WorldWideScience

Sample records for monitors ionospheric plasma

  1. Ionosphere Plasma State Determination in Low Earth Orbit from International Space Station Plasma Monitor

    Science.gov (United States)

    Kramer, Leonard

    2014-01-01

    A plasma diagnostic package is deployed on the International Space Station (ISS). The system - a Floating Potential Measurement Unit (FPMU) - is used by NASA to monitor the electrical floating potential of the vehicle to assure astronaut safety during extravehicular activity. However, data from the unit also reflects the ionosphere state and seems to represent an unutilized scientific resource in the form of an archive of scientific plasma state data. The unit comprises a Floating Potential probe and two Langmuir probes. There is also an unused but active plasma impedance probe. The data, at one second cadence, are collected, typically for a two week period surrounding extravehicular activity events. Data is also collected any time a visiting vehicle docks with ISS and also when any large solar events occur. The telemetry system is unusual because the package is mounted on a television camera stanchion and its data is impressed on a video signal that is transmitted to the ground and streamed by internet to two off center laboratory locations. The data quality has in the past been challenged by weaknesses in the integrated ground station and distribution systems. These issues, since mid-2010, have been largely resolved and the ground stations have been upgraded. Downstream data reduction has been developed using physics based modeling of the electron and ion collecting character in the plasma. Recursive algorithms determine plasma density and temperature from the raw Langmuir probe current voltage sweeps and this is made available in real time for situational awareness. The purpose of this paper is to describe and record the algorithm for data reduction and to show that the Floating probe and Langmuir probes are capable of providing long term plasma state measurement in the ionosphere. Geophysical features such as the Appleton anomaly and high latitude modulation at the edge of the Auroral zones are regularly observed in the nearly circular, 51 deg inclined, 400 km

  2. Monitoring of the velocity field of the plasma motion under sounding of F ionospheric region by the probe waves

    Science.gov (United States)

    Sergeev, Evgeny; Komrakov, G. P.; Smyshlyaev, Sergey E.

    Results of investigations of the motions in F region of the ionosphere by means of the method of the space-frequency diversity reception are presented. Measurements of the vertical and horizontal plasma drift velocities have been performed over SURA facility (Russia) using of multifrequency dopler station for vertical sounding and diversity three point reception of the reflected radiosignals. Possibilities of a day (15 hours) monitoring of the drift velocity space at different altitudes were studied by using of the three fixed probe frequencies 4353 kHz, 5853 kHz and 7353 kHz. For another experimental series complex investigations of the pumped ionospheric volume were performed by its diagnostics at different frequencies with the short (¡ 200 mks) wide frequency band (˜ 500 kHz) and powerful (˜ 20 - 150 MW ERP) pulses. Data about a fine distribution structure of the vertical and horizontal plasma drift velocities in the turbulence plasma range were first obtained with a high frequency (˜ 1 kHz) and temporal (˜ 20 ms) resolution. The work was supported by RFBR grants 07-02-00464 and 06-02-17334.

  3. Plasma interactions in the Martian Nightside Ionosphere

    Science.gov (United States)

    Andersson, L.; Fowler, C. M.; Ergun, R.; Weber, T. D.; Andrews, D. J.; Morooka, M. W.; Delory, G. T.; Eriksson, A. I.; Mitchell, D. L.; McFadden, J. P.; Connerney, J. E. P.

    2015-12-01

    Based on measurements from a number of missions at Mars the nightside ionosphere is patchy. The new mission MAVEN dedicated to observe the upper atmosphere and the plasma interactions provides the first comprehensive observations of the low altitude nightside ionosphere. Observations show that at density gradients the plasma is unstable and significant wave power, heated/accelerated electrons, and heated ions are co-located. Below 300 km, thermal electrons (>3 eV) are observed at the gradients to low density regions. The nightside ionosphere below 180 km is thought to be maintained by electron impact ionization and therefore these regions with thermal electrons may be the primary energy source for the low altitude ionosphere. Outside of the low density regions the plasma is cold. These observations suggest that the wave heating might be the primary process in the Matrian nightside ionosphere. The characteristics of these regions associated with density gradients will be presented and discussed in this presentation.

  4. ESPERIA: an Equatorial Magnetic, Plasma and Particle Mission for Monitoring Perturbations in the Topside Ionosphere and for Defining the Near-Earth Magnetic Environment.

    Science.gov (United States)

    Sgrigna, V.; Console, R.; Buzzi, A.; Conti, L.; Galper, A. M.; Malvezzi, V.; Parrot, M.; Picozza, P.; Scrimaglio, R.; Spillantini, P.; Zilpimiani, D.

    2004-05-01

    ESPERIA is an equatorial space mission planned with a LEO small-satellite and a multi-instrument payload. The project has been ideally conceived to define the near-Earth electromagnetic, plasma, and particle environment, both in steady-state and perturbed-state conditions. In recent times has been observed that either Earth's interior processes or near-Earth space phenomena have a privileged and sensitive zone of investigation constituted by the ionosphere-magnetosphere transition region, at altitudes ranging around 500 / 1000 km. In fact, sun and cosmic rays as well as, seismic, anthropogenic and thunderstorm activities, influence the structure and dynamics of the zone. These external and internal contributions play an important role in defining the particle and electromagnetic field character of the region, both in steady-state and perturbed-state conditions. So, a suitable monitoring of the topside ionosphere may give an help in studying many important physical phenomena as pre-earthquake and anthropogenic electromagnetic emissions, solar wind and flares, as well as in mapping the geomagnetic field. Concerning the Earth's magnetic field mapping, ESPERIA can be seen as an equatorial coordinated and simultaneous complement to polar missions, like SWARM. The first step in realizing the project was an opportunity given by the Italian Space Agency (ASI) for a Phase A Study, concerned with detecting any tectonic and preseismic related signals, and studying seismo-associated perturbations and instabilities in the topside ionosphere. The study has been performed by an International Consortium lead by the University Roma Tre, and the ESPERIA Phase A report is now available. The ASI constrains restricted the scientific objectives of the above-mentioned ideally conceived project, but recent contacts with other missions and science teams give indications to reconcile the project to its original aims.

  5. The Earth's ionosphere plasma physics and electrodynamics

    CERN Document Server

    Kelley, Michael C

    2007-01-01

    Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.

  6. Cyclotron resonance absorption in ionospheric plasma

    Science.gov (United States)

    Villalon, Elena

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle theta between the geomagnetic field and the density gradient and of the wave frequency omega, which lies between the electron cyclotron frequency and its doubling. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is estimated using a WKB analysis of the wave equation.

  7. Cyclotron resonance absorption in ionospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Villalon, E. (Northeastern Univ., Boston, MA (USA) Geophysics Lab., Hanscom AFB, MA (USA))

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle {theta} between the geomagnetic field and the density gradient and of the wave frequency {omega}, where {Omega} {le} {omega} {le} 2{Omega} and {Omega} is the electron cyclotron frequency. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. For certain values of {omega} and {theta} (e.g., {theta} < 45{degree}, {omega} {approximately} 2{Omega}) the wave equations reduce to the parabolic cylinder equation. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is iestimated using a WKB analysis of the wave equation.

  8. Testing Plasma Physics in the Ionosphere

    Science.gov (United States)

    Papadopoulos, Konstantinos

    TESTING PLASMA PHYSICS IN THE IONOSPHERE K. Papadopoulos University of Maryland College Park, MD 20742 Ionospheric heaters supplemented by ground and space based diagnostic instruments, such as radars, optical cameras and photometers, HF/VLF/ELF/ULF receivers and magnetometers, radio beacons, riometers and ionosondes have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The latest entry to ionospheric heating, the HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), was completed in February 2007. The transmitter consists of 180 antenna elements spanning 30.6 acres and can radiate 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. With increasing frequency the beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP) between .36 - 4.0 GW. The antenna can point to any direction in a cone of 30 degrees from the vertical, with a reposition time of 15 degrees in 15 microseconds resulting in super-luminous scanning speeds. The transmitter can synthesize essentially any desired waveform within the regulatory allowed bandwidth in linear and circular polarization. These capabilities far exceed those of previous ionospheric heaters and allow for new frontier research in plasma physics, geophysics and radio science. Following a brief discussion of the relationship of the new capabilities of the facility with thresholds of physical processes that could not be achieved previously, the presentation will discuss recent results in the areas of ULF/ELF/VLF generation and propagation and wave-particle interactions in the magnetosphere acquired with the completed facility. The presentation will conclude with a detailed discussion of possible frontier science experiments in the areas of Langmuir turbulence, parametric instabilities, electron acceleration, optical emissions and field aligned striations and duct generation, made

  9. Diagnostics of plasma in the ionospheric D-region: detection and study of different ionospheric disturbance types

    Science.gov (United States)

    Nina, Aleksandra; Čadež, Vladimir M.; Popović, Luka Č.; Srećković, Vladimir A.

    2017-07-01

    Here we discuss our recent investigations of the ionospheric plasma by using very low and low frequency (VLF/LF) radio waves. We give a review of how to detect different low ionospheric reactions (sudden ionospheric disturbances) to various terrestrial and extra-terrestrial events, show their classification according to intensity and time duration, and present some methods for their detections in time and frequency domains. Investigations of detection in time domain are carried out for intensive long-lasting perturbations induced by solar X-ray flares and for short-lasting perturbations caused by gamma ray bursts. We also analyze time variations of signals used in the low ionospheric monitoring after earthquake events. In addition, we describe a procedure for the detection of acoustic and gravity waves from the VLF/LF signal analysis in frequency domain. The research of the low ionospheric plasma is based on data collected by the VLF/LF receivers located in Belgrade, Serbia. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  10. Whistler wave-induced ionospheric plasma turbulence: Source mechanisms and remote sensing

    Science.gov (United States)

    Pradipta, R.; Rooker, L. A.; Whitehurst, L. N.; Lee, M. C.; Ross, L. M.; Sulzer, M. P.; Gonzalez, S.; Tepley, C.; Aponte, N.; See, B. Z.; Hu, K. P.

    2013-10-01

    We report a series of experiments conducted at Arecibo Observatory in the past, aimed at the investigation of 40.75 kHz whistler wave interactions with ionospheric plasmas and the inner radiation belts at L=1.35. The whistler waves are launched from a Naval transmitter (code-named NAU) operating in Aguadilla, Puerto Rico at the frequency and power of 40.75 kHz and 100 kW, respectively. Arecibo radar, CADI, and optical instruments were used to monitor the background ionospheric conditions and detect the induced ionospheric plasma effects. Four-wave interaction processes produced by whistler waves in the ionosphere can excite lower hybrid waves, which can accelerate ionospheric electrons. Furthermore, whistler waves propagating into the magnetosphere can trigger precipitation of energetic electrons from the radiation belts. Radar and optical measurements can distinguish wave-wave and wave-particle interaction processes occurring at different altitudes. Electron acceleration by different mechanisms can be verified from the radar measurements of plasma lines. To facilitate the coupling of NAU-launched 40.75 kHz whistler waves into the ionosphere, we can rely on naturally occurring spread F irregularities to serve as ionospheric ducts. We can also use HF wave-created ducts/artificial waveguides, as demonstrated in our earlier Arecibo experiments and recent Gakona experiments at HAARP. The newly constructed Arecibo HF heater will be employed in our future experiments, which can extend the study of whistler wave interactions with the ionosphere and the magnetosphere/radiation belts as well as the whistler wave conjugate propagation between Arecibo and Puerto Madryn, Argentina.

  11. Space and Astrophysical Plasmas : Ionospheric plasma by VHF waves

    Indian Academy of Sciences (India)

    R P Patel; Abhay Kumar Singh; R P Singh

    2000-11-01

    The amplitude scintillations of very high frequency electromagnetic wave transmitted from geo-stationary satellite at 244.168 MHz have been recorded at Varanasi (geom. lat. 14° 55'N) during 1991 to 1999. The data are analyzed to determine the statistical features of overhead ionospheric plasma irregularities which are mostly of small duration < 30 minutes and are predominant during pre-midnight period. The increase of solar activity generally increases the depth of scintillation. The auto-correlation functions and power spectra of scintillations predict that the scale length of these irregularities varies from 200–500 m having velocity of movement between 75 m/sec to 200 m/sec. These results agree well with the results obtained by other workers.

  12. Large-scale plasma bubbles in the low-latitude ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, J.A.; Sahai, Y.; Fagundes, P.R.; Takahashi, H.

    1994-01-01

    Plasma irregularities in the low-latitude ionospheric F-layer resulting from plasma instability processes have been the subject of intensive experimental and theoretical research in the past few years. The morphology and dynamics of transequatorial ionospheric plasma bubbles and smaller scale plasma irregularities can be monitored through observations of the intensities of the 630.0 nm and 777.4 nm atomic oxygen nightglow emissions arising from ionospheric recombination processes. Simultaneous north-south meridional scanning observations of these OI emissions, using ground-based scanning filter photometers, as well as observations of the OI 630.0 nm emission using an all-sky imaging system, have been made at Cachoeira Paulista (22.7 deg S, 45.0 deg W, dip latitude 15.8 deg S) during both quiet and magnetically disturbed conditions, as well as in the presence of large scale field-aligned ionospheric plasma depletions. Some results of this long series of photometer and all-sky imaging observations are presented and their significant features are analyzed and discussed.

  13. Monitoring of Sudden Ionospheric Disturbances (SID) from Kolkata (INDIA)

    CERN Document Server

    Chakrabarti, S K; Bose, B; Mandal, S; Chatterjee, A; Nandi, N M; Pal, S; Khan, R; Chakrabarti, Sandip K.

    2003-01-01

    We report our first results of monitoring sudden ionospheric disturbances (SID). We present data taken continuously for two weeks during 20th Sept. 2002 and 4th Oct. 2002. We compare the effects of solar flares of the VLF signal with those obtained by GOES Satellite of NASA monitoring in X-rays and found excellent agreement.

  14. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  15. Diffuse spreading of inhomogeneities in the ionospheric dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shalimov, S. L., E-mail: pmsk7@mail.ru [Russian Academy of Sciences, Schmidt Institute of Physics of the Earth (Russian Federation); Kozlovsky, A. [Sodankylä Geophysical Observatory (Finland)

    2015-08-15

    According to results of sounding of the lower ionosphere at altitudes of about 100 km, the duration of radio reflections from sufficiently dense ionized meteor trails, which characterizes their lifetime, can reach a few tens of seconds to several tens of minutes. This is much longer than the characteristic spreading time (on the order of fractions of a second to several seconds) typical in meteor radar measurements. The presence of dust in the lower ionosphere is shown to affect the ambipolar diffusion coefficient, which determines the spreading of plasma inhomogeneities. It is found that the diffusion coefficient depends substantially on the charge and size of dust grains, which allows one to explain the results of ionospheric sounding.

  16. Application of nonlinear methods to the study of ionospheric plasma

    Science.gov (United States)

    Chernyshov, A. A.; Mogilevsky, M. M.; Kozelov, B. V.

    2015-01-01

    Most of the processes taking place in the auroral region of Earth's ionosphere are reflected in a variety of dynamic forms of the aurora borealis. In order to study these processes it is necessary to consider temporary and spatial variations of the characteristics of ionospheric plasma. Most traditional methods of classical physics are applicable mainly for stationary or quasi-stationary phenomena, but dynamic regimes, transients, fluctuations, selfsimilar scaling could be considered using the methods of nonlinear dynamics. Special interest is the development of the methods for describing the spatial structure and the temporal dynamics of auroral ionosphere based on the ideas of percolation theory and fractal geometry. The fractal characteristics (the Hausdorff fractal dimension and the index of connectivity) of Hall and Pedersen conductivities are used to the description of fractal patterns in the ionosphere. To obtain the self-consistent estimates of the parameters the Hausdorff fractal dimension and the index of connectivity in the auroral zone, an additional relation describing universal behavior of the fractal geometry of percolation at the critical threshold is applied. Also, it is shown that Tsallis statistics can be used to study auroral ionosphere

  17. Localized lower hybrid acceleration of ionospheric plasma

    Science.gov (United States)

    Kintner, P. M.; Vago, J.; Chesney, S.; Arnoldy, R. L.; Lynch, K. A.; Pollock, C. J.; Moore, T. E.

    1992-01-01

    Observations of the transverse acceleration of ions in localized regions of intense lower hybrid waves at altitudes near 1000 km in the auroral ionosphere are reported. The acceleration regions are thin filaments with dimensions across geomagnetic field lines of about 50-100 m corresponding to 5-10 thermal ion gyroradii or one hot ion gyroradius. Within the acceleration region lower hybrid waves reach peak-to-peak amplitudes of 100-300 mV/m and ions are accelerated transversely with characteristic energies of the order of 10 eV. These observations are consistent with theories of lower hybrid wave collapse.

  18. Long-term ionospheric anomaly monitoring for ground based augmentation systems

    Science.gov (United States)

    Jung, Sungwook; Lee, Jiyun

    2012-08-01

    Extreme ionospheric anomalies can pose a potential integrity threat to ground-based augmentation of the Global Positioning System (GPS), and thus the development of ionospheric anomaly threat models for each region of operation is essential for system design and operation. This paper presents a methodology for automated long-term ionospheric anomaly monitoring, which will be used to build an ionospheric anomaly threat model, evaluate its validity over the life cycle of the system, continuously monitor ionospheric anomalies, and update the threat model if necessary. This procedure automatically processes GPS data collected from external networks and estimates ionospheric gradients at regular intervals. If ionospheric gradients large enough to be potentially hazardous to users are identified, manual data examination is triggered. This paper also develops a simplified truth processing method to create precise ionospheric delay estimates in near real-time, which is the key to automating the ionospheric monitoring procedure. The performance of the method is examined using data from the 20 November 2003 and 9 November 2004 ionospheric storms. These results demonstrate the effectiveness of simplified truth processing within long-term ionosphere monitoring. From the case studies, the automated procedure successfully identified extreme ionospheric anomalies, including the two worst ionospheric gradients observed and validated previously based on manual analysis. The automation of data processing enables us to analyze ionospheric data continuously going forward and to more accurately categorize ionospheric behavior under both nominal and anomalous conditions.

  19. GNSS ionospheric scintillation and TEC at high latitudes: INGV monitoring and studies

    Science.gov (United States)

    Alfonsi, L.; de Franceschi, G.; Spogli, L.; Romano, V.

    2009-12-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is monitoring the high latitude ionospheric irregularities causing GNSS signals corruption since 2003 when a GISTM receiver (GPS Ionospheric Scintillation and TEC Monitor) was deployed in Ny Alesund (Svalbard). Currently, INGV manages three GISTMs at Svalbard (two in Ny Alesund, another one in Longyearbyen) and two receivers in Antarctica at Concordia and Mario Zucchelli Stations. The GISTM receivers consist of NovAtel OEM4 dual-frequency receivers with special firmware specifically able to compute in near real time the amplitude and the phase scintillation from the GPS L1 frequency signals, and the ionospheric TEC (Total Electron Content) from the GPS L1 and L2 carrier phase signals. From this ground-based network, we are able to capture the dynamics of ionospheric plasma in a wide latitudinal range, from auroral to cusp/cap regions, considering the contribution of both hemispheres, in a bi-polar framework. The data collected are structured and archived in a dedicated database: www.eswua.ingv.it. The INGV activities in the field of the observation and the investigation of the ionospheric irregularities are included in several international collaborations addressing scientific issues as well as technological applications. This paper would like to give an overview of our recent activities about polar ionospheric imaging, scintillation climatology and scintillation mitigation matured also under the umbrella of the SCAR ICESTAR community and, currently, part of the initiatives of the SCAR Action Group “GPS Weather and Space Weather Forecast”chaired by INGV.

  20. Radio pumping of ionospheric plasma with orbital angular momentum.

    Science.gov (United States)

    Leyser, T B; Norin, L; McCarrick, M; Pedersen, T R; Gustavsson, B

    2009-02-13

    Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.

  1. Chemical release experiments to induce F region ionospheric plasma irregularities at the magnetic equator

    Science.gov (United States)

    Sultan, Peter Jared

    1994-01-01

    The largest-scale plasma instability that occurs naturally in the Earth's ionosphere is a turbulent upwelling of the equatorial F region known as equatorial spread-F (ESF). During an ESF event, high plasma density magnetic fluxtubes at the bottomside of the F region are thought to change places with lower plasma density flux-tubes from below in a Rayleigh-Taylor type (heavy fluid over light fluid) instability. This interchange creates a large-scale (10's of km) density perturbation locally, which rapidly penetrates through to the topside of the F region, creating a plume of cascading smaller-scale (meter to centimeter scale) irregularities from the sharp density gradients at the edges of the rising plasma 'bubble'. In a theoretical test of this overall scenario for ESF, a linear instability growth rate is derived following the magnetic fluxtube formalism of Haerendel. Using realistic atmospheric and ionospheric density model inputs, growth rates are calculated for a range of geophysical conditions. Time/altitude domains having positive growth rates are found to coincide with observed time/altitude patterns of ESF occurrence, thus supporting the fluxtube model. The physics also are tested experimentally by the deliberate creation of plasma bubbles in ambient ionospheres that the fluxtube model predicts are susceptible to the Rayleigh-Taylor instability. Two such artificial seed perturbations were generated during the 1990 NASA/Boston University CRRES-at-Kwajalein campaign, when clouds of sulfur hexafluoride (SF6) were released by sounding rockets to initiate plasma recombinations near the bottomside of the equatorial ionosphere. Multiple diagnostics (incoherent scatter radar, high frequency radar, optics, and satellite polarimeters at several sites) were used to monitor the prelaunch status of the ionosphere and the electron depleted regions that resulted from the chemical releases. Small ESF plumes were observed to form in the region of the artificial perturbation

  2. Final Progress Report for Ionospheric Dusty Plasma In the Laboratory [Smokey Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Scott [Univ. of Colorado, Boulder, CO (United States)

    2010-07-31

    Ionospheric Dusty Plasma in the Laboratory” is a research project with the purpose of finding and reproducing the characteristics of plasma in the polar mesosphere that is unusually cold (down to 140 K) and contains nanometer-sized dust particles. This final progress report summarizes results from four years of effort that include a final year with a no-cost extension.

  3. Wave and plasma measurements and GPS diagnostics of the main ionospheric trough as a hybrid method used for Space Weather purposes

    Directory of Open Access Journals (Sweden)

    H. Rothkaehl

    2008-02-01

    Full Text Available The region of the main ionospheric trough is a unique region of the ionosphere, where different types of waves and instabilities can be generated. This region of the ionosphere acts like a lens, focusing a variety of indicators from the equator of plasmapause and local ionospheric plasma. This paper reports the results of monitoring the mid-latitude trough structure, dynamics and wave activity. For these purposes, the data gathered by the currently-operating DEMETER satellite and past diagnostics located on IK-19, Apex, and MAGION-3 spacecraft, as well as TEC measurements were used. A global-time varying picture of the ionospheric trough was reconstructed using the sequence of wave spectra registered and plasma measurements in the top-side ionosphere. The authors present the wave activity from ULF frequency band to the HF frequency detected inside the trough region and discuss its properties during geomagnetic disturbances. It is thought that broadband emissions are correlated with low frequency radiation, which is excited by the wave-particle interaction in the equatorial plasmapause and moves to the ionosphere along the geomagnetic field line. In the ionosphere, the suprathermal electrons can interact with these electrostatic waves and excite electron acoustic waves or HF longitudinal plasma waves.

    Furthermore, the electron density trough can provide useful data on the magnetosphere ionosphere dynamics and morphology and, in consequence, can be used for Space Weather purposes.

  4. Central Plasma Sheet Ion Properties as Inferred from Ionospheric Observations

    Science.gov (United States)

    Wing, Simon; Newell, Patrick T.

    1998-01-01

    A method of inferring central plasma sheet (CPS) temperature, density, and pressure from ionospheric observations is developed. The advantage of this method over in situ measurements is that the CPS can be studied in its entirely, rather than only in fragments. As a result, for the first time, comprehensive two-dimensional equatorial maps of CPS pressure, density, and temperature within the isotropic plasma sheet are produced. These particle properties are calculated from data taken by the Special Sensor for Precipitating Particles, version 4 (SSJ4) particle instruments onboard DMSP F8, F9, F10, and F11 satellites during the entire year of 1992. Ion spectra occurring in conjunction with electron acceleration events are specifically excluded. Because of the variability of magnetotail stretching, the mapping to the plasma sheet is done using a modified Tsyganenko [1989] magnetic field model (T89) adjusted to agree with the actual magnetotail stretch at observation time. The latter is inferred with a high degree of accuracy (correlation coefficient -0.9) from the latitude of the DMSP b2i boundary (equivalent to the ion isotropy boundary). The results show that temperature, pressure, and density all exhibit dawn-dusk asymmetries unresolved with previous measurements. The ion temperature peaks near the midnight meridian. This peak, which has been associated with bursty bulk flow events, widens in the Y direction with increased activity. The temperature is higher at dusk than at dawn, and this asymmetry increases with decreasing distance from the Earth. In contrast, the density is higher at dawn than at dusk, and there appears to be a density enhancement in the low-latitude boundary layer regions which increases with decreasing magnetic activity. In the near-Earth regions, the pressure is higher at dusk than at dawn, but this asymmetry weakens with increasing distance from the Earth and may even reverse so that at distances X less than approx. 10 to -12 R(sub E

  5. Modeling of Plasma Irregularities in Expanding Ionospheric Dust Clouds

    Science.gov (United States)

    Fu, H.; Scales, W.; Mahmoudian, A.; Bordikar, M. R.

    2009-12-01

    Natural dust layers occur in the earth’s mesosphere (50km-85km). Plasma irregularities are associated with these natural dust layers that produce radar echoes. Recently, an Ionospheric sounding rocket experiment was performed to investigate the plasma irregularities in upper atmospheric dust layers. The Charged Aerosol Release Experiment (CARE) uses a rocket payload injection of particles in the ionosphere to determine the mechanisms for enhanced radar scatter from plasma irregularities embedded in artificial dusty plasma in space. A 2-D hybrid computational model is described that may be used to study a variety of irregularities in dusty space plasmas which may lead to radar echoes. In this model, the dust and ions are both treated with Particle-In-Cell method while the dust charge varies with time based on the standard dust Orbit Motion Limited charging model. A stochastic model is adopted to remove particle ions due to the dust charging process. Electrons are treated with a fluid model including the parallel dynamics of magnetic fields. Fourier spectral methods with a predictor-corrector time advance are used to solve it. This numerical model will be used to investigate the electrodynamics and several possible plasma irregularity generation mechanisms after the creation of an artificial dust layer. The first is the dust ion-acoustic instability due to the drift of dust relative to the plasma. The instability saturates by trapping some ions. The effects of dust radius and dust drift velocity on plasma irregularities will be analyzed further. Also, a shear- driven instability in expanding dusty clouds is investigated.

  6. Visual exploration and analysis of ionospheric scintillation monitoring data: The ISMR Query Tool

    Science.gov (United States)

    Vani, Bruno César; Shimabukuro, Milton Hirokazu; Galera Monico, João Francisco

    2017-07-01

    Ionospheric Scintillations are rapid variations on the phase and/or amplitude of a radio signal as it passes through ionospheric plasma irregularities. The ionosphere is a specific layer of the Earth's atmosphere located approximately between 50 km and 1000 km above the Earth's surface. As Global Navigation Satellite Systems (GNSS) - such as GPS, Galileo, BDS and GLONASS - use radio signals, these variations degrade their positioning service quality. Due to its location, Brazil is one of the places most affected by scintillation in the world. For that reason, ionosphere monitoring stations have been deployed over Brazilian territory since 2011 through cooperative projects between several institutions in Europe and Brazil. Such monitoring stations compose a network that generates a large amount of monitoring data everyday. GNSS receivers deployed at these stations - named Ionospheric Scintillation Monitor Receivers (ISMR) - provide scintillation indices and related signal metrics for available satellites dedicated to satellite-based navigation and positioning services. With this monitoring infrastructure, more than ten million observation values are generated and stored every day. Extracting the relevant information from this huge amount of data was a hard process and required the expertise of computer and geoscience scientists. This paper describes the concepts, design and aspects related to the implementation of the software that has been supporting research on ISMR data - the so-called ISMR Query Tool. Usability and other aspects are also presented via examples of application. This web based software has been designed and developed aiming to ensure insights over the huge amount of ISMR data that is fetched every day on an integrated platform. The software applies and adapts time series mining and information visualization techniques to extend the possibilities of exploring and analyzing ISMR data. The software is available to the scientific community through the

  7. The Ionospheric Bubble Index deduced from magnetic field and plasma observations onboard Swarm

    DEFF Research Database (Denmark)

    Park, Jaeheung; Noja, Max; Stolle, Claudia

    2013-01-01

    In the post-sunset tropical ionospheric F-region plasma density often exhibits depletions, which are usually called equatorial plasma bubbles (EPBs). In this paper we give an overview of the Swarm Level 2 Ionospheric Bubble Index (IBI), which is a standard scientific data of the Swarm mission. Th...

  8. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  9. Characterization of Ionosphere Waveguide Propagation by Monitoring HAARP HF Transmissions in Antarctica

    Science.gov (United States)

    2015-04-17

    AFRL-AFOSR-UK-TR-2015-0024 CHARACTERIZATION OF IONOSPHERE WAVEGUIDE PROPAGATION BY MONITORING HAARP HF TRANSMISSIONS IN ANTARCTICA *Yuri M...31 December 2014 4. TITLE AND SUBTITLE CHARACTERIZATION OF IONOSPHERE WAVEGUIDE PROPAGATION BY MONITORING HAARP HF TRANSMISSIONS IN ANTARCTICA 5a...investigating the possibility of exciting the ionospheric interlayer duct channel using powerful radiation from the heaters HAARP (Alaska, USA) and EISCAT

  10. Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere

    Science.gov (United States)

    Kochetov, Andrey; Terina, Galina

    Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J

  11. High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements

    Science.gov (United States)

    Verhulst, Tobias G. W.; Sapundjiev, Danislav; Stankov, Stanimir M.

    2016-06-01

    The ionospheric behavior over Belgium during the partial solar eclipse of 20 March 2015 is analyzed based on high-resolution solar radio flux, vertical incidence sounding, and GPS TEC measurements. First results of ionosonde-based ionospheric plasma drift and tilt observations are presented and analyzed, including some traveling ionospheric disturbances caused by the eclipse. Also, collocated ionosonde and GPS measurements are used to reconstruct the time evolution of the vertical electron density distribution using the Royal Meteorological Institute (RMI) ionospheric specification system, called Local Ionospheric Electron Density profile Reconstruction (LIEDR).

  12. Cassini observations of ionospheric plasma in Saturn's magnetotail lobes.

    Science.gov (United States)

    Felici, M; Arridge, C S; Coates, A J; Badman, S V; Dougherty, M K; Jackman, C M; Kurth, W S; Melin, H; Mitchell, D G; Reisenfeld, D B; Sergis, N

    2016-01-01

    Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ≃ 2200 h Saturn local time at 36 RS from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 10(9) and (1.43 ± 0.21) × 10(10) cm(-2) s(-1), 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×10(2) and 1.1 ×10(3) kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found during this event. It is not clear how

  13. Cassini observations of ionospheric plasma in Saturn's magnetotail lobes

    Science.gov (United States)

    Felici, M.; Arridge, C. S.; Coates, A. J.; Badman, S. V.; Dougherty, M. K.; Jackman, C. M.; Kurth, W. S.; Melin, H.; Mitchell, D. G.; Reisenfeld, D. B.; Sergis, N.

    2016-01-01

    Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ≃ 2200 h Saturn local time at 36 RS from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 109 and (1.43 ± 0.21) × 1010 cm-2 s-1, 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×102 and 1.1 ×103 kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found during this event. It is not clear how much of this mass is

  14. Ionospheric delay gradient monitoring for GBAS by GPS stations near Suvarnabhumi airport, Thailand

    Science.gov (United States)

    Rungraengwajiake, Sarawoot; Supnithi, Pornchai; Saito, Susumu; Siansawasdi, Nattapong; Saekow, Apitep

    2015-10-01

    Ground-based augmentation system (GBAS) is an important augmentation system that provides the differential corrections and integrity information from the reference stations to the aircrafts for precision approach and landing. It is known that the nonuniform ionospheric characteristics called "ionospheric delay gradient" can cause the errors in differential corrections degrading the accuracy and safety level if they are undetected by the reference stations. Since the characteristics of the ionosphere are different for each region, the ionospheric delay gradient observations in equatorial and low-latitude regions are necessary for developing the suitable ionospheric threat models. The purpose of this work is to analyze the ionospheric delay gradients observed by three GPS stations near Suvarnabhumi airport in Bangkok, Thailand, which is located in the low-latitude region. The ionospheric irregularities in this region are mainly caused by the plasma bubble, which usually occurs after sunset. The GPS data with plasma bubble occurrence during the September equinox 2011 and 2012 are therefore analyzed. In addition, the data analysis procedure utilizing the rate of total electron content change index for this region is proposed. The results show that the ionospheric delay gradients observed in the west-east direction appear higher than the south-north direction, varying from 28 to 178 mm/km during plasma bubble occurrences.

  15. Interaction of plasma cloud with external electric field in lower ionosphere

    Directory of Open Access Journals (Sweden)

    Y. S. Dimant

    2010-03-01

    Full Text Available In the auroral lower-E and upper-D region of the ionosphere, plasma clouds, such as sporadic-E layers and meteor plasma trails, occur daily. Large-scale electric fields, created by the magnetospheric dynamo, will polarize these highly conducting clouds, redistributing the electrostatic potential and generating anisotropic currents both within and around the cloud. Using a simplified model of the cloud and the background ionosphere, we develop the first self-consistent three-dimensional analytical theory of these phenomena. For dense clouds, this theory predicts highly amplified electric fields around the cloud, along with strong currents collected from the ionosphere and circulated through the cloud. This has implications for the generation of plasma instabilities, electron heating, and global MHD modeling of magnetosphere-ionosphere coupling via modifications of conductances induced by sporadic-E clouds.

  16. Investigation of plasma motion in the equatorial ionosphere

    Science.gov (United States)

    Oyekola, Oyedemi S.

    2016-07-01

    The structure of evening and nighttime F-region vertical drift component of is vital for understanding the physics of the development of the occurrence of equatorial irregularities. In addition, postsunset ionospheric height has also been attributed as one of the most important factors for the occurrence of equatorial irregularities. We report vertical plasma drift velocities derived from the base (h'F) and the peak height (hmF2) of F-layer using 1-year of data obtained at Ibadan (Geog Long 3.9oE) during International Geophysical Year (1957-58) period for geomagnetic quiet-time and high solar activity conditions. We compared our results with International Reference Ionosphere 2012 model (IRI-2012). The results of this investigation include: (a) overall local- time characteristics of vertical drift between 1800 LT and 0600 LT are in good agreement for equinoxes, December, and June; (b) annual vertical drift derived from time variation of h'F and hmF2 and the corresponding annual variation of h'F and hmF2 variation indicate low correlation (R = 0.30), while IRI-2012 model vertical drift and IRI-2012 model of hmF2 show fairly good correlation ( R = 0.67); (c) regression analysis between time variation of h'F and Scherliess / Fejer model demonstrate correlation coefficient of approximately 0.74 (equinox), 0.85 (December), 0.57 (June) and 0.74 (all-year), while that of time variation of hmF2 and IRI-2012 vertical velocities show 0.95 (equinox), 0.74 (December), 0.43 (June), and 0.74 (all-year); (d) plasma motion derived from the time rate of change of h'F and those of hmF2 are correlated at 0.94, 0.88, 0.63, and 0.90 for equinoxes, December, June, and all-year, respectively; (e) the evening prereversal vertical drifts enhancement rage between ~20 - 45 m/s, ~18 - 46 m/s, ~20 - 50 m/s for time variation of h'F, hmF2, and Scherliess / Fejer model, respectively; (f) the corresponding peak altitudes vary between 430 - 540 km (h'F), 560 - 740 km ( hmF2), and 570 - 620 km (IRI

  17. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    Science.gov (United States)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  18. Monitoring the ionosphere based on the Crustal Movement Observation Network of China

    Directory of Open Access Journals (Sweden)

    Yunbin Yuan

    2015-03-01

    Full Text Available The Global Navigation Satellite System (GNSS is becoming important for monitoring the variations in the earth's ionosphere based on the total electron content (TEC and ionospheric electron density (IED. The Crustal Movement Observation Network of China (CMONOC, which includes GNSS stations across mainland China, enables the continuous monitoring of the ionosphere over China as accurately as possible. A series of approaches for GNSS-based ionospheric remote sensing and software has been proposed and developed by the Institute of Geodesy and Geophysics (IGG in Wuhan. Related achievements include the retrieval of ionospheric observables from raw GNSS data, differential code biases estimations in satellites and receivers, models of local and regional ionospheric TEC, and algorithms of ionospheric tomography. Based on these achievements, a software for processing GNSS data to determine the variations in ionospheric TEC and IED over China has been designed and developed by IGG. This software has also been installed at the CMONOC data centers belonging to the China Earthquake Administration and China Meteorological Administration. This paper briefly introduces the related research achievements and indicates potential directions of future work.

  19. Storm-Time Ionospheric Disturbances Monitored by GPS Beacon Measurements

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Total Electron Content (TEC) during three great storms, from April to August 2000, was collected by means of a GPS receiver located in Jingzhou (30. 4° N, 112. 2° E). The time-latitude-dependent features of ionospheric storms are identified using TEC difference images based on the deviations of TEC during storm relative to quiet time. The responses of ionospheric TEC to magnetic storms were analyzed. The results show that: 1) In middle and low latitude, ionospheric storms effects are more apparent in local day time than at night; 2) Ionospheric storm effects are more dominant near the hump of the equatorial anomaly region than in other regions of TEC measurements; 3) The positive effects during the main phase of iono spheric storm may be caused by electric fields in low latitude; 4) During the recovery period of ionospheric storm, the negative phase of storm may be due to the perturbation of the neutral gas composition.

  20. GNSS monitoring of the ionosphere for Space Weather services

    Science.gov (United States)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  1. Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"

    Science.gov (United States)

    Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker

    2017-04-01

    Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain

  2. Exploring the Cigala/calibra Network Data Base for Ionosphere Monitoring Over Brazil

    Science.gov (United States)

    Vani, B. C.; Galera Monico, J. F.; Shimabukuro, M. H.; Pereira, V. A.; Aquino, M. H.

    2013-12-01

    The ionosphere in Brazil is strongly influenced by the equatorial anomaly, therefore GNSS based applications are widely affected by ionospheric disturbances. A network for continuous monitoring of the ionosphere has been deployed over its territory since February/2011, as part of the CIGALA and CALIBRA projects. Through CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America), which was funded by European Commission (EC) in the framework of the FP7-GALILEO-2009-GSA (European GNSS Agency), the first stations were deployed at Presidente Prudente, São Paulo state, in February 2011. CIGALA was finalized in February 2012 with eight stations distributed over the Brazilian territory. Through CALIBRA (Countering GNSS high Accuracy applications Limitations due to Ionospheric disturbances in BRAzil), which is also funded by the European Commission now in the framework of the FP7-GALILEO-2011-GSA, new stations are being deployed. Some of the stations are being specifically placed according to geomagnetic considerations aiming to support the development of a local scintillation and TEC model. CALIBRA started in November 2012 and will have two years of duration, focusing on the development of improved and new algorithms that can be applied to high accuracy GNSS techniques in order to tackle the effects of ionospheric disturbances. PolarRxS-PRO receivers, manufactured by Septentrio, have been deployed at all stations This multi-GNSS receiver can collect data at rates of up to 100 Hz, providing ionospheric TEC, scintillation parameters like S4 and Sigma-Phi, and other signal metrics like locktime for all satellites and frequencies tracked. All collected data (raw and ionosphere monitoring records) is stored at a central facility located at the Faculdade de Ciências e Tecnologia da Universidade Estadual Paulista (FCT/UNESP) in Presidente Prudente. To deal with the large amount of data, an analysis infrastructure has also been established

  3. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    Science.gov (United States)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2017-02-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  4. Global Ionospheric Perturbations Monitored by the Worldwide GPS Network

    Science.gov (United States)

    Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.

    1996-01-01

    Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.

  5. Ionospheric Plasma Response to M w 8.3 Chile Illapel Earthquake on September 16, 2015

    Science.gov (United States)

    Reddy, C. D.; Shrivastava, Mahesh N.; Seemala, Gopi K.; González, Gabriel; Baez, Juan Carlos

    2016-05-01

    The lithosphere and the atmosphere/ionosphere continuously exchange energy through various coupling mechanisms. In particular, the earth surface displacement caused by earthquakes, volcanoes and tsunamis can manifest as ionospheric plasma perturbations. We investigate the coseismic induced ionospheric total electron content (TEC) perturbations following the M w 8.3 Illapel thrust earthquake that occurred on September 16, 2015. The continuous global positioning system (GPS) data at 48 sites from Centro Sismológico Nacional and International GNSS Service GPS networks have been used in this study. The nearest GPS site recorded the ionospheric response 10 min after the occurrence of this earthquake. The maximum vertical coseismic induced TEC amplitude is ~1.4 TECU, and the perturbations are pronounced in the northern region of the epicenter and confined to less than ~1500 km radius. The average horizontal acoustic wave velocity has been determined as ~1260 m/s. We also observed acoustic resonance recorded by PRN 12 at 4.3 mHz corresponding to the first overtone of acoustic mode and lasting for about 30 min. In this study, we present characteristics of GPS derived ionospheric plasma perturbations following Illapel earthquake.

  6. Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances

    Science.gov (United States)

    Villalon, Elena

    1989-03-01

    Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.

  7. Development of An Ionospheric Scintillation Monitor Using Single Frequency GPS Receiver

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Besides their intended use in radio navigation, global positioning system (GPS) satellite signals provide convenient radio beacons for ionospheric studies. Among other propagation phenomena, the ionosphere affects GPS signal propagation through amplitude scintillations that develop after radio waves propagation through ionospheric electron density irregularities. This paper outlines the design, testing, and results of a specialized GPS receiver to monitor L-band scintillations. The scintillation monitor system consists of a commercial GPS receiver development kit with its software designed to log signal strength and carrier phase from up to 12 channels at one sample per second rate. Other prime features of the monitor include the data compression, transmission and processing. Here is the fact that they are inexpensive and compact and therefore can be readily proliferated.

  8. Near Earth space plasma monitoring under COST 296

    Directory of Open Access Journals (Sweden)

    Jürgen Bremer

    2009-06-01

    Full Text Available

    This review paper presents the main achievements of the near Earth space plasma monitoring under COST 296

    Action. The outputs of the COST 296 community making data, historical and real-time, standardized and available to the ionospheric community for their research, applications and modeling purposes are presented. The contribution of COST 296 with the added value of the validated data made possible a trusted ionospheric monitoring for research and modeling purposes, and it served for testing and improving the algorithms producing real-time

    data and providing data users measurement uncertainties. These value added data also served for calibration and

    validation of space-borne sensors. New techniques and parameters have been developed for monitoring the near Earth space plasma, as time dependent 2D maps of vertical total electron content (vTEC, other key ionospheric parameters and activity indices for distinguishing disturbed ionospheric conditions, as well as a technique for improving the discrepancies of different mapping services. The dissemination of the above products has been developed by COST 296 participants throughout the websites making them available on-line for real-time applications.


  9. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    Science.gov (United States)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  10. Mid-latitude ionospheric perturbation associated with the Spacelab-2 plasma depletion experiment at Millstone Hill

    Directory of Open Access Journals (Sweden)

    J. C. Foster

    Full Text Available Elevation scans across geomagnetic mid latitudes by the incoherent scatter radar at Millstone Hill captured the ionospheric response to the firing of the Space Shuttle Challenger OMS thrusters near the peak of the F layer on July 30, 1985. Details of the excitation of airglow and the formation of an ionospheric hole during this event have been reported in an earlier paper by Mendillo et al.. The depletion (factor ~2 near the 320 km Shuttle orbital altitude persisted for ~35 min and then recovered to near normal levels, while at 265 km the density was reduced by a factor of ~6; this significant reduction in the bottomside F-region density persisted for more than 3 hours. Total electron content in the vicinity of the hole was reduced by more than a factor of 2, and an oscillation of the F-region densities with 40-min period ensued and persisted for several hours. Plasma vertical Doppler velocity varied quasi-periodically with a ~80-min period, while magnetic field variations observed on the field line through the Shuttle-burn position exhibited a similar ~80-min periodicity. An interval of magnetic field variations at hydromagnetic frequencies (~95 s period accompanied the ionospheric perturbations on this field line. Radar observations revealed a downward phase progression of the 40-min period density enhancements of -1.12° km-1, corresponding to a 320-km vertical wavelength. An auroral-latitude geomagnetic disturbance began near the time of the Spacelab-2 experiment and was associated with the imposition of a strong southward IMF Bz across the magnetosphere. This created an additional complication in the interpretation of the active ionospheric experiment. It cannot be determined uniquely whether the ionospheric oscillations, which followed the Spacelab-2 experiment, were related to the active experiment or were the result of a propagating ionospheric disturbance (TID launched by the enhanced auroral

  11. First observation of quasi-2-day oscillations in ionospheric plasma frequency at fixed heights

    Directory of Open Access Journals (Sweden)

    D. Altadill

    Full Text Available The existence and development of the quasi-2-day oscillations in the plasma frequency variations of the F region at northern middle latitudes are investigated. A new approach to study the quasi-2-day oscillations is presented, using a methodology that allows us to do such a study at fixed heights. The hourly values of plasma frequency at fixed heights, from 170 km to 220 km at 10 km step, obtained at the Observatori de l'Ebre station (40.8°N, 0.5°E during 1995 are used for analysis. It is found that quasi-2-day oscillations exist and persisted in the ionospheric plasma frequency variations over the entire year 1995 for all altitudes investigated. The dominant period of oscillation ranges from 42 to 56 h. The amplitude of oscillation is from 0.1 MHz to 1 MHz. The activity of the quasi-2-day oscillation is better expressed during the summer half year when several enhancements, about 15–30 days in duration, were observed. The largest enhancements of the oscillation occurred during early June, July and early August; i. e., near and after the summer solstice when the 2-day wave in the middle neutral atmosphere typically displays its largest activity in the Northern Hemisphere. The results obtained may help us understand better the possible influencing mechanisms between the 2-day wave in the middle neutral atmosphere and the ionospheric quasi-2-day oscillations.

    Key words. Ionosphere (Ionosphere - atmosphere interactions; Mid-latitude ionosphere; Plasma waves and instabilities

  12. MONITORING IONOSPHERIC VARIATION FOR A DEFINITE PERIOD TIME IN TURKEY

    Directory of Open Access Journals (Sweden)

    S. Inyurt

    2015-12-01

    Full Text Available Ionosphere has been studied by a number of scientists in recent years. Since GPS observations cannot provide TEC value directly, it can be estimated from combination of observations. In this study TEC values derived from GPS observations were produced variations with two hours increments from the eighth day to fifteenth day in months just after beginning of each season, namely January, April, July and October in 2014 for ZONG TUSAGA-Aktif station and 41 other stations (TUSAGA-Aktif, EUREF, IGS. TEC values computed by the Bernese 5.0 software were compared with the Global Ionosphere Model (GIM TEC values regularly published by Center for Orbit Determination in Europe (CODE and International Reference Ionosphere (IRI-2012 TEC values. As a result of this study, with the comparison of GPS TEC values to GIM TEC values, it has become obvious that GPS TEC values are quite similar to the GIM TEC values. The differences of TEC values derived from GPS TEC and GIM TEC change from 0.91 TECU (January to 1.88 TECU (October. On the other hand, GPS TEC values are also compared with IRI TEC values, and found out that there is a considerable difference between the two TEC values ranging from 6.30 TECU (January to 15.15 TECU (April. Moreover, TEC values derived from GPS measurements are attained similar to GIM TEC, but found to stray from IRI-2012 TEC values remarkably.

  13. Titan's Topside Ionospheric Composition: Cassini Plasma Spectrometer Ion Mass Spectrometer Measurements

    Science.gov (United States)

    Sittler, Edward; Hartle, Richard; Ali, Ashraf; Cooper, John; Lipatov, Alexander; Simpson, David; Sarantos, Menelaos; Chornay, Dennis; Smith, Todd

    2017-01-01

    We present ion composition measurements of Titan's topside ionosphere using both T9 and T15 Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements. The IMS is able to make measurements of Titan's ionosphere due to ionospheric outflows as originally reported for the T9 flyby. This allows one to take advantage of the unique capabilities of the CAPS IMS which measures both the mass-per-charge (M/Q) of the ions and the fragments of the ions produced inside the sensor such as carbon, nitrogen and oxygen fragments. Specific attention will be given to such ions as NH4 +, N +, O +, CH4 +, CxHy +, and HCNH + ions as examples. The CAPS IMS uses a time-of-flight (TOF) technique which accelerates ions up to 14.6 kV, so they can pass through ultra-thin carbon foils. Neutral fragments are used to measure the ion M/Q and positive fragments to measure the atomic components. We preliminarily find, by using IMS measurements of T9 and T15 ionospheric outflows, evidence for methane group ions, nitrogen ions, ammonium ions, water group ions and CnHm + ions with n = 2, 3, and 4 within Titan's topside ionosphere. E.C. Sittler acknowledges support at Goddard Space Flight Center by the CAPS Cassini Project from JPL funds under contract # NAS703001TONMO711123/1405851.

  14. Monitoring jonosfere i svemirskog vremena u Bosni i Hercegovini : Monitoring of ionosphere and space weather in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Džana Horozović

    2015-12-01

    Full Text Available Zbog svoje disperzivne prirode, jonosfera uzrokuje kašnjenje koda, odnosno ubrzanje faze signala Globalnih navigacijskih satelitskih sistema - GNSS. Usprkos napretku metoda GNSS pozicioniranja, jonosferska refrakcija je još uvijek jedan od najvećih izvora pogrešaka geodetskog pozicioniranja i navigacije. Različiti fenomeni svemirskog vremena, kao: solarni vjetar, geomagnetna oluja, solarna radijacija, može oštetiti GNSS satelite, dalekovode i elektrodistributivnu mrežu, itd. Zato je važno ustanoviti metode istraživanja i monitoringa svemirskog vremena. Istraživanje jonosfere i svemirskog vremena je predmet ovog rada. Opisan je postupak konstruiranja SID (engl. sudden ionospheric disturbances – iznenadne jonosferske smetnje monitora. Analiza je pokazala da je jonosferska monitoring stanica u Sarajevu SRJV_ION 0436 sposobna otkriti pojačano zračenje. : Due to its dispersive nature, ionosphere causes a group delay or phase acceleration of the signals from Global navigation satellite systems - GNSS. Despite the progress of GNSS positioning methods, the ionospheric refraction is still one of the greatest source of the errors in the geodetic positioning and navigation. Different phenomenons oft he space weather: solar wind, geomagnetic storm, solar radiation, can damage GNSS, and electric power distribution networks but That is why it's important to establish research and monitoring methods of the space weather. The subject of this paper is the investigation of ionosphere and space weather. Procedure of constructing a SID (engl. Sudden ionospheric disturbances monitor station are described. The analysis showed that ionosphere monitoring station in Sarajevo, SRJV_ION 0436, was able to detect increased solar radiation.

  15. Boundary location of Mars nightside ionospheric plasma in term of the electron density

    Science.gov (United States)

    Morooka, Michiko W.; Andersson, Laila; Ergun, Bob; Fowler, Christopher; Woodson, Adam; Weber, Tristan; Delory, Greg; Andrews, David; Edberg, Niklas; Eriksson, Anders; Michell, David; Connerney, Jack; Gruesbeck, Jacob; Halekas, Jasper

    2015-11-01

    Photo-ionized Mars atmosphere is forming an ionosphere and shielding the solar wind with creating barriers of bow shock. Inside the bow shock ionospheric plasma interact with solar wind plasma and result different boundaries. A question is how far the ionospheric plasma can stand off the solar wind.On the dayside, in-situ data set from Mars magnetosphere missions often observed the sharp gradient of the thermal plasma flux and ion composition change as well as the drop off of the magnetic fluctuation simultaneously as a outer boundary of the ionospheric plasma and an obstacle to the solar wind. Several models have constructed the shape of the boundary based on the statistical observations [e.g., Trotignon et al., 2006; Edberg et al., 2008].On the nightside, plasma instrument onboard Phobos 2 observed the particles and magnetic field characteristics similar to the dayside. However, the number of data is still too few to understand the general location of boundaries. We will present the characteristics of the nightside magnetospheric boundary region in term of the electron density. MAVEN Langmuir probe measurement (LPW) can estimate the electron density using the spacecraft environment. As MAVEN pass from the bow shock and sheath region into the magnetosphere the electron density often show a sharp gradient (the density jumps two orders of magnitudes in a few seconds). Comparing this to the data from particle instrument, the sharp electron density gradient was often associated with the transition of the characteristic energy of ions.Several hundreds of boundaries crossing by MAVEN allow us to investigate the statistical view of the boundary. We searched for a large electron density gradient as an indicator of the plasma boundary to identify the location of the ionospheric/solar wind plasma boundary. The results show that the many of the nightside boundaries locates close to the tail region of Mars forming elliptical shape of boundary. We will provide the empirical

  16. The zonal motion of equatorial plasma bubbles relative to the background ionosphere

    Science.gov (United States)

    Kil, Hyosub; Lee, Woo Kyoung; Kwak, Young-Sil; Zhang, Yongliang; Paxton, Larry J.; Milla, Marco

    2014-07-01

    The zonal motions of plasmas inside equatorial plasma bubbles are different from those in the background ionosphere. The difference was explained in terms of the tilt of bubbles by recent studies, but observational evidence of this hypothesis has not yet been provided. We examine this hypothesis and, at the same time, look for an alternative explanation on the basis of the coincident satellite and radar observations over Jicamarca (11.95°S, 76.87°W) in Peru. In the observations at premidnight by the first Republic of China satellite (altitude: 600 km, inclination: 35°), plasmas inside bubbles drift westward relative to ambient plasmas. The same phenomenon is identified by radar observations. However, the relative westward plasma motions inside bubbles occur regardless of the tilt of bubbles, and therefore, the tilt is not the primary cause of the deviation of the plasma motions inside bubbles. The zonal plasma motions in the topside are characterized by systematic eastward drifts, whereas the zonal motions of plasmas in the bottomside backscatter layer show a mixture of eastward and westward drifts. The zonal plasma motions inside backscatter plumes resemble those in the bottomside backscatter layer. These observations indicate that plasmas inside bubbles maintain the properties of the zonal plasma motions in the bottomside where the bubbles originate. With this assumption, the deviation of the zonal motions of plasmas inside bubbles from those of ambient plasmas is understood in terms of the difference of the zonal plasma flows in the bottomside and topside.

  17. Long-term and transient forcing of the low ionosphere monitored by SAVNET

    Science.gov (United States)

    Raulin, Jean-Pierre; Bertoni, Fernando C. P.; Gavilán, Hernan R.; Samanes, Jorge C.

    2010-10-01

    In this paper we present the main findings obtained by the South America VLF NETwork since its installation in the South America territory. In particular we show the capability of the VLF technique to monitor the long-term solar activity and transient solar and geomagnetic disturbances. On long timescales they are indices on the possibility of monitoring the Lyman-α solar radiation. On shorter timescales we show that the VLF technique is a very sensitive mean of detecting solar X-ray flares. Those small events with a peak power ⩾5×10-7 W/m2 are detected with a 100% probability. A lower limit for the X-ray power of ˜2.7 10-7 W/m2 has been found in order to produce a ionospheric disturbance, and we confirm the important role of the Lyman-α radiation to form and maintain the low ionospheric D-region. SAVNET has also observed for the first time the ionospheric disturbances produced by outbursts from the magnetar SGR 1550-5408. This genuine detection suggests the possibility of monitoring on a routine basis these objects of fundamental importance in high-energy astrophysics. Finally, we show that SAVNET is well suited for participating to the search for seismo-ionospheric disturbances in order to study the possibility of earthquake events prediction.

