analysis of the spacing distribution provides an independent determination of the fraction of missing levels. We have derived a general expression for such an imperfect spacing distribution using the maximum entropy principle and applied it to a variety of nuclear resonance data. The problem of spurious levels has not been extensively addressed

  10. True versus spurious state dependence in firm performance

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Kongsted, Hans Christian

    2008-01-01

    This paper analyzes the persistence of firms' exporting behavior in a panel of German manufacturing firms using dynamic binary choice models. We distinguish between true and spurious state dependence in exports and apply fixed effects methods that allow us to verify the robustness of our results ...... determinants. Our results, which are consistent with the findings of previous studies on firms in developing countries and in the United States, show the presence of important sunk costs in export market entry and a depreciation of knowledge and experience in export markets....

  11. True Versus Spurious State Dependence in Firm Performance

    DEFF Research Database (Denmark)

    Kaiser, Ulrich; Kongsted, Hans Christian

    This paper analyzes the persistence of firms' exporting behavior in a panel of German manufacturing firms using dynamic binary choice models. We distinguish between true and spurious state dependence in exports and apply fixed effects methods that allow us to verify the robustness of our results ...... determinants. Our results, which are consistent with the findings of previous studies on firms in developing countries and in the United States, show the presence of important sunk costs in export market entry and a depreciation of knowledge and experience in export markets...

  12. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    Science.gov (United States)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  13. Property-Based Monitoring of Analog and Mixed-Signal Systems

    Science.gov (United States)

    Havlicek, John; Little, Scott; Maler, Oded; Nickovic, Dejan

    In the recent past, there has been a steady growth of the market for consumer embedded devices such as cell phones, GPS and portable multimedia systems. In embedded systems, digital, analog and software components are combined on a single chip, resulting in increasingly complex designs that introduce richer functionality on smaller devices. As a consequence, the potential insertion of errors into a design becomes higher, yielding an increasing need for automated analog and mixed-signal validation tools. In the purely digital setting, formal verification based on properties expressed in industrial specification languages such as PSL and SVA is nowadays successfully integrated in the design flow. On the other hand, the validation of analog and mixed-signal systems still largely depends on simulation-based, ad-hoc methods. In this tutorial, we consider some ingredients of the standard verification methodology that can be successfully exported from digital to analog and mixed-signal setting, in particular property-based monitoring techniques. Property-based monitoring is a lighter approach to the formal verification, where the system is seen as a "black-box" that generates sets of traces, whose correctness is checked against a property, that is its high-level specification. Although incomplete, monitoring is effectively used to catch faults in systems, without guaranteeing their full correctness.

  14. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  15. On spurious anti-persistence in the US stock indices

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2010-01-01

    Roč. 43, č. 1 (2010), s. 68-78 ISSN 0960-0779 R&D Projects: GA ČR GD402/09/H045; GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310 Institutional research plan: CEZ:AV0Z10750506 Keywords : econophysics * long-range dependence Subject RIV: AH - Economics Impact factor: 1.267, year: 2010 http://library.utia.cas.cz/separaty/2010/E/kristoufek-on spurious anti-persistence in the us stock indices.pdf

  16. Sources of spurious force oscillations from an immersed boundary method for moving-body problems

    Science.gov (United States)

    Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo

    2011-04-01

    When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.

  17. Minimising the Spurious TL of Recently Fired Ceramics Using the Foil Technique

    International Nuclear Information System (INIS)

    Michael, C.T.; Zacharias, N.; Polikreti, K.; Pagonis, V.

    1999-01-01

    The new foil technique for measuring the natural dose in TL dating is briefly presented. In this technique very thin samples are made with the necessary plasticity to achieve the best heating contact between sample and heater plate. Measurements can then be made in vacuum and it is possible to use higher heating rates. The effect of the increase of the TL signal with the increase of the heating rate is presented. The foil technique reduces chemiluminescence and increases the TL signal. This allows the application of TL dating to be extended to lower limits (lower ages). These limits are determined by estimating quantitatively the effects of the sample preparation procedure on the induction of spurious TL (triboluminescence). Samples from a two year old ceramic vase were prepared with two different powder preparation procedures: (a) by using a hand drill with a common steel edge and (b) by crushing a piece using a vice. Measurements at a heating rate of 50 deg. C.s -1 were made. The two estimates of P (total dose) provide an estimate of age for each procedure. The age estimation for the vice prepared sample is about 30 years and for the drilled sample is higher than 120 years. It is suggested that the use of a drill for powder preparation be avoided, especially in TL dating and authenticity tests of recently fired ceramics (less than 500 years). (author)

  18. Acoustic monitoring of rotating machine by advanced signal processing technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru

    2010-01-01

    The acoustic data remotely measured by hand held type microphones are investigated for monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator's patrol monitoring is one of the important activities for condition monitoring. However, remotely measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, several advanced signal processing methods are examined and compared in order to find optimum anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, the normal state is classified by using probabilistic neural network (PNN) or support vector data description (SVDD). By using the mockup test facility of rotating machine, it is shown that the appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring performance. (author)

  19. Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data

    Science.gov (United States)

    von Wegner, Frederic; Laufs, Helmut; Tagliazucchi, Enzo

    2018-02-01

    Long-range memory in time series is often quantified by the Hurst exponent H , a measure of the signal's variance across several time scales. We analyze neurophysiological time series from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state experiments with two standard Hurst exponent estimators and with the time-lagged mutual information function applied to discretized versions of the signals. A confidence interval for the mutual information function is obtained from surrogate Markov processes with equilibrium distribution and transition matrix identical to the underlying signal. For EEG signals, we construct an additional mutual information confidence interval from a short-range correlated, tenth-order autoregressive model. We reproduce the previously described Hurst phenomenon (H >0.5 ) in the analytical amplitude of alpha frequency band oscillations, in EEG microstate sequences, and in fMRI signals, but we show that the Hurst phenomenon occurs without long-range memory in the information-theoretical sense. We find that the mutual information function of neurophysiological data behaves differently from fractional Gaussian noise (fGn), for which the Hurst phenomenon is a sufficient condition to prove long-range memory. Two other well-characterized, short-range correlated stochastic processes (Ornstein-Uhlenbeck, Cox-Ingersoll-Ross) also yield H >0.5 , whereas their mutual information functions lie within the Markovian confidence intervals, similar to neural signals. In these processes, which do not have long-range memory by construction, a spurious Hurst phenomenon occurs due to slow relaxation times and heteroscedasticity (time-varying conditional variance). In summary, we find that mutual information correctly distinguishes long-range from short-range dependence in the theoretical and experimental cases discussed. Our results also suggest that the stationary fGn process is not sufficient to describe neural data, which

  20. Signal processing methods for in-situ creep specimen monitoring

    Science.gov (United States)

    Guers, Manton J.; Tittmann, Bernhard R.

    2018-04-01

    Previous work investigated using guided waves for monitoring creep deformation during accelerated life testing. The basic objective was to relate observed changes in the time-of-flight to changes in the environmental temperature and specimen gage length. The work presented in this paper investigated several signal processing strategies for possible application in the in-situ monitoring system. Signal processing methods for both group velocity (wave-packet envelope) and phase velocity (peak tracking) time-of-flight were considered. Although the Analytic Envelope found via the Hilbert transform is commonly applied for group velocity measurements, erratic behavior in the indicated time-of-flight was observed when this technique was applied to the in-situ data. The peak tracking strategies tested had generally linear trends, and tracking local minima in the raw waveform ultimately showed the most consistent results.

  1. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring.

    Science.gov (United States)

    Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin

    2018-04-13

    Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  2. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Yiwei Sun

    2018-04-01

    Full Text Available Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C and forearm temperature (35.3 °C are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  3. Signal and image processing for monitoring and testing at EDF

    International Nuclear Information System (INIS)

    Georgel, B.; Garreau, D.

    1992-04-01

    The quality of monitoring and non destructive testing devices in plants and utilities today greatly depends on the efficient processing of signal and image data. In this context, signal or image processing techniques, such as adaptive filtering or detection or 3D reconstruction, are required whenever manufacturing nonconformances or faulty operation have to be recognized and identified. This paper reviews the issues of industrial image and signal processing, by briefly considering the relevant studies and projects under way at EDF. (authors). 1 fig., 11 refs

  4. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    Science.gov (United States)

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  5. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun

    1994-02-01

    In this work, the Fuzzy Signed Digraph(FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators

  6. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Seong, Poong Hyun

    1994-01-01

    In this work, the Fuzzy Signed Digraph (FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators. (Author)

  7. Ultrasonic Inspection of Cracks in Stud Bolts of Reactor Vessels in Nuclear Power Plants by Signal Processing of Differential Operation

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun; Oh, Won Deok

    2005-01-01

    The stud bolt is one of crucial parts for safe operation of reactor vessels in nuclear power plants, Crack initiation and propagation were reported in stud bolts that arc used for closure of reactor vessel and head, Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure which could induce radioactive leakage from nuclear reactor, In conventional ultrasonic testing for inspection of stud bolts, cracks are detected by using shadow effect It takes too much time to inspect stud bolts by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread, In this study, the signal processing technique for enhancing conventional ultrasonic technique was introduced for inspecting stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. Detectability for small crack was enhanced by using this signal processing in ultrasonic inspection of stud bolts in Nuclear Power Plants

  8. RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.

    Science.gov (United States)

    Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk

    2015-02-01

    Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.

  9. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    International Nuclear Information System (INIS)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun

    2016-01-01

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe

  10. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe.

  11. New ICPP portal monitor

    International Nuclear Information System (INIS)

    Georgeson, M.A.; Nichols, C.E.

    1981-04-01

    A large area gas filled proportional-detector portal monitor mounted in a swinging door frame has been designed and developed at the Idaho Chemical Processing Plant (ICPP). This monitor extends the sensitivity and speed of personnel contamination detection to levels equal to or exceeding that obtained using hand-held portable survey techniques. The new monitor has state-of-the-art electronics which result in rapid response, and use statistical principles in the alarm logic to reduce or eliminate spurious alarms. In addition, the evaluation of this instrument indicates that it will detect small enough quantities of U-235 in shielded containers to meet current special nuclear materials (SNM) detection standards. Simultaneous detection of very low level contamination and small quantities of SNM results in a monitor particularly useful for nuclear installations

  12. Error monitoring issues for common channel signaling

    Science.gov (United States)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  13. False alarm reduction in BSN-based cardiac monitoring using signal quality and activity type information.

    Science.gov (United States)

    Tanantong, Tanatorn; Nantajeewarawat, Ekawit; Thiemjarus, Surapa

    2015-02-09

    False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs) can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  14. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  15. Spurious Grain Formation at Cross-Sectional Expansion During Directional Solidification: Influence of Thermosolutal Convection

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Upadhyay, S. R.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2018-04-01

    Formation of spurious grains during directional solidification (DS) of Al-7 wt.% Si and Al-19 wt.% Cu alloys through an abrupt increase in cross-sectional area has been examined by experiments and by numerical simulations. Stray grains were observed in the Al-19 wt.% Cu samples and almost none in the Al-7 wt.% Si. The locations of the stray grains correlate well where numerical solutions indicate the solute-rich melt to be flowing up the thermal gradient faster than the isotherm velocity. It is proposed that the spurious grain formation occurred by fragmentation of slender tertiary dendrite arms was enhanced by thermosolutal convection. In Al-7 wt.% Si, the dendrite fragments sink in the surrounding melt and get trapped in the dendritic array growing around them, and therefore they do not grow further. In the Al-19 wt.% Cu alloy, on the other hand, the dendrite fragments float in the surrounding melt and some find conducive thermal conditions for further growth and become stray grains.

  16. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  17. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan

    2000-09-01

    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  18. False Alarm Reduction in BSN-Based Cardiac Monitoring Using Signal Quality and Activity Type Information

    Directory of Open Access Journals (Sweden)

    Tanatorn Tanantong

    2015-02-01

    Full Text Available False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs, the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  19. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization

    Science.gov (United States)

    Walrand, Stephan; Hesse, Michel; Jamar, François; Lhommel, Renaud

    2018-04-01

    Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing

  20. Signal Processing Device (SPD) for networked radiation monitoring system

    International Nuclear Information System (INIS)

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  1. Sensor/signal monitoring and plant maintenance

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1994-02-01

    Nuclear Power Plant (NPO) availability is determined by the intended functionality of safety related system and components. Therefore, maintenance is an important issue in a power plant connected to the plant's reliability and safety. The traditional maintenance policies proved to be rather costly and even not effectively addressing NPP requirements. Referring to these drawbacks, in the last decade, in the nuclear reliability centered maintenance (RCM) gained substantial interest due to its merits. In the formal implementation of RCM, apparently, predictive maintenance is not considered. However, with the impact of modern real-time and on-line surveillance and monitoring methodologies, the predictive maintenance procedures like sensor/signal verification and validation are to be included into RCM. (orig.)

  2. Low-complexity R-peak detection in ECG signals : a preliminary step towards ambulatory fetal monitoring

    NARCIS (Netherlands)

    Rooijakkers, M.J.; Rabotti, C.; Bennebroek, M.; Meerbergen, van J.; Mischi, M.

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however

  3. Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.

    Science.gov (United States)

    Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi

    2018-06-01

    Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.

  4. An innovative non-intrusive driver assistance system for vital signal monitoring.

    NARCIS (Netherlands)

    Sun, Y. & Yu, X.

    2016-01-01

    This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary

  5. Elimination of Spurious Fractional Charges in Dissociating Molecules by Correcting the Shape of Approximate Kohn-Sham Potentials.

    Science.gov (United States)

    Komsa, Darya N; Staroverov, Viktor N

    2016-11-08

    Standard density-functional approximations often incorrectly predict that heteronuclear diatomic molecules dissociate into fractionally charged atoms. We demonstrate that these spurious charges can be eliminated by adapting the shape-correction method for Kohn-Sham potentials that was originally introduced to improve Rydberg excitation energies [ Phys. Rev. Lett. 2012 , 108 , 253005 ]. Specifically, we show that if a suitably determined fraction of electron charge is added to or removed from a frontier Kohn-Sham orbital level, the approximate Kohn-Sham potential of a stretched molecule self-corrects by developing a semblance of step structure; if this potential is used to obtain the electron density of the neutral molecule, charge delocalization is blocked and spurious fractional charges disappear beyond a certain internuclear distance.

  6. Systematic survey for monitor signals to reduce fake burst events in a gravitational-wave detector

    International Nuclear Information System (INIS)

    Ishidoshiro, Koji; Ando, Masaki; Tsubono, Kimio

    2006-01-01

    We present methods and results to reduce fake burst events induced by nonstationary noises. To reduce these fake events, we systematically surveyed monitor signals recorded with a main (or gravitational-wave) signal of a gravitational-wave detector so as to watch the detector. Our survey was to check whether or not there was a coincidence between the main and monitor signals when we found a burst event from the main signal. If there was a coincidence, we rejected this event as a fake event induced by nonstationary noises, regarding the main signal as being dominated by nonstationary noises. As a result, we succeeded to reject about 90% of the burst events of which the SNR values were larger than 10 as fake events, with an accidental probability of about 5% to reject burst-gravitational-wave candidates

  7. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    International Nuclear Information System (INIS)

    Trendafilova, I

    2011-01-01

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  8. Evaluation of spurious readings in Los Alamos personnel TL dosimeters

    International Nuclear Information System (INIS)

    Eisen, Y.; Littlejohn, G.J.; Cortez, J.R.

    1984-08-01

    This study investigates the possibility of tritium build-up in TLD-600 chips irradiated with neutrons and the causes of spurious readings in the Harshaw TLD cards used for personnel dosimetry. Experiments indicated that spurious readings in TLD-600 chips, previously irradiated with neutrons, might occur in cases where the cards had been accidentally read at temperatures lower than 300 0 C as a result of bad contact between the hot finger in the reading system and the chips. Because a TLD card contains glue and paper bar-code labels, the postannealing is performed at 80 0 C for 17 hours. This annealing procedure alone does not effectively deplete the high-energy traps, such as those near 260 0 C, populated by high-LET (Linear Energy Transfer) particles. TLD-600 chips, irradiated on a phantom by 400 mrem of moderated fission neutrons, read at 240 0 C, annealed at 80 0 C for 17 hours, and then reread at 280 0 C, showed residual doses as large as 200 mrem (equivalent photons). Calculations and experiments show that for neutron exposures around 1 rem of moderated fission neutrons with an average energy of 500 keV, the maximum build-up of dose as a result of tritium formation is less than 1 mrem. The dose build-up in properly annealed TLD-600 and TLD-700 chips, is nearly the same, even though the TLD-600 chips were previously irradiated by neutrons. Both kinds of chips show natural background accumulation. A mechanism for annealing the Harshaw cards at high temperatures, without destroying the label or the adhesive material, was developed and found to be useful. 7 references, 4 figures, 3 tables

  9. Continuum random-phase approximation study of the incoherent μ--e- conversion rate and its spurious 1- admixture

    International Nuclear Information System (INIS)

    Papakonstantinou, P.; Wambach, J.; Kosmas, T.S.; Faessler, A.

    2006-01-01

    The incoherent transition strength of the exotic μ - -e - conversion in the 208 Pb nucleus is investigated by utilizing the continuum random-phase-approximation method, appropriate for the evaluation of the rate that goes to the continuum of the nuclear spectrum. We find that the contribution of resonances lying high in the continuum is not negligible. Special attention is paid to the detailed study of the pronounced 1 - contribution that according to previous calculations, dominates the overall incoherent rate in about all the nuclear targets. The spurious center-of-mass admixture to the partial rate originating from the 1 - excitations is explored, and its elimination is performed by correcting properly the dipole operators. The results found this way show that the greatest portion of the total 1 - contribution to the incoherent rate is spurious

  10. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    Science.gov (United States)

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  11. Prescription-event monitoring: developments in signal detection.

    Science.gov (United States)

    Ferreira, Germano

    2007-01-01

    Prescription-event monitoring (PEM) is a non-interventional intensive method for post-marketing drug safety monitoring of newly licensed medicines. PEM studies are cohort studies where exposure is obtained from a centralised service and outcomes from simple questionnaires completed by general practitioners. Follow-up forms are sent for selected events. Because PEM captures all events and not only the suspected adverse drug reactions, PEM cohorts potentially differ in respect to the distribution of number of events per person depending on the nature of the drug under study. This variance can be related either with the condition for which the drug is prescribed (e.g. a condition causing high morbidity will have, in average, a higher number of events per person compared with a condition with lower morbidity) or with the drug effect itself. This paper describes an exploratory investigation of the distortion caused by product-related variations of the number of events to the interpretation of the proportional reporting ratio (PRR) values ("the higher the PRR, the greater the strength of the signal") computed using drug-cohort data. We studied this effect by assessing the agreement between the PRR based on events (event of interest vs all other events) and PRR based on cases (cases with the event of interest vs cases with any other events). PRR were calculated for all combinations reported to ten selected drugs against a comparator of 81 other drugs. Three of the ten drugs had a cohort with an apparent higher proportion of patients with lower number of events. The PRRs based on events were systematically higher than the PRR based on cases for the combinations reported to these three drugs. Additionally, when applying the threshold criteria for signal screening (n > or =3, PRR > or =1.5 and Chi-squared > or =4), the binary agreement was generally high but apparently lower for these three drugs. In conclusion, the distribution of events per patient in drug cohorts shall be

  12. Discriminating between fractional integration and spurious long memory

    DEFF Research Database (Denmark)

    Haldrup, Niels; Kruse, Robinson

    are permitted under the null hypothesis. The test is shown to have good size and to be robust against certain types of deviations from Gaussianity. The test is also shown to be consistent against a broad class of processes that are non-fractional but still exhibit (spurious) long memory. In particular, the test......Fractionally integrated processes have become a standard class of models to describe the long memory features of economic and financial time series data. However, it has been demonstrated in numerous studies that structural break processes and non-linear features can often be confused as being long...... memory. The question naturally arises whether it is possible empirically to determine the source of long memory as being genuinely long memory in the form of a fractionally integrated process or whether the long range dependence is of a different nature. In this paper we suggest a testing procedure...

  13. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  14. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  15. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.

  16. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih

    2018-01-28

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the

  17. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2018-01-01

    Full Text Available Cardiovascular disease (CVD is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI, computerized tomography scan (CT scan, and echocardiography (Echo are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL. In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to

  18. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  19. Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter

    International Nuclear Information System (INIS)

    Son, Junbo; Zhou, Shiyu; Sankavaram, Chaitanya; Du, Xinyu; Zhang, Yilu

    2016-01-01

    In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. - Highlights: • A computationally efficient constrained Kalman filter is proposed. • Proposed filter is integrated into an online failure prognosis framework. • A set of proper constraints significantly improves the failure prediction accuracy. • Promising results are reported in the application of battery failure prognosis.

  20. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  1. Preanalytic process linked to spuriously elevated HIV viral loads: improvement on an FDA-approved process.

    Science.gov (United States)

    Procop, Gary W; Taege, Alan J; Starkey, Colleen; Tungsiripat, Marisa; Warner, Diane; Schold, Jesse D; Yen-Lieberman, Belinda

    2017-09-01

    The processing of specimens often occurs in a central processing area within laboratories. We demonstrated that plasma centrifuged in the central laboratory but allowed to remain within the primary tube following centrifugation was associated with spuriously elevated HIV viral loads compared with recentrifugation of the plasma just prior to testing. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Monitoring and Management of Toxicities of Novel B Cell Signaling Agents.

    Science.gov (United States)

    Rhodes, Joanna; Mato, Anthony; Sharman, Jeff P

    2018-04-11

    B cell signaling agents, including ibrutinib, idelalisib, and the BCL-2 inhibitor venetoclax have become an integral part of therapy for patients with non-Hodgkin's lymphomas. The toxicity profiles of these medications is distinct from chemoimmunotherapy. Here, we will review the mechanism of action of these drugs, their efficacy, and toxicity management. Ibrutinib use is associated with increased risk of atrial fibrillation and bleeding which can be managed using dose interruptions and modifications. Patients on idelalisib require close clinical and frequent laboratory monitoring, particularly of liver function tests to ensure there are no serious adverse events. Monitoring for infections is important in patients on both idelalisib and ibrutinib. Venetoclax requires close clinical and laboratory monitoring to prevent significant tumor lysis. Targeted B cell receptor therapies each have unique side effect profiles which require careful clinical monitoring. As we continue to use these therapies, optimal management strategies will continue to be elucidated.

  3. Finding Multiple Peaks Signal in Fast Beam Conditions Monitor (BCM1F)

    CERN Document Server

    Bin Ab Maalek, Abu Ubaidah Amir; CERN. Geneva. EP Department

    2017-01-01

    Fast Beam Conditions Monitor (BCM1F) is diamond and silicon sensors based luminometer of CMS detector. The methods of finding multiple peaks signal in BCM1F is shown. Multiple peaks signal found at signal with width between 60 ns - 300 ns. Double peaks are counted as single hit in the constant threshold analysis and leads to underestimation in the luminosity. Therefore it should be estimated for different filling schemes and sensor types. The percentage of long width pulse in different sensor for different fill are calculated. About 30 \\% long width pulse found in sCVD sensor, 12 \\% in pCVD and no more than 1 \\% for silicon sensor.

  4. Nonintrusive biological signal monitoring in a car to evaluate a driver's stress and health state.

    Science.gov (United States)

    Baek, Hyun Jae; Lee, Haet Bit; Kim, Jung Soo; Choi, Jong Min; Kim, Ko Keun; Park, Kwang Suk

    2009-03-01

    Nonintrusive monitoring of a driver's physiological signals was introduced and evaluated in a car as a test of extending the concept of ubiquitous healthcare to vehicles. Electrocardiogram, photoplethysmogram, galvanic skin response, and respiration were measured in the ubiquitous healthcare car (U-car) using nonintrusively installed sensors on the steering wheel, driver's seat, and seat belt. Measured signals were transmitted to the embedded computer via Bluetooth(R) communication and processed. We collected and analyzed physiological signals during driving in order to estimate a driver's stress state while using this system. In order to compare the effect of stress on physical and mental conditions, two categories of stresses were defined. Experimental results show that a driver's physiological signals were measured with acceptable quality for analysis without interrupting driving, and they were changed meaningfully due to elicited stress. This nonintrusive monitoring can be used to evaluate a driver's state of health and stress.

  5. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    Science.gov (United States)

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  6. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2016-06-01

    Full Text Available A novel micro-needle array electrode (MAE fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid (PLGA into a micro-needle array (MA by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG, electrocardiography (ECG, and electroencephalograph (EEG were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  7. Design and measurement of signal processing system for cavity beam position monitor

    International Nuclear Information System (INIS)

    Wang Baopeng; Leng Yongbin; Yu Luyang; Zhou Weimin; Yuan Renxian; Chen Zhichu

    2013-01-01

    In this paper, in order to achieve the output signal processing of cavity beam position monitor (CBPM), we develop a digital intermediate frequency receiver architecture based signal processing system, which consists of radio frequency (RF) front end and high speed data acquisition board. The beam position resolution in the CBPM signal processing system is superior to 1 μm. Two signal processing algorithms, fast Fourier transform (FFT) and digital down converter (DDC), are evaluated offline using MATLAB platform, and both can be used to achieve, the CW input signal, position resolutions of 0.31 μm and 0.10 μm at -16 dBm. The DDC algorithm for its good compatibility is downloaded into the FPGA to realize online measurement, reaching the position resolution of 0.49 μm due to truncation error. The whole system works well and the performance meets design target. (authors)

  8. High occurrence of Calodium hepaticum (syn. Capillaria hepatica spurious infection in a village in the Atlantic Forest of southern Brazil

    Directory of Open Access Journals (Sweden)

    Débora do Rocio Klisiowicz

    2014-06-01

    Full Text Available Calodium hepaticum (syn. Capillaria hepatica is a nematode of the Capillariidae family that infects rodents and other mammals. In Brazil, human spurious infections of C. hepaticum have been detected in indigenous or rural communities from the Amazon Basin, but not in the southern states of the country. Here, we report the highest occurrence (13.5% of 37 residents of C. hepaticum human spurious infection detected in Brazil and the first record in a southern region, Guaraqueçaba. The finding is explained by the area being located in the Atlantic Forest of the state of Paraná, surrounded by preserved forests and because the inhabitants consume the meat of wild mammals.

  9. The role of spurious correlation in the development of a komatiite alteration model

    Science.gov (United States)

    Butler, John C.

    1986-11-01

    Procedures for detecting alterations in komatiites are described. The research of Pearson (1897) on spurious correlation and of Chayes (1949, 1971) on ratio correlation is reviewed. The equations for the ratio correlation procedure are provided. The ratio correlation procedure is applied to the komatiites from Gorgona Island and the Barberton suite. Plots of the molecular proportion ratios of (FeO + MgO)/TiO2 versus SiO2/TiO2, and correlation coefficients for the komatiites are presented and analyzed.

  10. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    Science.gov (United States)

    Zhang, Ying; Xiao, Hannan

    2009-11-01

    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  11. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  12. Spurious hypocalcemia in hemodialysis patients after heparinization. In-vitro formation of calcium soaps.

    Science.gov (United States)

    Godolphin, W; Cameron, E C; Frohlich, J; Price, J D

    1979-02-01

    Patients on long-term hemodialysis via arteriovenous fistula received heparin when the fistula needle was inserted, before a sample of blood was obtained for chemical analysis. The resultant release of lipoprotein lipase activity in vivo and continued lipolytic activity in vitro sometimes produced sufficient free fatty acid to precipitate calcium soaps. The consequent spurious hypocalcemia was most frequently observed when the patients had chylomicronemia. This cause of apparent hypocalcemia was eliminated either by immediate analyses of the blood samples or by obtaining samples before systemic heparinization.

  13. On spurious anti-persistence in the US stock indices

    International Nuclear Information System (INIS)

    Kristoufek, Ladislav

    2010-01-01

    We reexamine the results of Serletis and Rosenberg [Serletis A, Rosenberg A. Mean reversion in the US stock market. Chaos, Solitons and Fractals 2009;40:2007-2015.] who claim that the returns of the most important US stock indices (DJI, NASDAQ, NYSE and S and P500) are strongly anti-persistent and thus mean reverting. We apply various methods to detect long-range dependence - detrending moving average, detrended fluctuation analysis, generalized Hurst exponent approach, classical rescaled range analysis and modified rescaled range analysis. We show that there are no signs of anti-persistence in any of the indices. Moreover, we discuss that the authors did not find any anti-persistence but rather showed returns of the said assets do not follow the scaling power law around their moving average with varying window length. Anti-persistence is thus spurious and due to wrong application of detrending moving average method.

  14. Real-Time Estimation for Cutting Tool Wear Based on Modal Analysis of Monitored Signals

    Directory of Open Access Journals (Sweden)

    Yongjiao Chi

    2018-05-01

    Full Text Available There is a growing body of literature that recognizes the importance of product safety and the quality problems during processing. The working status of cutting tools may lead to project delay and cost overrun if broken down accidentally, and tool wear is crucial to processing precision in mechanical manufacturing, therefore, this study contributes to this growing area of research by monitoring condition and estimating wear. In this research, an effective method for tool wear estimation was constructed, in which, the signal features of machining process were extracted by ensemble empirical mode decomposition (EEMD and were used to estimate the tool wear. Based on signal analysis, vibration signals that had better linear relationship with tool wearing process were decomposed, then the intrinsic mode functions (IMFs, frequency spectrums of IMFs and the features relating to amplitude changes of frequency spectrum were obtained. The trend that tool wear changes with the features was fitted by Gaussian fitting function to estimate the tool wear. Experimental investigation was used to verify the effectiveness of this method and the results illustrated the correlation between tool wear and the modal features of monitored signals.

  15. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.

  16. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  17. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    International Nuclear Information System (INIS)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay

    2017-01-01

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  18. Spurious effects of electron emission from the grids of a retarding field analyser on secondary electron emission measurements. Results on a (111) copper single crystal

    International Nuclear Information System (INIS)

    Pillon, J.; Roptin, D.; Cailler, M.

    1976-01-01

    Spurious effects of a four grid retarding field analyzer were studied for low energy secondary electron measurements. Their behavior was investigated and two peaks in the energy spectrum were interpreted as resulting from tertiary electrons from the grids. It was shown that the true secondary electron peak has to be separated from these spurious peaks. The spectrum and the yields sigma and eta obtained for a Cu(111) crystal after a surface cleanness control by Auger spectroscopy are given

  19. Integrated Optimization of Long-Range Underwater Signal Detection, Feature Extraction, and Classification for Nuclear Treaty Monitoring

    NARCIS (Netherlands)

    Tuma, M.; Rorbech, V.; Prior, M.; Igel, C.

    2016-01-01

    We designed and jointly optimized an integrated signal processing chain for detection and classification of long-range passive-acoustic underwater signals recorded by the global geophysical monitoring network of the Comprehensive Nuclear-Test-Ban Treaty Organization. Starting at the level of raw

  20. A signal processing application for evaluating self-monitoring blood glucose strategies in a software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2015-07-01

    We propose the signal processing technique of calculating a cross-correlation function and an average deviation between the continuous blood glucose and the interpolation of limited blood glucose samples to evaluate blood glucose monitoring frequency in a self-aware patient software agent model. The diabetic patient software agent model [1] is a 24-h circadian, self-aware, stochastic model of a diabetic patient's blood glucose levels in a software agent environment. The purpose of this work is to apply a signal processing technique to assist patients and physicians in understanding the extent of a patient's illness using a limited number of blood glucose samples. A second purpose of this work is to determine an appropriate blood glucose monitoring frequency in order to have a minimum number of samples taken that still provide a good understanding of the patient's blood glucose levels. For society in general, the monitoring cost of diabetes is an extremely important issue, and these costs can vary tremendously depending on monitoring approaches and monitoring frequencies. Due to the cost and discomfort associated with blood glucose monitoring, today, patients expect monitoring frequencies specific to their health profile. The proposed method quantitatively assesses various monitoring protocols (from 6 times per day to 1 time per week) in nine predefined categories of patient agents in terms of risk factors of health status and age. Simulation results show that sampling 6 times per day is excessive, and not necessary for understanding the dynamics of the continuous signal in the experiments. In addition, patient agents in certain conditions only need to sample their blood glucose 1 time per week to have a good understanding of the characteristics of their blood glucose. Finally, an evaluation scenario is developed to visualize this concept, in which appropriate monitoring frequencies are shown based on the particular conditions of patient agents. This base line can

  1. Smart driver monitoring : when signal processing meets human factors : in the driver's seat

    NARCIS (Netherlands)

    Aghaei, A.S.; Donmez, B.; Liu, C.C.; He, D.; Liu, G.; Plataniotis, K.N.; Chen, H.Y.W.; Sojoudi, Z.