  18. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions.

    Science.gov (United States)

    Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong

    2016-09-01

    In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.

  19. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions

    Science.gov (United States)

    Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong

    2016-09-01

    In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.

  20. Ionospheric storm effects and equatorial plasma irregularities during the 17-18 March 2015 event

    Science.gov (United States)

    Zhou, Yun-Liang; Lühr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-09-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (Em). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/prenoon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the postsunset sector. As a response to a short-lived decline of Em, EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 h. Only after the onset of recovery phase does EPI activity start again in the postmidnight sector, lasting more than 7 h. This comprehensive view of

  1. Magnetosphere-ionosphere interactions: Near Earth manifestations of the plasma universe

    Science.gov (United States)

    Faelthammar, Carl-Gunne

    1986-01-01

    As the universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on the understanding of how matter behaves in the plasma state. In situ observations in the near Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a results of the interactions between the magnetosphere and the ionosphere. The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy an momentum between the two regions. The exchange is executed by magnetic-field-aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.

  2. Development of a novel sweeping Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    Science.gov (United States)

    Ranvier, Sylvain; De Keyser, Johan; Cardoen, Pepijn; Pieroux, Didier

    2014-05-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Belgian Institute for Space Aeronomy. PICASSO was initiated to join the QB50 project as scientific in-orbit demonstrator. The sweeping Langmuir probe (SLP) instrument is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e6/m³ at high latitude and high altitude up to 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1000 K and 3000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, and 5) ionospheric dynamics via coordinated observations with EISCAT's heating radar. To achieve the scientific objectives described above, the instrument includes four thin cylindrical probes whose electrical potential is swept in such a way that both plasma density and electron temperature can be derived. In addition, since at least two probes will be out of the spacecraft's wake at any given time, differential measurements can be performed to increase the accuracy. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive

  3. Topside Ionosphere Plasma Bubbles Seen in He+ Density: Results and Problems

    Science.gov (United States)

    Sidorova, Larisa; Filippov, Sergey

    He (+) density depletions, considered as fossil equatorial plasma bubble signatures, were involved in this study. They are usually detected in the topside ionosphere (approx. 1000 km) deeply inside the plasmasphere (L=1.3-3). a) The question about an opportunity to detect the topside plasma bubbles of equatorial origin in their separate plasma component (He (+) ) is investigated. There are the indications [Sidorova, ASR, 2004, 2007; Sidorova and Filippov, JASTP, 2012] that there is genetic connection between the He (+) density depletions and the equatorial plasma bubbles. For validation of this idea the characteristic times of the main photochemical and electro-dynamical processes, in which the plasma bubbles and their minor ion component (He (+) ) are involved, have been calculated and compared. The model estimations, obtained in SAMIS3 (3D model of equatorial spread F) and kindly presented by J. Huba (USA), are also used for the investigation. It was revealed that the plasma bubbles, reaching the “ceiling” heights, can exist within 2-3 days and that there is principal opportunity to observe them in the separate plasma component (He (+) ). (b) The longitudinal statistics of the He (+) density depletions (P), calculated for all seasons and both hemispheres (20-50(°) INVLAT), were obtained. It was revealed that the most of the P plots have “wave-like” structure with well-defining four peaks. The peaks are the most pronounced in the NH during March equinox/December solstice and in the SH during March equinox/June solstice. Similar wave number 4 longitudinal structure has recently been found in the low-latitude ionosphere density distribution [Immel et al., GRL, 2006; England et al., GRL, 2006; Jin et al., JGR, 2008]. It is assumed that the longitudinal plasma density variations appear due to the modulated vertical Е×В drift. It is supposed that solar thermal tides excited in the troposphere induce zonal perturbation electric fields, which are added to the

  4. Impact of the dipole tilt angle on the ionospheric plasma in the outer plasmasphere

    Science.gov (United States)

    Marchaudon, Aurelie; Blelly, Pierre-Louis

    2015-04-01

    We have developed a new interhemispheric 16-moment based ionosphere model. This model describes the field-aligned transport of the multi-species ionospheric plasma (6 ions) from one hemisphere to the other, taking into account source processes at low altitudes (photoionization, chemistry) and coupling with suprathermal electrons. We simulate the convection and corotation transport of closed flux tubes in the outer plasmasphere for tilted/eccentric dipolar magnetic field configuration. We ran the model in solstice and equinox conditions and for two plasmapause boundary conditions: one corresponding to standard conditions with a stagnation point at 4.5 Earth radii (RE) and 15h Magnetic Local Time (MLT) and one corresponding to very quiet conditions with a stagnation point at 6 RE and 15h MLT. For each season/stagnation simulation, the model is run for 30 days before the equinox/solstice date in order to eliminate the transients. The goal is to study the combined effect of the tilt of the magnetic field and the rotation axis on the field-aligned dynamics and overall equilibrium of the subauroral ionosphere. In the classical representation of the plasmasphere, the ionosphere only depends on angular MLT sector. We will show that due to the tilt effect, this view is erroneous and no real dynamic equilibrium is reached, in particular close to the stagnation point where we can observe large day-to-day variations in the ionospheric parameters. Finally, we will present the temperatures anisotropy development along the flux tube for different positions of the stagnation point.

  5. A Mirror-like ECR Plasma Source for Ionosphere Environment Simulator

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A compact mirror-like ECR (electron cyclotron resonance) plasma source for the ionosphere environment simulator was described for the first time in China. The overall sources system was composed of a 200 W 2.45 GHz microwave source, a coaxial 3λo/4 TEM-mode microwave resonance applicator, column and cylindrical Nd-Fe-P magnets, a quartz bell-shaped discharge chamber, a gas inlet system and a plasma-diffusing bore. The preliminary experiment demonstrated that ambi-polar diffusion plasma stream into the simulator (~500 mm long) formed an environment with following parameters: a plasma density ne of 104 cm-3 ~ 106cm-3, an electron temperature Te < 5 eV at a pressure P of 10-1 Pa~10-3 Pa, a plasma uniformity of > 80% over the experimental target with a 160-mm-in-diameter, satisfying primarily the requirement of simulating in a severe ionosphere environment.

  6. Excitation and diagnosis of cascading Langmuir waves in ionospheric plasmas at Gakona, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Burton, L M; Cohen, J A; Pradipta, R; Labno, A; Lee, M C; Batishchev, O; Rokusek, D L [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Kuo, S P [Polytechnic University, Brooklyn, NY 11201 (United States); Watkins, B J; Oyama, S [University of Alaska Fairbanks, Fairbanks, AK 99775 (United States)], E-mail: mclee@mit.edu

    2008-12-15

    Ionospheric plasma heating experiments were conducted at Gakona, Alaska to investigate cascading spectra of Langmuir wave turbulence, excited by parametric instabilities diagnosed by Modular UHF Ionospheric Radar (MUIR). This work is aimed at testing the recent theory of Kuo and Lee (2005 J. Geophys. Res. 110 A01309) that addresses how the cascade of Langmuir waves can distribute spatially via the resonant and non-resonant decay processes. The non-resonant cascade proceeds at the location where parametric decay instability (PDI) or oscillating two-stream instability (OTSI) is excited and severely hampered by the frequency mismatch effect. By contrast, the resonant cascade, which takes place at lower matching heights, has to overcome the propagation loss of the Langmuir pump waves in each cascade step. Our experimental results have corroborated these predictions about the generation of cascading Langmuir waves by the HAARP heater.

  7. Real time monitoring for nowcasting and forecasting ionospheric space weatherin Europe with ground digisondes

    Directory of Open Access Journals (Sweden)

    A. Belehaki

    2005-06-01

    Full Text Available The Earth's ionosphere largely determines space weather effects on radio wave communications, navigation and surveillance systems. Lately there has been an increasing demand for ionospheric nowcast and accurate forecast services by various groups of users, including European industry. The paper reviews research activities in Europe based on the exploitation of real-time ground digisondes for the provision of nowcasting and forecasting ionospheric space weather information and useful products and services to support operational applications. During the last few years, important progress in databasing, modelling and forecasting ionospheric disturbances based on real-time data from ground digisondes was achieved in the frames of COST Action 271 «Effects of the Upper Atmosphere on Terrestrial and Earth-Space Communications». Further developments are expected to be deployed with the new COST Action 724 on «Developing the basis for monitoring, modelling and predicting space weather», as well as through the Space Weather Pilot Project of the European Space Agency and through projects funded by the European Commission programmes.

  8. Slow ions in plasma wind tunnels. [satellite-ionosphere interaction

    Science.gov (United States)

    Oran, W. A.; Stone, N. H.; Samir, U.

    1976-01-01

    One of the limitations of simulation experiments for the study of interaction between a satellite and its space environment is the background of slow ions in the plasma chamber. These ions appear to be created by charge exchange between the beam ions and residual neutral gas and may affect measurements of the current and potential in the wake. Results are presented for a plasma wind tunnel experiment to study the effect of slow ions on both the ion and electron current distribution and the electron temperature in the wake of a body in a streaming plasma. It is shown that the effect of slow ions for beam ion density not exceeding 3 is not significant for measurements of ion current variations in the wake zone. This is not the case when studies are aimed at the quantitative examination of electron current and temperature variations in the near wake zone. In these instances, the measurements of electron properties in the wake should be done at very low system pressures or over a range of system pressures in order to ascertain the influence of slow ions.

  9. Characteristic of plasma bubbles observed by DMSP in the topside ionosphere during the year 2005

    Indian Academy of Sciences (India)

    K Patel; A K Singh

    2010-04-01

    To study the characteristic of plasma bubbles in the topside ionosphere during the solar minima, we have analyzed a large database of post-sunset plasma density measurement acquired during ∼5104 equatorial crossings made by Defense Meteorological Satellite Program (DMSP) F14 in 2005. On 675 of these crossings, equatorial plasma bubbles (EPBs) events were observed as intervals of depleted and irregular plasma densities that degrade communication and navigation signals. We have analyzed these EPB events to study their distributions with month, season and longitude. To test for possible dependence of EPB occurrence at topside altitudes on the level of magnetic activity, we compared the distributions of one year database with those of Kp index at the time of equatorial crossings by the DMSP satellites. We also examined the response of the evening sector, low-latitude ionosphere during eight magnetic storms with minimum Dst ≤ −100nT. We observed that EPBs occurred regularly during geomagnetic storms, especially in the initial and main phases but can be suppressed sometimes for days, after prolonged activity during recovery phases. These results are discussed according to the other reported results.

  10. Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun

    Science.gov (United States)

    Galand, M.; Héritier, K. L.; Odelstad, E.; Henri, P.; Broiles, T. W.; Allen, A. J.; Altwegg, K.; Beth, A.; Burch, J. L.; Carr, C. M.; Cupido, E.; Eriksson, A. I.; Glassmeier, K.-H.; Johansson, F. L.; Lebreton, J.-P.; Mandt, K. E.; Nilsson, H.; Richter, I.; Rubin, M.; Sagnières, L. B. M.; Schwartz, S. J.; Sémon, T.; Tzou, C.-Y.; Vallières, X.; Vigren, E.; Wurz, P.

    2016-11-01

    We propose to identify the main sources of ionization of the plasma in the coma of comet 67P/Churyumov-Gerasimenko at different locations in the coma and to quantify their relative importance, for the first time, for close cometocentric distances (3 au). The ionospheric model proposed is used as an organizing element of a multi-instrument data set from the Rosetta Plasma Consortium (RPC) plasma and particle sensors, from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis and from the Microwave Instrument on the Rosetta Orbiter, all on board the ESA/Rosetta spacecraft. The calculated ionospheric density driven by Rosetta observations is compared to the RPC-Langmuir Probe and RPC-Mutual Impedance Probe electron density. The main cometary plasma sources identified are photoionization of solar extreme ultraviolet (EUV) radiation and energetic electron-impact ionization. Over the northern, summer hemisphere, the solar EUV radiation is found to drive the electron density - with occasional periods when energetic electrons are also significant. Over the southern, winter hemisphere, photoionization alone cannot explain the observed electron density, which reaches sometimes higher values than over the summer hemisphere; electron-impact ionization has to be taken into account. The bulk of the electron population is warm with temperature of the order of 7-10 eV. For increased neutral densities, we show evidence of partial energy degradation of the hot electron energy tail and cooling of the full electron population.

  11. Integrated Multi-Point Space Plasma Measurements With Four Ionospheric Satellites

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Selcher, C.; Wilkens, M. R.; McHarg, M. G.; Krause, L.; Chun, F.; Enloe, L.; Panholzer, R.; Sakoda, D.; Phelps, R.; D Roussel-Dupre, D.; Colestock, P.; Close, S.

    2006-12-01

    The STP-1 launch scheduled for late 2006 will place four satellites with ionospheric plasma diagnostics into the same nearly circular orbit with an altitude of 560 km and inclination of 35.4°. The satellites will allow for unique multipoint measurements of ionospheric scintillations and their causes. Both the radio and in-situ diagnostics will provide coverage of low- and mid-latitudes. The four satellites, STPSat1, NPSat1, FalconSat3, and CFE will follow the same ground-track but because of drag and mass differences their relative velocities will be different and vary during the lifetime of the satellites. The four satellites will start close together; separate over a few months and coming back together with near conjunctions at six and eight months. Two satellite conjunctions between NPSat1 and STPSat1 will occur most often, approximately one month apart at the end of the mission. STPSat1 is equipped with CITRIS (sCintillation and TEC Receiver In Space) which will measure scintillations in the VHF, UHF and L-band along with measuring Total Electron Content (TEC) along the propagation path. NPSat1 will carry a three-frequency CERTO (Coherent Electromagnetic Radio TOmography) Beacon which broadcasts phase-coherent signals at 150.012 MHz, 400.032 MHz, and 1066.752 MHz. CITRIS will be able to measure TEC and Scintillations along the orbital path (propagation path from NPSat1 to STPSat1) as well as between the CITRIS and the ground. NPSat1 carries electron and ion saturation Langmuir Probes, while FalconSat3 carries the FLAPS (FLAt Plasma Spectrometer) and PLANE (Plasma Local Anomalous Noise Environment). The in-situ diagnostic complement the CITRIS/CERTO radio techniques in many ways. The CIBOLA Flight Experiment (CFE) contains a wide band receiver covering 100 to 500 MHz. The CFE data can be processed to show distortion of wide-band modulations by ionospheric irregularities. CFE and CITRIS can record ground transmissions from the French DORIS beacons which radiate

  12. Simple instruments used in monitoring ionospheric perturbations and some observational results showing the ionospheric responses to the perturbations mainly from the lower atmosphere

    Science.gov (United States)

    Xiao, Zuo; Hao, Yongqiang; Zhang, Donghe; Xiao, Sai-Guan; Huang, Weiquan

    Ionospheric disturbances such as SID and acoustic gravity waves in different scales are well known and commonly discussed topics. Some simple ground equipment was designed and used for monitoring continuously the effects of these disturbances, especially, SWF, SFD. Besides SIDs, They also reflect clearly the acoustic gravity waves in different scale and Spread-F and these data are important supplementary to the traditional ionosonde records. It is of signifi-cance in understanding physical essentials of the ionospheric disturbances and applications in SID warning. In this paper, the designing of the instruments is given and results are discussed in detail. Some case studies were introduced as example which showed very clearly not only immediate effects of solar flare, but also the phenomena of ionospheric responses to large scale gravity waves from lower atmosphere such as typhoon, great earthquake and volcano erup-tion. Particularlyresults showed that acoustic gravity waves play significant role in seeding ionospheric Spread-F. These examples give evidence that lower atmospheric activities strongly influence the ionosphere.

  13. Excitation of VLF quasi-electrostatic oscillations in the ionospheric plasma

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available A numerical solution of the dispersion equation for electromagnetic waves in a hot magnetized collisionless plasma has shown that, in a current-free ionospheric plasma, the distortion of the electron distribution function reproducing the downward flow of a thermal electron component and the compensating upward flow of the suprathermal electrons, which are responsible for the resulting heat flux, can destabilize quasi-electrostatic ion sound waves. The numerical analysis, performed with ion densities and electron temperature taken from the data recorded by the Interkosmos-24 (IK-24, Aktivny satellite, is compared with a VLF spectrum registered at the same time on board. This spectrum shows a wide frequency band emission below the local ion plasma frequency. The direction of the electron heat flux inherent to the assumed model of VLF emission generation is discussed

  14. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere.

    Science.gov (United States)

    Shimoyama, M; Oyama, K-I; Abe, T; Yau, A W

    2011-07-01

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (thermal to suprathermal energy continuously with high-energy resolution of about 0.15 eV. The measurement principle is based on the combination of a retarding potential analyzer with a channel electron multiplier (CEM) and the Druyvesteyn method, which derives energy distribution from the current-voltage characteristics. The capability of detecting plasma space potential enables absolute calibration of electron energy. The instrument with a small vacuum pump, which is required for the CEM to work in low-vacuum region, was first successfully tested by a sounding rocket S-310-37 in the ionospheric E region. The instrument is expected to provide new opportunities to measure energy distribution of thermal and non-thermal electrons in low-density plasma, where a Langmuir probe cannot measure electron temperature because of low plasma density.

  15. Quasi-Steady State Multi-Plasma Cloud Configuration in the Ionosphere.

    Science.gov (United States)

    1984-04-20

    STANDARDS 1963-A NRI -1tcu~orandum Re 50 Quasi-Steady State Multi-Plasma Cloud Configuration in the Ionosphere J. CHEN AND P. SATYANARAYANA * CV) Science...10) °2 where a1 and a2 are the Pedersen conductivities inside and outside the clouds, respectively. In reality, the collision frequency v . and thei~n...drift velocity is Ex B V - •(12) - B 2 Here, E -- E x. In particular, the Ex B drift velocity _V of a single isolated cloud is given by (1-K cE 0 For

  16. Non-Uniform Plasma Discharges in Near Earth Space Environment and Ionosphere to Troposphere Responses

    Science.gov (United States)

    McCanney, J. M.

    2009-05-01

    Most earth weather and ionosphere-space environment coupling studies separate the problems into distinct groups. Heliosphere to solar wind - solar storm activity to ionospheric coupling - thermosphere and mid- altitude to the ionosphere and electrical effects such as elves and sprites and thunderstorms in another group - additionally mid and high latitude weather systems are many times separated also. The theoretical work here shows that not only are these areas coupled and related, but it also shows that without the constant electrical and resulting magnetic driving forces from space environments, earth would have little if no weather variability at all below the ionosphere. With only solar light energy as input, earth (and the other planets) would have little weather at all. The realization that extensive electrical activates occur in and above the troposphere, extending to the ionosphere and ultimately coupling to the magnetosphere have raised the theoretical and experimental questions regarding the sources of EMF which create the observed effects. The current work has identified 17 Local Electrical Batteries (LEBs), which provide the electrical EMF that can be linked to the observed effects the jet streams and lower atmospheric weather phenomenon. The path of the sources of EMF can be followed from the passing solar wind through "tunnels" that end in electrical currents that pass into the atmosphere via the ionosphere to storm cloud systems in the lower atmosphere. However the source of energy comes from localized plasma discharging of a non-uniform plasma environment that powers the electrical systems of the entire solar system. These are ultimately the sources of electrical energy that power the severe lower atmospheric storm systems such as westerly moving hurricanes at low latitudes and associated tornadoes. The connection is made theoretically with the solar wind that drives the 17 identified LEBs. The ultimate source of driving energy is the result of an

  17. Statistics on the parameters of nonisothermal ionospheric plasma in large mesospheric electric fields

    Science.gov (United States)

    Martynenko, S.; Rozumenko, V.; Tyrnov, O.; Manson, A.; Meek, C.

    The large V/m electric fields inherent in the mesosphere play an essential role in lower ionospheric electrodynamics. They must be the cause of large variations in the electron temperature and the electron collision frequency at D region altitudes, and consequently the ionospheric plasma in the lower part of the D region undergoes a transition into a nonisothermal state. This study is based on the databases on large mesospheric electric fields collected with the 2.2-MHz radar of the Institute of Space and Atmospheric Studies, University of Saskatchewan, Canada (52°N geographic latitude, 60.4°N geomagnetic latitude) and with the 2.3-MHz radar of the Kharkiv V. Karazin National University (49.6°N geographic latitude, 45.6°N geomagnetic latitude). The statistical analysis of these data is presented in Meek, C. E., A. H. Manson, S. I. Martynenko, V. T. Rozumenko, O. F. Tyrnov, Remote sensing of mesospheric electric fields using MF radars, Journal of Atmospheric and Solar-Terrestrial Physics, in press. The large mesospheric electric fields is experimentally established to follow a Rayleigh distribution in the interval 0 ionospheric plasma.

  18. Ionospheric plasma density structures associated with magnetopause motion: a case study using the Cluster spacecraft and the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    F. Pitout

    2004-07-01

    Full Text Available On 5 January 2003, the footprint of the Cluster spacecraft, then orbiting in the dayside magnetosphere near the magnetopause, was in the close vicinity of the EISCAT Svalbard Radar (ESR in the dayside afternoon sector. This configuration made possible the study of the magnetopause motion and its direct consequences on the ionospheric plasma at high latitude. Cluster observed multiple magnetopause crossings despite its high latitude, while on the ground the magnetic activity was very low, whereas the ionospheric plasma sounded by the ESR exhibited poleward moving plasma density structures. In this paper, we compare the satellite and radar data, in order to show that the plasma density structures are directly related to the magnetopause motion and its associated pulsed ionospheric flow. We propose that the variations in electric field make the convection velocity vary enough to alter the electron population by accelerating the chemistry in the F-region and act as a source of electron depletion. The magnetopause motion is in this case, a source of plasma density structures in the polar dayside ionosphere.

  19. Observations of small- to large-scale ionospheric irregularities associated with plasma bubbles with a transequatorial HF propagation experiment and spaced GPS receivers

    Science.gov (United States)

    Saito, Susumu; Maruyama, Takashi; Ishii, Mamoru; Kubota, Minoru; Ma, Guanyi; Chen, Yanhong; Li, Jinghua; Ha Duyen, Chau; Le Truong, Thanh

    2008-12-01

    The results from simultaneous observations of the nighttime transequatorial propagation (TEP) of HF radio waves between Australia and Japan and the GPS scintillation measurements in south China and Vietnam are presented in this paper. The results showed that there was good correspondence between the nighttime eastward traveling off-great circle propagation (OGCP) of broadcasting waves of Radio Australia from Shepparton, Australia, measured at Oarai, Japan, and the scintillations in GPS radio waves at Hainan, China. This shows that the nighttime eastward traveling OGCP in HF TEP is caused by a large-scale ionospheric structure associated with a plasma bubble. The zonal drift velocities of the large-scale ionospheric structure estimated by the change in the direction of arrival of the OGCP were similar to those of the small-scale irregularities associated with plasma bubbles measured by the GPS scintillation spaced-receiver technique. Our results show that the HF TEP measurement is quite useful for monitoring the plasma bubble occurrence over a wide area and for forecasting the arrival of the plasma bubble at places located to the east of it.

  20. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.

    2010-12-01

    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity

  1. St. Patrick's Day 2015 geomagnetic storm analysis based on Real Time Ionosphere Monitoring

    Science.gov (United States)

    García-Rigo, Alberto

    2017-04-01

    Ionosphere Monitoring (RTIM) is a new Working Group within the International Association of Geodesy (IAG) Sub-Commission 4.3 "Atmosphere Remote Sensing". The complementary expertise of the participating research groups allows to analyse the ionospheric behaviour from a broad perspective, taking benefit of comparing multiple independent real time and near real time ionospheric approaches. In this context, a detailed analysis will be presented for the days in March, 2015 surrounding St. Patrick's Day 2015 geomagnetic storm, based on the existing ionospheric models (global or regional) within the group, which are mainly based on Global Navigation Satellite Systems (GNSS) and ionosonde data. For this purpose, a variety of ionospheric parameters will be considered, including Total Electron Content (TEC), F2 layer critical frequency (foF2), F2 layer peak (hmF2), bottomside half-thickness (B0) and ionospheric disturbance W-index. Also, ionospheric high-frequency perturbations such as Travelling Ionospheric Disturbances (TIDs), scintillations and the impact of solar flares facing the Earth will be presented to derive a clear picture of the ionospheric dynamics. Among other sources of information to take part in the comparisons, there will be (1) scintillation results -from MONITOR ESA/ESTEC-funded project- derived by means of S4 index and Sigma Phi (IEEA), specially significant in the African sector and European high latitudes, (2) dynamics of the global maps of W-index with 1h resolution derived from JPL Global Ionospheric Maps (GIMs; IZMIRAN), (3) deviations from expected quiet-time behavior analysed in terms of foF2, hmF2, B0 and B1 based on IRTAM and GIRO network of digisondes (Lowell), showing F2 layer peculiar changes due to the storm, (4) statistics based on the median of the VTEC for the 15 previous days considering VTEC european regional maps (ROB), (5) time series of VTEC data that are derived by running the NRT ionosphere model of DGFI-TUM in offline mode, which show

  2. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    Science.gov (United States)

    Yau, A. W.; Whalen, B. A.; Harris, F. R.; Gattinger, R. L.; Pongratz, M. B.

    1985-01-01

    Observations of plasma depletion, ion composition modification, and airglow emissions in the Waterhole experiments are presented. The detailed ion chemistry and airglow emission processes related to the ionospheric hole formation in the experiment are examined, and observations are compared with computer simulation results. The latter indicate that the overall depletion rates in different parts of the depletion region are governed by different parameters.

  3. Numerical Simulation of the Time Evolution of Small-Scale Irregularities in the F-Layer Ionospheric Plasma

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2011-01-01

    Full Text Available Dynamics of magnetic field-aligned small-scale irregularities in the electron concentration, existing in the F-layer ionospheric plasma, is investigated with the help of a mathematical model. The plasma is assumed to be a rarefied compound consisting of electrons and positive ions and being in a strong, external magnetic field. In the applied model, kinetic processes in the plasma are simulated by using the Vlasov-Poisson system of equations. The system of equations is numerically solved applying a macroparticle method. The time evolution of a plasma irregularity, having initial cross-section dimension commensurable with a Debye length, is simulated during the period sufficient for the irregularity to decay completely. The results of simulation indicate that the small-scale irregularity, created initially in the F-region ionosphere, decays accomplishing periodic damped vibrations, with the process being collisionless.

  4. A plasma process monitor/control system

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.O.; Ward, P.P.; Smith, M.L. [Sandia National Labs., Albuquerque, NM (United States); Markle, R.J. [Advanced Micro Devices, Inc., Austin, TX (United States)

    1997-08-01

    Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

  5. PICASSO-SLP: a Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    Science.gov (United States)

    Ranvier, Sylvain; Anciaux, Michel; Cardoen, Pepijn; Gamby, Emmanuel; Bonnewijn, Sabrina; De Keyser, Johan; Echim, Marius; Pieroux, Didier

    2016-04-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Royal Belgian Institute for Space Aeronomy. PICASSO, an ESA in-orbit demonstrator, is a triple unit CubeSat of dimensions 340.5x100x100 mm. The sweeping Langmuir probe (SLP) instrument, which includes four thin cylindrical probes whose electrical potential is swept, is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e8/m³ at high latitude and high altitude up to several times 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1.000 K and 10.000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m for the electron density and temperature, and up to a few meters for electron density only. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, 5) for the density, the multi-scale behaviour, spectral properties and turbulence of processes typical for the auroral regions, and 6) ionospheric dynamics via coordinated observations with EISCAT's heating radar. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive modelling and simulations of the sheath effects on the

  6. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    Science.gov (United States)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  7. Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    Full Text Available The amplitude and spatial distribution of the coupling currents that flow between Jupiter’s ionosphere and middle magnetosphere, which enforce partial corotation on outward-flowing iogenic plasma, depend on the values of the effective Pedersen conductivity of the jovian ionosphere and the mass outflow rate of iogenic plasma. The values of these parameters are, however, very uncertain. Here we determine how the solutions for the plasma angular velocity and current components depend on these parameters over wide ranges. We consider two models of the poloidal magnetospheric magnetic field, namely the planetary dipole alone, and an empirical current sheet field based on Voyager data. Following work by Hill (2001, we obtain a complete normalized analytic solution for the dipole field, which shows in compact form how the plasma angular velocity and current components scale in space and in amplitude with the system parameters in this case. We then obtain an approximate analytic solution in similar form for a current sheet field in which the equatorial field strength varies with radial distance as a power law. A key feature of the model is that the current sheet field lines map to a narrow latitudinal strip in the ionosphere, at ≈ 15° co-latitude. The approximate current sheet solutions are compared with the results of numerical integrations using the full field model, for which a power law applies beyond ≈ 20 RJ, and are found to agree very well within their regime of applicability. A major distinction between the solutions for the dipole field and the current sheet concerns the behaviour of the field-aligned current. In the dipole model the direction of the current reverses at moderate equatorial distances, and the current system wholly closes if the model is extended to infinity in the equatorial plane and to the pole in the ionosphere. In the approximate current sheet model, however, the field-aligned current is unidirectional

  8. Ionospheric plasma disturbances generated by naturally occurring large-scale anomalous heat sources

    Science.gov (United States)

    Pradipta, Rezy; Lee, Min-Chang; Coster, Anthea J.; Tepley, Craig A.; Sulzer, Michael P.; Gonzalez, Sixto A.

    2017-04-01

    We report the findings from our investigation on the possibility of large-scale anomalous thermal gradients to generate acoustic-gravity waves (AGWs) and traveling ionospheric disturbances (TIDs). In particular, here we consider the case of summer 2006 North American heat wave event as a concrete example of such large-scale natural thermal gradients. This special scenario of AGW/TID generation was formulated based on the results of our experiments at the Arecibo Observatory in July 2006, followed by a systematic monitoring/surveillance of total electron content (TEC) fluctuations over North America in 2005-2007 using the MIT Haystack Observatory's Madrigal database. The data from our Arecibo experiments indicate a continual occurrence of intense AGW/TID over the Caribbean on 21-24 July 2006, and the Madrigal TEC data analysis shows that the overall level of TID activity over North America had increased by ∼0.2 TECU during the summer 2006 heat wave event. Our proposed scenario is in agreement with these empirical observations, and is generally consistent with a number of past ionospheric HF heating experiments related to AGW/TID generation.

  9. Ionospheric plasma deterioration in the area of enhanced seismic activity as compared to antipodal sites far from seismicity

    Science.gov (United States)

    Gulyaeva, Tamara; Arikan, Feza; Poustovalova, Ljubov; Stanislawska, Iwona

    2016-07-01

    The early magnetogram records from two nearly antipodal sites at Greenwich and Melbourne corresponding to the activity level at the invariant magnetic latitude of 50 deg give a long series of geomagnetic aa indices since 1868. The aa index derived from magnetic perturbation values at only two observatories (as distinct from the planetary ap index) experiences larger extreme values if either input site is well situated to the overhead ionospheric and/or field aligned current systems producing the magnetic storm effects. Analysis of the earthquakes catalogues since 1914 has shown the area of the peak global earthquake occurrence in the Pacific Ocean southwards from the magnetic equator, and, in particular, at Australia. In the present study the ionospheric critical frequency, foF2, is analyzed from the ionosonde measurements at the nearby observatories, Canberra and Slough (Chilton), and Moscow (control site) since 1944 to 2015. The daily-hourly-annual percentage occurrence of positive ionospheric W index (pW+) and negative index (pW-) is determined. It is found that the ionospheric plasma depletion pW- of the instant foF2 as compared to the monthly median is well correlated to the aa index at all three sites but the positive storm signatures show drastic difference at Canberra (no correlation of pW+ with aa index) as compared to two other sites where the high correlation is found of the ionospheric plasma density enhancement with the geomagnetic activity. A possible suppression of the enhanced ionospheric variability over the region of intense seismicity is discussed in the paper. This study is supported by TUBITAK EEEAG 115E915.

  10. A global climatology for equatorial plasma bubbles in the topside ionosphere

    Directory of Open Access Journals (Sweden)

    L. C. Gentile

    2006-03-01

    Full Text Available We have developed a global climatology of equatorial plasma bubble (EPB occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985 hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS mission.

  11. Multi-instrument observations of the ionospheric counterpart of a bursty bulk flow in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2004-04-01

    Full Text Available On 07 September 2001 the Cluster spacecraft observed a "bursty bulk flow" event in the near-Earth central plasma sheet. This paper presents a detailed study of the coincident ground-based observations and attempts to place them within a simple physical framework. The event in question occurs at ~22:30 UT, some 10min after a southward turning of the IMF. IMAGE and SAMNET magnetometer measurements of the ground magnetic field reveal perturbations of a few tens of nT and small amplitude Pi2 pulsations. CUTLASS radar observations of ionospheric plasma convection show enhanced flows out of the polar cap near midnight, accompanied by an elevated transpolar voltage. Optical data from the IMAGE satellite also show that there is a transient, localised ~1 kR brightening in the UV aurora. These observations are consistent with the earthward transport of plasma in the tail, but also indicate the absence of a typical "large-scale" substorm current wedge. An analysis of the field-aligned current system implied by the radar measurements does suggest the existence of a small-scale current "wedgelet", but one which lacks the global scale and high conductivities observed during substorm expansions.

    Key words. Ionosphere (auroral ionosphere; ionospheremagnetosphere interactions; plasma convection

  12. Toward an integrated view of ionospheric plasma instabilities: Altitudinal transitions and strong gradient case

    Science.gov (United States)

    Makarevich, Roman A.

    2016-04-01

    A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.

  13. Sensor for monitoring plasma parameters

    CERN Document Server

    Bolshakov, A A; Sharma, S P; Bol'shakov, Alexander A.; Cruden, Brett A.; Sharma, Surendra P.

    2004-01-01

    A spectrally tunable VCSEL (vertical cavity surface-emitting laser) was used as part of sensing hardware for measurements of the radial-integrated gas temperature inside an inductively coupled plasma reactor. The data were obtained by profiling the Doppler-broadened absorption of metastable Ar atoms at 763.51 nm in argon and argon/nitrogen plasmas (3, 45, and 90% N2 in Ar) at pressure 0.5-70 Pa and inductive power of 100 and 300 W. The results were compared to rotational temperature derived from the N2 emission at the (0,0) transition of the C - B system. The differences in integrated rotational and Doppler temperatures were attributed to non-uniform spatial distributions of both temperature and thermometric species (Ar* and N2*) that varied depending on conditions. A two-dimensional, two-temperature fluid plasma simulation was employed to explain these differences. This work should facilitate further development of a miniature sensor for non-intrusive acquisition of data (temperature and densities of multipl...

  14. Observations of nightside auroral plasma upflows in the F-region and topside ionosphere

    Directory of Open Access Journals (Sweden)

    C. Foster

    Full Text Available Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 m s–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion tem- peratures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHF data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.

  15. Characteristics of ionospheric plasma drifts as obtained from Doppler ionosonde measurements at magnetic equator over Indian sector

    Science.gov (United States)

    Samireddipalle, Sripathi; Banola, Sridhar; Singh, Ram

    2016-07-01

    We present equatorial plasma drifts over Tirunelveli (8.73°N, 77.70°E; Dip 0.5°N), an equatorial site over Indian region using Doppler interferometry technique of Canadian Advanced Digital Ionosonde (CADI) system. In the Doppler interferometry technique, it is possible to infer three dimensional bulk motion of the scatterers as reflected from the ionosphere at selected frequencies using spaced receivers arranged in mag. east-west, north-south directions. Spectral phases and amplitudes are calculated using FFT to identify the Doppler frequencies and their drifts. This technique produces reliable drifts when sharp refractive index gradients exists which produces higher scattering sources. The vertical drifts so obtained are compared with same drifts from Digisonde at Trivandrum. After having compared with Digisonde drifts, we studied the temporal and seasonal variability of these drifts during quiet periods for the year 2012. It is seen that vertical drifts exhibited equinoctial maximum in the Pre-Reversal-Enhancement (PRE) followed by winter and summer respectively. A comparison of these vertical drifts is made with drifts obtained from (a) virtual height measured at 4 MHz and (b) Fejer drift model. The comparison suggests that Doppler vertical drifts are relatively higher as compared to the drifts obtained from model and virtual height. However, the correlation seems to be good around evening PRE times. The zonal drifts, on the other hand, showed westward drifts during daytime with mean drifts of ~250 m/s, while they are eastward during nighttime with mean drifts of ~150 m/s. These drifts seems to be higher as compared to zonal drifts obtained in the South American sector. However, the zonal drifts so obtained showed good correlation with Equatorial Electrojet (EEJ) strength suggesting zonal drifts are influenced by E region drifts during daytime in agreement with Woodman et al., 2013 paper. The magnitude of these drifts are comparable to other independent

  16. Monitoring particle growth in deposition plasmas

    Science.gov (United States)

    Schlebrowski, T.; Bahre, H.; Böke, M.; Winter, J.

    2013-12-01

    Plasma-enhanced chemical vapor deposition methods are frequently used to deposit barrier layers, e.g. on polymers for food packaging. These plasmas may suffer from particle (dust) formation. We report on a flexible monitoring system for dust. It is based on scanning a 3D plasma volume for particles by laser light scattering. The lower size limit of particles detected in the presented system is 20 nm. We report on existence diagrams for obtaining dust free or dust loaded capacitively or inductively coupled rf-plasmas in C2H2 depending on pressure, flow and rf-power. We further present growth rates for dust in these plasmas and show that monodisperse particles are only obtained during the first growth cycle.

  17. Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions

    CERN Document Server

    Nichols, J D

    2011-01-01

    In this paper we provide the first consideration of magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources such as volcanic moons. We estimate the radio power emitted by such systems under the condition of near-rigid corotation throughout the closed magnetosphere, in order to examine the behaviour of the best candidates for detection with next generation radio telescopes. We thus estimate for different stellar X-ray-UV (XUV) luminosity cases the orbital distances within which the ionospheric Pedersen conductance would be high enough to maintain near-rigid corotation, and we then consider the magnitudes of the large-scale magnetosphere-ionosphere currents flowing within the systems, and the resulting radio powers, at such distances. We also examine the effects of two key system parameters, i.e. the planetary angular velocity and the plasma mass outflow rate from sources internal to the magnetosphere. In all XUV luminosity cases studied, a significant number of parameter combi...

  18. Kinetic Space Weather: Toward a Global Hybrid Model of the Polar Ionosphere-Lower Magnetosphere Plasma Transport

    Science.gov (United States)

    Horwitz, James L.

    1996-01-01

    During the indicated period of performance, we had a number of publications concerned with kinetic polar ionosphere-lower magnetosphere plasma transport. For the IUGG 1991-4 Quadrennial Report, we reviewed aspects of U.S. accomplishments concerned with polar plasma transport, among other issues. In another review, we examined the computer simulations of multiple-scale processes in space plasmas, including polar plasma outflow and transport. We also examined specifically multiscale processes in ionospheric outflows. We developed a Generalized Semi-Kinetic(GSK) model for the topside-lower magnetosphere which explored the synergistic action of wave heating and electric potentials in the formation of auroral Ion conics, in particular the "pressure cooker" mechanism. We extended the GSK model all the way down to 120 km and applied this code to illustrate the response of the ionosphere- magnetosphere to soft-electron precipitation and convection-driven frictional ion heating, respectively. Later, the convection-driven heating work was extended to a paper for the Journal of Geophysical Research. In addition to the above full published papers, we also presented the first developments of the coupled fluid-semikinetic model for polar plasma transport during this period. The results from a steady-state treatment were presented, with the second presentation being concerned with the effects of photo-electrons on the polar wind, and the first garnering an outstanding student paper award from the American Geophysical Union. We presented the first results from a time-dependent version of this coupled fluid-semikinetic model.

  19. Ionospheric plasma flow over large high-voltage space platforms. I - Ion-plasma-time scale interactions of a plate at zero angle of attack. II - The formation and structure of plasma wake

    Science.gov (United States)

    Wang, J.; Hastings, D. E.

    1992-01-01

    The paper presents the theory and particle simulation results for the ionospheric plasma flow over a large high-voltage space platform at a zero angle of attack and at a large angle of attack. Emphasis is placed on the structures in the large, high-voltage regime and the transient plasma response on the ion-plasma time scale. Special consideration is given to the transient formation of the space-charge wake and its steady-state structure.

  20. Estimation Method of Ionospheric TEC Distribution using Single Frequency Measurements of GPS Signals

    Directory of Open Access Journals (Sweden)

    Win Zaw Hein

    2016-12-01

    Full Text Available The satellite-to-ground communications are influenced by ionospheric plasma which varies depending on solar and geomagnetic activities as well as regions and local times. With the expansion of use of the space, continuous monitoring of the ionospheric plasma has become an important issue. In Global Positioning System (GPS, the ionospheric delay, which is proportional to ionospheric total electron content (TEC along the propagation path, is the largest error in signal propagation. The TEC has been observed from dual frequency GPS signals because only the ionospheric delay has frequency dependences. Costs of multi-frequency receivers are, however, much higher than those of single frequency ones. In the present study, an estimation method of TEC distribution map from single frequency GPS measurements was developed. The developed method was evaluated by comparing its results with those from dual frequency measurements. The method makes it possible to expand ionospheric TEC observation networks easily.

  1. Brief communication "Monitoring ionospheric variations before earthquakes using the vertical and oblique sounding network over China"

    Directory of Open Access Journals (Sweden)

    Z. Wu

    2011-04-01

    Full Text Available The problem of earthquake prediction has stimulated the research for correlation between seismic activity and ionospheric anomaly. Many observations have shown the existence of anomaly of critical frequency of ionospheric F-region, foF2, before earthquake onset. Ionospheric sounding has been conducted routinely for more than 60 years in China by the China Research Institute of Radiowave Propagation (CRIRP, and deveoloped a very powerful ability to observe the ionosphere. In this paper, we briefly describe the anomalous variation of the foF2 before Ms8.0 Wenchuan earthquake (occurred on 12 May 2008 at 14:28 LT; 31.00° N, 103.40° E, which is a sign of the great interest arising in the seismo-ionospheric investigation of Chinese researchers. Furthermore, we introduce the routine work on seismo-ionospheric anomaly by the ground based high-resolution ionospheric observation (GBHIO network comprising 5 vertical and 20 oblique sounding stations.

  2. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data

    Science.gov (United States)

    Bergeot, Nicolas; Chevalier, Jean-Marie; Bruyninx, Carine; Pottiaux, Eric; Aerts, Wim; Baire, Quentin; Legrand, Juliette; Defraigne, Pascale; Huang, Wei

    2014-10-01

    Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth's atmosphere. In this frame, the Royal Observatory of Belgium (ROB) takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC) maps over Europe and their variability estimated in near real-time every 15 min on 0.5° × 0.5° grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at http://www.gnss.be/Atmospheric_Maps/ionospheric_maps.php. This paper presents the method used in the ROB-IONO software to generate the maps. The ROB-TEC maps show a good agreement with widely used post-processed products such as IGS and ESA with mean differences of 1.3 ± 0.9 and 0.4 ± 1.6 TECu respectively for the period 2012 to mid-2013. In addition, we tested the reliability of the ROB-IONO software to detect abnormal ionospheric activity during the Halloween 2003 ionospheric storm. For this period, the mean differences with IGS and ESA maps are 0.9 ± 2.2 and 0.6 ± 6.8 TECu respectively with maximum differences (>38 TECu) occurring during the major phase of the storm. These differences are due to the lower resolution in time and space of both IGS and ESA maps compared to the ROB-TEC maps. A description of two recent events, one on March 17, 2013 and one on February 27, 2014 also highlights the capability of the method adopted in the ROB-IONO software to detect in near real-time abnormal ionospheric behaviour over Europe. In that frame, ROB maintains a data base publicly available with identified ionospheric events since 2012.

  3. Medium-Scale Traveling Ionospheric Disturbances and Plasma Bubbles Observed by an All-Sky Airglow Imager at Yonaguni, Japan

    Directory of Open Access Journals (Sweden)

    Tadahiko Ogawa

    2009-01-01

    Full Text Available We report on night time air glow imaging observations of the low latitude ionosphere by means of a 630-m all-sky imager in stalled in March 2006 at Yonaguni, Japan (24.5°N, 123.0°E; 14.6°N geomagnetic, about 100 km east of Taiwan. The imager detected medium-scale traveling ionospheric disturbances (MSTIDs for about 7 hours on the night of 26 May 2006. A dense GPS net work in Japan also ob served the same MSTID event on this night. The imager and GEONET data indicate that most of the MSTIDs prop a gated south west ward from the north of Japan to the south of Yonaguni and Taiwan over 4000 km, with a southern limit of 19°N (geomagnetic latitude 9°N or lower. On the night of 10 November 2006, the imager observed two weak emission bands that were embedded on the F-region anomaly crest to the south of Yonaguni. The simultaneous electron density profiles from the FORMOSAT-3/COS MIC mission demonstrate that the weak emission bands are due to density depletions in equatorial plasma bubbles. These case studies suggest that the Yonaguni imager in collaboration with other instruments is very suit able for the study of ionospheric disturbances in and around the northern F-region anomaly crest.

  4. Medium-Scale Traveling Ionospheric Disturbances and Plasma Bubbles Observed by an All-Sky Airglow Imager at Yonaguni, Japan

    Directory of Open Access Journals (Sweden)

    Tadahiko Ogawa

    2009-01-01

    Full Text Available We report on night time air glow imaging observations of the low latitude ionosphere by means of a 630-m all-sky imager in stalled in March 2006 at Yonaguni, Japan _ _ _ geomagnetic, about 100 km east of Taiwan. The imager detected medium-scale traveling ionospheric disturbances (MSTIDs for about 7 hours on the night of 26 May 2006. A dense GPS net work in Japan also ob served the same MSTID event on this night. The imager and GEONET data indicate that most of the MSTIDs prop a gated south west ward from the north of Japan to the south of Yonaguni and Taiwan over 4000 km, with a southern limit of _ (geomagnetic latitude _ or lower. On the night of 10 November 2006, the imager observed two weak emission bands that were embedded on the F-region anomaly crest to the south of Yonaguni. The simultaneous electron density profiles from the FORMOSAT-3/COS MIC mission demonstrate that the weak emission bands are due to density depletions in equatorial plasma bubbles. These case studies suggest that the Yonaguni imager in collaboration with other instruments is very suit able for the study of ionospheric disturbances in and around the northern F-region anomaly crest.

  5. The spatial structure of the dayside ionospheric trough

    Directory of Open Access Journals (Sweden)

    S. E. Pryse

    Full Text Available Tomographic imaging provides a powerful technique for obtaining images of the spatial distribution of ionospheric electron density at polar latitudes. The method, which involves monitoring radio transmissions from the Navy Navigation Satellite System at a meridional chain of ground receivers, has particular potential for complementing temporal measurements by other observing techniques such as the EISCAT incoherent-scatter radar facility. Tomographic reconstructions are presented here from a two-week campaign in November 1995 that show large-scale structuring of the polar ionosphere. Measurements by the EISCAT radar confirm the authenticity of the technique and provide additional information of the plasma electron and ion temperatures. The dayside trough, persistently observed at high latitudes during a geomagnetically quiet period but migrating to lower latitudes with increasing activity, is discussed in relationship to the pattern of the polar-cap convection.

    Key words. Ionosphere-magnetosphere interactions · Polar ionosphere · Radio science · Ionospheric propagation

  6. Nonlinear coupling of lower hybrid waves to the kinetic low-frequency plasma response in the auroral ionosphere

    Science.gov (United States)

    Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.

    A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.

  7. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data

    Directory of Open Access Journals (Sweden)

    Bergeot Nicolas

    2014-01-01

    Full Text Available Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth’s atmosphere. In this frame, the Royal Observatory of Belgium (ROB takes advantage of the dense EUREF Permanent GNSS Network (EPN to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC maps over Europe and their variability estimated in near real-time every 15 min on 0.5° × 0.5° grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at www.gnss.be. This paper presents the method used in the ROB-IONO software to generate the maps. The ROB-TEC maps show a good agreement with widely used post-processed products such as IGS and ESA with mean differences of 1.3 ± 0.9 and 0.4 ± 1.6 TECu respectively for the period 2012 to mid-2013. In addition, we tested the reliability of the ROB-IONO software to detect abnormal ionospheric activity during the Halloween 2003 ionospheric storm. For this period, the mean differences with IGS and ESA maps are 0.9 ± 2.2 and 0.6 ± 6.8 TECu respectively with maximum differences (>38 TECu occurring during the major phase of the storm. These differences are due to the lower resolution in time and space of both IGS and ESA maps compared to the ROB-TEC maps. A description of two recent events, one on March 17, 2013 and one on February 27, 2014 also highlights the capability of the method adopted in the ROB-IONO software to detect in near real-time abnormal ionospheric behaviour over Europe. In that frame, ROB maintains a data base publicly available with identified ionospheric events since 2012.

  8. Ionospheric TEC Weather Map Over South America

    Science.gov (United States)

    Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.

    2016-11-01

    Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.

  9. Effects of multiple scatter on the propagation and absorption of electromagnetic waves in a field-aligned-striated cold magneto-plasma: implications for ionospheric modification experiments

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  10. Monitoring the three-dimensional ionospheric electron density distribution using GPS observations over China

    Indian Academy of Sciences (India)

    Wen Debao; Yuan Yunbin; Ou Jikun

    2007-06-01

    In this paper, an IRI model assisted GPS-based Computerized Ionospheric Tomography (CIT) technique is developed to inverse the ionospheric electron density (IED) distribution over China. Essentially, an improved algebraic reconstruction technique (IART) is first proposed to reconstruct the ionospheric images with high resolution and high efficiency. A numerical experiment is used to validate the reliability of the method and its advantages to the classical algebraic reconstruction technique (ART). This is then used to reconstruct the IED images using the GPS data in China. The variations of the IED during magnetically quiet and disturbed days are reported and analyzed here. Reconstructed results during magnetically quiet days show some prominent ionospheric features such as the development of equatorial anomaly and the tilt of ionization crest. Meanwhile, ionospheric storm phase effects and disturbed features can also be revealed from the reconstructed IED image under storm conditions. Research shows that the positive storm phase effects usually happen in southern China, and the negative storm phase effects mainly occur in northern China. The equatorial anomaly crest moved to the north in the main phase of the storm. Ionosonde data recorded at Wuhan station provides the verification for the reliability of GPS-based CIT technique.

  11. Ionospheric disturbances during the magnetic storm of 15 July 2000: Role of the fountain effect and plasma bubbles for the formation of large equatorial plasma density depletions

    Science.gov (United States)

    Kil, Hyosub; Paxton, Larry J.

    2006-12-01

    We investigate the role of the fountain effect and plasma bubbles for the formation of the large equatorial plasma depletions during the geomagnetic storm of 15 July 2000. The large equatorial plasma depletions are detected in the Atlantic sector on the night of the 15th by the Defense Meteorological Satellite Program (DMSP) F15 and the first Republic of China Satellite (ROCSAT-1). The observations show discontinuous drop of the plasma density at the walls of the depletions, flat plasma density inside the depletions, and persistence or growth of the depletions over night. These properties are not consistent with the trough morphology induced by the fountain effect. The coincident ionospheric observations of DMSP F15 and ROCSAT-1 demonstrate that the large depletions are created in the longitude regions where plasma bubbles are present. The occurrence of the large depletions after sunset, elongation in the north-south direction, formation of steep walls, and colocation with plasma bubbles at lower altitudes or earlier times suggest that the large depletions are closely associated with plasma bubbles.

  12. Observational evidence for dust-plasma interactions in the Enceladus' plume, Saturn E-ring, in Titan's ionosphere, and near comets

    Science.gov (United States)

    Wahlund, J. E.; Holmberg, M. K. G.; Engelhardt, I. A. D.; Eriksson, A. I.; Shebanits, O.; Morooka, M. W.; Farrell, W. M.; Gurnett, D. A.; Kurth, W. S.; Ye, S.

    2014-12-01

    The Cassini mission has identified dust-plasma interactions in at least three different regions in the Saturn system. These are the dusty plasma environment near Enceladus, in particular within its plume the dusty plasma environment in the Saturn inner plasma disk enveloping the E-ring the aerosol-plasma environment in Titan's deep ionosphere. It is also believed to affect the dynamics substantially in a comet coma, now studied by Rosetta. The motion of plasma is changed considerably by the presence of substantial amounts of charged dust due to the added effect of gravity and radiation pressure forces on the dust component, thereby affecting the dynamics of the magnetosphere. Conversely the Lorentz force affects the charged dust through electric and magnetic fields that normally govern the motion of the plasma. Part of the dust size distribution should be considered a component of the plasma collective ensemble. The Cassini RPWS Langmuir Probe clearly detects a difference between the electron and ion number densities in all these regions, from which the total charge density of the negatively charged dust can be estimated. Moreover, the Cassini electron spectrometer (CAPS/ELS) detects negatively charged nanometer sized particles both in Titan's ionosphere as well as in Enceladus' plume. The inferred number densities are consistent with the Langmuir probe measurements. Here, the dust absorption of electrons is so strong that an ion-dust plasma is created with few free electrons. In the case of Titan's ionosphere this triggers the formation of aerosols that then diffuse to the ground. We show here new measurements from the E-ring showing electron density depletions due to dust absorption, a dust tail region of Enceladus, and confirm the consistency between measurements of negative ions by CAPS/ELS and the Radio and Plasma Wave Science Langmuir Probe (RPWS/LP) in Titan's ionosphere. We will also show initial hints regarding dust-plasma interaction near comets from the

  13. New Near-Real Time Monitoring of the Ionosphere over Europe Available On-line

    Science.gov (United States)

    Chevalier, J. M.; Bergeot, N.; Bruyninx, C.; Pottiaux, E.; Aerts, W.; Baire, Q.; Legrand, J.; Defraigne, P.

    2012-04-01

    With the beginning of the 24th Solar cycle, the increased Solar activity requires having a close eye on the ionosphere for better understanding Space Weather physics and its effects on radio communications. In that frame, near-real time ionospheric models over Europe are now routinely generated at the Royal Observatory of Belgium (ROB). These models are made available to the public through new interactive web pages at the web site of the GNSS team (www.gnss.be) and the Solar Influences Data Analysis Center (www.sidc.be) of ROB. The models are ionospheric Vertical Total Electron Content (VTEC) maps estimated every 15 minutes on a 0.5°x0.5° grid. They use the high-rate GPS observations of the real-time stations in the EUREF Permanent Network (EPN) provided by the ROB NTRIP broadcaster. The maps are published on the ROB web site with a latency of 7-15 minutes with respect to the last GPS measurement included in the 15-minute observation files. In a first step, this paper presents the processing strategy used to generate the VTEC maps: input data, parameter estimation, data cleaning and interpolation method. In addition, the tools developed to further exploit the product are introduced, e.g. on-demand animated VTEC maps. In a second step, the VTEC maps are compared with external ionospheric products and models such as Global Ionospheric Maps and IRI 2011. These new near-real time VTEC maps will allow any user within the geographical scope of the maps to estimate in near-real time the ionospheric delay induced along the signal of any observed satellite. In the future, the web site will continuously be updated in response to evolving user needs. This paper opens doors to discussions with the user community to target their needs.