    2016-01-01

    This article provides an interdisciplinary perspective on driver monitoring systems by discussing state-of-the-art signal processing solutions in the context of road safety issues identified in human factors research. Recently, the human factors community has made significant progress in

  2. Mixed Non-Uniform Width / Evanescent Mode Ceramic Resonator Waveguide Filter With Wide Spurious Free Bandwidth

    OpenAIRE

    Afridi, S; Sandhu, M; Hunter, I

    2016-01-01

    This paper presents a method to improve the spurious performance of integrated ceramic waveguide filters. Nonuniform width ceramic waveguide resonator and evanescent mode ceramic resonators are employed together to the resonant frequencies of higher order modes. The proposed designs give 75% improvement in stop band response when compared to uniform width ceramic waveguide filter. Simulated results of two six pole chebyshev filters are presented here with improved stop band performance.

  3. Health monitoring of 90° bolted joints using fuzzy pattern recognition of ultrasonic signals

    International Nuclear Information System (INIS)

    Jalalpour, M; El-Osery, A I; Austin, E M; Reda Taha, M M

    2014-01-01

    Bolted joints are important parts for aerospace structures. However, there is a significant risk associated with assembling bolted joints due to potential human error during the assembly process. Such errors are expensive to find and correct if exposed during environmental testing, yet checking the integrity of individual fasteners after assembly would be a time consuming task. Recent advances in structural health monitoring (SHM) can provide techniques to not only automate this process but also make it reliable. This integrity monitoring requires damage features to be related to physical conditions representing the structural integrity of bolted joints. In this paper an SHM technique using ultrasonic signals and fuzzy pattern recognition to monitor the integrity of 90° bolted joints in aerospace structures is described. The proposed technique is based on normalized fast Fourier transform (NFFT) of transmitted signals and fuzzy pattern recognition. Moreover, experimental observations of a case study on an aluminum 90° bolted joint are presented. We demonstrate the ability of the proposed method to efficiently monitor and indicate bolted joint integrity. (paper)

  4. Safe and effective error rate monitors for SS7 signaling links

    Science.gov (United States)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  5. Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients.

    Science.gov (United States)

    Sebastian, Kevin; Sari, Vivian; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Feng, Mengling

    2012-01-01

    To prevent Traumatic Brain Injury (TBI) patients from secondary brain injuries, patients' physiological readings are continuously monitored. However, the visualization dashboards of most existing monitoring devices cannot effectively present all physiological information of TBI patients and are also ineffective in facilitating neuro-clinicians for fast and accurate diagnosis. To address these shortcomings, we proposed a new visualization dashboard, namely the Multi-signal Visualization of Physiology (MVP). MVP makes use of multi-signal polygram to collate various physiological signals, and it also utilizes colors and the concept of "safe/danger zones" to assist neuro-clinicians to achieve fast and accurate diagnosis. Moreover, MVP allows neuro-clinicians to review historical physiological statuses of TBI patients, which can guide and optimize clinicians' diagnosis and prognosis decisions. The performance of MVP is tested and justified with an actual Philips monitoring device.

  6. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees.

    Science.gov (United States)

    Yang, Ziheng; Zhu, Tianqi

    2018-02-20

    The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.

  7. A SIGNAL ENHANCED PORTABLE RAMAN PROBE FOR ANESTHETIC GAS MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schlüter

    2015-03-01

    Full Text Available The spontaneous Raman scattering technique is an excellent tool for a quantitative analysis of multi-species gas mixtures. It is a noninvasive optical method for species identification and gas phase concentration measurement of all Raman active molecules, since the intensity of the species specific Raman signal is linearly dependent on the concentration. Applying a continuous wave (CW laser it typically takes a few seconds to capture a gas phase Raman spectrum at room temperature. Nevertheless in contrast to these advantages the weak Raman signal intensity is a major drawback. Thus, it is still challenging to detect gas phase Raman spectra in alow-pressure regime with a temporal resolution of only a few 100 ms. In this work a fully functional gas phase Raman system for measurements in the low-pressure regime (p ≥ 980 hPa (absolute is presented. It overcomes the drawback of a weak Raman signal by using a multipass cavity. A description of the sensor setup and of the multipass arrangement will be presented. Moreover the complete functionality of the sensor system will be demonstrated by measurements at an anesthesia simulator under clinical relevant conditions and in comparison to a conventional gas monitor.

  8. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.

    Science.gov (United States)

    Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li

    2016-03-15

    Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The characterization of NMR signal for blood pressure monitoring system and its testing

    Directory of Open Access Journals (Sweden)

    Bambang Murdaka Eka Jati

    2016-02-01

    Full Text Available ABSTRACT A blood monitoring system based on NMR method has been designed on constructed. This set-up of equipment used magnetic permanent, radio frequency (RF, receiver coil (RC, function generator (FG, amplifier which included the filter, as well as the oscilloscope digital storage. The background of this research was based on the sensitivity of NMR signal. The signal must be separated from signals background. This method was done by adjusting the frequency on FG, which was connected to radio frequency (RF coil, on empty sample. Subsequently, NMR signal was received by RC, and that signal could be shown on oscilloscope at resonance condition. The true frequency on NMR signal was Larmor frequency, and the other was background. The two variables of this experiment were the position of RF coil and the location temperature (20 up to 30oC. In conclusion, the resonance frequency of NMR signal (as Larmor frequency was 4.7 MHz (at static magnetic field of 1,600 gauss and it could be separated from background signals (3.4 and 6.2 MHz, and that signal was almost constant to room temperature. The equipment was used for sample testing. It gave systole/diastole data of 110/70 mmHg (on sphygmomanometer that was similar to 17/9 mV (on NMR signal. ABSTRAK Telah dikembangkan alat pemantauan tekanan darah berdasar prinsip NMR.

  10. Monitoring and predicting cognitive state and performance via physiological correlates of neuronal signals.

    Science.gov (United States)

    Russo, Michael B; Stetz, Melba C; Thomas, Maria L

    2005-07-01

    Judgment, decision making, and situational awareness are higher-order mental abilities critically important to operational cognitive performance. Higher-order mental abilities rely on intact functioning of multiple brain regions, including the prefrontal, thalamus, and parietal areas. Real-time monitoring of individuals for cognitive performance capacity via an approach based on sampling multiple neurophysiologic signals and integrating those signals with performance prediction models potentially provides a method of supporting warfighters' and commanders' decision making and other operationally relevant mental processes and is consistent with the goals of augmented cognition. Cognitive neurophysiological assessments that directly measure brain function and subsequent cognition include positron emission tomography, functional magnetic resonance imaging, mass spectroscopy, near-infrared spectroscopy, magnetoencephalography, and electroencephalography (EEG); however, most direct measures are not practical to use in operational environments. More practical, albeit indirect measures that are generated by, but removed from the actual neural sources, are movement activity, oculometrics, heart rate, and voice stress signals. The goal of the papers in this section is to describe advances in selected direct and indirect cognitive neurophysiologic monitoring techniques as applied for the ultimate purpose of preventing operational performance failures. These papers present data acquired in a wide variety of environments, including laboratory, simulator, and clinical arenas. The papers discuss cognitive neurophysiologic measures such as digital signal processing wrist-mounted actigraphy; oculometrics including blinks, saccadic eye movements, pupillary movements, the pupil light reflex; and high-frequency EEG. These neurophysiological indices are related to cognitive performance as measured through standard test batteries and simulators with conditions including sleep loss

  11. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  12. Analysis of an ADS spurious opening event at a BWR/6 by means of the TRACE code

    International Nuclear Information System (INIS)

    Nikitin, Konstantin; Manera, Annalisa

    2011-01-01

    Highlights: → The spurious opening of 8 relief valves of the ADS system in a BWR/6 has been simulated. → The valves opening results in a fast depressurization and significant loads on the RPV internals. → This event has been modeled by means of the TRACE and TRAC-BF1 codes. The results are in good agreement with the available plant data. - Abstract: The paper presents the results of a post-event analysis of a spurious opening of 8 relief valves of the automatic depressurization system (ADS) occurred in a BWR/6. The opening of the relief valves results in a fast depressurization (pressure blow down) of the primary system which might lead to significant dynamic loads on the RPV and associated internals. In addition, the RPV level swelling caused by the fast depressurization might lead to undesired water carry-over into the steam line and through the safety relief valves (SRVs). Therefore, the transient needs to be characterized in terms of evolution of pressure, temperature and fluid distribution in the system. This event has been modeled by means of the TRACE and TRAC-BF1 codes. The results are in good agreement with the plant data.

  13. Using signal ''KVANT-1'' direct-reading dosemeter for the purposes of personnel monitoring

    International Nuclear Information System (INIS)

    Glinskij, G.A.; Karasev, V.S.; Mukhin, I.E.; Chumak, V.K.

    1977-01-01

    Presented is the description of ''KVANT-1'' dosemeter for monitoring personnel doses of gamma and X radiation. The dosemeter permits to judge on the radiation intensity, to control directly the dose being accumulated, to store the reading of the dose accumulated for a necessary period of time, to obtain sound signal in case of reaching the limit of a pre-set dose. Presented are a general view, block diagram, and the discription of the dosemeter desing and operation. Advantages of the ''KVANT-1'' dosemeter are shown as compared with the conventional personnel monitoring IFK-2,3 and KID-2 dosemeters [ru

  14. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    Science.gov (United States)

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  15. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  16. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei

    2013-07-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal resonant modes do not satisfy these initial conditions. However, these spurious modes are always observed in the MOT solution. It has been conjectured in the past that numerical errors might establish the necessary initial conditions and allow the incident field to induce the internal resonant modes. Systematic numerical experiments carried out in this work prove this conjecture by demonstrating that the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors and the spectrum of the incident field. © 2013 IEEE.

  17. Construction of a Vibration Monitoring System for HANARO's Rotating Machinery and Analysis of Pump Vibration Signals

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2005-01-01

    HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition

  18. Integration and enhancement of low-level signals from air-pollution monitoring sensors

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, G F; Dubois, L; Monkman, J L

    1975-09-01

    In this paper, we have demonstrated how signal enhancement techniques would be advantageous in the low-level analysis of air pollutants. We have further shown what type of signal-to-noise gain may be expected from an off-the-shelf, inexpensive run-of-the-mill mercury monitor. As long as an evoked response time constant is introduced into the measuring system, noise of a random nature may be reduced to such an extent that trace signals, buried deep in the electrical background, may be reliably measured. If we couple this type of analysis to a multi-parameter mercury analyzer, contributing factors may be evaluated. This will result in a more efficient system application. We have also reported a manner in which evoked response time is related to instrument onset time. However, there are other methods for obtaining an evoked response. Of note is the use of wavelength in the enhancement of spectrophotometric signals. In additional work now being carried out in our laboratory, there are indications that it is possible to relate this type of processing to SO/sub 2/ analyzing systems using conductometry. (auth)

  19. Expert system for the automatic analysis of the Eddy current signals from the monitoring of vapor generators of a PWR, type reactor

    International Nuclear Information System (INIS)

    Lefevre, F.; Baumaire, A.; Comby, R.; Benas, J.C.

    1990-01-01

    The automatization of the monitoring of the steam generator tubes required some developments in the field of data processing. The monitoring is performed by means of Eddy current tests. Improvements in signal processing and in pattern recognition associated to the artificial intelligence techniques induced EDF (French Electricity Company) to develop an automatic signal processing system. The system, named EXTRACSION (French acronym for Expert System for the Processing and classification of Signals of Nuclear Nature), insures the coherence between the different fields of knowledge (metallurgy, measurement, signals) during data processing by applying an object oriented representation [fr

  20. Substandard, Spurious, Falsely-Labelled, Falsified and Counterfeit (SSFFC Drugs: Time to Take a Bitter Pill

    Directory of Open Access Journals (Sweden)

    Geetha Mani

    2016-10-01

    Full Text Available Substandard, Spurious, Falsely-Labelled, Falsified and Counterfeit (SSFFC drugs are an emerging public health concern in India. With one of the huge pharmaceutical sectors in the world, India has a varied prevalence of SSSFC drugs ranging from 0.04% to 34% according to various studies. Apart from severe health consequences, SSSFC drugs also weaken community's trust in the health care system. India is tackling the epidemic of SSSFC drugs through various existing and new regulatory measures. Considering the calamitous consequences of this silent epidemic, it is time to prescribe a bitter pill.

  1. Research on on-line monitoring technology for steel ball's forming process based on load signal analysis method

    Science.gov (United States)

    Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi

    2013-04-01

    This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.

  2. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  3. Information selection and signal probability in multisource monitoring under the influence of centrally active drugs : Phentermine versus pentobarbital

    NARCIS (Netherlands)

    Volkerts, E.R; van Laar, M.W; Verbaten, M.N; Mulder, G.; Maes, R.A A

    1996-01-01

    The present study is concerned with the relationship between drug-induced arousal shifts and sampling [(monitoring)] behaviour in a three-source task with an a priori signal occurrence probability of 0.6, 0.3, and 0.1. The multisource monitoring task and procedure was adopted from Hockey (1973) who

  4. Unravel Spurious Bathymetric Highs on the Western Continental Margin of India

    Science.gov (United States)

    Mahale, V. P.

    2017-12-01

    Swath mapping multibeam echosounder systems (MBES) have become a de-facto-standard component on today's research vessel (RV). Modern MBES provide high temporal and spatial resolution for mapping the seabed morphology. Improved resolution capabilities requires large hull mounted transceivers, which after installation undergoes calibration procedure during the sea acceptance test (SAT). To accurately estimate various vessel offsets and lever-arm corrections, the installer runs calibration lines over a prominent seabed feature. In the year 2014, while conducting SAT for the RV Sindhu Sadhana and calibrate the ATLAS make MBES system, a hunt was on to find suitable bathymetric highs in the region of operation. Regional hydrographic charts published by the National Hydrographic Office, in India were referred to locate such features. Two bathymetric highs were spotted on the chart that are 20 km apart and 40 km west of the shelf-edge on the Western Continental Margin of India. The charted depth on these highs are 252 m and 343 m on a relatively even but moderately sloppy seabed, representing an isolated elevations of 900 m. The geographic locations of these knolls were verified with the GEBCO's 30-arc second gridded bathymetry, before heading out for the waypoints. There were no signs of knolls at those locations, indicating erroneous georeferencing. Hence, the region was subsequently revisited in the following years until an area of 3000 sq. km was mapped. Failing to locate the bathymetric highs they are referred to as 'spurious'. Investigation was planned to unravel the rationale of existence and sustenance of these knolls in the hydrographic charts since historic time. Tweaking the MBES settings reveals existence of strong acoustic scattering layer, to which even the depth tracking gate gets locked-on and is documented. Analogically, in the past, ships transecting the region equipped with single beam echosounder tuned for shallow depth operations might have charted the

  5. A Monte Carlo technique for signal level detection in implanted intracranial pressure monitoring.

    Science.gov (United States)

    Avent, R K; Charlton, J D; Nagle, H T; Johnson, R N

    1987-01-01

    Statistical monitoring techniques like CUSUM, Trigg's tracking signal and EMP filtering have a major advantage over more recent techniques, such as Kalman filtering, because of their inherent simplicity. In many biomedical applications, such as electronic implantable devices, these simpler techniques have greater utility because of the reduced requirements on power, logic complexity and sampling speed. The determination of signal means using some of the earlier techniques are reviewed in this paper, and a new Monte Carlo based method with greater capability to sparsely sample a waveform and obtain an accurate mean value is presented. This technique may find widespread use as a trend detection method when reduced power consumption is a requirement.

  6. An Enhanced Empirical Wavelet Transform for Features Extraction from Wind Turbine Condition Monitoring Signals

    Directory of Open Access Journals (Sweden)

    Pu Shi

    2017-07-01

    Full Text Available Feature extraction from nonlinear and non-stationary (NNS wind turbine (WT condition monitoring (CM signals is challenging. Previously, much effort has been spent to develop advanced signal processing techniques for dealing with CM signals of this kind. The Empirical Wavelet Transform (EWT is one of the achievements attributed to these efforts. The EWT takes advantage of Empirical Mode Decomposition (EMD in dealing with NNS signals but is superior to the EMD in mode decomposition and robustness against noise. However, the conventional EWT meets difficulty in properly segmenting the frequency spectrum of the signal, especially when lacking pre-knowledge of the signal. The inappropriate segmentation of the signal spectrum will inevitably lower the accuracy of the EWT result and thus raise the difficulty of WT CM. To address this issue, an enhanced EWT is proposed in this paper by developing a feasible and efficient spectrum segmentation method. The effectiveness of the proposed method has been verified by using the bearing and gearbox CM data that are open to the public for the purpose of research. The experiment has shown that, after adopting the proposed method, it becomes much easier and more reliable to segment the frequency spectrum of the signal. Moreover, benefitting from the correct segmentation of the signal spectrum, the fault-related features of the CM signals are presented more explicitly in the time-frequency map of the enhanced EWT, despite the considerable noise contained in the signal and the shortage of pre-knowledge about the machine being investigated.

  7. Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring

    Directory of Open Access Journals (Sweden)

    Ivan D. Castro

    2018-02-01

    Full Text Available Sleep-related conditions require high-cost and low-comfort diagnosis at the hospital during one night or longer. To overcome this situation, this work aims to evaluate an unobtrusive monitoring technique for sleep apnea. This paper presents, for the first time, the evaluation of contactless capacitively-coupled electrocardiography (ccECG signals for the extraction of sleep apnea features, together with a comparison of different signal quality indicators. A multichannel ccECG system is used to collect signals from 15 subjects in a sleep environment from different positions. Reference quality labels were assigned for every 30-s segment. Quality indicators were calculated, and their signal classification performance was evaluated. Features for the detection of sleep apnea were extracted from capacitive and reference signals. Sleep apnea features related to heart rate and heart rate variability achieved high similarity to the reference values, with p-values of 0.94 and 0.98, which is in line with the more than 95% beat-matching obtained. Features related to signal morphology presented lower similarity with the reference, although signal similarity metrics of correlation and coherence were relatively high. Quality-based automatic classification of the signals had a maximum accuracy of 91%. Best-performing quality indicators were based on template correlation and beat-detection. Results suggest that using unobtrusive cardiac signals for the automatic detection of sleep apnea can achieve similar performance as contact signals, and indicates clinical value of ccECG. Moreover, signal segments can automatically be classified by the proposed quality metrics as a pre-processing step. Including contactless respiration signals is likely to improve the performance and provide a complete unobtrusive cardiorespiratory monitoring solution; this is a promising alternative that will allow the screening of more patients with higher comfort, for a longer time, and at

  8. An in-vacuum wall current monitor and low cost signal sampling system

    International Nuclear Information System (INIS)

    Yin, Y.; Rawnsley, W.R.; Mackenzie, G.H.

    1993-11-01

    The beam bunches extracted from the TRIUMF cyclotron are usually about 4 ns long, contain ∼ 4 x 10 7 protons, and are spaced at 43 ns. A wall current monitor capable of giving the charge distribution within a bunch, on a bunch by bunch basis, has recently been installed together with a sampling system for routine display in the control room. The wall current monitor is enclosed in a vacuum vessel and no ceramic spacer is required. This enhances the response to high frequencies, ferrite rings extend the low frequency response. Bench measurements show a flat response between a few hundred kilohertz and 4.6 GHz. For a permanent display in the control room the oscilloscope will be replaced by a Stanford Research Systems fast sampler module, a scanner module, and an interface module made at TRIUMF. The time to acquire one 10 ns distribution encompassing the beam bunch is 30 ms with a sample width of 100 ps and an average sample spacing of 13 ps. The scan, sample, and retrace signals are buffered carried on 70 m differential lines to the control room. An analog scope in XYZ mode provides a real time display. Signal averaging can be performed by using a digital oscilloscope in YT mode. (author). 6 refs., 2 tabs., 7 figs

  9. Bio-Signal Complexity Analysis in Epileptic Seizure Monitoring: A Topic Review

    Directory of Open Access Journals (Sweden)

    Zhenning Mei

    2018-05-01

    Full Text Available Complexity science has provided new perspectives and opportunities for understanding a variety of complex natural or social phenomena, including brain dysfunctions like epilepsy. By delving into the complexity in electrophysiological signals and neuroimaging, new insights have emerged. These discoveries have revealed that complexity is a fundamental aspect of physiological processes. The inherent nonlinearity and non-stationarity of physiological processes limits the methods based on simpler underlying assumptions to point out the pathway to a more comprehensive understanding of their behavior and relation with certain diseases. The perspective of complexity may benefit both the research and clinical practice through providing novel data analytics tools devoted for the understanding of and the intervention about epilepsies. This review aims to provide a sketchy overview of the methods derived from different disciplines lucubrating to the complexity of bio-signals in the field of epilepsy monitoring. Although the complexity of bio-signals is still not fully understood, bundles of new insights have been already obtained. Despite the promising results about epileptic seizure detection and prediction through offline analysis, we are still lacking robust, tried-and-true real-time applications. Multidisciplinary collaborations and more high-quality data accessible to the whole community are needed for reproducible research and the development of such applications.

  10. Neuroelectronics and modeling of electrical signals for monitoring and control of Parkinson's disease

    Science.gov (United States)

    Chintakuntla, Ritesh R.; Abraham, Jose K.; Varadan, Vijay K.

    2009-03-01

    The brain and the human nervous system are perhaps the most researched but least understood components of the human body. This is so because of the complex nature of its working and the high density of functions. The monitoring of neural signals could help one better understand the working of the brain and newer recording and monitoring methods have been developed ever since it was discovered that the brain communicates internally by means of electrical pulses. Neuroelectronics is the field which deals with the interface between electronics or semiconductors to living neurons. This includes monitoring of electrical activity from the brain as well as the development of feedback devices for stimulation of parts of the brain for treatment of disorders. In this paper these electrical signals are modeled through a nano/microelectrode arrays based on the electronic equivalent model using Cadence PSD 15.0. The results were compared with those previously published models such as Kupfmuller and Jenik's model, McGrogan's Neuron Model which are based on the Hodgkin and Huxley model. We have developed and equivalent circuit model using discrete passive components to simulate the electrical activity of the neurons. The simulated circuit can be easily be modified by adding some more ionic channels and the results can be used to predict necessary external stimulus needed for stimulation of neurons affected by the Parkinson's disease (PD). Implementing such a model in PD patients could predict the necessary voltages required for the electrical stimulation of the sub-thalamus region for the control tremor motion.

  11. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  12. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  13. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    Science.gov (United States)

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.

  14. Novel textile systems for the continuous monitoring of vital signals: design and characterization.

    Science.gov (United States)

    Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José

    2015-08-01

    In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.

  15. Plant monitoring system

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo.

    1994-01-01

    The memory means of the present invention memorize conditions for analyzing a sampling period for inputting process signals and time sequential data of the process signals. The process signals are analyzed following after sampling period and the analysis conditions stored in the memory means preceding to monitoring. A monitoring condition setting means controls and subsequently updates the sampling period and the analysis conditions in the memory means based on the analysis data, to finally set monitoring conditions. With such procedures, analysis conditions such as optimum analysis frequency range, signal sampling period and correlational characteristics between process noise signals are automatically selected. (I.S.)

  16. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J; Ghafaripour, F; Mortazavi, S A R; Mortazavi, S M J; Shojaei-Fard, M B

    2015-12-01

    People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched-on mobile phone with no signal strength. The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  17. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals ByUsing Microsoft Visual C Sharp.

    Science.gov (United States)

    Younessi Heravi, M A; Khalilzadeh, M A; Joharinia, S

    2014-03-01

    One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff. Objective :In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device wasinserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET ) was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  18. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    Science.gov (United States)

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  19. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ye

    2018-02-01

    Full Text Available In this paper, a fiber Bragg grating (FBG-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC. Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW. The stochastic characteristic of stress concentration factor (SCF of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  20. In Vitro Leukoagglutination: A Rare Hematological Cause of Spurious Leukopenia

    Directory of Open Access Journals (Sweden)

    Sadia Sultan

    2017-08-01

    Full Text Available Leukopenia secondary to leukocytic agglutination is caused by an ethylene diamine tetra acetic acid (EDTA which may appear in both benign and malignant states. Ethylene diamine tetra acetic acid induced platelets clumping in peripheral blood has been well established, but invitro leukocytic aggregation is very rarest hematological finding. Pseudo-leukopenia resulting from leukoagglutinins has been reported in the cirrhotic state, infections, autoimmune disorders, uremia, in immunosuppressed state or in various malignancies. Though the condition seems to be benign but very important to be detected as these artifactual findings lead to unnecessary investigations and remarkably changed the overall management plan. Here we report the case of a young patient with this rare finding who was admitted to our hospital with progressive labor pains. The analysis of ethylene diaminetetraacetic acid (EDTA, anticoagulated blood was done on automated hematology analyzer reveals leukopenia. The peripheral smear examination revealed multiple aggregates of leukocytes. On repeat sampling in citrate anticoagulant, the complete blood count showed total leukocytic count of 16.5x109/L with absolute neutrophilic count of 11.5x109/L. This is a rare case of spurious leukopenia secondary to in-vitro leukocytic agglutination provoked by EDTA anticoagulant.

  1. Frequency Analysis of Acoustic Emission Signal to Monitor Damage Evolution in Masonry Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    A crucial aspect in damage evaluation of masonry structures is the analysis of long-term behaviour and for this reason fatigue analysis has a great influence on safety assessment of this structures. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced and unreinforced masonry walls under variable amplitude and static loading has been carried out. During these tests, the AE signals were recorded. The AE signals were analysed using Fast Fourier Transform (FFT) to examine the frequency distribution of the micro and macro cracking. It possible to evaluate the evolution of the wavelength of the AE signal through the two characteristic peak in the AE spectrum signals and the wave speed of the P or S waves. This wavelength evolution can be represent the microcrak and macrocrack evolution in masonry walls. This procedure permits to estimate the fracture dimension characteristic in several loading condition and for several masonry reinforced condition.

  2. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Directory of Open Access Journals (Sweden)

    Eslami J.

    2015-12-01

    Full Text Available Background: People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods: Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results: The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀ (were 7.4±3.9 mg/dl, 10.2±4.5 mg/ dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion: Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  3. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J.; Ghafaripour, F.; Mortazavi, S.A.R.; Mortazavi, S.M.J.; Shojaei-fard, M.B.

    2015-01-01

    Background People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors. PMID:26688798

  4. Sustained Attention in Auditory and Visual Monitoring Tasks: Evaluation of the Administration of a Rest Break or Exogenous Vibrotactile Signals.

    Science.gov (United States)

    Arrabito, G Robert; Ho, Geoffrey; Aghaei, Behzad; Burns, Catherine; Hou, Ming

    2015-12-01

    Performance and mental workload were observed for the administration of a rest break or exogenous vibrotactile signals in auditory and visual monitoring tasks. Sustained attention is mentally demanding. Techniques are required to improve observer performance in vigilance tasks. Participants (N = 150) monitored an auditory or a visual display for changes in signal duration in a 40-min watch. During the watch, participants were administered a rest break or exogenous vibrotactile signals. Detection accuracy was significantly greater in the auditory than in the visual modality. A short rest break restored detection accuracy in both sensory modalities following deterioration in performance. Participants experienced significantly lower mental workload when monitoring auditory than visual signals, and a rest break significantly reduced mental workload in both sensory modalities. Exogenous vibrotactile signals had no beneficial effects on performance, or mental workload. A rest break can restore performance in auditory and visual vigilance tasks. Although sensory differences in vigilance tasks have been studied, this study is the initial effort to investigate the effects of a rest break countermeasure in both auditory and visual vigilance tasks, and it is also the initial effort to explore the effects of the intervention of a rest break on the perceived mental workload of auditory and visual vigilance tasks. Further research is warranted to determine exact characteristics of effective exogenous vibrotactile signals in vigilance tasks. Potential applications of this research include procedures for decreasing the temporal decline in observer performance and the high mental workload imposed by vigilance tasks. © 2015, Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence.

  5. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  6. Technological monitoring radar: a weak signals interpretation tool for the identification of strategic surprises

    Directory of Open Access Journals (Sweden)

    Adalton Ozaki

    2011-07-01

    Full Text Available In the current competitive scenario, marked by rapid and constant changes, it is vital that companies actively monitor the business environment, in search of signs which might anticipate changes. This study poses to propose and discuss a tool called Technological Monitoring Radar, which endeavours to address the following query: “How can a company systematically monitor the environment and capture signs that anticipate opportunities and threats concerning a particular technology?”. The literature review covers Competitive Intelligence, Technological Intelligence, Environmental Analysis and Anticipative Monitoring. Based on the critical analysis of the literature, a tool called Technological Monitoring Radar is proposed comprising five environments to be monitored (political, economical, technological, social and competition each of which with key topics for analysis. To exemplify the use of the tool, it is applied to the smartphone segment in an exclusively reflexive manner, and without the participation of a specific company. One of the suggestions for future research is precisely the application of the proposed methodology in an actual company. Despite the limitation of this being a theoretical study, the example demonstrated the tool´s applicability. The radar prove to be very useful for a company that needs to monitor the environment in search of signs of change. This study´s main contribution is to relate different fields of study (technological intelligence, environmental analysis and anticipative monitoring and different approaches to provide a practical tool that allows a manager to identify and better visualize opportunities and threats, thus avoiding strategic surprises in the technological arena.Key words: Technological monitoring. Technological intelligence. Competitive intelligence. Weak signals.

  7. Procedures and techniques for monitoring the radiation detection, signalization and alarm systems in the centralized ambience monitoring systems of the basic nuclear facilities of the CEN Saclay

    International Nuclear Information System (INIS)

    Andre, J.-J.; Drouet, J.; Leblanc, P.

    1979-01-01

    After referring to the regulations governing the 'systematic ambience monitoring' in the basic nuclear facilities, the main radiation detection, signalization and alarm devices existing at present in these facilities of the Saclay Nuclear Study Centre are described. The analysis of the operating defects of the measuring channels and detection possibilities leads to the anomalies being classified in two separate groups: the anomalies of the logical 'all or nothing' type of which all the possible origins are integrated into a so-called 'continuity' line and the evolutive anomalies of various origins corresponding to poor functioning extending possibly to a complete absence of signal. The techniques for testing the detection devices of the radiation monitoring board set up in the 'Departement de Rayonnements' at the Saclay Nuclear Study Centre are also described [fr

  8. TLP Structural Health Monitoring Based on Vibration Signal of Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Vahid Jahangiri

    Full Text Available Abstract Structural Health Monitoring (SHM of Tension Leg Platform (TLP is very crucial for preventing catastrophic and sudden collapse of the structures. One of the methods of monitoring these structures is implementing SHM sensors. Supplying energy for these sensors for a long period is a challenging problem. So, one of the new methods of supplying energy for SHM, is usage of mechanical energy. In this method, the piezoelectric material is employed to convert the mechanical energy which is resulted from vibration of structure, to electrical energy. The advantage of this method is based on not implementing the battery charging system. Therefore, in this paper, after modeling TLP structure, energy supplying of these sensors with piezoelectric converters is studied. Furthermore, fault diagnosis of these structures in the presence of different uncertainties is proposed by the features of voltage signal, produced from piezoelectric patches and fuzzy classification method. Results show that this method can diagnose faults of the structure with an acceptable success rate.

  9. Anticrab cavities for the removal of spurious vertical bunch rotations caused by crab cavities

    Directory of Open Access Journals (Sweden)

    G. Burt

    2008-09-01

    Full Text Available Many particle accelerators are proposing the use of crab cavities to correct for accelerator crossing angles or for the production of short bunches in light sources. These cavities produce a rotation to the bunch in a well-defined polarization plane. If the plane of the rotation does not align with the horizontal axis of the accelerator, the bunch will receive a small amount of spurious vertical bunch rotation. For accelerators with small vertical beam sizes and large beam-beam effects, this can cause significant unwanted effects. In this paper we propose the use of a 2nd smaller crab cavity in the vertical plane in order to cancel this effect and investigate its use in numerical simulations.