  14. Application of lightning discharge generated radio atmospherics/tweeks in lower ionospheric plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, A K; Singh, R; Veenadhari, B [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai - 410 218 (India); Pant, P [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital - 263129, Uttrakhand (India); Singh, A K, E-mail: ajeet.iig@gmail.co, E-mail: akmaurya@iigs.iigm.res.i [Physics Department, Banaras Hindu University, Varanasi - 221005 (India)

    2010-02-01

    Lightning discharges during thunderstorm are the significant natural source of electromagnetic waves. They generate electromagnetic pulses, which vary from few Hz to tens of MHz, but the maximum radiated energy is confined in extremely low (ELF: 3-3000Hz) and very low (VLF: 3-30 KHz) frequency band. These pulsed signals with frequency dispersion are known as radio atmospherics or tweeks. These waves propagate through the process of multiple reflections in the earth-ionosphere waveguide over long distances with very low attenuation (2-3 dB/1000km). Since these waves are reflected by lower boundary of ionosphere, these are used extensively for probing the D-region ionosphere. D-region is important to the space weather, as well as the submarine communication and navigational aid. In this perspective the measurement of electron density profiles of the D-region is undoubtedly of great interest to both the development of reliable models and radio wave propagation. Earlier work on the tweeks is mainly focused to the theoretical considerations related to polarization, waveform analysis, and occurrence time and propagation mechanism. In this study we investigate tweeks to determine the equivalent night time electron densities at reflection height of the D-region. Distance traveled by the VLF waves from the causative lightning discharges to the receiving station has also been calculated. Tweeks recorded at a low latitude ground station of Allahabad (Geomag. lat. 16.05{sup 0} N) during the night of 23 March 2007 have been used in the present analysis. Based on the analysis of the fundamental cut-off frequency of tweeks, the estimated equivalent electron density of the D-region has been found to be in the range of {approx}20 to 25 el/cm{sup 3} at ionospheric reflection height of {approx}80 to 95 km respectively. Propagation distance in Earth-Ionosphere wave guide (EIWG) from causative lightning source to experimental site varies from {approx}1500 to 8000 km.

  15. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  16. Kalman filter-based algorithms for monitoring the ionosphere and plasmasphere with GPS in near-real time

    Science.gov (United States)

    Anghel, Adela; Carrano, Charles; Komjathy, Attila; Astilean, Adina; Letia, Tiberiu

    2009-01-01

    Data collected from a GPS receiver located at low latitudes in the American sector are used to investigate the performance of the WinTEC algorithm [Anghel et al., 2008a, Kalman filter-based algorithm for near realtime monitoring of the ionosphere using dual frequency GPS data. GPS Solutions, accepted for publication; for different ionospheric modeling techniques: the single-shell linear, quadratic, and cubic approaches, and the multi-shell linear approach. Our results indicate that the quadratic and cubic approaches perform much better than the single-shell and multi-shell linear approaches in terms of post-fit residuals. The performance of the algorithm for the cubic approach is then further tested by comparing the vertical TEC predicted by WinTEC and USTEC [Spencer et al., 2004. Ionospheric data assimilation methods for geodetic applications. In: Proceedings of IEEE PLANS, Monterey, CA, 26-29 April, pp. 510-517] at five North American stations. In addition, since the GPS-derived total electron content (TEC) contains contributions from both ionospheric and plasmaspheric sections of the GPS ray paths, in an effort to improve the accuracy of the TEC retrievals, a new data assimilation module that uses background information from an empirical plasmaspheric model [Gallagher et al., 1988. An empirical model of the Earth's plasmasphere. Advances in Space Research 8, (8)15-(8)24] has been incorporated into the WinTEC algorithm. The new Kalman filter-based algorithm estimates both the ionospheric and plasmaspheric electron contents, the combined satellite and receiver biases, and the estimation error covariance matrix, in a single-site or network solution. To evaluate the effect of the plasmaspheric component on the estimated biases and total TEC and to assess the performance of the newly developed algorithm, we compare the WinTEC results, with and without the plasmaspheric term included, at three GPS receivers located at different latitudes in the American sector, during

  17. 3-D FDTD Maxwell's-Equations Modeling of Sub-30 kHz Electromagnetic Wave Propagation in the Earth-Ionosphere Waveguide including Ionospheric Plasma Phenomena as Influenced by the Geomagnetic Field

    Science.gov (United States)

    Simpson, J. J.; Taflove, A.

    2006-12-01

    We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations for sub-30 kHz electromagnetic (EM) propagation in the Earth-ionosphere waveguide. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain calculation of EM propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. This is unlike previous FDTD models which assumed azimuthal symmetry about a vertical current source excitation representing a lightning channel. Our model is therefore unique in that it includes fully 3-D anisotropic plasma phenomena in the ionosphere as influenced by the full-vector geomagnetic field. In this study, we show results for EM propagation from lightning strikes using a spherical-coordinate (latitude- longitude) grid having a 1 x 1 x 1 km resolution. Our new model provides additional capabilities to simulate EM wave phenomena arising from whistlers and other lightning-related events, as well as for better understanding anomalous ionospheric phenomena reported to have occurred prior to and during major earthquakes.

  18. Spectral fluctuation analysis of ionospheric inhomogeneities over Brazilian territory. Part I: Equatorial F-region plasma bubbles

    Science.gov (United States)

    Fornari, G.; Rosa, R. R.; de Meneses, F. C.; Muralikrishna, P.

    2016-11-01

    In this Part I of a more general paper on the analysis of ionospheric irregularities over Brazilian territory, we apply the Detrended Fluctuation Analysis (DFA) method to evaluate in situ equatorial F-region plasma bubbles events carried out with a sounding rocket over equatorial region in Brazil. The range of scaling exponents derived from the DFA technique are compared to previous results obtained using Power Spectral Density (PSD) technique (which is widely used in this area despite its recognized inaccuracy to analyze short series). The results obtained in this first part of our investigation, using DFA, also show a wide range of spectral index variation with standard deviation of the same order found from the previous application using PSD (σm ≫ 10 %). Therefore, since the dependence of the technique are disregarded, our findings also supports that the observed lack of a universality class characterized by the nonexistence of a single spectral index (with σm ≈ 2 %) may be due to non-homogeneity energy cascades that can appear in the incoherent ionospheric turbulent process.

  19. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field

  20. New-Measurement Techniques to Diagnose Charged Dust and Plasma Layers in the Near-Earth Space Environment Using Ground-Based Ionospheric Heating Facilities

    OpenAIRE

    Mahmoudian, Alireza

    2013-01-01

    Recently, experimental observations have shown that radar echoes from the irregularitysource region associated with mesospheric dusty space plasmas may be modulated by radio wave heating with ground-based ionospheric heating facilities. These experiments show great promise as a diagnostic for the associated dusty plasma in the Near-Earth Space Environment which is believed to have links to global change. This provides an alternative to more complicated and costly space-based observational app...

  1. Polymerization monitoring in plasma etching systems

    Science.gov (United States)

    Kim, Jinsoo

    1999-11-01

    In plasma etching processes, the polymers used to enhance etch anisotropy and selectivity also deposit on various parts of the reaction chamber. This polymerization on reactor surface not only strongly affects the concentration of reactants in the plasma discharge, eventually changing the etching characteristics, but also can produce particulates which lower yield. This thesis explores the development of a direct in-situ polymerization monitoring sensor to minimize the drifts in plasma etching processes. In addition, polymerization dependencies on basic processing parameters and polymerization effects on etching characteristics have been explored for the first time using a direct in-situ sensor. The polymer buildup process is a strong function of parameters such as power, base pressure, and flow rate, and is also dependent on the reactor materials used, temperature, and the hydrogen/oxygen concentrations present. Experiments performed in an Applied Materials 8300 plasma etcher show a significant increase in polymerization with increased pressure and flow rates and a decrease as a function of power. These experiments provide insight into how the chamber state changes under the different processing recipes used for etching specific material layers and also suggest how the chamber seasoning process can best be carried out. The reactor surface, which serves as both a source and a sink for reactive gas species, not only strongly affects the concentration of reactants in the plasma discharge, eventually changing the etching characteristics, but also can produce particulates which lower yield. The etch rate and selectivity variations for specific silicon dioxide and silicon nitride etching recipes have been explored as a function of the polymer thickness on the reactor walls. The etch rates of nitride and polysilicon decrease dramatically with polymer thickness up to a thickness of 60nm, while the oxide etch rate remains virtually constant due to the polymerization

  2. Identification of the plasma instabilities responsible for decameter-scale ionospheric irregularities on plasmapause field lines

    Science.gov (United States)

    Eltrass, Ahmed; Ruohoniemi, J. Michael; Mahmoudian, Alireza; Scales, Wayne; De Larquier, Sebastien; Baker, Joseph; Greenwald, Ray; Erickson, Philip

    The mid-latitude SuperDARN radars have revealed decameter-scale ionospheric irregularities during quiet geomagnetic periods that have been proposed to be responsible for the observed low-velocity Sub-Auroral Ionospheric Scatter (SAIS). The mechanism responsible for the growth of such common irregularities is still unknown. Joint measurements by Millstone Hill Incoherent Scatter Radar (ISR) and SuperDARN HF radar located at Wallops Island, Virginia reported by Greenwald et al. [2006] have determined decameter-scale irregularities with low drift velocities in the quiet-time mid-latitude night-side ionosphere. Temperature gradient instability (TGI) is investigated as the cause of irregularities associated with these SuperDARN echoes. The electrostatic dispersion relation for TGI has been extended into the kinetic regime appropriate for SuperDARN radar frequencies by including Landau damping, finite gyro-radius effects, and temperature anisotropy. This dispersion relation allows study of the TGI over a wide range of parameter regimes that have not been considered for such ionospheric applications up to this time. The calculations of electron temperature and density gradients in the direction perpendicular to the geomagnetic field have shown that the TGI growth is possible in the top-side F-region for the duration of the experiment. A time series for the growth rate has been developed for mid-latitude ionospheric irregularities observed by SuperDARN in the top-side F-region [Greenwald et al., 2006]. This time series is computed for both perpendicular and meridional density and temperature gradients. These observations show the role of TGI is dominant over the gradient drift instability (GDI) in this case. Nonlinear evolution of the TGI has been studied utilizing gyro-kinetic "Particle In Cell" (PIC) simulations with Monte Carlo collisions. This allows detailed study of saturation amplitude, particle flux, heat flux, diffusion coefficient, and thermal diffusivity of the

  3. Monitoring and Imaging Ionospheric Total Electron Content Without the Thin-Shell Approximation

    Science.gov (United States)

    Sparks, L.

    2008-12-01

    The thin-shell model of the ionosphere relies on the coarse approximation that ionospheric electron density is non-negligible only in the vicinity of a specified reference height (typically the peak of the F-layer). The utility of this approximation resides primarily in the ease with which measurements of slant total electron content (TEC) may be converted into estimates of vertical TEC: if we identify the ionospheric pierce point (IPP) where a signal raypath intersects the shell height, then the vertical TEC at this IPP is estimated by scaling the TEC measured along the raypath by a simple geometric factor that depends upon the elevation angle of the signal. Developed to ensure the accuracy and integrity of user position estimates based upon global navigation satellite system (GNSS) measurements, all satellite-based augmentation systems (SBAS) to date, such as the United States' Wide Area Augmentation System (WAAS), the European Geostationary Navigation Overlay Service (EGNOS), and the Multi-Functional Satellite Augmentation System (MSAS) in Japan, use the thin-shell model as the basis for estimating vertical ionospheric delay at a specified set of regularly-spaced intervals in latitude and longitude, i.e., ionospheric grid points (IGPs). The vertical delay estimate at each IGP is calculated from a planar fit of neighboring slant delay measurements projected to vertical using the standard thin-shell obliquity factor. For an estimate of vertical TEC based upon the thin-shell approximation to be valid, two conditions must generally be satisfied: (1) the ionospheric electron density must be azimuthally symmetric with respect to the IPP; and (2) the choice of shell height must be appropriate. The successful operation of WAAS over the past fives years is a testament to the fact that these conditions are roughly satisfied under nominal ionospheric conditions at mid-latitudes. In the presence of significant horizontal electron density gradients, however, distinct

  4. Low-Resource CubeSat-scale Sensorcraft for Auroral and Ionospheric Plasma Studies

    OpenAIRE

    2010-01-01

    Explicitly separating variations in space from variations in time over a large volume is a current unmet challenge for in situ studies of the ionosphere and aurora. We propose that arrays of many (_ 10) low-resource sensorcraft can address this scientific and technical challenge. We are developing a suborbital CubeSat, RocketCube, to enable low-cost multipoint measurements for orbital and sub-orbital scientific missions. The graduate student-designed RocketCube showcases a new scientific inst...

  5. Features of the Electromagnetic and Plasma Disturbances Induced at the Altitudes of the Earth's Outer Ionosphere by Modification of the Ionospheric F 2 Region Using High-Power Radio Waves Radiated by the SURA Heating Facility

    Science.gov (United States)

    Frolov, V. L.; Rapoport, V. O.; Schorokhova, E. A.; Belov, A. S.; Parrot, M.; Rauch, J.-L.

    2016-08-01

    In this paper we systematize the results of studying the characteristics of the plasma-density ducts, which was conducted in 2005-2010 during the DEMETER-satellite operation. The ducts are formed at altitudes of about 700 km as a result of the ionospheric F 2 region modification by high-power high-frequency radio waves radiated by the midlatitude SURA heating facility. All the performed measurements are used as the basis for determining the formation conditions for such ducts, the duct characteristics are studied, and the opportunities for the duct influence on the ionosphere-magnetosphere coupling and propagation of radio waves of various frequency ranges are demonstrated. The results of numerical simulation of the formation of such ducts are presented.

  6. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2008-01-01

    Full Text Available High resolution Demeter plasma and wave observations were available during one of the geomagnetic storms of November 2004 when the ionospheric footprint of the plasmasphere was pushed below 64 degrees in the midnight sector. We report here onboard observations of thermal/suprathermal plasma and HF electric field variations with a temporal resolution of 0.4 s, which corresponds to a spatial resolution of 3 km. Local perturbations of the plasma parameters at the altitude of 730 km are analysed with respect to the variation of the field-aligned currents, electron and proton precipitation and large-scale electric fields, measured in-situ by Demeter and by remote optical methods from the IMAGE/Polar satellites.

    Flow monitoring in the 21:00 and 24:00 MLT sectors during storm conditions reveals two distinct regions of O+ outflow, i.e. the region of the field-aligned currents, which often comprises few layers of opposite currents, and the region of velocity reversal toward dusk at sub-auroral latitudes. Average upward O+ velocities are identical in both local time sectors and vary between 200 and 450 m s−1, with an exception of a few cases of higher speed (~1000 m s−1 outflow, observed in the midnight sector. Each individual outflow event does not indicate any heating process of the thermal O+ population. On the contrary, the temperature of the O+, outflowing from auroral latitudes, is found to be even colder than that of the ambient ion plasma. The only ion population which is observed to be involved in the heating is the O+ with energies a few times higher than the thermal energy. Such a population was detected at sub-auroral latitudes in the region of duskward flow reversal. Its temperature raises up to a few eV inside the layer of sheared velocity.

    A deep decrease in the H+ density at heights and latitudes, where, according to the IRI model

  7. C/NOFS satellite observations of equatorial ionospheric plasma structures supported by multiple ground-based diagnostics in October 2008

    Science.gov (United States)

    Nishioka, M.; Basu, Su.; Basu, S.; Valladares, C. E.; Sheehan, R. E.; Roddy, P. A.; Groves, K. M.

    2011-10-01

    In early October 2008, the C/NOFS satellite orbited near the magnetic equator at its perigee altitude of ˜400 km at dusk in the Peruvian sector. This provided an ideal opportunity for a comparison, under the current very low solar flux condition, of equatorial ionospheric disturbances observed with the Communication/Navigation Outage Forecasting System (C/NOFS) in situ measurements and ground-based observations available near Jicamarca Observatory. The primary objective was the comparison of plasma density disturbances measured by a Planar Langmuir Probe (PLP) instrument on the C/NOFS satellite with VHF scintillation activity at Ancon near Jicamarca for this period. Here we discuss in detail two extreme cases: one in which severe in situ disturbances were accompanied by mild scintillation on a particular day, namely, 10 October while there was little in situ disturbance with strong scintillation on 5 October. This apparent contradiction was diagnosed further by a latitudinal ground-based GPS network at Peruvian longitudes, a Digisonde, and the incoherent scatter radar (ISR) at Jicamarca. The crucial distinction was provided by the behavior of the equatorial ionization anomaly (EIA). The EIA was well-developed on the day having severe in situ disturbances (10 Oct). This led to lower equatorial plasma density and total electron content (TEC) at the equator and consequently reduced the scintillations detected at Ancon. On the other hand, on the day with severe scintillations (5 Oct), the EIA was not so well developed as on 10 October, leading to relatively higher equatorial plasma density and TEC. Consequently the severe scintillations at Ancon were likely caused by ionospheric structure located below the altitude of C/NOFS. The NRL SAMI2 model was utilized to gain a greater understanding of the role of neutral winds and electric fields in reproducing the TEC as a function of latitude for both classes of irregularities. Spectral studies with high resolution in situ

  8. Low latitude ionospheric scintillation and zonal plasma irregularity drifts climatology around the equatorial anomaly crest over Kenya

    Science.gov (United States)

    Olwendo, O. J.; Baki, P.; Cilliers, P. J.; Doherty, P.; Radicella, S.

    2016-02-01

    In this study we have used a VHF and GPS-SCINDA receiver located at Nairobi (36.8°E, 1.3°S, dip -24.1°) in Kenya to investigate the climatology of ionospheric L-band scintillation occurrences for the period 2009 to 2012; and seasonal variation of the zonal plasma drift irregularities derived from a VHF receiver for the period 2011. The annual and diurnal variations of L-band scintillation indicate occurrence at post sunset hours and peaks in the equinoctial months. However VHF scintillation occurs at all seasons around the year and is characterized by longer duration of activity and a slow fading that continues till early morning hours unlike in the L-band where they cease after midnight hours. A directional analysis has shown that the spatial distribution of scintillation events is mainly on the Southern and Western part of the sky over Nairobi station closer to the edges of the crest of the Equatorial Ionization Anomaly. The distribution of zonal drift velocities of the VHF related scintillation structures indicates that they move at velocities in the range of 20-160 m/s and their dimension in the East-West direction is in the range of 100-00 km. The December solstice is associated with the largest plasma bubbles in the range of 600-900 km. The most significant observation from this study is the occurrence of post-midnight scintillation without pre-midnight scintillations during magnetically quiet periods. The mechanism leading to the formation of the plasma density irregularity causing scintillation is believed to be via the Rayleigh Tailor Instability; it is however not clear whether we can also attribute the post-midnight plasma bubbles during magnetic quiet times to the same mechanism. From our observations in this study, we suggest that a more likely cause of the east ward zonal electric fields at post-midnight hours is the coupling of the ionosphere with the lower atmosphere during nighttime. This however needs a further investigation based on relevant

  9. Ionosphere and Radio Communication

    Indian Academy of Sciences (India)

    Saradi Bora

    2017-02-01

    The Earth's ionosphere consists of plasma produced by thephotoionization of thin upper atmospheric gases by UV raysand photons of short wavelength from the sun. The upperionosphere is used for radio communication and navigationas it reflects long, medium, as well as short radio waves. Sincesolar radiation is the main cause of the existence of ionosphere,any variation in the radiations can affect the entireradio communication system. This article attempts to brieflyintroduce the readers to the study of ionosphere in the contextof its use as a radio reflector, with particular reference toIndia.

  10. Measurements And Particle In Cell vs. Fluid Simulations Of A New Time Domain Impedance Probe For Ionospheric Plasma Characterization

    Science.gov (United States)

    Spencer, E. A.; Russ, S.; Kerrigan, B.; Leggett, K.; Mullins, J.; Clark, D. C.; Mizell, J.; Gollapalli, R.; Vassiliadis, D.; Lusk, G. D.

    2015-12-01

    A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. The measured magnitude and phase response with respect to frequency can be analyzed via analytical and simulational means. We have designed and developed a new Time Domain Impedance Probe capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 50 microseconds, which yields a spatial resolution of 0.35 meters for a satellite orbital velocity of 7 km/s. The method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the instrument will be flown in October 2015 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility. To analyze the measurements, we use a Particle In Cell (PIC) kinetic simulation to calculate the impedance of a dipole antenna immersed in a plasma. The electromagnetic solver utilizes the Finite Difference Time Domain method, while the particle to grid and grid to particle interpolation schemes are standard. The plasma sheath formation electron flux into the dipole surface is not included. The bulk velocity of the plasma around the dipole is assumed to be zero. For completeness, the hot plasma and nonlinear effects of probe plasma interaction are explored, including the appearance of cyclotron harmonics. In this work the electron neutral collisions are simulated via a Poisson process approximation. Our results are compared to sounding rocket data from the NASA Tropical Storms mission in 2007, as well as the

  11. Equatorial ionospheric plasma drifts and O+ concentration enhancements associated with disturbance dynamo during the 2015 St. Patrick's Day magnetic storm

    Science.gov (United States)

    Huang, Chao-Song; Wilson, Gordon R.; Hairston, Marc R.; Zhang, Yongliang; Wang, Wenbin; Liu, Jing

    2016-08-01

    Disturbance dynamo is an important dynamic process during magnetic storms. However, very few direct observations of dynamo-induced plasma drifts and ion composition changes in the equatorial ionosphere are available. In this study, we use measurements of the Defense Meteorological Satellite Program (DMSP) satellites to identify the characteristics of the disturbance dynamo process in the topside equatorial ionosphere near dawn during the magnetic storm with a minimum Dst of -223 nT on 17 March 2015. Data from four DMSP satellites with equatorial crossings at 0245, 0430, 0630, and 0730 LT are available for this case. The dynamo process was first observed in the postmidnight sector 3-4.7 h after the beginning of the storm main phase and lasted for 31 h, covering the second storm intensification and the initial 20 h of the recovery phase. The dynamo vertical ion drift was upward (up to 150-200 m s-1) in the postmidnight sector and downward (up to ~80 m s-1) in the early morning sector. The dynamo zonal ion drift was westward at these locations and reached ~100 m s-1. The dynamo process caused large enhancements of the O+ concentration (the ratio of the oxygen ion density to the total ion density) at the altitude of 840 km near dawn. The O+ concentration increased from below 60% during the prestorm period to 80-90% during the storm time. More specifically, the O+ density was increased, and the H+ density was decreased. The variations of the O+ concentration were well correlated with the vertical ion drift.

  12. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  13. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    Science.gov (United States)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  14. Analysis of a grid ionospheric vertical delay and its bounding errors over West African sub-Saharan region

    Science.gov (United States)

    Abe, O. E.; Otero Villamide, X.; Paparini, C.; Radicella, S. M.; Nava, B.

    2017-02-01

    Investigating the effects of the Equatorial Ionization Anomaly (EIA) ionosphere and space weather on Global Navigation Satellite Systems (GNSS) is very crucial, and a key to successful implementation of a GNSS augmentation system (SBAS) over the equatorial and low-latitude regions. A possible ionospheric vertical delay (GIVD, Grid Ionospheric Vertical Delay) broadcast at a Ionospheric Grid Point (IGP) and its confidence bounds errors (GIVE, Grid Ionospheric Vertical Error) are analyzed and compared with the ionospheric vertical delay estimated at a nearby user location over the West African Sub-Saharan region. Since African sub-Saharan ionosphere falls within the EIA region, which is always characterized by a disturbance in form of irregularities after sunset, and the disturbance is even more during the geomagnetically quiet conditions unlike middle latitudes, the need to have a reliable ionospheric threat model to cater for the nighttime ionospheric plasma irregularities for the future SBAS user is essential. The study was done during the most quiet and disturbed geomagnetic conditions on October 2013. A specific low latitude EGNOS-like algorithm, based on single thin layer model, was engaged to simulate SBAS message in the study. Our preliminary results indicate that, the estimated GIVE detects and protects a potential SBAS user against sampled ionospheric plasma irregularities over the region with a steep increment in GIVE to non-monitored after local sunset to post midnight. This corresponds to the onset of the usual ionospheric plasma irregularities in the region. The results further confirm that the effects of the geomagnetic storms on the ionosphere are not consistent in affecting GNSS applications over the region. Finally, this paper suggests further work to be investigated in order to improve the threat integrity model activity, and thereby enhance the availability of the future SBAS over African sub-Saharan region.

  15. Flow angle dependence of 1-m ionospheric plasma wave turbulence for near-threshold radar echo electric fields

    Science.gov (United States)

    Timofeev, E. E.; Vallinkoski, M. K.; Pollari, P.; Kangas, J.; Virdi, T.; Williams, P. J. S.; Nielsen, E.

    2002-10-01

    Coordinated STARE-EISCAT data from the E-region Rocket and Radar Instability Study (ERRRIS) campaign are used to study the flow angle distributions of threshold (signal-to-noise ratio [SNR] ≤ 1 dB) ionospheric parameters controlling the STARE radar echo appearance for either radar above Tromsø. Altogether, there are 64 measurements for the Finnish radar and 128 for the Norwegian radar. For the Finnish radar, the threshold E-field strength is drift-aligned with minimum-to-maximum ratio of the electron drift velocities of about 3. The strengths tend to decrease when going from positive to negative flow angles. For the Norwegian radar, the threshold electric fields are practically independent of flow angle. For the Finnish radar, the STARE line-of-sight Doppler velocities are exclusively positive, large, and well correlated with the corresponding EISCAT plasma velocity components. The Norwegian radar Doppler velocities are randomly distributed around zero and are practically uncorrelated. For either radar, the N(h) profiles have permanent upward vertical density gradients within the echo layers. The jet averaged threshold E-fields are lower in the westjet than within the eastjet, but the averaged threshold electron densities are higher in the westjet than in the eastjet. For the Norwegian radar, the jet averaged turbulence level is about two times higher within the eastjet. The flow angle distributions of the plasma wave turbulence level are different. The westjet distribution is of the equilibrium type with a maximum at small flow angles and a minimum at large angles. The eastjet distribution is consistent with a flat one and can be kept stationary only if there is a damping of the turbulence for small flow angles and an enhancement for large angles. It is then conjectured that Finnish radar threshold echoes are generated by the Farley-Buneman instability, but the Norwegian echoes by a nonlinear gradient drift or/and wind-driven mechanism. The gradient drift

  16. Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere

    Science.gov (United States)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Rietveld, M. T.; Häggström, I.; Ivanova, I. M.

    2013-12-01

    We presented experimental results of strong plasma modifications induced by X-mode powerful HF radio waves injected towards the magnetic zenith into the high latitude F region of the ionosphere. The experiments were conducted in 2009-2011 using the EISCAT Heating facility, UHF incoherent scatter radar and the EISCAT ionosonde at Tromsø, Norway; and the CUTLASS SuperDARN HF coherent radar at Hankasalmi, Finland. The results showed that the X-mode HF pump wave can generate strong small-scale artificial field aligned irregularities (AFAIs) in the F region of the high-latitude ionosphere. These irregularities, with spatial scales across the geomagnetic field of the order of 9-15 m, were excited when the heater frequency (fH) was above the ordinary-mode critical frequency (foF2) by 0.1-1.2 MHz. It was found that the X-mode AFAIs appeared between 10 s and 4 min after the heater is turned on. Their decay time varied over a wide range between 3 min and 30 min. The excitation of X-mode AFAIs was accompanied by electron temperature (Te) enhancements and an increase in the electron density (Ne) depending on the effective radiated power (ERP). Under ERPs of about 75-180 MW the Te enhances up to 50% above the background level and an increase in Ne of up to 30% were observed. Dramatic changes in the Te and Ne behavior occurred at effective radiated powers of about 370-840 MW, when the Ne and Te values increased up to 100% above the background ones. It was found that AFAIs, Ne and Te enhancements occurred, when the extraordinary-mode critical frequency (fxF2) lied in the frequency range fH-fce/2≤fxF2≤fH+fce/2, where fce is the electron gyrofrequency. The strong Ne enhancements were observed only in the magnetic field-aligned direction in a wide altitude range up to the upper limit of the UHF radar measurements. In addition, the maximum value of Ne is about 50 km higher than the Te enhancement peak. Such electron density enhancements (artificial ducts) cannot be explained by

  17. Macroscopic time and altitude distribution of plasma turbulence induced in ionospheric modification experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rose, H.; Dubois, D.; Russell, D. [Lodestar Research Corp., Boulder, CO (United States); Hanssen, A. [Univ. of Tromsoe (Norway)

    1996-03-01

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research concentrated on the time dependence of the heater, induced-turbulence, and electron-density profiles excited in the ionosphere by a powerful radio-frequency heater wave. The macroscopic density is driven by the ponderomotive pressure and the density self-consistently determines the heater propagation. For typical parameters of the current Arecibo heater, a dramatic quasi-periodic behavior was found. For about 50 ms after turn-on of the heater wave, the turbulence is concentrated at the first standing-wave maximum of the heater near reflection altitude. From 50--100 ms the standing-wave pattern drops by about 1--2 km in altitude and the quasi-periodicity reappears at the higher altitudes with a period of roughly 50 ms. This behavior is due to the half-wavelength density depletion grating that is set up by the ponderomotive pressure at the maxima of the heater standing-wave pattern. Once the grating is established the heater can no longer propagate to higher altitudes. The grating is then unsupported by the heater at these altitudes and decays, allowing the heater to propagate again and initiate another cycle. For stronger heater powers, corresponding to the Arecibo upgrade and the HAARP heater now under construction, the effects are much more dramatic.

  18. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    Science.gov (United States)

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-01-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800

  19. Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations

    Directory of Open Access Journals (Sweden)

    Hermann eLühr

    2014-03-01

    Full Text Available Equatorial spread-F ionospheric plasma irregularities on the night-side, commonly called equatorial plasma bubbles (EPB, include electron density variations over a wide range of spatial scales. Here we focus on intermediate-scale structures ranging from 100 m to 10 km, which play an important role in the evolution of EPBs. High-resolution CHAMP magnetic field measurements sampled along north-south track at 50 Hz are interpreted in terms of diamagnetic effect for illustrating the details of electron density variations. We provide the first comprehensive study on intermediate-scale density structures associated with EPBs, covering a whole solar cycle from 2000 to 2010. The large number of detected events, almost 9000, allows us to draw a detailed picture of the plasma fine structure. The occurrence of intermediate-scale events is strongly favoured by high solar flux. During times of F10.7 < 100 sfu practically no events were observed. The longitudinal distribution of our events with respect to season or local time agrees well with that of the EPBs, qualifying the fine structure as a common feature, but the occurrence rates are smaller by a factor of 4 during the period 2000-2005. Largest amplitude electron density variations appear at the poleward boundaries of plasma bubbles. Above the dip-equator recorded amplitudes are small and fall commonly below our resolution. Events can generally be found at local times between 19 and 24 LT, with a peak lasting from 20 to 22 LT. The signal spectrum can be approximated by a power law. Over the frequency range 1 – 25 Hz we observe spectral indices between -1.4 and -2.6 with peak occurrence rates around -1.9. There is a weak dependence observed of the spectral index on local time. Towards later hours the spectrum becomes shallower. Similarly for the latitude dependence, there is a preference of shallower spectra for latitudes poleward of the ionisation anomaly crest. Our data suggest that the generation of

  20. Excitation of plasma waves by unstable photoelectron and thermal electron populations on closed magnetic field lines in the Martian ionosphere

    Directory of Open Access Journals (Sweden)

    N. Borisov

    2005-06-01

    Full Text Available It is argued that anisotropic electron pitch angle distributions in the closed magnetic field regions of the Martian ionosphere gives rise to excitation of plasma instabilities. We discuss two types of instabilities that are excited by two different populations of electrons. First, the generation of Langmuir waves by photoelectrons with energies of the order of 10eV is investigated. It is predicted that the measured anisotropy of their pitch angle distribution at the heights z≈400km causes excitation of waves with frequencies f~30kHz and wavelengths λ~30m. Near the terminators the instability of the electrostatic waves with frequencies of the order of or less than the electron gyrofrequency exited by thermal electrons is predicted. The typical frequencies of these waves depend on the local magnitude of the magnetic field and can achieve values f~3-5kHz above strong crustal magnetic fields.

  1. Mesoscale ionospheric tomography at the Auroral region

    Science.gov (United States)

    Luntama, J.; Kokkatil, G. V.

    2008-12-01

    FMI (Finnish Meteorological Institute) has used observations from the dense GNSS network in Finland for high resolution regional ionospheric tomography. The observation system used in this work is the VRS (Virtual Reference Station) network in Finland operated by Geotrim Ltd. This network contains 86 GNSS ground stations providing two frequency GPS and GLONASS observations with the sampling rate of 1 Hz. The network covers the whole Finland and the sampling of the ionosphere is very good for observing mesoscale ionospheric structures at the Auroral region. The ionospheric tomography software used by FMI is the MIDAS (Multi-Instrument Data Analysis System) algorithm developed and implemented by the University of Bath (Mitchell and Spencer, 2003). MIDAS is a 3-D extension of the 2-D tomography algorithm originally presented by Fremouw et al. (1992). The research at FMI is based on ground based GNSS data collected in December 2006. The impacts of the two geomagnetic storms during the month are clearly visible in the retrieved electron density and TEC maps and they can be correlated with the magnetic field disturbances measured by the IMAGE magnetometer network. This is the first time that mesoscale structures in the ionospheric plasma can be detected from ground based GNSS observations at the Auroral region. The continuous high rate observation data from the Geotrim network allows monitoring of the temporal evolution of these structures throughout the storms. Validation of the high resolution electron density and TEC maps is a challenge as independent reference observations with a similar resolution are not available. FMI has compared the 3-D electron density maps against the 2-D electron density plots retrieved from the observations from the Ionospheric Tomography Chain operated by the Sodankylä Geophysical Observatory (SGO). Additional validation has been performed with intercomparisons with observations from the ground based magnetometer and auroral camera network

  2. Experimental evidence of electromagnetic pollution of ionosphere

    Science.gov (United States)

    Pronenko, Vira; Korepanov, Valery; Dudkin, Denis

    The Earth’s ionosphere responds to external perturbations originated mainly in the Sun, which is the primary driver of the space weather (SW). But solar activity influences on the ionosphere and the Earth's atmosphere (i.e., the energy transfer in the direction of the Sun-magnetosphere-ionosphere-atmosphere-surface of the Earth), though important, is not a unique factor affecting its state - there is also a significant impact of the powerful natural and anthropogenic processes, which occur on the Earth’s surface and propagating in opposite direction along the Earth’s surface-atmosphere-ionosphere-magnetosphere chain. Numerous experimental data confirm that the powerful sources and consumers of electrical energy (radio transmitters, power plants, power lines and industrial objects) cause different ionospheric phenomena, for example, changes of the electromagnetic (EM) field and plasma in the ionosphere, and affect on the state of the Earth atmosphere. Anthropogenic EM effects in the ionosphere are already observed by the scientific satellites and the consequences of their impact on the ionosphere are not currently known. Therefore, it is very important and urgent task to conduct the statistically significant research of the ionospheric parameters variations due to the influence of the powerful man-made factors, primarily owing to substantial increase of the EM energy production. Naturally, the satellite monitoring of the ionosphere and magnetosphere in the frequency range from tens of hertz to tens of MHz with wide ground support offers the best opportunity to observe the EM energy release, both in the global and local scales. Parasitic EM radiation from the power supply lines, when entering the ionosphere-magnetosphere system, might have an impact on the electron population in the radiation belt. Its interaction with trapped particles will change their energy and pitch angles; as a result particle precipitations might occur. Observations of EM emission by

  3. Real-Time Ionospheric Plasma Density Estimates in the Polar Cap using Simultaneous Dual Frequency Doppler Measurements at the SuperDARN McMurdo Radar

    Science.gov (United States)

    Spaleta, J.; Bristow, W. A.

    2012-12-01

    SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. The radars operate in the range of 8 MHz to 20 MHz and have ray paths covering a wide range of elevation angles, in order to maximize the range over which the scattering conditions are satisfied. Upward-propagating electromagnetic signals in this frequency range can be significantly refracted by the ionospheric plasma. The propagation paths of the refracted signals are bent earthward and at some point along this refracted path propagate perpendicular to the local magnetic field and scatter on the field-aligned density irregularities. The refraction results from gradients of the index of refraction in the ionospheric plasma. The index inside the ionosphere is lower than its free-space value, which depresses the measured line of sight velocity relative to the actual velocity of the plasma. One way to account for the depression of the measured velocity is to estimate the index of refraction in the scattering region by making multiple velocities measurements at different operating frequencies. Together with the appropriate plasma dispersion relations, multiple frequency measurements can be used to construct relations for the index of refraction, plasma density and the line of sight velocity correction factor as functions of frequency weighted measured velocity differences. Recent studies have used frequency-switching events spanning many days during traditional SuperDARN radar operation to build a statistical estimate for index of refraction, which is insensitive to the real-time spatial dynamics of the ionosphere. This statistical approach has motivated the development of a new mode of radar operation that provides simultaneous dual frequency measurements in order to resolve the temporal and spatial dynamics of the index of refraction calculations. Newly-developed multi-channel capabilities available in the SuperDARN radar

  4. In situ measurements of plasma irregularity growth in the cusp ionosphere

    Science.gov (United States)

    Oksavik, K.; Moen, J.; Lester, M.; Bekkeng, T. A.; Bekkeng, J. K.

    2012-11-01

    The Investigation of Cusp Irregularities (ICI-2) sounding rocket was launched on 5 December 2008 from Ny-Ålesund, Svalbard. The high-resolution rocket data are combined with data from an all-sky camera, the EISCAT Svalbard Radar, and the SuperDARN Hankasalmi radar. These data sets are used to characterize the spatial structure of F region irregularities in the dayside cusp region. We use the data set to test two key mechanisms for irregularity growth; the Kelvin-Helmholtz (KH) and gradient drift (GD) instabilities. Except for a promising interval of 4-6 km irregularities, the KH growth rate was found to be too slow to explain the observed plasma irregularities. The time history of the plasma gives further support that structured particle precipitation could be an important source of kilometer- to hectometer-scale “seed” irregularities, which are then efficiently broken down into decameter-scale irregularities by the GD mechanism.

  5. Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas

    Science.gov (United States)

    2012-11-21

    GeoMagnetic Observatory System ( GMO ). We then have detection of HF heater-induced large plasma sheets, using MUIR radar and GPS satellites [Cohen et al...experiments. It is found that the heat wave fronts, which occurred in US, were plausible sources of free energy generating intense gravity waves and...that the heat wave fronts, which occurred in USA, were the plausible sources of free energy, generating intense gravity waves and triggering large

  6. Nonlinear wave structures in collisional plasma of auroral E-region ionosphere

    Directory of Open Access Journals (Sweden)

    A. V. Volosevich

    Full Text Available Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion self-consistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of "electrostatic shock wave" or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.

  7. Ionospheric Plasma Circulation Associated with Polar Cap Arcs Detached from the Auroral Oval

    Science.gov (United States)

    Yakymenko, K.; Koustov, A. V.; Hosokawa, K.; Shiokawa, K.

    2015-12-01

    Joint observations of the OMTI all-sky camera at Resolute Bay, NWT (Canada), the SuperDARN radars and Swarm satellites are considered to investigate horizontal plasma flows and vertical field-aligned currents (FACs) associated with polar cap arcs "detached" from the auroral oval but not penetrated deep into the polar cap. All cases are for the near winter solstice, positive IMF Bz and mostly dominating IMF By. We show that the arcs are usually co-exist with strong flow shears driven by electric fields of the converging type. The shears, being added to the background flow, produce unusual convection patterns, for example reverse (sunward) flows on the nightside, several MLT hours away from the noon-midnight line. We also investigate the distribution of FACs in the arcs' vicinity, both duskward and dawnward, for several Swarm passes. Electron density data onboard Swarm satellites are used to identify the arc and auroral oval boundaries, along with the ground-based optics. The data suggest that the arcs correspond to a separate current system excited in addition to the background plasma circulation governed by the reconnection processes.Joint observations of the OMTI all-sky camera at Resolute Bay, NWT (Canada), the SuperDARN radars and Swarm satellites are considered to investigate horizontal plasma flows and vertical field-aligned currents (FACs) associated with polar cap arcs "detached" from the auroral oval but not penetrated deep into the polar cap. All cases are for the near winter solstice, positive IMF Bz and mostly dominating IMF By. We show that the arcs are usually co-exist with strong flow shears driven by electric fields of the converging type. The shears, being added to the background flow, produce unusual convection patterns, for example reverse (sunward) flows on the nightside, several MLT hours away from the noon-midnight line. We also investigate the distribution of FACs in the arcs' vicinity, both duskward and dawnward, for several Swarm passes

  8. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    Science.gov (United States)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  9. Monitoring system for thermal plasma; Sistema de monitoreo para plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, M.; Vilchis P, A.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  10. Asymmetric structures of field-aligned currents and convection of ionospheric plasma controlled by the IMF azimuthal component and season of year

    DEFF Research Database (Denmark)

    Lukianova, R. Yu.; Kozlovsky, A.; Christiansen, Freddy

    2010-01-01

    We present the results of using the statistical model of field-aligned currents (FACs) based on satellite data and the numerical model of the electric potential distribution in order to detect the asymmetric part in FAC structures and ionospheric plasma convection controlled by the IMF azimuthal (B...... y ) component at different seasons of the year. These structures can be identified by plotting diagrams, which represent differences in corresponding maps for opposite signs of IMF B y . Circular near-pole current symmetric about the noon meridian and corresponding convection vortices around...

  11. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    Science.gov (United States)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  12. The new IGS ionospheric product - TEC fluctuation maps and their scientific application

    Science.gov (United States)

    Krankowski, Andrzej; Cherniak, Iurii; Zakharenkova, Irina

    2017-04-01

    The GPS signals fading due to presence of the plasma irregularities in the ionosphere can decrease an operational availability of navigation systems. This effect can be estimated by measuring its impact on phase of the received GPS signal. The new IGS ionospheric fluctuation maps product is based on estimates of the TEC rapid changes. For an overall representation of the spatial evolution of the ionospheric irregularities, which caused the GPS signal fluctuations over the Northern Hemisphere in middle and high latitudes, a daily map of the ROTI index is produced basing on data derived from a representative set of 700 permanent GPS stations. We use the corrected geomagnetic (CGM) coordinates with DGRF/IGRF models. For daily ROTI maps, we averaged and binned all ROTI values collected during 00-24 UT period of a considered day. The grid size is 8 min MLT by 2° MLAT, with the latter covering 50° - 90°. The averaged ROTI value in each MLAT-MLT bin corresponds to probability of the GPS signals phase fluctuations caused by passing of radio signals through the ionospheric irregularities. The resulted ionospheric fluctuation product is represented in the ASCII IONEX-like data format and can be visualized. This data format is described in details. We demonstrate the IGS ionospheric fluctuation map product performance for scientific research application on set of test-cases (geomagnetic storms occurred in the years 2013-2015) for comparative analysis of the resulted daily ROTI maps for quiet and geomagnetically disturbed periods. The intense phase scintillations depicted in the diurnal ROTI maps can provide an important information about development of the severe storm-induced gradients in the ionospheric plasma density, both caused by auroral particle precipitation and plasma flows. It is possible to conclude that IGS ionospheric fluctuation maps product can be effectively used for monitoring of the plasma irregularities with different origin. The independent ground

  13. Seismo-ionospheric anomalies and implications from recent GNSS observations in India and South-East Asia

    Directory of Open Access Journals (Sweden)

    C.D. Reddy

    2016-01-01

    Full Text Available The lithosphere and the atmosphere/ionosphere, continuously exchange energy through various coupling mechanisms. Earthquake creates waves of energy, e.g. direct shock acoustic waves (SAWs and Rayleigh wave induced acoustic waves (RAWs. In the event of an earthquake occurring beneath the sea, atmospheric gravity waves (AGWs are also generated. If the earthquake is large enough (Mw > 6, SAWs, RAWs and AGWs induce detectable ionospheric plasma perturbations. Inferring the seismological information from these seismo-ionospheric manifestations is the subject that pertains to ionospheric seismology. Both ground and satellite based advanced radio techniques are being used in monitoring ionospheric plasma perturbations. In this study, seismo-ionospheric anomalies and implications from recent GNSS observations in India and South-East Asia are discussed, mainly pertaining to the following. (1 From the ionospheric plasma response to 2015 Nepal earthquake, the estimated group velocity for Andaman and Indian shield regions are 2100 ms−1 and 3900 ms−1 respectively and validated from ground measurements. (2 Atmospheric acoustic resonance at 4.0 mHz and a train of wave packet of TEC variation resulting from the beat phenomenon observed at the site ‘umlh’ and (3 GNSS-based tsunami warning which is going to be promising tool in augmenting the existing tsunami warning systems.

  14. Multi-instrument investigation of troposphere-ionosphere coupling through gravity waves and the role of gravity waves in the formation of equatorial plasma bubbles (EPBs)

    Science.gov (United States)

    Sivakandan, Mani; Patra, Amit; Sripathi, Samireddipelle; Thokuluwa, Ramkumar; Paulino, Igo; Taori, Alok; Kandula, Niranjan

    2016-07-01

    Equatorial plasma bubble (EPB) occurs in the equatorial ionosphere in pre-mid night (most of the time) as well as post-midnight (rarely) hours. The generation of EPBs by Rayleigh-Taylor Instability (RTI) due to seeding of gravity wave perturbation (polarization electric field) have well been explained theoretically by several authors but experimental evidence supporting this hypothesis is very limited. Using co-located observations from Gadanki (13.5oN, 79.2o E) using an all sky airglow imager and Gadanki Ionospheric Radar Interferometer (GIRI) and Ionosonde observations from Tirunelveli (8.7o N, 77.8o E), we investigate the role of gravity waves in the generation EPB during geomagnetic quiet conditions. To avoid any changes occurring in the background ionosphere owing to the large scale features (e.g., seasonal variation), we use four consecutive nights (03-06, February, 2014). Out of these four nights on two nights we have noted very strong plasma depletions in the OI 630 nm airglow emission and radar plumes. We analyse data to identify cases where, 1) EPBs occurred with large amplitudes of mesospheric gravity waves, 2) Occurrence of EPBs without large amplitudes of mesospheric gravity waves, and 3) identifiable mesospheric gravity waves without occurrence of EPBs. In order to calculate the mesospheric gravity wave parameter we used mesospheric OH airglow emission imager data, to identify their propagation to the E-region, we used E-region observations made using the MST radar which resembled the gravity wave signatures. Together with these, by using ray tracing techniques, we have identified the source region of the noted gravity wave events also. These results are discussed in detail in the present study.

  15. Persistent Longitudinal Variations of Plasma Density and DC Electric Fields in the Low Latitude Ionosphere Observed with Probes on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Rowland, D.; Liebrecht, C.; Bromund, K.; Roddy, P.

    2010-01-01

    Continuous measurements using in situ probes on consecutive orbits of the C/N0FS satellite reveal that the plasma density is persistently organized by longitude, in both day and night conditions and at all locations within the satellite orbit, defined by its perigee and apogee of 401 km and 867 km, respectively, and its inclination of 13 degrees. Typical variations are a factor of 2 or 3 compared to mean values. Furthermore, simultaneous observations of DC electric fields and their associated E x B drifts in the low latitude ionosphere also reveal that their amplitudes are also strongly organized by longitude in a similar fashion. The drift variations with longitude are particularly pronounced in the meridional component perpendicular to the magnetic field although they are also present in the zonal component as well. The longitudes of the peak meridional drift and density values are significantly out of phase with respect to each other. Time constants for the plasma accumulation at higher altitudes with respect to the vertical drift velocity must be taken into account in order to properly interpret the detailed comparisons of the phase relationship of the plasma density and plasma velocity variations. Although for a given period corresponding to that of several days, typically one longitude region dominates the structuring of the plasma density and plasma drift data, there is also evidence for variations organized about multiple longitudes at the same time. Statistical averages will be shown that suggest a tidal "wave 4" structuring is present in both the plasma drift and plasma density data. We interpret the apparent association of the modulation of the E x B drifts with longitude as well as that of the ambient plasma density as a manifestation of tidal forces at work in the low latitude upper atmosphere. The observations demonstrate how the high duty cycle of the C/NOFS observations and its unique orbit expose fundamental processes at work in the low latitude

  16. Interplanetary Radio Transmission Through Serial Ionospheric and Material Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Fields, David [ORNL; Kennedy, Robert G [ORNL; Roy, Kenneth I [ORNL; Vacaliuc, Bogdan [ORNL

    2013-01-01

    A usual first principle in planning radio astronomy observations from the earth is that monitoring must be carried out well above the ionospheric plasma cutoff frequency (~5 MHz). Before space probes existed, radio astronomy was almost entirely done above 6 MHz, and this value is considered a practical lower limit by most radio astronomers. Furthermore, daytime ionization (especially D-layer formation) places additional constraints on wave propagation, and waves of frequency below 10-20 MHz suffer significant attenuation. More careful calculations of wave propagation through the earth s ionosphere suggest that for certain conditions (primarily the presence of a magnetic field) there may be a transmission window well below this assumed limit. Indeed, for receiving extraterrestrial radiation below the ionospheric plasma cutoff frequency, a choice of VLF frequency appears optimal to minimize loss. The calculation, experimental validation, and conclusions are presented here. This work demonstrates the possibility of VLF transmission through the ionosphere and various subsequent material barriers. Implications include development of a new robust communications channel, communications with submerged or subterranean receivers / instruments on or offworld, and a new approach to SETI.

  17. Experimentally investigate ionospheric depletion chemicals in artificially created ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yu; Cao Jinxiang; Wang Jian; Zheng Zhe; Xu Liang; Du Yinchang [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-09-15

    A new approach for investigating ionosphere chemical depletion in the laboratory is introduced. Air glow discharge plasma closely resembling the ionosphere in both composition and chemical reactions is used as the artificially created ionosphere. The ionospheric depletion experiment is accomplished by releasing chemicals such as SF{sub 6}, CCl{sub 2}F{sub 2}, and CO{sub 2} into the model discharge. The evolution of the electron density is investigated by varying the plasma pressure and input power. It is found that the negative ion (SF{sub 6}{sup -}, CCl{sub 2}F{sub 2}{sup -}) intermediary species provide larger reduction of the electron density than the positive ion (CO{sub 2}{sup +}) intermediary species. The negative ion intermediary species are also more efficient in producing ionospheric holes because of their fast reaction rates. Airglow enhancement attributed to SF{sub 6} and CO{sub 2} releases agrees well with the published data. Compared to the traditional methods, the new scheme is simpler to use, both in the release of chemicals and in the electron density measurements. It is therefore more efficient for investigating the release of chemicals in the ionosphere.

  18. Saturn's ionosphere and plasmasphere

    Science.gov (United States)

    Moore, Luke Edward

    2008-01-01

    ionospheric plasma depletions. The first calculations of the time-dependent effect of attenuation of sunlight by Saturn's rings indicate that they cause large latitudinal gradients within the ionosphere, and may provide radio frequency windows through which atmospheric lightning is observed. Warm plasma temperatures are predicted in Saturn's upper atmosphere, with a strong dawn/dusk asymmetry and a large diurnal variation.

  19. Detection of ionospheric Alfvén resonator signatures in the equatorial ionosphere

    Science.gov (United States)

    Simões, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; Schuck, Peter; Uribe, Paulo; Yokoyama, Tatsuhiro

    2012-11-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfvén resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfvén wave propagation, and troposphere-ionosphere-magnetosphere coupling mechanisms.

  20. Ionospheric precursors to scintillation activity

    Directory of Open Access Journals (Sweden)

    Paul S.J. Spencer

    2014-03-01

    Full Text Available Ionospheric scintillation is the rapid fluctuation of both phase and amplitude of trans-ionospheric radio waves due to small scale electron density irregularities in the ionosphere. Prediction of the occurrence of scintillation at L band frequencies is needed to mitigate the disruption of space-based communication and navigation systems. The purpose of this paper is to present a method of using tomographic inversions of the ionospheric electron density obtained from ground-based GPS data to infer the location and strength of the post-sunset plasma drift vortex. This vortex is related to the pre-reversal enhancement in the eastwards electric field which has been correlated to the subsequent occurrence of scintillation.

  1. ULTIMA: Array of ground-based magnetometer arrays for monitoring magnetospheric and ionospheric perturbations on a global scale

    Science.gov (United States)

    Yumoto, K.; Chi, P. J.; Angelopoulos, V.; Connors, M. G.; Engebretson, M. J.; Fraser, B. J.; Mann, I. R.; Milling, D. K.; Moldwin, M. B.; Russell, C. T.; Stolle, C.; Tanskanen, E.; Vallante, M.; Yizengaw, E.; Zesta, E.

    2012-12-01

    ULTIMA (Ultra Large Terrestrial International Magnetic Array) is an international consortium that aims at promoting collaborative research on the magnetosphere, ionosphere, and upper atmosphere through the use of ground-based magnetic field observatories. ULTIMA is joined by individual magnetometer arrays in different countries/regions, and the current regular-member arrays are Australian, AUTUMN, CARISMA, DTU Space, Falcon, IGPP-LANL, IMAGE, MACCS, MAGDAS, McMAC, MEASURE, THEMIS, and SAMBA. The Chair of ULTIMA has been K. Yumoto (MAGDAS), and its Secretary has been P. Chi (McMAC, Falcon). In this paper we perform case studies in which we estimate the global patterns of (1) near-Earth currents and (2) magnetic pulsations; these phenomena are observed over wide areas on the ground, thus suitable for the aims of ULTIMA. We analyze these two phenomena during (a) quiet period and (b) magnetic storm period. We compare the differences between these two periods by drawing the global maps of the ionospheric equivalent currents (which include the effects of all the near-Earth currents) and pulsation amplitudes. For ionospheric Sq currents at low latitudes during quiet periods, MAGDAS data covering an entire solar cycle has yielded a detailed statistical model, and we can use it as a reference for the aforementioned comparison. We also estimate the azimuthal wave numbers of pulsations and compare the amplitude distribution of pulsations with the distribution of highly energetic (in MeV range) particles simultaneously observed at geosynchronous satellites.

  2. Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Hanson, Ronald E.; Houser, Nicole M.; Lavoie, Philippe

    2014-01-01

    It is a known phenomenon that some dielectric materials used to construct plasma actuators degrade during operation. However, the rate at which this process occurs, to what extent, as well as a method to monitor is yet to be established. In this experimental study, it is shown that electrical measurements can be used to monitor changes in the material of the plasma actuators. The procedure we introduce for monitoring the actuators follows from the work of Kriegseis, Grundmann, and Tropea [Kriegseis et al., J. Appl. Phys. 110, 013305 (2011)], who used Lissajous figures to measure actuator power consumption and capacitance. In the present study, we quantify changes in both the power consumption and capacitance of the actuators over long operating durations. It is shown that the increase in the effective capacitance of the actuator is related to degradation (thinning) of the dielectric layer, which is accompanied by an increase in actuator power consumption. For actuators constructed from layers of Kapton® polyimide tape, these changes are self-limiting. Although the polyimide film degrades relatively quickly, the underlying adhesive layer appears to remain intact. Over time, the effective capacitance was found to increase by up to 36%, 25%, and 11% for actuators constructed with 2, 3, and 4 layers of Kapton tape, respectively. A method is presented to prevent erosion of the Kapton dielectric layer using a coating of Polydimethylsiloxane oil. It is shown the application of this treatment can delay the onset of degradation of the Kapton dielectric material.