  10. The Moon that Wasn’t The Saga of Venus’ Spurious Satellite

    CERN Document Server

    Kragh, Helge

    2008-01-01

    This book details the history of one of astronomy’s many spurious objects, the satellite of Venus. First spotted in 1645, the non-existing moon was observed more than a dozen times until the late eighteenth century. Although few astronomers believed in the existence of the moon after about 1770, it continued to attract attention for at least another century. However, it has largely disappeared from the history of astronomy, and the rich historical sources have never been exploited. By telling the story of the enigmatic satellite in its proper historical context it is demonstrated that it was much more than a mere curiosity in the annals of astronomy – Frederick II of Prussia was familiar with it, and so was Bonnet, Kant and Voltaire. The satellite of Venus belongs to the same category as other fictitious celestial bodies (such as the planet Vulcan), yet it had its own life and fascinating historical trajectory. By following this trajectory, the history of planetary astronomy is addressed in a novel way.

  11. New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic

    International Nuclear Information System (INIS)

    Henriques, R. B.; Nedzelskiy, I. S.; Malaquias, A.; Fernandes, H.

    2012-01-01

    The tokamak ISTTOK heavy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10 7 V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.

  12. New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic.

    Science.gov (United States)

    Henriques, R B; Nedzelskiy, I S; Malaquias, A; Fernandes, H

    2012-10-01

    The tokamak ISTTOK havy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10(7) V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.

  13. New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, R. B.; Nedzelskiy, I. S.; Malaquias, A.; Fernandes, H. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 1049-001 Lisboa (Portugal)

    2012-10-15

    The tokamak ISTTOK heavy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10{sup 7} V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.

  14. Commissioning Measurements and Experience Obtained from the Installation of a Fissile Mass Flow monitor in the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk

    International Nuclear Information System (INIS)

    March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, V.

    1999-01-01

    The Blend Down Monitoring System (BDMS) equipment sent earlier to the Ural Electrochemical Integrated Plant (UEIP) at Novouralsk, Russia, was installed and implemented successfully on February 2, 1999. The BDMS installation supports the highly enriched uranium (HEU) Transparency Implementation Program for material subject to monitoring under the HEU purchase agreement between the United States of America (USA) and the Russian Federation (RF). The BDMS consists of the Oak Ridge National Laboratory (ORNL) Fissile (uranium-235) Mass Flow Monitor (FMFM) and the Los Alamos National Laboratory (LANL) Enrichment Monitor (EM). Two BDMSs for monitoring the Main and Reserve HEU blending process lines were installed at UEIP. Independent operation of the FMFM Main and FMFM Reserve was successfully demonstrated for monitoring the fissile mass flow as well as the traceability of HEU to the product low enriched uranium. The FMFM systems failed when both systems were activated during the calibration phase due to a synchronization problem between the systems. This operational failure was caused by the presence of strong electromagnetic interference (EMI) in the blend point. The source-modulator shutter motion of the two FMFM systems was not being properly synchronized because of EMI producing a spurious signal on the synchronization cable connecting the two FMFM cabinets. The signature of this failure was successfully reproduced at ORNL after the visit. This unexpected problem was eliminated by a hardware modification and software improvements during a recent visit (June 9-11, 1999) to UEIP, and both systems are now operating as expected

  15. Review of Fire-Induced Multiple Spurious Operation Scenarios for a Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Hong; Lee, Jai Ho; Lee, Do Hwan [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    It was preliminarily reviewed that 41 scenarios of 63 scenarios of NEI's generic list could be applicable to design of SKN3. And 22 scenario of NEI's generic list were evaluated not applicable to SKN3. During the review of the scenario contained in NEI 00-01, no additional MSO scenarios specific to SKN3 were identified. For the further study, the final review will be determined and then detailed circuit analysis will be performed by fire zone and area based on the exact location contained the cable and raceway. With the enhancement of fire safety regulation requirements in nuclear power industry, multiple spurious operation (MSO) identification and treatments should be included in post fire safe shutdown analysis (PFSSA). In this study, the MSO scenario reviews are performed for Shin Kori Unit 3(SKN3) which is the first nuclear power plant of the Advanced Power Reactor 1400 constructed in Korea.

  16. Synchronization of dynamic response measurements for the purpose of structural health monitoring

    International Nuclear Information System (INIS)

    Maes, K.; Reynders, E.; De Roeck, G.; Lombaert, G.; Rezayat, A.

    2016-01-01

    This paper presents a technique for offline time synchronization of data acquisition systems for linear structures with proportional damping. The technique can be applied when direct synchronization of data acquisition systems is impossible or not sufficiently accurate. The synchronization is based on the acquired dynamic response of the structure only, and does not require the acquisition of a shared sensor signal or a trigger signal. The time delay is identified from the spurious phase shift of the mode shape components that are obtained from system identification. A demonstration for a laboratory experiment on a cantilever steel beam shows that the proposed methodology can be used for accurate time synchronization, resulting in a significant improvement of the accuracy of the identified mode shapes. (paper)

  17. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  18. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals By Using Microsoft Visual C Sharp

    Directory of Open Access Journals (Sweden)

    Younessi Heravi M. A.

    2014-03-01

    Full Text Available Background: One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP by sphygmomanometer cuff. Objective: In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Methods: Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device was inserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. Results: In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. Conclusion: By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  19. Neutron monitoring system

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Arita, Setsuo.

    1994-01-01

    The present invention concerns neutron monitoring for monitoring reactor power, and presents a generation state of abnormal signals by monitoring output signals from neutron sensors, judges abnormal signals at an excessively high level outputted from the sensors to a measuring operator or a reactor operator. That is, a threshold value judging means judges whether a sensor signal exceeds a predetermined threshold value or not. When it exceeds the value, recognition signals are outputted to a memory means. The memory means memorizes the times of input of the recognition signals on every period of interval signals outputted from a reference signal generation means. The memory content of the memory means and the previously inputted hysteresis of the sensor are compared and judged, to determine the extent of the degradation of the sensors and output the result of the judgement and hysteresis information to the display means. The input means accesses to the judging means and the memory means to retrieve and correct the content of the memory means and the hysteresis information inputted to the judging means. (I.S.)

  20. Bulk Genotyping of Biopsies Can Create Spurious Evidence for Hetereogeneity in Mutation Content.

    Directory of Open Access Journals (Sweden)

    Rumen Kostadinov

    2016-04-01

    Full Text Available When multiple samples are taken from the neoplastic tissues of a single patient, it is natural to compare their mutation content. This is often done by bulk genotyping of whole biopsies, but the chance that a mutation will be detected in bulk genotyping depends on its local frequency in the sample. When the underlying mutation count per cell is equal, homogenous biopsies will have more high-frequency mutations, and thus more detectable mutations, than heterogeneous ones. Using simulations, we show that bulk genotyping of data simulated under a neutral model of somatic evolution generates strong spurious evidence for non-neutrality, because the pattern of tissue growth systematically generates differences in biopsy heterogeneity. Any experiment which compares mutation content across bulk-genotyped biopsies may therefore suggest mutation rate or selection intensity variation even when these forces are absent. We discuss computational and experimental approaches for resolving this problem.

  1. Bulk Genotyping of Biopsies Can Create Spurious Evidence for Hetereogeneity in Mutation Content.

    Science.gov (United States)

    Kostadinov, Rumen; Maley, Carlo C; Kuhner, Mary K

    2016-04-01

    When multiple samples are taken from the neoplastic tissues of a single patient, it is natural to compare their mutation content. This is often done by bulk genotyping of whole biopsies, but the chance that a mutation will be detected in bulk genotyping depends on its local frequency in the sample. When the underlying mutation count per cell is equal, homogenous biopsies will have more high-frequency mutations, and thus more detectable mutations, than heterogeneous ones. Using simulations, we show that bulk genotyping of data simulated under a neutral model of somatic evolution generates strong spurious evidence for non-neutrality, because the pattern of tissue growth systematically generates differences in biopsy heterogeneity. Any experiment which compares mutation content across bulk-genotyped biopsies may therefore suggest mutation rate or selection intensity variation even when these forces are absent. We discuss computational and experimental approaches for resolving this problem.

  2. Incore monitoring device

    International Nuclear Information System (INIS)

    Tai, Ichiro; Shirayama, Shin-pei; Nozaki, Shin-ichi.

    1978-01-01

    Purpose: To provide an incore monitoring device wherein both radiation monitoring and acoustic monitoring are carried out simultaneously by one detector, whereby installation of the device and signal pick-up are facilitated. Incore conditions are accurately grasped. Constitution: When a neutron is irradiated in a state where a DC voltage is applied between the electrode and the vessel in the device, an ionization current is occured by (n.γ) reaction of the transformed substance as in an ionization chamber, Accordingly, a voltage drop occurs at both ends of the resistor of the radiation signal processing system, as a result of which a neutron flux can be detected. Further, when a sound is generated in the reactor, the monitoring device bottom wall which formed by a piezoelectric element detects the sound-waves. This output signal is picked up by the acoustic signal processing system to judge the generation of sound. (Aizawa, K.)

  3. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in KEVLAR® 49 Composites

    Science.gov (United States)

    Waller, J. M.; Andrade, E.; Saulsberry, R. L.

    2010-02-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar® 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio <1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  4. Efficient visual search from synchronized auditory signals requires transient audiovisual events.

    Directory of Open Access Journals (Sweden)

    Erik Van der Burg

    Full Text Available BACKGROUND: A prevailing view is that audiovisual integration requires temporally coincident signals. However, a recent study failed to find any evidence for audiovisual integration in visual search even when using synchronized audiovisual events. An important question is what information is critical to observe audiovisual integration. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that temporal coincidence (i.e., synchrony of auditory and visual components can trigger audiovisual interaction in cluttered displays and consequently produce very fast and efficient target identification. In visual search experiments, subjects found a modulating visual target vastly more efficiently when it was paired with a synchronous auditory signal. By manipulating the kind of temporal modulation (sine wave vs. square wave vs. difference wave; harmonic sine-wave synthesis; gradient of onset/offset ramps we show that abrupt visual events are required for this search efficiency to occur, and that sinusoidal audiovisual modulations do not support efficient search. CONCLUSIONS/SIGNIFICANCE: Thus, audiovisual temporal alignment will only lead to benefits in visual search if the changes in the component signals are both synchronized and transient. We propose that transient signals are necessary in synchrony-driven binding to avoid spurious interactions with unrelated signals when these occur close together in time.

  5. An intelligent fetal monitoring system

    International Nuclear Information System (INIS)

    Inaba, J.; Akatsuka, T.; Kubo, T.; Iwasaki, H.

    1986-01-01

    An intelligent monitoring system is constructed by a multi-micro-computer system. The monitoring signals are fetal heart rate (FHR) and uterine contraction (UC) through the conventional monitoring device for a day until the delivery. These signals are fed to a micro-computer in digital format, and evaluated by the computer in real time according to the diagnostic algorithm of the expert physician. Monitoring signals are always displayed on the CRT screen and in the case of dangerous state of the fetus, warning signal will appear on the screen and the doctor or nurse will be called. All these signals are sent to the next micro-computer with 10MB hard disk system. On this computer, the doctor and nurse can retrieve and inspect the details of the process by clock-key and/or events-key. After finishing monitoring process, summarized report is constructed and printed out on the paper

  6. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.

    Science.gov (United States)

    Stahl, Jutta; Gibbons, Henning

    2007-03-01

    The aim of the present study was to investigate the functional significance of error (related) negativity Ne/ERN and individual differences in human action monitoring. A response-conflict model of Ne/ERN should be tested applying a stop-signal paradigm. After a few modifications of Ne/ERN response-conflict theory (Yeung N, Botvinick MM, Cohen JD. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychological Review 2004:111(4);931-959), strength and time course of response conflict could be modeled as a function of stop-signal delay. In Experiment 1, 35 participants performed a visual two-choice response-time task but tried to withhold the response if an auditory stop signal was presented. Probability of stopping errors was held at 50% using variable delays between visual and auditory stimuli. Experiment 2 (n=10) employed both auditory go and stop signals and confirmed that Ne/ERN effects are due to conflict induced by the auditory stop signal, and not the mere presence or absence of an additional stimulus. As predicted, amplitudes of both the stimulus-locked and response-locked Ne/ERN were largest for non-stopped responses, followed by successfully stopped and go responses. However, independently of response type Ne/ERN also increased with increasing stop-signal delay. Since longer delay invokes stronger response conflict, results specifically support the notion of Ne/ERN reflecting response-conflict monitoring. Furthermore, individual differences related to measures of response control and behavioral control were observed. Both low response control estimated from stop-task performance and high psychometric impulsivity were accompanied by smaller Ne/ERN amplitude on stop trials, suggesting reduced response-conflict monitoring. The present study supported the response-conflict view of Ne/ERN. Furthermore, the observed relationship between impulsivity and Ne/ERN amplitude suggested that individuals with low behavioral

  7. Practical way to avoid spurious geometrical contributions in Brillouin light scattering experiments at variable scattering angles.

    Science.gov (United States)

    Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio

    2014-10-15

    In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.

  8. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-05-01

    Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.

  9. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  10. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in Kevlar (R) 49 Composites

    Science.gov (United States)

    Waller, Jess M.; Saulsberry, Regor L.; Andrade, Eduardo

    2009-01-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar(Registeres TradeMark) 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio < 1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  11. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems.

    Science.gov (United States)

    Lowenstern, Jacob B; Smith, Robert B; Hill, David P

    2006-08-15

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption.

  12. Low-complexity R-peak detection in ECG signals: a preliminary step towards ambulatory fetal monitoring.

    Science.gov (United States)

    Rooijakkers, Michiel; Rabotti, Chiara; Bennebroek, Martijn; van Meerbergen, Jef; Mischi, Massimo

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however still unfeasible due to the computational complexity of noise robust solutions. In this paper an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, while increasing the R-peak detection quality compared to existing R-peak detection schemes. Validation of the algorithm is performed on two manually annotated datasets, the MIT/BIH Arrhythmia database and an in-house abdominal database. Both R-peak detection quality and computational complexity are compared to state-of-the-art algorithms as described in the literature. With a detection error rate of 0.22% and 0.12% on the MIT/BIH Arrhythmia and in-house databases, respectively, the quality of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.

  13. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells

    DEFF Research Database (Denmark)

    Maxwell, Dustin J; Bonde, Jesper; Hess, David A

    2008-01-01

    culture conditions to maintain viability without inducing terminal differentiation. In the current study, fluorescent molecules were covalently linked to dextran-coated iron oxide nanoparticles (Feridex) to characterize human HSC labeling to monitor the engraftment process. Conjugating fluorophores...... to the dextran coat for fluorescence-activated cell sorting purification eliminated spurious signals from nonsequestered nanoparticle contaminants. A short-term defined incubation strategy was developed that allowed efficient labeling of both quiescent and cycling HSC, with no discernable toxicity in vitro...

  14. Signal Processing Methods Monitor Cranial Pressure

    Science.gov (United States)

    2010-01-01

    Dr. Norden Huang, of Goddard Space Flight Center, invented a set of algorithms (called the Hilbert-Huang Transform, or HHT) for analyzing nonlinear and nonstationary signals that developed into a user-friendly signal processing technology for analyzing time-varying processes. At an auction managed by Ocean Tomo Federal Services LLC, licenses of 10 U.S. patents and 1 domestic patent application related to HHT were sold to DynaDx Corporation, of Mountain View, California. DynaDx is now using the licensed NASA technology for medical diagnosis and prediction of brain blood flow-related problems, such as stroke, dementia, and traumatic brain injury.

  15. Processing of acoustic signal in rock desintegration

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-12-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  16. Development of signal processing electronics for self powered neutron detector signal with built-in on-line insulation monitoring [Paper No.:E3

    International Nuclear Information System (INIS)

    Das, Amitabha; Chaganty, S.P.

    1993-01-01

    Self powered neutron detectors (SPNDs) are employed to monitor in-core neutron flux in nuclear reactors for control, safety and mapping of in-core neutron flux. The d.c. current produced by SPND is converted into a proportional d.c. voltage, which in turn is used for various purposes stated above. This paper describes various features of the SPND amplifier developed in the Electronics Division of Bhabha Atomic Research Centre (BARC). It also outlines the principle of working of on-line monitoring of insulation resistance (IR) of the detector and associated mineral insulated (MI) and soft cables. The amplifier generates an alarm in case of the IR of the detector and the cable assembly falls below an accepted value or the cable is not connected to the amplifier and relieves the operator from periodic and manual checking of each of the individual detectors and ensures the validity of the signal for further processing. (author). 3 figs

  17. Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network

    Science.gov (United States)

    Lu, Siliang; Zhou, Peng; Wang, Xiaoxian; Liu, Yongbin; Liu, Fang; Zhao, Jiwen

    2018-02-01

    Wireless sensor networks (WSNs) which consist of miscellaneous sensors are used frequently in monitoring vital equipment. Benefiting from the development of data mining technologies, the massive data generated by sensors facilitate condition monitoring and fault diagnosis. However, too much data increase storage space, energy consumption, and computing resource, which can be considered fatal weaknesses for a WSN with limited resources. This study investigates a new method for motor bearings condition monitoring and fault diagnosis using the undersampled vibration signals acquired from a WSN. The proposed method, which is a fusion of the kurtogram, analog domain bandpass filtering, bandpass sampling, and demodulated resonance technique, can reduce the sampled data length while retaining the monitoring and diagnosis performance. A WSN prototype was designed, and simulations and experiments were conducted to evaluate the effectiveness and efficiency of the proposed method. Experimental results indicated that the sampled data length and transmission time of the proposed method result in a decrease of over 80% in comparison with that of the traditional method. Therefore, the proposed method indicates potential applications on condition monitoring and fault diagnosis of motor bearings installed in remote areas, such as wind farms and offshore platforms.

  18. A New Digital Signal Processing Method for Spectrum Interference Monitoring

    Science.gov (United States)

    Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.

    2011-01-01

    Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.

  19. Equipment abnormality monitoring device

    International Nuclear Information System (INIS)

    Ando, Yasumasa

    1991-01-01

    When an operator hears sounds in a plantsite, the operator compares normal sounds of equipment which he previously heard and remembered with sounds he actually hears, to judge if they are normal or abnormal. According to the method, there is a worry that abnormal conditions can not be appropriately judged in a case where the number of objective equipments is increased and in a case that the sounds are changed gradually slightly. Then, the device of the present invention comprises a plurality of monitors for monitoring the operation sound of equipments, a recording/reproducing device for recording and reproducing the signals, a selection device for selecting the reproducing signals among the recorded signals, an acoustic device for converting the signals to sounds, a switching device for switching the signals to be transmitted to the acoustic device between to signals of the monitor and the recording/reproducing signals. The abnormality of the equipments can be determined easily by comparing the sounds representing the operation conditions of equipments for controlling the plant operation and the sounds recorded in their normal conditions. (N.H.)

  20. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  1. Method for reducing x-ray background signals from insertion device x-ray beam position monitors

    Directory of Open Access Journals (Sweden)

    Glenn Decker

    1999-11-01

    Full Text Available A method is described that provides a solution to the long-standing problem of stray radiation-induced signals on photoemission-based x-ray beam position monitors (BPMs located on insertion device x-ray beam lines. The method involves the introduction of a chicane into the accelerator lattice that directs unwanted x radiation away from the photosensitive x-ray BPM blades. This technique has been implemented at the Advanced Photon Source, and experimental confirmation of the technique is provided.

  2. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  3. Higher order net-proton number cumulants dependence on the centrality definition and other spurious effects

    Science.gov (United States)

    Sombun, S.; Steinheimer, J.; Herold, C.; Limphirat, A.; Yan, Y.; Bleicher, M.

    2018-02-01

    We study the dependence of the normalized moments of the net-proton multiplicity distributions on the definition of centrality in relativistic nuclear collisions at a beam energy of \\sqrt{{s}{NN}}=7.7 {GeV}. Using the ultra relativistic quantum molecular dynamics model as event generator we find that the centrality definition has a large effect on the extracted cumulant ratios. Furthermore we find that the finite efficiency for the determination of the centrality introduces an additional systematic uncertainty. Finally, we quantitatively investigate the effects of event-pile up and other possible spurious effects which may change the measured proton number. We find that pile-up alone is not sufficient to describe the data and show that a random double counting of events, adding significantly to the measured proton number, affects mainly the higher order cumulants in most central collisions.

  4. A Sharp-Interface Immersed Boundary Method with Improved Mass Conservation and Reduced Spurious Pressure Oscillations.

    Science.gov (United States)

    Seo, Jung Hee; Mittal, Rajat

    2011-08-10

    A method for reducing the spurious pressure oscillations observed when simulating moving boundary flow problems with sharp-interface immersed boundary methods (IBMs) is proposed. By first identifying the primary cause of these oscillations to be the violation of the geometric conservation law near the immersed boundary, we adopt a cut-cell based approach to strictly enforce geometric conservation. In order to limit the complexity associated with the cut-cell method, the cut-cell based discretization is limited only to the pressure Poisson and velocity correction equations in the fractional-step method and the small-cell problem tackled by introducing a virtual cell-merging technique. The method is shown to retain all the desirable properties of the original finite-difference based IBM while at the same time, reducing pressure oscillations for moving boundaries by roughly an order of magnitude.

  5. Genetic association of marbling score with intragenic nucleotide variants at selection signals of the bovine genome.

    Science.gov (United States)

    Ryu, J; Lee, C

    2016-04-01

    Selection signals of Korean cattle might be attributed largely to artificial selection for meat quality. Rapidly increased intragenic markers of newly annotated genes in the bovine genome would help overcome limited findings of genetic markers associated with meat quality at the selection signals in a previous study. The present study examined genetic associations of marbling score (MS) with intragenic nucleotide variants at selection signals of Korean cattle. A total of 39 092 nucleotide variants of 407 Korean cattle were utilized in the association analysis. A total of 129 variants were selected within newly annotated genes in the bovine genome. Their genetic associations were analyzed using the mixed model with random polygenic effects based on identical-by-state genetic relationships among animals in order to control for spurious associations produced by population structure. Genetic associations of MS were found (Pdirectional selection for greater MS and remain selection signals in the bovine genome. Further studies of fine mapping would be useful to incorporate favorable alleles in marker-assisted selection for MS of Korean cattle.

  6. On-line generation of three-dimensional core power distribution using incore detector signals to monitor safety limits

    International Nuclear Information System (INIS)

    Jang, Jin Wook; Lee, Ki Bog; Na, Man Gyun; Lee, Yoon Joon

    2004-01-01

    It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the Linear Power Density (LPD) and the Departure from Nucleate Boiling Ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. Through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation

  7. Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network

    International Nuclear Information System (INIS)

    Kohda, Takehisa; Cui Weimin

    2007-01-01

    To prevent an abnormal event from leading to an accident, the role of its safety monitoring system is very important. The safety monitoring system detects symptoms of an abnormal event to mitigate its effect at its early stage. As the operation time passes by, the sensor reliability decreases, which implies that the decision criteria of the safety monitoring system should be modified depending on the sensor reliability as well as the system reliability. This paper presents a framework for the decision criteria (or diagnosis logic) of the safety monitoring system. The logic can be dynamically modified based on sensor output data monitored at regular intervals to minimize the expected loss caused by two types of safety monitoring system failure events: failed-dangerous (FD) and failed-safe (FS). The former corresponds to no response under an abnormal system condition, while the latter implies a spurious activation under a normal system condition. Dynamic Bayesian network theory can be applied to modeling the entire system behavior composed of the system and its safety monitoring system. Using the estimated state probabilities, the optimal decision criterion is given to obtain the optimal diagnosis logic. An illustrative example of a three-sensor system shows the merits and characteristics of the proposed method, where the reasonable interpretation of sensor data can be obtained

  8. Evaluation of signal processing for boiling noise detection

    International Nuclear Information System (INIS)

    Black, J.L.; Ledwidge, T.J.

    1989-01-01

    As part of the co-ordinated research programme on the detection of sodium boiling some further analysis has been performed on the data from the test loop in Karlsruhe and some preliminary analysis of the data from the BOR 60 experiment. The work on the Karlsruhe data is concerned with the search for a reliable method by which the quality of signal processing strategies may be compared. The results show that the three novel methods previously reported are all markedly superior to the mean square method which is used as a benchmark. The three novel methods are nth order differentiation in the frequency domain, the mean square prediction based on nth order conditional expectation and the nth order probability density function. A preliminary analysis on the data from the BOR 60 reactor shows that 4th order differentiation is adequate for the detection of signals derived from a pressure transducer and that the map of spurious trip probability (S) and the probability of missing an event (M) is consistent with the theoretical model proposed herein, and the suggested procedures for evaluating the quality of detection strategies. (author). 15 figs, 1 tab

  9. On-line Monitoring System Based on Principle of Electro-acoustic Monitoring for Transformer Partial Discharge

    Directory of Open Access Journals (Sweden)

    Guang Ya LIU

    2014-02-01

    Full Text Available Partial discharge inside a transformer is mainly responsible for the insulation aging and damage of the transformer. However, partial discharge is usually accompanied by external signals like sound, light and electrical signals and detectable physical phenomena such as characteristical gas and dielectric loss. Therefore, it is of great significance to monitor online the external signals and phenomena formed during partial discharge of the transformer when the transformer diagnoses faults. This paper gives a comprehensive overview of the electro-acoustic joint monitoring principles and its monitoring systems and the judgment skills concerned, on the basis of which the monitoring system is designed.

  10. Technical note: Evaluation of standard ultraviolet absorption ozone monitors in a polluted urban environment

    Directory of Open Access Journals (Sweden)

    E. J. Dunlea

    2006-01-01

    Full Text Available The performance of the EPA Federal Equivalent Method (FEM technique for monitoring ambient concentrations of O3 via ultraviolet absorption (UV has been evaluated using data from the Mexico City Metropolitan Area field campaign (MCMA-2003. Comparisons of UV O3 monitors with open path Differential Optical Absorption Spectroscopy (DOAS and open path Fourier Transform Infrared (FTIR spectroscopy instruments in two locations revealed average discrepancies in the measured concentrations between +13% to −18%. Good agreement of two separate open path DOAS measurements at one location indicated that spatial and temporal inhomogeneities were not substantially influencing comparisons of the point sampling and open path instruments. The poor agreement between the UV O3 monitors and the open path instruments was attributed to incorrect calibration factors for the UV monitors, although interferences could not be completely ruled out. Applying a linear correction to these calibration factors results in excellent agreement of the UV O3 monitors with the co-located open path measurements; regression slopes of 0.94 to 1.04 and associated R2 values of >0.89. A third UV O3 monitor suffered from large spurious interferences, which were attributed to extinction of UV radiation within the monitor by fine particles (3 monitors and recommendations for future testing are made.

  11. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  12. Design and array signal suggestion of array type pulsed eddy current probe for health monitoring of metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)

    2015-10-15

    An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

  13. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing

    International Nuclear Information System (INIS)

    Wachsmuth, Janne

    2016-01-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  14. An electromagnetic signals monitoring and analysis wireless platform employing personal digital assistants and pattern analysis techniques

    Science.gov (United States)

    Ninos, K.; Georgiadis, P.; Cavouras, D.; Nomicos, C.

    2010-05-01

    This study presents the design and development of a mobile wireless platform to be used for monitoring and analysis of seismic events and related electromagnetic (EM) signals, employing Personal Digital Assistants (PDAs). A prototype custom-developed application was deployed on a 3G enabled PDA that could connect to the FTP server of the Institute of Geodynamics of the National Observatory of Athens and receive and display EM signals at 4 receiver frequencies (3 KHz (E-W, N-S), 10 KHz (E-W, N-S), 41 MHz and 46 MHz). Signals may originate from any one of the 16 field-stations located around the Greek territory. Employing continuous recordings of EM signals gathered from January 2003 till December 2007, a Support Vector Machines (SVM)-based classification system was designed to distinguish EM precursor signals within noisy background. EM-signals corresponding to recordings preceding major seismic events (Ms≥5R) were segmented, by an experienced scientist, and five features (mean, variance, skewness, kurtosis, and a wavelet based feature), derived from the EM-signals were calculated. These features were used to train the SVM-based classification scheme. The performance of the system was evaluated by the exhaustive search and leave-one-out methods giving 87.2% overall classification accuracy, in correctly identifying EM precursor signals within noisy background employing all calculated features. Due to the insufficient processing power of the PDAs, this task was performed on a typical desktop computer. This optimal trained context of the SVM classifier was then integrated in the PDA based application rendering the platform capable to discriminate between EM precursor signals and noise. System's efficiency was evaluated by an expert who reviewed 1/ multiple EM-signals, up to 18 days prior to corresponding past seismic events, and 2/ the possible EM-activity of a specific region employing the trained SVM classifier. Additionally, the proposed architecture can form a

  15. On-line monitoring and data reduction of seismic events at Gauribidanur array

    International Nuclear Information System (INIS)

    Bharthur, R.N.; Rao, B.S.; Roy, F.

    1977-01-01

    Reduction of the threshold may improve the detection capability of the system, but it will lead to more spurious triggers. In order to overcome this problem, the nature of the spurious triggers is studied in detail. It is found that in general the cross correlation coefficient between the two beams viz. Ssup(A) and Ssup(B), due to spurious triggers has a maximum value of .4, where as the corresponding value of seismic events showed a minimum of .6. Therefore with the incorporation of a programme which suppresses all the triggers having a cross correlation coefficient of .4 and less, it will be possible to further bring down the threshold level. (author)

  16. Unit Monitors Manchester-Format Data Buses

    Science.gov (United States)

    Amador, Jose J.

    1994-01-01

    Circuit card converts data signals into convenient hexadecimal form for troubleshooting. Bus-monitoring unit converts data signals from Manchester II format used on data bus into hexadecimal format. Monitoring circuit causes hexadecimal words to display on video terminal, where test engineer compares them with hexadecimal records for troubleshooting. Circuit monitors one bus or two buses simultaneously.

  17. The Pajarito Monitor: a high-sensitivity monitoring system for highly enriched uranium

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.; Garcia, C.; Martinez, J.

    1984-01-01

    The Pajarito Monitor for Special Nuclear Material is a high-sensitivity gamma-ray monitoring system for detecting small quantities of highly enriched uranium transported by pedestrians or motor vehicles. The monitor consists of two components: a walk-through personnel monitor and a vehicle monitor. The personnel monitor has a plastic-scintillator detector portal, a microwave occupancy monitor, and a microprocessor control unit that measures the radiation intensity during background and monitoring periods to detect transient diversion signals. The vehicle monitor examines stationary motor vehicles while the vehicle's occupants pass through the personnel portal to exchange their badges. The vehicle monitor has four groups of large plastic scintillators that scan the vehicle from above and below. Its microprocessor control unit measures separate radiation intensities in each detector group. Vehicle occupancy is sensed by a highway traffic detection system. Each monitor's controller is responsible for detecting diversion as well as serving as a calibration and trouble-shooting aid. Diversion signals are detected by a sequential probability ratio hypothesis test that minimizes the monitoring time in the vehicle monitor and adapts itself well to variations in individual passage speed in the personnel monitor. Designed to be highly sensitive to diverted enriched uranium, the monitoring system also exhibits exceptional sensitivity for plutonium

  18. A motion-tolerant approach for monitoring SpO2 and heart rate using photoplethysmography signal with dual frame length processing and multi-classifier fusion.