  3. A model of the plasma flow and current in Saturn's polar ionosphere under conditions of strong Dungey cycle driving

    Directory of Open Access Journals (Sweden)

    C. M. Jackman

    2006-05-01

    Full Text Available We propose a simple model of the flow and currents in Saturn's polar ionosphere. This model is motivated by theoretical reasoning, and guided quantitatively by in situ field and flow data from space missions, ground-based IR Doppler measurements, and Hubble Space Telescope images. The flow pattern consists of components which represent (1 plasma sub-corotation in the middle magnetosphere region resulting from plasma pick-up and radial transport from internal sources; (2 the Vasyliunas-cycle of internal plasma mass-loss down the magnetospheric tail at higher latitudes; and (3 the polar Dungey-cycle flow driven by the solar wind interaction. Upstream measurements of the interplanetary magnetic field (IMF indicate the occurrence of both extended low-field rarefaction intervals with essentially negligible Dungey-cycle flow, and few-day high-field compression regions in which the Dungey-cycle voltage peaks at a few hundred kV. Here we model the latter conditions when the Dungey-cycle is active, advancing on previous axi-symmetric models which may be more directly applicable to quiet conditions. For theoretical convenience the overall flow pattern is constructed by adding together two components - a purely rotational flow similar to previous axi-symmetric models, and a sun-aligned twin vortex representing the dawn-dusk asymmetry effects associated with the Vasyliunas-and Dungey-cycle flows. We calculate the horizontal ionospheric current associated with the flow and the field-aligned current from its divergence. These calculations show that a sheet of upward-directed field-aligned current flows at the boundary of open field lines which is strongly modulated in local-time by the Dungey-cycle flows. We then consider implications of the field-aligned current for magnetospheric electron acceleration and aurorae using two plasma source populations (hot outer magnetospheric electrons and cool dense magnetosheath electrons. Both sources display a

  4. Scintillations of cosmic radio sources in the decametre waveband. I - Spectra of scintillations due to ionospheric and interplanetary plasma fluctuations and the possibility of their separation. remnants of the Crab Nebula and Cassiopeia A

    Science.gov (United States)

    Bovkun, V. P.; Zhuk, I. N.

    1981-09-01

    The effect of fluctuations of the interplanetary plasma and the ionosphere upon the scintillation spectra of radio sources at decametre waves is considered with due regard for the finite antenna aperture, fluctuation anisotropy, and the direction of their drift in space. It has been shown that scintillation due to interplanetary plasma (IPP), can be reliably separated from the ionospheric scintillation background at decametre wavelengths. For elongations between 90° to 150°, the IPP scintillation power spectrum observed in the 12.6-25 MHz waveband is of a power law form with the index 3.1 ± 0.6, which is in close agreement with the values known for smaller elongations. The solar wind velocity projection orthogonal to the line of sight is estimated for elongations about 1 10~ and has been found to be 300 ± 80 km s~1. As in the case of smaller elongations, the velocity dispersion is significant. At night, wideband spectra of ionospheric scintillations are observed in the decametre band, with the breaking point at approximately 0.01 Hz in the 12 m band, and narrow-band spectra whose cut-off frequency is below 0.01 Hz. The power spectrum of ionospheric scintillations is of a power-law form with the index 3.4 ± 0.5. In some cases steeper spectra are observed

  5. Towards intelligent video understanding applied to plasma facing component monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.; Bremond, F. [INRIA, Pulsa team-project, Sophia Antipolis (France); Travere, J.M. [CEA IRFM, Saint Paul-lez-Durance (France); Moncada, V.; Dunand, G. [Sophia Conseil Company, Sophia Antipolis (France)

    2011-07-01

    Infrared thermography has become a routine diagnostic in many magnetic fusion devices to monitor the heat loads on the plasma facing components (PFCs) for both physics studies and machine protection. The good results of the developed systems obtained so far motivate the use of imaging diagnostics for control, especially during long pulse tokamak operation (e.g. lasting several minutes). In this paper, we promote intelligent monitoring for both real-time purposes (machine protection issues) and post event analysis purposes (PWI understanding). We propose a vision-based system able to automatically detect and classify into different pre-defined categories phenomena as localized hot spots, transient thermal events (e.g. electrical arcing), and unidentified flying objects (UFOs) as dusts from infrared imaging data of PFCs. This original vision system is made intelligent by endowing it with high-level reasoning (i.e. integration of a priori knowledge of thermal event spatial and temporal properties to guide the recognition), self-adaptability to varying conditions (e.g. different plasma scenarios), and learning capabilities (e.g. statistical modelling of thermal event behaviour based on training samples). This approach has been already successfully applied to the recognition of one critical thermal event at Tore Supra. We present here latest results of its extension for the recognition of others thermal events (e.g., B{sub 4}C flakes, impact of fast particles, UFOs) and show how extracted information can be used during plasma operation at Tore Supra to improve the real time control system, and for further analysis of PFC aging. This document is composed of an abstract followed by the slides of the presentation. (authors)

  6. Monitoring and Improving the Reliability of Plasma Spray Processes

    Science.gov (United States)

    Mauer, Georg; Rauwald, Karl-Heinz; Mücke, Robert; Vaßen, Robert

    2017-06-01

    Monitoring and improving of process reliability are prevalent issues in thermal spray technology. They are intended to accomplish specific quality characteristics by controlling the process. For this, implicit approaches are in demand to rapidly conclude on relevant coating properties, i.e., they are not directly measured, but it is assumed that the monitored variables are in fact suggestive for them. Such monitoring can be performed in situ (during the running process) instead of measuring coating characteristics explicitly (directly) and ex situ (after the process). Implicit approaches can be based on extrinsic variables (set from outside) as well as on intrinsic parameters (internal, not directly adjustable) having specific advantages and disadvantages, each. In this work, the effects of atmospheric plasma spray process variables are systemized in process schemes. On this basis, different approaches to contribute to improved process reliability are described and assessed paying particular attention to in-flight particle diagnostics. Finally, a new test applying spray bead analysis is introduced and first results are presented.

  7. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  8. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  9. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen.

    Science.gov (United States)

    Hamann, S; Börner, K; Burlacov, I; Spies, H-J; Strämke, M; Strämke, S; Röpcke, J

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  10. The multi-instrumental radio diagnostics of the ionosphere for Space Weather Program

    Science.gov (United States)

    Krankowski, Andrzej; Rothkaehl, Hanna; Pulinets, Sergey; Cherniak, Iurii; Zakharenkova, Irina

    2015-04-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help to solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. Each site will host one LOFAR station (96 high-band+96 low-band antennas). The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. In addition to the in-situ space plasma measurements the topside sounders will be installed onboard the "Ionosphere" spacecrafts to retrieve the vertical distribution of electron concentration in the topside ionosphere. The first two satellites are scheduled for launch at the first half of 2016. These two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. In order to improve and validate the large scale and small scale ionospheric structures we will also use the GPS observations collected at IGS/EPN: global and regional TEC maps created with high special and temporal resolution, ROTI maps over the Northern Hemisphere and the data retrieved from

  11. Ionospheric redistribution during geomagnetic storms.

    Science.gov (United States)

    Immel, T J; Mannucci, A J

    2013-12-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dststorm strength that corresponds closely to the TEC variation but follows it by 3-6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow.

  12. Monitoring of low pressure plasma systems; Ueberwachung von Niederdruck-Plasmaanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Michaeli, W.; Hegenbart, A.; Binkowski, D.; Fragstein, F. v. [Inst. fuer Kunststoffverarbeitung (IKV) an der RWTH Aachen (Germany)

    2007-02-15

    The optical emission spectroscopy (OES) is a very flexible and easy to use method to monitor industrial plasma processes. By directly monitoring the plasma itself many additional factors influencing low pressure plasma processes can be observed. First of all factors that can not be controlled directly play an important role in this context. Examples are contaminations and leaks in the plasma system. These can negatively influence the reproducibility of production processes. In this paper the effect of a leak on the coating and the plasma process is being shown. Additionally the detection of contaminations and sealing problems in a microwave plasma source is being demonstrated. By using the correlations being presented the OES can be used to continually monitor low pressure plasma systems and thus enhance reproducibility of industrial low pressure plasma processes. (orig.)

  13. Low-Frequency Waves in HF Heating of the Ionosphere

    Science.gov (United States)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  14. Concurrent study of bottomside spread F and plasma bubble events in the equatorial ionosphere during solar maximum using digisonde and ROCSAT-1

    Directory of Open Access Journals (Sweden)

    C.-C. Lee

    2005-12-01

    Full Text Available Data from the Jicamarca digisonde and the ROCSAT-1 satellite are employed to study the equatorial ionosphere on the west side of South America during April 1999-March 2000 for the concurrent bottomside spread F (BSSF and plasma bubble events. This study, using digisonde and ROCSAT-1 concurrently, is the first attempt to investigate the equatorial spread F. Results show that BSSF and plasma bubble observations appear frequently respectively in the summer (January, February, November, and December and in the equinoctial (March, April, September, and October months, respectively, but are both rarely observed in the winter (May-August months. The upward drift velocity during the concurrent BSSF and bubble observations has been determined to study the driving mechanism. This analysis shows that large vertical drift velocities favor BSSF and bubble formations in the equinoctial and summer months. Conversely, the smaller upward velocities during the winter months cause fewer BSSF and bubble occurrences. For the geomagnetic effect, the BSSF/bubble occurrence decreases with an increasing Kp value in the equinoctial months, but no such correlation is found for the summer and winter months. Moreover, the anti-correlations between Kp and dh'F/dt are apparent in the equinoctial months, but not in the summer and winter months. These results indicate that in the equinoctial months the BSSF/bubble generations and the pre-reversal drift velocity can be suppressed by geomagnetic activity, because the disturbance dynamo effects could have decreased the eastward electric field near sunset. However, BSSF and bubble occurrences may not be suppressed by the geomagnetic activity in the summer and winter months.

  15. Ionospheric research for space weather service support

    Science.gov (United States)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  16. Artificial neural network applications in ionospheric studies

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  17. Space weather. Ionospheric control of magnetotail reconnection.

    Science.gov (United States)

    Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

    2014-07-11

    Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail.

  18. The magnetohydrodynamic description of Earth's ionosphere

    CERN Document Server

    Pandey, B P

    2016-01-01

    The wave propagation in the partially ionized ionosphere plays an important role in the magnetosphere ionosphere coupling. For example, the ionosphere may supports very low-frequency Alfven wave which can be caused by a balance between the bulk fluid inertia (mostly due to neutrals in the lower and middle E region) and the deformation of the magnetic field. The plasma neutral collisional momentum exchange facilitates the transfer of the magnetic stress (felt directly by the ions) to the neutrals. Therefore, in the low-frequency (with respect to the neutral ion collision frequency) limit, waves through the ionosphere can propagate with very little damping. In the vanishing plasma inertia limit, waves can be excited due to the loading of neutral inertia on the field lines and thus may have very long wavelength and can easily couple to the magnetosphere. The frequency of these waves are below few Hz.

  19. Models of Titan's Ionosphere

    Science.gov (United States)

    Robertson, I. P.; Cravens, T. E.; Waite, J. H.; Wahlund, J.; Yelle, R. V.; Vuitton, V.; Coates, A.; Magee, B.; Gell, D. A.

    2007-12-01

    During the TA and T18 encounters with Titan, in situ measurements were made of Titan's atmosphere and ionosphere by several instruments on board the Cassini Orbiter, including the Ion and Neutral Mass Spectrometer (INMS), the Langmuir probe on the Cassini Radio and Plasma Wave Experiment (RPWS), and the Cassini Plasma Spectrometer Subsystem (CAPS). Both of these encounters were on the day as well as the night side of Titan. The model uses neutral densities measured by the INMS instrument and the electron temperature was measured by the RPWS instrument. The model also includes energetic electron fluxes measured by the CAPS instrument, which act as an important source of ionization on the night side. The modeled ion densities are compared with densities measured by INMS in its Open Source mode.

  20. The New IGS Ionospheric Fluctuation Maps Product and its Scientific Application

    Science.gov (United States)

    Cherniak, I.; Andrzej, K.; Zakharenkova, I.

    2016-12-01

    The GPS signals fading due to presence of the plasma irregularities in the ionosphere can decrease an operational availability of navigation systems. This effect can be estimated by measuring of its impact on phase of the received GPS signal. The new IGS ionospheric fluctuation maps product is based on estimates of the TEC rapid changes. For an overall representation of the spatial evolution of the ionospheric irregularities, which caused the GPS signal fluctuations over the Northern Hemisphere middle and high latitudes, there is produced a daily map of the ROTI index basing on data derived from a representative set of 700 permanent GPS stations. We use the corrected geomagnetic (CGM) coordinates with DGRF/IGRF models. For daily ROTI maps, we averaged and binned all ROTI values collected during 00-24 UT period of a considered day. The grid size is 8 min MLT by 2° MLAT, with the latter covering 50° - 90°. The averaged ROTI value in each MLAT-MLT bin corresponds to probability of the GPS signals phase fluctuations caused by passing of radio signals through the ionospheric irregularities. The resulted ionospheric fluctuation product is represented in the ASCII IONEX-like data format and can be visualized. This data format is described in details. We demonstrate the IGS ionospheric fluctuation map product performance for scientific research application on set of test-cases (geomagnetic storms occurred in the years 2013-2015) for comparative analysis of the resulted daily ROTI maps for quite and geomagnetically disturbed periods. The intense phase scintillations depicted in the diurnal ROTI maps can provide an important information about development of the severe storm-induced gradients in the ionospheric plasma density, both caused by auroral particle precipitation and plasma flows. It is possible to conclude that IGS ionospheric fluctuation maps product can be effectively used for monitoring of the plasma irregularities with different origin. The independent ground

  1. ALTAIR Radar Plasma Drifts and in situ Electric and Magnetic Field Measurements on Two Sounding Rockets and the C/NOFS Satellite in the Low Latitude Ionosphere at Sunset

    Science.gov (United States)

    Kudeki, Erhan; Pfaff, Robert; Rowland, Douglas; Klenzing, Jeffrey; Freudenreich, Henry

    2016-07-01

    We present ALTAIR incoherent scatter radar plasma drifts and in situ electric field, magnetic field, and plasma density measurements made simultaneously with probes on two sounding rockets and the C/NOFS satellite in the low latitude ionosphere in the vicinity of Kwajalein Atoll. The coincident data were gathered during sunset conditions prior to a spread-F event during the NASA EVEX Campaign. The sounding rocket apogees were 180 km and 330 km, while the C/NOFS altitude in this region was ~ 390 km. Electric field data from all three platforms display upwards vertical plasma drifts, while the zonal drifts change direction as a function of altitude and/or local time. The variable drifts provide evidence of a dynamic plasma environment which may contribute to the unstable conditions necessary for spread-F instabilities to form.

  2. Electric, Magnetic and Ionospheric Survey of Seismically Active Regions with SWARM

    Science.gov (United States)

    Echim, Marius M.; Moldovan, Iren; Voiculescu, Mirela; Balasis, George; Lichtenberger, Janos; Heilig, Balazs; Kovacs, Peter

    2014-05-01

    We present a project devoted to the scientific exploitation of SWARM multi-point measurements of the magnetic and electric field, of the electron temperature and density in the ionosphere. These data provide unique opportunities to study in-situ and remotely the electromagnetic and plasma variability due to ionospheric forcing from above and below. The project "Electric, Magnetic and Ionospheric Survey of Seismically Active Regions with SWARM (EMISSARS)" focus on coordinated studies between SWARM and ground based observatories to survey electromagnetic and ionospheric variability at medium latitudes and look for possible correlations with the seismic activity in central Europe. The project is coordinated by the Institute for Space Sciences (INFLPR-ISS) and the National Institute for Earth Physics (INFP) in Bucharest, Romania. In addition to SWARM data the project benefits from support of dedicated ground based measurements provided by the MEMFIS network coordinated by INFP, the MM100 network of magnetic observatories coordinated by the Geological and Geophysical Institute of Hungary (MFGI) in Budapest. Seismic data are provided by INFP and the European Mediterranean Seismological Center. The mission of the project is to monitor from space and from ground the ionospheric and electromagnetic variability during time intervals prior, during and after seismic activity in (i) the seismic active regions of the central Europe and (ii) in regions unaffected by the seismic activity. The latter will provide reference measurements, free from possible seismogenic signals. The scientific objectives of the project are: (1) Observation of electric, magnetic and ionospheric (electron temperature, density) variability in the ionosphere above or in the close vicinity of seismic active regions, in conjunction with ground based observations from dedicated networks; (2) Investigation of the coupling between the litosphere - atmosphere - ionosphere, during Earthquakes; (3) Quantitative

  3. Alfvén wave characteristics of equatorial plasma irregularities in the ionosphere derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    Hermann eLühr

    2014-08-01

    Full Text Available We report magnetic field observations of the components transverse to the main field in the frequency range 1-25 Hz from times of equatorial plasma irregularity crossings. These field variations are interpreted as Alfvénic signatures accompanying intermediate-scale (150 m – 4 km plasma density depletions. Data utilized are the high-resolution CHAMP magnetic field measurements sampled at 50 Hz along the north-south satellite track. The recorded signals do not reflect the temporal variation but the spatial distribution of Alfvénic signatures. This is the first comprehensive study of Alfvénic signatures related to equatorial plasma bubbles that covers the whole solar cycle from 2000 to 2010. A detailed picture of the wave characteristics can be drawn due to the large number (almost 9000 of events considered. Some important findings are: Alfvénic features are a common feature of intermediate-scale plasma structures. The zonal and meridional magnetic components are generally well correlated suggesting skewed current sheets. The sheets have an orientation that is on average deflect by about 32° away from magnetic east towards upward or downward depending on the hemisphere. We have estimated the Poynting flux flowing into the E region. Typical values are distributed over the range 10-8 - 10-6 W/m2. Large Poynting fluxes are related to steep spectra of the Alfvénic signal, which imply passages through regularly varying electron density structures. No dependence of the Poynting flux level on solar activity has been found. But below a certain solar flux value (F10.7 < 100 sfu practically no events are detected. There is a clear tendency that large Poynting flux events occur preferably at early hours after sunset (e.g. 20:00 local time. Towards later times the occurrence peak shifts successively towards lower energy levels. Finally we compare our observations with the recently published results of the high-resolution 3-D model simulations by Dao et

  4. Investigation of low-latitude ionospheric irregularities and their relationship to equatorial plasma bubbles using Sanya VHF radar

    Science.gov (United States)

    Ning, B.; Li, G.; Hu, L.

    2011-12-01

    A VHF radar has been set up at Sanya (18.34° N, 109.62° E, geomagnetic latitude 7.04°N), China in 2009. On the basis of the E, valley and F region irregularity observations detected by the Sanya VHF radar during equinoctial months, we focus on the simultaneous observations of E region irregularities disruption and valley region irregularities generation during the presence of post-sunset F region bubble structures. We stress that both the low latitude the E region irregularities (ERI) disruption and valley region irregularities (VRI) generation are associated with the development of post-sunset equatorial plasma bubble (EPB) structures. It is suggested that the electric field coupling from the unstable equatorial F region to low-latitude E and valley region could trigger and inhibit the occurrence of irregularities, depending on the polarity of the polarization electric field associated with the bifurcation of equatorial plasma bubbles. The mapping of upward/eastward and downward/eastward electric field associated with the west-tilted and east-tilted bubble structures, may be responsible for the disruption of E region irregularities, and the generation of valley region irregularities, respectively. However, more observations from multi instruments will be required to confirm such a scenario that the multi bifurcated EPBs play crucial roles for the simultaneous occurrence of low latitude ERI disruption and VRI generation.

  5. Solar cycle variations in the ionosphere of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.

    2016-07-01

    Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)

  6. Advanced Ionospheric Probe scientific mission onboard FORMOSAT-5 satellite

    Directory of Open Access Journals (Sweden)

    Zai-Wun Lin

    2017-01-01

    Full Text Available Advanced Ionospheric Probe (AIP is a piggyback science payload developed by National Central University for FORMOSAT-5 satellite to explore space weather/climate and seismic precursors associated with strong earthquakes. The AIP is an all-in-one plasma sensor that measures ionospheric plasma concentrations, velocities, and temperatures in a time-sharing way and is capable of measuring ionospheric plasma irregularities at a sample rate up to 8192 Hz over a wide range of spatial scales. Electroformed gold grids used in the AIP in theory construct planar electric potential surfaces better than woven grids. Moreover, a plasma injection test performed in the Space Plasma Simulation Chamber has verified that no significant hysteresis is found in current-voltage curves measured by the AIP. It indicates that the AIP can make an accurate measurement of the ionospheric plasma parameters in space. Finally, Ionospheric Plasma and Electrodynamics Instrument (IPEI observations onboard the ROCSAT-1 satellite are applied to show that the scientific objectives of ionospheric space weather/climate and seismo-ionospheric precursors (SIPs of the FORMOSAT-5/AIP can be fulfilled. The observations reveal that ion parameter global distributions are helpful in studying the formation and variation in temperature crests and troughs in the 2200 - 2300 local time sector, as well as SIPs in the density and the velocity over the epicenter area, which are anticipated for the FORMOSAT-5 satellite orbit.

  7. Ionospheric Digital Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ionosphere is that part of the Earth's atmosphere that results mainly from the photo ionization of the upper atmosphere. Traditionally, the following ionospheric...

  8. Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska

    Science.gov (United States)

    Rooker, L. A.; Lee, M. C.; Pradipta, R.; Watkins, B. J.

    2013-07-01

    We report on high-frequency wave injection experiments using the beat wave technique to study the generation of very-low-frequency (VLF) whistler waves in the ionosphere above Gakona, Alaska. This work is aimed at investigating whistler wave interactions with ionospheric plasmas and radiation belts. The beat wave technique involves injecting two X-mode waves at a difference frequency in the VLF range using the High-frequency Active Auroral Research Program (HAARP) heating facility. A sequence of beat wave-generated whistler waves at 2, 6.5, 7.5, 8.5, 9.5, 11.5, 15.5, 22.5, 28.5 and 40.5 kHz were detected in our 2011 experiments. We present Modular Ultra-high-frequency Ionospheric Radar (MUIR) (446 MHz) measurements of ion lines as the primary diagnosis of ionospheric plasma effects caused by beat wave-generated whistler waves. A magnetometer and digisonde were used to monitor the background ionospheric plasma conditions throughout the experiments. Our theoretical and data analyses show that VLF whistler waves can effectively interact with ionospheric plasmas via two different four-wave interaction processes leading to energization of electrons and ions. These preliminary results support our Arecibo experiments to study NAU-launched 40.75 kHz whistler wave interactions with space plasmas.

  9. Ionospheric Challenges for GNSS Based Augmentation Systems

    Science.gov (United States)

    Doherty, P.; Valladares, C. E.

    2007-12-01

    The ionosphere is a highly dynamic physical phenomenon that presents a variable source of error for Global Navigation Satellite System (GNSS) signals and GNSS based operational systems. The Federal Aviation Administration's (FAA) Wide-Area Augmentation System (WAAS) was designed to enhance the GNSS standard positioning service by providing additional accuracy, availability and integrity that is sufficient for use in commercial aviation. It is the first of a number of planned regional Satellite Based Augmentation Systems (SBAS). Other systems in development include the European EGNOS system, the MSAS system in Japan and the GAGAN system in India. In addition, the South American countries are investigating the feasibility of operating an SBAS system in this region. Much of the WAAS ionospheric research and development focused on defining and mitigating ionospheric challenges characteristic of the mid-latitude regions, where the ionosphere is well studied and relatively quiescent. The EGNOS and MSAS systems will primarily operate under a similarly quiescent mid-latitude ionosphere. SBAS system development in South America, India and other low-latitude regions, however, will have to contend with much more extreme conditions. These conditions include strong spatial and temporal gradients, plasma depletions and scintillation. All of these conditions have a potential to limit SBAS performance in the low latitude regions. This presentation will review the effects that the ionosphere has on the mid-latitude WAAS system. It will present the techniques that are used to mitigate ionospheric disturbances induced on the system during severe geomagnetic activity and it will quantify the effect that this activity has on system performance. The presentation will then present data from the South American Low-latitude Ionospheric Sensor Network (LISN) that can be used to infer the ionospheric effects on SBAS performance in the most challenging low-latitude ionospheric environment

  10. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  11. Joule heating of Io's ionosphere by unipolar induction currents

    Science.gov (United States)

    Herbert, F.; Lichtenstein, B. R.

    1980-01-01

    Electrical induction in Io's ionosphere, due to the corotating plasma bound to the Jovian magnetosphere, is one possible source for the attainment of the high temperatures suggested by the large scale height of Io's ionosphere. Unipolar induction models are constructed to calculate ionospheric joule heating numerically, whose heating rates lie between 10 to the -9th and 10 to the -8th W/cu m. The binding and coupling of the ionosphere is due to the dense, and possibly ionized, neutral SO2 atmosphere, and there appears to be no need to postulate the existence of an intrinsic Ionian magnetic field in order to retain the observed ionnosphere.

  12. Assessing the Suitability of the ClOud Reflection Algorithm (CORA) in Modelling the Evolution of an Artificial Plasma Cloud in the Ionosphere

    Science.gov (United States)

    Jackson-Booth, N.

    2016-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the propagation environment. It can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such release can be detected through the deployment of sensors, including ground based high frequency (HF) sounders. During the Metal Oxide Space Clouds (MOSC) experiment (undertaken in April/May 2013 in the Kwajalein Atoll, part of the Marshall Islands) several oblique ionograms were recorded from a ground based HF system. These ionograms were collected over multiple geometries and allowed the effects on the HF propagation environment to be understood. These ionograms have subsequently been used in the ClOud Reflection Algorithm (CORA) to attempt to model the evolution of the cloud following release. This paper describes the latest validation results from CORA, both from testing against ionograms, but also other independent models of cloud evolution from MOSC. For all testing the various cloud models (including that generated by CORA) were incorporated into a background ionosphere through which a 3D numerical ray trace was run to produce synthetic ionograms that could be compared with the ionograms recorded during MOSC.

  13. Theoretical studies on ionospheric irregularities and ion diode performance

    Science.gov (United States)

    Sudan, R. N.

    1993-08-01

    Work accomplished is divided into three parts: ionospheric physics; ion diodes, magnetic insulation, and plasma opening switches; and subgrid modeling in numerical computations and other research. Abstracts of published and conference papers are presented.

  14. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    Science.gov (United States)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  15. Space Plasma Effects

    Directory of Open Access Journals (Sweden)

    Miguel Herraiz

    2009-06-01

    Full Text Available

    This paper summarizes the activities carried out by WP 3.1 of WG 3 of COST 296 action. The Work Package

    deals mostly with medium and large ionospheric structures that impacts on GNSS signals. In the research done

    by this European team, particular attention was given to the ionosphere/space weather monitoring, to the analysis

    of the variability of the ionospheric plasma during quiet and disturbed conditions and to the characterization

    of the behavior of low latitudes ionospheric depletions or bubbles and the spatial and temporal gradients of total electron contet.


  16. Ninth Workshop 'Solar Influences on the Magnetosphere, Ionosphere and Atmosphere'

    Science.gov (United States)

    Georgieva, Kayta; Kirov, Boian; Danov, Dimitar

    2017-08-01

    The 9th Workshop "Solar Influences on the Magnetosphere, Ionosphere and Atmosphere" is an international forum for scientists working in the fields of: Sun and solar activity, Solar wind-magnetosphere-ionosphere interactions, Solar influences on the lower atmosphere and climate, Solar effects in the biosphere, Instrumentation for space weather monitoring and Data processing and modelling.

  17. Current methods for studying dynamic processes in the ionosphere

    Science.gov (United States)

    Filipp, Nikolai D.; Blaunshtein, Natan Sh.; Erukhimov, Lev M.; Ivanov, Vladimir A.; Uriadov, Valerii P.

    Current experimental and theoretical data relevant to the study of dynamic processes in the ionospheric plasma using state-of-the-art methods are summarized. The methods used include linear FM sounding, partial radio wave reflection, oblique-incidence radio wave scattering, radio wave heating of the ionosphere, plasma injection, and computer simulation of physical processes. For each specific method, experimental data are compared against theoretical predictions and numerical calculations.

  18. Remote Sensing of Ionosphere by IONOLAB Group

    Science.gov (United States)

    Arikan, Feza

    2016-07-01

    Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state

  19. A comparison of EISCAT and Dynasonde measurements of the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    K. J. F. Sedgemore

    Full Text Available Incoherent-scatter radar and ionospheric sounding are powerful and complementary techniques in the study of the Earth's ionosphere. The work presented here involves the use of the Tromsø Dynasonde as a correlative diagnostic with the EISCAT incoherent-scatter radar. A comparison of electron-density profiles shows how a Dynasonde can be used to calibrate an incoherent-scatter radar and to monitor changes in the system. Skymaps of the direction of Dynasonde echoes are compared with EISCAT-derived density profiles to illustrate how a Dynasonde can be used to measure the drift velocity of auroral features. Vector velocities fitted to Dynasonde echoes are compared with EISCAT-derived plasma velocities. The results show good agreement when the data are taken during quiet to moderately active conditions and averaged over time scales of 30 min or more.

  20. Reliability of plasma-sprayed coatings: monitoring the plasma spray process and improving the quality of coatings

    Science.gov (United States)

    Fauchais, P.; Vardelle, M.; Vardelle, A.

    2013-06-01

    As for every coating technology, the reliability and reproducibility of coatings are essential for the development of the plasma spraying technology in industrial manufacturing. They mainly depend on the process reliability, equipment and spray booth maintenance, operator training and certification, implementation and use of consistent production practices and standardization of coating testing. This paper deals with the first issue, that is the monitoring and control of the plasma spray process; it does not tackle the coating characterization and testing methods. It begins with a short history of coating quality improvement under plasma spray conditions over the last few decades, details the plasma spray torches used in the industry, the development of the measurements of in-flight and impacting particle parameters and then of sensors. It concludes with the process maps that describe the interrelations between the operating parameters of the spray process, in-flight particle characteristics and coating properties and with the potential of in situ monitoring of the process by artificial neural networks and fuzzy logic methods.

  1. Asymmetry of the Venus nightside ionosphere: Magnus force effects

    Science.gov (United States)

    Pérez-de-Tejada, H.

    2008-11-01

    A study of the dawn-dusk asymmetry of the Venus nightside ionosphere is conducted by examining the configuration of the ionospheric trans-terminator flow around Venus and also the dawn-ward displacement of the region where most of the ionospheric holes and the electron density plateau profiles are observed (dawn meaning the west in the retrograde rotation of Venus and that corresponds to the trailing side in its orbital motion). The study describes the position of the holes and the density plateau profiles which occur at neighboring locations in a region that is scanned as the trajectory of the Pioneer Venus Orbiter (PVO) sweeps through the nightside hemisphere with increasing orbit number. The holes are interpreted as crossings through plasma channels that extend downstream from the magnetic polar regions of the Venus ionosphere and the plateau profiles represent cases in which the electron density maintains nearly constant values in the upper ionosphere along the PVO trajectory. From a collection of PVO passes in which these profiles were observed it is found that they appear at neighboring positions of the ionospheric holes in a local solar time (LST) map including cases where only a density plateau profile or an ionospheric hole was detected. It is argued that the ionospheric holes and the density plateau profiles have a common origin at the magnetic polar regions where plasma channels are formed and that the density plateau profiles represent crossings through a friction layer that is adjacent to the plasma channels. It is further suggested that the dawn-dusk asymmetry in the position of both features in the nightside ionosphere results from a fluid dynamic force (Magnus force) that is produced by the combined effects of the trans-terminator flow and the rotational motion of the ionosphere that have been inferred from the PVO measurements.

  2. Identification of rocket-induced acoustic waves in the ionosphere

    Science.gov (United States)

    Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald

    2016-10-01

    Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.

  3. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  4. Magnetic zenith effect in ionospheric modifications

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.V.; Zybin, K.P.; Carlson, H.C.; Pedersen, T

    2002-12-09

    The theory of ionospheric modification for the beam of powerful radio emission directed along magnetic field lines is developed. Nonlinear process of beam self-focusing on striations is shown to determine strong amplification of heating and acceleration of plasma electrons. It results in a dramatic enhancement of optic emission from the magnetic zenith region in ionospheric F-layer. An excellent agreement between the theory and recent fundamental observations at HAARP facility (Alaska) [T. Pedersen et al., Geophys. Res. Lett. (2002), in press] is demonstrated.

  5. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring.

    Science.gov (United States)

    Garbett, Nichola C; Mekmaysy, Chongkham S; Helm, C William; Jenson, A Bennett; Chaires, Jonathan B

    2009-06-01

    Differential scanning calorimetry (DSC) provides a useful method to study the unfractionated plasma proteome. Plasma from healthy individuals yields a reproducible signature thermogram which results from the weighted sum of the thermal denaturation of the most abundant plasma proteins. Further investigation of the thermogram for healthy individuals showed it to be sensitive to ethnicity and gender. DSC analysis of plasma from diseased individuals revealed significant changes in the thermogram which are suggested to result not from changes in the concentration of the major plasma proteins but from interactions of small molecules or peptides with these proteins. Closer examination of the diseased thermograms showed a thermogram characteristic of each disease. For cervical cancer, the DSC method yields a progressively shifted thermogram as the disease advances from pre-invasive conditions to late stage cancer. Our application of the DSC method has provided a potential tool for the early diagnosis, monitoring and screening of cancer patients.

  6. Feature profile evolution in plasma processing using on-wafer monitoring system

    CERN Document Server

    Samukawa, Seiji

    2014-01-01

    This book provides for the first time a good understanding of the etching profile technologies that do not disturb the plasma. Three types of sensors are introduced: on-wafer UV sensors, on-wafer charge-up sensors and on-wafer sheath-shape sensors in the plasma processing and prediction system of real etching profiles based on monitoring data. Readers are made familiar with these sensors, which can measure real plasma process surface conditions such as defect generations due to UV-irradiation, ion flight direction due to charge-up voltage in high-aspect ratio structures and ion sheath conditions at the plasma/surface interface. The plasma etching profile realistically predicted by a computer simulation based on output data from these sensors is described.

  7. High-Throughput Microplate-Based Assay to Monitor Plasma Membrane Wounding and Repair

    Directory of Open Access Journals (Sweden)

    Sarika Pathak-Sharma

    2017-07-01

    Full Text Available The plasma membrane of mammalian cells is susceptible to disruption by mechanical and biochemical damages that frequently occur within tissues. Therefore, efficient and rapid repair of the plasma membrane is essential for maintaining cellular homeostasis and survival. Excessive damage of the plasma membrane and defects in its repair are associated with pathological conditions such as infections, muscular dystrophy, heart failure, diabetes, and lung and neurodegenerative diseases. The molecular events that remodel the plasma membrane during its repair remain poorly understood. In the present work, we report the development of a quantitative high-throughput assay that monitors the efficiency of the plasma membrane repair in real time using a sensitive microplate reader. In this assay, the plasma membrane of living cells is perforated by the bacterial pore-forming toxin listeriolysin O and the integrity and recovery of the membrane are monitored at 37°C by measuring the fluorescence intensity of the membrane impermeant dye propidium iodide. We demonstrate that listeriolysin O causes dose-dependent plasma membrane wounding and activation of the cell repair machinery. This assay was successfully applied to cell types from different origins including epithelial and muscle cells. In conclusion, this high-throughput assay provides a novel opportunity for the discovery of membrane repair effectors and the development of new therapeutic compounds that could target membrane repair in various pathological processes, from degenerative to infectious diseases.

  8. Three-dimensional structure of the seismo-electromagnetic ionospheric electron density disturbances

    CERN Document Server

    Karpov, M I; Zolotov, O V

    2012-01-01

    The paper presents the three-dimensional structure of the ionospheric electron density disturbances triggered by the vertical electric currents flowing between the Earth and ionosphere over the faults before the strong earthquakes. The results were obtained using the global numerical Earth's Upper Atmosphere Model (UAM). The vertical electric currents flowing between the Earth and ionosphere over the faults were used as lower boundary conditions for the UAM electric potential equation. The UAM calculated 3D structure of the ionospheric electron density disturbances demonstrates an importance of all three ionospheric plasma drift directions (movements) - vertical, meridional and zonal but not only vertical one.

  9. Ionospheric Impacts on UHF Space Surveillance

    Science.gov (United States)

    Jones, J.; Ceron-Gomez, D.; Richards, G.

    2016-09-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 350 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the electron density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant uncertainty in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine correlations with ionospheric variability. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  10. Electrodynamics of ionospheric weather over low latitudes

    Science.gov (United States)

    Abdu, Mangalathayil Ali

    2016-12-01

    The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the

  11. Simulated Response of the Magnetosphere-Ionosphere System to Different Forms of Empirically Regulated Ionospheric Outflows

    Science.gov (United States)

    Lotko, W.; Lyon, J.; Melanson, P.; Murr, D.; Wiltberger, M.

    2006-12-01

    Empirically derived power-law relations between the locally measured Poynting flux (S) flowing toward the ionosphere and the number flux of ions (F) flowing away from the ionosphere exhibit significant differences that depend on the choice of satellite data samples (Strangeway et al., 2005; Zheng et al., 2005). Such relations attempt to capture in lumped form the causality of electromagnetic power flows into collisionless ion acceleration in the topside ionosphere and low-altitude magnetosphere and the resulting ion outflows -- effects that are otherwise difficult to treat in first-principles fluid models for the field-aligned mass transport. We have implemented a power-law relation of the form F = A*S**b, where A and b are adjustable parameters ultimately constrained by observation, as a low-altitude boundary condition on the LFM global simulation model. This boundary condition allows ions of ionospheric origin to enter the magnetospheric simulation domain and to mix with plasma of solar wind origin in populating the magnetosphere. According to the empirical relation, more ionospheric ions are causally injected into the simulation domain as the Poynting flux through the low-altitude boundary increases. In this paper, we report results from simulations using different values of the parameters A and b to determine the sensitivity of the magnetospheric response to the form of the empirical relation. Simulation diagnostics for the transpolar potential, field-aligned current, ionospheric conductivity, precipitating electron energy flux, and Joule dissipation rate will be presented.

  12. The importance of neutral hydrogen for the maintenance of the midlatitude winter nighttime ionosphere: Evidence from IS observations at Kharkiv, Ukraine, and field line interhemispheric plasma model simulations

    Science.gov (United States)

    Kotov, D. V.; Richards, P. G.; Bogomaz, O. V.; Chernogor, L. F.; Truhlik, V.; Emelyanov, L. Ya.; Chepurnyy, Ya. M.; Domnin, I. F.

    2016-07-01

    This study investigates the causes of nighttime enhancements in ionospheric density that are observed in winter by the incoherent scatter radar at Kharkiv, Ukraine. Calculations with a comprehensive physical model reveal that large downward ion fluxes from the plasmasphere are the main cause of the enhancements. These large fluxes are enabled by large upward H+ fluxes into the plasmasphere from the conjugate summer hemisphere during the daytime. The nighttime downward H+ flux at Kharkiv is sensitive to the thermosphere model H density, which had to be increased by factors of 2 to 3 to obtain model-data agreement for the topside H+ density. Other studies support the need for increasing the thermosphere model H density for all seasons at solar minimum. It was found that neutral winds are less effective than plasmaspheric fluxes for maintaining the nighttime ionosphere. This is partly because increased equatorward winds simultaneously oppose the downward H+ flux. The model calculations also reveal the need for a modest additional heat flow from the plasmasphere in the afternoon. This source could be the quiet time ring current.

  13. Plasma EBV-DNA monitoring in Epstein-Barr virus-positive Hodgkin lymphoma patients.

    Science.gov (United States)

    Spacek, Martin; Hubacek, Petr; Markova, Jana; Zajac, Miroslav; Vernerova, Zdenka; Kamaradova, Katerina; Stuchly, Jan; Kozak, Tomas

    2011-01-01

    Epstein-Barr virus (EBV) is associated with approximately one-third of Hodgkin lymphoma (HL) cases. EBV-DNA is often present in the plasma and whole blood of EBV-associated HL patients. However, the significance of EBV-DNA monitoring is debated. In a cohort of 165 adult HL patients, EBV-DNA viral load was prospectively monitored both in the plasma and whole blood. Diagnostic tissue samples of all patients were histologically reviewed; in 72% nodular sclerosis was detected, 24% presented with mixed cellularity (MC), and 5% had other type of HL. Tissues from 150 patients were also analyzed for the presence of latent EBV infection using in situ hybridization for EBV-encoded RNA (EBER) and immunohistochemistry for latent membrane protein (LMP1). Using these methods, 29 (19%) patients were classified as EBV positive. Using real-time quantitative PCR, 22 (76%) of EBV-positive HL patients had detectable EBV-DNA in the plasma and 19 (66%) patients in whole blood prior to therapy. In the group of EBV-negative HL cases, three (2%) patients had detectable plasma EBV-DNA and 30 (25%) patients whole blood EBV-DNA before treatment. EBV-positive HL was significantly associated with EBV-DNA positivity both in the plasma and whole blood in pretreatment samples, increasing age and MC subtype. Serial analysis of plasma EBV-DNA showed that response to therapy was associated with decline in viral load. Moreover, significantly increased plasma EBV-DNA level recurred before disease relapse in one patient. Our results further suggest that the assessment of plasma EBV-DNA viral load might be of value for estimation of prognosis and follow-up of patients with EBV-positive HL.

  14. Temperature enhancement induced by ionosphere heating in low altitude region

    Institute of Scientific and Technical Information of China (English)

    Bin Xu; Jian Wu; Zhensen Wu; Jun Wu; Haiqin Che; Yubo Yan; Kun Xue

    2008-01-01

    The assumption that the electron temperature is approximately equal to the ion temperature is not rational during the high frequency (HF) heating in low ionosphere region. Thus, using the theoretical formula of incoherent scatter spectra with collisional plasma, the incoherent scatter data are analyzed during ionosphere heating at 91.7 km height on August 15th 2006. The enhancements of electron temperature are obtained, and the incremental percent is up to 37% and 46% at the universal time of 10:22 and 10:30, respectively. By using the same initialization value, the ionosphere heating process is simulated by Ohmic theory and the experimental results are basically consistent with the simulation.

  15. Charge Balance in the Martian Ionosphere

    Science.gov (United States)

    Esman, Teresa; Yelle, Roger V.; Stone, Shane W.; Andersson, Laila; Fowler, Christopher Michael; Benna, Mehdi; Eparvier, Francis; Mahaffy, Paul; Ergun, Bob; Elrod, Meredith K.; MAVEN

    2016-10-01

    We present empirical models of the Martian ionosphere in conjunction with data from the Langmuir Probe and Waves (LPW), Neutral Gas and Ion Mass Spectrometer (NGIMS), and Extreme Ultraviolet Monitor (EUVM) instruments aboard the Mars Atmosphere and Volatile Evolution mission (MAVEN) spacecraft. Among the data provided by MAVEN are electron densities and temperatures, ion and neutral densities, and solar extreme ultraviolet (EUV) flux. We explore a number of contributors to the CO2 photoionization rate, with a specific focus on the role of electron temperatures, which, prior to MAVEN, were not well-known. We compare our results with expectations of the ionospheric structure and behavior to confirm our understanding of the basic structure of the Martian ionosphere in the photochemical region. We show that the ionosphere of Mars is well matched by photochemical equilibrium to within the accuracy of the measurements. These results will aid in the development of more complex ionospheric and escape models and lead to a comprehensive and global scale picture of thermal ion escape on Mars.

  16. In-situ Observations of the Ionospheric F2-Region from the International Space Station

    Science.gov (United States)

    Coffey, Victoria N.; Wright, Kenneth H.; Minow, Joseph I.; Chandler, Michael O.; Parker, Linda N.

    2008-01-01

    The International Space Station orbit provides an ideal platform for in-situ studies of space weather effects on the mid and low latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) operating on the ISS since Aug 2006, is a suite of plasma instruments: a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). This instrument package provides a new opportunity for collaborative multi-instrument studies of the F-region ionosphere during both quiet and disturbed periods. This presentation first describes the operational parameters for each of the FPMU probes and shows examples of an intra-instrument validation. We then show comparisons with the plasma density and temperature measurements derived from the TIMED GUVI ultraviolet imager, the Millstone Hill ground based incoherent scatter radar, and DIAS digisondes, Finally we show one of several observations of night-time equatorial density holes demonstrating the capabilities of the probes for monitoring mid and low latitude plasma processes.

  17. [Designing and implementation of a web-based quality monitoring system for plasma glucose measurement in multicenter population study].

    Science.gov (United States)

    Liu, Yong; Wang, Limin; Pang, Richard; Mo, Nanxun; Hu, Yan; Deng, Qian; Hu, Zhaohui

    2015-05-01

    The aim of this paper is to describe the designing and implementation of a web-based plasma glucose measurement quality monitoring system to assess the analytical quality of plasma glucose measurements in multicenter population study and provide evidence for the future studies. In the chronic non-communicable disease and related factor surveillance in China, a web based quality monitoring system for plasma glucose measurement was established to conduct evaluation on plasma glucose monitoring quality and effectiveness in 302 surveillance centers, including quality control data entry, transmission and feedback. The majority of the surveillance centers met the quality requirements and passed the evaluation of reproducibility and precision of plasma glucose measurement, only a few centers required intensive training and re-assessment. In order to ensure the completeness and reliability of plasma glucose measurement in the surveillance centers, the establishment of web-based plasma glucose measurement quality control system can facilitate the identification of the qualified surveillance centers and evaluation of plasma glucose measurement quality in different regions. Communication and training are important in ensuring plasma glucose measurement quality. It is necessary to further improve this web-based plasma glucose measurement quality monitoring system in the future to reduce the method specific plasma glucose measurement bias.

  18. Laser-induced incandescence diagnostic for in situ monitoring of nanoparticle synthesis in an atmospheric plasma

    Science.gov (United States)

    Mitrani, James; Patel, Shane; Shneider, Mikhail; Stratton, Brent; Raitses, Yevgeny

    2014-10-01

    A DC arc discharge with a consumed graphite electrode is commonly used for synthesis of carbon nanoaparticles in a low temperature (0.1-1 eV), atmospheric pressure plasma. The formation of nanoparticles in this plasma is poorly understood; it is not clear where nanoparticles nucleate and grow in the arc discharge. Therefore, a laser-induced incandescence (LII) diagnostic for in situ monitoring of the nanoparticles' spatial distribution in the plasma is currently being constructed. The LII diagnostic involves heating the particles with a short-pulsed laser, and measuring the induced spatiotemporal incandescence profiles on longer timescales. By appropriately modeling the induced spatiotemporal incandescence profiles, one can measure particle diameters and volume fraction. LII diagnostics have been extensively used to study soot particles in flames. However, they have never been applied in a strongly coupled plasma background. Even though the spatial dimensions for soot and nanoparticles are similar, great care is needed in developing an LII diagnostic for monitoring nanoparticles in a plasma background. Therefore, we will calibrate our LII diagnostic by measuring spatiotemporal incandescence profiles of known, research grade soot and nanoparticles. This work was supported by DOE Contract DE-AC02-09CH11466.

  19. Near Real Time Tools for ISS Plasma Science and Engineering Applications

    Science.gov (United States)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard; Shim, Ja Soon; Kuznetsova, Maria M.; Pulkkinen, Antti, A.

    2013-01-01

    The International Space Station (ISS) program utilizes a plasma environment forecast for estimating electrical charging hazards for crews during extravehicular activity (EVA). The process uses ionospheric electron density (Ne) and temperature (Te) measurements from the ISS Floating Potential Measurement Unit (FPMU) instrument suite with the assumption that the plasma conditions will remain constant for one to fourteen days with a low probability for a space weather event which would significantly change the environment before an EVA. FPMU data is typically not available during EVA's, therefore, the most recent FPMU data available for characterizing the state of the ionosphere during EVA is typically a day or two before the start of an EVA or after the EVA has been completed. Three near real time space weather tools under development for ISS applications are described here including: (a) Ne from ground based ionosonde measurements of foF2 (b) Ne from near real time satellite radio occultation measurements of electron density profiles (c) Ne, Te from a physics based ionosphere model These applications are used to characterize the ISS space plasma environment during EVA periods when FPMU data is not available, monitor for large changes in ionosphere density that could render the ionosphere forecast and plasma hazard assessment invalid, and validate the "persistence of conditions" forecast assumption. In addition, the tools are useful for providing space environment input to science payloads on ISS and anomaly investigations during periods the FPMU is not operating.

  20. Climatology of GNSS ionospheric scintillation at high latitudes

    OpenAIRE

    Spogli, Luca; Alfonsi, Lucilla; De Franceschi, Giorgiana; Romano, Vincenzo; Aquino, Marcio H. O.; Dodson, Alan

    2010-01-01

    The ionosphere is characterized by a highly variable degree of ionization maintained by a wide range of solar radiation and by electrons and protons originating from Sun. This plasma is under the permanent solar forcing, and interacts with the geomagnetic and interplanetary magnetic fields. The ionosphere shows diurnal and seasonal variations, together with a 11-year period variability related to the solar cycle. Sporadic events due to the intermittent behaviour of the Sun are superimposed to...

  1. Multi-GNSS for Ionospheric Scintillation Studies

    Science.gov (United States)

    Morton, Y.

    2015-12-01

    GNSS have been widely used for ionospheric monitoring. We anticipate over 160 GNSS satellites broadcasting 400 signals by 2023, nearly double the number today. With their well-defined signal structures, high spatial density and spectral diversity, GNSS offers low cost and distributed passive sensing of ionosphere effects. There are, however, many challenges to utilize GNSS resources to characterize and forecast ionospheric scintillation. Originally intended for navigation purposes, GNSS receivers are designed to filter out nuisance effects due to ionosphere effects. GNSS measurements are plagued with errors from multipath, oscillator jitters, processing artifacts, and neutral atmosphere effects. Strong scintillation events are often characterized by turbulent structures in ionosphere, causing simultaneous deep amplitude fading and abrupt carrier phase changes. The combined weak signal and high carrier dynamics imposes conflicting requirements for GNSS receiver design. Therefore, GNSS receivers often experience cycle slips and loss of lock of signals during strong scintillation events. High quality, raw GNSS signals bearing space weather signatures and robust receiver algorithms designed to capture these signatures are needed in order for GNSS to be a reliable and useful agent for scintillation monitoring and forecasting. Our event-driven, reconfigurable data collection system is designed to achieve this purpose. To date, our global network has collected ~150TB of raw GNSS data during space weather events. A suite of novel receiver processing algorithms has been developed by exploitating GNSS spatial, frequency, temporal, and constellation diversity to process signals experiencing challenging scintillation impact. The algorithms and data have advanced our understanding of scintillation impact on GNSS, lead to more robust receiver technologies, and enabled high spatial and temporal resolution depiction of ionosphere responses to solar and geomagnetic conditions. This

  2. Simultaneous observations of magnetopause flux transfer events and of their associated signatures at ionospheric altitudes

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    2004-06-01

    Full Text Available An extensive variety of instruments, including Geotail, DMSP F11, SuperDARN, and IMP-8, were monitoring the dayside magnetosphere and ionosphere between 14:00 and 18:00 UT on 18 January 1999. The location of the instruments provided an excellent opportunity to study in detail the direct coupling between the solar wind, the magnetosphere, and the ionosphere. Flux transfer events were observed by Geotail near the magnetopause in the dawn side magnetosheath at about 4 magnetic local time during exclusively northward interplanetary magnetic field conditions. Excellent coverage of the entire dayside high-latitude ionosphere was achieved by the Northern Hemisphere SuperDARN radars. On the large scale, temporally and spatially, the dayside magnetosphere convection remained directly driven by the interplanetary magnetic field, despite the highly variable interplanetary magnetic field conditions, including long periods of northward field. The SuperDARN radars in the dawn sector also measured small-scale temporally varying convection velocities, which are indicative of flux transfer event activity, in the vicinity of the magnetic footprint of Geotail. DMSP F11 in the Southern Hemisphere measured typical cusp precipitation simultaneously with and magnetically conjugate to a single flux transfer event signature detected by Geotail. A study of the characteristics of the DMSP ion spectrogram revealed that the source plasma from the reconnection site originated downstream of the subsolar point. Detailed analyses of locally optimised coordinate systems for individual flux transfer events at Geotail are consistent with a series of flux tubes protruding from the magnetopause, and originating from a high-latitude reconnection site in the Southern Hemisphere. This high-latitude reconnection site agrees with plasma injected away from the subsolar point. This is the first simultaneous and independent determination from ionospheric and space-based data of the

  3. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  4. High-latitude ionospheric outflows characterized through analytic formulas

    Science.gov (United States)

    Zeng, W.; Horwitz, J. L.

    2008-12-01

    Recent advances involving multi-fluid treatments have begun to allow the prospect of global magnetospheric models to simulate the dynamics of multiple ion species, such as various ion species originating from sources in the solar wind and terrestrial ionosphere. Such opportunities for the dynamic treatment of ionospheric ions within the magnetosphere portend a need for realistic accessible methods of estimating ionospheric outflows as linked plasma sources for these global models. Toward this end, in this presentation, the results of numerous physics-based simulations of ionospheric plasma outflows under varied driving agents are distilled in terms of relatively compact analytic expressions. The simulations are conducted with the UT Arlington Dynamic Fluid (DyFK) ionospheric plasma transport code. These analytic expressions for O+ and H+ densities, temperatures and flow velocities are obtained at the 3 RE altitudes corresponding to typical inner boundary levels for certain current global magnetospheric models. These O+ and H+ parameters are expressed as functions of precipitation electron energy flux levels, characteristic energy levels of the precipitating electrons, the peak spectral wave densities for low-frequency electrostatic waves which transversely heat ionospheric ions, and solar zenith angle.

  5. Dynamic monitoring of total plasma homocysteine in spontaneously hypertensive rats by LC-MS.

    Science.gov (United States)

    Hu, Lu-Feng; Li, Jun-Wei; Wang, Xian-Qin; Xu, Ren-Ai; Xu, Xue-Gu; Jiang, Hai-Yan; Zhang, Xiu-Hua

    2010-10-01

    Hypertension has been recognized to be closely related to plasma homocysteine levels (tHcy). Spontaneously hypertensive rats (SHR) are used widely for hypertension research, but it is unclear whether hypertension is related to high levels of tHcy in rat plasma. To test whether hyperhomocysteinemia occurs in SHR we dynamically measured plasma total homocysteine (tHcy) in SHR by liquid chromatography-tandem mass spectrometry (LC-MS). This analytical method has good linearity within the range of 1-100 micromol/L for tHcy in rat plasma with a correlation coefficient of R = 0.9975. After dynamic monitoring (12 weeks) on the plasma tHcy in SHR and Wistar-Kyoto rats, we found that there was no significant difference in tHcy level between SHR and Wistar-Kyoto rats, which was 6.98 +/- 1.82 micromol/L and 8.04 +/- 1.64 micromol/L, respectively. And there was no significantly high level of plasma tHcy in SHR.

  6. Sudden Ionospheric Disturbances (SID)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden ionospheric disturbances (SID) are caused by solar flare enhanced X-rays in the 1 to 10 angstrom range. Solar flares can produce large increases of ionization...

  7. Martian ionosphere response to solar wind variability during solar minimum

    Science.gov (United States)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Mays, M. Leila; Hall, Benjamin E. S.; Milan, Stephen E.; Cartacci, Marco; Blelly, Pierre-Louis; Andrews, David; Opgenoorth, Hermann; Odstrcil, Dusan

    2016-04-01

    Solar cycle variations in solar radiation create notable density changes in the Martian ionosphere. In addition to this long-term variability, there are numerous short-term and non-recurrent solar events that hit Mars which need to be considered, such as Interplanetary Coronal Mass Ejections (ICMEs), Co-Rotation Interaction Regions (CIRs), solar flares, or solar wind high speed streams. The response of the Martian plasma system to each of these events is often unusual, especially during the long period of extreme low solar activity in 2008 and 2009. This work shows the long-term solar cycle impact on the ionosphere of Mars using data from The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), and The Analyzer of Space Plasma and Energetic Atoms (ASPERA-3), and with empirical and numerical models on Mars Express. Particular attention is given to the different ionospheric responses observed during the last, extended solar minimum. Mars' ionospheric response followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to the inner-origin of the magnetic field of both planets. The ionospheric temperature was cooler, the topside scale height was smaller and almost constant with altitude, the secondary ionospheric layer practically disappeared and the whole atmospheric total electron content (TEC) suffered an extreme reduction of about 30-40%, not predicted before by models. Moreover, there is a larger probability for the induced magnetic field to be present in the ionosphere, than in other phases of the solar cycle. The short-term variability is also addressed with the study of an ICME followed by a fast stream that hit Mars in March 2008, where solar wind data are provided by ACE and STEREO-B and supported by simulations using the WSA-ENLIL Model. The solar wind conditions lead to the formation of a CIR centred on the interface of the fast and the slow solar wind streams. Mars' system reacted to

  8. Self-excitation of auroral arcs in a three-dimensionally coupled magnetosphere-ionosphere system

    Science.gov (United States)

    Watanabe, Kunihiko; Sato, Tetsuya

    1988-01-01

    This paper presents the first full three-dimensional dynamic simulation of auroral arc formation. The magnetospheric and ionospheric dynamics are represented by one-fluid magnetohydrodynamic equations and two-fluid weakly ionized plasma equations, respectively. The feedback coupling between magnetospheric Alfven waves and ionospheric density waves results in a spontaneous generation of longitudinally elongated striations of field-aligned currents and ionospheric electron densities, which compare very well with many features of quiet auroral arcs.

  9. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  10. Using blood plasma for monitoring organochlorine contaminants in juvenile white sturgeon, Acipenser transmontanus, from the lower Columbia River.

    Science.gov (United States)

    Gundersen, D T; Webb, M A H; Fink, A K; Kushner, L R; Feist, G W; Fitzpatrick, M S; Foster, E P; Schreck, C B

    2008-09-01

    Organochlorine (OC) pesticide concentrations in blood plasma samples from 88 juvenile white sturgeon collected from the lower Columbia River were measured and compared to plasma sex steroid and OC tissue levels previously measured in corresponding fish. Significant squared correlation coefficients between summation operator DDT concentrations in sturgeon plasma and gonads and livers were 0.37 and 0.32, respectively. Significant negative correlations between plasma testosterone concentration and plasma Sigma DDT concentration in male fish (r(2)=0.26), plasma 17beta estradiol concentration and plasma Sigma DDT concentration in female fish (r(2)=0.38) and condition factor and plasma Sigma DDT concentration in all fish were found (r(2)=0.17). These results suggest that blood plasma may be a suitable nondestructive method for monitoring adult sturgeon population for persistent OC contaminants.

  11. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring.

    Science.gov (United States)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (∼1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  12. Sorbent track: Quantitative monitoring of adsorbed VOCs under in-situ plasma exposure

    Science.gov (United States)

    Jia, Zixian; Rousseau, Antoine

    2016-08-01

    Sorbent-TRACK is a new device developed to monitor adsorption and surface oxidation of pollutants under direct plasma exposure. It is based on direct transmitted Fourier Transformed Infrared (FTIR) spectroscopy. A pyrex reactor under controlled gas pressure and composition is inserted on the infrared beam of a commercially available Nicolet 5700 FTIR spectrometer. A substrate holder is located on the optical path of the infrared beam. A thin pellet of a dedicated catalyst (CeO2 in the present work) is inserted in a substrate holder and can be exposed to direct plasma treatment using a Dielectric Barrier Discharge. The time resolution of Sorbent-TRACK is limited by the time resolution of the Nicolet 5700 FTIR spectrometer and close to 30 s. The dynamic of the adsorption and plasma oxidation of acetone and isopropanol on CeO2 are studied and intermediates are monitored. Performances and sensitivity of Sorbent-TRACK are reported Adsorption and oxidation of acetone leads to production of adsorbed isobutene and acetic acid, where oxidation of isopropanol gives mainly to adsorbed acetone, mesityl oxide and acetate. An increase of the plasma power leads to an increase of the isopropanol and acetone oxidation rate and a related increase of the production of adsorbed intermediates.

  13. Evaluation of the serum fructosamine test to monitor plasma glucose concentration in the transition dairy cow.

    Science.gov (United States)

    Sorondo, María L; Cirio, Alberto

    2009-05-01

    The usefulness of the serum fructosamine (Fser) to monitor the retrospective glucose concentrations in transitional dairy cows (n=17) was evaluated. In weekly blood samples (3 weeks before to 5 weeks after calving) concentrations of plasma glucose and serum fructosamine, beta-hydroxybutyrate (beta OHB) and total proteins were determined. The observed Fser concentrations (271+/-55 mean value, range 152-423 mumol/l) were within the range reported in the literature, and showed a progressive and significant decrease after calving. Mean plasma glucose concentration was 60.6+/-5.0 (range 39.9-82.2) mg/dl increasing from week 3 before calving to the week of calving and then decreasing during the next 5 weeks of lactation. This decrease was coincident with inverse relationships between plasma glucose and milk yield (P=0.03) and serum beta OHB (P<0.001). Linear regression analysis performed between serum fructosamine and (a) plasma glucose concentration of the same sampling and (b) plasma glucose concentration of 1, 2 and 3 weeks preceding the sampling, did not show significant and systematizing positive correlations. Persistent hypoproteinaemias that could affect the fructosamine concentrations were not found: mean value and range of serum proteins was 6.3+/-1.0 and 4.8-7.8 g/dl, respectively, and no correlation was found between serum proteins and Fser (P=0.26). Results did not support the possibility of retrospective monitoring of the plasma glucose concentration by serum fructosamine in dairy cows in the transition period.

  14. Monitoring Seasonal Variations of Ionospheric TEC Using GPS Measurements%利用GPS观测值监测电离层TEC的季节性变化

    Institute of Scientific and Technical Information of China (English)

    蔡昌盛

    2007-01-01

    The regional ionospheric model is adopted to determine satellite-plus-receiver differential delay. The satellite-plus-receiver differential delay is estimated as constant values for each day. Dual-frequency GPS pseudo-ranges observables are used to compute vertical TEC (VTEC). All the monthly mean VTEC profiles are represented by graphs using GPS data of the Beijing IGS site between 2000 and 2004. The monthly averaged values and amplitudes of VTEC are also represented by graphs. The results indicate that the VTEC has seasonal dependency. The monthly averaged values and amplitudes of VTEC in 2000 are about 2 times larger than that in 2004. The maximum VTEC values are observed in March and April, while the minimum VTEC values are observed in December. The seasonal variations trend is found to be similar after polynomial fitting between 2000 and 2004.

  15. Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE)

    Science.gov (United States)

    Crowley, G.

    2015-12-01

    The Scintillation Observations and Response of The Ionosphere to Electrodynamics, or SORTIE, mission is a 6U NASA Heliophysics CubeSat designed to study the ionosphere at altitudes below 400km. The SORTIE mission is being developed by a team including ASTRA (lead institution), AFRL, University of Texas at Dallas (UTD), COSMIAC (Satellite Integrator), and Boston College. SORTIE will address cutting-edge science in the area of ionospheric dynamics. The SORTIE mission will address the following science questions: Q1) Discover the sources of wave-like plasma perturbations in the F-region ionosphere. Q2) Determine the relative role of dynamo action and more direct mechanical forcing in the formation of wave-like plasma perturbations. To address these questions we plan to fly a CubeSat with novel sensors that measure key plasma parameters in a circular, low to middle inclination orbit near 350-400 km altitude. The sensors include an ion velocity meter (built by UTD) and a Planar Langmuir Probe (built by AFRL). The SORTIE mission plan is to describe the distribution of wave-like structures in the plasma density of the ionospheric F-region. In doing so, the SORTIE team will determine the possible role of these perturbations in aiding the growth of plasma instabilities. SORTIE will provide (1) the initial spectrum of wave perturbations which are the starting point for the RT calculation; (2) measured electric fields which determine the magnitude of the instability growth rate near the region where plasma bubbles are generated; (3) initial observations of irregularities in plasma density which result from RT growth. SORTIE results will be used as input to PBMOD, an assimilative first-principles physical model of the ionosphere, in order to predict evolution of EPBs. In this presentation, we will review the science objectives, provide an overview of the spacecraft and instrument design, and present a concept of operations plan.

  16. High-Latitude Ionospheric Structuring at Kilometer Scales

    Science.gov (United States)

    Bust, G. S.; Datta-Barua, S.; Su, Y.; Deshpande, K.; Hampton, D.

    2014-12-01

    Ionospheric observations in the polar and auroral zones have been made regularly with radar chains and optical imaging at larger spatio-temporal cadence. However, the observation of kilometer scale variations at sub-second cadence has not been practically realizable until recently. Quantifying the irregularities at these sizes and scales is necessary for an understanding of the dynamics leading to fine scale phenomena in the high latitude environment. We present measurements of kilometer-scale plasma variations made at the northern auroral zone using an array of specialized Global Positioning System (GPS) receivers. These 6 CASES receivers (plus 1 from ASTRA, LLC) are sited at the Poker Flat Research Range, Alaska, and have been collecting data since late 2013. The array monitors for ionospheric scintillations, fluctuations in phase and amplitude of the GPS L-band signals received due to ionospheric variations. The array spans 2 km east-west and about 1 km north-south, with a variety of intermediate baseline lengths down to about 200 m. In addition to measuring amplitude and phase scintillation with the S4 and sigma_phi indices at 100-s cadence, these receivers also record 100 Hz raw power and phase measurements from GPS baseband signal processing. These low-rate data are publicly available for download through a web portal at http://apollo.tbc.iit.edu/~spaceweather/ with high rate available upon request. A detailed case study is presented from the December 8, 2013, 0300-0400 UT time period. During this period several interesting scintillation periods were observed. We use array cross-correlation processing methods to first estimate direct ground parameters of the array including a) estimate the 2D drift velocity on the ground; b) estimate a de-correlation (or turbulent) speed; and c) parameters of correlation elliptical coordinates (axial ratio and tilt angle). We then use these results and cross-correlation measurements to derive the ground 2D spatial spectrum of

  17. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application.

    Science.gov (United States)

    Lee, J H; Yoon, Y S; Kim, M J

    2013-04-01

    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (Te) and ion flux (Jion) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring Te and Jion for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  18. Influence of Ionospheric Irregularities on GNSS Remote Sensing

    Directory of Open Access Journals (Sweden)

    M. V. Tinin

    2015-01-01

    Full Text Available We have used numerical simulation to study the effects of ionospheric irregularities on accuracy of global navigation satellite system (GNSS measurements, using ionosphere-free (in atmospheric research and geometry-free (in ionospheric research dual-frequency phase combinations. It is known that elimination of these effects from multifrequency GNSS measurements is handi-capped by diffraction effects during signal propagation through turbulent ionospheric plasma with the inner scale being smaller than the Fresnel radius. We demonstrated the possibility of reducing the residual ionospheric error in dual-frequency GNSS remote sensing in ionosphere-free combination by Fresnel inversion. The inversion parameter, the distance to the virtual screen, may be selected from the minimum of amplitude fluctuations. This suggests the possibility of improving the accuracy of GNSS remote sensing in meteorology. In the study of ionospheric disturbances with the aid of geometry-free combination, the Fresnel inversion eliminates only the third-order error. To eliminate the random TEC component which, like the measured average TEC, is the first-order correction, we should use temporal filtering (averaging.

  19. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    Energy Technology Data Exchange (ETDEWEB)

    Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

    1997-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  20. Charged particles in Titan's ionosphere

    Science.gov (United States)

    Tripathi, Sachchida

    2010-05-01

    Charged particles in Titan's ionosphere Marykutty Michael1, Sachchida Nand Tripathi1,2,3, Pratima Arya1 1Indian Institute of Technology Kanpur 2Oak Ridge Associated Universities 3NASA Goddard Space Flight Center Observations by two instruments onboard the Cassini spacecraft, Ion Neutral Mass Spectrometer (INMS) and CAssini Plasma Spectrometer (CAPS), revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units at altitudes of 950 - 1400 km in the atmosphere of Titan (Waite et al., 2007; Crary et al., 2009). Though these particles were believed to be molecules, they are most likely aerosols formed by the clumping of smaller molecules (Waite et al., 2009). These particles were estimated to have a density of 10-3 kg m-3 and a size of up to 256 nm. The existence of very heavy ions has also been observed by the CAPS components with a mass by charge ratio of up to 10000 (Coates et al., 2007, 2009; Sittler et al., 2009). The goal of this paper is to find out whether the so called heavy ions (or charged particles) are generated by the charge transfer of ions and electrons to the particles. The charging of these particles has been studied by using the charge balance equations that include positive ions, negative ions, electrons, neutral and charged particles. Information on the most abundant ion clusters are obtained from Vuitton et al., (2009) and Wilson and Atreya, (2004). Mass by charge ratio thus calculated will be compared with those observed by Coates et al. (2007). References: Coates AJ, et al., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34:L22103, 2007. Coates AJ, et al., Heavy negative ions in titan's ionosphere: altitude and latitude dependence. Planet. Space Sci., doi:10.1016/j.pss.2009.05.009, 2009. Crary F.J., et al., Heavy ions, temperatures and winds in titan's ionosphere: Combined cassini caps and inms observations. Planet. Space Sci., doi:10.1016/j.pss.2009.09.006, 2009

  1. Spatio-temporal development of the filaments due to the thermal self-focusing instability near the critical surface in ionospheric plasmas

    Science.gov (United States)

    Gondarenko, N. A.; Guzdar, P. N.; Milikh, G. M.; Sharma, A. S.; Papadopoulos, K.; Ossakow, S. L.

    1999-07-01

    We study fully nonlinear spatio-temporal development of the thermal self-focusing instability of high-power radio waves near the critical surface of the ionosphere. These simulations improve on our earlier work by including an evolution equation for the density instead of using the assumption of constant pressure to determine the perturbed density connected with the known temperature perturbation. Using our two-dimensional nonlinear code we analyze the time scale and associated velocity for the development of the field-aligned irregularities as they spread from the critical surface both in the underdense as well as the overdense regions. The scaling of this velocity as a function of the radiated power of the heater electromagnetic wave (ERP) is determined. We also study the characteristic size of the self-focused filament as a function of ERP. Finally, the spectrum of the density and temperature fluctuations as well as modifications in the equilibrium values of these parameters for different values of ERP are presented.

  2. Characterizing Extreme Ionospheric Storms

    Science.gov (United States)

    Sparks, L.; Komjathy, A.; Altshuler, E.

    2011-12-01

    Ionospheric storms consist of disturbances of the upper atmosphere that generate regions of enhanced electron density typically lasting several hours. Depending upon the storm magnitude, gradients in electron density can sometimes become large and highly localized. The existence of such localized, dense irregularities is a major source of positioning error for users of the Global Positioning System (GPS). Consequently, satellite-based augmentation systems have been implemented to improve the accuracy and to ensure the integrity of user position estimates derived from GPS measurements. Large-scale irregularities generally do not pose a serious threat to estimate integrity as they can be readily detected by such systems. Of greater concern, however, are highly localized irregularities that interfere with the propagation of a signal detected by a user measurement but are poorly sampled by the receivers in the system network. The most challenging conditions have been found to arise following disturbances of large magnitude that occur only rarely over the course of a solar cycle. These extremely disturbed conditions exhibit behavior distinct from moderately disturbed conditions and, hence, have been designated "extreme storms". In this paper we examine and compare the behavior of the extreme ionospheric storms of solar cycle 23 (or, more precisely, extreme storms occurring between January 1, 2000, and December 31, 2008), as represented in maps of vertical total electron content. To identify these storms, we present a robust means of quantifying the regional magnitude of an ionospheric storm. Ionospheric storms are observed frequently to occur in conjunction with magnetic storms, i.e., periods of geophysical activity as measured by magnetometers. While various geomagnetic indices, such as the disturbance storm time (Dst) and the planetary Kp index, have long been used to rank the magnitudes of distinct magnetic storms, no comparable, generally recognized index exists for

  3. Large-scale and small-scale plasma motions in the upper ionosphere according to data of the Intercosmos-Bolgaria-1300 satellite

    Energy Technology Data Exchange (ETDEWEB)

    Dubinin, E.M.; Nikolaeva, N.S.; Podgornyi, I.M.; Balebanov, V.M.; Bankov, L.; Bankov, N.; Kutiev, I.; Marinov, P.; Serafimov, K.; Todorieva, L.

    1983-09-01

    The pattern of large-scale motions at a height of about 900 km, including a two-tier picture of magnetospheric convection, is determined on the basis of plasma-velocity measurements made with the ID-1 instrument on Intercosmos-Bolgaria-1300. The high time and space resolution of the instrument made it possible to detect small-scale structures (1-10 km) in which the plasma attains a velocity of 4.5 km/s. Simultaneous measurements of density with the same instrument indicate the appearance of local troughs accompanying 'jumps' of ion drift velocity. 31 references.

  4. Ionospheric response to particle precipitation within aurora

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E. (Swedish Inst. of Space Physics, Uppsala (Sweden))

    1992-03-01

    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the 'auroral arcs' - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au).

  5. Ionospheric response to particle precipitation within aurora

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E. [Swedish Inst. of Space Physics, Uppsala (Sweden)

    1992-03-01

    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the `auroral arcs` - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au).

  6. Effects of Martian crustal magnetic field on its ionosphere

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere.The studies on this topic are summarized in this paper.Main data of the Martian ionosphere were resulted from radio occultation experiments.According to the observations,the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field.The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region.In the cusp-like regions with strong vertical magnetic field,the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region.The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field.The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere.The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines,and the amount of the enhancement was much larger than that observed by the radio occultation experiment.There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions:One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities.It’s difficult to determine which one is the key mechanism for the peak electron density enhancement.Based on these studies,several interesting problems on the Martian ionosphere and plasma environment are presented.

  7. Plasma Plume Oscillations Monitoring during Laser Welding of Stainless Steel by Discrete Wavelet Transform Application

    Directory of Open Access Journals (Sweden)

    Teresa Sibillano

    2010-04-01

    Full Text Available The plasma optical radiation emitted during CO2 laser welding of stainless steel samples has been detected with a Si-PIN photodiode and analyzed under different process conditions. The discrete wavelet transform (DWT has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. The results show that changes of the process settings may yield different signal features in the range of frequencies between 200 Hz and 30 kHz. Potential applications of this method to monitor in real time the laser welding processes are also discussed.

  8. Plasma Plume Oscillations Monitoring during Laser Welding of Stainless Steel by Discrete Wavelet Transform Application

    Science.gov (United States)

    Sibillano, Teresa; Ancona, Antonio; Rizzi, Domenico; Lupo, Valentina; Tricarico, Luigi; Lugarà, Pietro Mario

    2010-01-01

    The plasma optical radiation emitted during CO2 laser welding of stainless steel samples has been detected with a Si-PIN photodiode and analyzed under different process conditions. The discrete wavelet transform (DWT) has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. The results show that changes of the process settings may yield different signal features in the range of frequencies between 200 Hz and 30 kHz. Potential applications of this method to monitor in real time the laser welding processes are also discussed. PMID:22319311

  9. Equatorial ionospheric electrodynamics observations in the African and American longitudinal sectors

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Mebrahtu, A.; Damtie, B.; Pfaff, R. F.; Zesta, E.; Valladares, C. E.

    2009-12-01

    Recent ground- and space-based observations have shown dramatic longitudinal differences in equatorial ionospheric electrodynamics, such as enhanced generation of F-region plasma irregularities and the super fountain effect at low latitudes. For example, satellite observations have shown very unique equatorial ionospheric density structures in the African region. The African region is the longitude sector where the peak in large scale plasma depletion activity (zonal width, depletion level, and spacing) is maximal, in which no other region of the globe showed similar characteristics. Indeed, the most recent in situ density observations from the Communication/Navigation Outage Forecast System (C/NOFS) satellite also reveal similar maximal density depletion activities in Africa. However, the dearth of ground-based instrumentation in the region makes it difficult to confirm the ground-based signatures of these unique equatorial ionospheric structures, ultimately leading the investigation of their physics into speculation. This initiated several open questions, which include: What are the possible governing mechanisms that create unique equatorial structures in Africa? In order to answer such open questions, recently limited progress has been made and very few ground-based instruments, including the AMBER magnetometers network, have been deployed in the region. One of many objectives of AMBER magnetometers network, in coordination with ground- and space-based GPS receiver observations, is to understand the fundamental electrodynamics that govern equatorial ionospheric motion, which includes the evolution and formation of equatorial anomaly. This paper presents initial results from the AMBER magnetometer network and compares electrodynamics results in the Africa sector with similar observations in the American sector. The electron density structure in response to the electrodynamics is also investigated using the available ground-based GPS receivers in the region as

  10. Statistical Analysis of the Ionosphere based on Singular Value Decomposition

    Science.gov (United States)

    Demir, Uygar; Arikan, Feza; Necat Deviren, M.; Toker, Cenk

    2016-07-01

    Ionosphere is made up of a spatio-temporally varying trend structure and secondary variations due to solar, geomagnetic, gravitational and seismic activities. Hence, it is important to monitor the ionosphere and acquire up-to-date information about its state in order both to better understand the physical phenomena that cause the variability and also to predict the effect of the ionosphere on HF and satellite communications, and satellite-based positioning systems. To charaterise the behaviour of the ionosphere, we propose to apply Singular Value Decomposition (SVD) to Total Electron Content (TEC) maps obtained from the TNPGN-Active (Turkish National Permanent GPS Network) CORS network. TNPGN-Active network consists of 146 GNSS receivers spread over Turkey. IONOLAB-TEC values estimated from each station are spatio-temporally interpolated using a Universal Kriging based algorithm with linear trend, namely IONOLAB-MAP, with very high spatial resolution. It is observed that the dominant singular value of TEC maps is an indicator of the trend structure of the ionosphere. The diurnal, seasonal and annual variability of the most dominant value is the representation of solar effect on ionosphere in midlatitude range. Secondary and smaller singular values are indicators of secondary variation which can have significance especially during geomagnetic storms or seismic disturbances. The dominant singular values are related to the physical basis vectors where ionosphere can be fully reconstructed using these vectors. Therefore, the proposed method can be used both for the monitoring of the current state of a region and also for the prediction and tracking of future states of ionosphere using singular values and singular basis vectors. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  11. Broadband Meter-Wavelength Observations of Ionospheric Scintillation

    CERN Document Server

    Fallows, R A; McKay, D; Vierinen, J; Virtanen, I I; Postila, M; Ulich, Th; Enell, C-F; Kero, A; Iinatti, T; Lehtinen, M; Orispää, M; Raita, T; Roininen, L; Turunen, E; Brentjens, M; Ebbendorf, N; Gerbers, M; Grit, T; Gruppen, P; Meulman, H; Norden, M; de Reijer, J-P; Schoenmakers, A; Stuurwold, K

    2015-01-01

    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisj\\"arvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250\\,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disapp...

  12. Observational study of daytime ionospheric irregularities associated with typhoon

    Institute of Scientific and Technical Information of China (English)

    XIAO SaiGuan; SHI JianKui; ZHANG DongHe; HAO YongQiang; HUANG WeiQuan

    2012-01-01

    Spread-F is a manifestation of ionospheric irregularities and generally takes place at nighttime.However,it can also be observed seldom at daytime.It is recognized that acoustic gravity waves (AGWs) play an important role in triggering plasma instability which results in spread-F in the ionosphere.The typhoon is a main source of the AGWs.In this paper,two cases of ionospheric daytime spread-F in the period of typhoon were analyzed.One case was on July 29,1988 and the other was on August 01,1989.The results showed the following:1) There were some wave-like disturbances appearing in the HF Doppler records firstly,consequently the Doppler echo traces became scattered,which indicated that the ionospheric spread-F was triggered; 2) the blurred echo traces in the both two cases appeared in the morning (08:30-11:30 Beijing time) and lasted for more than two hours; 3) with the blurred echoes gradually weakening,the traveling ionospheric disturbances (TIDs) still existed and became clearer; 4) the frequency shifts in the two cases were both positive,implying the effective reflecting surface of the radio wave in the ionosphere moved downwards.These results provide good observational evidence for daytime spread-F during the typhoon period in Asian region.

  13. Modeling the three-dimensional structure of ionospheric electrodynamics

    Science.gov (United States)

    Maute, A. I.; Richmond, A. D.

    2015-12-01

    Ionospheric electric fields and currents are driven by collisionalinteraction between thermospheric winds and ions, bymagnetospherically driven convection and field-aligned currents athigh latitudes, by gravitational and pressure-gradient forces on theionospheric plasma, and by weak currents from the lower atmosphere.The electrodynamics of the ionospheric E and F regions are stronglycoupled. For time scales longer than a few minutes the electric fieldis electrostatic. The electric potential is nearly constant alonggeomagnetic-field lines, and can be represented in two dimensions in acoordinate system aligned with the magnetic field. The currentdensity, however, varies in all three dimensions. The associatedperturbations of the geomagnetic field induce currents in the Earth,which modify the perturbations. We are developing a model of ionospheric electrodynamics that takes into account all of the sourcesand calculates the three-dimensional structure of currents andtheir associated magnetic perturbation fields at high spatialresolution. This model will be used to simulate ionospheric drifts aswell as geomagnetic perturbations at the ground, at low-Earth-orbitsatellite heights, and within the E-region ionosphere. When coupledwith a dynamical model of the thermosphere and ionosphere it can beused to assimilate electrodynamic data into the model. In thispresentation we discuss the modeling principles and present resultsrelevant to the electrodynamics of the middle and low latitudeionosphere below 200 km, including the effects of coupling withF-region electrodynamics and the expected observable effects onrockets and on low Earth orbit satellites.

  14. The determination of phenazone in blood plasma for obtained sistem suitable test of monitoring drug level

    Directory of Open Access Journals (Sweden)

    Mochamad Lazuardi

    2007-09-01

    Full Text Available The determining of Phenazone to human blood plasma from healthy man after separated by solid phase extraction (SPE and spectroscopic measurements has been investigated. The objective of that research was to obtain system suitable test for determine the Phenazone level in biological fluids (human blood plasma, for new performed dosage regimented in clinical dentistry. The method can be divided into the following four steps. 1. Centrifugation the blood sample, 2. Extraction from blood plasma and, 3. Separation by SPE with manual pressured, 4. Elution to SPE followed by the measurement on a spectrophotometer in the ultra violet region. The critical value of  │t │at the 5% confidence level indicates that there is no systematic error in the linearity proposed method. Recoveries for this research were obtained at ranging 93.460 to 95.598%. The coefficient variation precision of this procedure was clearly good at smallest than 2%. The analytical procedure can be carried out in one working operation as a monitored therapeutic activity.

  15. Artificial ducts caused by HF heating of the ionosphere by HAARP

    OpenAIRE

    Vartanyan, A.; Milikh, G. M.; Mishin, E.; Parrot, Michel; Galkin, I.; Reinisch, B; Huba, J.; Joyce, G.; Papadopoulos, K.

    2012-01-01

    International audience; We report on satellite observations of plasma density enhancements (ducts) in thetopside ionosphere during four HAARP/BRIOCHE campaigns during 2009–2010.Artificial ducts, caused by high-power HF radio wave injections from the HAARPtransmitter toward the magnetic zenith, are detected by the DEMETER and DMSPsatellites on a regular basis when there is a perceptible ionospheric F2 peak density.Overall, the plasma density enhancements detected between 0930 and 1230 LT varie...

  16. Current methods for studying dynamic processes in the ionosphere. Sovremennye metody issledovaniia dinamicheskikh protsessov v ionosfere

    Energy Technology Data Exchange (ETDEWEB)

    Filipp, N.D.; Blaunshtein, N.SH.; Erukhimov, L.M.; Ivanov, V.A.; Uriadov, V.P.

    1991-01-01

    Current experimental and theoretical data relevant to the study of dynamic processes in the ionospheric plasma using state-of-the-art methods are summarized. The methods used include linear FM sounding, partial radio wave reflection, oblique-incidence radio wave scattering, radio wave heating of the ionosphere, plasma injection, and computer simulation of physical processes. For each specific method, experimental data are compared against theoretical predictions and numerical calculations. 251 refs.

  17. Artificial ducts caused by HF heating of the ionosphere by HAARP

    OpenAIRE

    Vartanyan, A.; Milikh, G. M.; E. Mishin; Parrot, Michel; Galkin, I.; B. Reinisch; Huba, J.; Joyce, G.; Papadopoulos, K.

    2012-01-01

    International audience; We report on satellite observations of plasma density enhancements (ducts) in thetopside ionosphere during four HAARP/BRIOCHE campaigns during 2009–2010.Artificial ducts, caused by high-power HF radio wave injections from the HAARPtransmitter toward the magnetic zenith, are detected by the DEMETER and DMSPsatellites on a regular basis when there is a perceptible ionospheric F2 peak density.Overall, the plasma density enhancements detected between 0930 and 1230 LT varie...

  18. Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares

    Science.gov (United States)

    Todorović Drakul, M.; Čadež, V. M.; Bajčetić, J.; Popović, L. Č.; Blagojević, D.; Nina, A.

    2016-12-01

    One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km - 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TEC_{D) during activity of a solar X-ray flare (it rises by a factor of 136 in the considered case) when TEC_{D} contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.

  19. Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares

    Science.gov (United States)

    Todorović Drakul, M.; Čadež, V. M.; Bajčetić, J.; Popović, L. Č.; Blagojević, D.; Nina, A.

    2016-08-01

    One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km - 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TEC_{D}) during activity of a solar X-ray flare (it rises by a factor of 136 in the considered case) when TEC_{D} contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.

  20. A regional adaptive and assimilative three-dimensional ionospheric model

    Science.gov (United States)

    Sabbagh, Dario; Scotto, Carlo; Sgrigna, Vittorio

    2016-03-01

    A regional adaptive and assimilative three-dimensional (3D) ionospheric model is proposed. It is able to ingest real-time data from different ionosondes, providing the ionospheric bottomside plasma frequency fp over the Italian area. The model is constructed on the basis of empirical values for a set of ionospheric parameters Pi[base] over the considered region, some of which have an assigned variation ΔPi. The values for the ionospheric parameters actually observed at a given time at a given site will thus be Pi = Pi[base] + ΔPi. These Pi values are used as input for an electron density N(h) profiler. The latter is derived from the Advanced Ionospheric Profiler (AIP), which is software used by Autoscala as part of the process of automatic inversion of ionogram traces. The 3D model ingests ionosonde data by minimizing the root-mean-square deviation between the observed and modeled values of fp(h) profiles obtained from the associated N(h) values at the points where observations are available. The ΔPi values are obtained from this minimization procedure. The 3D model is tested using data collected at the ionospheric stations of Rome (41.8N, 12.5E) and Gibilmanna (37.9N, 14.0E), and then comparing the results against data from the ionospheric station of San Vito dei Normanni (40.6N, 18.0E). The software developed is able to produce maps of the critical frequencies foF2 and foF1, and of fp at a fixed altitude, with transverse and longitudinal cross-sections of the bottomside ionosphere in a color scale. fp(h) and associated simulated ordinary ionogram traces can easily be produced for any geographic location within the Italian region. fp values within the volume in question can also be provided.

  1. Ion mobility spectrometry as a simple and rapid method to measure the plasma propofol concentrations for intravenous anaesthesia monitoring

    Science.gov (United States)

    Wang, Xin; Zhou, Qinghua; Jiang, Dandan; Gong, Yulei; Li, Enyou; Li, Haiyang

    2016-11-01

    The plasma propofol concentration is important information for anaesthetists to monitor and adjust the anaesthesia depth for patients during a surgery operation. In this paper, a stand-alone ion mobility spectrometer (IMS) was constructed for the rapid measurement of the plasma propofol concentrations. Without any sample pre-treatment, the plasma samples were dropped on a piece of glass microfiber paper and then introduced into the IMS cell by the thermal desorption directly. Each individual measurement could be accomplished within 1 min. For the plasma propofol concentrations from 1 to 12 μg mL-1, the IMS response was linear with a correlation coefficient R2 of 0.998, while the limit of detection was evaluated to be 0.1 μg mL-1. These measurement results did meet the clinical application requirements. Furthermore, other clinically-often-used drugs, including remifentanil, flurbiprofen and atracurium, were found no significant interference with the qualitative and quantitative analysis of the plasma propofol. The plasma propofol concentrations measured by IMS were correlated well with those measured by the high performance liquid chromatography (HPLC). The results confirmed an excellent agreement between these two methods. Finally, this method was applied to monitor the plasma propofol concentrations for a patient undergoing surgery, demonstrating its capability of anaesthesia monitoring in real clinical environments.

  2. Variation properties of ionospheric eclipse factor and ionospheric influence factor

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chunmei; YUAN Yunbin; OU Jikun; CHEN Jinping

    2005-01-01

    The concepts and calculation methods of ionospheric eclipse factor (IEF) and ionospheric influence factor (IFF) are further illustrated. The temporal and spacial variation properties of IEF and IFF are studied, which shows that the properties are influenced by the geographic position and season. The possibility of improving the precision of using GPS data to determine ionospheric delay based on the above variation properties is also analysed.

  3. Monitoring Delamination of Plasma-Sprayed Thermal Barrier Coatings by Reflectance-Enhanced Luminescence

    Science.gov (United States)

    Eldridge, Jeffrey I.; Bencic, Timothy J.

    2006-01-01

    Highly scattering plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination because scattering attenuates light transmitted through the TBC and usually degrades contrast between attached and delaminated regions of the TBC. This paper presents a new approach where reflectance-enhanced luminescence from a luminescent sublayer incorporated along the bottom of the TBC is used to identify regions of TBC delamination. Because of the higher survival rate of luminescence reflecting off the back surface of a delaminated TBC, the strong scattering exhibited by plasma-sprayed TBCs actually accentuates contrast between attached and delaminated regions by making it more likely that multiple reflections of luminescence off the back surface occur before exiting the top surface of the TBC. A freestanding coating containing sections designed to model an attached or delaminated TBC was prepared by depositing a luminescent Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer and utilizing a NiCr backing layer to represent an attached substrate. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections even at a plasma-sprayed overlayer thickness of 300 m. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating form the Er-doped YSZ sublayer.

  4. Radiotomographic observations of corpuscular ionization in the ionosphere

    Science.gov (United States)

    Andreeva, E. S.; Kunitsyn, V. E.; Tereshchenko, E. D.; Krysanov, B. Yu.; Nazarenko, M. O.

    2012-04-01

    Along with the antisunward cross-polar convection of the ionospheric plasma and the field-aligned electric currents, the corpuscular fluxes play an important role in the magnetosphere-ionosphere coupling. Being more tightly coupled with the magnetosphere, the subauroral and auroral ionosphere noticeably differs from the midlatitude ionosphere. It experiences much stronger and faster variations in space and time. The particle fluxes and the electric fields of magnetospheric origin penetrate into the ionosphere and substantially affect the production, loss and transport of charged particles. The rate of ionization in the midlatitude ionosphere is controlled almost solely by the X-ray and UV/EUV solar radiation, whereas in high latitudes the fluxes of particles precipitating from the magnetosphere are significant sources of ionization. Moreover, they are probably the single source during the polar night. Typically, the contribution of the magnetospheric corpuscular fluxes into the ionization is small compared to the contribution of electromagnetic radiation; however, during the geomagnetic storms, it may prove significant, especially if these fluxes are sufficiently strong and act in the nighttime when the solar electromagnetic radiation is absent. The present work is devoted to radio tomographic imaging of the ionospheric effects of particle precipitation using the data from low-orbital navigational satellite systems. The ionospheric radio tomography is actively developed during the past two decades. It provides images of the 2D distribution of electron density in the vertical plane (latitude-altitude cross-sections) (averaged over an interval of 10-15 minutes) for the spatial sector covering several thousand kilometers. The horizontal and vertical resolution of the RT method is 20-30 km and 30-40 km, respectively. In the present work, the particle precipitation events are identified from the particle flux measurements onboard DMSP satellites. We present and discuss

  5. Ionospheric Feedback Instability in the Coupling of Magnetosphere-Ionosphere

    Institute of Scientific and Technical Information of China (English)

    王旭宇; 曹晋滨

    2003-01-01

    The ionospheric feedback instability is discussed by using the conductivity argument. We give an exact quantitative description to show that the free energy for this instability comes from the reduction of the Joule dissipation produced by the pre-existing convection electric field through self-consistent changes in ionization and conducactive ionosphere is pumped into the magnetosphere, wlich is contrary to the usual case whereby energy carried electron E × B drift. The electron conductivity is controlled by the ion Perdersen conductivity rather than by the electrons Pedersen conductivity. We also provide a qualitative theoretical explanation to the intense aurora favoured by a lower ambient ionospheric conductivity in the ionospheric feedback instability.

  6. Investigation of Thermospheric and Ionospheric Changes during Ionospheric Storms with Satellite and Ground-Based Data and Modeling

    Science.gov (United States)

    Richards, Philip G.

    2001-01-01

    The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.

  7. Magnetospheres of Planets and Moons: Links to Their Ionospheres. (Invited)

    Science.gov (United States)

    Kivelson, M. G.

    2010-12-01

    The phrase “magnetosphere-ionosphere coupling” has become almost hackneyed in the terrestrial context, but plays an important role in the terrestrial system and must also be emphasized in the context of planetary- and moon-magnetospheres because the underlying principles are similar in all systems. This talk will introduce only two intriguing aspects of the coupling problem for planets and moons. In describing the first topic, we note that, especially for the gas giants Jupiter and Saturn, much of the evidence of magnetosphere-ionosphere coupling is obtained from auroral imaging. In images of Jupiter’s polar ionosphere, bright auroral spots are found to link magnetically to the moons Io, Europa and Ganymede. The spots give evidence of intense field-aligned currents generated near the equator in the interaction between the moons and the flowing plasma of Jupiter’s magnetosphere. The currents must penetrate through regions of impedance mismatch near the upper and lower boundaries of Jupiter’s equatorial plasma torus in order to close in the planetary ionosphere. There is some evidence that the signal propagates through the strong gradient of plasma density at the boundary of the plasma torus by converting into a striated structure that guides high frequency waves. As well, at Io, the interaction has been found to generate localized intense electron fluxes observed to flow along and antiparallel to the magnetic field near the equator. These bidirectional beams are probably accelerated by parallel electric fields near the ionospheric ends of the flux tube, but how the accelerated electrons reach the equator has not been explained. It seems likely that their presence there requires that the (parallel) electric fields in the Jovian ionosphere vary either temporally at high frequency or spatially on short transverse length scales. The full explanation has not yet been developed. As a second example of the role of magnetosphere-ionosphere coupling in planetary

  8. Ionosphere research with a HF/MF cubesat radio instrument

    Science.gov (United States)

    Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka

    2017-04-01

    New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 (http://www.suomi100satelliitti.fi/eng). The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the

  9. Equatorial ionospheric electrodynamics observations in the African sector using recently deployed magnetometer and GPS networks

    Science.gov (United States)

    Yizengaw, Endawoke

    Recent ground-and space-based observations have shown that geomagnetic storms can have dramatic longitudinal differences in equatorial ionospheric electrodynamics, such as enhanced generation of F-region plasma irregularities and super fountain effect at low latitudes. For example, satellite observations have shown very unique equatorial ionospheric density struc-tures in the African region. The African region is the longitude sector where the peak in large scale bubble activity (zonal width, depletion level, and spacing) is maximum. No other region in the globe shows similar characteristics. Most recent in situ density observations from C/NOFS also reveal similar maximal bubble activities in Africa. However, the dearth of ground-based in-strumentation in the region makes it impossible to confirm these unique equatorial ionospheric structures from the ground and that leads the investigation of the physics into speculative dead ends. This initiated several open questions, which include: What are the possible governing mechanisms that create unique equatorial structures in Africa? In order to answer such open questions, recently limited progress has been made and very few ground-based instruments, including AMBER magnetometers and ACORN GPS network, have been either deployed in the region or in process. Some of many objectives of AMBER magnetometers network, in coordination with ground-and space-based GPS receiver observations, is to understand the fundamental electrodynamics that govern equatorial ionospheric motion and the penetration of ULF Pc5 wave into equatorial latitudes and its impact on the equatorial electrodynamics. This paper presents initial results from AMBER magnetometer network. The initial electro-dynamics result in Africa is also compared with similar observations in the American sector. The electron density structure in response to the electrodynamics is also investigated using the available ground-based GPS receivers in the region as well as data

  10. Local Ionospheric Scintillation Analysis

    Science.gov (United States)

    2017-03-14

    WORK UNIT NUMBER 7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ASIAN INSTITUTE OF TECHNOLOGY MOO 9 PHAHOLYOTHIN RD KM.42 KLONG NUNG PATHUM 12120...carried out as part of the densification and maintenance of the SCINDA network in South East Asia. 15.  SUBJECT TERMS Ionosphere, AOARD 16...Theoretical Physics (ICTP), International Civil Aviation Organization (ICAO), Boston College, University of California Los Angeles and AMBER projects

  11. Diagnostics of the ionospheric turbulence by wide band radio signals

    Science.gov (United States)

    Sergeev, Evgeny; Shindin, Alexey; Grach, Savely

    Results of the investigations of the time-space structure of the HF-pumped ionospheric volume above the SURA heating facility are presented. The method of investigations is based on mea-surements of the amplitude and phase of pulsed (pulse duration diagnostics, technical capabilities of SURA transmitter-receiver system, specially elaborated time-frequency modes of transmitter operation, space diversity three point reception, wide band signal recording, digital filtering, spectral and correlation analysis of the short radio pulses reflected from ionosphere were used. As a result of numerically solved in-verse problem of vertical sounding of the HF-perturbed ionosphere, dynamic behavior of the electron plasma density variations was obtained in the regions close to plasma resonance and upper hybrid resonance of the pump wave. In our experiments the pumping usually leaded to plasma expulsion from the resonance regions. A magnitude of artificial plasma density pertur-bations achieved 0.8% from the background density for pump power about P 60 MW ERP. The methods of a similarity and full correlation analysis were used for pulse signal amplitude processing, which were obtained by diversity three point reception with the receiving aerial separation of 84 m. As a result, novel data on fine structure of the space field of the vertical and horizontal velocities of plasma in the perturbed ionosphere volume with high time (up to 20 ms) and frequency (˜ 1 kHz) resolution are obtained. This frequency resolution can be translated into altitude resolution (˜ 50-100 m) in the ionosphere. The work was supported by RFBR grants 10-02-00642, 09-02-01150 and Federal Special-purpose Program "Scientific and pedagogical personnel of innovative Russia".

  12. The physical basis of ionospheric electrodynamics

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliūnas

    2012-02-01

    Full Text Available The conventional equations of ionospheric electrodynamics, highly succesful in modeling observed phenomena on sufficiently long time scales, can be derived rigorously from the complete plasma and Maxwell's equations, provided that appropriate limits and approximations are assumed. Under the assumption that a quasi-steady-state equilibrium (neglecting local dynamical terms and considering only slow time variations of external or aeronomic-process origin exists, the conventional equations specify how the various quantities must be related numerically. Questions about how the quantities are related causally or how the stress equilibrium is established and on what time scales are not anwered by the conventional equations but require the complete plasma and Maxwell's equations, and these lead to a picture of the underlying physical processes that can be rather different from the commonly presented intuitive or ad hoc explanations. Particular instances include the nature of the ionospheric electric current, the relation between electric field and plasma bulk flow, and the interrelationships among various quantities of neutral-wind dynamo.

  13. Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques.

    Science.gov (United States)

    Smichowski, Patricia; Gómez, Dario R; Dawidowski, Laura E; Giné, María Fernanda; Bellato, Ana Claudia Sánchez; Reich, Silvia L

    2004-04-01

    A study was undertaken, within the framework of a 3 years national project, to assess the content of 13 elements in airborne particulate matter collected in representative zones of the metropolitan area of Buenos Aires. The sampling strategy followed consisted in collecting simultaneously 67 samples of PM10 particulate matter in 9 sampling sites covering an area of about 30 km2 during one week. The collection was performed on ash-free fibre-glass filters using high volume samplers. A combination of aqua regia and perchloric acid was used for leaching metals from filters. Key elements, namely Al, Ca, Cu, Fe, Mn, Mo, Ni, Pb, S, Sb, Sn, Zn and Zr, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) at micro g g(-1) and ng g(-1) levels. Analyte concentration varied from 130 ng g(-1)(Mo) to over 30%(Ca). Multivariate statistical analysis was performed on the data set including the measured elemental compositions for the monitored period. The atmospheric concentration found for Pb confirms the decreasing levels of this element since the introduction of unleaded gasoline in 1995: 88 ng m(-3)(2001) gas imply low emissions of this element from combustion activities. To the best of our knowledge, S concentrations are reported for the first time for this city.

  14. Applications of FT-IR spectrometry to plasma contents analysis and monitoring

    Science.gov (United States)

    Deleris, Gerard Y. R.; Petibois, Cyril

    2002-03-01

    We devoted efforts to develop an analytical method of plasma able to provide both a high sensitivity and a global overview of its biomolecular contents along with the variations of these ones. Among candidates, transmittance FT-IR spectrometry has proved to be highly efficient. It has been used to analyze plasma micro samples using an iterative process. Results in accordance with clinical data were obtained from a single FT-IR spectrum for the following biomolecules: amino-acids, fatty acids, albumin, glucose, fibrinogen, lactate, triglycerides, glycerol, urea, (alpha) 1-antitrypsin, alpha2-macroglobulin, transferin, Apo-A1, Apo-B, Apo-C3, IgA, IgD, IgG1, IgG2, IgG3, IgG4, IgM, haptoglobin, and (alpha) 1-acid glycoprotein. Moreover, cholesterol contribution may be determined on the same IR spectrum. Therefore, as only micro samples are necessary, high frequency blood analysis become available. This method was used to monitor inflammatory processes related to given metabolic stresses. Moreover, FT-IR spectrum constitutes a 'metabolic photography' of the subject, allowing classification between metabolic groups (pathologic or others). It was used on difference spectra in order to raise 'signal to noise' ratio by elimination of the unvarying spectral contribution. Among others, it allowed to uncover overtraining in high-level sportsmen several weeks before any physiologic or clinical symptom occurred.

  15. Multi-instrument probing of the polar ionosphere under steady northward IMF

    Directory of Open Access Journals (Sweden)

    S. E. Pryse

    Full Text Available Observations are presented of the polar ionosphere under steady, northward IMF. The measurements, made by six complementary experimental techniques, including radio tomography, all-sky and meridian scanning photometer optical imaging, incoherent and coherent scatter radars and satellite particle detection, reveal plasma parameters consistent with ionospheric signatures of lobe reconnection. The optical green-line footprint of the reconnection site is seen to lie in the sunward plasma convection of the lobe cells. Downstream in the region of softer precipitation the reverse energy dispersion of the incoming ions can be identified. A steep latitudinal density gradient at the equatorward edge of the precipitation identifies the general location of an adiaroic boundary, separating the open field lines of polar lobe cells from the closed field of viscous-driven cells. Enhancements in plasma density to the south of the gradient are interpreted as ionisation being reconfigured as it is thrust against the boundary by the antisunward flow of the viscous cells near noon. Each of the instruments individually provides valuable information on certain aspects of the ionosphere, but the paper demonstrates that taken together the different experiments complement each other to give a consistent and comprehensive picture of the dayside polar ionosphere..

    Key words. Ionosphere (polar ionosphere · Magnetospheric physics (magnetosphere-ionosphere interactions; polar cap phenomena

  16. Use of Plasma Renin Activity to Monitor Mineralocorticoid Treatment in Dogs with Primary Hypoadrenocorticism: Desoxycorticosterone Versus Fludrocortisone

    OpenAIRE

    Baumstark, M E; Nussberger, J.; Boretti, F S; Baumstark, M W; Riond, B.; Reusch, C.E.; Sieber‐Ruckstuhl, N.S.

    2014-01-01

    Background Measurement of plasma renin activity (PRA) is the gold standard for monitoring mineralocorticoid treatment in humans with primary hypoadrenocorticism (PH). Objectives To compare PRA in dogs with newly diagnosed PH, dogs with diseases mimicking PH, and healthy dogs, and evaluate measurement of PRA to monitor therapeutic effects in dogs with PH treated with different mineralocorticoids. Animals Eleven dogs with newly diagnosed PH (group 1), 10 dogs with diseases mimicking PH (group 2...

  17. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; Earle, G. D.; Kaplan, C. R.; Foster, J. C.; Groves, K. M.; Haaser, R. A.; Heelis, R. A.; Hunton, D. E.; Hysell, D. L.; Klenzing, J. H.; Larsen, M. F.; Lind, F. D.; Pedersen, T. R.; Pfaff, R. F.; Stoneback, R. A.; Roddy, P. A.; Rodriguez, S. P.; San Antonio, G. S.; Schuck, P. W.; Siefring, C. L.; Selcher, C. A.; Smith, S. M.; Talaat, E. R.; Thomason, J. F.; Tsunoda, R. T.; Varney, R. H.

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  18. Plasma modified POF sensors for in situ environmental monitoring of museum indoor environments

    Science.gov (United States)

    Angelini, E.; Grassini, S.; Mombello, D.; Neri, A.; Parvis, M.; Perrone, G.

    2010-09-01

    A cumulative sensor for in situ monitoring of H2S vapors in museum showcases based on plastic optical fiber (POF) has been developed. H2S is responsible for the tarnishing of silver artifacts, so monitoring their total exposure over time to sulfide rich atmospheres can help in choosing the correct display procedure and, consequently, lead to improvements in their conservation. The sensor working principle is based on the modulation of the guided light intensity following a chemical reaction between a thin silver layer deposited onto the fiber core and the sulfide compounds to be detected. The proposed approach for the sensor fabrication requires the optimization of a two-step process: (1) etching of the fiber cladding to expose the core; (2) plasma deposition of a silver thin film onto the PMMA core. Silver was chosen as the sensitive element, since in the presence of H2S, it starts reacting immediately and loses its brightness with time proportionally to the concentration of the aggressive gas. Some prototypes of the proposed sensing system have been produced and tested in laboratory demonstrating the capability to detect H2S at concentrations of few part-per-billion (ppb).

  19. Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data

    Science.gov (United States)

    Withers, Paul; Vogt, Marissa; Mayyasi, Majd; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith; Bougher, Stephen; Dong, Chuanfei; Chaufray, Jean-Yves; Ma, Yingjuan; Jakosky, Bruce

    2015-11-01

    Prior to the arrival of the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft at Mars, the only available measurements of the composition of the planet's ionosphere were those acquired by the two Viking Landers during their atmospheric entries. Many numerical models of the composition of the ionosphere of Mars have been developed, but these have only been validated for species, altitudes, and conditions for which Viking data exist. Here we compare the ionospheric composition and structure predicted by 10 ionospheric models at solar zenith angles of 45-60° against ion density measurements acquired by the MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS). The most successful models included three-dimensional plasma transport driven by interactions with the surrounding space environment but had relatively simple ionospheric chemistry.

  20. Coseismic ionospheric and geomagnetic disturbances caused by great earthquakes

    Science.gov (United States)

    Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo

    2016-04-01

    Despite primary energy disturbances from the Sun, oscillations of the Earth surface due to a large earthquake will couple with the atmosphere and therefore the ionosphere, then the so-called coseismic ionospheric disturbances (CIDs) can be detected in the ionosphere. Using a combination of techniques, total electron content, HF Doppler, and ground magnetometer, a new time-sequence of such effects propagation were developed on observational basis and ideas on explanation provided. In the cases of 2008 Wenchuan and 2011 Tohoku earthquakes, infrasonic waves accompanying the propagation of seismic Rayleigh waves were observed in the ionosphere by all the three kinds of techniques. This is the very first report to present CIDs recorded by different techniques at co-located sites and profiled with regard to changes of both ionospheric plasma and current (geomagnetic field) simultaneously. Comparison between the oceanic (2011 Tohoku) and inland (2008 Wenchuan) earthquakes revealed that the main directional lobe of latter case is more distinct which is perpendicular to the direction of the fault rupture. We argue that the different fault slip (inland or submarine) may affect the way of couplings of lithosphere with atmosphere. References Zhao, B., and Y. Hao (2015), Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021035. Hao, Y. Q., Z. Xiao, and D. H. Zhang (2013), Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake, J. Geophys. Res. Space Physics, 118, 3914-3923, doi:10.1002/jgra.50326. Hao, Y. Q., Z. Xiao, and D. H. Zhang (2012), Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake, J. Geophys. Res., 117, A02305, doi:10.1029/2011JA017036.

  1. Tomographic Study of Ionospheric Effects Associated with a Solar Eclipse

    Institute of Scientific and Technical Information of China (English)

    WuXiong-bin; XuJi-sheng; MaShu-ying; TianMao

    2003-01-01

    This paper studies the ionospheric effects associated with the solar eclipse of October 24th, 1995 by means of Computerized Ionospheric Tomography (CIT). Since the reconstructed profiles from experimental CIT are sporadically located in time, a time domain interpolation method based on Singular Value Decomposition (SVD) technique is proposed and applied to extract the ionospheric effects. The effects can be extracted by comparison analysis between the interpolated CIT profiles of the eclipse days and that of the reference day that are time-aligned. A series of figs have been obtained showing the attenuation of photonization effect at low altitudes and the weakening of plasma's transportation process at high altitudes, etc. The photonization effect recovered to normal level soon after the last contact. The maximum electron density diminishing is observed about 2 h after the eclipse maximum and the effects seem vanished in the hours followed. Analysis on vertical TEC's latitudinal-temporal variation gives similar conclusions.

  2. Generation of auroral turbulence through the magnetosphere-ionosphere coupling

    Science.gov (United States)

    Watanabe, Tomo-Hiko; Kurata, Hiroaki; Maeyama, Shinya

    2016-12-01

    The shear Alfvén waves coupled with the ionospheric density fluctuations in auroral regions of a planetary magnetosphere are modeled by a set of the reduced magnetohydrodynamic and two-fluid equations. When the drift velocity of the magnetized plasma due to the background electric field exceeds a critical value, the magnetosphere-ionosphere (M-I) coupling system is unstable to the feedback instability which leads to formation of auroral arc structures with ionospheric density and current enhancements. As the feedback (primary) instability grows, a secondary mode appears and deforms the auroral structures. A perturbative (quasilinear) analysis clarifies the secondary growth of the Kelvin-Helmholtz type instability driven by the primary instability growth in the feedback M-I coupling. In the nonlinear stage of the feedback instability, furthermore, auroral turbulence is spontaneously generated, where the equipartition of kinetic and magnetic energy is confirmed in the quasi-steady turbulence.

  3. Report of the Ionosphere-Thermosphere-Mesosphere Panel

    Science.gov (United States)

    Szuszczewicz, Edward P.; Killeen, Tim L.; Arnoldy, Roger L.; Brace, Larry H.; Christensen, Andrew B.; Fejer, B.; Heelis, Roderick A.; Keskinen, Michael J.; Maynard, Nelson C.; Mayr, Hans G.