    Science.gov (United States)

    Fan, Feiyi; Yan, Yuepeng; Tang, Yongzhong; Zhang, Hao

    2017-12-01

    Monitoring pulse oxygen saturation (SpO 2 ) and heart rate (HR) using photoplethysmography (PPG) signal contaminated by a motion artifact (MA) remains a difficult problem, especially when the oximeter is not equipped with a 3-axis accelerometer for adaptive noise cancellation. In this paper, we report a pioneering investigation on the impact of altering the frame length of Molgedey and Schuster independent component analysis (ICAMS) on performance, design a multi-classifier fusion strategy for selecting the PPG correlated signal component, and propose a novel approach to extract SpO 2 and HR readings from PPG signal contaminated by strong MA interference. The algorithm comprises multiple stages, including dual frame length ICAMS, a multi-classifier-based PPG correlated component selector, line spectral analysis, tree-based HR monitoring, and post-processing. Our approach is evaluated by multi-subject tests. The root mean square error (RMSE) is calculated for each trial. Three statistical metrics are selected as performance evaluation criteria: mean RMSE, median RMSE and the standard deviation (SD) of RMSE. The experimental results demonstrate that a shorter ICAMS analysis window probably results in better performance in SpO 2 estimation. Notably, the designed multi-classifier signal component selector achieved satisfactory performance. The subject tests indicate that our algorithm outperforms other baseline methods regarding accuracy under most criteria. The proposed work can contribute to improving the performance of current pulse oximetry and personal wearable monitoring devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sideband characterization and atmospheric observations with various 340 GHz heterodyne receivers

    Energy Technology Data Exchange (ETDEWEB)

    Renker, Matthias, E-mail: renker@iap.unibe.ch; Murk, Axel [Institute of Applied Physics, University of Bern, Bern (Switzerland); Rea, Simon P. [STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Emrich, A.; Frisk, U. [OMNISYS Instruments, Västra Frölunda (Sweden)

    2014-08-15

    This paper describes sideband response measurements and atmospheric observations with a double sideband and two Single Sideband (SSB) receiver prototypes developed for the multi-beam limb sounder instrument stratosphere-troposphere exchange and climate monitor radiometer. We first show an advanced Fourier-Transform Spectroscopy (FTS) method for sideband response and spurious signal characterization. We then present sideband response measurements of the different prototype receivers and we compare the results of the SSB receivers with sideband measurements by injecting a continuous wave signal into the upper and lower sidebands. The receivers were integrated into a total-power radiometer and atmospheric observations were carried out. The observed spectra were compared to forward model spectra to conclude on the sideband characteristics of the different receivers. The two sideband characterization methods show a high degree of agreement for both SSB receivers with various local oscillator settings. The measured sideband response was used to correct the forward model simulations. This improves the agreement with the atmospheric observations and explains spectral features caused by an unbalanced sideband response. The FTS method also allows to quantify the influence of spurious harmonic responses of the receiver.

  20. Registration and processing of acoustic signal in rock drilling

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-03-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  1. Beam position monitoring

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Beam monitoring in accelerators is reviewed, with emphasis on the engineering aspects of the problem. Guidelines for monitor design are given. Advantages and disadvantages of various electrode designs and signal processing methods are reviewed

  2. Monitoring apparatus

    International Nuclear Information System (INIS)

    Keats, A.B.

    1981-01-01

    An improved monitoring apparatus for use with process plants, such as nuclear reactors, is described. System failure in the acquisition of data from the plant, owing to stuck signals, is avoided by arranging input signals from transducers in the plant in a test pattern. (U.K.)

  3. Robust signal extraction for on-line monitoring data

    NARCIS (Netherlands)

    Davies, P.L.; Fried, R.; Gather, U.

    2004-01-01

    Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to

  4. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1990-01-01

    Among a plurality of power monitoring programs in a reactor power monitoring device, rapid response is required for a scram judging program for the power judging processing of scram signals. Therefore, the scram judging program is stored independently from other power monitoring programs, applied with a priority order, and executed in parallel with other programs, to output scram signals when the detected data exceeds a predetermined value. As a result, the capacity required for the scram judging program is reduced and the processing can be conducted in a short period of time. In addition, since high priority is applied to the scram judging program which is divided into a small capacity, it is executed at higher frequency than other programs when they are executed in parallel. That is, since the entire processings for the power monitoring program are repeated in a short cycle, the response speed of the scram signals required for high responsivity can be increased. (N.H.)

  5. Monitoring of operating processes

    International Nuclear Information System (INIS)

    Barry, R.F.

    1981-01-01

    Apparatus is described for monitoring the processes of a nuclear reactor to detect off-normal operation of any process and for testing the monitoring apparatus. The processes are evaluated by response to their paramters, such as temperature, pressure, etc. The apparatus includes a pair of monitoring paths or signal processing units. Each unit includes facilities for receiving on a time-sharing basis, a status binary word made up of digits each indicating the status of a process, whether normal or off-normal, and test-signal binary words simulating the status binary words. The status words and test words are processed in succession during successive cycles. During each cycle, the two units receive the same status word and the same test word. The test words simulate the status words both when they indicate normal operation and when they indicate off-normal operation. Each signal-processing unit includes a pair of memories. Each memory receives a status word or a test word, as the case may be, and converts the received word into a converted status word or a converted test word. The memories of each monitoring unit operate into a non-coincidence which signals non-coincidence of the converted word out of one memory of a signal-processing unit not identical to the converted word of the other memory of the same unit

  6. A Versatile Vector for In Vivo Monitoring of Type I Interferon Induction and Signaling.

    Directory of Open Access Journals (Sweden)

    Estanislao Nistal-Villan

    Full Text Available Development of reporter systems for in vivo examination of IFN-β induction or signaling of type I interferon (IFN-I pathways is of great interest in order to characterize biological responses to different inducers such as viral infections. Several reporter mice have been developed to monitor the induction of both pathways in response to different agonists. However, alternative strategies that do not require transgenic mice breeding have to date not been reported. In addition, detection of these pathways in vivo in animal species other than mice has not yet been addressed. Herein we describe a simple method based on the use of an adeno-associated viral vector (AAV8-3xIRF-ISRE-Luc containing an IFN-β induction and signaling-sensitive promoter sequence controlling the expression of the reporter gene luciferase. This vector is valid for monitoring IFN-I responses in vivo elicited by diverse stimuli in different organs. Intravenous administration of the vector in C57BL/6 mice and Syrian hamsters was able to detect activation of the IFN pathway in the liver upon systemic treatment with different pro-inflammatory agents and infection with Newcastle disease virus (NDV. In addition, intranasal instillation of AAV8-3xIRF-ISRE-Luc showed a rapid and transient IFN-I response in the respiratory tract of mice infected with the influenza A/PR8/34 virus lacking the NS1 protein. In comparison, this response was delayed and exacerbated in mice infected with influenza A/PR/8 wild type virus. In conclusion, the AAV8-3xIRF-ISRE-Luc vector offers the possibility of detecting IFN-I activation in response to different stimuli and in different animal models with no need for reporter transgenic animals.

  7. Shared performance monitor in a multiprocessor system

    Science.gov (United States)

    Chiu, George; Gara, Alan G.; Salapura, Valentina

    2012-07-24

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  8. Monitor of dynamic parameters in real time; Monitor de parametros dinamicos en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Ruiz E, J.A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In the complex physical systems exist parameters that are necessary for monitoring in real time. In the nuclear industry, particularly in a reactor this surveillance is important, where the times of the reactions are almost instantaneous. Although many of these parameters are monitored, given the advance of the computer systems the monitoring could either be enlarged direct or indirect of other parameters. The analysis of the neutron noise in the nuclear reactors, plays an important role, the noise signal it contains information about the operation conditions of a system, when analyzing it with analysis methodologies of analogical signals to provide important information for the early detection of possible flaws and to indicate the permissible operation levels. To show the characteristics of the operation of the system of Monitoring of Dynamic Parameters in Real Time, oscillations of neutron noise of the TRIGA Mark III of the ININ were analyzed, these were caused with the control bar to a power of 10 Watts, the oscillations were carried out to a frequency of 1Hz, signal of low frequency. In this work a virtual instrument that allows by means of the spectral analysis method in frequency point by point is presented, to indicate in real time periodic variations that could be presented in the neutron noise signal, visualizing in advance the dynamic behavior of the system or nuclear plant. Another of the tests of the monitoring system presented is that of the oscillatory event happened in the reactor of Laguna Verde Nucleo electric Central, would be convenient to have an instrument of surveillance for monitoring through the neutron noise signal the behavior of some important parameter to predict and to indicate in an immediate way an abnormal condition in the reactor operation or in the plant system. These parameters can be the power, the recirculation water flow, etc. The monitor is based on a personal computer (PC), a data acquisition card (ADC) and a computer program

  9. A Reanalysis of Toomela (2003: Spurious measurement error as cause for common variance between personality factors

    Directory of Open Access Journals (Sweden)

    MATTHIAS ZIEGLER

    2009-03-01

    Full Text Available The present article reanalyzed data collected by Toomela (2003. The data contain personality self ratings and cognitive ability test results from n = 912 men with military background. In his original article Toomela showed that in the group with the highest cognitive ability, Big-Five-Neuroticism and -Conscientiousness were substantially correlated and could no longer be clearly separated using exploratory factor analysis. The present reanalysis was based on the hypothesis that a spurious measurement error caused by situational demand was responsible. This means, people distorted their answers. Furthermore it was hypothesized that this situational demand was felt due to a person’s military rank but not due to his intelligence. Using a multigroup structural equation model our hypothesis could be confirmed. Moreover, the results indicate that an uncorrelated trait model might represent personalities better when situational demand is partialized. Practical and theoretical implications are discussed.

  10. Spurious in PLL-DDS frequency synthesizers

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Věnceslav František; Štursa, Jarmil

    2002-01-01

    Roč. 2, č. 1 (2002), s. 48-51 ISSN 1335-8243. [Digital Signal Processing and Multimedia Communications DSP-MCOM 2001 /5./. Košice, 27.11.2001-29.11.2001] R&D Projects: GA ČR GA102/00/0958 Institutional research plan: CEZ:AV0Z2067918 Keywords : frequency synthesizers * phase locked loops * direct digital synthesis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander Caicedo

    2016-11-01

    Full Text Available Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP, assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + _. SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first three days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen

  12. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    Science.gov (United States)

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the

  13. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2011-10-01

    The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.

  14. Design, development and test of the gearbox condition monitoring system using sound signal processing

    Directory of Open Access Journals (Sweden)

    M Zamani

    2016-09-01

    Full Text Available Introduction One of the ways used for minimizing the cost of maintenance and repairs of rotating industrial equipment is condition monitoring using acoustic analysis. One of the most important problems which always have been under consideration in industrial equipment application is confidence possibility. Each dynamic, electrical, hydraulic or thermal system has certain characteristics which show the normal condition of the machine during function. Any changes of the characteristics can be a signal of a problem in the machine. The aim of condition monitoring is system condition determination using measurements of the signals of characteristics and using this information for system impairment prognostication. There are a lot of ways for condition monitoring of different systems, but sound analysis is accepted and used extensively as a method for condition investigation of rotating machines. The aim of this research is the design and construction of considered gearbox and using of obtaining data in frequency and time spectrum in order to analyze the sound and diagnosis. Materials and Methods This research was conducted at the department of mechanical biosystem workshop at Aboureihan College at Tehran University in February 15th.2015. In this research, in order to investigate the trend of diagnosis and gearbox condition, a system was designed and then constructed. The sound of correct and damaged gearbox was investigated by audiometer and stored in computer for data analysis. Sound measurement was done in three pinions speed of 749, 1050 and 1496 rpm and for correct gearboxes, damage of the fracture of a tooth and a tooth wear. Gearbox design and construction: In order to conduct the research, a gearbox with simple gearwheels was designed according to current needs. Then mentioned gearbox and its accessories were modeled in CATIA V5-R20 software and then the system was constructed. Gearbox is a machine that is used for mechanical power transition

  15. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  16. Signal post-processing for acoustic velocimeters: detecting and replacing spikes

    International Nuclear Information System (INIS)

    Razaz, Mahdi; Kawanisi, Kiyosi

    2011-01-01

    Time series recorded by acoustic velocimeters are often affected by a combination of factors, including turbulent velocity fluctuations, Doppler noise and signal aliasing. Although it is not possible to find a comprehensive threshold for identifying spurious data, the present work attempts to describe an effective technique for detecting spikes. This technique is based on transforming data into wavelet space and thresholding the wavelet basis by a consistent threshold. The universal threshold modified by a robust scale estimator such as Q n is proven to work extremely well. The suggested methods for replacing identified spikes combine times series analyses (linear time series modelling or a Kalman predictor) with a straightforward method, polynomial interpolation, to generate substitutions retaining both the trends and the fluctuations in the surrounding clean data. Then, tests were performed to reveal the influence of replacing methods on the total number of detected spikes, required iterations and physical properties of the restored signal. From the overall results, it is inferred that using the wavelet-Q n as the detecting module and integrating it with linear time series modelling/Kalman filtering as the replacement module constitutes an effective despiking algorithm. This methodology is capable of restoring the contaminated signal in such a way that its statistical and physical properties correlate well with those of the original record

  17. Improved Fuzzy Logic System to Evaluate Milk Electrical Conductivity Signals from On-Line Sensors to Monitor Dairy Goat Mastitis

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2016-07-01

    Full Text Available The aim of this study was to develop and test a new fuzzy logic model for monitoring the udder health status (HS of goats. The model evaluated, as input variables, the milk electrical conductivity (EC signal, acquired on-line for each gland by a dedicated sensor, the bandwidth length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen goats for six months at morning milking (lactation stages (LS: 0–60 Days In Milking (DIM; 61–120 DIM; 121–180 DIM, for a total of 5592 samples. Bacteriological analyses and somatic cell counts (SCC were used to define the HS of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as not healthy (NH. For each EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore, the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of the first main peak were identified. Before using these indexes as input variables of the fuzzy logic model a linear mixed-effects model was developed to evaluate the acquired data considering the HS, LS and LS × HS as explanatory variables. Results showed that performance of a fuzzy logic model, in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.

  18. Subcriticality monitoring method for reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)

  19. Asynchronous monitoring of the quality of multilevel optical PAM signals

    Science.gov (United States)

    Siuzdak, J.

    2017-08-01

    In the paper, there is analyzed the signal quality assessment method based on delay tap asynchronous sampling, both for binary and multilevel PAM signals. The obtained multilevel phase diagrams are far more complicated than binary ones. The phase diagrams are affected by the signal distortions but it is difficult to relate reliably the phase diagram form to the distortion type and its influence on the signal quality.

  20. JACoW Lightweight acquisition system for analogue signals

    CERN Document Server

    Bielawski, Bartosz

    2018-01-01

    In a complex machine such as a particle accelerator there are thousands of analogue signals that need monitoring and even more signals that could be used for debugging or as a tool for detecting symptoms of potentially avoidable problems. Usually it is not feasible to acquire and monitor all of these signals not only because of the cost but also because of cabling and space required. The Radio Frequency system in the Large Hadron Collider (LHC) is protected by multiple hardware interlocks that ensure safe operation of klystrons, superconducting cavities and all the other equipment. In parallel, a diagnostic system has been deployed to monitor the health of the klystrons. Due to the limited amount of space and the moderate number of signals to be monitored, a standard approach with a full VME or Compact PCI crate has not been selected. Instead, small embedded industrial computers with Universal Serial Bus (USB) oscilloscopes chosen for the specific application have been installed. This cost effective, rapidly ...

  1. Removing cosmic rays and other randomly positioned spurious events from CCD images by taking the lesser image -statistical theory for the general case

    International Nuclear Information System (INIS)

    Kay, L.

    1992-01-01

    If two optical images of the same scene are obtained using a charged-coupled device (CCD), a third image (called the lesser image) may be formed in computer memory by taking the lesser of the two counts in each pixel. The process may be used to remove, or greatly reduce, the effect of spurious events such as cosmic rays. A complete statistical theory of the lesser image is given for the general case, thereby facilitating recovery of the true image from the lesser image. (author)

  2. COMPASS: an Interoperable Personal Health System to Monitor and Compress Signals in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Thomas Hofer

    2015-11-01

    Full Text Available In the past years the progress on the mobile market has made possible an advancement in terms of telemedicine systems and definition of systems for monitoring chronic illnesses. The distribution of mobile devices in developed countries is increasing. Many of these devices are equipped with wireless standards including Bluetooth and the amount of sold Smartphones is constantly increasing. Our approach is oriented towards this market, using existing devices to enable in-home patient monitoring and even further to ubiquitious monitoring. The idea is to increase the quality of care, reduce costs and gather medical grade data, especially vital signs, with a resolution of minutes or even less, which is nowadays only possible in an ICU (Intensive Care Units. In this paper we will present the COMPASS personal health system (PHS platform, and how this platform enables Android devices to collect, analyze and send sensor data to an observation storage by means of interoperability standards. Furthermore, we will also present how this data can be compressed using advanced compressed sensing techniques and how to optimize these techniques with genetic algorithms to improve the RMSE of the reconstructed signal after compression. We also produce a preliminary evaluation of the algorithm against the state of the art algorithms for compressed sensing.

  3. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.

    Science.gov (United States)

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-04-01

    Steam pop is an explosive rupture of cardiac tissue caused by tissue overheating above 100 °C, resulting in steam formation, predisposing to serious complications associated with radiofrequency (RF) ablations. However, there are currently no reliable techniques to predict the occurrence of steam pops. We propose the utility of acoustic signals emitted during RF ablation as a novel method to predict steam pop formation and potentially prevent serious complications. Radiofrequency generator parameters (power, impedance, and temperature) were temporally recorded during ablations performed in an in vitro bovine myocardial model. The acoustic system consisted of HTI-96-min hydrophone, microphone preamplifier, and sound card connected to a laptop computer. The hydrophone has the frequency range of 2 Hz to 30 kHz and nominal sensitivity in the range -240 to -165 dB. The sound was sampled at 96 kHz with 24-bit resolution. Output signal from the hydrophone was fed into the camera audio input to synchronize the video stream. An automated system was developed for the detection and analysis of acoustic events. Nine steam pops were observed. Three distinct sounds were identified as warning signals, each indicating rapid steam formation and its release from tissue. These sounds had a broad frequency range up to 6 kHz with several spectral peaks around 2-3 kHz. Subjectively, these warning signals were perceived as separate loud clicks, a quick succession of clicks, or continuous squeaking noise. Characteristic acoustic signals were identified preceding 80% of pops occurrence. Six cardiologists were able to identify 65% of acoustic signals accurately preceding the pop. An automated system identified the characteristic warning signals in 85% of cases. The mean time from the first acoustic signal to pop occurrence was 46 ± 20 seconds. The automated system had 72.7% sensitivity and 88.9% specificity for predicting pops. Easily identifiable characteristic acoustic emissions

  4. Displacement in the parameter space versus spurious solution of discretization with large time step

    International Nuclear Information System (INIS)

    Mendes, Eduardo; Letellier, Christophe

    2004-01-01

    In order to investigate a possible correspondence between differential and difference equations, it is important to possess discretization of ordinary differential equations. It is well known that when differential equations are discretized, the solution thus obtained depends on the time step used. In the majority of cases, such a solution is considered spurious when it does not resemble the expected solution of the differential equation. This often happens when the time step taken into consideration is too large. In this work, we show that, even for quite large time steps, some solutions which do not correspond to the expected ones are still topologically equivalent to solutions of the original continuous system if a displacement in the parameter space is considered. To reduce such a displacement, a judicious choice of the discretization scheme should be made. To this end, a recent discretization scheme, based on the Lie expansion of the original differential equations, proposed by Monaco and Normand-Cyrot will be analysed. Such a scheme will be shown to be sufficient for providing an adequate discretization for quite large time steps compared to the pseudo-period of the underlying dynamics

  5. The relationship between urinary tract infection during pregnancy and preeclampsia: causal, confounded or spurious?

    Science.gov (United States)

    Karmon, Anatte; Sheiner, Eyal

    2008-06-01

    Preeclampsia is a major cause of maternal morbidity, although its precise etiology remains elusive. A number of studies suggest that urinary tract infection (UTI) during the course of gestation is associated with elevated risk for preeclampsia, while others have failed to prove such an association. In our medical center, pregnant women who were exposed to at least one UTI episode during pregnancy were 1.3 times more likely to have mild preeclampsia and 1.8 times more likely to have severe preeclampsia as compared to unexposed women. Our results are based on univariate analyses and are not adjusted for potential confounders. This editorial aims to discuss the relationship between urinary tract infection and preeclampsia, as well as examine the current problems regarding the interpretation of this association. Although the relationship between UTI and preeclampsia has been demonstrated in studies with various designs, carried-out in a variety of settings, the nature of this association is unclear. By taking into account timeline, dose-response effects, treatment influences, and potential confounders, as well as by neutralizing potential biases, future studies may be able to clarify the relationship between UTI and preeclampsia by determining if it is causal, confounded, or spurious.

  6. Beam based measurement of beam position monitor electrode gains

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2010-09-01

    Full Text Available Low emittance tuning at the Cornell Electron Storage Ring (CESR test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ∼0.1%.

  7. Beam based measurement of beam position monitor electrode gains

    Science.gov (United States)

    Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.

    2010-09-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.

  8. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A

    2009-02-01

    Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.

  9. Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Hwang, Il Soon; Kim, Ji Hyun

    2008-01-01

    Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

  10. Synchronous monitoring of muscle dynamics and electromyogram

    Science.gov (United States)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  11. Reconfigurable Sensor Monitoring System

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  12. Digital signal processing the Tevatron BPM signals

    International Nuclear Information System (INIS)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-01-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented

  13. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    Energy Technology Data Exchange (ETDEWEB)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  14. A joint time-invariant wavelet transform and kurtosis approach to the improvement of in-line oil debris sensor capability

    International Nuclear Information System (INIS)

    Fan, X; Liang, M; Yeap, T

    2009-01-01

    In-line oil debris sensors are important devices for the detection of machinery failures. However, two key issues remain to be addressed to more effectively make use of the existing oil debris sensors: the responsiveness to early machine failures and false alarms. The responsiveness level depends on the size of the debris that can be detected by an oil debris sensor. The detectable particle size in turn is mainly limited by the background noise. The false alarms are often caused by spurious impulses such as vibration-like signals. The challenge of improving the responsiveness and reducing false alarms lies in the very weak particle signals and their similarity to spurious signals. In this paper, a joint time-invariant wavelet transform and kurtosis analysis method is proposed to address the two issues simultaneously. The proposed method has been tested by extracting signatures of ultra-small metal particles from background noise and a wide range of simulated vibration-like and real vibration signals. Our test results have demonstrated that the proposed method can effectively detect very weak particle signals buried in strong background noise and eliminate vibration-like spurious signals. The implementation of the proposed method will substantially enhance many existing oil debris sensors

  15. Calibration device for wide range monitor

    International Nuclear Information System (INIS)

    Kodoku, Masaya; Sato, Toshifumi.

    1989-01-01

    The calibration device for a wide range monitor according to the present invention can continuously calibrate the entire counting regions of a wide range monitor. The wide range monitor detect the reactor power in the neutron source region by means of a pulse counting method and detects the reactor power in the intermediate region by means of a cambell method. A calibration signal outputting means is disposed for continuously outputting, as such calibration signals, pulse number varying signals in which the number of pulses per unit time varies depending on the reactor power in the neutron source region to be simulated and amplitude square means varying signal in which the mean square value of amplitude varies depending on the reactor power in the intermediate region to be simulated. By using both of the calibration signals, calibration can be conducted for the nuclear reactor power in the neutron source region and the intermediate region even if the calibration is made over two regions, further, calibration for the period present over the two region can be conducted easily as well. (I.S.)

  16. Atmospheric methods for nuclear test monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Simons, D.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    This report describes two atmomospheric methods for the monitoring and detection of underground nuclear explosions: Near infrasound technique, and ionospheric monitoring. Ground motion from underground explosions cause induced air pressure perturbations. The ionospheric technique utilizes the very strong air pressure pulse which is launched straight up above an underground explosion. When the pressure disturbance reaches the ionosphere, it becomes a 10 % pressure perturbation. Detection involves sending radio waves through the ionosphere with transmitters and recievers on the ground. Radar analysis yields interpretable signals. The near infrasound method detects the signal which is projected into the side lobes of the main signal. Both of the atmospheric methods were utilized on the monitoring of the NPE underground chemical explosion experiment. Results are described.

  17. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-01

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg 2+ ), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg 2+ by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T (25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg 2+ ion was intercalated into the DNA polyion complex membrane based on T–Hg 2+ –T coordination chemistry. The chelated Hg 2+ ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH 4 and Ru(NH 3 ) 6 3+ for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg 2+ level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg 2+ . The strategy afforded exquisite selectivity for Hg 2+ against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg 2+ in spiked tap-water samples, and the recovery was 87.9–113.8%

  18. New reactor safety circuit for low-power-level operation

    International Nuclear Information System (INIS)

    McDowell, W.P.; Keefe, D.J.; Rusch, G.K.

    1978-01-01

    In the operation of nuclear reactors at low-power levels, one of the primary instrumentation problems is that the statistical fluctuations of reactor neutron population are accentuated by conventional log-count-rate and differentiating circuits and can cause frequent spurious scrams unless long time constants are incorporated in the circuit. Excessive time constants may introduce undesirable delay in the circuit response to legitimate scram signals. The paper develops the concept of a count doubling-time monitor which generates a scram signal if the number of counts from a pulse type neutron detector doubles in a given period of time. The paper demonstrates the theoretical relation between count doubling time and asymptomatic periods. A practical circuit to implement the function is described

  19. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Science.gov (United States)

    Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min

    2013-01-01

    We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735

  20. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Directory of Open Access Journals (Sweden)

    Young Min Jhon

    2013-06-01

    Full Text Available We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate.

  1. Effects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flows

    KAUST Repository

    Xiong, Yuan

    2014-04-28

    Spurious current emerging in the vicinity of phase interfaces is a well-known disadvantage of the lattice Boltzmann equation (LBE) for two-phase flows. Previous analysis shows that this unphysical phenomenon comes from the force imbalance at discrete level inherited in LBE (Guo et al 2011 Phys. Rev. E 83 036707). Based on the analysis of the LBE free of checkerboard effects, in this work we further show that the force imbalance is caused by the different discretization stencils: the implicit one from the streaming process and the explicit one from the discretization of the force term. Particularly, the total contribution includes two parts, one from the difference between the intrinsically discretized density (or ideal gas pressure) gradient and the explicit ones in the force term, and the other from the explicit discretized chemical potential gradients in the intrinsically discretized force term. The former contribution is a special feature of LBE which was not realized previously.

  2. In-Situ NDE Characterization of Kevlar and Carbon Composite Micromechanics for Improved COPV Health Monitoring

    Science.gov (United States)

    Waller, Jess M.; Saulsberry, Regor L.

    2009-01-01

    This project is a subtask of a multi-center project to advance the state-of-the-art by developing NDE techniques that are capable of evaluating stress rupture (SR) degradation in Kevlar/epoxy (K/Ep) composite overwrapped pressure vessels (COPVs), and damage progression in carbon/epoxy (C/Ep) COPVs. In this subtask, acoustic emission (AE) data acquired during intermittent load hold tensile testing of K/Ep and C/Ep composite tow materials-of-construction used in COPV fabrication were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of composite tow was gained by monitoring AE event rate, energy, source location, and frequency. Source location based on arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to background and grip noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio < 1.0) with damage accumulation.

  3. Signal recovery of the corrupted metal impact signal using the adaptive filtering in NPPs

    International Nuclear Information System (INIS)

    Kim, Dai Il; Shin, Won Ky; Oh, Sung Hun; Yun, Won Young

    1995-01-01

    Loose Part Monitoring System (LPMS) is one of the fundamental diagnostic tools installed in the nuclear power plants. In this paper, recovery process algorithm and model for the corrupted impact signal generated by loose parts is presented. The characteristics of this algorithm can obtain a proper burst signal even though background noise is considerably high level comparing with actual impact signal. To verify performance of the proposed algorithm, we evaluate mathematically signal-to-noise ratio of primary output and noise. The performance of this recovery process algorithm is shown through computer simulation

  4. Automated monitoring of recovered water quality

    Science.gov (United States)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  5. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.

    Science.gov (United States)

    Wang, Xuewen; Liu, Zheng; Zhang, Ting

    2017-07-01

    Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    International Nuclear Information System (INIS)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A.

    2013-01-01

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  7. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A., E-mail: Michael.King@umassmed.edu [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  8. Development of an induction motor abnormality monitoring system(IMAMS) using power line signal analysis

    International Nuclear Information System (INIS)

    Jung, Jae Cheon

    1997-02-01

    An induction motor abnormality monitoring system using power line signal analysis is developed in this work. Various studies have focused their attention on the detection of particular harmonic frequencies produced from each defect mode of motors. However, these harmonic frequencies are valuable only when the motor has a continuous slip frequency and operate in constant torque/load condition. The basic concept of the system developed in this work is to detect the characteristic harmonic frequencies occurred when the motor is in abnormal state and to compare it with a predetermined setpoint. Based on these analyses, the place and degree of defect can be easily identified. The experimental results under test bench simulation are also introduced. To find out an alternative way to obtain a threshold level independent of slip/torque, with the rotating field theory, the ratio between harmonic current and total current was calculated with the simplified circuit that is equivalent to two abnormal cases, such as the spatial rotor resistance variation and the symmetrical components changes with field. Also, the threshold level calculation was done with performed the rotating field theory. The results show that they are in good agreement with a experimental results. Further studies are undertaken to extend this work to the on-line monitoring and diagnostic system with a likelihood ratio test method for field application

  9. Tutorial on beam current monitoring

    International Nuclear Information System (INIS)

    Webber, Robert C.

    2000-01-01

    This paper is a tutorial level review covering a wide range of aspects related to charged particle beam current measurement. The tutorial begins with a look at the characteristics of the beam as a signal source, the associated electromagnetic fields, the influence of the typical accelerator environment on those fields, and the usual means of modifying and controlling that environment to facilitate beam current measurement. Short descriptions of three quite different types of current monitors are presented and a quantitative review of the classical transformer circuit is given. Recognizing that environmental noise pick-up may present a large source of error in quantitative measurements, signal handling considerations are given considerable attention using real-life examples. An example of a successful transport line beam current monitor implementation is presented and the tutorial concludes with a few comments about signal processing and current monitor calibration issues

  10. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  11. Remote Arrhythmia Monitoring System Developed

    Science.gov (United States)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  12. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  13. Apodization of spurs in radar receivers using multi-channel processing

    Science.gov (United States)

    Doerry, Armin W.; Bickel, Douglas L.

    2017-11-21

    The various technologies presented herein relate to identification and mitigation of spurious energies or signals (aka "spurs") in radar imaging. Spurious energy in received radar data can be a consequence of non-ideal component and circuit behavior. Such behavior can result from I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), etc. The manifestation of the spurious energy in a radar image (e.g., a range-Doppler map) can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images which have been processed using the same data but of different signal paths and modulations enables identification of undesired spurs, with subsequent cropping or apodization of the undesired spurs from a radar image. Spurs can be identified by comparison with a threshold energy. Removal of an undesired spur enables enhanced identification of true targets in a radar image.

  14. Signal generation in gas detectors

    International Nuclear Information System (INIS)

    Stillman, A.

    1993-01-01

    This tutorial describes the generation of electrical signals in gas detectors. Ionization of the gas by the passage of charged particles generates these signals. Starting with the Bethe-Bloch equation, the treatment is a general introduction to the production of ion-pairs in gas devices. I continue with the characterization of the ionization as an electrical signal, and calculate the signal current in a simple example. Another example demonstrates the effect of space charge on the design of a detector. The AGS Booster ionization profile monitor is a model for this calculation

  15. Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO{sub 2} Laser Welding of Zn-Coated Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Lee, Chang Je [Korea Maritime University, Busan (Korea, Republic of)

    2010-10-15

    In this study, the plasma induced by CO{sub 2} laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

  16. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  17. CERN GSM monitoring system

    CERN Multimedia

    Ghabrous Larrea, C

    2009-01-01

    As a result of the tremendous development of GSM services over the last years, the number of related services used by organizations has drastically increased. Therefore, monitoring GSM services is becoming a business critical issue in order to be able to react appropriately in case of incident. In order to provide with GSM coverage all the CERN underground facilities, more than 50 km of leaky feeder cable have been deployed. This infrastructure is also used to propagate VHF radio signals for the CERN’s fire brigade. Even though CERN’s mobile operator monitors the network, it cannot guarantee the availability of GSM services, and for sure not VHF services, where signals are carried by the leaky feeder cable. So, a global monitoring system has become critical to CERN. In addition, monitoring this infrastructure will allow to characterize its behaviour over time, especially with LHC operation. Given that commercial solutions were not yet mature, CERN developed a system based on GSM probes and an application...