    1991-01-01

    The scientific objectives and mission concept that emerged from the discussions of this panel are presented. The overall scientific theme of this report is the investigation of the ionosphere, thermosphere, and mesosphere (near Earth space environment) as a global, dynamic, and coupled system. Among the specific goals of this area of research are: (1) understanding the consequences of transition between turbulent and laminar flow and collisional and collisionless media; (2) understanding the thermospheric/mesospheric coupling due to gravity wave, tidal, and trace constituent transport processes; (3) understanding the electrodynamical coupling between the thermosphere/ionosphere and magnetosphere; (4) understanding the coupling processes between small scale plasma structures; and (5) determining the real-time evolution of the global ionosphere electric field in response to solar wind and magnetosphere coupling.

  4. Ionosphere Scintillation at Low and High Latitudes (Modelling vs Measurement)

    Science.gov (United States)

    Béniguel, Yannick

    2016-04-01

    This paper will address the problem of scintillations characteristics, focusing on the parameters of interest for a navigation system. Those parameters are the probabilities of occurrence of simultaneous fading, the bubbles surface at IPP level, the cycle slips and the fades duration statistics. The scintillation characteristics obtained at low and high latitudes will be compared. These results correspond to the data analysis performed after the ESA Monitor ionosphere measurement campaign [1], [2]. A second aspect of the presentation will be the modelling aspect. It has been observed that the phase scintillation dominates at high latitudes while the intensity scintillation dominates at low latitudes. The way it can be reproduced and implemented in a propagation model (e.g. GISM model [3]) will be presented. Comparisons of measurements with results obtained by modelling will be presented on some typical scenarios. References [1] R. Prieto Cerdeira, Y. Beniguel, "The MONITOR project: architecture, data and products", Ionospheric Effects Symposium, Alexandria (Va), May 2011 [2] Y. Béniguel, R Orus-Perez , R. Prieto-Cerdeira , S. Schlueter , S. Scortan, A. Grosu "MONITOR 2: ionospheric monitoring network in support to SBAS and other GNSS and scientific purposes", IES Conference, Alexandria (Va), May 2015-05-22 [3] Y. Béniguel, P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

  5. Low-latitude Ionospheric Research using the CIRCE Mission

    Science.gov (United States)

    Dymond, K.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.

    2016-12-01

    The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a dual-satellite mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same orbit with a launch planned for the 2018-2019 time frame. These nano-satellites will each feature two 1U ultraviolet photometers, observing the 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the two-dimensional distribution of electrons in the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements or a wide-band beacon data, with advanced image space reconstruction algorithm tomography techniques. The COSMIC/FORMOSAT-3 (CF3) constellation featured six Tiny Ionospheric Photometers, a compact UV sensor design which served as the pathfinder for the CIRCE instruments. The TIP instruments on the CF3 satellites demonstrated detection of ionospheric bubbles before they had penetrated the peak of the F-region ionosphere. We present our mission concept, simulations illustrating the imaging capability of the sensor suite, and a range of science questions addressable using such a system.

  6. Electron gyroharmonic effects on ionospheric stimulated Brillouin scatter

    Science.gov (United States)

    Mahmoudian, A.; Scales, W. A.; Bernhardt, P. A.; Isham, B.; Kendall, E.; Briczinski, S. J.; Fuentes, N. E. B.; Vega-Cancel, O.

    2014-08-01

    Stimulated Brillouin scattering (SBS) and resonant phenomena are well known in the context of laser fusion, fiber optics, and piezoelectric semiconductor plasmas, as well as in various biological applications. Due to recent advances, active space experiments using high-power high-frequency (HF) radio waves may now produce stimulated Brillouin scattering (SBS) in the ionospheric plasma. The sensitivity of the narrowband SBS emission lines to pump frequency stepping across electron gyroharmonics is reported here for the first time. Experimental observations show that SBS emission sidebands are suppressed as the HF pump frequency is stepped across the second and third electron gyroharmonics. A correlation of artificially enhanced airglow and SBS emission lines excited at the upper hybrid altitude is observed and studied for second gyroharmonic heating. The SBS behavior near electron gyroharmonics is shown to have important diagnostic applications for multilayered, multi-ion component plasmas such as the ionosphere.

  7. Ionospheric heating with oblique HF waves

    Science.gov (United States)

    Field, Edward C., Jr.; Bloom, Ron M.

    1990-10-01

    Calculations of ionospheric electron density perturbations and ground-level signal changes produce by intense oblique high frequency (HF) transmitters are presented. This analysis considers radio field focusing at caustics, the consequent joule-heating of the surrounding plasma, heat conduction, diffusion, and recombination processes: these being the effects of a powerful oblique 'modifying' wave. It neglects whatever plasma instabilities might occur. Then effects on a secondary 'test' wave that is propagated along the same path as the first are investigated. Calculations predict ground-level field-strength reductions of several dB in the test wave for modifying waves having ERP in the 85 to 90 dBW range. These field-strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The results are sensitive to the model ionosphere assumed, so future experiments should employ the widest possible range of frequencies and propagation conditions. An effective power of 90 dBW seems to be a sort of threshold that, if exceeded, results in substantial rather than small signal changes. The conclusions are based solely on joule-heating and subsequent defocusing of waves passing through caustic regions.

  8. Evolution of lower hybrid turbulence in the ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ganguli, G.; Crabtree, C.; Mithaiwala, M.; Rudakov, L.; Scales, W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375-5346 (United States)

    2015-11-15

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.

  9. Hydromagnetic Waves in the Magnetosphere and the Ionosphere

    CERN Document Server

    Alperovich, Leonid S

    2007-01-01

    The book deals with Ultra-Low-Frequency (ULF)-electromagnetic waves observed on Earth and in Space. These are so-called geomagnetic variations or pulsations. Alfvén's discovery related to the influence of the strong magnetic field on the conducting fluids (magnetohydrodynamics) led to development of the concept that the ULF-waves are magnetospheric magnetohydrodynamic (MHD)-waves. MHD-waves at their propagation gather information about the magnetosphere, ionosphere, and the ground. There are two applied aspects based on using the ULF electromagnetic oscillations. The first one is the ground-based diagnostics of the magnetosphere. This is an attempt to monitor in the real time the magnetosphere size, distance to the last closed field-lines, distribution of the cold plasma, etc. The second one is the deep electromagnetic sounding of the Earth. The basis for these studies is the capability of any electromagnetic wave to penetrate a conductor to a finite depth. The ULF-waves can reach the depth of a few hundred ...

  10. Evolution of lower hybrid turbulence in the ionosphere

    Science.gov (United States)

    Ganguli, G.; Crabtree, C.; Mithaiwala, M.; Rudakov, L.; Scales, W.

    2015-11-01

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.

  11. 3D Evolution of Lower Hybrid Turbulence in the Ionosphere

    Science.gov (United States)

    Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid

    2016-10-01

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is considered. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region that can result in unique low-amplitude saturation with extended saturation time. It is shown that when the realistic nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution. NRL Base Program.

  12. Investigation of the Earth Ionosphere using the Radio Emission of Pulsars

    CERN Document Server

    Ulyanov, O M; Mukha, D V; Seredkina, A A

    2013-01-01

    The investigation of the Earth ionosphere both in a quiet and a disturbed states is still desirable. Despite recent progress in its modeling and in estimating the electron concentration along the line of sight by GPS signals, the impact of the disturbed ionosphere and magnetic field on the wave propagation still remains not sufficiently understood. This is due to lack of information on the polarization of GPS signals, and due to poorly conditioned models of the ionosphere at high altitudes and strong perturbations. In this article we consider a possibility of using the data of pulsar radio emission, along with the traditional GPS system data, for the vertical and oblique sounding of the ionosphere. This approach also allows to monitor parameters of the propagation medium, such as the dispersion measure and the rotation measure using changes of the polarization between pulses. By using a selected pulsar constellation it is possible to increase the number of directions in which parameters of the ionosphere and ...

  13. Ionogram inversion for a tilted ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.W. (British Antartic Survey, Cambridge (England))

    1990-12-01

    Digital ionosondes such as the Dynasonde disclose that the ionosphere is seldom horizontal even when it is plane stratified to a good approximation. The local magnetic dip does not then determine correctly the radiowave propagation angle for inversion of the ionogram to a plasma density profile. The measured echo direction of arrival can be used together with the known dip for an improved propagation angle. The effects are small for simple one-parameter laminae but become important when differential (ordinary, extraordinary) retardations are used to aid correction for valley and starting ambiguities. The resulting profile describes the plasma distribution along the direction of observation, rather than the vertical; it thus conveys information about horizontal gradients. Observations suggest that advantages in inversion methods may be practicable for application to modern ionosonde recordings, by which local lateral structure can be described in greater detail. 20 refs.

  14. Understanding ionospheric instabilities eludes current approaches

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-07-01

    Ionized gases are heavily concentrated in the ionosphere's F zone, the region between 200 and 500 kilometers in altitude, which is critical for transmitting long-distance radio signals on Earth. However, instabilities in the F region plasma, which can last from seconds to hours and can be spread over centimeters to tens of kilometers, disrupt transmission of radio signals. The plasma instabilities, restricted to the equatorial region following sunset, are called equatorial spread F (ESF). Earth-based instruments perceive ESF events as “twinkling” radio signals. ESF events, first detected in the 1930s, affect the performance and reliability of space-borne and ground-based electronic systems; they can disrupt satellite operations and related communications and navigation systems.

  15. Global scale ionospheric irregularities associated with thunderstorm activity

    CERN Document Server

    Pulinets, S A

    2002-01-01

    The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstor...

  16. Feasibility study of monitoring of plasma etching chamber conditions using superimposed high-frequency signals on rf power transmission line.

    Science.gov (United States)

    Kasashima, Y; Uesugi, F

    2015-10-01

    An in situ monitoring system that can detect changes in the conditions of a plasma etching chamber has been developed. In the system, low-intensity high-frequency signals are superimposed on the rf power transmission line used for generating plasma. The system measures reflected high-frequency signals and detects the change in their frequency characteristics. The results indicate that the system detects the changes in the conditions in etching chambers caused by the changes in the electrode gap and the inner wall condition and demonstrate the effectiveness of the system. The system can easily be retrofitted to mass-production equipment and it can be used with or without plasma discharge. Therefore, our system is suitable for in situ monitoring of mass-production plasma etching chambers. The system is expected to contribute to development of predictive maintenance, which monitors films deposited on the inner wall of the chamber and prevents equipment faults caused by misalignment of chamber parts in mass-production equipment.

  17. Searching for seismo-ionospheric earthquakes precursors: Total Electron Content disturbances before 2005-2006 seismic events

    CERN Document Server

    Romanovskaya, Yu V; Zolotov, O V; Starikova, N A; Lopatiy, V Z

    2012-01-01

    During earthquakes preparation periods significant disturbances in the ionospheric plasma density are often observed. These anomalies are caused by lithosphere-atmosphere-ionosphere interaction, particularly by the seismic electric field penetrating from the ground surface into the ionosphere. The seismic electric field produces electromagnetic EB drift changing plasma density over the epicenter region and magnetically conjugated area. The paper is devoted to analysis of regular Global Positioning System observations and revelation of seismo-ionospheric precursors of earthquakes in Total Electron Content (TEC) of the ionosphere. Global and regional relative TEC disturbances maps (%) have been plotted for 2005-2006 M6, D<60 km seismic events and analyzed in order to determine general features of precursors. The obtained results agree with the recent published case-study investigations.

  18. Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic

    Directory of Open Access Journals (Sweden)

    T. Pedersen

    2011-01-01

    Full Text Available Artificial ionospheric plasmas descending from the background F-region have been observed on multiple occasions at the High Frequency Active Auroral Research Program (HAARP facility since it reached full 3.6 MW power. Proximity of the transmitter frequency to the 2nd harmonic of the electron gyrofrequency (2fce has been noted as a requirement for their occurrence, and their disappearance after only a few minutes has been attributed to the increasing frequency mismatch at lower altitudes. We report new experiments employing frequency sweeps to match 2fce in the artificial plasmas as they descend. In addition to revealing the dependence on the 2fce resonance, this technique reliably produces descending plasmas in multiple transmitter beam positions and appears to increase their stability and lifetime. High-speed ionosonde measurements are used to monitor the altitude and density of the artificial plasmas during both the formation and decay stages.

  19. Flow cytometry quality requirements for monitoring of minimal disease in plasma cell myeloma.

    Science.gov (United States)

    Oldaker, Teri A; Wallace, Paul K; Barnett, David

    2016-01-01

    Current therapeutic approaches for plasma cell myeloma (PCM) attain an overall survival of more than 6 years for the majority of newly diagnosed patients. However, PFS and OS are the only accepted FDA clinical endpoints for demonstrating drug efficacy before they can be become frontline therapeutic options. There is, however, recognition that the increasing gap between drug development and approval for mainstream therapeutic use needs to be shortened. As such regulatory bodies such as the FDA are now considering whether biomarker response evaluation, as in measurement of minimal residual disease (MRD) as assessed by flow cytometry (FC), can provide an early, robust prediction of survival and therefore improve the drug approval process. Recently, FC MRD using a standardized eight-color antibody methodology has been shown to have a minimum sensitivity of 0.01% and an upper sensitivity of 0.001%. To ensure that all laboratories using this approach achieve the same levels of sensitivity it is crucially important to have standardized quality management procedures in place. This manuscript accompanies those published in this special issue and describes the minimum that is required for validating and quality monitoring of this highly specific test to ensure any laboratory, irrespective of location, will achieve the expected quality standards required. © 2015 International Clinical Cytometry Society.

  20. Behavior of plant plasma membranes under hydrostatic pressure as monitored by fluorescent environment-sensitive probes.

    Science.gov (United States)

    Roche, Yann; Klymchenko, Andrey S; Gerbeau-Pissot, Patricia; Gervais, Patrick; Mély, Yves; Simon-Plas, Françoise; Perrier-Cornet, Jean-Marie

    2010-08-01

    We monitored the behavior of plasma membrane (PM) isolated from tobacco cells (BY-2) under hydrostatic pressures up to 3.5kbar at 30 degrees C, by steady-state fluorescence spectroscopy using the newly introduced environment-sensitive probe F2N12S and also Laurdan and di-4-ANEPPDHQ. The consequences of sterol depletion by methyl-beta-cyclodextrin were also studied. We found that application of hydrostatic pressure led to a marked decrease of hydration as probed by F2N12S and to an increase of the generalized polarization excitation (GPex) of Laurdan. We observed that the hydration effect of sterol depletion was maximal between 1 and 1.5 kbar but was much less important at higher pressures (above 2 kbar) where both parameters reached a plateau value. The presence of a highly dehydrated gel state, insensitive to the sterol content, was thus proposed above 2.5 kbar. However, the F2N12S polarity parameter and the di-4-ANEPPDHQ intensity ratio showed strong effect on sterol depletion, even at very high pressures (2.5-3.5 kbar), and supported the ability of sterols to modify the electrostatic properties of membrane, notably its dipole potential, in a highly dehydrated gel phase. We thus suggested that BY-2 PM undergoes a complex phase behavior in response to the hydrostatic pressure and we also emphasized the role of phytosterols to regulate the effects of high hydrostatic pressure on plant PM.

  1. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma

    Science.gov (United States)

    Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming

    2016-11-01

    Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes--including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH--in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media.

  2. Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis

    Science.gov (United States)

    Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing

    2013-12-01

    In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.

  3. The effect of disturbances of lower ionospheric parameters by powerful radio waves on partially reflected signals

    Science.gov (United States)

    Martynenko, S. I.; Chernogor, L. F.

    The interaction of intense pulsed short-wave radiation with ionospheric plasma in the D region is studied. Also considered is the effect of the disturbances caused by this radiation on the characteristics of the partially reflected radio signals used in the method of partial reflections. Calculations are carried out showing that present installations designed for the method of partial reflections can have a significant effect on the parameters of the lower ionosphere. Recommendations are made for the maximum power of these installations.

  4. DEMETER observations of the ionospheric trough over HAARP in relation to HF heating experiments

    OpenAIRE

    Piddyachiy, D.; Bell, T.F.; Berthelier, Jean-Jacques; U. S. Inan; Parrot, Michel

    2011-01-01

    International audience; Plasma density variations observed aboard the DEMETER satellite in the topside ionospheric F layer are analyzed in relation to high-frequency transmitter operations. The main interest is the high-latitude region. One hundred cases with operating and nonoperating High Frequency Active Auroral Research Program HF transmitter during day and night are examined. It is found that most large-scale variations can be attributed to the presence of the main ionospheric trough and...

  5. The impact of large scale ionospheric structure on radio occultation retrievals

    Directory of Open Access Journals (Sweden)

    A. J. Mannucci

    2011-12-01

    Full Text Available We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.

  6. Observation of ionospheric gravity waves induced by the 2011 Tohoku earthquake and tsunami using GPS networks in Japan

    Science.gov (United States)

    Tang, Long; Guo, Bofeng; Zhang, Xiaohong

    2017-04-01

    Recent observation results show the atmospheric gravity waves produced by both tsunami and earthquake can propagate upward to the atmosphere and interact with the plasma at the ionospheric height, leading to the generation of ionospheric disturbances. Carefully analyzing the propagation characteristics of ionospheric disturbances is necessary in order to distinguish the sources. Here, we use the GPS total electron content (TEC) observations in Japan to detect the ionospheric disturbances after the 2011 Tohoku earthquake, respectively. The Tohoku (Japan) earthquake (Mw=9) occurred at 05:46 UT on 11 March 2011 and then triggered powerful tsunami. The fundamental work is to properly isolate the ionospheric disturbances from raw TEC observations. Here, a second-order number difference method is employed to extract disturbance series and analyze the propagation characteristics of the ionospheric disturbances. The results show there are two types of gravity waves in the ionosphere over Japan, which is produced by the tsunami waves and the seismic rupture process, respectively. The earthquake-driven ionospheric gravity waves are distributed around the epicenter (including the areas over and far from the ocean) whereas the tsunami-driven ionospheric gravity waves are observed above the ocean. The earthquake-driven ionospheric gravity waves have different horizontal velocities, including about 210 m/s and 170 m/s, and frequency of about 1.5 mHz. The tsunami-driven ionospheric gravity waves have velocity of about 280 m/s, which are faster than that of the earthquake-driven ionospheric gravity waves, and frequency of about 1.0 mHz. In addition, the tsunami-driven ionospheric gravity waves have similar propagation characteristics in terms of horizontal velocity, direction, travel time, waveform and frequency compared to the tsunami waves causing them. In short, this study distinguishes the tsunami signals in ionosphere from ionospheric disturbances triggered by the earthquake

  7. Postmidnight ionospheric troughs in summer at high latitudes

    Science.gov (United States)

    Voiculescu, M.; Nygrén, T.; Aikio, A. T.; Vanhamäki, H.; Pierrard, V.

    2016-12-01

    In this article we identify possible mechanisms for the formation of postmidnight ionospheric troughs during summer, in sunlit plasma. Four events were identified in measurements of European Incoherent Scatter and ESR radars during CP3 experiments, when the ionosphere was scanned in a meridional plan. The spatial and temporal variation of plasma density, ion, and electron temperatures were analyzed for each of the four events. Super Dual Auroral Radar Network plasma velocity measurements were added, when these were available. For all high-latitude troughs the ion temperatures are high at density minima (within the trough), at places where the convection plasma velocity is eastward and high. There is no significant change in electron temperature inside the trough, regardless of its temporal evolution. We find that troughs in sunlit plasma form in two steps: the trough starts to form when energetic electron precipitation leads to faster recombination in the F region, and it deepens when entering a region with high eastward flow, producing frictional heating and further depleting the plasma. The high-latitude plasma convection plays an important role in formation and evolution of troughs in the postmidnight sector in sunlit plasma. During one event a second trough is identified at midlatitudes, with different characteristics, which is most likely produced by a rapid subauroral ion drift in the premidnight sector.

  8. Determining plasma morphine levels using GC-MS after solid phase extraction to monitor drug levels in the postoperative period

    Directory of Open Access Journals (Sweden)

    Veronica Santos

    2008-01-01

    Full Text Available OBJECTIVE: To implement a selective and sensitive analytical method to quantify morphine in small volumes of plasma by gas-liquid chromatography-mass spectrometry (GC-MS, aimed at post-operatively monitoring the drug. METHOD: A gas-liquid chromatographic method with mass detection has been developed to determine morphine concentration in plasma after solid phase extraction. Morphine-d3 was used as an internal standard. Only 0.5 mL of plasma is required for the drug solid-phase extraction in the Bond Elut-Certify®, followed by the quantification of morphine derivative by GC-MS using a linear temperature program, a capillary fused silica column, and helium as the carrier and make-up gas. The method was applied to determine morphine content in plasma samples of four patients during the postoperative period of cardiac surgery. Patient-controlled analgesia with morphine was performed by a venous catheter, and a series of venous blood samples were collected. After the oro-After the orotracheal extubation, morphine plasma levels were monitored for up to 36 hours. RESULTS: The run time was 16 minutes because morphine and the internal standard were eluted after 8.8 minutes. The GC-MS method had 0.5 -1000 ng/mL linearity range (r²=0.9995, 0.1 ng/mL limit of detection, intraday and interday precision equivalent to 1.9% and 6.8%, and 0.1% and 0.8% systematic error (intraday and interday, respectively. The analytical method showed optimal absolute (98% and relative (100.7% recoveries. Morphine dose requirements and plasma levels are discussed. CONCLUSION: The analytical gas-liquid chromatography-mass spectrometry method is selective and adequate for morphine measurements in plasma for applications in clinical studies.

  9. Determining plasma morphine levels using GC-MS after solid phase extraction to monitor drug levels in the postoperative period.

    Science.gov (United States)

    Santos, Veronica; López, Karin Jannet Vera; Santos, Luciana Moraes; Yonamine, Mauricio; Carmona, Maria José Carvalho; Santos, Silvia Regina Cavani Jorge

    2008-06-01

    To implement a selective and sensitive analytical method to quantify morphine in small volumes of plasma by gas-liquid chromatography-mass spectrometry (GC-MS), aimed at post-operatively monitoring the drug. A gas-liquid chromatographic method with mass detection has been developed to determine morphine concentration in plasma after solid phase extraction. Morphine-d3 was used as an internal standard. Only 0.5 mL of plasma is required for the drug solid-phase extraction in the Bond Elut-Certify, followed by the quantification of morphine derivative by GC-MS using a linear temperature program, a capillary fused silica column, and helium as the carrier and make-up gas. The method was applied to determine morphine content in plasma samples of four patients during the postoperative period of cardiac surgery. Patient-controlled analgesia with morphine was performed by a venous catheter, and a series of venous blood samples were collected. After the oro-After the orotracheal extubation, morphine plasma levels were monitored for up to 36 hours. The run time was 16 minutes because morphine and the internal standard were eluted after 8.8 minutes. The GC-MS method had 0.5 -1000 ng/mL linearity range (r(2)=0.9995), 0.1 ng/mL limit of detection, intraday and interday precision equivalent to 1.9% and 6.8%, and 0.1% and 0.8% systematic error (intraday and interday, respectively). The analytical method showed optimal absolute (98%) and relative (100.7%) recoveries. Morphine dose requirements and plasma levels are discussed. The analytical gas-liquid chromatography-mass spectrometry method is selective and adequate for morphine measurements in plasma for applications in clinical studies.

  10. 基于GPS技术实时监测2009年7月22日日全食期间长三角区域电离层TEC变化%Real-time monitoring of ionosphere changes in the Yangtze River Delta region based on GPS technology during the total solar eclipse of 22 July 2009

    Institute of Scientific and Technical Information of China (English)

    王虎; 王解先; 白贵霞; 王潜心; 李浩军; 朱卫东

    2011-01-01

    2009年7月22日上午发生的日全食是21世纪持续时间最长的日全食,其全食带覆盖了中国中部的K江流域,为研究日全食对电离层的影响提供了一次难得的机会,为此本文通过卡尔曼滤波算法实现了实时求解TEC和GPS系统硬件延迟,为实时监测日全食期间电离层变化提供了绝对的电离层TEC.采用上海和浙江区域内GPS网的观测数据,建立了实时区域电离层延迟模型,进而计算出了实时的VTEC和TEC变化率,同时考虑太阳和地磁活动参数,综合上述方法详细分析和讨论了长三角区域在此次日全食期间的TEC变化的电离层异常现象.%The longest total solar eclipse during the 21st century occurred in the morning of 22 July 2009. The Yangtze River Valley of Central China is located on the central line of the total eclipse belt. It will provide a unique opportunity to investigate the influence of the total solar eclipse on the ionosphere. This paper describes a method of real-time solving TEC and GPS instrumental bias using Kalman filtering, so this can be used to provide absolute amount of ionospheric TEC for real-time monitoring of ionosphere changes during the total solar eclipse. For validation of this method, the data of Shanghai and Zhejiang regional GPS network are used and a realtime regional ionosphere model is created.then real-time VTEC and TEC ratio are also calculated. Meanwhile* with consideration of the solar and geomagnetic parameter, the ionospheric anomalies with phenomenon of TEC changes in the Yangtze River Delta region during the total solar eclipse are analyzed in detail and discussed by adopting the numerical computations.

  11. VLF emissions from ionospheric/magnetospheric plasma

    Indian Academy of Sciences (India)

    R P Patel; R P Singh

    2001-05-01

    VLF emissions such as hiss, chorus, oscillating tones, hiss-triggered chorus and whistler triggered emissions have been observed at low latitude Indian stations. In this paper we present dynamic spectra of these emissions and discuss their various observed features. It is argued that most of the emissions are generated during Doppler shifted cyclotron resonance interaction between the whistler mode wave and counter streaming energetic electrons. Resonance energy of the participating electron and interaction length are evaluated to explain the generation mechanism of some of these emissions observed at Indian stations.

  12. Phenomenology of Structured Plasma in the Ionosphere.

    Science.gov (United States)

    1983-03-01

    also plotted the equatorward boundary of the auroral oval (Q - 5), as determined analytically by Starkov (1969]. We see from Figure 6 that the invariant...Ionization Ducts," J. Geophvs. Res., Vol. 80, No. 7, pp. 977-984 (March 1975). Starkov , G. V., "Analytical Representation of the Equatorward Boundary of the

  13. Investigation of Ionospheric Disturbances Using Radio and Optical Observations in South-East Asia -- The Initial Results of the ASI and FPI Observations in Chiang Mai, Thailand

    Science.gov (United States)

    Kubota, M.; Nagatsuma, T.; Otsuka, Y.; Shiokawa, K.; Komonjinda, S.; Komolmis, T.; Somboon, E.; Tsugawa, T.; Maruyama, T.; Murata, K. T.

    2010-12-01

    For the purpose of monitoring and forecasting equatorial ionospheric disturbances, SEALION (SouthEast Asia Low-latitude IOnospheric Network) has been developed since 2003 as a cooperation project by National Institute of Information and Communications Technology (NICT), King Mongkut's Institute of Technology Ladkrabang (KMITL) in Thailand, Chiang Mai University (CMU) in Thailand, National Institute of Aeronautics and Space (LAPAN) in Indonesia, Hanoi Institute of Geophysics (HIG), Vietnamese Academy of Science and Technology in Vietnam, Center for Space Science and Applied Research (CSSAR), Chinese Academy of Sciences in China, Kyoto University in Japan, and Solar-Terrestrial Environment Laboratory (STEL), Nagoya University in Japan. SEALION consists of five ionosondes, four GPS receivers, two GPS scintillation monitors, and a magnetometer. As a part of this project, we newly installed an all-sky imager (ASI) and a Fabry-Perot Interferometer (FPI) at Sirindhorn observatory in Chiang Mai (18.8N, 98.9E, Dip lat. 13.1), Thailand. This site is located near conjugate to EAR site in Kototabang, Indonesia. One of main targets of the ASI observation is the large-scale wave structure (LSWS) with wavelengths of 100-1000 km. The LSWS is thought to be connected to the generation mechanism of equatorial plasma bubbles (EPB). The optical observations in Chiang Mai started in February 2010, and we have detected several ionospheric disturbance events with these instruments In this paper, we will show the initial results of the optical observations from Sirindhorn observatory, and discuss the features of ionospheric disturbances in Southeast Asia.

  14. Auroral ionospheric and thermospheric measurements using the incoherent scatter technique

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, W. (CEPHAG, St. Martin (France))

    1992-11-01

    The incoherent scatter technique has been applied since 1965 to study the ionosphere and thermosphere in different regions of the Earth. The analysis of the received signal gives access to several ionospheric parameters as a function of height: electron density, electron and ion temperatures and ion velocity. The derivation of these parameters is usually a complicated mathematical procedure that requires a non-linear regression program. A lot of research has been done in the ionospheric and atmospheric science using this technique. In this paper we describe how one derives the ion-neutral collision frequency and the ion composition parameters. It is usually difficult to retrieve these parameters with the incoherent scatter technique; as a result, in the standard data analysis procedure, an ionospheric model is used instead. However the numerical values chosen in the model have an influence on the other derived parameters. For instance the choice of a wrong ion composition leads to erroneous plasma temperatures. It is therefore important to assess by how much the standard procedure deviates from reality. For this reason we compare the ion composition and collision frequency retrieved from a sophisticated analysis scheme with the values that are derived from models under similar geophysical conditions. It is also possible to derive from the observed ionospheric parameters the neutral concentrations, temperatures and winds, by using the energy and momentum equations for the ions and the neutrals. In this paper the different methods and the corresponding assumptions involved in the data analysis are discussed. We describe the influence of the frictional heating, of the vertical neutral wind and of the ionospheric perturbations on the derivation of the neutral atmospheric parameters. Our discussion of the processes involved are drawn from results obtained by Chatanika, Sondrestrom and EISCAT radars.

  15. Measuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometers

    Directory of Open Access Journals (Sweden)

    Vincenzo Romano

    2013-06-01

    Full Text Available In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS ionospheric scintillation and TEC monitor (GISTM receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions, there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.

  16. Plasma quetiapine in relation to prescribed dose and other factors: data from a therapeutic drug monitoring service, 2000–2011

    Science.gov (United States)

    Bowskill, Sally V.J.; Patel, Maxine X.; Flanagan, Robert J.

    2013-01-01

    Objective: Suggested predose plasma quetiapine target ranges for effective therapy in schizophrenia lie between 50 and 500 µg/l. We aimed to examine data from a quetiapine therapeutic drug monitoring (TDM) service to assess the plasma quetiapine concentrations attained at specified doses in clinical practice. Method: We studied TDM data from patients given immediate-release quetiapine in the period 2000–2011. Results: There were 946 samples from 487 patients (257 males, age at time of first sample, median [range] 34 [14–87] years, and 230 females, age at time of first sample, median [range] 38 [10–92] years). The plasma quetiapine concentration was <50 and <100 µg/l in 30% and 50% of samples, respectively (no quetiapine detected in 9% of samples). The relationship between dose and plasma quetiapine was poor. The mean (95% confidence interval [CI]) quetiapine dose was higher (t = 3.6, df = 446, p <0.01) in males versus females (641 [600–1240] and 548 [600–943] mg/day, respectively), although there was no difference in median dose (600 mg/day) or in the mean (95% CI) plasma quetiapine concentrations attained. Smoking habit had no discernible effect on plasma quetiapine concentration. Conclusions: There was a poor relationship between dose and plasma quetiapine concentration in this study, as found by others. This is probably because of the short plasma half-life of the drug, at least in part. Nevertheless, quetiapine TDM can help assess adherence and measurement of quetiapine metabolites, notably N-desalkylquetiapine, as well as quetiapine itself may enhance the value of quetiapine TDM in future. PMID:24167685

  17. Generation of ionospheric ducts by the HAARP HF heater

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J A; Pradipta, R; Burton, L M; Labno, A; Lee, M C [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Watkins, B J; Fallen, C [University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Kuo, S P [New York University, Brooklyn, NY 11201 (United States); Burke, W J [Air Force Research Laboratory, Hanscom AFB, MA 01731 (United States); Mabius, D; See, B Z, E-mail: mclee@mit.edu [Boston University, Boston, MA 02215 (United States)

    2010-12-15

    We report an investigation of ionospheric ducts having the shape of large plasma sheets, generated by vertically transmitted HAARP HF heater waves in several experiments conducted in Gakona, Alaska. Theory predicts that O-mode heater wave-created ionospheric ducts form parallel-plate waveguides within the meridional plane, and those generated by the X-mode heater waves are orthogonal to the meridional plane. Our theoretical prediction is supported by measurements of ionosonde data (namely ionograms), range-time-intensity (RTI) plots of UHF and HF backscatter radars, as well as magnetometer data analyses. When these plasma sheets experienced ExB drifts, they were intercepted by the HAARP UHF radar and seen as slanted stripes in the RTI plots. This striking feature was also observed in our earlier experiments using the Arecibo UHF radar.

  18. Ionospheric response to magnetar flare: signature of SGR J1550-5418 on coherent ionospheric Doppler radar

    Science.gov (United States)

    Mahrous, Ayman

    2017-03-01

    This paper presents observational evidence of frequent ionospheric perturbations caused by the magnetar flare of the source SGR J1550-5418, which took place on 22 January 2009. These ionospheric perturbations are observed in the relative change of the total electron content (ΔTEC/Δt) measurements from the coherent ionospheric Doppler radar (CIDR). The CIDR system makes high-precision measurements of the total electron content (TEC) change along ray-paths from ground receivers to low Earth-orbiting (LEO) beacon spacecraft. These measurements can be integrated along the orbital track of the beacon satellite to construct the relative spatial, not temporal, TEC profiles that are useful for determining the large-scale plasma distribution. The observed spatial TEC changes reveal many interesting features of the magnetar signatures in the ionosphere. The onset phase of the magnetar flare was during the CIDR's nighttime satellite passage. The nighttime small-scale perturbations detected by CIDR, with ΔTEC/Δt ≥ 0.05 TECU s-1, over the eastern Mediterranean on 22 January 2009 were synchronized with the onset phase of the magnetar flare and consistent with the emission of hundreds of bursts detected from the source. The maximum daytime large-scale perturbation measured by CIDR over northern Africa and the eastern Mediterranean was detected after ˜ 6 h from the main phase of the magnetar flare, with ΔTEC/Δt ≤ 0.10 TECU s-1. These ionospheric perturbations resembled an unusual poleward traveling ionospheric disturbance (TID) caused by the extraterrestrial source. The TID's estimated virtual velocity is 385.8 m s-1, with ΔTEC/Δt ≤ 0.10 TECU s-1.

  19. Development of Localized Plasma Etching System for Failure Analyses in Semiconductor Devices: (3)Etching-Monitoring Using Quadrupole Mass Spectrometry

    Science.gov (United States)

    Takahashi, Satoshi; Horie, Tomoyuki; Shirayama, Yuya; Yokosuka, Shuntaro; Kashimura, Kenta; Hayashi, Akihiro; Iwase, Chikatsu; Shimbori, Shun'ichiro; Tokumoto, Hiroshi; Naitoh, Yasuhisa; Shimizu, Tetsuo

    Quadrupole mass spectrometry (QMS) has been applied to monitor the etching processes in a localized plasma etching system. An inward plasma was employed for etching in which the etching gas was discharged in the narrow gap between the etched sample and the entrance of an evacuating capillary tube. As the etching products are immediately evacuated through the capillary, a QMS system equipped at the capillary exit is able to analyze the products without any loss in concentration via diffusion into the chamber. Two kinds of samples, thermally grown SiO2 on Si and spin-coated polyimide film on Si, were etched, and the chemical species in the evacuated etching gas were analyzed with QMS, which enables monitoring of the composition of the surface being etched. Samples of thermal SiO2 were etched with CF4 plasma. The peak height of the SiF3+ signal during the SiO2 etching was lower than that observed during etching of the silicon substrate, leading to endpoint detection. The endpoint detection of the polyimide film etching was conducted using two etching gases: pure O2 and pure CF4. When O2 was used, the endpoint was detected by the decrease of the mass peak attributed to CO. When CF4 was employed, the plasma was able to etch both the polyimide film and Si substrate. Then the endpoint was detected by the increase of the mass peak of SiF3+ produced by the etching of the Si substrate.

  20. Dayside episodic ion outflow from Martian magnetic cusps and/or magnetosheath boundary motion associated with plasma oscillations

    Science.gov (United States)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Lundin, R.; Duru, I. H.; Winningham, J. D.; Frahm, R. A.

    2014-05-01

    The radar sounder on the Mars Express Spacecraft is able to make measurements of electron densities in the Martian ionosphere from both local electron plasma oscillations and remote soundings. A study of thousands of orbits shows that in some cases the electron plasma oscillations disappear and reappear abruptly near the upper boundary of the dayside ionosphere. In some cases, the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) data show clear evidence of upwardly accelerated ionospheric ions, on interconnected magnetic field lines. In other cases, ASPERA-3 data show that when the plasma oscillations disappear, the spacecraft is in the magnetosheath and when they return, the ionospheric plasma reappears. These intermittent appearances of plasma suggest the multiple crossings of the magnetosheath boundary. The motion of the boundary or plasma clouds and ionospheric streamers (a relatively narrow strip of plasma attached to the ionosphere) can cause these multiple crossings.

  1. Magnetospheric Control of Density and Composition in the Polar Ionosphere

    Science.gov (United States)

    2015-06-24

    verified calculation of three-dimensional plasma continuity at the geomagnetic pole [Dahlgren et al., 2012a; Perry et al., 2015; Semeter et al., 2014...Zettergren, Model-Based Inversion of Auroral Processes, in Modeling the Ionosphere-Thermosphere System, edited by J. Huba, R. Schunk, and G. Khazanov, John... inverse - theoretic framework for incorporating physics knowledge into the analysis was developed by [Semeter and Zettergren, 2014] under this project. A

  2. The determination of phenazone in blood plasma for obtained sistem suitable test of monitoring drug level

    OpenAIRE

    Mochamad Lazuardi

    2007-01-01

    The determining of Phenazone to human blood plasma from healthy man after separated by solid phase extraction (SPE) and spectroscopic measurements has been investigated. The objective of that research was to obtain system suitable test for determine the Phenazone level in biological fluids (human blood plasma), for new performed dosage regimented in clinical dentistry. The method can be divided into the following four steps. 1. Centrifugation the blood sample, 2. Extraction from blood plasma ...

  3. Ionosphere data assimilation modeling of 2015 St. Patrick's Day geomagnetic storm

    Science.gov (United States)

    Chen, C. H.; Lin, C. H.; Matsuo, T.; Chen, W. H.

    2016-11-01

    The ionospheric plasma disturbances during a severe storm can affect human activities and systems, such as navigation and HF communication systems. Therefore, the forecast of ionospheric electron density is becoming an important topic recently. This study is conducted with the ionospheric assimilation model by assimilating the total electron content observations into the thermosphere-ionosphere coupling model with different high-latitude ionospheric convection models, Heelis and Weimer, and further to forecast the variations of ionospheric electron density during the 2015 St. Patrick's Day geomagnetic storm. The forecast capabilities of these two assimilation models are evaluated by the root-mean-square error values in different regions to discuss its latitudinal effects. Results show the better forecast in the electron density at the low-latitude region during the storm main phase and the recovery phase. The well reproduced eastward electric field at the low-latitude region by the assimilation model reveals that the electric fields may be an important factor to have the contributions on the accuracy of ionospheric forecast.

  4. Responses in the polar and equatorial ionosphere to the March 2015 St. Patrick Day storm

    Science.gov (United States)

    Hairston, Marc; Coley, W. R.; Stoneback, Russell

    2016-11-01

    The St. Patrick Day storm of 2015 (17 March 2015) occurred at a unique time when there were multiple spacecraft observing the Earth's ionosphere between 350 and 885 km. Observations of the plasma flows and densities from the five operational polar-orbiting DMSP spacecraft combined with those from the equatorial-orbiting C/NOFS spacecraft provided a comprehensive global record of the both the polar and equatorial ionosphere regions' responses to the storm. This paper presents an overview of the data from this suite of spacecraft focusing on the following aspects: (1) the polar cap ionosphere's reaction to the storm, (2) the change in the penetration electric field in the midlatitude region as a function of time and the solar local time during the storm, (3) the equatorial ionosphere's response of the meridional (vertical) flows to the penetration electric field and the disturbance dynamo during the storm, and (4) the creation of a predawn ionospheric bubble system near the equator during the storm's main phase that was observed at low altitudes by C/NOFS and later at high altitudes by several DMSP. Examining these phenomenon enable us to trace the dynamic flow of energy from the solar wind input in the polar ionosphere all the way to the equatorial ionosphere.

  5. Large ionospheric disturbances produced by the HAARP HF facility

    Science.gov (United States)

    Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; McCarrick, Mike; Michell, Robert G.

    2016-07-01

    The enormous transmitter power, fully programmable antenna array, and agile frequency generation of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska have allowed the production of unprecedented disturbances in the ionosphere. Using both pencil beams and conical (or twisted) beam transmissions, artificial ionization clouds have been generated near the second, third, fourth, and sixth harmonics of the electron gyrofrequency. The conical beam has been used to sustain these clouds for up to 5 h as opposed to less than 30 min durations produced using pencil beams. The largest density plasma clouds have been produced at the highest harmonic transmissions. Satellite radio transmissions at 253 MHz from the National Research Laboratory TACSat4 communications experiment have been severely disturbed by propagating through artificial plasma regions. The scintillation levels for UHF waves passing through artificial ionization clouds from HAARP are typically 16 dB. This is much larger than previously reported scintillations at other HF facilities which have been limited to 3 dB or less. The goals of future HAARP experiments should be to build on these discoveries to sustain plasma densities larger than that of the background ionosphere for use as ionospheric reflectors of radio signals.

  6. Quantum cascade laser based monitoring of CF2 radical concentration as a diagnostic tool of dielectric etching plasma processes

    Science.gov (United States)

    Hübner, M.; Lang, N.; Zimmermann, S.; Schulz, S. E.; Buchholtz, W.; Röpcke, J.; van Helden, J. H.

    2015-01-01

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF2 radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF2 radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm-1. We measured Doppler-resolved ro-vibrational absorption lines and determined absolute densities using transitions in the ν3 fundamental band of CF2 with the aid of an improved simulation of the line strengths. We found that the CF2 radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.

  7. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    DEFF Research Database (Denmark)

    Yuan, Y.; Tscherning, C.C.; Knudsen, Per

    2006-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) lambda of the ionospheric pierce point (IPP...

  8. IONOTOMO: A new approach for ionospheric tomography using OTH radar

    Science.gov (United States)

    Roy, Corinna; Occhipinti, Giovanni; Boschi, Lapo; Moliné, Jean-Philippe

    2013-04-01

    Most of the recent methods in ionospheric tomography are based on the inversion of the Total Electron Content (TEC) measured by ground-based GPS receivers [e.g., Garcia et al. 2008]. As a consequence of the high frequency of the GPS, the electron density structure is principally well reconstructed at the F2 region, where the ionosphere reaches the maximum of ionization, neglecting the lower ionosphere. Here, we develop a new 3D ionospheric tomography method based on the full analysis of over-the-horizon (OTH) radar data. Previous studies in ionospheric tomography by OTH radar (Fridman and Fridman, 1994; Ruelle and Landeau, 1994; Landeau et al., 1997; Fridman, 1998) are all based on the inversion of the leading edge echo curve, consequently an important amount of valuable information present in the data is necessarily neglected. To overcome this limit, we set up a new method, based on the ray-tracing tool TDR [Occhipinti, 2006], to invert the propagation time of electromagnetic waves emitted by monostatic OTH radars. The major advance of our methodology is taking into account, numerically and jointly, not only the speed variation of EM wave induced by the electron density variation (solved analytically with a linear inversion) but also the perturbation in the raypath (nonlinear numerical method). As the present problem is an ill posed problem we calculate the matrix inversion numerically, using a regularisation method (Tikhonov, 1963). We determine the best regularisation parameter using the Lcurve method (Hansen, 2000). We present here the originality and the advantage of our method with a full set of synthetic benchmark highlighting the sensitivity of our tomography to the plasma heterogeneities. Some preliminary test on real data will be presented with a full coverage over Europe. Indeed, the ionospheric tomography by OTH radar, jointly with GPS, could open new exciting perspective in the plasma density estimation with a good resolution to the entire ionosphere

  9. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    Science.gov (United States)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  10. Preface: The International Reference Ionosphere (IRI) at equatorial latitudes

    Science.gov (United States)

    Reinisch, Bodo; Bilitza, Dieter

    2017-07-01

    This issue of Advances in Space Research includes papers that report and discuss improvements of the International Reference Ionosphere (IRI). IRI is the international standard for the representation of the plasma in Earth's ionosphere and recognized as such by the Committee on Space Research (COSPAR), the International Union of Radio Science (URSI), the International Telecommunication Union (ITU), and the International Standardization Organization (ISO). As requested, particularly by COSPAR and URSI, IRI is an empirical model relying on most of the available and reliable ground and space observations of the ionosphere. As new data become available and as older data sources are fully exploited the IRI model undergoes improvement cycles to stay as close to the existing data record as possible. The latest episode of this process is documented in the papers included in this issue using data from the worldwide network of ionosondes, from a few of the incoherent scatter radars, from the Alouette and ISIS topside sounders, and from the Global Navigation Satellite Systems (GNSS). The focus of this issue is on the equatorial and low latitude region that is of special importance for ionospheric physics because it includes the largest densities and steep density gradients in the double hump latitudinal structure, the Equatorial Ionization Anomaly (EIA), which is characteristic for this region.

  11. Aspects of magnetosphere-ionosphere coupling in sawtooth substorms: a case study

    Science.gov (United States)

    Sandholt, P. E.; Farrugia, C. J.

    2014-10-01

    In a case study we report on repetitive substorm activity during storm time which was excited during Earth passage of an interplanetary coronal mass ejection (ICME) on 18 August 2003. Applying a combination of magnetosphere and ground observations during a favourable multi-spacecraft configuration in the plasma sheet (GOES-10 at geostationary altitude) and in the tail lobes (Geotail and Cluster-1), we monitor the temporal-spatial evolution of basic elements of the substorm current system. Emphasis is placed on activations of the large-scale substorm current wedge (SCW), spanning the 21:00-03:00 MLT sector of the near-Earth plasma sheet (GOES-10 data during the interval 06:00-12:00 UT), and magnetic perturbations in the tail lobes in relation to ground observations of auroral electrojets and convection in the polar cap ionosphere. The joint ground-satellite observations are interpreted in terms of sequential intensifications and expansions of the outer and inner current loops of the SCW and their respective associations with the westward electrojet centred near midnight (24:00 MLT) and the eastward electrojet observed at 14:00-15:00 MLT. Combined magnetic field observations across the tail lobe from Cluster and Geotail allow us to make estimates of enhancements of the cross-polar-cap potential (CPCP) amounting to ≈ 30-60 kV (lower limits), corresponding to monotonic increases of the PCN index by 1.5 to 3 mV m-1 from inductive electric field coupling in the magnetosphere-ionosphere (M-I) system during the initial transient phase of the substorm expansion.

  12. Behaviour of electron content in the ionospheric D-region during solar X-ray flares

    Directory of Open Access Journals (Sweden)

    Todorović-Drakul M.

    2016-01-01

    Full Text Available One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km { 90 km above Earth's surface is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS signal analyses, and they show noticeable variations in the D-region's electron content (TECD during activity of a solar X-ray °are (it rises by a factor of 136 in the considered case when TECD contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites. [Projekat Ministarstva nauke Republike Srbije, br. III-44002, 176001, 176002, 176004 and TR36020

  13. Satellite Observations of Ionospheric Earthquake Precursors

    Science.gov (United States)

    Grimal'Skij, V. V.; Ivchenko, V. N.; Lizunov, G. V.

    The authors review satellite observations of seismogenic phenomena in the ionosphere. Based on literature data, hypothetical patterns of seismogenic phenomena were reconstructed. The authors discuss the reasons which allow the ionospheric "anomalies" to be correlated with eartquake precursors.

  14. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum

    DEFF Research Database (Denmark)

    Schindler, J.; Ye, J. Y.; Jensen, Ole Nørregaard

    2013-01-01

    Neuronal processing in the cerebellum involves the phosphorylation and dephosphorylation of various plasma membrane proteins such as AMPA or NMDA receptors. Despite the importance of changes in phosphorylation pattern, no global phospho-proteome analysis has yet been performed. As plasma membrane...

  15. The study of the midlatitude ionospheric response to geomagnetic activity at Nagycenk Geophysical Observatory

    Science.gov (United States)

    Berényi, Kitti; Kis, Árpád; Barta, Veronika; Novák, Attila

    2016-04-01

    European ionosondes. Also we studied the prominent phenomena (e.g. TIDs- Travelling Ionospheric Disturbances), and plasma irregularities (e.g. spread-F) of the ionosphere in the function of geomagnetic activity. As we compared the occurrences of TIDs and spread-F phenomena on the quiet days with their occurrences on moderate and strong stormy days, we can see significant correlation between the magnitude of the Ae-index and the daily number of the occurrence of TIDs, but at the same time there is no definite connection between the daily number of the occurrence of spread-F phenomenas and the intensity of geomagnetic activity.

  16. Seasonal Variations of Mid-Latitude Ionospheric Trough Structure Observed with DEMETER and COSMIC

    Directory of Open Access Journals (Sweden)

    Matyjasiak Barbara

    2016-12-01

    Full Text Available The mid-latitude ionospheric trough is a depleted region of ionospheric plasma observed in the topside ionosphere. Its behavior can provide useful information about the magnetospheric dynamics, since its existence is sensitive to magnetospherically induced motions. Mid-latitude trough is mainly a night-time phenomenon. Both, its general features and detailed characteristics strongly depend on the level of geomagnetic disturbances, time of the day, season, and the solar cycle, among others. Although many studies provide basic information about general characteristics of the main ionospheric trough structure, an accurate prediction of the trough behavior in specific events is still understood poorly. The paper presents the mid-latitude trough characteristics with regard to the geomagnetic longitude and season during a solar activity minimum, as based on the DEMETER in situ satellite measurements and the data retrieved from FORMOSAT-3/COSMIC radio occultation measurements.

  17. Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects

    Science.gov (United States)

    Fejer, B. G.; Blanc, M.; Richmond, A. D.

    2016-12-01

    The Earth's upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms. Thermospheric winds driven by enhanced energy and momentum due to geomagnetic activity generate large disturbance electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes. This disturbance dynamo mechanism plays a fundamental role on the response of the middle and low-latitude ionosphere to geomagnetic activity. In this review, we initially describe the early evidence for the importance of this process and the first simulation study which already was able to explain its main effects on the electrodynamics of the middle and low-latitude ionosphere. We then describe the results of more recent simulations and the extensive experimental work that highlights the importance of this mechanism for ionospheric space weather studies extending to post-storms periods, and present some suggestions for future studies.

  18. Simulations of the Solar Wind Interaction with the Atmosphere/Ionosphere of Venus

    Science.gov (United States)

    Ledvina, Stephen; Brecht, Stephen H.; Bougher, Stephen W.

    2016-10-01

    The latest results of high resolution 3-D hybrid particle code simulations of the solar wind interacting with the atmosphere/ionosphere of Venus will be presented. The research is focused on understanding the how the solar wind interaction with Venus results in the subsequent ionospheric losses. In addition, the simulations focus on structures caused by the interaction particularly on the pole of the planet where the convection electric field points. A variety of simulation results will be presented each with varying solar wind parameters. The hybrid particle code HALFSHEL contains a variety of physical and chemical models which will also be discussed. These include a chemistry package that produces the ionosphere on grid resolution of 10 km altitude, atmospheric densities and dynamics from the VTGCM code and the Hall and Pedersen conductivities associated with plasma neutral collisions. The specific simulations to be presented trace solar wind protons, and ionospheric O+ and O2+.

  19. Low-latitude ionospheric effects on SBAS

    Science.gov (United States)

    Arenas, J.; Sardón, E.; Sainz, A.; Ochoa, B.; Magdaleno, S.

    2016-06-01

    Satellite-based augmentation systems (SBAS) provide augmentation to Global Navigation Satellite Systems (GNSS) users in three areas: (1) broadcasting accurate corrections to GNSS satellite ephemeris, (2) providing a real-time empirical ionospheric model in the service area, and (3) providing integrity information in the form of estimates of the confidence of the ephemeris corrections and ionospheric delays. Ionospheric effects on SBAS are twofold: (a) the input data used by the SBAS will be affected by ionospheric effects, and (b) the more perturbed the ionosphere is, the more difficult it will be to provide accurate and reliable ionospheric information to the users. The ionosphere at low latitudes presents larger variability and more intense phenomena than at midlatitudes. Therefore, SBAS providing service to low-latitude regions will be more affected than those at other latitudes. From the different low-latitude ionospheric effects, this paper will focus on those having the largest impact on SBAS, which are total electron content temporal and spatial gradients, ionospheric scintillations, and depletions. This paper will present the impact of these effects on EGNOS (European Global Navigation Overlay System), the European SBAS. Although EGNOS can be considered as a midlatitude SBAS, it has to provide coverage down to rather low latitudes, so sometimes low-latitude ionospheric effects are observed in the EGNOS data. It will be shown how EGNOS performs under nominal conditions and how its performance is degraded when low-latitude ionospheric phenomena occur. Real EGNOS data affected by low-latitude ionospheric phenomena will be used.

  20. Aerosol chemistry in Titan's ionosphere: simultaneous growth and etching processes

    Science.gov (United States)

    Carrasco, Nathalie; Cernogora, Guy; Jomard, François; Etcheberry, Arnaud; Vigneron, Jackie

    2016-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan's ionosphere [1]. This unexpected chemistry can be further investigated in the laboratory with plasma experiments simulating the complex ion-neutral chemistry starting from N2-CH4 [2]. Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere.The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions is explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes [3]. The impact for our understanding of Titan's aerosols chemical composition is important. Our study shows that chemical growth and etching process are simultaneously at stake in Titan's ionosphere. The more the aerosols stay in the ionosphere, the more graphitized they get through etching process. In order to infer Titan's aerosols composition, our work highlights a need for constraints on the residence time of aerosols in Titan's ionosphere. [1] Waite et al. (2009) Science , 316, p. 870[2] Szopa et al. (2006) PSS, 54, p. 394[3] Carrasco et al. (2016) PSS, 128, p. 52

  1. A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    Full Text Available Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.

    Key words: Magnetospheric physics (magnetosphere-ionosphere interactions; plasma convection; solar wind-magnetosphere interactions

  2. Ion and aerosol precursor densities in Titan's ionosphere: A multi-instrument case study

    Science.gov (United States)

    Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Crary, F. J.; Wellbrock, A.; Andrews, D. J.; Vigren, E.; Desai, R. T.; Coates, A. J.; Mandt, K. E.; Waite, J. H.

    2016-10-01

    The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below 1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere (ne/ni ≤ 0.1). We suggest that ion-ion (dusty) plasma may also be present in the dayside ionosphere below 900 km (ne/ni < 0.5 at 1000 km altitude). The average charge of the dust grains (≥1000 amu) is estimated to be between -2.5 and -1.5 elementary charges, increasing toward lower altitudes.