  18. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  19. Analysis of Seasonal Signal in GPS Short-Baseline Time Series

    Science.gov (United States)

    Wang, Kaihua; Jiang, Weiping; Chen, Hua; An, Xiangdong; Zhou, Xiaohui; Yuan, Peng; Chen, Qusen

    2018-04-01

    Proper modeling of seasonal signals and their quantitative analysis are of interest in geoscience applications, which are based on position time series of permanent GPS stations. Seasonal signals in GPS short-baseline (paper, to better understand the seasonal signal in GPS short-baseline time series, we adopted and processed six different short-baselines with data span that varies from 2 to 14 years and baseline length that varies from 6 to 1100 m. To avoid seasonal signals that are overwhelmed by noise, each of the station pairs is chosen with significant differences in their height (> 5 m) or type of the monument. For comparison, we also processed an approximately zero baseline with a distance of pass-filtered (BP) noise is valid for approximately 40% of the baseline components, and another 20% of the components can be best modeled by a combination of the first-order Gauss-Markov (FOGM) process plus white noise (WN). The TEM displacements are then modeled by considering the monument height of the building structure beneath the GPS antenna. The median contributions of TEM to the annual amplitude in the vertical direction are 84% and 46% with and without additional parts of the monument, respectively. Obvious annual signals with amplitude > 0.4 mm in the horizontal direction are observed in five short-baselines, and the amplitudes exceed 1 mm in four of them. These horizontal seasonal signals are likely related to the propagation of daily/sub-daily TEM displacement or other signals related to the site environment. Mismodeling of the tropospheric delay may also introduce spurious seasonal signals with annual amplitudes of 5 and 2 mm, respectively, for two short-baselines with elevation differences greater than 100 m. The results suggest that the monument height of the additional part of a typical GPS station should be considered when estimating the TEM displacement and that the tropospheric delay should be modeled cautiously, especially with station pairs with

  20. Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications

    Science.gov (United States)

    de Andrés, A. I.; Esteban, Ó.; Embid, M.

    2017-08-01

    Gamma radiation detection in the range of 662 keV, the reference for environmental protection, is done through extrinsic optical fiber sensors. The fluorescence rendered by an inorganic scintillator when irradiated with such gamma rays is gathered by a modified polymer optical fiber tip. This modification increases the recorded signal when compared with plain unaltered fiber. Two fiber tip modification are then compared in terms of light gathering capability. A chemically etched fiber, in which the cladding and part of the core are removed, and a tapered fiber in which the core-cladding structure is kept. Both structures are comparable in length and final diameter, and show linear response in the tested range up to 2 Gy/h air Kerma rate. The etched fiber shows a higher slope than the tapered one, although both improve the signal gathered by a plain fiber tip. The easy fabrication and handling of the reported transducers, together with the improved signal gathering, allow to reduce the overall system budget with the use of low-cost optoelectronics in the detection stage. This offers a significant improvement for surveillance systems in radioprotection applications, in which presence of gamma radiation coming out accidental leakage or spurious sources activity is the main target.

  1. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Ha, Che Woong

    2015-01-01

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer

  2. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Hwan; Ha, Che Woong [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer.

  3. Noise and Spurious Tones Management Techniques for Multi-GHz RF-CMOS Frequency Synthesizers Operating in Large Mixed Analog-Digital SOCs

    Directory of Open Access Journals (Sweden)

    Maxim Adrian

    2006-01-01

    Full Text Available This paper presents circuit techniques and power supply partitioning, filtering, and regulation methods aimed at reducing the phase noise and spurious tones in frequency synthesizers operating in large mixed analog-digital system-on-chip (SOC. The different noise and spur coupling mechanisms are presented together with solutions to minimize their impact on the overall PLL phase noise performance. Challenges specific to deep-submicron CMOS integration of multi-GHz PLLs are revealed, while new architectures that address these issues are presented. Layout techniques that help reducing the parasitic noise and spur coupling between digital and analog blocks are described. Combining system-level and circuit-level low noise design methods, low phase noise frequency synthesizers were achieved which are compatible with the demanding nowadays wireless communication standards.

  4. Vibration Signal Forecasting on Rotating Machinery by means of Signal Decomposition and Neurofuzzy Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Zurita-Millán

    2016-01-01

    Full Text Available Vibration monitoring plays a key role in the industrial machinery reliability since it allows enhancing the performance of the machinery under supervision through the detection of failure modes. Thus, vibration monitoring schemes that give information regarding future condition, that is, prognosis approaches, are of growing interest for the scientific and industrial communities. This work proposes a vibration signal prognosis methodology, applied to a rotating electromechanical system and its associated kinematic chain. The method combines the adaptability of neurofuzzy modeling with a signal decomposition strategy to model the patterns of the vibrations signal under different fault scenarios. The model tuning is performed by means of Genetic Algorithms along with a correlation based interval selection procedure. The performance and effectiveness of the proposed method are validated experimentally with an electromechanical test bench containing a kinematic chain. The results of the study indicate the suitability of the method for vibration forecasting in complex electromechanical systems and their associated kinematic chains.

  5. An energy monitor for electron accelerators

    International Nuclear Information System (INIS)

    Geske, G.

    1990-01-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S r , if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S m . A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R p , R 50 and R 80 in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R 50 . Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R 50 with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP) [de

  6. Signal frequency distribution and natural-time analyses from acoustic emission monitoring of an arched structure in the Castle of Racconigi

    Directory of Open Access Journals (Sweden)

    G. Niccolini

    2017-07-01

    Full Text Available The stability of an arch as a structural element in the thermal bath of King Charles Albert (Carlo Alberto in the Royal Castle of Racconigi (on the UNESCO World Heritage List since 1997 was assessed by the acoustic emission (AE monitoring technique with application of classical inversion methods to recorded AE data. First, damage source location by means of triangulation techniques and signal frequency analysis were carried out. Then, the recently introduced method of natural-time analysis was preliminarily applied to the AE time series in order to reveal a possible entrance point to a critical state of the monitored structural element. Finally, possible influence of the local seismic and microseismic activity on the stability of the monitored structure was investigated. The criterion for selecting relevant earthquakes was based on the estimation of the size of earthquake preparation zones. The presented results suggest the use of the AE technique as a tool for detecting both ongoing structural damage processes and microseismic activity during preparation stages of seismic events.

  7. Signal frequency distribution and natural-time analyses from acoustic emission monitoring of an arched structure in the Castle of Racconigi

    Science.gov (United States)

    Niccolini, Gianni; Manuello, Amedeo; Marchis, Elena; Carpinteri, Alberto

    2017-07-01

    The stability of an arch as a structural element in the thermal bath of King Charles Albert (Carlo Alberto) in the Royal Castle of Racconigi (on the UNESCO World Heritage List since 1997) was assessed by the acoustic emission (AE) monitoring technique with application of classical inversion methods to recorded AE data. First, damage source location by means of triangulation techniques and signal frequency analysis were carried out. Then, the recently introduced method of natural-time analysis was preliminarily applied to the AE time series in order to reveal a possible entrance point to a critical state of the monitored structural element. Finally, possible influence of the local seismic and microseismic activity on the stability of the monitored structure was investigated. The criterion for selecting relevant earthquakes was based on the estimation of the size of earthquake preparation zones. The presented results suggest the use of the AE technique as a tool for detecting both ongoing structural damage processes and microseismic activity during preparation stages of seismic events.

  8. Contact-Free Heartbeat Signal for Human Identification and Forensics

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Haque, Mohammad Ahsanul; Irani, Ramin

    2017-01-01

    on the subject’s body. Though it might be possible to use touch-based sensors in applications like patient monitoring, it won’t be that easy to use them in identification and forensics applications, espe- cially if subjects are not cooperative. To deal with this problem, recently computer vision techniques have......The heartbeat signal, which is one of the physiological signals, is of great importance in many real-world applications, for example, in patient monitoring and biometric recognition. The traditional methods for measuring such this signal use contact-based sensors that need to be installed...

  9. Signal processing for solar array monitoring, fault detection, and optimization

    CERN Document Server

    Braun, Henry; Spanias, Andreas

    2012-01-01

    Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presen...

  10. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    International Nuclear Information System (INIS)

    Mohos, I.; Dietrich, J.

    1998-01-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Juelich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network

  11. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    Science.gov (United States)

    Mohos, I.; Dietrich, J.

    1998-12-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.

  12. Classification of Steps on Road Surface Using Acceleration Signals

    Directory of Open Access Journals (Sweden)

    Junji Takahashi

    2015-12-01

    Full Text Available In order to reduce a road monitoring cost, we propose a system to monitor extensively road condition by cyclists with a smartphone. In this paper, we propose two methods towards road monitoring. First is to classify road signals to four road conditions. Second is to extract road signal from a smartphone's accelerometer in three positions: pants' side pocket, chest pocket and a bag in a front basket. In pants' side pocket, road signal is extracted by Independent Component Analysis. In chest pocket and bag in a front basket, road signal is extracted by selecting 1-axis affected from gravitational acceleration. In the experiment of the classification method, overall accuracy was 75%. The experimental results of the extraction methods with correlation coefficient showed the overall accuracy were more than 0.7 in pants' side pocket and chest pocket, the overall accuracy was less than 0.3 in bag in a front basket.

  13. Biomedical application of wavelets: analysis of electroencephalograph signals for monitoring depth of anesthesia

    Science.gov (United States)

    Abbate, Agostino; Nayak, A.; Koay, J.; Roy, R. J.; Das, Pankaj K.

    1996-03-01

    The wavelet transform (WT) has been used to study the nonstationary information in the electroencephalograph (EEG) as an aid in determining the anesthetic depth. A complex analytic mother wavelet is utilized to obtain the time evolution of the various spectral components of the EEG signal. The technique is utilized for the detection and spectral analysis of transient and background processes in the awake and asleep states. It can be observed that the response of both states before the application of the stimulus is similar in amplitude but not in spectral contents, which suggests a background activity of the brain. The brain reacts to the external stimulus in two different modes depending on the state of consciousness of the subject. In the case of awake state, there is an evident increase in response, while for the sleep state a reduction in this activity is observed. This analysis seems to suggest that the brain has an ongoing background process that monitors external stimulus in both the sleep and awake states.

  14. Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps.

    Science.gov (United States)

    Schrider, Daniel R; Mendes, Fábio K; Hahn, Matthew W; Kern, Andrew D

    2015-05-01

    Characterizing the nature of the adaptive process at the genetic level is a central goal for population genetics. In particular, we know little about the sources of adaptive substitution or about the number of adaptive variants currently segregating in nature. Historically, population geneticists have focused attention on the hard-sweep model of adaptation in which a de novo beneficial mutation arises and rapidly fixes in a population. Recently more attention has been given to soft-sweep models, in which alleles that were previously neutral, or nearly so, drift until such a time as the environment shifts and their selection coefficient changes to become beneficial. It remains an active and difficult problem, however, to tease apart the telltale signatures of hard vs. soft sweeps in genomic polymorphism data. Through extensive simulations of hard- and soft-sweep models, here we show that indeed the two might not be separable through the use of simple summary statistics. In particular, it seems that recombination in regions linked to, but distant from, sites of hard sweeps can create patterns of polymorphism that closely mirror what is expected to be found near soft sweeps. We find that a very similar situation arises when using haplotype-based statistics that are aimed at detecting partial or ongoing selective sweeps, such that it is difficult to distinguish the shoulder of a hard sweep from the center of a partial sweep. While knowing the location of the selected site mitigates this problem slightly, we show that stochasticity in signatures of natural selection will frequently cause the signal to reach its zenith far from this site and that this effect is more severe for soft sweeps; thus inferences of the target as well as the mode of positive selection may be inaccurate. In addition, both the time since a sweep ends and biologically realistic levels of allelic gene conversion lead to errors in the classification and identification of selective sweeps. This

  15. Wavelet analysis deformation monitoring data of high-speed railway bridge

    Science.gov (United States)

    Tang, ShiHua; Huang, Qing; Zhou, Conglin; Xu, HongWei; Liu, YinTao; Li, FeiDa

    2015-12-01

    Deformation monitoring data of high-speed railway bridges will inevitably be affected because of noise pollution, A deformation monitoring point of high-speed railway bridge was measurd by using sokkia SDL30 electronic level for a long time,which got a large number of deformation monitoring data. Based on the characteristics of the deformation monitoring data of high-speed railway bridge, which contain lots of noise. Based on the MATLAB software platform, 120 groups of deformation monitoring data were applied to analysis of wavelet denoising.sym6,db6 wavelet basis function were selected to analyze and remove the noise.The original signal was broken into three layers wavelet,which contain high frequency coefficients and low frequency coefficients.However, high frequency coefficient have plenty of noise.Adaptive method of soft and hard threshold were used to handle in the high frequency coefficient.Then,high frequency coefficient that was removed much of noise combined with low frequency coefficient to reconstitute and obtain reconstruction wavelet signal.Root Mean Square Error (RMSE) and Signal-To-Noise Ratio (SNR) were regarded as evaluation index of denoising,The smaller the root mean square error and the greater signal-to-noise ratio indicate that them have a good effect in denoising. We can surely draw some conclusions in the experimental analysis:the db6 wavelet basis function has a good effect in wavelet denoising by using a adaptive soft threshold method,which root mean square error is minimum and signal-to-noise ratio is maximum.Moreover,the reconstructed image are more smooth than original signal denoising after wavelet denoising, which removed noise and useful signal are obtained in the original signal.Compared to the other three methods, this method has a good effect in denoising, which not only retain useful signal in the original signal, but aiso reach the goal of removing noise. So, it has a strong practical value in a actual deformation monitoring

  16. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  17. Artificial neural network with self-organizing mapping for reactor stability monitoring

    International Nuclear Information System (INIS)

    Okumura, Motofumi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    In boiling water reactor (BWR) stability monitoring, damping ratio has been used as a stability index. A method for estimating the damping ratio by applying Principal Component Analysis (PCA) to neutron detector signals measured with local power range monitors (LPRMs) had been developed; in this method, measured fluctuating signal is decomposed into some independent components and the signal components directly related to stability are extracted among them to determine the damping ratio. For online monitoring, it is necessary to select stability related signal components efficiently. The self-organizing map (SOM) is one of the artificial neural networks (ANNs) and has the characteristics such that online learning is possible without supervised learning within a relatively short time. In the present study, the SOM was applied to extract the relevant signal components more quickly and more accurately, and the availability was confirmed through the feasibility study. For realizing online stability monitoring only with ANNs, another type of ANN that performs online processing of PCA was combined with SOM. And stability monitoring performance was investigated. (author)

  18. The “incredible” difficulty of proving “incredibility” – Example of fire-induced multiple spurious operations

    International Nuclear Information System (INIS)

    Gallucci, Raymond H.V.

    2016-01-01

    “Risk-informed” regulation is often an alternative to “deterministically-based” regulation that offers relaxation in criteria for acceptability while possibly requiring greater analytical effort. “Risk-informed determinism” is an attempt to meld the best of both worlds by using risk information to set deterministic acceptance criteria a priori. A recent joint effort by the US Nuclear Regulatory Commission’s Office of Nuclear Regulatory Research (RES) and Electric Power Research Institute (EPRI) originally endeavored to do this for several examples involving fire-induced multiple spurious operations (MSOs) in electrical circuits at nuclear power plants. While a noble effort, this did not consider the actual distributions involved in the events, originally limiting the analysis to mean values and, in some cases, qualitative considerations. A much more comprehensive and defensible approach is performed here where the probabilistic distributions for all the factors are considered via simulation to meet quantitative acceptance criteria related to the concept of “incredibility” that is often the figure of merit that must be met in a deterministic world. The effort demonstrates that it can be “incredibly” difficult to prove “incredibility” in this context.

  19. Friction tensor for a pair of Brownian particles: Spurious finite-size effects and molecular dynamics estimates

    International Nuclear Information System (INIS)

    Bocquet, L.; Hansen, J.P.; Piasecki, J.

    1997-01-01

    In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles

  20. The “incredible” difficulty of proving “incredibility” – Example of fire-induced multiple spurious operations

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, Raymond H.V., E-mail: Ray.Gallucci@nrc.gov

    2016-11-15

    “Risk-informed” regulation is often an alternative to “deterministically-based” regulation that offers relaxation in criteria for acceptability while possibly requiring greater analytical effort. “Risk-informed determinism” is an attempt to meld the best of both worlds by using risk information to set deterministic acceptance criteria a priori. A recent joint effort by the US Nuclear Regulatory Commission’s Office of Nuclear Regulatory Research (RES) and Electric Power Research Institute (EPRI) originally endeavored to do this for several examples involving fire-induced multiple spurious operations (MSOs) in electrical circuits at nuclear power plants. While a noble effort, this did not consider the actual distributions involved in the events, originally limiting the analysis to mean values and, in some cases, qualitative considerations. A much more comprehensive and defensible approach is performed here where the probabilistic distributions for all the factors are considered via simulation to meet quantitative acceptance criteria related to the concept of “incredibility” that is often the figure of merit that must be met in a deterministic world. The effort demonstrates that it can be “incredibly” difficult to prove “incredibility” in this context.

  1. Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maceira, Monica [Los Alamos National Laboratory; Blom, Philip Stephen [Los Alamos National Laboratory; Maccarthy, Jonathan K. [Los Alamos National Laboratory; Marcillo, Omar Eduardo [Los Alamos National Laboratory; Euler, Garrett Gene [Los Alamos National Laboratory; Begnaud, Michael Lee [Los Alamos National Laboratory; Ford, Sean R. [Lawrence Livermore National Laboratory; Pasyanos, Michael E. [Lawrence Livermore National Laboratory; Orris, Gregory J. [Naval Research Laboratory; Foxe, Michael P. [Pacific Northwest National Laboratory; Arrowsmith, Stephen J. [Sandia National Laboratory; Merchant, B. John [Sandia National Laboratory; Slinkard, Megan E. [Sandia National Laboratory

    2017-06-01

    This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the document for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.

  2. Sub-cellular localisation studies may spuriously detect the Yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function.

    Science.gov (United States)

    Finch, Megan L; Passman, Adam M; Strauss, Robyn P; Yeoh, George C; Callus, Bernard A

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.

  3. PC based vibration monitoring system

    International Nuclear Information System (INIS)

    Jain, Sanjay K.; Roy, D.A.; Pithawa, C.K.; Patil, R.K.

    2004-01-01

    Health of large rotating machinery gets reflected in the vibration signature of the rotor and supporting structures and proper recording of these signals and their analysis can give a clear picture of the health of the machine. Using these data and their trending, it is possible to predict an impending trouble in the machine so that preventive action can be taken in time and catastrophic failure can be avoided. Continuous monitoring and analysis can give quick warning and enable operator to take preventive measures. Reactor Control Division, BARC is developing a PC based Vibration monitoring system for turbo generator machinery. The System can acquire 20 vibration signals at a rate of 5000 samples per second and also 15 process signals at a rate of 100 samples/ sec. The software for vibration monitoring system includes acquisition modules, analysis modules and Graphical User Interface module. The acquisition module involves initialization, setting of required parameters and acquiring the data from PC-based data acquisition cards. The acquired raw vibration data is then stored for analysis using various software packages. The display and analysis of acquired data is done in LabVIEW 7.0 where the data is displayed in time as well as frequency domain along with the RMS value of the signal. (author)

  4. Sequential probability ratio controllers for safeguards radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.L.; Nixon, K.V.

    1984-01-01

    Sequential hypothesis tests applied to nuclear safeguards accounting methods make the methods more sensitive to detecting diversion. The sequential tests also improve transient signal detection in safeguards radiation monitors. This paper describes three microprocessor control units with sequential probability-ratio tests for detecting transient increases in radiation intensity. The control units are designed for three specific applications: low-intensity monitoring with Poisson probability ratios, higher intensity gamma-ray monitoring where fixed counting intervals are shortened by sequential testing, and monitoring moving traffic where the sequential technique responds to variable-duration signals. The fixed-interval controller shortens a customary 50-s monitoring time to an average of 18 s, making the monitoring delay less bothersome. The controller for monitoring moving vehicles benefits from the sequential technique by maintaining more than half its sensitivity when the normal passage speed doubles

  5. Physiologic Status Monitoring via the Gastrointestinal Tract

    Science.gov (United States)

    2016-02-25

    monitoring is similar with many other ambulatory physiological monitoring systems, and this one of the same limitations of the existing “ gold standard... pollution on acoustic signal fidelity. Reassuringly, data collected here appeared robust in spite of room noise contributions ranging from 70 to 80 dB...Noise pollution , Page 10 of 24 either from ambient or internal sources, may also be addressed using more robust signal processing algorithms

  6. Low power and low spur sampling PLL

    NARCIS (Netherlands)

    Gao, X.; Klumperink, Eric A.M.; Bahai, A.; Bohsali, M.; Nauta, Bram; Djabbari, A.; Socci, G.

    2010-01-01

    Abstract Control circuitry and method of controlling a sampling phase locked loop (PLL). By controlling the duty cycle of one or more sampling control signals, power consumption by the reference signal buffer and spurious output signals from the sampling PLL being controlled can be reduced.

  7. Low power and low spur sampling PLL

    NARCIS (Netherlands)

    Gao, X.; Bahai, Ahmad; Bohsali, Mounhir; Djabbari, Ali; Klumperink, Eric A.M.; Nauta, Bram; Socci, Gerard

    2013-01-01

    Abstract Control circuitry and method of controlling a sampling phase locked loop (PLL). By controlling the duty cycle of one or more sampling control signals, power consumption by the reference signal buffer and spurious output signals from the sampling PLL being controlled can be reduced.

  8. An ultra low energy biomedical signal processing system operating at near-threshold

    NARCIS (Netherlands)

    Hulzink, J.; Konijnenburg, M.; Ashouei, M.; Breeschoten, A.; Berset, T.; Huisken, J.; Stuyt, J.; Groot, H. de; Barat, F.; David, J.; Ginderdeuren, J. van

    2011-01-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime

  9. A fast non-intercepting linac beam position and current monitor

    International Nuclear Information System (INIS)

    Hansen, J.W.; Wille, M.

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating microwave. The detecting loops are interconnected two by two, by means of two coaxial hybrid junctions, the two sets positioned perpendicular to each other. By means of the two signals from the diametrically positioned detecting loops, a good spatial displacement and current monitoring sensitivity are achieved by subtracting one signal from the other and adding the two signals, respectively. For displacements below 2 mm from the center axis an average sensitivity of 0.5 mV/mm x mA is measured, whereas displacements more than 2 mm yields 1.3 mV/mm x mA. A sensitivity of 0.2 mV/mA in current monitoring is measured, and the rise time of the monitored pulse signal is better than 5 ns measured from 10 to 90% of the pulse height. Design strategy and performance of the monitor are described. (orig.)

  10. The development of digital monitoring technique

    International Nuclear Information System (INIS)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator's monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs

  11. The development of digital monitoring technique

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator`s monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs.

  12. Bioelectric Signal Measuring System

    Science.gov (United States)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  13. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    Science.gov (United States)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity

    International Nuclear Information System (INIS)

    Donner, R.V.; Potirakis, S.M.; Barbosa, S.M.; Matos, J.A.O.; Pereira, A.J.S.C.; Neves, L.J.M.F.

    2015-01-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. (authors)

  15. Study of thermal - hydraulic sensors signal fluctuations in PWR

    International Nuclear Information System (INIS)

    Hennion, F.

    1987-10-01

    This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions [fr

  16. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.

    Science.gov (United States)

    Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter

    2014-10-02

    Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high

  17. An energy monitor for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Klinik und Poliklinik des Bereiches Medizin)

    1990-09-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S{sub r}, if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S{sub m}. A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R{sub p}, R{sub 50} and R{sub 80} in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R{sub 50}. Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R{sub 50} with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP).

  18. Sensor signal analysis by neural networks for surveillance in nuclear reactors

    International Nuclear Information System (INIS)

    Keyvan, S.; Rabelo, L.C.

    1992-01-01

    The application of neural networks as a tool for reactor diagnostics is examined here. Reactor pump signals utilized in a wear-out monitoring system developed for early detection of the degradation of a pump shaft are analyzed as a semi-benchmark test to study the feasibility of neural networks for monitoring and surveillance in nuclear reactors. The Adaptive Resonance Theory (ART 2 and ART 2-A) paradigm of neural networks is applied in this study. The signals are collected signals as well as generated signals simulating the wear progress. The wear-out monitoring system applies noise analysis techniques, and is capable of distinguishing these signals apart and providing a measure of the progress of the degradation. This paper presents the results of the analysis of these data, and provides an evaluation on the performance of ART 2-A and ART 2 for reactor signal analysis. The selection of ART 2 is due to its desired design principles such as unsupervised learning, stability-plasticity, search-direct access, and the match-reset tradeoffs

  19. A Prototype Wire Position Monitoring System

    International Nuclear Information System (INIS)

    Wang, Wei

    2010-01-01

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1(micro)m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1(micro)m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  20. Fetal Cardiac Doppler Signal Processing Techniques: Challenges and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Saeed Abdulrahman Alnuaimi

    2017-12-01

    Full Text Available The fetal Doppler Ultrasound (DUS is commonly used for monitoring fetal heart rate and can also be used for identifying the event timings of fetal cardiac valve motions. In early-stage fetuses, the detected Doppler signal suffers from noise and signal loss due to the fetal movements and changing fetal location during the measurement procedure. The fetal cardiac intervals, which can be estimated by measuring the fetal cardiac event timings, are the most important markers of fetal development and well-being. To advance DUS-based fetal monitoring methods, several powerful and well-advanced signal processing and machine learning methods have recently been developed. This review provides an overview of the existing techniques used in fetal cardiac activity monitoring and a comprehensive survey on fetal cardiac Doppler signal processing frameworks. The review is structured with a focus on their shortcomings and advantages, which helps in understanding fetal Doppler cardiogram signal processing methods and the related Doppler signal analysis procedures by providing valuable clinical information. Finally, a set of recommendations are suggested for future research directions and the use of fetal cardiac Doppler signal analysis, processing, and modeling to address the underlying challenges.

  1. Monitor inspection device

    International Nuclear Information System (INIS)

    Ueshima, Yoshinobu.

    1995-01-01

    The device of the present invention reliably conducts monitoring by radiation monitors in a nuclear power plant thereby contributing to save the number of radiation operators and reduction of radiation exposure. Namely, radiation monitors continuously measure a plurality of γ-ray levels. A branched simultaneously counting circuit receives these signals. The output of the branched simultaneously counting circuit is inputted to a differentiation means. The differentiation means calculates a variation coefficient for each of the radiation monitoring values, namely, equivalent dose rates, and records and monitors change with time of the equivalent dose rates. With such procedures, the results of the monitoring of γ-ray levels can be judged objectively corresponding to the increase of the equivalent dose rates. As a result, the number of radiation operators can be saves and radiation exposure of the radiation operators can be reduced. (I.S.)

  2. Experience with digital acoustic monitoring systems for PWRs and BWRs

    International Nuclear Information System (INIS)

    Olma, B.J.

    1998-01-01

    Substantial progress could be reached both in system technics and in application of digital acoustic monitoring systems for assessing mechanical integrity of reactor primary systems. For the surveillance of PWRs and BWRs during power operation of the plants, acoustic signals of Loose Parts Monitoring System sensors are continuously monitored for signal bursts associated with metallic impacts. ISTec/GRS experience with its digital systems MEDEA and RAMSES has shown that acoustic signature analysis is very successful for detecting component failures at an early stage. Methods for trending and classification of digital burst signals are shown, experience with their practical use will be presented. (author)

  3. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  4. Thermocurrent dosimetry with high purity aluminum oxide

    International Nuclear Information System (INIS)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al 2 O 3 ) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces

  5. Dispersion induced power fading for radio frequency signals and its application for fast online PMD and CD monitoring

    Science.gov (United States)

    Ning, G.; Shum, P.

    2007-06-01

    We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.

  6. Wearable System for Acquisition and Monitoring of Biological Signals

    Science.gov (United States)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  7. Amplifier spurious input current components in electrode-electrolyte interface impedance measurements

    Directory of Open Access Journals (Sweden)

    Madrid Rossana E

    2005-03-01

    Full Text Available Abstract Background In Impedance Microbiology, the time during which the measuring equipment is connected to the bipolar cells is rather long, usually between 6 to 24 hrs for microorganisms with duplication times in the order of less than one hour and concentrations ranging from 101 to 107 [CFU/ml]. Under these conditions, the electrode-electrolyte interface impedance may show a slow drift of about 2%/hr. By and large, growth curves superimposed on such drift do not stabilize, are less reproducible, and keep on distorting all over the measurement of the temporal reactive or resistive records due to interface changes, in turn originated in bacterial activity. This problem has been found when growth curves were obtained by means of impedance analyzers or with impedance bridges using different types of operational amplifiers. Methods Suspecting that the input circuitry was the culprit of the deleterious effect, we used for that matter (a ultra-low bias current amplifiers, (b isolating relays for the selection of cells, and (c a shorter connection time, so that the relays were maintained opened after the readings, to bring down such spurious drift to a negligible value. Bacterial growth curves were obtained in order to test their quality. Results It was demonstrated that the drift decreases ten fold when the circuit remained connected to the cell for a short time between measurements, so that the distortion became truly negligible. Improvement due to better-input amplifiers was not as good as by reducing the connection time. Moreover, temperature effects were insignificant with a regulation of ± 0.2 [°C]. Frequency did not influence either. Conclusion The drift originated either at the dc input bias offset current (Ios of the integrated circuits, or in discrete transistors connected directly to the electrodes immersed in the cells, depending on the particular circuit arrangement. Reduction of the connection time was the best countermeasure.

  8. Flexible digital signal processing architecture for narrowband and spread-spectrum lock-in detection in multiphoton microscopy and time-resolved spectroscopy.

    Science.gov (United States)

    Wilson, Jesse W; Park, Jong Kang; Warren, Warren S; Fischer, Martin C

    2015-03-01

    The lock-in amplifier is a critical component in many different types of experiments, because of its ability to reduce spurious or environmental noise components by restricting detection to a single frequency and phase. One example application is pump-probe microscopy, a multiphoton technique that leverages excited-state dynamics for imaging contrast. With this application in mind, we present here the design and implementation of a high-speed lock-in amplifier on the field-programmable gate array (FPGA) coprocessor of a data acquisition board. The most important advantage is the inherent ability to filter signals based on more complex modulation patterns. As an example, we use the flexibility of the FPGA approach to enable a novel pump-probe detection scheme based on spread-spectrum communications techniques.

  9. True or spurious long memory in volatility: Further evidence on the energy futures markets

    International Nuclear Information System (INIS)

    Charfeddine, Lanouar

    2014-01-01

    The main goal of this paper is to investigate whether the long memory behavior observed in many volatility energy futures markets series is a spurious behavior or not. For this purpose, we employ a wide variety of advanced volatility models that allow for long memory and/or structural changes: the GARCH(1,1), the FIGARCH(1,d,1), the Adaptative-GARCH(1,1,k), and the Adaptative-FIGARCH(1,d,1,k) models. To compare forecasting ability of these models, we use out-of-sample forecasting performance. Using the crude oil, heating oil, gasoline and propane volatility futures energy time series with 1-month and 3-month maturities, we found that five out of the eight time series are characterized by both long memory and structural breaks. For these series, dates of breaks coincide with some major economics and financial events. For the three other time series, we found strong evidence of long memory in volatility. - Highlights: • This paper investigates the long memory properties of the futures energy volatility. • We estimate a variety of GARCH-class of models. • The Adaptative-FIGARCH(1,d,1,k) model has been used to account for both long memory and breaks. • 5 out of the 8 futures energy series are characterized by both long memory and structural breaks. • The 3 other series are characterized by only long range dependence in volatility

  10. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  11. Combination of digital signal processing methods towards an improved analysis algorithm for structural health monitoring.

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Makris, John P.

    2013-04-01

    In Structural Health Monitoring (SHM) is of great importance to reveal valuable information from the recorded SHM data that could be used to predict or indicate structural fault or damage in a building. In this work a combination of digital signal processing methods, namely FFT along with Wavelet Transform is applied, together with a proposed algorithm to study frequency dispersion, in order to depict non-linear characteristics of SHM data collected in two university buildings under natural or anthropogenic excitation. The selected buildings are of great importance from civil protection point of view, as there are the premises of a public higher education institute, undergoing high use, stress, visit from academic staff and students. The SHM data are collected from two neighboring buildings that have different age (4 and 18 years old respectively). Proposed digital signal processing methods are applied to the data, presenting a comparison of the structural behavior of both buildings in response to seismic activity, weather conditions and man-made activity. Acknowledgments This work was supported in part by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) » and is co-financed by the European Union (European Social Fund) and Greek National Fund.

  12. Remote monitoring in international safeguards

    International Nuclear Information System (INIS)

    Dupree, S.A.; Sonnier, C.S.; Johnson, C.S.

    1996-01-01

    In recent years, technology that permits the integration of monitoring sensors and instruments into a coherent network has become available. Such integrated monitoring systems provide a means for the automatic collection and assessment of sensor signals and instrument readings and for processing such signals and readings in near real time. To gain experience with the new monitoring system technology, the US Department of energy, through bilateral agreements with its international partners, has initiated a project to emplace demonstration systems in various nuclear facilities and conduct field trials of the technology. This effort is the International Remote Monitoring Project. Under this project, remote monitoring systems are being deployed around the world in an incremental manner. Each deployment is different and each offers lessons for improving the performance and flexibility of the technology. Few problems were encountered with the operation of the installations to date, and much has been learned about the operation and use of the new technology. In the future, the authors believe systems for safeguards applications should be capable of being monitored remotely, emphasize the use of sensors, and utilize selective triggering for recording of images. Remote monitoring across national borders can occur only in the context of a cooperative, nonadversarial implementation regime. However, significant technical and policy work remains to be done before widespread safeguards implementation of remote monitoring should be considered. This paper shows that an abundance of technology supports the implementation of integrated and remote monitoring systems. Current field trials of remote monitoring systems are providing practical data and operational experience to aid in the design of tomorrow's systems

  13. Smart Sensor ASIC for Nuclear Power Monitoring

    International Nuclear Information System (INIS)

    Kerwin, David B.; Merkel, Kenneth G.; Rouxel, Olivier

    2013-06-01

    Mixed-signal integrated circuits are used in a variety of applications where ionizing radiation is present, including satellites, space vehicles, nuclear reactor monitoring, medical imaging, and cancer therapy. While total ionizing radiation is present in each of these environments, the type of radiation (e.g. heavy ions vs. high-energy x-rays) and other environmental factors present unique challenges to the mixed-signal designer. This paper discusses a Smart Sensor radiation hardened, mixed-signal, application specific integrated circuit (ASIC) specifically designed for sensor monitoring in a nuclear reactor environment. Results after exposure to gamma rays, neutrons, and temperatures up to 200 deg. C are reported. (authors)

  14. Vicarious reinforcement learning signals when instructing others.

    Science.gov (United States)

    Apps, Matthew A J; Lesage, Elise; Ramnani, Narender

    2015-02-18

    Reinforcement learning (RL) theory posits that learning is driven by discrepancies between the predicted and actual outcomes of actions (prediction errors [PEs]). In social environments, learning is often guided by similar RL mechanisms. For example, teachers monitor the actions of students and provide feedback to them. This feedback evokes PEs in students that guide their learning. We report the first study that investigates the neural mechanisms that underpin RL signals in the brain of a teacher. Neurons in the anterior cingulate cortex (ACC) signal PEs when learning from the outcomes of one's own actions but also signal information when outcomes are received by others. Does a teacher's ACC signal PEs when monitoring a student's learning? Using fMRI, we studied brain activity in human subjects (teachers) as they taught a confederate (student) action-outcome associations by providing positive or negative feedback. We examined activity time-locked to the students' responses, when teachers infer student predictions and know actual outcomes. We fitted a RL-based computational model to the behavior of the student to characterize their learning, and examined whether a teacher's ACC signals when a student's predictions are wrong. In line with our hypothesis, activity in the teacher's ACC covaried with the PE values in the model. Additionally, activity in the teacher's insula and ventromedial prefrontal cortex covaried with the predicted value according to the student. Our findings highlight that the ACC signals PEs vicariously for others' erroneous predictions, when monitoring and instructing their learning. These results suggest that RL mechanisms, processed vicariously, may underpin and facilitate teaching behaviors. Copyright © 2015 Apps et al.

  15. Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function

    Directory of Open Access Journals (Sweden)

    A. Devasthale

    2012-02-01

    Full Text Available The Advanced Very High Resolution Radiometer (AVHRR instruments onboard the series of National Oceanic and Atmospheric Administration (NOAA satellites offer the longest available meteorological data records from space. These satellites have drifted in orbit resulting in shifts in the local time sampling during the life span of the sensors onboard. Depending upon the amplitude of the diurnal cycle of the geophysical parameters derived, orbital drift may cause spurious trends in their time series. We investigate tropical deep convective clouds, which show pronounced diurnal cycle amplitude, to estimate an upper bound of the impact of orbital drift on their time series. We carry out a rotated empirical orthogonal function analysis (REOF and show that the REOFs are useful in delineating orbital drift signal and, more importantly, in subtracting this signal in the time series of convective cloud amount. These results will help facilitate the derivation of homogenized data series of cloud amount from NOAA satellite sensors and ultimately analyzing trends from them. However, we suggest detailed comparison of various methods and rigorous testing thereof applying final orbital drift corrections.

  16. Monitoring method of short-emitters

    International Nuclear Information System (INIS)

    Gasanov, R.A.

    2013-01-01

    Radioprospecting is the initial stage of radioelectronic warfare and its main purpose is destination of the radio signal, determination of its parameters, to detect the content of broadcasts, as well as detection the locating of devices emitting radio signal. In all cases, the probability of signal interception is basically determined by the specified parameters of signals intelligence. The increase in speed is accompanied by a decrease in resolution and vice versa. This paper discusses the method of monitoring the short-term radio emissions, which adapts to the electromagnetic environment

  17. Data eye monitor method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Gara, Alan G [Mount Kisco, NY; Marcella, James A [Rochester, MN; Ohmacht, Martin [Yorktown Heights, NY

    2012-01-31

    An apparatus and method for providing a data eye monitor. The data eye monitor apparatus utilizes an inverter/latch string circuit and a set of latches to save the data eye for providing an infinite persistent data eye. In operation, incoming read data signals are adjusted in the first stage individually and latched to provide the read data to the requesting unit. The data is also simultaneously fed into a balanced XOR tree to combine the transitions of all incoming read data signals into a single signal. This signal is passed along a delay chain and tapped at constant intervals. The tap points are fed into latches, capturing the transitions at a delay element interval resolution. Using XORs, differences between adjacent taps and therefore transitions are detected. The eye is defined by segments that show no transitions over a series of samples. The eye size and position can be used to readjust the delay of incoming signals and/or to control environment parameters like voltage, clock speed and temperature.

  18. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  19. Artificial neural network with self-organizing mapping for reactor stability monitoring

    International Nuclear Information System (INIS)

    Okumura, Motofumi; Tsuji, Masashi; Shimazu, Yoichiro; Narabayashi, Tadashi

    2008-01-01

    In BWR stability monitoring damping ratio has been used as a stability index. A method for estimating the damping ratio by applying Principal Component Analysis (PCA) to neutron detector signals measured with local power range monitors (LPRMs) had been developed; In this method, measured fluctuating signal is decomposed into some independent components and the signal component directly related to stability is extracted among them to determine the damping ratio. For online monitoring, it is necessary to select stability related signal component efficiently. The self-organizing map (SOM) is one of the artificial neural networks and has the characteristics such that online learning is possible without supervised learning within a relatively short time. In the present study, the SOM was applied to extract the relevant signal component more quickly and more accurately, and the availability was confirmed through the feasibility study. (author)

  20. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring.

    Science.gov (United States)

    Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman

    2017-07-13

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.

  1. Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zhang, Xu; Zibar, Darko

    2011-01-01

    We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission is successfu...... drives an adaptive digital CD equalizer. © 2011 Optical Society of America.......We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission...

  2. SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal

    Science.gov (United States)

    Singh, Saurabh; Subrahmanyan, Ravi; Shankar, N. Udaya; Rao, Mayuri Sathyanarayana; Girish, B. S.; Raghunathan, A.; Somashekar, R.; Srivani, K. S.

    2018-04-01

    The global 21-cm signal from Cosmic Dawn (CD) and the Epoch of Reionization (EoR), at redshifts z ˜ 6-30, probes the nature of first sources of radiation as well as physics of the Inter-Galactic Medium (IGM). Given that the signal is predicted to be extremely weak, of wide fractional bandwidth, and lies in a frequency range that is dominated by Galactic and Extragalactic foregrounds as well as Radio Frequency Interference, detection of the signal is a daunting task. Critical to the experiment is the manner in which the sky signal is represented through the instrument. It is of utmost importance to design a system whose spectral bandpass and additive spurious signals can be well calibrated and any calibration residual does not mimic the signal. Shaped Antenna measurement of the background RAdio Spectrum (SARAS) is an ongoing experiment that aims to detect the global 21-cm signal. Here we present the design philosophy of the SARAS 2 system and discuss its performance and limitations based on laboratory and field measurements. Laboratory tests with the antenna replaced with a variety of terminations, including a network model for the antenna impedance, show that the gain calibration and modeling of internal additive signals leave no residuals with Fourier amplitudes exceeding 2 mK, or residual Gaussians of 25 MHz width with amplitudes exceeding 2 mK. Thus, even accounting for reflection and radiation efficiency losses in the antenna, the SARAS 2 system is capable of detection of complex 21-cm profiles at the level predicted by currently favoured models for thermal baryon evolution.

  3. Beam-ripple monitor with secondary electrons

    International Nuclear Information System (INIS)

    Sato, Shinji; Kanazawa, Mitsutaka; Noda, Koji; Takada, Eiichi; Komiyama, Akihito; Ichinohe, Ken-ichi; Sano, Yoshinobu

    1997-01-01

    To replace the scintillation-ripple monitor, we have developed a new monitor with a smaller destructive effect on the beam. In this monitor, we use secondary electrons emitted from an aluminum foil with a thickness of 2 μm. The signals of secondary electrons are amplified by an electron multiplier having a maximum gain of 10 6 . By using the new monitor, we could clearly observe the beam ripple with a beam intensity of 3.6x10 8 pps (particle per second). This monitor can also be used as an intensity monitor in the range of 10 4 - 10 9 pps. (author)

  4. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  5. Contact-Free Heartbeat Signal for Human Identification and Forensics

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Haque, Mohammad Ahsanul; Irani, Ramin

    2017-01-01

    The heartbeat signal, which is one of the physiological signals, is of great importance in many real-world applications, for example, in patient monitoring and biometric recognition. The traditional methods for measuring such this signal use contact-based sensors that need to be installed...... been developed for contact-free extraction of the heartbeat signal. We have recently used the contact-free measured heartbeat signal, for bio- metric recognition, and have obtained promising results, indicating the importance of these signals for biometrics recognition and also for forensics...

  6. System for monitoring an industrial or biological process

    Science.gov (United States)

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  7. ECG Holter monitor with alert system and mobile application

    Science.gov (United States)

    Teron, Abigail C.; Rivera, Pedro A.; Goenaga, Miguel A.

    2016-05-01

    This paper proposes a new approach on the Holter monitor by creating a portable Electrocardiogram (ECG) Holter monitor that will alert the user by detecting abnormal heart beats using a digital signal processing software. The alarm will be triggered when the patient experiences arrhythmias such as bradycardia and tachycardia. The equipment is simple, comfortable and small in size that fit in the hand. It can be used at any time and any moment by placing three leads to the person's chest which is connected to an electronic circuit. The ECG data will be transmitted via Bluetooth to the memory of a selected mobile phone using an application that will store the collected data for up to 24 hrs. The arrhythmia is identified by comparing the reference signals with the user's signal. The diagnostic results demonstrate that the ECG Holter monitor alerts the user when an arrhythmia is detected thru the Holter monitor and mobile application.

  8. Real time measurement of air radioactivity

    International Nuclear Information System (INIS)

    Galeriu, D.; Craciunescu, T.; Teles, S.

    1998-01-01

    A Local Meteorological and Radiological Monitoring System was developed in our institute for several purposes: local monitoring, extending our experience in other location such as Cernavoda NPP and research. This system has meteorological sensors for wind speed and direction, air temperature, solar radiation, relative humidity, rainfall, dose ratemeter (Geiger-Muller counter - TIEX), Alpha-Beta Activity-in-Air Monitor (AB96), Iodine Monitor and Eberline Intelligent Ionization Chamber (FHT 6010). All data are collected by a programmable interface Delta-T Logger that is controlled by a software (ODAS - 'On-line Data Acquisition Software'). ODAS was developed in IFIN-HH. It has the capability to acquire, calculate and transmit real meteorological and radiological data through local network. The developed software controls the interface, the flux of input data through the serial port RS232 and after some processing (system, configuration, input data, connection to the network checking, etc) it creates data files. These files are transmitted on-line to our workstation or in any other place connected to Internet. Data can be collected from the logger at any time during logging. There is no need to stop logging. Data output from the logger can be controlled either from the logger's keypad or from other user terminals. ODAS is operated as follows: - First, the last written file and the date-time of acquired readings are checked. For establishing communication with logger a RS232 level signal must be sent to it. The logger wakes if asleep and sends back RDY signal. Powering the logger may take up to 100 ms to establish a correct RS232 level. Noise on the output lines occurs during this period and communication software may need to take into account such spurious signals. A command must be sent to the logger within 2 s to confirm that the last signal received is real and not spurious. Otherwise, the logger interprets the signal as noise and sleeps. The software sends further

  9. Potential of acoustic monitoring for safety assessment of primary system

    International Nuclear Information System (INIS)

    Olma, B.J.

    1997-01-01

    Safety assessment of the primary system and its components with respect to their mechanical integrity is increasingly supported by acoustic signature analysis during power operation of the plants. Acoustic signals of Loose Parts Monitoring System sensors are continuously monitored by dedicated digital systems for signal bursts associated with metallic impacts. Several years of ISTec/GRS experience and the practical use of its digital systems MEDEA and RAMSES have shown that acoustic monitoring is very successful for detecting component failures at an early stage. Advanced powerful tools for classification and acoustic evaluation of burst signals have recently been realized. The paper presents diagnosis experiences of BWR's and PWR's safety assessment. (author). 7 refs, 8 figs

  10. Enhancement of Twins Fetal ECG Signal Extraction Based on Hybrid Blind Extraction Techniques

    Directory of Open Access Journals (Sweden)

    Ahmed Kareem Abdullah

    2017-07-01

    Full Text Available ECG machines are noninvasive system used to measure the heartbeat signal. It’s very important to monitor the fetus ECG signals during pregnancy to check the heat activity and to detect any problem early before born, therefore the monitoring of ECG signals have clinical significance and importance. For multi-fetal pregnancy case the classical filtering algorithms are not sufficient to separate the ECG signals between mother and fetal. In this paper the mixture consists of mixing from three ECG signals, the first signal is the mother ECG (M-ECG signal, second signal the Fetal-1 ECG (F1-ECG, and third signal is the Fetal-2 ECG (F2-ECG, these signals are extracted based on modified blind source extraction (BSE techniques. The proposed work based on hybridization between two BSE techniques to ensure that the extracted signals separated well. The results demonstrate that the proposed work very efficiently to extract the useful ECG signals

  11. Revolutionary optical sensor for physiological monitoring in the battlefield

    Science.gov (United States)

    Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John

    2004-09-01

    SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.

  12. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    Science.gov (United States)

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced

  13. Failure Diagnosis System for a Ball-Screw by Using Vibration Signals

    Directory of Open Access Journals (Sweden)

    Won Gi Lee

    2015-01-01

    Full Text Available Recently, in order to reduce high maintenance costs and to increase operating ratio in manufacturing systems, condition-based maintenance (CBM has been developed. CBM is carried out with indicators, which show equipment’s faults and performance deterioration. In this study, indicator signal acquisition and condition monitoring are applied to a ball-screw-driven stage. Although ball-screw is a typical linearly reciprocating part and is widely used in industry, it has not gained attention to be diagnosed compared to rotating parts such as motor, pump, and bearing. First, the vibration-based monitoring method, which uses vibration signal to monitor the condition of a machine, is proposed. Second, Wavelet transform is used to analyze the defect signals in time-frequency domain. Finally, the failure diagnosis system is developed using the analysis, and then its performance is evaluated. Using the system, we estimated the severity of failure and detect the defect position. The low defect frequency (≈58.7 Hz is spread all over the time in the Wavelet-filtered signal with low frequency range. Its amplitude reflects the progress of defect. The defect position was found in the signal with high frequency range (768~1,536 Hz. It was detected from the interval between abrupt changes of signal.

  14. Regression models of reactor diagnostic signals

    International Nuclear Information System (INIS)

    Vavrin, J.

    1989-01-01

    The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)

  15. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  16. Non-stationary condition monitoring through event alignment

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2004-01-01

    We present an event alignment framework which enables change detection in non-stationary signals. change detection. Classical condition monitoring frameworks have been restrained to laboratory settings with stationary operating conditions, which are not resembling real world operation....... In this paper we apply the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission sensor signals. The performance of the event alignment is analyzed in an unsupervised probabilistic detection framework based on outlier detection with either Principal Component...... Analysis or Gaussian Processes modeling. We are especially interested in the true performance of the condition monitoring performance with mixed aligned and unaligned data, e.g. detection of fault condition of unaligned examples versus false alarms of aligned normal condition data. Further, we expect...

  17. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, Mario; Gran, Frauke Schmitt; Thunem, Harald P-J.

    2004-04-01

    On-Line Monitoring (OLM) of a channel's calibration state evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. The Halden Reactor Project has developed the signal validation system PEANO, which can be used to assist with the tasks of OLM. To further enhance the PEANO System for use as a calibration reduction tool, the following two additional modules have been developed; HRP Prox, which performs pre-processing and statistical analysis of signal data, Batch Monitoring Module (BMM), which is an off-line batch monitoring and reporting suite. The purpose and functionality of the HRP Prox and BMM modules are discussed in this report, as well as the improvements made to the PEANO Server to support these new modules. The Halden Reactor Project has established a Halden On-Line Monitoring User Group (HOLMUG), devoted to the discussion and implementation of on-line monitoring techniques in power plants. It is formed by utilities, vendors, regulatory bodies and research institutes that meet regularly to discuss implementation aspects of on-line monitoring, technical specification changes, cost-benefit analysis and regulatory issues. (Author)

  18. New data acquisition system for beam loss monitor used in J-PARC main ring

    Science.gov (United States)

    Satou, K.; Toyama, T.; Kamikubota, N.; Yoshida, S.; Matsushita, J.; Wakita, T.; Sugiyama, M.; Morino, T.

    2018-04-01

    A new data acquisition system has been developed continually as a part of the development of a new beam loss monitor (BLM) system for the J-PARC main ring. This development includes a newly designed front-end isolation amp that uses photo-couplers and a VME-based new analog-to-digital converter (ADC) system. Compared to the old amp, the new amp has a 10 times higher conversion impedance for the input current to the output voltage; this value is 1 M Ω. Moreover, the bandwidth was improved to from DC to 50 kHz, which is about two orders of magnitude greater than the previously used bandwidth. The theoretical estimations made in this study roughly agree with the frequency response obtained for the new system. The new ADC system uses an on-board field-programmable gate array chip for signal processing. By replacing the firmware of this chip, changes pertaining to future accelerator upgrade plans may be introduced into the new ADC system; in addition, the ADC system can be used in other applications. The sampling speed of the system is 1 MS/s, and it exhibits a 95 dBc spurious-free dynamic range and 16.5 effective number of bits. The obtained waveform and integrated charge data are compared with two reference levels in the ADC system. If the data exceeds the reference level, the system generates an alarm to dump the beams. By using the new data acquisition system, it was proved that the new BLM system shows a wide dynamic range of 160 dB. In this study, the details of the new data acquisition system are described.

  19. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.

    Science.gov (United States)

    Teichmann, Daniel; De Matteis, Dennis; Bartelt, Thorsten; Walter, Marian; Leonhardt, Steffen

    2015-05-01

    A mobile device is presented for monitoring both respiration and pulse. The device is developed as a bendable/flexible inlay that can be placed in a shirt pocket or the inside pocket of a jacket. To achieve optimum monitoring performance, the device combines two sensor principles, which work in a safe noncontact way through several layers of cotton or other textiles. One sensor, based on magnetic induction, is intended for respiratory monitoring, and the other is a reflective photoplethysmography sensor intended for pulse detection. Because each sensor signal has some dependence on both physiological parameters, fusing the sensor signals allows enhanced signal coverage.

  20. Java online monitoring framework

    International Nuclear Information System (INIS)

    Ronan, M.; Kirkby, D.; Johnson, A.S.; Groot, D. de

    1997-10-01

    An online monitoring framework has been written in the Java Language Environment to develop applications for monitoring special purpose detectors during commissioning of the PEP-II Interaction Region. PEP-II machine parameters and signals from several of the commissioning detectors are logged through VxWorks/EPICS and displayed by Java display applications. Remote clients are able to monitor the machine and detector performance using graphical displays and analysis histogram packages. In this paper, the design and implementation of the object-oriented Java framework is described. Illustrations of data acquisition, display and histograming applications are also given

  1. Model-based monitoring of rotors with multiple coexisting faults

    International Nuclear Information System (INIS)

    Rossner, Markus

    2015-01-01

    Monitoring systems are applied to many rotors, but only few monitoring systems can separate coexisting errors and identify their quantity. This research project solves this problem using a combination of signal-based and model-based monitoring. The signal-based part performs a pre-selection of possible errors; these errors are further separated with model-based methods. This approach is demonstrated for the errors unbalance, bow, stator-fixed misalignment, rotor-fixed misalignment and roundness errors. For the model-based part, unambiguous error definitions and models are set up. The Ritz approach reduces the model order and therefore speeds up the diagnosis. Identification algorithms are developed for the different rotor faults. Hereto, reliable damage indicators and proper sub steps of the diagnosis have to be defined. For several monitoring problems, measuring both deflection and bearing force is very useful. The monitoring system is verified by experiments on an academic rotor test rig. The interpretation of the measurements requires much knowledge concerning the dynamics of the rotor. Due to the model-based approach, the system can separate errors with similar signal patterns and identify bow and roundness error online at operation speed. [de

  2. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  3. System for Monitoring and Analysis of Vibrations at Electric Motors

    Directory of Open Access Journals (Sweden)

    Gabriela Rață

    2014-09-01

    Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.

  4. Neural networks for the monitoring of rotating machinery

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Loskiewicz-Buczak

    1991-01-01

    Vibration monitoring of components in engineering systems and plants involves the collection of vibration data and detailed analysis to detect features which reflect the operational state of the machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. This paper describes a methodology for the automation of some of the activities related to motion and vibration monitoring in these systems. The technique involves training a neural network to model the inter- relationship between signals from two related sensors mounted on an engineering system or component at a time when it is known to be operating properly. Then one signal (or its characteristics) is put into the neural network model to predict the second signal (or its characteristics). This predicted signal is continuously compared with the actual signal A deviation between the predicted and actual signal indicates a changing relationship, usually failure of the component or system. This deviation may be quantified and provides meaningful information about the degree of degradation and deterioration of the component

  5. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  6. Seismic signal of near steady uniform flows

    Science.gov (United States)

    Mangeney, A.; Bachelet, V.; Toussaint, R.; de Rosny, J.

    2017-12-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity. A major challenge in this domain is to retrieve the dynamic properties of the flow from the emitted seismic signal. In this study, we propose laboratory experiments where the dynamic properties of the flow (velocity, granular temperature, density, etc.) are measured together with the generated seismic signal. We investigate near steady uniform flows made of glass beads of 2mm diameter, flowing throughout a thin rectangular channel of 10 cm width, with tunable tilt angle and height flow, thanks to an adjustable opening gate. The flow is monitored from the spine with a fast camera (5000 fps), and the emitted waves are recorded by accelerometers (10Hz - 54 kHz), stuck on the back side of the bottom of the channel. Among others, three seismic parameters are analyzed: the power radiated by the flow, the mean frequency of the signal, and the modulation of its amplitude. We show that they are linked to three dynamical properties: the mean kinetic energy of the flow, the speed of collisions between beads and the vertical oscillation of the beads, respectively.

  7. Development of a Modified Kernel Regression Model for a Robust Signal Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ibrahim; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The demand for robust and resilient performance has led to the use of online-monitoring techniques to monitor the process parameters and signal validation. On-line monitoring and signal validation techniques are the two important terminologies in process and equipment monitoring. These techniques are automated methods of monitoring instrument performance while the plant is operating. To implementing these techniques, several empirical models are used. One of these models is nonparametric regression model, otherwise known as kernel regression (KR). Unlike parametric models, KR is an algorithmic estimation procedure which assumes no significant parameters, and it needs no training process after its development when new observations are prepared; which is good for a system characteristic of changing due to ageing phenomenon. Although KR is used and performed excellently when applied to steady state or normal operating data, it has limitation in time-varying data that has several repetition of the same signal, especially if those signals are used to infer the other signals. The convectional KR has limitation in correctly estimating the dependent variable when time-varying data with repeated values are used to estimate the dependent variable especially in signal validation and monitoring. Therefore, we presented here in this work a modified KR that can resolve this issue which can also be feasible in time domain. Data are first transformed prior to the Euclidian distance evaluation considering their slopes/changes with respect to time. The performance of the developed model is evaluated and compared with that of conventional KR using both the lab experimental data and the real time data from CNS provided by KAERI. The result shows that the proposed developed model, having demonstrated high performance accuracy than that of conventional KR, is capable of resolving the identified limitation with convectional KR. We also discovered that there is still need to further

  8. Monitor and control device in a nuclear power plant

    International Nuclear Information System (INIS)

    Neda, Toshikatsu.

    1980-01-01

    Purpose: To facilitate and ensure monitor and control, as well as improve the operation efficiency and save man power, by render the operation automatic utilizing a process computer and centralizing the monitor and control functions. Constitution: All of the operations from the start up to stop in a nuclear power plant are conducted by way of a monitor and control board. The process data for the nuclear power plant are read into the process computer and displayed on a CRT display. Controls are carried out respectively for the control rod on a control rod panel, for the feedwater rate on a feedwater control panel, for the recycling flow rate on a recycling control panel and for the turbine generator on a turbine control panel. When the operation is conducted by an automatic console, operation signals from the console are imputted into the process computer and the state of the power plant is monitored and automatic operation is carried out based on the operation signals and from signals from each of the panels. (Moriyama, K.)

  9. A randomised clinical trial of intrapartum fetal monitoring with computer analysis and alerts versus previously available monitoring

    Directory of Open Access Journals (Sweden)

    Santos Cristina

    2010-10-01

    Full Text Available Abstract Background Intrapartum fetal hypoxia remains an important cause of death and permanent handicap and in a significant proportion of cases there is evidence of suboptimal care related to fetal surveillance. Cardiotocographic (CTG monitoring remains the basis of intrapartum surveillance, but its interpretation by healthcare professionals lacks reproducibility and the technology has not been shown to improve clinically important outcomes. The addition of fetal electrocardiogram analysis has increased the potential to avoid adverse outcomes, but CTG interpretation remains its main weakness. A program for computerised analysis of intrapartum fetal signals, incorporating real-time alerts for healthcare professionals, has recently been developed. There is a need to determine whether this technology can result in better perinatal outcomes. Methods/design This is a multicentre randomised clinical trial. Inclusion criteria are: women aged ≥ 16 years, able to provide written informed consent, singleton pregnancies ≥ 36 weeks, cephalic presentation, no known major fetal malformations, in labour but excluding active second stage, planned for continuous CTG monitoring, and no known contra-indication for vaginal delivery. Eligible women will be randomised using a computer-generated randomisation sequence to one of the two arms: continuous computer analysis of fetal monitoring signals with real-time alerts (intervention arm or continuous CTG monitoring as previously performed (control arm. Electrocardiographic monitoring and fetal scalp blood sampling will be available in both arms. The primary outcome measure is the incidence of fetal metabolic acidosis (umbilical artery pH ecf > 12 mmol/L. Secondary outcome measures are: caesarean section and instrumental vaginal delivery rates, use of fetal blood sampling, 5-minute Apgar score Discussion This study will provide evidence of the impact of intrapartum monitoring with computer analysis and real

  10. BAKNET - Communication network for radiation monitoring devices

    International Nuclear Information System (INIS)

    Cohen, Y.; Wengrowicz, U.; Tirosh, D.; Barak, D.

    1997-01-01

    A system, based on a new concept of controlling and monitoring distributed radiation monitors, has been developed and approved at the NRCN. The system, named B AKNET Network , consists of a series of communication adapters connected to a main PC via an RS-485 communication network (see Fig. 1). The network's maximal length is 1200 meters and it enables connection of up to 128 adapters. The BAKNET adapters are designed to interface output signals of different types of stationary radiation monitors to a main PC. The BAKNET adapters' interface type includes: digital, analog, RS-232, and mixed output signals. This allows versatile interfacing of different stationary radiation monitors to the main computer. The connection to the main computer is via an RS-485 network, utilizing an identical communication protocol. The PC software, written in C ++ under MS-Windows, consists of two main programs. The first is the data collection program and the second is the Human Machine Interface (HMI). (authors)

  11. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  12. Modeling of the active vibroseismic monitoring

    International Nuclear Information System (INIS)

    Kovalevskij, V.V.

    2006-01-01

    The results of the mathematical modeling of vibroseismic monitoring of changes in the elastic characteristics in the interior Earth's crust zone are presented. The model of the 'Earth's crust-mantle' system with point vibrational source on the free surface is considered. The estimates of sensitivity of active monitoring method with harmonic vibrational signals is determined. (author)

  13. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  14. Solar Wind Monitor--A School Geophysics Project

    Science.gov (United States)

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  15. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.

    Science.gov (United States)

    Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-16

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  16. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-01-01

    Full Text Available Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR, percentage root-mean-square difference (PRD, and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects, the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  17. Respiratory Information Extraction from Electrocardiogram Signals

    KAUST Repository

    Amin, Gamal El Din Fathy

    2010-01-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological

  18. GPR Image and Signal Processing for Pavement and Road Monitoring on Android Smartphones and Tablets

    Science.gov (United States)

    Benedetto, Francesco; Benedetto, Andrea; Tedeschi, Antonio

    2014-05-01

    Ground Penetrating Radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. It can detect objects, changes in material, and voids and cracks. GPR has many applications in a number of fields. In the field of civil engineering one of the most advanced technologies used for road pavement monitoring is based on the deployment of advanced GPR systems. One of the most relevant causes of road pavement damage is often referable to water intrusion in structural layers. In this context, GPR has been recently proposed as a method to estimate moisture content in a porous medium without preventive calibration. Hence, the development of methods to obtain an estimate of the moisture content is a crucial research field involving economic, social and strategic aspects in road safety for a great number of public and private Agencies. In particular, a recent new approach was proposed to estimate moisture content in a porous medium basing on the theory of Rayleigh scattering, showing a shift of the frequency peak of the GPR spectrum towards lower frequencies as the moisture content increases in the soil. Addressing some of these issues, this work proposes a mobile application, for smartphones and tablets, for GPR image and signal processing. Our application has been designed for the Android mobile operating system, since it is open source and android mobile platforms are selling the most smartphones in the world (2013). The GPR map can be displayed in black/white or color and the user can zoom and navigate into the image. The map can be loaded in two different ways: from the local memory of the portable device or from a remote server. This latter possibility can be very useful for real-time and mobile monitoring of road and pavement inspection. In addition, the application allows analyzing the GPR data also in the frequency domain. It is

  19. Respiratory Information Extraction from Electrocardiogram Signals

    KAUST Repository

    Amin, Gamal El Din Fathy

    2010-12-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological processes. The respiratory activity is a prominent process that affects the ECG signal due to the close proximity of the heart and the lungs. In this thesis, several methods for the extraction of respiratory process information from the ECG signal are presented. These methods allow an estimation of the lung volume and the lung pressure from the ECG signal. The potential benefit of this is to eliminate the corresponding sensors used to measure the respiration activity. A reduction of the number of sensors connected to patients will increase patients’ comfort and reduce the costs associated with healthcare. As a further result, the efficiency of diagnosing respirational disorders will increase since the respiration activity can be monitored with a common, widely available method. The developed methods can also improve the detection of respirational disorders that occur while patients are sleeping. Such disorders are commonly diagnosed in sleeping laboratories where the patients are connected to a number of different sensors. Any reduction of these sensors will result in a more natural sleeping environment for the patients and hence a higher sensitivity of the diagnosis.

  20. Schottky signal analysis: tune and chromaticity computation

    CERN Document Server

    Chanon, Ondine

    2016-01-01

    Schottky monitors are used to determine important beam parameters in a non-destructive way. The Schottky signal is due to the internal statistical fluctuations of the particles inside the beam. In this report, after explaining the different components of a Schottky signal, an algorithm to compute the betatron tune is presented, followed by some ideas to compute machine chromaticity. The tests have been performed with offline and/or online LHC data.