  3. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  4. Weak Target Detection within the Nonhomogeneous Ionospheric Clutter Background of HFSWR Based on STAP

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2013-01-01

    Full Text Available High Frequency Surface Wave Radar (HFSWR can perform the functions of ocean environment monitoring, target detection, and target tracking over the horizon. However, its system's performance is always limited by the severe ionospheric clutter environment, especially by the nonhomogeneous component. The nonhomogeneous ionospheric clutter generally can cover a few Doppler shift units and a few angle units. Consequently, weak targets masked by the nonhomogeneous ionospheric clutter are difficult to be detected. In this paper, a novel algorithm based on angle-Doppler joint eigenvector which considers the angle-Doppler map of radar echoes is adopted to analyze the characteristics of the nonhomogeneous ionospheric clutter. Given the measured data set, we first investigate the correlation between the signal of interest (SOI and the nonhomogeneous ionospheric clutter and then the correlation between the nonhomogeneous ionospheric clutters in different two ranges. Finally, a new strategy of training data selection is proposed to improve the joint domain localised (JDL algorithm. Simulation results show that the improved-JDL algorithm is effective and the performance of weak target detection within nonhomogeneous ionospheric clutter is improved.

  5. Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming

    Science.gov (United States)

    Pedatella, N. M.; Fang, T.-W.; Jin, H.; Sassi, F.; Schmidt, H.; Chau, J. L.; Siddiqui, T. A.; Goncharenko, L.

    2016-07-01

    A comparison of different model simulations of the ionosphere variability during the 2009 sudden stratosphere warming (SSW) is presented. The focus is on the equatorial and low-latitude ionosphere simulated by the Ground-to-topside model of the Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Model plus Global Ionosphere Plasmasphere (WAM+GIP), and Whole Atmosphere Community Climate Model eXtended version plus Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (WACCMX+TIMEGCM). The simulations are compared with observations of the equatorial vertical plasma drift in the American and Indian longitude sectors, zonal mean F region peak density (NmF2) from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, and ground-based Global Positioning System (GPS) total electron content (TEC) at 75°W. The model simulations all reproduce the observed morning enhancement and afternoon decrease in the vertical plasma drift, as well as the progression of the anomalies toward later local times over the course of several days. However, notable discrepancies among the simulations are seen in terms of the magnitude of the drift perturbations, and rate of the local time shift. Comparison of the electron densities further reveals that although many of the broad features of the ionosphere variability are captured by the simulations, there are significant differences among the different model simulations, as well as between the simulations and observations. Additional simulations are performed where the neutral atmospheres from four different whole atmosphere models (GAIA, HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere), WAM, and WACCMX) provide the lower atmospheric forcing in the TIME-GCM. These simulations demonstrate that different neutral atmospheres, in particular, differences in the solar migrating semidiurnal tide, are partly responsible for the differences in the simulated

  6. Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves

    Science.gov (United States)

    Burke, William J.; Ginet, Gregory P.; Heinemann, Michael A.; Villalon, Elena

    The paper presents an analysis of the relativistic equations of motion for electrons in magnetized plasma and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma and wave propagation through the ionospheric 'radio window' are examined. It is found that at wave energy fluxes greater than 10 to the 8th mW/sq m, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Plans to test the theoretical results with rocket flights are discussed.

  7. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  8. Observations of an enhanced convection channel in the cusp ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pinnock, M.; Rodger, A.S.; Dudeney, J.R. (Natural Environment Research Council, Cambridge (United Kingdom)); Baker, K.B.; Neweli, P.T.; Greenwald, R.A. (Johns Hopkins Univ., Laurel, MD (United States)); Greenspan, M.E. (Boston Univ., MA (United States))

    1993-03-01

    Transient or patchy magnetic field line merging on the dayside magnetopause, giving rise to flux transfer events (FTEs), is thought to play a significant role in energizing high-latitude ionospheric convection during periods of southward interplanetary magnetic field. Several transient velocity patterns in the cusp ionosphere have been presented as candidate FTE signatures. Instrument limitations, combined with uncertainties about ionospheric signature of FTEs have yet to be presented. This paper describes combined observations by the PACE HF backscatter radar and the DMSP F9 polar-orbiting satellite of a transient velocity signature in the southern hemispheric cusp. The prevailing solar wind conditions suggest that it is the result of enhanced magnetic merging at the magnetopause. The satellite particle precipitation data associated with the transient are typically cusplike in nature. The presence of spatially discrete patches of accelerated ions at the equatorward edge of the cusp is consistent with the ion acceleration that could occur with merging. The combined radar line-of-sight velocity data and the satellite transverse plasma drift data are consistent with a channel of enhanced convection superposed on the ambient cusp plasma flow. This channel is at least 900 km in longitudinal extent but only 100 km wide. It is zonally aligned for most of its extent, except at the western limit where it rotates sharply poleward. Weak return flow is observed outside the channel. These observations are compared with and contrasted to similar events seen by the EISCAT radar and by optical instruments. 30 refs., 2 figs.

  9. Multi-instrumental Analysis of the Ionospheric Density Response to Geomagnetic Disturbances

    Science.gov (United States)

    Zakharenkova, I.; Astafyeva, E.

    2014-12-01

    Measurements provided by Low Earth Orbit (LEO) satellite missions have already proved to be very efficient in investigations of global redistribution of ionospheric plasma and thermosphere mass density during such phenomena as geomagnetic storms. LEO satellites have various instruments for research of the ionosphere response to the space weather events like GPS receiver for precise orbit determination (POD), total electron content estimation and radio occultation, altimeter, planar Langmuir probe, topside sounder, special detectors for particle fluxes, magnetometer etc. In this paper, we present results of joint analysis of LEO satellite data, in particular CHAMP, DMSP, JASON, as well as data provided by ground-based networks of GPS receivers and ionosonde stations for global ionospheric response to the geomagnetic disturbances. We use in-situ plasma density data from CHAMP and DMSP satellites, along with data of GPS receiver onboard CHAMP-satellite and ground-based GPS-receivers to study occurrence and global distribution of ionospheric irregularities during the main phase of the storm. Using CHAMP GPS measurements, we created maps of GPS phase fluctuation activity and found two specific zones of the most intense irregularities - first is the region of the auroral oval at high latitudes of both hemispheres, the second one is the low-latitudes/equatorial region between Africa and South America. The interhemispheric asymmetry of the ionospheric irregularities intensity and occurrence in polar region is discussed. Analysis of the topside TEC, derived from CHAMP onboard GPS POD antenna, indicate the significant redistribution of the topside ionospheric plasma density in the equatorial, middle and high-latitude ionosphere during main and recovery phases of geomagnetic storm. Multi-instrumental data allow to analyze in detail the complex modification and dynamics of the upper atmosphere in different altitudinal, spatial and temporal scales.

  10. Quasi-thermal noise and shot noise spectroscopy on a CubeSat in Earth's ionosphere

    Science.gov (United States)

    Maj, Ronald; Cairns, Iver H.

    2017-03-01

    We investigate the practicality of using quasi-thermal noise (QTN) and shot noise spectroscopy on a CubeSat in the Earth's ionosphere and constrain the satellite antenna length for optimal detection of these signals. The voltage spectra predicted for thermal Langmuir waves (QTN) and particle "shot noise" are modeled, and it is shown that the signals detected can provide two very good, independent, passive, in situ methods of measuring the plasma density and temperature in the ionosphere. The impact of the antenna potential ϕ is also discussed, and we show that the negative potential calculated for the ionosphere due to natural current flows has a significant impact on the voltage power level of the shot noise spectrum. The antenna configuration is also shown to play an important role in the shot noise, with a monopole configuration enhancing the spectrum significantly compared with a dipole. Antenna lengths on the order of 20-40 cm are found to be ideal for ionospheric plasma conditions, nicely matching CubeSat sizes and producing detectable thermal Langmuir waves and shot noise at the microvolt level. Further, with a continuous stream of data points at different latitudes and longitudes an orbiting CubeSat can produce a global picture for the ionospheric plasma density and temperature using QTN and shot noise signals. If implemented, especially in a constellation, these data would be more frequent and cover a much greater domain than current ground-based or single-satellite methods. This could lead to improved ionospheric models, such as the empirically based International Reference Ionosphere.

  11. Characterising the Ionosphere (La caracterisation de l’ionosphere)

    Science.gov (United States)

    2009-01-01

    Astronomical Journal, 76, 2, pp. 123-140, 1971. Garcia-Fernandez, M., M. Hernandez-Pajares, J.M. Juan , J. Sanz, Improvement of ionospheric electron density...Katlenburg- Lindau , ProduServ GmbH Verlagsservice, Berlin, pp. 371-390, 1996. Jakowski, N., A. Wehrenpfennig, S. Heise, C. Reigber, H. Luehr, L

  12. Joint observations of a traveling ionospheric disturbance with the Paratunka OMTI camera and the Hokkaido HF radar

    Directory of Open Access Journals (Sweden)

    A. Koustov

    2009-06-01

    Full Text Available On 10 September 2007 between 10:00 and 14:00 UT, the OMTI all-sky imager at Paratunka (Kamchatka, Russia, GLAT~52° observed the onset and south-western progression of a localized depletion region in the airglow intensity. The perturbation, while being stretched in the NW-SE direction, crossed the entire field of view of the camera. During the event, the Hokkaido SuperDARN HF radar was monitoring echoes in the Paratunka longitudinal sector. It was detecting a localized band of ground scatter echoes progressing equatorward synchronously with the motion of the optical perturbation. It is suggested that both features resulted from the onset and south-western progression of a localized region with enhanced electric field that influenced the distribution of the plasma density in the ionosphere. Modeling of the HF ground scatter dynamics based on numerical ray tracing demonstrated qualitative consistency with the observations.

  13. Forbush decreases at a middle latitude neutron monitor: relations to geomagnetic activity and to interplanetary plasma structures

    Science.gov (United States)

    Parnahaj, I.; Kudela, K.

    2015-09-01

    Results of statistical study on relations between Forbush decreases (FDs) as observed at a middle-latitude, high mountain cosmic ray (CR) neutron monitor (NM), and the geomagnetic storms (GS), as well as on connections of FDs to interplanetary plasma structures, are presented. Study confirms and extends (until 2014) earlier results based on NM data from different geomagnetic cut-off positions and covering earlier periods, namely that FDs associated with halo coronal mass ejections (CMEs) and those related with the shocks correspond to higher amplitudes of FDs than those without the mentioned features.

  14. Study of the March 31, 2001 magnetic storm effects on the ionosphere using GPS data

    Science.gov (United States)

    Fedrizzi, M.; de Paula, E. R.; Langley, R. B.; Komjathy, A.; Batista, I. S.; Kantor, I. J.

    Despite the fact that much has been learned about the Sun-Earth relationship during disturbed conditions, understanding the effects of magnetic storms on the neutral and ionized upper atmosphere is still one of the most challenging topics remaining in the physics of this atmospheric region. In order to investigate the magnetospheric and ionospheric-thermospheric coupling processes, many researchers are taking advantage of the dispersive nature of the ionosphere to compute total electron content (TEC) from global positioning system (GPS) dual-frequency data. Even though there are currently a large number of GPS receivers in continuous operation, they are unevenly distributed for ionosphere study purposes, being situated mostly in the Northern Hemisphere. The relatively smaller number of GPS receivers located in the Southern Hemisphere and, consequently, the reduced number of available TEC measurements, cause ionospheric modelling to be less accurate in this region. In the work discussed in this paper, the University of New Brunswick Ionospheric Modelling Technique (UNB-IMT) has been used to describe the local time and geomagnetic latitude dependence of the TEC during the March 31, 2001 magnetic storm with an emphasis on the effects in the Southern Hemisphere. Data collected from several GPS networks worldwide, including the Brazilian network for continuous monitoring, have been used along with ionosonde measurements to investigate the global ionospheric response to this severe storm. Data analysis revealed interesting ionospheric effects, which are shown to be dependent on the local time at the storm commencement and the magnetic conditions previous to and during the storm period. The southward turning of the interplanetary magnetic field during the recovery phase of the storm began a process of substorm activity and development and intensification of electrojet activity over broad regions. Observed effects on the ionosphere during that storm are analysed and the

  15. Propofol Breath Monitoring as a Potential Tool to Improve the Prediction of Intraoperative Plasma Concentrations

    NARCIS (Netherlands)

    Colin, Pieter; Eleveld, Douglas J; van den Berg, Johannes P; Vereecke, Hugo E M; Struys, Michel M R F; Schelling, Gustav; Apfel, Christian C; Hornuss, Cyrill

    2015-01-01

    INTRODUCTION: Monitoring of drug concentrations in breathing gas is routinely being used to individualize drug dosing for the inhalation anesthetics. For intravenous anesthetics however, no decisive evidence in favor of breath concentration monitoring has been presented up until now. At the same tim

  16. Satellite Radiotomography of Ionospheric Responces to Extra-Terrestrial Forcing

    Science.gov (United States)

    Kunitsyn, Viacheslav; Padokhin, Artem; Andreeva, Elena; Tereshchenko, Evgeny; Nesterov, Ivan; Vorontsov, Artem

    Our work addresses the study of the response of the atmosphere and ionosphere to a variety of external forcing such as solar flares and particle precipitation. Particle precipitation plays important role in the system of magnetosphere-ionosphere- atmosphere coupling during geomagnetic storms. Using radio tomographic imaging of the ionosphere based on navigational satellite systems (Parus/Transit and GPS/GLONASS) we present and discuss the examples illustrating ionospheric effects caused by particle precipitations detected by DMSP satellites. It is shown that the spatial structure of corpuscular ionization in the tomographic images is qualitatively close to latitudinal distribution of the precipitating particles. The distributions of ionospheric plasma observed during strong geomagnetic disturbances and particle precipitations have multiple extrema and wave-like structures with a spatial scale ranging from a few dozens to a few hundreds of kilometers; the characteristic sizes of latitudinal variations in the corresponding corpuscular flows widely vary from a few degrees to a few dozens degrees latitude. The obtained experimental results are in good agreement with the results of the numeric modelling of the AGW generation by volumetric sources. We also present the comparison of the effects of ionization of the ionosphere by a series of intense X-class solar flares during the 23rd and 24th solar cycles based on the data of satellite navigation and augumentation systems (GPS/GLONASS and SBAS). The analysis shows that the intensity of the ionospheric effects estimated from the variations in total electron content is barely related to the intensity of the X-ray flare for the X-class events. The amplitude of variations in the ionization of the upper atmosphere is mainly controlled by the intensity of variations in solar EUV radiation, which is not always correlated to the X-Ray radiation during flares. The authors acknowledge the support of the Russian Foundation for

  17. Multiparametric study of polar ionosphere on both hemispheres

    Science.gov (United States)

    D'Angelo, Giulia; Alfonsi, Lucilla; Spogli, Luca; Cesaroni, Claudio; Sgrigna, Vittorio

    2016-04-01

    The polar ionosphere is a complex system in which several actors concur to establish the observed medium. Indeed the coupling between the interplanetary magnetic field and the earth magnetic field determines a high degree of complexity of the polar ionosphere, which is directly exposed to the variations of the solar wind. This configuration results in a strong sensitivity of the polar ionosphere to the perturbation phenomena caused by solar events which may result in a wide variety of spatial and temporal dimensions of the plasma electron density irregularities. Polar ionospheric irregularities may seriously jeopardize performance and reliability level of the navigation and positioning technological systems, such as GPS or the nascent Galileo. Therefore, knowledge of the physical state of the upper atmosphere ionized layers becomes essential to predict and mitigate events that may affect the use of modern technology, causing economic damage and, in severe cases, even jeopardizing the safety of human beings. In this context, a careful and thorough investigation that covers a wide range of geospatial different disturbances, observed in circumterrestrial space and on the ground, can provide the necessary basis for a real advance of the current knowledge. In this frame, the aim of this work is to contribute to the study of the effects of perturbation induced by the Sun on the polar ionosphere of both the hemispheres, through the analysis and interpretation of the measures available before, during and after the occurrence of an event of disturbance. We propose a multiparametric approach, that combines the information derived from measurements acquired by ground-based and space-based stations, to have a broad spectrum of information necessary to characterize the ionospheric disturbances on different time scales (from milliseconds to days) and spatial scales (from millimetres to hundreds meters/kilometres). The period chosen for this study is the entire month of March

  18. Ionosphere correction algorithm for spaceborne SAR imaging

    Institute of Scientific and Technical Information of China (English)

    Lin Yang; Mengdao Xing; Guangcai Sun

    2016-01-01

    For spaceborne synthetic aperture radar (SAR) ima-ging, the dispersive ionosphere has significant effects on the pro-pagation of the low frequency (especial y P-band) radar signal. The ionospheric effects can be a significant source of the phase error in the radar signal, which causes a degeneration of the image quality in spaceborne SAR imaging system. The background ionospheric effects on spaceborne SAR through modeling and simulation are analyzed, and the qualitative and quantitative analysis based on the spatio-temporal variability of the ionosphere is given. A novel ionosphere correction algorithm (ICA) is proposed to deal with the ionospheric effects on the low frequency spaceborne SAR radar signal. With the proposed algorithm, the degradation of the image quality caused by the ionosphere is corrected. The simulation re-sults show the effectiveness of the proposed algorithm.

  19. Geospace ionosphere research with a MF/HF radio instrument on a cubesat

    Science.gov (United States)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.

    2016-12-01

    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 (http://www.suomi100satelliitti.fi/eng). We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D

  20. Daytime Ionosphere Retrieval Algorithm for the Ionospheric Connection Explorer (ICON)

    Science.gov (United States)

    Stephan, Andrew W.; Korpela, Eric J.; Sirk, Martin M.; England, Scott L.; Immel, Thomas J.

    2017-07-01

    The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated O+ density profile from 150-450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2.

  1. The ionosphere disturbances observation on the Kharkiv incoherent scatter radar

    Science.gov (United States)

    Cherniak, Iu.; Lysenko, V.

    2009-04-01

    he ionosphere plasma characteristics are responding on variations of solar and magnetic activity. The research of an ionosphere structure and dynamics is important as for understanding physics of processes and for radiophysical problems solution. The method incoherent scatter (IS) of radio waves allows determining experimentally both regular variations of the basic parameters ionosphere, and their behavior during perturbation. The equipment and measurement technique, developed by authors, are allows obtaining certain data about behavior of an ionosphere during various origin and intensity ionosphere perturbations. The Institute of Ionsphere IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6oN, 36.3oE, geomagnetic coordinates: 45.7oN, 117.8oE) was used to observe the processes in the ionosphere. The radar is operate with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power of ~2.0 MW. The double-frequency measuring channel mode with compound sounding signal was employed for experiments. That provided ~ 20-km resolution in range ~100-400 km and ~100-km in range ~200-1100 km. Over a period of series of experiment are obtained data about variations of electron density simultaneous in the heights interval 100-1000 km, including three sun eclipses, two superstrong and a few moderate magnetic storms, as well as disturbance, is caused by powerful rockets starts. During strong geomagnetic storm on November 8-12, 2004 was observed night time increasing of electronic temperature up to 3000 Љ and ions temperature up to 2000K. Usually at this time temperature of ions is equal to temperature of electrons. During negative ionosphere storm was observed decreasing of electronic density at maximum F2 layer. The height of a F2 layer maximum was increased by 150 km and 70 km at daytime. The interesting phenomenon - high-power backscatter signal coherent backscatter was observed first time during geogeomagnetic storm 29-30 may 2003. A usually

  2. ULF fluctuations of the geomagnetic field and ionospheric sounding measurements at low latitudes during the first CAWSES campaign

    Directory of Open Access Journals (Sweden)

    U. Villante

    2006-07-01

    Full Text Available We present an analysis of ULF geomagnetic field fluctuations at low latitudes during the first CAWSES campaign (29 March-3 April 2004. During the whole campaign, mainly in the prenoon sector, a moderate Pc3-4 pulsation activity is observed, clearly related to interplanetary upstream waves. On 3 April, in correspondence to the Earth's arrival of a coronal mass ejection, two SIs are observed whose waveforms are indicative of a contribution of the high-latitude ionospheric currents to the low-latitude ground field. During the following geomagnetic storm, low frequency (Pc5 waves are observed at discrete frequencies. Their correspondence with the same frequencies detected in the radial components of the interplanetary magnetic field and solar wind speed suggests that Alfvénic solar wind fluctuations may act as direct drivers of magnetospheric fluctuations. A cross-phase analysis, using different pairs of stations, is also presented for identifying field line resonant frequencies and monitoring changes in plasmaspheric mass density. Lastly, an analysis of ionospheric vertical soundings, measured at the Rome ionosonde station (41.8° N, 12.5° E, and vertical TEC measurements deduced from GPS signals within an European network shows the relation between the ULF resonances in the inner magnetosphere and thermal plasma density variations during geomagnetically quiet conditions, in contrast to various storm phases at the end of the CAWSES campaign.

  3. Monitoring nicotine intake from e-cigarettes: measurement of parent drug and metabolites in oral fluid and plasma.

    Science.gov (United States)

    Papaseit, Esther; Farré, Magí; Graziano, Silvia; Pacifici, Roberta; Pérez-Mañá, Clara; García-Algar, Oscar; Pichini, Simona

    2017-03-01

    Electronic cigarettes (e-cig) known as electronic nicotine devices recently gained popularity among smokers. Despite many studies investigating their safety and toxicity, few examined the delivery of e-cig-derived nicotine and its metabolites in alternative biological fluids. We performed a randomized, crossover, and controlled clinical trial in nine healthy smokers. Nicotine (NIC), cotinine (COT), and trans-3'-hydroxycotinine (3-HCOT) were measured in plasma and oral fluid by liquid chromatography-tandem mass spectrometry after consumption of two consecutive e-cig administrations or two consecutive tobacco cigarettes. NIC and its metabolites were detected both in oral fluid and plasma following both administration conditions. Concentrations in oral fluid resulted various orders of magnitude higher than those observed in plasma. Oral fluid concentration of tobacco cigarette and e-cig-derived NIC peaked at 15 min after each administration and ranged between 1.0 and 1396 μg/L and from 0.3 to 860 μg/L; those of COT between 52.8 and 110 μg/L and from 33.8 to 94.7 μg/L; and those of 3-HCOT between 12.4 and 23.5 μg/L and from 8.5 to 24.4 μg/L. The oral fluid to plasma concentration ratio of both e-cig- and tobacco cigarette-derived NIC peaked at 15 min after both administrations and correlated with oral fluid NIC concentration. The obtained results support the measurement of NIC and metabolites in oral fluid in the assessment of intake after e-cig use and appear to be a suitable alternative to plasma when monitoring nicotine delivery from e-cig for clinical and toxicological studies.

  4. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena

    Science.gov (United States)

    Afraimovich, Edward L.; Astafyeva, Elvira I.; Demyanov, Vladislav V.; Edemskiy, Ilya K.; Gavrilyuk, Nadezhda S.; Ishin, Artem B.; Kosogorov, Eugene A.; Leonovich, Lyudmila A.; Lesyuta, Oleg S.; Palamartchouk, Kirill S.; Perevalova, Natalia P.; Polyakova, Anna S.; Smolkov, Gennadyi Y.; Voeykov, Sergey V.; Yasyukevich, Yury V.; Zhivetiev, Ilya V.

    2013-08-01

    The article is a review of studies of ionospheric effects carried out in ISTP SB RAS. The main results of GPS/GLONASS radio sounding of ionospheric disturbances of natural and anthropogenic origin are presented. The article is devoted to ionospheric effects of solar eclipses, solar flares, solar terminator, earthquakes, tropical cyclones, large-scale ionospheric disturbances of auroral origin, rocket launches. Dynamics of global electron content analysis is also presented. The special attention is paid on the influence of solar flares and ionospheric irregularities on GPS and GLONASS performance. The work is a tribute to the leader of GNSS-monitoring workgroup Prof. E.L. Afraimovich (12 March 1940-8 November 2009).

  5. Nonlinear phenomena arising from radio wave heating of the lower ionosphere

    Science.gov (United States)

    Tomko, A. A.

    1981-08-01

    This document describes a theoretical and experimental study of the interaction of high power, high frequency radio waves with the lower ionosphere. The theoretical calculations presented here show that the electron temperature of the ionospheric plasma can be greatly enhanced when the plasma is irradiated by a powerful groundbased HF transmitter with an effective radiated power of the order of 100 MW. If this plasma heating is maintained for times exceeding a few seconds, the composition of the plasma can also be altered. These temperature and composition modifications cause significant changes in the plasma conductivity and wave absorption in the medium. Two experiments were conducted in order to test for the predicted absorption and conductivity modifications: a vertical incidence plus absorption experiment and a nonlinear demodulation experiment. Data from the absorption experiment clearly show a large (9 dB) increase in wave absorption at 2.4 MHz due to a high power (60 MW ERP) HF heating of the ionosphere. The nonlinear demodulation experiment generated strong VLF radiation when the ionosphere was irradiated by a powerful modulated HF wave. These VLF signals are believed to be due to HF heating induced conductivity modulation of the dynamo current system.

  6. Interpretation of ionospheric F-region structures in the vicinity of ionisation troughs observed by satellite radio tomography

    Directory of Open Access Journals (Sweden)

    G. A. Aladjev

    Full Text Available Tomographic images of the spatial distribution of electron density in the ionospheric F-region are presented from the Russian-American Tomography Experiment (RATE in November 1993 as well as from campaigns carried out in northern Scandinavia in November 1995 and in Russia in April 1990. The reconstructions selected display the ionisation troughs above the tomographic chains of receivers during geomagnetically quiet and disturbed periods. Two mathematical models of the high-latitude ionosphere developed in the Polar Geophysical Institute have been applied for interpretation of the observed tomographic images.

    Key words. Ionosphere (electric fields and currents; ion chemistry and composition; plasma convection

  7. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  8. Calibrating for Ionospheric Phase Delays

    Science.gov (United States)

    Macdoran, P. F.

    1985-01-01

    Technique determines ionospheric phase delay on real-time universally applicable basis in terms of electrons per meter squared by coherently modulating two L-band carrier frequencies received from two Global Positioning System satelites. Two pseudorandom number sequences cross-correlated to derive delay time.

  9. Simulation of feedback instability in the coupled magnetosphere-ionosphere system

    Science.gov (United States)

    Hasegawa, Hiroki; Ohno, Nobuaki; Sato, Tetsuya

    2010-08-01

    Quiet auroral arcs formation has been investigated theoretically and numerically in a self-consistent dynamic way. By using a three-dimensional magneto-hydro-dynamics simulation of a dipole magnetosphere-ionosphere coupling system, it is shown that multiple longitudinally striated structures of the ionospheric plasma density and the field-aligned current are formed, resulting from nonlinear feedback instability. The areas where these structures appear are consistent with the prediction by the integrated feedback theory that includes the effects of the spatially non-uniform electric field and non-uniform plasma density. Effects of the difference of the field line lengths between the ionosphere and the magnetospheric equator over the auroral latitudes are also discussed on the feedback instability.

  10. Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP.

    Science.gov (United States)

    Sergeev, E; Grach, S; Shindin, A; Mishin, E; Bernhardt, P; Briczinski, S; Isham, B; Broughton, M; LaBelle, J; Watkins, B

    2013-02-08

    We report on artificial descending plasma layers created in the ionosphere F region by high-power high-frequency (HF) radio waves from High-frequency Active Auroral Research Program at frequencies f(0) near the fourth electron gyroharmonic 4f(ce). The data come from concurrent measurements of the secondary escaping radiation from the HF-pumped ionosphere, also known as stimulated electromagnetic emission, reflected probing signals at f(0), and plasma line radar echoes. The artificial layers appeared only for injections along the magnetic field and f(0)>4f(ce) at the nominal HF interaction altitude in the background ionosphere. Their average downward speed ~0.5 km/s holds until the terminal altitude where the local fourth gyroharmonic matches f(0). The total descent increases with the nominal offset f(0)-4f(ce).

  11. Artificial Ionospheric Layers during Pump Frequency Stepping Near the 4th Gyroharmonic at HAARP

    Science.gov (United States)

    Sergeev, E.; Grach, S.; Shindin, A.; Mishin, E.; Bernhardt, P.; Briczinski, S.; Isham, B.; Broughton, M.; LaBelle, J.; Watkins, B.

    2013-02-01

    We report on artificial descending plasma layers created in the ionosphere F region by high-power high-frequency (HF) radio waves from High-frequency Active Auroral Research Program at frequencies f0 near the fourth electron gyroharmonic 4fce. The data come from concurrent measurements of the secondary escaping radiation from the HF-pumped ionosphere, also known as stimulated electromagnetic emission, reflected probing signals at f0, and plasma line radar echoes. The artificial layers appeared only for injections along the magnetic field and f0>4fce at the nominal HF interaction altitude in the background ionosphere. Their average downward speed ˜0.5km/s holds until the terminal altitude where the local fourth gyroharmonic matches f0. The total descent increases with the nominal offset f0-4fce.

  12. Comparative Aeronomy: Molecular Ionospheres at Earth and Mars

    Science.gov (United States)

    Mendillo, Michael; Trovato, Jeffrey; Narvaez, Clara; Mayyasi, Majd A.; Moore, Luke; Vogt, Marissa F.; Fallows, Kathryn J.; Withers, Paul; Martinis, Carlos

    2016-10-01

    The ionospheres in our solar system vary not only in their electron densities, but also in the dominance of atomic versus molecular ions at their altitudes of peak plasma density. With the exception of Earth's F-layer composed of atomic oxygen ions and electrons, all other planets have their peak ionospheric layers composed of molecular ions and electrons embedded in a dense neutral atmosphere. At Mars, both of its ionospheric layers have molecular ions, with the M1-layer at a lower altitude than the more robust M2-layer above it. The terrestrial ionosphere has a prominent region of molecular ions (the E-layer) below the dominant F-layer. In this paper, we explore the production and loss of molecular ion layers observed under the same solar irradiance conditions at Mars and Earth. We compare observations of M1 and M2 electron densities with terrestrial ionosonde data for the peak densities of the E- and F-layers during low, moderate and high solar flux conditions. The sub-solar peak densities of molecular ion layers have high correlations at each planet, as well as between planets, even though they are produced by separate portions of the solar spectrum. We use photo-chemical-equilibrium theory for layers produced by soft X-rays (M1 and E) versus the M2-layer produced by extreme ultraviolet (EUV) to identify the key parameters that cause similarities and differences. The yield of our comparative study points to the roles of secondary ionization and temperature dependent plasma recombination rates as areas most in need of further study at each planet.

  13. Comparative aeronomy: Molecular ionospheres at Earth and Mars

    Science.gov (United States)

    Mendillo, Michael; Trovato, Jeffrey; Narvaez, Clara; Mayyasi, Majd; Moore, Luke; Vogt, Marissa F.; Fallows, Kathryn; Withers, Paul; Martinis, Carlos

    2016-10-01

    The ionospheres in our solar system vary not only in their electron densities but also in the dominance of atomic versus molecular ions at their altitudes of peak plasma density. With the exception of Earth's F layer composed of atomic oxygen ions and electrons, all other planets have their peak ionospheric layers composed of molecular ions and electrons embedded in a dense neutral atmosphere. At Mars, both of its ionospheric layers have molecular ions, with the M1 layer at a lower altitude than the more robust M2 layer above it. The terrestrial ionosphere has a prominent region of molecular ions (the E layer) below the dominant F layer. In this paper, we explore the production and loss of molecular ion layers observed under the same solar irradiance conditions at Mars and Earth. We compare observations of M1 and M2 electron densities with terrestrial ionosonde data for the peak densities of the E and F layers during low, moderate, and high solar flux conditions. The subsolar peak densities of molecular ion layers have high correlations at each planet, as well as between planets, even though they are produced by separate portions of the solar spectrum. We use photochemical-equilibrium theory for layers produced by soft X-rays (M1 and E) versus the M2 layer produced by extreme ultraviolet (EUV) to identify the key parameters that cause similarities and differences. The yield of our comparative study points to the roles of secondary ionization and temperature-dependent plasma recombination rates as areas most in need of further study at each planet.

  14. Observations of ionospheric flows and particle precipitation following a Sudden Commencement

    Directory of Open Access Journals (Sweden)

    E. Nielsen

    Full Text Available On May 4, 1998, at 0227 UT an interplanetary shock crossed the WIND spacecraft, and half an hour later a Sudden Commencement occurred. Coinciding with the Sudden Commencement a rapid intensification of the flux of particle precipitation into the ionosphere was observed. Evidence is presented that the ionospheric electric fields were influenced by the associated dynamic variations of the ionospheric conductivities. Following the initial phase the ionospheric flow speeds increased rapidly over the next 20 min to more than 2000 m/s, in agreement with an increased effective coupling of the solar wind energy to the magnetosphere following the interplanetary shock that caused the Sudden Commencement. These strong flows were meandering in latitude, a type of plasma flow modulation that has been reported before to occur during Omega band events: a string of alternating field-aligned currents propagating eastward. The riometer absorption was found to be at a minimum in regions associated with outward directed field aligned currents. The riometer absorption regions (the regions of particle precipitation were drifting 
    with E × B drift speed of the ionospheric electrons.

    Key words: Interplanetary physics (interplanetary shocks - Ionosphere (electric fields and currents - Magnetospheric physics (energetic particles, precipitating

  15. Plasma monitoring of the RLVIP-process with a Langmuir probe

    Science.gov (United States)

    Huber, D.; Hallbauer, A.; Pulker, H. K.

    2005-09-01

    The aim of this investigation was to study the characteristics of a reactive-low-voltage-high-current-ion-plating plasma and to correlate the observed plasma data with the properties of films deposited under such conditions. A Langmuir probe system (Smart Probe - Scientific Systems) was inserted into a Balzers BAP 800 ion plating plant above the e-gun evaporation source close to the insulated substrate holder. In this position during RLVIP deposition, plasma potential, floating potential, self-bias voltage, electron temperature, ion current density, and particle number density were measured and calculated, respectively. All measurements were performed in dependence of arc current (20-80A) and oxygen partial pressure (1 - 36 x 10-4mbar). With rising arc current the number of charged particles, the self-bias voltage between plasma and substrates as well as the energy of the condensing and bombarding species were increased. These data explain the increase of density, refractive index and mechanical stress of RLVIP-metal-oxide-layers, like Ta2O5 and Nb2O5, deposited with higher arc currents. An increase of gas pressure decreased the energy of the particles and therefore reduced slightly film density and refractive index. However, it improved chemistry and eliminated unwanted residual optical absorption and also decreased compressive mechanical film stress.

  16. Artificial periodic irregularities in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    M.T. Rietveld

    Full Text Available Artificial periodic irregularities (API are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Tromsø, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHF incoherent-scatter-radar (ISR data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the

  17. LEISA: CubeSat for Ionospheric Characterization

    Science.gov (United States)

    Suddarth, S. C.; Vera, A.; Pollard, H.; Burgett, T.; King, B.; Hulem, D.; MacGillivray, J.; Montoya, M.; Stanton, W.; Trujillo, B.; Wilson, S.; Heileman, G.

    2012-12-01

    The University of New Mexico / Configurable Space Microsystems Innovation and Applications Center (COSMIAC) is designing a highly affordable research satellite called LEISA (Low Earth Ionospheric Spectrum Analyzer) to characterize Ionospheric properties that affect electromagnetic wave propagation. By measuring spectral distortion of both natural and man-made impulses LEISA will measure Total Electron Content (TEC), magnetic field strength, refractive effects, plasma properties, and higher-order electron density profile effects. Additionally, LEISA may shed light on the relationships between lightning effects and thunderstorm weather in the troposphere and the potential relationship between the acoustic/seismic events around thunderstorms and Ionospheric weather. The LEISA design effort has led to a number of innovations that may be relevant to other small science spacecraft. The design is particularly challenging because of the need to implement broadband RF reception from 20-200 MHz as well as to capture and process the resulting signals within a 1u spacecraft (10cm x 10cm x 10cm) with less than 2 watts of average available power. One particular challenge is the deployable electrically small biconic wideband UHF antenna that deploys to approximately 1.5m in length and .5 m in width. The resulting antenna system deploys from a diminutive 500 cubic centimeter volume. The remaining electronics must fit within the remaining 500 cubic centimeters, leading the team to develop a system-on-a-chip (SoC) design using a Xilinx Spartan 6 FPGA. The resulting circuit handles the spectrogram capture as well as all command and data handling functions within an average power footprint of approximately 200mW, reserving energy for analog-to-digital conversion (ADC) during capture events. LEISA builds upon prior work by Los Alamos National Laboratory with FORTE and Cibola Flight Experiment. In addition to being much more affordable, LEISA offers the potential of geo-locating events

  18. 利用CORS进行格网化电离层TEC实时监测%Real-time monitoring of regionla ionospheric TEC based on CORS with grid technolgo y

    Institute of Scientific and Technical Information of China (English)

    胡伍生; 聂文锋; 高成发

    2013-01-01

    In order to achieve the real-time mo niot ring of regional ionosphere, the ionospheric tto al le ctron contetn ( TEC) is extracted rf om the dual-frequency measurements provided by the continu-ously operta in g reference stations ( COR S) .According to the stability of satellite and receive differ-ential code bias ( DCB) during a certain period, the real-time ionospheric TEC is calibratde by using differential code bai ses of the former day.Thus, the real-time multi-station polynomial TEC model can be established.Results show that the average internla and external accuracy of the model estab-lished by all th e seven referecn e stations can be better thna 0.8 TECU (1TECU=1016 electron/m2 ) when the average distance of the stations ra e ba uo t 250 km. Wiht the availability oft he ionospheric dle ay corrections calcul ated by the real-time model, ht e single precise point positioning ( PPP) point accuracy can reach 0.3 to 0.4 m, which improves 80% compared to the single PPP without iono-spheric delay corrections.As a result,the real-tim e TEC monitorign of a certain area can be achieved with the combination of the grid technology.%为了实现对区域电离层的实时监测,利用连续运行参考站观测到的双频GPS数据提取电离层总电子含量( TEC)信息.根据卫星和接收机硬件延迟在一定时间内比较稳定的特点,利用前一天计算的硬件延迟值来修正当日卫星传播路径上的总电子含量值,从而获得实时的电离层总电子含量.由此建立单历元多站多项式模型,结果表明:当基站间距离平均约为250 km时,由7个基站共同建立的实时模型内外符合精度平均优于0.8 TE CU(1TECU=1016电子数/m2),将实时模型计算的电离层延迟改正信息应用于静态单频PPP定位中,点位精度能够达到0.3~0.4 m,与不进行电离层延迟改正的单频PPP定位结果相比提高80%左右.因此,进一步结合格网技术,可以

  19. A review of results of the international ionospheric Doppler sounder network

    Science.gov (United States)

    Laštovička, Jan; Chum, Jaroslav

    2017-10-01

    This paper summarizes main recent results reached by the Czech-lead international network of ionospheric Doppler shift sounders. The network consists of Doppler sounders in the western half of Czechia (5 measuring paths, 3 frequencies with central receivers in Prague), northern Taiwan (3 transmitters, two separated receivers, 1 frequency), and two similar systems (3 measuring paths with 1 receiver and 1 frequency) in Tucuman (north-western Argentina) and Hermanus (the southernmost South Africa). Main areas of research have been: (1) propagation of gravity waves; (2) ionospheric effects of earthquakes; (3) low latitude/equatorial phenomena; (4) ionospheric response to strong meteorological phenomena; (5) effects of solar flares, geomagnetic activity and geomagnetic micropulsations. Main results: (1) Theoretically expected dominance of gravity wave propagation against wind has been confirmed. (2) Impact of a train of seismic waves (P, S, SS, Rayleigh) generated by the Tohoku 2011 M9.0 earthquake was registered in the ionosphere over the Czech Republic as long-period infrasound at the distance of about 9000 km from epicenter. (3) Analysis of ionospheric infrasound excited by the Nepal 2015 M7.8 earthquake observed by the Czech and Taiwan Doppler sounders showed that the intensity of ionospheric signal is significantly height and latitude dependent. Air/plasma compression has to be considered to compute air particle velocities from the observed Doppler shift. (4) Nonlinear effects result in formation of N-shaped pulse disturbance in the upper atmosphere/ionosphere above strong earthquakes as was documented by the example of the M8.3 Illapel 2016 earthquake. (5) Spread F structures observed by Doppler sounders in Tucuman and Taiwan (both under the crest of equatorial ionization anomaly) provide results consistent with S4 scintillation data and with previous optical, GPS and satellite measurements. (6) Short period gravity waves and rarely infrasound are observed in the

  20. Validation of Atmosphere/Ionosphere Signals Associated with Major Earthquakes by Multi-Instrument Space-Borne and Ground Observations

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Parrot, Michel; Liu, J. Y.; Yang, T. F.; Arellano-Baeza, Alonso; Kafatos, M.; Taylor, Patrick

    2012-01-01

    regions of the atmosphere and the modifications, by dc electric fields, in the ionosphere-atmosphere electric circuit. We retrospectively analyzed temporal and spatial variations of four different physical parameters (gas/radon counting rate, lineaments change, long-wave radiation transitions and ionospheric electron density/plasma variations) characterizing the state of the lithosphere/atmosphere coupling several days before the onset of the earthquakes. Validation processes consist in two phases: A. Case studies for seven recent major earthquakes: Japan (M9.0, 2011), China (M7.9, 2008), Italy (M6.3, 2009), Samoa (M7, 2009), Haiti (M7.0, 2010) and, Chile (M8.8, 2010) and B. A continuous retrospective analysis was preformed over two different regions with high seismicity- Taiwan and Japan for 2003-2009. Satellite, ground surface, and troposphere data were obtained from Terra/ASTER, Aqua/AIRS, POES and ionospheric variations from DEMETER and COSMIC-I data. Radon and GPS/TEC were obtaining from monitoring sites in Taiwan, Japan and Italy and from global ionosphere maps (GIM) respectively. Our analysis of ground and satellite data during the occurrence of 7 global earthquakes has shown the presence of anomalies in the atmosphere. Our results for Tohoku M9.0 earthquake show that on March 7th, 2011 (4 days before the main shock and 1 day before the M7.2 foreshock of March 8, 2011) a rapid increase of emitted infrared radiation was observed by the satellite data and an anomaly was developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. Similar approach for analyzing atmospheric and ionospheric parameters has been applied for China (M7.9, 2008), Italy (M6.3, 2009), Samoa (M7, 2009), Haiti (M7.0, 2010) and Chile (M8.8, 2010

  1. Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional ionospheric modelling using GPS and GLONASS to estimate ionospheric gradients

    CERN Document Server

    Arora, B S; Ord, S M; Tingay, S J; Bell, M; Callingham, J R; Dwarakanath, K S; For, B -Q; Hancock, P; Hindson, L; Hurley-Walker, N; Johnston-Hollitt, M; Kapinska, A D; Lenc, E; McKinley, B; Offringa, A R; Procopio, P; Staveley-Smith, L; Wayth, R B; Wu, C; Zheng, Q

    2016-01-01

    We estimate spatial gradients in the ionosphere using the Global Positioning System (GPS) and GLONASS (Russian global navigation system) observations, utilising data from multiple GPS stations in the vicinity of Murchison Radio-astronomy Observatory (MRO). In previous work the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array (MWA). Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System (GNSS) statio...

  2. A two-dimensional global simulation study of inductive-dynamic magnetosphere-ionosphere/thermosphere coupling

    Science.gov (United States)

    Tu, J.; Song, P.

    2016-12-01

    We have developed a new numerical simulation model of the ionosphere/thermosphere by using an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B, v paradigm), which is distinctive from the conventional modeling based on electric field E and current j. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, not only sound wave mode but also all possible MHD wave modes are retained in the solutions of the governing equations so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In the present study, we demonstrate dynamic propagation of field-aligned currents and ionospheric electric field carried by Alfven waves, as well as formation of closure horizontal currents (Pedersen currents in the E-region), indicating that the M-I coupling is via the Alfven waves instead of the field-aligned currents or electric field mapping. The simulation results also show that the Poynting flux and strongest energy dissipation in the ionosphere/thermosphere is in the regions of the largest ion velocities and not necessarily in the auroral oval where the field-aligned currents reside. The frictional heating increases plasma temperature and thus drives ion upflows. The frictional heating also increase neutral temperature and produces neutral upflows but in a much longer time scale. Furthermore, the coupling of high-to-low latitude ionosphere is investigated in terms of propagation of fast MHD waves.

  3. Resonance between coherent whistler mode waves and electrons in the topside ionosphere

    Science.gov (United States)

    Neubert, T.; Bell, T. F.; Storey, L. R. O.

    1987-01-01

    Landau resonance and cyclotron resonance of coherent whistler mode waves and energetic electrons are explored for magnetoplasmas with appreciable gradients in the plasma density and magnetic field strength. It is shown that in the topside ionosphere of the earth near the ion transition height the gradients in plasma density and magnetic field strength along a magnetic field line may match in a way which enhances both Landau and cyclotron interactions between waves and electrons at the loss cone pitch angle. The pitch angle scattering induced by a signal from a ground-based VLF transmitter in the ionosphere above the transmitter has been estimated and compared to the pitch angle scattering induced by naturally occurring ELF hiss through cyclotron resonance. It is found that the expected scattering due to plasmapheric hiss is an order of magnitude larger than that due to Landau resonance in the topside ionosphere. Pitch angle scattering due to cyclotron resonance in the topside ionosphere, however, may be larger by a factor of 2. It is suggested that the 'fast Trimpi' effect may be caused by a cyclotron resonance interaction in the topside ionosphere.

  4. Regional Ionosphere Mapping with Kriging and B-spline Methods

    Science.gov (United States)

    Grynyshyna-Poliuga, O.; Stanislawska, I. M.

    2013-12-01

    This work demonstrates the concept and practical examples of mapping of regional ionosphere, based on GPS observations from the EGNOS Ranging and Integrity Monitoring Stations (RIMS) network and permanent stations near to them. Interpolation/prediction techniques, such as kriging (KR) and the cubic B-spline, which are suitable for handling multi-scale phenomena and unevenly distributed data, were used to create total electron content (TEC) maps. Their computational efficiency (especially the B-spline) and the ability to handle undersampled data (especially kriging) are particularly attractive. The data sets have been collect into seasonal bins representing June, December solstices and equinox (March, September). TEC maps have a spatial resolution of 2.50 and 2.50 in latitude and longitude, respectively, and a 15-minutes temporal resolution. The time series of the TEC maps can be used to derive average monthly maps describing major ionospheric trends as a function of time, season, and spatial location.

  5. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bartlome, Richard, E-mail: richard.bartlome@alumni.ethz.ch; De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71b, 2000 Neuchâtel (Switzerland); Amanatides, Eleftherios; Mataras, Dimitrios [University of Patras, Department of Chemical Engineering, Plasma Technology Laboratory, P.O. Box 1407, 26504 Patras (Greece)

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  6. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    Science.gov (United States)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  7. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and

  8. Developing an ionospheric map for South Africa

    Directory of Open Access Journals (Sweden)

    D. I. Okoh

    2010-07-01

    Full Text Available The development of a map of the ionosphere over South Africa is presented in this paper. The International Reference Ionosphere (IRI model, South African Bottomside Ionospheric Model (SABIM, and measurements from ionosondes in the South African Ionosonde Network, were combined within their own limitations to develop an accurate representation of the South African ionosphere. The map is essentially in the form of a computer program that shows spatial and temporal representations of the South African ionosphere for a given set of geophysical parameters. A validation of the map is attempted using a comparison of Total Electron Content (TEC values derived from the map, from the IRI model, and from Global Positioning System (GPS measurements. It is foreseen that the final South African ionospheric map will be implemented as a Space Weather product of the African Space Weather Regional Warning Centre.

  9. Ionospheric effects of thunderstorms and lightning

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Erin H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm. We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.

  10. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-09-01

    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  11. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  12. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    unparalleled insight into the chemistry of these plasma systems. Part II of this work is focused on understanding the efficacy of a general chemistry recitation program. Such programs can be an valuable tool for improving students' problem solving skills and understanding using methods that are difficult to implement in large lecture settings. Here, general chemistry students at Colorado State University participated in a variety of recitation activities throughout the first semester of a 2-semester general chemistry sequence, including peer-led exercises, games, and scaffolded worksheets. Through weekly surveys, students were asked to evaluate and assess recitation activities for both interest and effectiveness as part of their course homework. Also included in these survey assignments were content questions relevant to the weekly themes, providing a measure of student learning of recitation topics. Student opinions were correlated with content retention, and these data were compared against student responses to a pre-survey administered before the first recitation session. This analysis allows for monitoring students' expectations of recitation courses and how well those expectations are met through the various types of activities employed. Ultimately, this work has found that students have positive feeling with respect to individual assignments, but that perspectives on chemistry and the course in general decrease dramatically from the beginning to the end of the semester. Thus, this work can serve as a significant starting points for future efforts to monitor and record student perceptions in the general chemistry recitation classroom, leading to further investigation into the source of changing attitudes and the role that week-to-week activities have on global course attitudes.

  13. Height-dependent sunrise and sunset: Effects and implications of the varying times of occurrence for local ionospheric processes and modelling

    Science.gov (United States)

    Verhulst, Tobias G. W.; Stankov, Stanimir M.

    2017-10-01

    It is well established that the sunrise and sunset periods are of particular importance to ionospheric research and modelling because of the rapid changes in the ionospheric plasma density, temperature, and dynamics. In particular, the sharp increase in the ionisation following sunrise results in a quick increase in the ionospheric peak density, NmF2 , and a decrease in the peak height, hmF2 . Changes in plasma temperature, scale height and transport processes add further complexity which makes it difficult to investigate and model the ionospheric behaviour during this transitional period from night to day. One of the aspects contributing to this difficulty is that not all ionospheric altitudes are exposed to the first sunlight of the day at the same time. During sunrise, the upper part of the ionosphere is illuminated prior to the lower part which is still in the dark. The boundary between sunlit and dark regions moves downwards until it reaches the surface of the Earth, which is commonly taken as the moment of sunrise at certain geographical coordinates. This means that the sunrise at surface level does not occur until after the entire ionosphere has been illuminated. During sunset, the same process happens in reverse order. This paper addresses the issue of these altitude-dependent times of sunrise and sunset and reports on our study of some of the effects on the diurnal variations in the ionospheric characteristics.

  14. Space Plasma Slab Studies using a new 3D Embedded Reconfigurable MPSoC Sounder

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper presents recent ionospheric slab thickness measurements using a new mobile digital sounder system. The datasets obtained have been compared to the results of existing sounders in operation. The data validity has been verified. The slab thickness data allow constant monitoring of the lower ionosphere revealing the dynamic trends of the physical processes being involved. The prototype offers a tremendous amount of hardware processing power and a previously unseen response time in servicing the input and output data interfaces. This has been enabled by incorporating the latest three-dimensional Ultrascale+ technologies available commercially from the reconfigurable Field Programmable Gate Array (FPGA) computing industry. Furthermore, a previously developed Network-on-Chip (NoC) design methodology has been incorporated for connecting and controlling the application driven multiprocessor network. The system determines electron distributions, aggregate electromagnetic field gradients and plasma current density.

  15. Statistical characteristics of low-latitude ionospheric scintillation over China

    Science.gov (United States)

    Liu, Kangkang; Li, Guozhu; Ning, Baiqi; Hu, Lianhuan; Li, Hongke

    2015-03-01

    The Global Positioning System (GPS) L-band ionospheric scintillation produced by electron density irregularities in the ionospheric E- and F-regions, is mainly a low- and high-latitude phenomenon. In this study, the statistical behavior of GPS ionospheric scintillation over a Chinese low-latitude station Sanya (18.3°N, 109.6°E; dip lat: 12.8°N) has been investigated. A detailed study on the seasonal and solar activity dependence of scintillation occurrence during July 2004-December 2012 show that the amplitude scintillation pattern, with a maximum occurrence during equinox of solar maximum, agrees with plasma bubble observations by in situ satellites in this longitude. A few daytime periodic scintillation events are found during June solstice months of solar minimum. Interestingly, a significant equinoctial asymmetry of scintillation onset time is found in 2011-2012. The initiation of scintillation during September-October is on average earlier than that of March-April about 25 min. Meanwhile, the zonal drifts of irregularities estimated using two spatially separated GPS receivers over Sanya show a similar behavior during the two equinoxes, slowly decreasing from 150 m/s at post-sunset to 50 m/s near midnight. The possible mechanisms responsible for the occurrence characteristics of GPS scintillation over Sanya, and relevant aspects of the zonal drifts of the irregularities are discussed.

  16. Tomographic Study of Ionospheric Effects Associated with a Solar Eclipse

    Institute of Scientific and Technical Information of China (English)

    Wu Xiong-bin; Xu Ji-sheng; Ma Shu-ying; Tian Mao

    2003-01-01

    This paper studies the ionospheric effects associ-ated with the solar eclipse of October 24th, 1995 by means of Computerized Ionospheric Tomography (CIT). Since the re-constructed profiles from experimental CIT are sporadically located in time, a time domain interpolation method based onSingular Value Decomposition (SVD) technique is proposed and applied to extract the ionospheric effects. The effects canbe extracted by comparison analysis between the interpolated CIT profiles of the eclipse days and that of the reference day that are time-aligned. A series of figs have been obtained showing the attenuation of photonization effect at low alti-tudes and the weakening of plasma's transportation process athigh altitudes, etc. The photonization effect recovered to nor-mal level soon after the last contact. The maximum electron density diminishing is observed about 2 h after the eclipse maximum and the effects seem vanished in the hours fol-lowed. Analysis on vertical TEC's latitudinal temporal variation gives similar conclusions.

  17. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  18. Utility of the plasma level of suPAR in monitoring risk of mortality during TB treatment

    DEFF Research Database (Denmark)

    Rabna, Paulo; Andersen, Andreas; Wejse, Christian;

    2012-01-01

    Objective: To investigate whether changes in the plasma level of soluble urokinase plasminogen activator receptor (suPAR) can be used to monitor tuberculosis (TB) treatment efficacy. Design: This prospective cohort study included 278 patients diagnosed with active pulmonary TB and followed...... throughout the 8-month treatment period. Results: Mortality during treatment was higher in the highest inclusion quartile of suPAR (23%) compared to the lowest three quartiles (7%), the risk ratio being 3.1 (95% CI 1.65–6.07). No association between early smear conversion and subsequent mortality...... that elevated suPAR level at time of initiation of TB treatment is associated with increased risk of mortality. Furthermore, increased suPAR levels after one month of treatment was associated with increased risk of mortality during the remaining 7-month treatment period....

  19. What in situ measurements of thermal electrons tell us about electron heating in the high-latitude ionosphere

    Science.gov (United States)

    Lund, E. J.; Lessard, M.; Cohen, I. J.; Lynch, K. A.

    2012-12-01

    The transfer of energy from precipitating particles and incoming photons to ionospheric plasma is a key issue in the physics of the high-latitude ionosphere. However, in situ measurements of electron temperature in the ionosphere have historically been difficult to make. Over the past decade, we have flown several rockets equipped with an electron retarding potential analyzer (ERPA), an instrument designed to measure thermal electrons in the ionosphere. These missions include launches into the cusp (SERSIO, SCIFER-2) and nightside aurora (CASCADES-2, ACES, MICA). In the cusp, the soft electron precipitation which is found in regions of ion outflow leads to increases in electron temperature due to energy deposition in the E and lower F region. The electron temperature increase at sounding rocket altitudes (500--1500~km) is delayed by ˜100~s with respect to the precipitation. By contrast, the higher energy of precipitating electrons in the nightside aurora makes them less effective at heating ionospheric electrons at these altitudes, while in downward current regions ionospheric electrons are found to be cooler than in upward current regions. We discuss the implications of these results for the ionospheric ion outflow problem as well as future prospects for in situ electron temperature measurements.