  1. IE Information Notice No. 85-18, Supplement 1: Failures of undervoltage output circuit boards in the Westinghouse-designed solid state protection system

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The US Nuclear Regulatory Commission (NRC) is issuing this information notice supplement to alert addressees to continuing problems associated with the undervoltage (UV) output circuit boards (driver cards) in the solid state protection system (SSPS) designed by the Westinghouse Electric Corporation (Westinghouse). On June 3, 1991, the Shearon Harris Nuclear Power Plant, Unit 1, (Harris) experienced an automatic reactor trip from 100 percent power on a spurious low reactor coolant system loop flow signal. The signal was generated as a result of a surveillance test being performed on one of three loop flow transmitters. The licensee attributed the spurious signal to both procedural inadequacies and personnel error. A control room operator verified that all control rods had fully inserted following the trip signal and that reactor power was properly decreasing. However, about 22 seconds after the automatic trip signal was generated, operators discovered that the ''A'' reactor trip breaker (RTB) had not opened. The RTB was manually opened using the reactor trip switch on the main control board. Subsequent analyses are discussed

  2. Surface acoustic wave dust deposition monitor

    Science.gov (United States)

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  3. Continuous Monitoring of GAMMA Radiation Field in the Reactor RA Building

    International Nuclear Information System (INIS)

    Stalevski, T.

    2008-01-01

    This paper presents the system for continuos monitoring of gamma doze rate in the reactor RA building. Industrial (PC compatible) computer acquires analog signals from eight ionization chambers and eight analog signals from three BPH devices. Digital output interface is used for testing ionization chambers and BPH devices. Computer program for data analyzes and presentation is written in graphical programming language LabVIEW and enables monitoring of measured data in real time. Measured data can be monitored over local computer network, Internet and mobile devices using standard web browsers. (author)

  4. A neuro-fuzzy inference system for sensor monitoring

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors

  5. Nonintercepting emittance monitor

    International Nuclear Information System (INIS)

    Miller, R.H.; Clendenin, J.E.; James, M.B.; Sheppard, J.C.

    1983-08-01

    A nonintercepting emittance monitor is a helpful device for measuring and improving particle beams in accelerators and storage rings as it allows continuous monitoring of the beam's distribution in phase space, and perhaps closed loop computer control of the distributions. Stripline position monitors are being investigated for use as nonintercepting emittance monitors for a beam focused by a FODO array in the first 100 meters of our linear accelerator. The technique described here uses the signal from the four stripline probes of a single position monitor to measure the quadrupole mode of the wall current in the beam pipe. This current is a function of the quadrupole moment of the beam, sigma 2 /sub x/ - sigma 2 /sub y/. In general, six independent measurements of the quadrupole moment are necessary to determine the beam emittance. This technique is dependent on the characteristically large variations of sigma 2 /sub x/ - sigma 2 /sub y/ in a FODO array. It will not work in a focusing system where the beam is round at each focusing element

  6. Statistical methods to monitor the West Valley off-gas system

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1990-01-01

    This paper reports on the of-gas system for the ceramic melter operated at the West Valley Demonstration Project at West Valley, NY, monitored during melter operation. A one-at-a-time method of monitoring the parameters of the off-gas system is not statistically sound. Therefore, multivariate statistical methods appropriate for the monitoring of many correlated parameters will be used. Monitoring a large number of parameters increases the probability of a false out-of-control signal. If the parameters being monitored are statistically independent, the control limits can be easily adjusted to obtain the desired probability of a false out-of-control signal. The principal component (PC) scores have desirable statistical properties when the original variables are distributed as multivariate normals. Two statistics derived from the PC scores and used to form multivariate control charts are outlined and their distributional properties reviewed

  7. System theory in industrial patient monitoring: an overview.

    Science.gov (United States)

    Baura, G D

    2004-01-01

    Patient monitoring refers to the continuous observation of repeating events of physiologic function to guide therapy or to monitor the effectiveness of interventions, and is used primarily in the intensive care unit and operating room. Commonly processed signals are the electrocardiogram, intraarterial blood pressure, arterial saturation of oxygen, and cardiac output. To this day, the majority of physiologic waveform processing in patient monitors is conducted using heuristic curve fitting. However in the early 1990s, a few enterprising engineers and physicians began using system theory to improve their core processing. Applications included improvement of signal-to-noise ratio, either due to low signal levels or motion artifact, and improvement in feature detection. The goal of this mini-symposium is to review the early work in this emerging field, which has led to technologic breakthroughs. In this overview talk, the process of system theory algorithm research and development is discussed. Research for industrial monitors involves substantial data collection, with some data used for algorithm training and the remainder used for validation. Once the algorithms are validated, they are translated into detailed specifications. Development then translates these specifications into DSP code. The DSP code is verified and validated per the Good Manufacturing Practices mandated by FDA.

  8. Traveling wave monitor

    International Nuclear Information System (INIS)

    Heus, H.; Heutenik, B.; Kroes, F.; Maaskant, A.; Sluyk, T.

    The signals of the monitors, by means of ''Prodlines,'' are first brought out of the radiation surroundings of the tunnel. These coaxial cables have a very low attenuation for 2856 Mc and they couple well thermally, thus originating the least possible phase differentials through thermal expansion. To remove the last tenths of millimeters, a calibration can then still be applied. Only after calibration does the relative measurement become absolute. The conversion electronics are located in the instrument boxes. Here the signals are first mixed to a lower frequency (10 Mc) from where it is easier to perform an amplitude-independent phase detection. To this effect, the signals are first ''limited,'' after which a phase detection can take place, independently of the amplitude (i.e., of the beam current). Subsequently, there is an amplification in the Lf amplifiers and 50 ohm driver steps. The signal can, even via long cables, be carried to an oscilloscope; it can also be sent via the video highway

  9. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    OpenAIRE

    Ning Yu; Renjian Feng; Jiangwen Wan; Yinfeng Wu; Yang Yu

    2011-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initia...

  10. Estimation of Threshold for the Signals of the BLMs around the LHC Final Focus Triplet Magnets

    CERN Document Server

    Cerutti, F; Ferrari, A; Hoa, C; Mauri, M; Mereghetti, A; Sapinski, M; Wildner, E; CERN. Geneva. ATS Department

    2012-01-01

    The Interaction Points of the Large Hadron Collider are the regions where the two circulating beams collide. Hence, the magnets the closest to any Interaction Point are exposed to an elevated radiation field due to the collision debris. In this study the signal in the Beam Loss Monitors due to the debris is estimated. In addition, for three different scenarios of beam losses, the energy density in the coils and the signal in the Beam Loss Monitors at quench are computed. It is shown that the Beam Loss Monitors, as presently installed on the vacuum vessel of the magnets, cannot disentangle the signal due to a localised loss from the constant signal due to the debris in case of steady-state losses.

  11. Mobile health-monitoring system through visible light communication.

    Science.gov (United States)

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  12. Remote monitoring of vibrational information in spider webs

    Science.gov (United States)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  13. Signal anomaly detection and characterization

    International Nuclear Information System (INIS)

    Morgenstern, V.M.; Upadhyaya, B.R.; Gloeckler, O.

    1988-08-01

    As part of a comprehensive signal validation system, we have developed a signal anomaly detector, without specifically establishing the cause of the anomaly. A signal recorded from process instrumentation is said to have an anomaly, if during steady-state operation, the deviation in the level of the signal, its root-mean-square (RMS) value, or its statistical distribution changes by a preset value. This deviation could be an unacceptable increase or a decrease in the quantity being monitored. An anomaly in a signal may be characterized by wideband or single-frequency noise, bias error, pulse-type error, nonsymmetric behavior, or a change in the signal bandwidth. Various signatures can be easily computed from data samples and compared against specified threshold values. We want to point out that in real processes, pulses can appear with different time widths, and at different rates of change of the signal. Thus, in characterizing an anomaly as a pulse-type, the fastest pulse width is constrained by the signal sampling interval. For example, if a signal is sampled at 100 Hz, we will not be able to detect pulses occurring at kHz rates. Discussion with utility and Combustion Engineering personnel indicated that it is not practical to detect pulses having a narrow time width. 9 refs., 11 figs., 8 tabs

  14. Apodization of Spurs in Radar Receivers Using Multi-Channel Processing

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). ISR Mission Engineering; Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). ISR Analysis and Applications

    2014-03-01

    Spurious energy in received radar data is a consequence of nonideal component and circuit behavior. This might be due to I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), or other sources. The manifestation of the spurious energy in a range-Doppler map or image can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images having been processed with the same data but different signal paths and modulations allows identifying undesired spurs and then cropping or apodizing them.

  15. Monitoring method of an atomic power plant

    International Nuclear Information System (INIS)

    Koba, Akitoshi; Goto, Seiichiro; Ohashi, Hideaki.

    1975-01-01

    Object: To make a monitoring vehicle, which is loaded with various detecting elements, go round along the monorail disposed so as to surround various devices to thereby early discover various abnormal conditions. Structure: The monitoring vehicle is travelled on the monorail disposed so as to surround the periphery of various devices in an atomic power plant so that detection signals from an ITV camera, temperature and radioactive rays and sound detecting elements, and the like are received through a slide contact between the wheel and transmitting and receiving line disposed in the wheel groove to transmit the signals to a central control panel. (Yoshihara, H.)

  16. Low-complexity R-peak detection for ambulatory fetal monitoring

    NARCIS (Netherlands)

    Rooijakkers, M.J.; Rabotti, C.; Oei, S.G.; Mischi, M.

    2012-01-01

    Non-invasive fetal health monitoring during pregnancy is becoming increasingly important because of the increasing number of high-risk pregnancies. Despite recent advances in signal-processing technology, which have enabled fetal monitoring during pregnancy using abdominal electrocardiogram (ECG)

  17. Monitoring the Simultaneous Presentation of Multiple Spatialized Speech Signals in the Free Field

    National Research Council Canada - National Science Library

    Nelson, W. T; Bolia, Robert S; Ericson, Mark A; McKinley, Richard L

    1998-01-01

    .... Factorial combinations of three variables, including the number of localized speech signals, the location of the speech signals along the horizontal plane, and the sex of the talker were employed...

  18. Evaluation Of Vibration-Monitoring Gear-Diagnostic System

    Science.gov (United States)

    Townsend, Dennis P.; Zakrajsek, James J.

    1995-01-01

    Report describes experimental evaluation of commercial electronic system designed to monitor vibration signal from accelerometer on gear-box to detect vibrations indicative of damage to gears. System includes signal-conditioning subsystem and personal computer in which analog-to-digital converter installed. Results show system fairly effective in detecting surface fatigue pits on spur-gear teeth.

  19. Portal monitor incorporating smart probes

    International Nuclear Information System (INIS)

    Bartos, D.; Constantin, F.; Guta, T.

    2003-01-01

    Portal monitors are intended for detection of radioactive and special nuclear materials in vehicles, pedestrians, luggage, as well as for prevention of illegal traffic of radioactive sources. Monitors provide audio and visual alarms when radioactive and/or special nuclear materials are detected. They can be recommended to officers of customs, border guard and emergency services, civil defense, fire brigades, police and military departments or nuclear research or energetic facilities. The portal monitor developed by us consists in a portal frame, which sustains five intelligent probes having long plastic scintillator (0.5 liters each). The probes communicate, by serial transmission, with a Central Unit constructed on the basis of the 80552 microcontroller. This one manages the handshake, calculates the background, establishes the measuring time, starts and stops each measurement and makes all the other decisions. Sound signals and an infrared sensor monitor the passing through the portal and the measuring procedure. For each measurement the result is displayed on a LCD device contaminated/uncontaminated; for the contaminated case a loud and long sound signal is also issued. An RS 232 serial interface is provided in order to further developments or custom made devices. As a result, the portal monitor detects 1 μ Ci 137 Cs, spread all over a human body, in a 20 μR/h gamma background for a measuring time of 1.5 or 10 seconds giving a 99% confidence factor. (authors)

  20. SIMULATION OF A NEONATAL MONITOR FOR MEDICAL TRAINING PURPOSES SIMULACIÓN DE UN MONITOR NEONATAL PARA ENTRENAMIENTO MÉDICO SIMULAÇÃO DE UM MONITOR NEONATAL PARA TREINAMENTO MÉDICO

    Directory of Open Access Journals (Sweden)

    Jenny Cifuentes

    2011-12-01

    Full Text Available The design of a neonatal monitor for medical training purposes is hereby presented. In order to do that, the following main vital signs were modeled and simulated: ECG, pulse, blood pressure, CO2 level, among others. The signals were integrated to a graphic interface that generates different scenarios showing signals of patients with or without pathologies. Simulated signals were validated against real ones and, in general, the error is less than 5%; in addition, the neonatal monitor was assessed by 16 specialists; those doctors stated that simulated signals are of "excellent quality", "truthful" and that the interface is "user friendly".Se presenta el desarrollo de un monitor neonatal orientado al entrenamiento médico. Para esto se modelaron y simularon los principales signos vitales como son: señal ECG, señal de pulso, presión arterial, nivel de CO2, entre otros. Las señales fueron integradas en una interfaz gráfica, la cual permite generar diferentes escenarios de pacientes, no solo normales sino también con patologías. Las señales simuladas fueron validadas contra señales reales y, en general, el error es inferior al 5%. El monitor neonatal fue evaluado por 16 médicos especialistas quienes manifestaron que las señales simuladas son "de excelente calidad", "fidedignas" y que la interfaz es "amigable al usuario".Apresenta-se o desenvolvimento de um monitor neonatal orientado ao treinamento médico. Para isto se modelaram e simularam os principais signos vitais: sinal ECG, sinal de premo, pressão arterial, nível de CO2, entre outros. Os sinais foram integrados em uma interface gráfica, a qual permite gerar diferentes cenários de pacientes, não só normais senão também com patologias. Os sinais simulados foram validados contra sinais reais e, em geral, o erro é inferior a 5%. O monitor neonatal foi avaliado por 16 médicos especialistas que manifestaram que os sinais simulados são "de excelente qualidade", "fidedignos" e que

  1. A machine protection beam position monitor system

    International Nuclear Information System (INIS)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-01-01

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II B Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center (>20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts. copyright 1998 American Institute of Physics

  2. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2015-09-01

    Full Text Available There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG and its second derivative (APG. However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals improved the heat stress detection to an overall accuracy of 83%.

  3. Microprocessor-based simulator of surface ECG signals

    International Nuclear Information System (INIS)

    MartInez, A E; Rossi, E; Siri, L Nicola

    2007-01-01

    In this work, a simulator of surface electrocardiogram recorded signals (ECG) is presented. The device, based on a microcontroller and commanded by a personal computer, produces an analog signal resembling actual ECGs, not only in time course and voltage levels, but also in source impedance. The simulator is a useful tool for electrocardiograph calibration and monitoring, to incorporate as well in educational tasks and in clinical environments for early detection of faulty behaviour

  4. Design of excitation signals for active system monitoring in a performance assessment setup

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik

    2011-01-01

    This paper investigates how the excitation signal should be chosen for a active performance setup. The signal is used in a setup where the main purpose is to detect whether a parameter change of the controller has changed the global performance significantly. The signal has to be able to excite...... the dynamics of the subsystem under investigation both before and after the parameter change. The controller is well know, but there exists no detailed knowledge about the dynamics of the subsystem....

  5. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  6. Fetal QRS extraction from abdominal recordings via model-based signal processing and intelligent signal merging

    International Nuclear Information System (INIS)

    Haghpanahi, Masoumeh; Borkholder, David A

    2014-01-01

    Noninvasive fetal ECG (fECG) monitoring has potential applications in diagnosing congenital heart diseases in a timely manner and assisting clinicians to make more appropriate decisions during labor. However, despite advances in signal processing and machine learning techniques, the analysis of fECG signals has still remained in its preliminary stages. In this work, we describe an algorithm to automatically locate QRS complexes in noninvasive fECG signals obtained from a set of four electrodes placed on the mother’s abdomen. The algorithm is based on an iterative decomposition of the maternal and fetal subspaces and filtering of the maternal ECG (mECG) components from the fECG recordings. Once the maternal components are removed, a novel merging technique is applied to merge the signals and detect the fetal QRS (fQRS) complexes. The algorithm was trained and tested on the fECG datasets provided by the PhysioNet/CinC challenge 2013. The final results indicate that the algorithm is able to detect fetal peaks for a variety of signals with different morphologies and strength levels encountered in clinical practice. (paper)

  7. "Internet of Things" Real-Time Free Flap Monitoring.

    Science.gov (United States)

    Kim, Sang Hun; Shin, Ho Seong; Lee, Sang Hwan

    2018-01-01

    Free flaps are a common treatment option for head and neck reconstruction in plastic reconstructive surgery, and monitoring of the free flap is the most important factor for flap survival. In this study, the authors performed real-time free flap monitoring based on an implanted Doppler system and "internet of things" (IoT)/wireless Wi-Fi, which is a convenient, accurate, and efficient approach for surgeons to monitor a free flap. Implanted Doppler signals were checked continuously until the patient was discharged by the surgeon and residents using their own cellular phone or personal computer. If the surgeon decided that a revision procedure or exploration was required, the authors checked the consumed time (positive signal-to-operating room time) from the first notification when the flap's status was questioned to the determination for revision surgery according to a chart review. To compare the efficacy of real-time monitoring, the authors paired the same number of free flaps performed by the same surgeon and monitored the flaps using conventional methods such as a physical examination. The total survival rate was greater in the real-time monitoring group (94.7% versus 89.5%). The average time for the real-time monitoring group was shorter than that for the conventional group (65 minutes versus 86 minutes). Based on this study, real-time free flap monitoring using IoT technology is a method that surgeon and reconstruction team can monitor simultaneously at any time in any situation.

  8. GTA Beamloss-Monitor System

    International Nuclear Information System (INIS)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-01-01

    The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, γ) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 μs assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper

  9. GTA beamloss-monitor system

    International Nuclear Information System (INIS)

    Rose, C.R.; Fortgang, C.M.; Power, J.P.

    1992-01-01

    The GTA Beamloss-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamloss-Monitor System measures the induced gamma radiation, from (p,γ) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals, integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamloss-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 μs assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics, is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/93 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper. (Author) 4 figs., ref

  10. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    Directory of Open Access Journals (Sweden)

    Abbas Abbas K

    2011-10-01

    Full Text Available Abstract Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI detection and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU. The promising results suggest to include this technology into advanced NICU monitors.

  11. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  12. Signal correlations in biomass combustion. An information theoretic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M.

    2013-09-01

    Increasing environmental and economic awareness are driving the development of combustion technologies to efficient biomass use and clean burning. To accomplish these goals, quantitative information about combustion variables is needed. However, for small-scale combustion units the existing monitoring methods are often expensive or complex. This study aimed to quantify correlations between flue gas temperatures and combustion variables, namely typical emission components, heat output, and efficiency. For this, data acquired from four small-scale combustion units and a large circulating fluidised bed boiler was studied. The fuel range varied from wood logs, wood chips, and wood pellets to biomass residue. Original signals and a defined set of their mathematical transformations were applied to data analysis. In order to evaluate the strength of the correlations, a multivariate distance measure based on information theory was derived. The analysis further assessed time-varying signal correlations and relative time delays. Ranking of the analysis results was based on the distance measure. The uniformity of the correlations in the different data sets was studied by comparing the 10-quantiles of the measured signal. The method was validated with two benchmark data sets. The flue gas temperatures and the combustion variables measured carried similar information. The strongest correlations were mainly linear with the transformed signal combinations and explicable by the combustion theory. Remarkably, the results showed uniformity of the correlations across the data sets with several signal transformations. This was also indicated by simulations using a linear model with constant structure to monitor carbon dioxide in flue gas. Acceptable performance was observed according to three validation criteria used to quantify modelling error in each data set. In general, the findings demonstrate that the presented signal transformations enable real-time approximation of the studied

  13. Signals of ENPEMF Used in Earthquake Prediction

    Science.gov (United States)

    Hao, G.; Dong, H.; Zeng, Z.; Wu, G.; Zabrodin, S. M.

    2012-12-01

    The signals of Earth's natural pulse electromagnetic field (ENPEMF) is a combination of the abnormal crustal magnetic field pulse affected by the earthquake, the induced field of earth's endogenous magnetic field, the induced magnetic field of the exogenous variation magnetic field, geomagnetic pulsation disturbance and other energy coupling process between sun and earth. As an instantaneous disturbance of the variation field of natural geomagnetism, ENPEMF can be used to predict earthquakes. This theory was introduced by A.A Vorobyov, who expressed a hypothesis that pulses can arise not only in the atmosphere but within the Earth's crust due to processes of tectonic-to-electric energy conversion (Vorobyov, 1970; Vorobyov, 1979). The global field time scale of ENPEMF signals has specific stability. Although the wave curves may not overlap completely at different regions, the smoothed diurnal ENPEMF patterns always exhibit the same trend per month. The feature is a good reference for observing the abnormalities of the Earth's natural magnetic field in a specific region. The frequencies of the ENPEMF signals generally locate in kilo Hz range, where frequencies within 5-25 kilo Hz range can be applied to monitor earthquakes. In Wuhan, the best observation frequency is 14.5 kilo Hz. Two special devices are placed in accordance with the S-N and W-E direction. Dramatic variation from the comparison between the pulses waveform obtained from the instruments and the normal reference envelope diagram should indicate high possibility of earthquake. The proposed detection method of earthquake based on ENPEMF can improve the geodynamic monitoring effect and can enrich earthquake prediction methods. We suggest the prospective further researches are about on the exact sources composition of ENPEMF signals, the distinction between noise and useful signals, and the effect of the Earth's gravity tide and solid tidal wave. This method may also provide a promising application in

  14. Method and device for monitoring distortion in an optical network

    NARCIS (Netherlands)

    2012-01-01

    A method and a device for monitoring of distortion in an optical network are provided, wherein at least one reference signal and at least one data signal are conveyed via an optical link and wherein a distortion of the at least one data signal is determined based on the at least one reference

  15. Data monitoring system of technical diagnosis system for EAST

    International Nuclear Information System (INIS)

    Qian Jing; Weng Peide; Chen Zhuomin; Wu Yu; Xi Weibin; Luo Jiarong

    2010-01-01

    Technical diagnosis system (TDS) is an important subsystem to monitor status parameters of EAST (experimental advanced superconducting tokamak). The upgraded TDS data monitoring system is comprised of management floor, monitoring floor and field floor.. Security protection, malfunction record and analysis are designed to make the system stable, robust and friendly. During the past EAST campaigns, the data monitoring system has been operated reliably and stably. The signal conditioning system and software architecture are described. (authors)

  16. A study on the method for cancelling the background noise of the impact signal

    International Nuclear Information System (INIS)

    Kim, J. S.; Ham, C. S.; Park, J. H.

    1998-01-01

    In this paper, we compared the noise canceller (time domain analysis method) to the spectral subtraction (frequency domain analysis method) for cancelling background noise when the Loose Part Monitoring System's accelerometers combined the noise signal with the impact signal if the impact signal exists. In the operation of a nuclear power plant monitoring, alarm triggering occurs due to a peak signal in the background noise, an amplitude increase by component operation such as control rod movement or abrupt pump operation. This operation causes the background noise in LPMS. Thus this noise inputs to LPMS together with the impact signal. In case that this noise amplitude is very large comparing to that of the impact signal, we may not analyze the impact position and mass estimation. We analyzed two methods for cancelling background noise. First, we evaluate the signal to noise ratio utilizing the noise canceller. Second, we evaluate the signal to noise ratio utilizing the spectral subtraction. The evaluation resulted superior the noise canceller to the spectral subtraction on the signal to noise ratio

  17. Method and device for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Jagoutz, E.; Palme, C.

    1978-01-01

    In the x-ray fluorescence analyzer the useful signal can be completely separated from the spurious signals, and especially the pulse can be determined. For this purpose the output of the radiation detector is connected with a multichannel pulse height discriminator. The measured signal determined in the pulse heigth discriminator may be indicated by a visual display or processed by a computer (coincidence circuits). (DG) [de

  18. Time-Frequency Analysis of Signals Generated by Rotating Machines

    Directory of Open Access Journals (Sweden)

    R. Zetik

    1999-06-01

    Full Text Available This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO are defined. Then L-Wigner distribution (LWD is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machine condition monitoring.

  19. Hemodynamic monitoring in the critically ill.

    Science.gov (United States)

    Voga, G

    1995-06-01

    Monitoring of vital functions is one of the most important and essential tools in the management of critically ill patients in the ICU. Today it is possible to detect and analyze a great variety of physiological signals by various noninvasive and invasive techniques. An intensivist should be able to select and perform the most appropriate monitoring method for the individual patient considering risk-benefit ratio of the particular monitoring technique and the need for immediate therapy, specific diagnosis, continuous monitoring and evaluation of morphology should be included. Despite rapid development of noninvasive monitoring techniques, invasive hemodynamic monitoring in still one of the most basic ICU procedures. It enables monitoring of pressures, flow and saturation, pressures in the systemic and pulmonary circulation, estimation of cardiac performance and judgment of the adequacy of the cardiocirculatory system. Carefully and correctly obtained information are basis for proper hemodynamic assessment which usually effects the therapeutic decisions.

  20. WAVELETS AND PRINCIPAL COMPONENT ANALYSIS METHOD FOR VIBRATION MONITORING OF ROTATING MACHINERY

    OpenAIRE

    Bendjama, Hocine; S. Boucherit, Mohamad

    2017-01-01

    Fault diagnosis is playing today a crucial role in industrial systems. To improve reliability, safety and efficiency advanced monitoring methods have become increasingly important for many systems. The vibration analysis method is essential in improving condition monitoring and fault diagnosis of rotating machinery. Effective utilization of vibration signals depends upon effectiveness of applied signal processing techniques. In this paper, fault diagnosis is performed using a com...

  1. NRC Information No. 88-58: Potential problems with ASEA Brown Boveri ITE-51L time-overcurrent relays

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    Several spurious actuations of ASEA Brown Boveri (ABB) ITE-51L relays have occurred at the Beaver Valley nuclear power plant. These actuations resulted in unnecessary interruptions of the electrical power supply to safety-related equipment. The ITE-51L relays monitor circuit current. When the magnitude of the current exceeds a reference value for a specific duration, the relay actuates to energize the circuit breaker's trip coil. The licensee has determined that the spurious relay actuations were caused by faulty silicon-controlled rectifiers (SCRs) that were manufactured by the Motorola Company. SCRs are solid-state devices that are used as electronic switches in electrical circuits. When a voltage is applied across the terminals of the SCR, the device is designed to allow current to flow only when ''gated'' or switched on by the proper electrical signal. The SCRs that failed at Beaver Valley allowed current to flow in the absence of the proper gating signal. These ''leakage'' currents were of sufficient magnitude to energize the trip coil of the associated circuit breaker. The licensee was informed by Motorola that SCRs manufactured between the late 1970s and early 1980s are susceptible to this mode of failure and that these SCRs are likely to fail within the first 2 years of service. Since 1982, all SCRs manufactured by Motorola have been subjected to a ''burn-in'' test. In this test, the SCRs are placed in a high-temperature environment both with and without voltage applied. SCRs that pass this test are expected to perform normally for an extended period

  2. Miniaturized Human Insertable Cardiac Monitoring System with Wireless Power Transmission Technique

    Directory of Open Access Journals (Sweden)

    Jong-Ha Lee

    2016-01-01

    Full Text Available Prolonged monitoring is more likely to diagnose atrial fibrillation accurately than intermittent or short-term monitoring. In this study, an implantable electrocardiograph (ECG sensor to monitor atrial fibrillation patients in real time was developed. The implantable sensor is composed of a micro controller unit, an analog-to-digital converter, a signal transmitter, an antenna, and two electrodes. The sensor detects ECG signals from the two electrodes and transmits these to an external receiver carried by the patient. Because the sensor continuously transmits signals, its battery consumption rate is extremely high; therefore, the sensor includes a wireless power transmission module that allows it to charge wirelessly from an external power source. The integrated sensor has the approximate dimensions 3 mm × 4 mm × 14 mm, which is small enough to be inserted into a patient without the need for major surgery. The signal and power transmission data sampling rate and frequency of the unit are 300 samples/s and 430 Hz, respectively. To validate the developed sensor, experiments were conducted on small animals.

  3. Real time neutron flux monitoring using Rh self powered neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed {beta} decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter.

  4. Real time neutron flux monitoring using Rh self powered neutron detector

    International Nuclear Information System (INIS)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung

    2012-01-01

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed β decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter

  5. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.

  6. Traffic data for local emissions monitoring at a signalized intersection

    NARCIS (Netherlands)

    Bigazzi, A.; Lint, J.W.C. van; Klunder, G.; Stelwagen, U.; Ligterink, N.E.

    2010-01-01

    In order to assist planning efforts for air pollution-responsive dynamic traffic management (DTM) systems, this research assesses the accuracy of local emissions monitoring based on traffic data and models. The study quantifies the benefits of increased data resolution for short-term emissions

  7. Monitoring presence of chemical agents

    International Nuclear Information System (INIS)

    Preston, J.M.

    1984-01-01

    The specification describes a case for use with a hand-portable chemical agent detector for continuously monitoring an atmosphere for the presence of predetermined chemical agents. The detector having means for ionizing air samples and providing at an output terminal electrical signals representative of the mobility spectrum of ionized chemical vapours produced by the ionizing means. The case comprises means for defining a chamber in the case for supporting and removably enclosing the detector, means for communicating ambient atmosphere to the chamber, electrical circuit means in the case, the circuit means being adapted to be detachably connected to the detector output terminal when the detector is positioned in the chamber and being responsive to the electrical signals for producing an alarm signal when the signals detect a chemical agent concentration in the atmosphere exceeding a predetermined concentration level, and alarm means responsive to the alarm signal. (author)

  8. Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae

    Science.gov (United States)

    Knafo, Steven; Prendergast, Andrew; Thouvenin, Olivier; Figueiredo, Sophie Nunes; Wyart, Claire

    2017-01-01

    The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic escapes and 4) verification of the absence of muscle expression using immunohistochemistry. PMID:29130058

  9. Real-time power plant monitoring and verification and validation issues

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1993-03-01

    By means of the advances in the computer technology, the implementation of a real-time power plant monitoring and dynamic signal analysis system is described. As hardware and software, the system has several essential components to perform the task. Among these, mention may be made of a remote-controlled data acquisition system, a fast data processing system and a dynamic signal analysis system. For a complex system like an NPP, the system verification and validation is an important issue as the plant operation involves many engineering disciplines and also the 'soft sciences'. Additionally, the real-time requirements impose substantial time limitation for the implementation of tasks. The system V and V is accomplished partly by means of V and V of the system components which are monitored by the help of sensory signals. Therefore, an essential part of the V and V task involves the real-time analyses of the data provided by these signals. In this respect the NPP real-time monitoring system described possesses the required design features to carry out this task which provides enhanced reliability and availability in plant operation. (orig./HP)

  10. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing; Analyse der Schallemissionssignale aus Ermuedungsrisswachstum und Korrosionsprozessen. Untersuchung der Moeglichkeiten fuer die kontinuierliche Zustandsueberwachung von Transportbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Janne

    2016-05-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  11. Monitoring product safety in the postmarketing environment.

    Science.gov (United States)

    Sharrar, Robert G; Dieck, Gretchen S

    2013-10-01

    The safety profile of a medicinal product may change in the postmarketing environment. Safety issues not identified in clinical development may be seen and need to be evaluated. Methods of evaluating spontaneous adverse experience reports and identifying new safety risks include a review of individual reports, a review of a frequency distribution of a list of the adverse experiences, the development and analysis of a case series, and various ways of examining the database for signals of disproportionality, which may suggest a possible association. Regulatory agencies monitor product safety through a variety of mechanisms including signal detection of the adverse experience safety reports in databases and by requiring and monitoring risk management plans, periodic safety update reports and postauthorization safety studies. The United States Food and Drug Administration is working with public, academic and private entities to develop methods for using large electronic databases to actively monitor product safety. Important identified risks will have to be evaluated through observational studies and registries.

  12. Tool Wear Monitoring Using Time Series Analysis

    Science.gov (United States)

    Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu

    A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.

  13. Assessments of Voice Use and Voice Quality among College/University Singing Students Ages 18–24 through Ambulatory Monitoring with a Full Accelerometer Signal

    Science.gov (United States)

    Schloneger, Matthew; Hunter, Eric

    2016-01-01

    The multiple social and performance demands placed on college/university singers could put their still developing voices at risk. Previous ambulatory monitoring studies have analyzed the duration, intensity, and frequency (in Hz) of voice use among such students. Nevertheless, no studies to date have incorporated the simultaneous acoustic voice quality measures into the acquisition of these measures to allow for direct comparison during the same voicing period. Such data could provide greater insight into how young singers use their voices, as well as identify potential correlations between vocal dose and acoustic changes in voice quality. The purpose of this study was to assess the voice use and estimated voice quality of college/university singing students (18–24 y/o, N = 19). Ambulatory monitoring was conducted over three full, consecutive weekdays measuring voice from an unprocessed accelerometer signal measured at the neck. From this signal were analyzed traditional vocal dose metrics such as phonation percentage, dose time, cycle dose, and distance dose. Additional acoustic measures included perceived pitch, pitch strength, LTAS slope, alpha ratio, dB SPL 1–3 kHz, and harmonic-to-noise ratio. Major findings from more than 800 hours of recording indicated that among these students (a) higher vocal doses correlated significantly with greater voice intensity, more vocal clarity and less perturbation; and (b) there were significant differences in some acoustic voice quality metrics between non-singing, solo singing and choral singing. PMID:26897545

  14. Monitoring device for the power distribution within a nuclear reactor core

    International Nuclear Information System (INIS)

    Tanzawa, Tomio; Kumanomido, Hironori; Toyoshi, Isamu.

    1986-01-01

    Purpose: To provide a monitoring device for the power distribution in the reactor core that calculates the power distribution based on the measurement by instruments disposed within the reactor core of BWR type reactors. Constitution: The power distribution monitoring device in a reactor core comprises a signal correcting device, a signal normalizing device and a power distribution calculating device, in which the power distribution calculating device is constituted with an average power calculating device for four fuel assemblies and an average power calculating device for fuel assemblies. Gamma-ray signals corrected by the signal correcting device and signals from neutron detectors are inputted to the signal normalizing device, both of which are calibrated to determine the axial gamma-ray signal distribution in the central water gap region with the four fuel assemblies being as the unit. The average power from the four fuel assemblies are inputted to the fuel assembly average power calculating device to allocate to each of the fuel assembly average power thereby attaining the purpose. Further, thermal restriction values are calculated thereby enabling to secure the fuel integrity. (Kamimura, M.)

  15. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  16. Monitoring circuit for reactor safety systems

    Science.gov (United States)

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  17. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.

    Science.gov (United States)

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-04-13

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode-skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.

  18. Outsourced Probe Data Effectiveness on Signalized Arterials

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sharifi, Elham [University of Maryland; Eshragh, Sepideh [University of Maryland; Hamedi, Masoud [University of Maryland; Juster, Reuben M. [University of Maryland; Kaushik, Kartik [University of Maryland

    2017-07-31

    This paper presents results of an I-95 Corridor Coalition sponsored project to assess the ability of outsourced vehicle probe data to provide accurate travel time on signalized roadways for the purposes of real-time operations as well as performance measures. The quality of outsourced probe data on freeways has led many departments of transportation to consider such data for arterial performance monitoring. From April 2013 through June of 2014, the University of Maryland Center for Advanced Transportation Technology gathered travel times from several arterial corridors within the mid-Atlantic region using Bluetooth traffic monitoring (BTM) equipment, and compared these travel times with the data reported to the I95 Vehicle Probe Project (VPP) from an outsourced probe data vendor. The analysis consisted of several methodologies: (1) a traditional analysis that used precision and bias speed metrics; (2) a slowdown analysis that quantified the percentage of significant traffic disruptions accurately captured in the VPP data; (3) a sampled distribution method that uses overlay methods to enhance and analyze recurring congestion patterns. (4) Last, the BTM and VPP data from each 24-hour period of data collection were reviewed by the research team to assess the extent to which VPP captured the nature of the traffic flow. Based on the analysis, probe data is recommended only on arterial roadways with signal densities (measured in signals per mile) up to one, and it should be tested and used with caution for signal densities between one and two, and is not recommended when signal density exceeds two.

  19. Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Zunino, Luciano, E-mail: lucianoz@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CONICET La Plata – CIC), C.C. 3, 1897 Gonnet (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata (Argentina); Olivares, Felipe, E-mail: olivaresfe@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso (Chile); Scholkmann, Felix, E-mail: Felix.Scholkmann@gmail.com [Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038 Zurich (Switzerland); Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich (Switzerland); Rosso, Osvaldo A., E-mail: oarosso@gmail.com [Instituto de Física, Universidade Federal de Alagoas (UFAL), BR 104 Norte km 97, 57072-970, Maceió, Alagoas (Brazil); Instituto Tecnológico de Buenos Aires (ITBA) and CONICET, C1106ACD, Av. Eduardo Madero 399, Ciudad Autónoma de Buenos Aires (Argentina); Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Av. Mons. Álvaro del Portillo 12.455, Las Condes, Santiago (Chile)

    2017-06-15

    A symbolic encoding scheme, based on the ordinal relation between the amplitude of neighboring values of a given data sequence, should be implemented before estimating the permutation entropy. Consequently, equalities in the analyzed signal, i.e. repeated equal values, deserve special attention and treatment. In this work, we carefully study the effect that the presence of equalities has on permutation entropy estimated values when these ties are symbolized, as it is commonly done, according to their order of appearance. On the one hand, the analysis of computer-generated time series is initially developed to understand the incidence of repeated values on permutation entropy estimations in controlled scenarios. The presence of temporal correlations is erroneously concluded when true pseudorandom time series with low amplitude resolutions are considered. On the other hand, the analysis of real-world data is included to illustrate how the presence of a significant number of equal values can give rise to false conclusions regarding the underlying temporal structures in practical contexts. - Highlights: • Impact of repeated values in a signal when estimating permutation entropy is studied. • Numerical and experimental tests are included for characterizing this limitation. • Non-negligible temporal correlations can be spuriously concluded by repeated values. • Data digitized with low amplitude resolutions could be especially affected. • Analysis with shuffled realizations can help to overcome this limitation.

  20. Performance Monitoring in Children Following Traumatic Brain Injury Compared to Typically Developing Children

    Directory of Open Access Journals (Sweden)

    Amy A. Wilkinson PhD

    2017-10-01

    Full Text Available Children with traumatic brain injury are reported to have deficits in performance monitoring, but the mechanisms underlying these deficits are not well understood. Four performance monitoring hypotheses were explored by comparing how 28 children with traumatic brain injury and 28 typically developing controls (matched by age and sex performed on the stop-signal task. Control children slowed significantly more following incorrect than correct stop-signal trials, fitting the error monitoring hypothesis. In contrast, the traumatic brain injury group showed no performance monitoring difference with trial types, but significant group differences did not emerge, suggesting that children with traumatic brain injury may not perform the same way as controls.

  1. Development of a system for monitoring and diagnosis of steam generator tubes using artificial intelligence techniques on Eddy Current Test signals

    International Nuclear Information System (INIS)

    Mesquita, Roberto Navarro de; Ting, Daniel Kao Sun; Lopez, Luis A. Negro M.; Upadhyaya, Belle R.

    2002-01-01

    New classification and feature extraction methods for steam generator tube defects are being developed by IPEN/CNEN-SP in cooperation with UTK to improve a monitoring and diagnosis system for classification and characterization of steam generator tube defects using Eddy Current Testing (ECT) signals. The first methodology being developed uses a set of feature extraction methods applied to different tube defect type ECT signals and each obtained feature vector is projected into a bi-dimensional map obtained by a Self-Organizing Map neural network. This methodology allows an optimal feature extraction method selection for the defect type classification. Other approach is being developed using tubes with different manufactured defect types which are tested using MIZ-17ET equipment with 4 sets of probes (two different diameter). A fuzzy inference system will be used to build a knowledge base for these defects. These methodology and algorithms will be integrated into an automated diagnosis system being developed with UTK, which is designed to read both on-line acquired data, as well as stored data files. These commercial software tools are the ones usually utilized in nuclear power plants. (author)

  2. Development of a system for monitoring and diagnosis of steam generator tubes using artificial intelligence techniques on Eddy Current Test signals

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto Navarro de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Monitoracao e Diagnostico]|[Sao Paulo Univ., SP (Brazil); Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Monitoracao e Diagnostico; Cabral, Eduardo Lobo C. [Sao Paulo Univ., SP (Brazil); Lopez, Luis A. Negro M. [Faculdade de Engenharia Industrial, Sao Bernardo do Campo, SP (Brazil); Upadhyaya, Belle R. [Tennessee Univ., Knoxville, TN (United States)

    2002-07-01

    New classification and feature extraction methods for steam generator tube defects are being developed by IPEN/CNEN-SP in cooperation with UTK to improve a monitoring and diagnosis system for classification and characterization of steam generator tube defects using Eddy Current Testing (ECT) signals. The first methodology being developed uses a set of feature extraction methods applied to different tube defect type ECT signals and each obtained feature vector is projected into a bi-dimensional map obtained by a Self-Organizing Map neural network. This methodology allows an optimal feature extraction method selection for the defect type classification. Other approach is being developed using tubes with different manufactured defect types which are tested using MIZ-17ET equipment with 4 sets of probes (two different diameter). A fuzzy inference system will be used to build a knowledge base for these defects. These methodology and algorithms will be integrated into an automated diagnosis system being developed with UTK, which is designed to read both on-line acquired data, as well as stored data files. These commercial software tools are the ones usually utilized in nuclear power plants. (author)

  3. Printed soft-electronics for remote body monitoring

    Science.gov (United States)

    Mantysalo, Matti; Vuorinen, Tiina; Jeihani, Vala; Vehkaoja, Antti

    2017-08-01

    Wearable electronics has emerged into the consumer markets over the past few years. Wrist worn and textile integrated devices are the most common apparatuses for unobtrusive monitoring in sports and wellness sectors. Disposable patches and bandages, however, represent the new era of wearable electronics. Soft and stretchable electronics is the enabling technology of this paradigm shift. It can conform to temporary transfer tattoo and deform with the skin without detachment or fracture. In this paper, we focus on screen-printed soft-electronics for remote body monitoring. We will present a fabrication process of a skin conformable electrode bandage designed for long-term outpatient electrocardiography (ECG) monitoring. The soft bandage is designed to be attached to the patient chest and miniaturized data collection device is connected to the bandage via Micro-USB connector. The fabricated bandage is tested in short exercise as well as continued long-term (72 hours) monitoring during normal daily activities. The attained quality of the measured ECG signals is fully satisfactory for rhythm-based cardiac analysis also during moderate-intensity exercise. After pre-processing, the signals could be used also for more profound morphological analysis of ECG wave shapes.

  4. Synthesis and design of waveguide band-stop filters without out-of-band spurious responses for plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Montejo-Garai, Jose R., E-mail: jr@etc.upm.es [Departamento de Electromagnetismo y Teoria de Circuitos, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, Madrid 20840 (Spain); Leal-Sevillano, Carlos A. [Departamento de Electromagnetismo y Teoria de Circuitos, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, Madrid 20840 (Spain); Ruiz-Cruz, Jorge A. [Escuela Politecnica Superior, Universidad Autonoma de Madrid, C/Fco. Tomas y Valiente 11, Madrid 28409 (Spain); Rebollar, Jesus M. [Departamento de Electromagnetismo y Teoria de Circuitos, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, Madrid 20840 (Spain); Estrada, Teresa [T. Laboratorio Nacional de Fusion, Asociacion Euratom-CIEMAT, Madrid 28040 (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A rigorous systematic design process based on circuit synthesis is proposed for band-stop filters. Black-Right-Pointing-Pointer The new compact E-plane waveguide structure reduces drastically the unwanted resonances in a very large pass band. Black-Right-Pointing-Pointer The manufacturing process together with the computation effort is significantly reduced. Black-Right-Pointing-Pointer Experimental results validate the state-of-art electrical responses. - Abstract: Band-stop or notch filters play a crucial role in plasma diagnosis systems to protect receivers from the stray radiation. In this work, a rigorous design process based on circuit synthesis in addition to an extremely compact E-plane waveguide structure is proposed for this kind of filters. On the one hand, the transfer function verifying the rejection specification is analytically obtained, fixing the minimum number of required cavities. On the other hand, a coupling structure that reduces drastically the unwanted resonances in filters with a very large pass band requirement, is presented. This coupling between the rejection cavities and the main rectangular waveguide has additional advantages; (a) unlike typical inductive irises, large coupling coefficients can be implemented (b) a pure E-plane configuration is achieved, which simplifies the manufacturing and also reduces significantly the computational effort. Experimental validation is demonstrated by two pseudo-elliptic fifth-order band-stop filters fabricated and measured in Ka and V bands. In both cases, the filters are free of spurious resonances in their total operation bands.

  5. Synthesis and design of waveguide band-stop filters without out-of-band spurious responses for plasma diagnosis

    International Nuclear Information System (INIS)

    Montejo-Garai, José R.; Leal-Sevillano, Carlos A.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.; Estrada, Teresa

    2012-01-01

    Highlights: ► A rigorous systematic design process based on circuit synthesis is proposed for band-stop filters. ► The new compact E-plane waveguide structure reduces drastically the unwanted resonances in a very large pass band. ► The manufacturing process together with the computation effort is significantly reduced. ► Experimental results validate the state-of-art electrical responses. - Abstract: Band-stop or notch filters play a crucial role in plasma diagnosis systems to protect receivers from the stray radiation. In this work, a rigorous design process based on circuit synthesis in addition to an extremely compact E-plane waveguide structure is proposed for this kind of filters. On the one hand, the transfer function verifying the rejection specification is analytically obtained, fixing the minimum number of required cavities. On the other hand, a coupling structure that reduces drastically the unwanted resonances in filters with a very large pass band requirement, is presented. This coupling between the rejection cavities and the main rectangular waveguide has additional advantages; (a) unlike typical inductive irises, large coupling coefficients can be implemented (b) a pure E-plane configuration is achieved, which simplifies the manufacturing and also reduces significantly the computational effort. Experimental validation is demonstrated by two pseudo-elliptic fifth-order band-stop filters fabricated and measured in Ka and V bands. In both cases, the filters are free of spurious resonances in their total operation bands.

  6. A guidebook for the operation and maintenance of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung; Kim, Hyung Kyoo

    2003-09-01

    Systems and structures related to HANARO safety are classified as seismic category I. Since 1995, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system into a new digital Seismic Monitoring Analysis System(SMAS) that can offer precise and detail information of the earthquake signals. This newly developed SMAS is operating at the HANARO instrument room to acquire and analyze the signal of an earthquake. This document is a guidebook for the operation and maintenance of the SMAS. The first chapter gives an outline of the SMAS. The second chapter describes functional capability and specification of the hardware. Chapters 3 and 4 describe starting procedure of the SMAS and how to operate the seismic monitoring program, respectively. Chapter 5 illustrates the seismic analysis algorithm used in the SMAS. The way of operating the seismic analysis program is described in chapter 6. Chapter 7 illustrates the calibration procedure for data acquisition module. Chapter 8 describes the symptoms of common malfunctions and its countermeasure suited to the occasions.

  7. Charge balancing fill rate monitor

    International Nuclear Information System (INIS)

    Rothman, J.L.; Blum, E.B.

    1995-01-01

    A fill rate monitor has been developed for the NSLS storage rings to allow machine tuning over a very large dynamic range of beam current. Synchrotron light, focused on a photodiode, produces a signal proportional to the beam current. A charge balancing circuit processes the diode current, creating an output signal proportional to the current injected into the ring. The unit operates linearly over a dynamic range of 120 dB and can resolve pulses of injected beam as small as 1 μA

  8. On-line plant-wide monitoring using neural networks

    International Nuclear Information System (INIS)

    Turkcan, E.; Ciftcioglu, O.; Eryurek, E.; Upadhyaya, B.R.

    1992-06-01

    The on-line signal analysis system designed for a multi-level mode operation using neural networks is described. The system is capable of monitoring the plant states by tracking different number of signals up to 32 simultaneously. The data used for this study were acquired from the Borssele Nuclear Power Plant (PWR type), and using the on-line monitoring system. An on-line plant-wide monitoring study using a multilayer neural network model is discussed in this paper. The back-propagation neural network algorithm is used for training the network. The technique assumes that each physical state of the power plant can be represented by a unique pattern of instrument readings which can be related to the condition of the plant. When disturbance occurs, the sensor readings undergo a transient, and form a different set of patterns which represent the new operational status. Diagnosing these patterns can be helpful in identifying this new state of the power plant. To this end, plant-wide monitoring with neutral networks is one of the new techniques in real-time applications. (author). 9 refs.; 5 figs

  9. Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Wook; Jeong, Jae Jun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)

    2017-08-15

    A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification.

  10. Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Ha, Tae Wook; Jeong, Jae Jun; Choi, Ki Yong

    2017-01-01

    A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification

  11. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  12. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  13. Assessment of a flow cytometry technique for studying signaling pathways in platelets: Monitoring of VASP phosphorylation in clinical samples

    Directory of Open Access Journals (Sweden)

    N. Mallouk

    2018-07-01

    Full Text Available A recently released kit (PerFix EXPOSE was reported to improve the measurement of the degree of phosphorylation of proteins in leukocytes by flow cytometry. We tested its adaptation for platelets to monitor vasodilator-stimulated phosphoprotein (VASP phosphorylation, which is the basis of a currently used test for the assessment of the pharmacological response to P2Y12 antagonists (PLT VASP/P2Y12. The PerFix EXPOSE kit was compared to the PLT VASP/P2Y12 kit by using blood samples drawn at 24 h post clopidogrel dose from 19 patients hospitalized for a non-cardio-embolic ischemic stroke and treated with clopidogrel monotherapy for at least five days in an observational study. The platelet PerFix method was based on adaptation of the volume of the sample, the centrifugation speed and the incubation temperature. Poor agreement between prevention by adenosine diphosphate (ADP of PGE1-induced cAMP-mediated VASP phosphorylation and ADP induced aggregation assessed by Light Transmittance Aggregometry was found. We found a significant correlation between the PLT VASP/P2Y12 kit and the PerFix EXPOSE kit. The PerFix EXPOSE kit may also be helpful to monitor adverse effects of second-generation tyrosine kinase inhibitors on platelets. Keywords: Platelet signaling, VASP, Flow cytometry, Clopidogrel

  14. Asymmetric dual-loop feedback to suppress spurious tones and reduce timing jitter in self-mode-locked quantum-dash lasers emitting at 155 μm

    Science.gov (United States)

    Asghar, Haroon; McInerney, John G.

    2017-09-01

    We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.

  15. A fifth harmonic rf bunch monitor for the ANL-APS electron linac

    International Nuclear Information System (INIS)

    Nassiri, A.; Grelick, A.

    1993-01-01

    The function of a fifth harmonic (14.28 GHz) bunch monitor is to provide a signal which is proportional to the electron beam bunch size. The monitoring of the rf power signal at 14.28 GHz enables the operator to optimize the rf bunching of the beam at the end of the first accelerating section where the full bunching has been formed and remains mainly constant in size throughout the rest of the electron linac. A modified version of the SLAC original bunch monitor has been fabricated and its rf properties measured. This paper describes the design and the initial measurement results

  16. A fifth harmonic RF bunch monitor for the ANL-APS electron linac

    International Nuclear Information System (INIS)

    Nassiri, A.; Grelick, A.

    1993-01-01

    The function of a fifth harmonic (14.28 GHz) bunch monitor is to provide a signal which is proportional to the electron beam bunch size. The monitoring of the rf power signal at 14.28 GHz enables the operator to optimize the rf bunching of the beam at the end of the first accelerating section where the full bunching has been formed and remains mainly constant in size throughout the rest of the electron linac. A modified version of the SLAC original bunch monitor has been fabricated and its rf properties measured. This paper describes the design and the initial measurements results

  17. Subsurface event detection and classification using Wireless Signal Networks.

    Science.gov (United States)

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  18. Wireless remote monitoring system for sleep apnea

    Science.gov (United States)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  19. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques

    Science.gov (United States)

    Delvecchio, S.; Bonfiglio, P.; Pompoli, F.

    2018-01-01

    This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be

  20. Compression of surface myoelectric signals using MP3 encoding.

    Science.gov (United States)

    Chan, Adrian D C

    2011-01-01

    The potential of MP3 compression of surface myoelectric signals is explored in this paper. MP3 compression is a perceptual-based encoder scheme, used traditionally to compress audio signals. The ubiquity of MP3 compression (e.g., portable consumer electronics and internet applications) makes it an attractive option for remote monitoring and telemedicine applications. The effects of muscle site and contraction type are examined at different MP3 encoding bitrates. Results demonstrate that MP3 compression is sensitive to the myoelectric signal bandwidth, with larger signal distortion associated with myoelectric signals that have higher bandwidths. Compared to other myoelectric signal compression techniques reported previously (embedded zero-tree wavelet compression and adaptive differential pulse code modulation), MP3 compression demonstrates superior performance (i.e., lower percent residual differences for the same compression ratios).

  1. Fermilab accelerator control system: Analog monitoring facilities

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system

  2. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  3. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring

    Science.gov (United States)

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-01

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.

  4. Acoustic monitoring systems tests at Indian Point Unit 1. Final report

    International Nuclear Information System (INIS)

    Smith, J.R.; Rao, G.V.; Craig, J.

    1979-12-01

    This report describes the results of a program to test acoustic monitoring systems on Indian Point Unit No. 1 under actual plant operating conditions, less the reactor core. The two types of systems evaluated were the monitoring of acoustic emissions generated by growing flaws and the monitoring of acoustic signals from leaks

  5. Mutual interference of alpha and beta signals in counting

    International Nuclear Information System (INIS)

    Zhang Fengxiang; Ren Wei; Tang Shaohua; Han Suping; Du Xiangyang.

    1993-01-01

    When multi-wire proportional counters are used for monitoring of mixed contamination of α and β radioactivity, both of the signals should be distinguished as far as possible from requirement of radiation protection. The rules provided by the recommendation standard of International Electrotechnical Committee (IEC) and the national standard of China indicate: For fixed personal surface contamination monitoring assembly, the response of the α-counting channel to β events should be smaller than 1% of response of the α-counting channel to α events, and the response of β-counting channel to β events should be smaller than that of the response of α-counting channel to the same events. To distinguish one kind of signal from another, amplitude discrimination method is used usually. (3 figs)

  6. A novel WDM monitoring method

    NARCIS (Netherlands)

    Bergh, van de M.P.H.; Tol, van der J.J.G.M.; Dorren, H.J.S.

    1999-01-01

    A novel method to monitor the performance of WDM channels in an optical network is presented by analyzing the photo-diode current of a detected optical signal. From the photo-diode current, an amplitude histogram is generated, hereafter to be called the probability density function (PDF). By

  7. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    When a tumor reaches a certain size it can no longer rely on passive perfusion for nutrition. The tumor therefore emits signaling molecules which stimulating surrounding vessels to divide and grow towards the tumor, a process known as angiogenesis. Very little angiogenesis is present in healthy...... adults where it is primaily found in wound healing, pregnancy and during the menstrual cycle. This thesis focus on the negative consequences of angiogenesis in cancer. It consists of a an initial overview followed by four manuscripts. The overview gives a short introduction to the process of angiogenesis...... and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...

  8. Data fusion for improved camera-based detection of respiration in neonates

    Science.gov (United States)

    Jorge, João.; Villarroel, Mauricio; Chaichulee, Sitthichok; McCormick, Kenny; Tarassenko, Lionel

    2018-02-01

    Monitoring respiration during neonatal sleep is notoriously difficult due to the nonstationary nature of the signals and the presence of spurious noise. Current approaches rely on the use of adhesive sensors, which can damage the fragile skin of premature infants. Recently, non-contact methods using low-cost RGB cameras have been proposed to acquire this vital sign from (a) motion or (b) photoplethysmographic signals extracted from the video recordings. Recent developments in deep learning have yielded robust methods for subject detection in video data. In the analysis described here, we present a novel technique for combining respiratory information from high-level visual descriptors provided by a multi-task convolutional neural network. Using blind source separation, we find the combination of signals which best suppresses pulse and motion distortions and subsequently use this to extract a respiratory signal. Evaluation results were obtained from recordings on 5 neonatal patients nursed in the Neonatal Intensive Care Unit (NICU) at the John Radcliffe Hospital, Oxford, UK. We compared respiratory rates derived from this fused breathing signal against those measured using the gold standard provided by the attending clinical staff. We show that respiratory rate (RR) be accurately estimated over the entire range of respiratory frequencies.

  9. Hα Intensity Oscillations in Large Flares Ram Ajor Maurya & Ashok ...

    Indian Academy of Sciences (India)

    ) have recently used this method for spectral analysis of VLBI observational data, and investigated the problem of appearance of spurious signal in the data with unequally spaced sampling. 4. Results and conclusion. The Hα filtergrams for ...

  10. Monitoring circuit for reactor safety systems

    International Nuclear Information System (INIS)

    Keefe, D.J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned. 3 claims, 2 figures

  11. Processing of seismic signals from a seismometer network

    International Nuclear Information System (INIS)

    Key, F.A.; Warburton, P.J.

    1983-08-01

    A description is given of the Seismometer Network Analysis Computer (SNAC) which processes short period data from a network of seismometers (UKNET). The nine stations of the network are distributed throughout the UK and their outputs are transmitted to a control laboratory (Blacknest) where SNAC monitors the data for seismic signals. The computer gives an estimate of the source location of the detected signals and stores the waveforms. The detection logic is designed to maintain high sensitivity without excessive ''false alarms''. It is demonstrated that the system is able to detect seismic signals at an amplitude level consistent with a network of single stations and, within the limitations of signal onset time measurements made by machine, can locate the source of the seismic disturbance. (author)

  12. Research on monitoring technology of axial gap change about high-speed rotating machinery

    International Nuclear Information System (INIS)

    Zhang Xiaochan; Liu Fanglei; Hu Shihua; Xie Qing; Li Zhen

    2014-01-01

    This paper describes that the only measuring point of high-speed rotating machinery (speed monitoring transducer) measuring the operation of the axial gap change and application. According to mechanism analysis the speed monitoring transducer's signal, prove its amplitude changes including the axial gap change information. To carry out the speed monitoring transducer qualitative and quantitative axial gap change research, Find the output signal amplitude and clearance change corresponding relationship formula of speed monitoring transducer, define the measurement method. Based on the above analsis, manufacture the single channel measurement devices and multiple unit measurement system, provide an important fault decision of high-speed rotating machinery, it can be applied to new equipment development and production. (authors)

  13. Evaluation of the autoregression time-series model for analysis of a noisy signal

    International Nuclear Information System (INIS)

    Allen, J.W.

    1977-01-01

    The autoregression (AR) time-series model of a continuous noisy signal was statistically evaluated to determine quantitatively the uncertainties of the model order, the model parameters, and the model's power spectral density (PSD). The result of such a statistical evaluation enables an experimenter to decide whether an AR model can adequately represent a continuous noisy signal and be consistent with the signal's frequency spectrum, and whether it can be used for on-line monitoring. Although evaluations of other types of signals have been reported in the literature, no direct reference has been found to AR model's uncertainties for continuous noisy signals; yet the evaluation is necessary to decide the usefulness of AR models of typical reactor signals (e.g., neutron detector output or thermocouple output) and the potential of AR models for on-line monitoring applications. AR and other time-series models for noisy data representation are being investigated by others since such models require fewer parameters than the traditional PSD model. For this study, the AR model was selected for its simplicity and conduciveness to uncertainty analysis, and controlled laboratory bench signals were used for continuous noisy data. (author)

  14. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  15. Multilevel electrochemical signal detections of metalloprotein heterolayers for bioelectronic device

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-Ho; Yoo, Si-Youl; Lee, Taek [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Lee, Hun Joo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-01-31

    In the present study, we investigated the simultaneous detection of multilevel electrochemical signals from various metalloprotein heterolayers for the bioelectronic devices. A layer-by-layer assembly method based on simple electrostatic interaction was introduced to form protein bilayers. The gold substrate was modified with poly (ethylene glycol) thiol acid as the precursor, which introduced negative charges to the surface. Based on the isoelectric point, net-charge controlled metalloproteins by pH adjustment were sequentially immobilized on this negatively charged substrate. The degree of protein immobilization on the gold substrate was confirmed by surface plasmon resonance spectroscopy, and the surface topology changes due to the protein immobilization were confirmed by atomic force microscopy. Redox signals in the protein layers were measured by cyclic voltammetry. As a result, various redox signals generated from different metalloproteins on a single electrode were monitored. This proposed method for the detection of multi-level electrochemical signals can be directly applied to bioelectronic devices that store multi-information in a single electrode. - Highlights: • We fabricated heterolayers composed of various metalloproteins. • Metalloproteins were immobilized by layer-by-layer assembly. • The degree of immobilization was controlled by the net charge of metalloproteins. • Various redox signals generated from heterolayers were well monitored.

  16. The development of on-line thermal performance monitors in Nuclear Electric Company's stations

    International Nuclear Information System (INIS)

    Conner, A.S.

    1992-01-01

    The paper examines the economic benefits of using on-line monitoring techniques in assisting Station Staff with the task of optimising the efficient use of reactor fuel. The role of thermal performance monitoring for detecting changes in plant condition is also examined and the way in which the data can be used by engineers to assist with the preparation of operating and maintenance programmes. To enable genuine gradual changes in plant performance to be detected when operating against a background of changing plant signal accuracy conditions, plant transducers have to be calibrated on a regular basis. This can be both costly and labour intensive. To reduce this requirement for regular calibrations, an automatic software signal verification program has been developed for use in on-line monitoring schemes. It forms part of the total unit performance calculation package and uses a whole plant model to verify plant signals. All plant signals used to calculate unit heat rate are verified typically every 15 minutes with signals going outside predetermined limits being automatically reported to the user. The program is interactive allowing the user to interrogate the condition of the signal, with respect to both its error magnitude and rate of drift outside signal limits. The program runs in real time mode on a Workstation connected directly to the plant

  17. Using Signal Detection Theory and Time Window-based Human-In-The-Loop simulation as a tool for assessing the effectiveness of different qualitative shapes in continuous monitoring tasks.

    Science.gov (United States)

    Kim, Jung Hyup; Rothrock, Ling; Laberge, Jason

    2014-05-01

    This paper provides a case study of Signal Detection Theory (SDT) as applied to a continuous monitoring dual-task environment. Specifically, SDT was used to evaluate the independent contributions of sensitivity and bias to different qualitative gauges used in process control. To assess detection performance in monitoring the gauges, we developed a Time Window-based Human-In-The-Loop (TWHITL) simulation bed. Through this test bed, we were able to generate a display similar to those monitored by console operators in oil and gas refinery plants. By using SDT and TWHITL, we evaluated the sensitivity, operator bias, and response time of flow, level, pressure, and temperature gauge shapes developed by Abnormal Situation Management(®) (ASM(®)) Consortium (www.asmconsortium.org). Our findings suggest that display density influences the effectiveness of participants in detecting abnormal shapes. Furthermore, results suggest that some shapes elicit better detection performance than others. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Radiographic apparatus and method for monitoring film exposure time

    International Nuclear Information System (INIS)

    Vatne, R.S.; Woodmansee, W.E.

    1981-01-01

    In connection with radiographic inspection of structural and industrial materials, method and apparatus are disclosed for automatically determining and displaying the time required to expose a radiographic film positioned to receive radiation passed by a test specimen, so that the finished film is exposed to an optimum blackening (density) for maximum film contrast. A plot is made of the variations in a total exposure parameter (representing the product of detected radiation rate and time needed to cause optimum film blackening) as a function of the voltage level applied to an X-ray tube. An electronic function generator storing the shape of this plot is incorporated into an exposure monitoring apparatus, such that for a selected tube voltage setting, the function generator produces an electrical analog signal of the corresponding exposure parameter. During the exposure, another signal is produced representing the rate of radiation as monitored by a diode detector positioned so as to receive the same radiation that is incident on the film. The signal representing the detected radiation rate is divided, by an electrical divider circuit into the signal representing total exposure, and the resulting quotient is an electrical signal representing the required exposure time. (author)

  19. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  20. Radiation monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio A.C.; Farias, Marcos S. de; Lacerda, Fabio de; Heimlich, Adino [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Design of a portable low-power multichannel analyzer with wireless connectivity for remote radiation monitoring, powered from a solar panel with a internal battery to be operated in field. The multichannel analyzer is based on a single microcontroller which performs the digital functions and an analog signal processing board for implementing a Gaussian shaper preamplifier, a Gaussian stretcher, sample and hold, pile-up rejector and a 10 bit ADC. Now this design is to be used with a NaI(Ti) scintillator detector. This multichannel analyzer is designed to be a part of radiation monitoring network. All of them are connected, by radio in a radius of 10 kilometers, to a supervisor computer that collects data from the network of multichannel analyzers and numerically display the latest radiation measurements or graphically display measurements over time for all multichannel analyzers. Like: dose rate, spectra and operational status. Software also supports remotely configuring operating parameters (such as radiation alarm level) for each monitor independently. (author)