  20. Simulations of resonant Alfvén waves generated by artificial HF heating of the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov

    2004-09-01

    Full Text Available Numerical two-dimensional two-fluid MHD simulations of dynamic magnetosphere-ionosphere (MI coupling have been performed to model the effects imposed on the auroral ionosphere by a powerful HF radio wave transmitter. The simulations demonstrate that modifications of the ionospheric plasma temperature and recombination due to artificial heating may trigger the ionospheric feedback instability when the coupled MI system is close to the state of marginal stability. The linear dispersion analysis of MI coupling has been performed to find the favorable conditions for marginal stability of the system. The development of the ionospheric feedback instability leads to the generation of shear waves which resonate in the magnetosphere between the heated ionospheric E-region and the strong gradient in the speed at altitudes of 1-2 RE. The application of the numerical results for the explanation of observations performed by low-orbiting satellites above the high-latitude ionosphere heated with a high power ground-based HF transmitter is discussed.

  1. Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes

    Science.gov (United States)

    Liao, H.; Meyer, F. J.

    2016-12-01

    Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a

  2. The Impact of Ionospheric Disturbances on High Accuracy Positioning in Brazil

    Science.gov (United States)

    Yang, L.; Park, J.; Susnik, A.; Aquino, M. H.; Dodson, A.

    2013-12-01

    use of ionospheric estimators such as the TEC (Total Electron Content) fluctuations, I95 index and scintillation parameters (such as S4 and σΦ), observed positioning degradation has been correlated with ionospheric disturbances in order to characterise the impact. The ultimate objective is to quantify how residual errors remaining in both the double differenced and undifferenced GNSS observables are driven by ionospheric related phenomena. Two different scale GNSS networks have been used in this study. One is a large scale sparse network (Brazilian wide), which is a specialized ionospheric monitoring network, built by the CIGALA project (http://cigala.galileoic.org/); the other is a regional (state of São Paulo) network, which can provide case study data and also ground truth. The outcome of the above characterization study will be discussed in this paper. It will enable and facilitate the development of the mitigation algorithms, which include the screening of contaminated observations, observation de-weighting, enhanced network interpolation and ambiguity fixing strategy.

  3. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.

    Science.gov (United States)

    Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan

    2017-05-15

    Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R(2)=0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring.

  4. Gas monitoring in RPC by means of non-invasive plasma coated POF sensors

    Science.gov (United States)

    Grassini, S.; Ishtaiwi, M.; Parvis, M.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.

    2012-12-01

    Resistive Plate Counters (RPC) are employed as muon detectors in many high-rate high-energy physics experiments, such as the Compact Muon Solenoid (CMS) experiment currently under way in the Large Hadron Collider (LHC) accelerator at the European Center for Nuclear Research (CERN). A gas mixture containing C2H2F4, i-C4H10 and SF6 is recirculated inside the RPCs during their use and subjected to degradation due to the production of fluoride ions which limits the sensitivity of the RPCs. This paper describes a new sensor that is able to detect low concentrations of fluoride ions in gas mixtures. The sensor is made of a plastic optic fiber (POF) which is made sensitive to F- gaseous ions by means of a thin layer of a glass-\\it likematerial, deposited via plasma onto the fiber core. The F- ions attack the glass-\\it likefilm and alter the transmission capability of the fiber so that the detection simply requires a LED and a photodiode. The sensor exploits a cumulative response which makes it suitable for direct estimation of the total exposure to the F- ions, thus providing a tool that can be used to tune the maintenance of the gas filters. The glass-\\it likefilm is deposited by means of plasma enhanced chemical vapor deposition (PECVD) of organosilicons monomers, which allows the deposition to be performed a low temperature in order to avoid damaging the fiber core.

  5. A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding yeast.

    Science.gov (United States)

    Clarke, Jesse; Dephoure, Noah; Horecka, Ira; Gygi, Steven; Kellogg, Douglas

    2017-08-09

    In budding yeast, cell cycle progression and ribosome biogenesis are dependent upon plasma membrane growth, which ensures that events of cell growth are coordinated with each other and with the cell cycle. However, the signals that link the cell cycle and ribosome biogenesis to membrane growth are poorly understood. Here, we used proteome-wide mass spectrometry to systematically discover signals associated with membrane growth. The results suggest that membrane trafficking events required for membrane growth generate sphingolipid-dependent signals. A conserved signaling network appears to play an essential role in signaling by responding to delivery of sphingolipids to the plasma membrane. In addition, sphingolipid-dependent signals control phosphorylation of protein kinase C (Pkc1), which plays an essential role in the pathways that link the cell cycle and ribosome biogenesis to membrane growth. Together, these discoveries provide new clues to how growth-dependent signals control cell growth and the cell cycle. © 2017 by The American Society for Cell Biology.

  6. Monitoring of D-layer using GPS

    Science.gov (United States)

    Golubkov, Maxim; Bessarab, Fedor; Karpov, Ivan; Golubkov, Gennady; Manzheliy, Mikhail; Borchevkina, Olga; Kuverova, Veronika; Malyshev, Nikolay; Ozerov, Georgy

    2016-07-01

    Changes in D layer of ionosphere during the periods of high solar activity lead to non-equilibrium two-temperature plasma parameter variations. Accordingly, the population of orbital degenerate states of Rydberg complexes changes in a fraction of a microsecond. In turn, this affects the operation of any of the systems based on the use of GPS radio signals passing through this layer. It is well known that GPS signals undergo the greatest distortion in the altitude range of 60-110 km. Therefore, the analysis of changes in signal intensity can be useful for plasma diagnosis in these altitudes. In particular, it is useful to determine the vertical temperature profiles and electron density. For this purpose, one can use the satellite radio occultation method. This method is widely used in recent years to solve problems of the electron concentration profile recovery in the F-region of the ionosphere, and also for climate problem solutions. This method allows to define the altitude profiles of the GPS signal propagation delays and to obtain from the inverse problem solution qualitatively high-altitude profiles of the quantities using relative measurements. To ensure the authenticity of the found distributions of electron density and temperature in the D region of the ionosphere, the results should be complemented by measurements of the own atmospheric radiation power at frequencies of 1.4 and 5.0 GHz. This ensures control of the reliability of the results obtained using the "Rydberg" code. Monitoring of the state changes in the D layer by repeatedly following at regular intervals GPS satellite measurements are also of great interest and can provide valuable information on the macroscopic dynamics of D layer containing Rydberg complexes and free electrons. For example, one can monitor changes in the thickness of the emitting layer in time. Such changes lead to an additional contribution to the formation of satellite GPS system errors. It should also be noted that the

  7. An Instrument for Measuring the Near-Surface PlasmaTemperature and Concentration, and the Surface Charging of the International Space Station

    Science.gov (United States)

    Kirov, B.

    2010-12-01

    The Langmuir probe is one of the classical instruments for plasma diagnostics [1] and among the first space-borne instruments. Langmuir probes have been successfully used aboard a number of rockets and satellites for in situ measurements of thermal plasma parameters in the terrestrial ionosphere [2], at other planets [3] and comets [4], and recently it is an indispensable instrument for measuring the satellite surface potential. In the present paper we discuss some theoretical and practical aspects of the application of the Langmuir probe for ionospheric measurements. We show that the spherical probe cannot be used for measurements in the ionosphere, and for the cylindrical probe the experimental Volt-Ampere curves are not described by the formula for an infinite cylinder. A formula is proposed for processing of this region. We demonstrate that in the case of two prevailing ions, their concentration can be found from the ion saturation region. Finally, we describe the two Langmuir probes designed and manufactured in Bulgaria, a part of the Plasma Wave Complex PWC (Obstanovka experiment) aboard the Russian segment of the International Space Station, whose goal is to monitor the surface charging and the noises and disturbances in the surrounding plasma induced by the station and by the experiments conducted aboard it.

  8. Space weather challenges of the polar cap ionosphere

    Science.gov (United States)

    Moen, Jøran; Oksavik, Kjellmar; Alfonsi, Lucilla; Daabakk, Yvonne; Romano, Vineenzo; Spogli, Luca

    2013-01-01

    This paper presents research on polar cap ionosphere space weather phenomena conducted during the European Cooperation in Science and Technology (COST) action ES0803 from 2008 to 2012. The main part of the work has been directed toward the study of plasma instabilities and scintillations in association with cusp flow channels and polar cap electron density structures/patches, which is considered as critical knowledge in order to develop forecast models for scintillations in the polar cap. We have approached this problem by multi-instrument techniques that comprise the EISCAT Svalbard Radar, SuperDARN radars, in-situ rocket, and GPS scintillation measurements. The Discussion section aims to unify the bits and pieces of highly specialized information from several papers into a generalized picture. The cusp ionosphere appears as a hot region in GPS scintillation climatology maps. Our results are consistent with the existing view that scintillations in the cusp and the polar cap ionosphere are mainly due to multi-scale structures generated by instability processes associated with the cross-polar transport of polar cap patches. We have demonstrated that the SuperDARN convection model can be used to track these patches backward and forward in time. Hence, once a patch has been detected in the cusp inflow region, SuperDARN can be used to forecast its destination in the future. However, the high-density gradient of polar cap patches is not the only prerequisite for high-latitude scintillations. Unprecedented high-resolution rocket measurements reveal that the cusp ionosphere is associated with filamentary precipitation giving rise to kilometer scale gradients onto which the gradient drift instability can operate very efficiently. Cusp ionosphere scintillations also occur during IMF BZ north conditions, which further substantiates that particle precipitation can play a key role to initialize plasma structuring. Furthermore, the cusp is associated with flow channels and

  9. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures

    Science.gov (United States)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.

    2015-12-01

    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  10. Space Plasma Studies by In-Situ and Remote Measurements

    Science.gov (United States)

    2007-11-02

    Awarded by Lenin Prize (highest in USSR). 1962 Plasma experiments aboard KOSMOS 2, evidence of the lack of charged particles thermodynamic equilibrium...ionosphere of Venus. 1970- 1979 Ionospheric experiments aboard COSMOS 378, INTERCOSMOS 8,10,12,14,18,19 and KOSMOS 900. 1970- 1981 Series of in

  11. Investigation on pre-seismic equatorial ionospheric anomaly and its possible association with the gravity wave using satellite measurements

    Science.gov (United States)

    Ryu, K.; Oyama, K. I.; Sun, Y. Y.; Liu, T. J. Y.

    2016-12-01

    Some examples of the equatorial plasma density measured by DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) increased before some large earthquakes are introduced. Previous examples of the pre-seismic equatorial ionization anomalies (EIA) associated with the northern Sumatra earthquake of 2005, Wenchuan earthquake of 2008, Pisco earthquake of 2007, and Kuril Island earthquake of 2007, commonly accompanied conspicuous precursory EIA enhancements distinct from the longitudinal asymmetric variation which is known as a result of ionospheric interaction with the thermospheric tidal modulation generating wave structure in the global ionospheric density profile in the dayside local time. The physical mechanisms of the seismo-ionospheric coupling manifested as the enhanced EIA intensity can be ascribed either to the gravity wave or static electric field generated by the lithosphere-atmosphere-ionosphere coupling, which is still in debate because of lack in confident observational evidences. Molucca sea earthquake of 2007 which accompanied dominant-ever precursory EIA enhancement was selected as a case study to investigate whether the seismo-ionospheric coupling was originated from the gravity wave propagating from the mesosphere to the thermosphere using the SABER satellite data. The gravity wave intensity according to the frequency was derived by applying the s-transform to the atmospheric neutral temperature profile measured by SABER limb-scanning method. The initial analysis results of the ionospheric plasma condition and thermospheric gravity wave derived from DEMETER, CHAMP, and SABER are introduced and the possible association between the physical conditions are discussed.

  12. Study of Ionospheric Perturbations in D-Layer Using VLF Receiver at Tashkent IHY Station

    Science.gov (United States)

    Ahmedov, Bobomurat

    2016-07-01

    Tashkent International Heliophysical Year (IHY) station is a member of Atmospheric Weather Electromagnetic System for Observation, Modeling and Education (AWESOME) network being operated globally to study the ionosphere and the magnetosphere with the help of electromagnetic waves in Very Low Frequency (VLF) band. Regular monitoring of the D- and F-layers of ionosphere over Central Asia territory is being performed on the permanent basis starting year 2008 when one VLF receiver and two SuperSID receivers were provided to Uzbekistan IHY cite by Stanford University. The results obtained at Tashkent IHY station are applied to earthquake electromagnetic precursors, lightning, and Solar flares and to ionospheric disturbances originating from gamma ray flares of Soft Gamma-Ray Repeaters connected with evolution of strongly magnetized neutron stars believed as magnetars. Regular monitoring of the D-layer of ionosphere over Central Asia territory has been performed on the permanent basis. Several Solar events are observed and the analysis has shown that there is simultaneous correlation between the times of change of amplitude of the waves and the Solar flares. Features of the lightning discharge generated by radio atmospherics are studied and its effectiveness in D-region ionosphere diagnostics is examined.

  13. Observed Coupling Between the International Space Station PCU Plasma and a FPMU Langmuir Probe Facilitated by the Geomagnetic Field

    Science.gov (United States)

    Hartman, William; Koontz, Steven L.

    2010-01-01

    Electrical charging of the International Space Station (ISS) is a matter of serious concern resulting from the possibility of vehicle arcing and electrical shock hazard to crew during extravehicular activity (EVA). A Plasma Contactor Unit (PCU) was developed and integrated into ISS in order to control the ISS floating potential, thereby, minimize vehicle charging and associated hazards. One of the principle factors affecting ISS electrical charging is the ionosphere plasma state (i.e., electron temperature and density). To support ISS electrical charging studies a Floating Potential Monitoring Unit (FPMU) is also integrated into ISS in order to measure the ionosphere properties using Langmuir probes (LP). The FPMU was located on the Starboard side of ISS. The PCU is located near the center of ISS with its plasma exhaust pointed to port. From its integration on ISS in 2006 through November of 2009, the FPMU data exhibited nominal characteristics during PCU operation. On November 21, 2009 the FPMU was relocated from the Starboard location to a new Port location. After relocation significant enhanced noise was observed in both the LP current-voltage sweeps and the derived electron temperature data. The enhanced noise only occurred when the PCU was in discharge and at unique and repeatable locations of the ISS orbit. The cause of this enhanced noise was investigated. It was found that there is coupling occurring between the PCU plasma and the FPMU LP. In this paper we shall 1) present the on-orbit data and the presence of enhanced noise, 2) demonstrate that the coupling of the PCU plasma and the FPMU measurements is geomagnetically organized, 3) show that coupling of the PCU plasma and the FPMU is primarily due to and driven by particle-wave interaction and 4) show that the ionosphere conditions are adequate for Alfven waves to be generated by the PCU plasma.

  14. Research in plasma physics

    Science.gov (United States)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  15. Ionospheric Anomalies of the 2011 Tohoku Earthquake with Multiple Observations during Magnetic Storm Phase

    Science.gov (United States)

    Liu, Yang

    2017-04-01

    Ionospheric anomalies linked with devastating earthquakes have been widely investigated by scientists. It was confirmed that GNSS TECs suffered from drastically increase or decrease in some diurnal periods prior to the earthquakes. Liu et al (2008) applied a TECs anomaly calculation method to analyze M>=5.9 earthquakes in Indonesia and found TECs decadence within 2-7 days prior to the earthquakes. Nevertheless, strong TECs enhancement was observed before M8.0 Wenchuan earthquake (Zhao et al 2008). Moreover, the ionospheric plasma critical frequency (foF2) has been found diminished before big earthquakes (Pulinets et al 1998; Liu et al 2006). But little has been done regarding ionospheric irregularities and its association with earthquake. Still it is difficult to understand real mechanism between ionospheric anomalies activities and its precursor for the huge earthquakes. The M9.0 Tohoku earthquake, happened on 11 March 2011, at 05:46 UT time, was recognized as one of the most dominant events in related research field (Liu et al 2011). A median geomagnetic disturbance also occurred accompanied with the earthquake, which makes the ionospheric anomalies activities more sophisticated to study. Seismic-ionospheric disturbance was observed due to the drastic activities of earth. To further address the phenomenon, this paper investigates different categories of ionospheric anomalies induced by seismology activity, with multiple data sources. Several GNSS ground data were chosen along epicenter from IGS stations, to discuss the spatial-temporal correlations of ionospheric TECs in regard to the distance of epicenter. We also apply GIM TEC maps due to its global coverage to find diurnal differences of ionospheric anomalies compared with geomagnetic quiet day in the same month. The results in accordance with Liu's conclusions that TECs depletion occurred at days quite near the earthquake day, however the variation of TECs has special regulation contrast to the normal quiet

  16. Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.

    Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions

  17. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  18. The fine structure of the ionosphere

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul

    1967-01-01

    We consider in this note the excitation of ion-acoustic waves by vertical gradients of density in the ionosphere. The conclusion is reached that the fine structure of the ionosphere is probably affected by the resulting instability, as comparison with observations seems to indicate. Recently, Liu...

  19. Ionospheric Modeling for Precise GNSS Applications

    NARCIS (Netherlands)

    Memarzadeh, Y.

    2009-01-01

    The main objective of this thesis is to develop a procedure for modeling and predicting ionospheric Total Electron Content (TEC) for high precision differential GNSS applications. As the ionosphere is a highly dynamic medium, we believe that to have a reliable procedure it is necessary to transfer t

  20. Probing ionospheric structure using LOFAR data

    NARCIS (Netherlands)

    Mevius, M.; Van Der Tol, S.; Pandey, V. N.

    2015-01-01

    To obtain high quality images with the Lofar low frequency radio telescope, accurate ionospheric characterization and calibration is essential. The large field of view of LOFAR (several 10s of square degrees) requires good knowledge of the spatial variation of the ionosphere. In this work to probe t

  1. Attenuation of Scintillation of Discrete Cosmic Sources during Nonresonant HF Heating of the Upper Ionosphere

    Science.gov (United States)

    Bezrodny, V. G.; Watkins, B.; Charkina, O. V.; Yampolski, Y. M.

    2014-03-01

    The aim of the work is to experimentally investigate the response of scintillation spectra and indices of discrete cosmic sources (DCS) to modification of the ionospheric F-region by powerful electromagnetic fields with frequencies exceeding the Langmuir and upper hybrid ones. The results of a special experiment on the scintillations of radiation from DCS Cygnus A observed with using the 64-beam imaging riometer located near the Gakona village (Alaska, USA) are here presented. The ionosphere was artificially disturbed by powerful HAARP heater. Under the studied conditions of nonresonant heating of the ionospheric plasma, an earlier unknown effect of reducing the level of DCS scintillation was discovered. The theoretical interpretation has been given for the discovered effect, which using allowed the proposed technique of solving the inverse problem (recovery deviations of average electron density and temperature in the modified region from their unperturbed values).

  2. Effects of Crustal Fields on the Ionosphere of Mars as seen by MAVEN

    Science.gov (United States)

    Vogt, Marissa F.; Withers, Paul; Flynn, Casey L.; Andersson, Laila; Brain, David; Mitchell, David; Connerney, Jack; Espley, Jared R.

    2016-10-01

    Mars lacks a global intrinsic magnetic field but possesses regions of strong crustal magnetic field that are concentrated in the southern hemisphere. Previous studies have used Mars Global Surveyor or Mars Express data to show that these crustal fields influence the electron densities in the Martian ionosphere. However, many of these studies relied on remote radio occultation or radar sounding measurements and therefore relied on models to infer the crustal magnetic field strength and direction. In fall 2015 the MAVEN spacecraft passed through these crustal field regions at low altitudes, on the day side, and collected comprehensive measurements of the local plasma and magnetic field properties. The MAVEN observations therefore provide an excellent dataset with which to examine the effects of crustal fields on the ionosphere. We report on the MAVEN electron density measurements in the southern crustal field regions and discuss the influence of the magnetic field direction and topology on the dayside Martian ionosphere.

  3. A possible space-based tsunami early warning system using observations of the tsunami ionospheric hole

    Science.gov (United States)

    Kamogawa, Masashi; Orihara, Yoshiaki; Tsurudome, Chiaki; Tomida, Yuto; Kanaya, Tatsuya; Ikeda, Daiki; Gusman, Aditya Riadi; Kakinami, Yoshihiro; Liu, Jann-Yenq; Toyoda, Atsushi

    2016-12-01

    Ionospheric plasma disturbances after a large tsunami can be detected by measurement of the total electron content (TEC) between a Global Positioning System (GPS) satellite and its ground-based receivers. TEC depression lasting for a few minutes to tens of minutes termed as tsunami ionospheric hole (TIH) is formed above the tsunami source area. Here we describe the quantitative relationship between initial tsunami height and the TEC depression rate caused by a TIH from seven tsunamigenic earthquakes in Japan and Chile. We found that the percentage of TEC depression and initial tsunami height are correlated and the largest TEC depressions appear 10 to 20 minutes after the main shocks. Our findings imply that Ionospheric TEC measurement using the existing ground receiver networks could be used in an early warning system for near-field tsunamis that take more than 20 minutes to arrive in coastal areas.

  4. GPS observation of the Travelling Ionospheric disturbances from Moscow megacity.

    Science.gov (United States)

    Zakharov, V. I.; Gorchakov, G. I.

    2016-07-01

    In our work we study the effect of the Moscow metropolis on the travelling disturbances, that appear and shown at ionospheric heights above the megacity in the abnormal conditions of the summer 2010. GPS- interferometry method is carried out for regional monitoring ionospheric disturbances by using GNSS-signals, received at Moscow region Navigational and geodetic support network and the International Geophysical Survay (IGS) network. We processed over 21000 hours of individual GPS observations in the period from June to August 2010. Detected traveling ionospheric disturbances (TIDs), which are distributed by the Moscow megacity and are grouped in the ring around it. Prolonged observations (˜100 days) provide us the opportunity to "accumulate signal" and reveal the influence of urban heat island from the megacity (such as Moscow) in the surface layer of the atmosphere. We suppose,that the changes in the urban heat island can lead to the appearance of the waves and the spread of disturbances in the atmosphere upto the ionosphere. We present the empirical distribution functions of the speed, observed duration and direction of the TIDs propagation. So, it was shown that the observed TIDs are acousto-gravity waves and, in particular, may be caused by effects of the megacity. Briefly summarizing the results, it can be argued that these studies illustrate the influence of the lower atmosphere on the processes in the upper. The methods of GPS- observations using special algorithms classification allocated wave structures allow to identify the ground source for this influence. This work, alongside with the general physical, has undoubtedly important ecological value, and the results may be useful for prognostic purposes. Work was partially supported by RFBR grant 15-45-03266.

  5. Identification by selective ion monitoring of 1-methyl-1,2,3,4-tetrahydro-beta-carboline in human platelets and plasma after ethanol intake.

    Science.gov (United States)

    Peura, P; Kari, I; Airaksinen, M M

    1980-11-01

    1-Methyl-1,2,3,4-tetrahydro-beta-carboline (tetrahydroharman) has been quantified in human platelets and plasma following acute intake of ethanol using a selective ion monitoring method. It was not possible to detect this compound before ethanol intake.

  6. The nighttime winter anomaly (NWA) effect in the american sector as a consequence of interhemispheric ionospheric coupling

    Science.gov (United States)

    Förster, M.; Jakowski, N.

    1988-06-01

    The nighttime winter anomaly (NWA) effect was observed during solar minimum conditions at the American sector by means of ionospheric electron content and vertical sounding measurements in Havana (Cuba). An effective interhemispheric transport of plasma is suggested to explain enhanced northern nighttime ionization during winter solstice. To elucidate this effect, an adequate physicalnumerical model of the coupled system ionosphere-plasmasphere is presented and applied to a corotating tube of plasma at L=1.5 in the American sector. The NWA can be explained by theoretically derived higher tube content during the December solstice and accordingly by more intense nighttime fluxes from the plasmasphere, compared to the June solstice.

  7. Electrical fields in the region of the main ionospheric trough according to data from the Intercosmos-Bulgaria-1300 satellite

    Science.gov (United States)

    Stanev, G.; Teodosiev, D.; Doncheva, N.; Danov, D.; Kraleva, L.; Chmirev, V.; Isaev, N.; Pushchaev, P.

    Measurements of the constant electric field vector in the region of the midlatitude ionospheric trough have been obtained using the IESP-IPMP electromagnetic instrument complex on board the Intercosmos-Bulgaria 1300 satellite. Electromagnetic field data for the nighttime four-hour period of quiet geomagnetic conditions are analyzed, and the results are discussed. It is shown that the midlatitude plasma-density trough is due less to local electric field conditions than to plasma temperature variations and charged particle flows in other parts of the ionosphere.

  8. VLF observations of ionospheric disturbances in association with TLEs from the EuroSprite-2007 campaign

    DEFF Research Database (Denmark)

    NaitAmor, S.; AlAbdoadaim, M. A.; Cohen, M. B.

    2010-01-01

    Two Very Low Frequency (VLF) AWESOME remote sensing systems located at Algiers, Algeria (36.45°N, 3.28°E) and Sebha, Libya (27.02°N, 14.26°E) monitor VLF signal perturbations for evidence of ionospheric disturbances. During the EuroSprite-2007 campaign a number of Transient Luminous Events (TLEs...

  9. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Directory of Open Access Journals (Sweden)

    Valeriy Shchavlev

    2012-12-01

    Full Text Available Electron beam welding (EBW shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  10. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  11. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  12. Ionospheric modifications in high frequency heating experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Spencer P. [Department of Electrical and Computer Engineering, Polytechnic School of Engineering, New York University, 5 MetroTech Center, Brooklyn, New York 11201 (United States)

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  13. Ionospheric Measurements Using Environmental Sampling Techniques

    Science.gov (United States)

    Bourdeau, R. E.; Jackson, J. E.; Kane, J. A.; Serbu, G. P.

    1960-01-01

    Two rockets were flown to peak altitudes of 220 km in September 1959 to test various methods planned for future measurements of ionization parameters in the ionosphere, exosphere, and interplanetary plasma. The experiments used techniques which sample the ambient environment in the immediate vicinity of the research vehicle. Direct methods were chosen since indirect propagation techniques do not provide the temperatures of charged particles, are insensitive to ion densities, and cannot measure local electron densities under all conditions. Very encouraging results have been obtained from a preliminary analysis of data provided by one of the two flights. A new rf probe technique was successfully used to determine the electron density profile. This was indicated by its agreement with the results of a companion cw propagation experiment, particularly when the probe data were corrected for the effects of the ion sheath which surrounds the vehicle. The characteristics of this sheath were determined directly in flight by an electric field meter which provided the sheath field, and by a Langmuir probe which measured the total potential across the sheath. The electron temperatures deduced from the Langmuir probe data are greater than the neutral gas temperatures previously measured for the same location and season, but these measurements possibly were taken under different atmospheric conditions. Ion densities were calculated from the ion trap data for several altitudes ranging from 130 to 210 km and were found to be within 20 percent of the measured electron densities.

  14. Nonlinear Landau damping in the ionosphere

    Science.gov (United States)

    Kiwamoto, Y.; Benson, R. F.

    1979-01-01

    A model which explains the nonresonant waves which produce the diffuse resonance observed near 3/2 f(H) by the Alouette and Isis topside sounders, where f(H) is the ambient electron cyclotron frequency, is presented. These waves are the result of plasma wave instabilities driven by anisotropic electron velocity distributions initiated by the high-power short-duration sounder pulse. Calculations of the nonlinear wave-particle coupling coefficients show that the diffuse resonance wave can be maintained by nonlinear Landau damping of the sounder-stimulated 2f(H) wave which is observed with a time duration longer than that of the diffuse resonance wave. The time duration of the diffuse resonance is determined by the transit time of the instability-generated and nonlinearly maintained diffuse resonance wave from the remote short-lived hot region back to the antenna. The model is consistent with the Alouette/Isis observations and it demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  15. An improved coupling model for the lithosphere-atmosphere-ionosphere system (Invited)

    Science.gov (United States)

    Lee, L.; Kuo, C.; Huba, J. D.

    2013-12-01

    In order to explain the observed ionospheric TEC variations before strong earthquakes, we have developed a comprehensive model for the lithosphere-atmosphere-ionosphere (LAI) coupling [Kuo et al., 2011]. In our previous model, the dynamo current flows from the lithosphere, through the atmosphere, and into the ionosphere. The TEC variations in the ionosphere are numerically calculated based on NRL SAMI3 code. Nighttime plasma bubbles are generated for large earthquakes. However, the current in the atmosphere is obtained by first solving the electric field Ε from ▽(σΕ), where the conductivity tensor σ consists of Pedersen and Hall conductivity. The background magnetic field is assumed to be perpendicular to the horizontal plane. In the present paper, we improve the calculation of currents in the atmosphere by solving the current density J directly from the current continuity equation ▽J = 0. The currents in the atmosphere can be solved for any arbitrary angle of magnetic field, i.e., any magnetic latitude. The effects of atmospheric currents and electric fields on the ionosphere with lithosphere current source located at low magnetic altitude 15° and middle magnetic altitude 30° are obtained. For upward (downward) atmospheric currents flowing into the ionosphere, the simulation results show that the westward (eastward) electric fields dominate. At magnetic latitude 15°, the upward (downward) current causes the increase (decrease) of TEC, while the upward (downward) current causes the decrease (increase) of TEC at higher magnetic latitude 30°. The dynamo current density required to generate the same amount of TEC variation in the improved model is found to be smaller by a factor of 30 as compared to that obtained in our earlier paper. We also calculate the ionosphere dynamics with imposed zonal westward and eastward electric field based on SAMI3 code. In the nighttime ionosphere, it is found that the westward electric field may trigger two plasma bubbles

  16. Self-organization of ULF electromagnetic wave structures in the shear flow driven dissipative ionosphere

    Directory of Open Access Journals (Sweden)

    G. Aburjania

    2014-08-01

    Full Text Available This work is devoted to investigation of nonlinear dynamics of planetary electromagnetic (EM ultra-low-frequency wave (ULFW structures in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow. Planetary EM ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous geomagnetic field. The shear flow driven wave perturbations effectively extract energy of the shear flow increasing own amplitude and energy. These perturbations undergo self organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation's front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortices transfer the trapped medium particles, energy and heat. Thus they represent structural elements of turbulence in the ionosphere.

  17. Data assimilation of plasmasphere and upper ionosphere using COSMIC/GPS slant TEC measurements

    Science.gov (United States)

    Wu, M. J.; Guo, P.; Xu, T. L.; Fu, N. F.; Xu, X. S.; Jin, H. L.; Hu, X. G.

    2015-11-01

    Increasing total electron content (TEC) measurements from the low Earth orbiting satellites to Global Positioning System satellites flourish the exploration of the ionosphere and plasmasphere for decades. This paper indicates a method that 3-D Var is applied to assimilate precise orbit determination antenna TEC measurements of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites into the background global core plasma model (GCPM). The slant TEC data archived in the COSMIC Data Analysis and Archive Center from 500 km to 20,200 km are used to reconstruct a new electron density model. This model has a temporal resolution of 2 h and spatial resolutions of 2.5° in geomagnetic latitude, 5° in longitude, 50 km in the upper ionosphere, and several hundred kilometers in the plasmasphere. Preliminary results show that the data assimilation modifies the initial GCPM forecast to be better coincident with actual COSMIC measurements in internal quality check. Furthermore, independent validation with upper ionosphere-retrieved electron density and TEC of global ionosphere maps implies a reasonable improvement in the estimation of plasmaspheric electron density after the assimilation.

  18. Ionospheric data assimilation and forecasting during storms

    Science.gov (United States)

    Chartier, Alex T.; Matsuo, Tomoko; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Lu, Gang; Mitchell, Cathryn N.; Coster, Anthea J.; Paxton, Larry J.; Bust, Gary S.

    2016-01-01

    Ionospheric storms can have important effects on radio communications and navigation systems. Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition. This study assesses the effect on 1 h predictions of specifying initial ionospheric and thermospheric conditions using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison. The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance estimates. The approach is effective in correcting model biases but does not capture all the behavior of the storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

  19. Signal Propagation from the Tail to the Ionosphere

    Science.gov (United States)

    Ferdousi, B.; Raeder, J.

    2014-12-01

    The night side of magnetosphere is a very dynamic region, where substorms can release substantial amounts of energy in an explosive fashion. Even though many physical models explaining the substorm process have been proposed, the onset mechanism (initiation) of substorms is still an unsolved problem in Space Physics. It is presently not resolved whether the onset mechanism is triggered by current disruption (CD) process, by some other ideal MHD instability such as the ballooning mode, or by magnetic reconnection process (Rx). The former two processes would initiate a substorm close to Earth somewhere between 6 and 8 RE downtail, whereas a reconnection trigger is thought to occur around 20 RE. Recent observations by the THEMIS mission suggests that substorms are triggered by magnetic reconnection mechanism in mid-tail region (Angelopoulos et al., 2009 ), but those results are disputed (Lui et al., 2009). Distinguishing these processes depends critically on the correct timing of different signals in the plasma sheet and the ionosphere in order to establish a time sequence of events. This has been difficult to accomplish with data alone, since signals are sometimes ambiguous, or they have not been observed in the right locations. To investigate signal propagation paths and signal travel times, we use OpenGGCM global simulation. By launching wave pulses from various locations in the magnetosphere, we investigate the path taken by the waves and time it takes for different wave to reach the ionosphere. We find that the Tamao path is not generally preferred path for waves originating in the plasma sheet. We also find that a point source in the tail can lead to spread out signal in the ionosphere.

  20. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  1. Titan's ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby

    Directory of Open Access Journals (Sweden)

    P. Garnier

    2009-11-01

    Full Text Available The Cassini mission has provided much information about the Titan environment, with numerous low altitude encounters with the moon being always inside the magnetosphere. The only encounter taking place outside the magnetopause, in the magnetosheath, occurred the 13 June 2007 (T32 flyby. This paper is dedicated to the analysis of the Radio and Plasma Wave investigation data during this specific encounter, in particular with the Langmuir probe, providing a detailed picture of the cold plasma environment and of Titan's ionosphere with these unique plasma conditions. The various pressure terms were also calculated during the flyby. The comparison with the T30 flyby, whose geometry was very similar to the T32 encounter but where Titan was immersed in the kronian magnetosphere, reveals that the evolution of the incident plasma has a significant influence on the structure of the ionosphere, with in particular a change of the exo-ionospheric shape. The electrical conductivities are given along the trajectory of the spacecraft and the discovery of a polar plasma cavity is reported.

  2. Simultaneous Multi-angle Radar Observations of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    Science.gov (United States)

    Sheerin, J. P.; Rayyan, N.; Watanabe, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2013-10-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  3. Multi-angle Spectra Evolution of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    Science.gov (United States)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Watanabe, N.; Golkowski, M.; Bernhardt, P. A.

    2013-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  4. Robust GPS carrier tracking under ionospheric scintillation

    Science.gov (United States)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  5. Study of magnetic storm effects on the ionosphere using GPS data

    Science.gov (United States)

    Fedrizzi, M.; de Paula, E. R.; Kantor, I. J.; Batista, I. S.; Langley, R. B.; Komjathy, A.

    Despite the fact that much has been learned about Sun-Earth relationship during disturbed conditions, understanding the effects of magnetic storms on the neutral and ionized upper atmosphere is still one of the most challenging topics remaining in the physics of this atmospheric region. In order to investigate the magnetospheric and ionospheric-thermospheric coupling processes, many researchers are taking advantage of the dispersive nature of the ionosphere to compute total electron content (TEC) from Global Positioning System (GPS) dual-frequency data. Even though there are currently a large number of GPS receivers in continuous operation, they are unevenly distributed for ionosphere study purposes, being situated mostly in the Northern Hemisphere. The relatively smaller number of GPS receivers located in the Southern Hemisphere and, consequently, the reduced number of available TEC measurements, cause ionospheric modelling to be less accurate in this region. In this work, the University of New Brunswick (UNB) Ionospheric Modelling Technique, which applies a spatial linear approximation of the vertical TEC above each station using stochastic parameters in a Kalman filter estimation, has been used to describe the local time and geomagnetic latitude dependence of the TEC. Data collected from several GPS networks worldwide, including the Brazilian Network for Continuous Monitoring (RBMC), have been used along with ionosonde measurements to investigate the ionospheric response to a severe magnetic storm occurred on March 31, 2001. Data analysis revealed distinct ionospheric effects, which are shown to be dependent on the season, local time and magnetic conditions previous and during the storm period. During the March 31, 2001 storm, the global ionosphere showed a distinct behaviour over Australian/Asian and American regions, which are located at approximately opposite longitude sectors. The southward turning of the interplanetary magnetic field during the recovery

  6. Neutral Chemistry in Titan's Ionospheric Simulated Conditions

    Science.gov (United States)

    Dubois, David; Carrasco, Nathalie; Petrucciani, Marie; Tigrine, Sarah; Vettier, Ludovic

    2016-10-01

    Titan's atmospheric gas phase chemistry leading to the formation of organic aerosols can be simulated in laboratory experiments. Typically, plasma reactors can be used to achieve Titan-like conditions. Such a discharge induces dissociation and ionization processes to the N2-CH4 mixture by electron impact. This faithfully reproduces the electron energy range of magnetospheric electrons entering Titan's atmosphere and can also approximate the solar UV input at Titan's ionosphere. In this context, it is deemed necessary to apply and exploit such a technique in order to better understand the chemical reactivity occurring in Titan-like conditions.In the present work, we use the PAMPRE cold dusty plasma experiment with an N2-CH4 gaseous mixture under controlled pressure and gas influx, hence, emphasizing on the gas phase which we know is key to the formation of aerosols on Titan. Besides, an internal cryogenic trap has been developed to accumulate the gas products during their formation and facilitate their detection. These products are identified and quantified by in situ mass spectroscopy and Fourier-Transform Infrared Spectroscopy. We present here results from this experiment in two experimental conditions: 90-10% and 99-1% N2-CH4 mixing ratios respectively. We use a quantitative approach on nitriles and polycyclic aromatic hydrocarbons.Key organic compounds reacting with each other are thus detected and quantified in order to better follow the chemistry occuring in the gas phase of Titan-like conditions. Indeed, these species acting as precursors to the solid phase are assumed to be relevant in the formation of Titan's organic aerosols. These organic aerosols are what make up Titan's hazy atmosphere.

  7. Determining Ionospheric Irregularity Spectral Density Function from Japan GEONET

    Science.gov (United States)

    Lay, E. H.; Light, M. E.; Parker, P. A.; Carrano, C. S.; Haaser, R. A.

    2015-12-01

    Japan's GEONET GPS network is the densest GPS monitoring network in the world, with 1200+ receivers over the area of Japan. Measuring and calibrating the integrated total electron content (TEC) from each station has been done in many cases to provide detailed maps of ionospheric disturbances over Japan. We use TEC measurements from Japan's GEONET array to determine an empirically derived description of the 2-dimensional scale sizes of spatial irregularities above Japan. The contributions from various scale sizes will be included in a statistical description for the irregularity spectral density (ISD) function. We will compare the statistics of the spatial irregularities between calm and moderately scintillated conditions.

  8. Associating an ionospheric parameter with major earthquake occurrence throughout the world

    Indian Academy of Sciences (India)

    D Ghosh; S K Midya

    2014-02-01

    With time, ionospheric variation analysis is gaining over lithospheric monitoring in serving precursors for earthquake forecast. The current paper highlights the association of major (Ms ≥ 6.0) and medium (4.0 ≤ Ms > 6.0) earthquake occurrences throughout the world in different ranges of the Ionospheric Earthquake Parameter (IEP) where ‘Ms’ is earthquake magnitude on the Richter scale. From statistical and graphical analyses, it is concluded that the probability of earthquake occurrence is maximum when the defined parameter lies within the range of 0–75 (lower range). In the higher ranges, earthquake occurrence probability gradually decreases. A probable explanation is also suggested.

  9. Electric field and ion density anomalies in the mid latitude ionosphere: Possible connection with earthquakes?

    Science.gov (United States)

    Gousheva, M. N.; Glavcheva, R. P.; Danov, D. L.; Hristov, P. L.; Kirov, B. B.; Georgieva, K. Y.

    2008-07-01

    The problem of earthquake prediction has stimulated the search for a correlation between seismic activity and ionospherical anomalies. We found observational evidence of possible earthquake effects in the near-equatorial and low latitude ionosphere; these ionospheric anomalies have been proposed by Gousheva et al. [Gousheva, M., Glavcheva, R., Danov, D., Angelov P., Hristov, P., Influence of earthquakes on the electric field disturbances in the ionosphere on board of the Intercosmos-Bulgaria-1300 satellite. Compt. Rend. Acad. Bulg. Sci. 58 (8) 911-916, 2005a; Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B., Georgieva, K., Observation from the Intercosmos-Bulgaria-1300 satellite of anomalies associated with seismic activity. In: Poster Proceeding of 2nd International Conference on Recent Advances in Space Technologies: Space in the Service of Society, RAST '2005, June 9-11, Istanbul, Turkey, pp. 119-123, 2005b; Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B., Georgieva, K., Satellite monitoring of anomalous effects in the ionosphere probably related to strong earthquakes. Adv. Space Res. 37 (4), 660-665, 2006]. This paper presents new results from observations of the quasi-static electric field and ion density on board INTERCOSMOS-BULGARIA-1300 satellite in the mid latitude ionosphere above sources of moderate earthquakes. Data from INTERCOSMOS-BULGARIA-1300 satellite and seismic data (World Data Center, Denver, Colorado, USA) for magnetically quiet and medium quiet days are juxtaposed in time-space domain. For satellite's orbits in the time period 15.09-01.10.1981 an increase in the horizontal and vertical components of the quasi-static electric field and fluctuations of the ion density are observed over zones of forthcoming seismic events. Some similar post effects are observed too. The emphasis of this paper is put on the anomalies which specify the mid latitude ionosphere. The obtained results contain

  10. Deconvolving the lightning sferic VLF source waveform from its temporally-superposed ionospheric reflections

    Science.gov (United States)

    Jacobson, A. R.; Holzworth, R. H.; Shao, X.

    2010-12-01

    Powerful sferic signals can be used for ionospheric sounding. We have recently applied sferics from Narrow Bipolar Events (NBEs) to studying the ionospheric D-regions’ electron-density profile. The NBE sferic’s narrow temporal support allows the ionospheric reflection signal to be easily separated from the source sferic waveform, at least for ranges up to several-hundred km. Both NBEs and cloud-to-ground (CG) sferics are sufficiently powerful for practical use in ionospheric sounding of this sort. Unfortunately, the incidence of NBEs is small compared to CGs (perhaps on the order of 1:100). The Duke University group has benefited from use of CG sferics in D-region monitoring. The Duke approach does not require separation of the “source” waveform from the ionospheric reflections. By contrast, our approach relies on separating these two signal components. CG sferics observed at ranges up to several-hundred km present their own challenge. The CG source waveform is quite long compared to NBEs. Thus much of the CG source waveform is confounded by partial temporal overlap of signals reflected from the ionospheric D-region. This is especially true at night, when D-region attenuation is minimal, causing the strongest reflection amplitudes. How then can we separate the source waveform from the confounding ionospheric reflections? We will present a formal solution to this problem, based on using simultaneous sferic recordings at two or more sensor stations. The approach will be illustrated with CG recordings from multiple stations of the Los Alamos Sferic Array. Potentially the method will allow copious CG recordings to be exploited for D-region sounding as well as for gaining better “ground truth” on the CG source function.

  11. Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography

    Directory of Open Access Journals (Sweden)

    Cathryn N. Mitchell

    2009-06-01

    Full Text Available

    Abstract

    Single-frequency Global Positioning System (GPS receivers do not accurately compensate for the ionospheric delay imposed upon a GPS signal. They rely upon models to compensate for the ionosphere. This delay compensation can be improved by measuring it directly with a dual-frequency receiver, or by monitoring the ionosphere using real-time maps. This investigation uses a 4D tomographic algorithm, Multi Instrument Data Analysis System (MIDAS, to correct for the ionospheric delay and compares the results to existing single and dualfrequency techniques. Maps of the ionospheric electron density, across Europe, are produced by using data collected from a fixed network of dual-frequency GPS receivers. Single-frequency pseudorange observations are corrected by using the maps to find the excess propagation delay on the GPS L1 signals. Days during the solar maximum year 2002 and the October 2003 storm have been chosen to display results when the ionospheric delays are large and variable. Results that improve upon the use of existing ionospheric models are achieved by applying MIDAS to fixed and mobile single-frequency GPS timing solutions. The approach offers the potential for corrections to be broadcast over a local region, or provided via the internet and allows timing accuracies to within 10 ns to be achieved.



  12. Plasma levels of soluble CD27: a simple marker to monitor immune activation during potent antiretroviral therapy in HIV-1-infected subjects

    Science.gov (United States)

    DE MILITO, A; ALEMAN, S; MARENZI, R; SÖNNERBORG, A; FUCHS, D; ZAZZI, M; CHIODI, F

    2002-01-01

    Plasma levels of soluble CD27 (sCD27) are elevated in diseases characterized by T cell activation and are used as a marker of immune activation. We assessed the usefulness of determining plasma sCD27 as a marker for monitoring immune activation in HIV-1-infected patients treated with highly active antiretroviral therapy (HAART). A first cross-sectional examination of 68 HIV-1-infected and 18 normal subjects showed high levels of sCD27 in HIV-1 infection; plasma sCD27 was correlated to HIV-1 viraemia and inversely correlated to CD4+ T cell count. Twenty-six HIV-1-infected patients undergoing HAART were studied at baseline and after 6, 12, 18 and 24 months of therapy. Seven additional patients under HAART were analysed at baseline, during and after interruption of therapy. In the total population, HAART induced a significant and progressive reduction, but not a normalization, of plasma levels of sCD27 after 24 months. A full normalization of plasma sCD27 was observed in the virological responders (undetectable HIV-1 RNA at months 18 and 24) and also in patients with moderate immunodeficiency at baseline (CD4+ T cell count >200 cells/mm3). Changes in plasma neopterin paralleled the changes in sCD27 but only baseline sCD27 levels were predictive of a greater increase in CD4+ T cell count during the follow-up. Discontinuation of therapy resulted in a rapid increase of sCD27 plasma levels associated with viraemia rebound and drop in CD4+ T cell count. Our findings suggest that plasma sCD27 may represent an alternative and simple marker to monitor immune activation during potent antiretroviral therapy. HIV-1-induced immune activation can be normalized by HAART in successfully treated patients where the disease is not advanced. PMID:11966765

  13. Use of Southern California Integrated GPS Network (SCIGN) to image post-seismic perturbations of the ionosphere.

    Science.gov (United States)

    Artru, J.; Ducic, V.; Lognonné, P.

    2002-12-01

    Post-seismic perturbations in the atmosphere and ionosphere are induced by solid earth-atmosphere coupling, and can be monitored systematically after large earthquakes, e.g. using Doppler sounding. We will focus here on the capacity of short-scale imagery of the ionosphere offered by dense GPS networks. SCIGN is composed of 250 receivers in Southern California that provide continuous measurements of Total Electron Content along each receiver-satellite. A reconstruction of 2-D vertical electron content maps is performed, with a special attention paid on the accuracy and resolution achieved. We applied our technique to the detection of post-seismic ionospheric perturbations by the Hector Mine Earthquake in Southern California on October 16th, 1999. Two regimes of seismic perturbations are found, the first one related to seismic waves traveling in the ionosphere at about 3 km/s whereas the second regime would be induced by the onset of a gravity wave.

  14. Design and Application of Wuhan Ionospheric Oblique Backscattering Sounding System with the Addition of an Antenna Array (WIOBSS-AA).

    Science.gov (United States)

    Cui, Xiao; Chen, Gang; Wang, Jin; Song, Huan; Gong, Wanlin

    2016-06-15

    The Wuhan Ionospheric Oblique Backscattering Sounding System with the addition of an antenna array (WIOBSS-AA) is the newest member of the WIOBSS family. It is a multi-channel radio system using phased-array antenna technology. The transmitting part of this radio system applies an array composed of five log-periodic antennas to form five beams that span an area to the northwest of the radar site. The hardware and the antenna array of the first multi-channel ionosonde in the WIOBSS family are introduced in detail in this paper. An ionospheric detection experiment was carried out in Chongyang, Hubei province, China on 16 March 2015 to examine the performance of WIOBSS-AA. The radio system demonstrated its ability to obtain ionospheric electron density information over a wide area. The observations indicate that during the experiment, the monitored large-area ionospheric F2-layer was calm and electron density increased with decreasing latitude.

  15. Dynamic monitoring of plasma amino acids and carnitine during chemotherapy of patients with alimentary canal malignancies and its clinical value

    Directory of Open Access Journals (Sweden)

    Wang XY

    2015-08-01

    level of Val appeared to increase significantly. The levels of Asp, Glu, and Met were clearly different among patients with gastric carcinoma, rectal cancer, and colon cancer. Compared to the control group, aspartate amino transferase and alanine aminotransferase were found to be higher in eight patients with hypocarnitinemia, yet TTP, PFS, and RR (response rate were lower. No significant difference was observed for adverse reactions. The indexes in 12 patients with citrullinemia showed no difference compared with control group. All the results showed statistically significant differences (P<0.05.Conclusion: Real-time monitoring of plasma amino acids and carnitine in patients with metastatic gastrointestinal malignancies can directly reflect the body’s metabolism and nutritional status. The results provide a reference for nutrition therapy or support for patients with alimentary canal malignancies. Hypocarnitinemia is a risk factor for gastrointestinal cancer patients and affects TTP, PFS, and RR by liver function. This study shows that tandem mass spectrometry can be used to detect blood amino acids and carnitine spectrum may be used for an early diagnosis and evaluation of adverse reactions and prognosis of the digestive tract malignant tumor patients.Keywords: plasma amino acid, carnitine and acylcarnitines, gastrointestinal cancer, high-performance liquid chromatography–tandem mass spectrometry, chemotherapy

  16. A global scale picture of ionospheric peak electron density changes during geomagnetic storms

    Science.gov (United States)

    Kumar, Vickal V.; Parkinson, Murray L.

    2017-04-01

    Changes in ionospheric plasma densities can affect society more than ever because of our increasing reliance on communication, surveillance, navigation, and timing technology. Models struggle to predict changes in ionospheric densities at nearly all temporal and spatial scales, especially during geomagnetic storms. Here we combine a 50 year (1965-2015) geomagnetic disturbance storm time (Dst) index with plasma density measurements from a worldwide network of 132 vertical incidence ionosondes to develop a picture of global scale changes in peak plasma density due to geomagnetic storms. Vertical incidence ionosondes provide measurements of the critical frequency of the ionospheric F2 layer (foF2), a direct measure of the peak electron density (NmF2) of the ionosphere. By dissecting the NmF2 perturbations with respect to the local time at storm onset, season, and storm intensity, it is found that (i) the storm-associated depletions (negative storm effects) and enhancements (positive storm effects) are driven by different but related physical mechanisms, and (ii) the depletion mechanism tends to dominate over the enhancement mechanism. The negative storm effects, which are detrimental to HF radio links, are found to start immediately after geomagnetic storm onset in the nightside high-latitude ionosphere. The depletions in the dayside high-latitude ionosphere are delayed by a few hours. The equatorward expansion of negative storm effects is found to be regulated by storm intensity (farthest equatorward and deepest during intense storms), season (largest in summer), and time of day (generally deeper on the nightside). In contrast, positive storm effects typically occur on the dayside midlatitude and low-latitude ionospheric regions when the storms are in the main phase, regardless of the season. Closer to the magnetic equator, moderate density enhancements last up to 40 h during the recovery phase of equinox storms, regardless of the local time. Strikingly, high

  17. Colorimetric determinations of lithium levels in drop-volumes of human plasma for monitoring patients with bipolar mood disorder.

    Science.gov (United States)

    Qassem, M; Hickey, M; Kyriacou, P A

    2016-08-01

    Lithium preparations are considered the most reliable form of mood stabilizing medication for patients with Bipolar disorder. Nevertheless, lithium is a toxic element and its therapeutic range is extremely narrow, with levels of 0.61.0 mEq considered normal, whereas levels above 1.5 mEq are toxic. Thus unfortunately, many patients reach toxic levels that lead to unnecessary complications. It is believed that personal monitoring of blood lithium levels would benefit patients taking lithium medication. Therefore, our aim is to develop a personal lithium blood level analyzer for patients with bipolar mood disorder, and we report here our initial results of a colorimetric-based method used to test drop-volumes of human plasma that had been spiked with lithium. It was possible to validate results with standard flame photometry readings. Applying the Partial Least Squares (PLS) method on preprocessed spectra, therapeutic concentrations of lithium in a single drop can be predicted in a rapid manner, and furthermore, the calibration results were used to select effective wavelengths which were employed as inputs in Multiple Linear Regression (MLR). The simplified algorithms of this would prove useful when developing a personal lithium analyzer. Overall, both calibration methods gave high correlation and small error outputs with a R2= 0.99036 and RMSEC = 0.03778, and R2= 0.994148 and RMSEC= 0.0294404, for PLS and MLR methods, respectively. The results show that the spectrophotometric determination of blood lithium levels can be extended beyond laboratory applications and indicate the capability of this testing principle to be employed in a personal monitoring device. Future work will now focus on the technical development of a miniaturized system for measurement of lithium levels in blood with an acceptable level of accuracy and sensitivity.

  18. Connecting Stratospheric and Ionospheric Anomalies

    Science.gov (United States)

    Spraggs, M. E.; Goncharenko, L. P.; Zhang, S.; Coster, A. J.; Benkevitch, L. V.

    2014-12-01

    This study investigates any relationship between lunar phases and ionospheric anomalies that appear at low latitudes concurrently with sudden stratospheric warmings (SSWs). The study utilizes World-wide GPS Receiver Network Total Electron Content (TEC) data spanning 13 years (2001-2014) and focuses on the changes in the equatorial ionization anomaly the Western hemisphere. TEC is highly variable due to the influences of solar flux, geomagnetic activity, and seasonal variation and these influences are removed by the use of model. This empirical TEC model is a combination of linear dependencies of solar flux (F10.7) and geomagnetic activity (Ap3) with a third degree polynomial dependency for day-of-year (DOY). With such dependencies removed, the remaining TEC variation could be resolved and attributed to an appropriate mechanism. Lunar phase and apside was investigated in particular, especially the new and full moon phases during perigees when tidal forcing would be most powerful. Lunar tidal forcing on planetary waves is also examined as being physically responsible for setting up conditions that may give rise to SSWs and ionospheric anomalies. Preliminary results suggest that such anomalies may be enhanced in intensity during the full or new moon and even more so during perigee by different amounts depending on whether the SSW is a major (40-60%) or minor (20-45%) event.

  19. Active probing of space plasmas

    Science.gov (United States)

    Chan, Chang; Silevitch, Michael B.; Villalon, Elena

    1989-09-01

    During the course of the research period our efforts were focused on the following areas: (1) An examination of stochastic acceleration mechanisms in the ionosphere; (2) A study of nonequilibrium dynamics of the coupled magnetosphere - ionosphere system; and (3) Laboratory studies of active space experiments. Reprints include: Dynamics of charged particles in the near wake of a very negatively charged body -- Laboratory experiment and numerical simulation; Laboratory study of the electron temperature in the near wake of a conducting body; New model for auroral breakup during substorms; Substorm breakup on closed field lines; New model for substorm on sets -- The pre-breakup and triggering regimes; Model of the westward traveling surge and the generation of Pi 2 pulsations; Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances; Relativistic particle acceleration by obliquely propagating electromagnetic fields; Some consequences of intense electromagnetic wave injection into space plasmas.

  20. Inductive ionospheric solver for magnetospheric MHD simulations

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2011-01-01

    Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km−1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.

  1. Inductive ionospheric solver for magnetospheric MHD simulations

    Science.gov (United States)

    Vanhamäki, H.

    2011-01-01

    We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless con