WorldWideScience

Sample records for monitors drop shorts

  1. Drop impact on solid surface: Short time self-similarity

    Science.gov (United States)

    Philippi, Julien; Lagrée, Pierre-Yves; Antkowiak, Arnaud

    2014-11-01

    Drop impact on a solid surface is a problem with many industrial or environmental applications. Many studies focused on the last stages of this phenomenon as spreading or splashing. In this study we are interested in the early stages of drop impact on solid surface. Inspired by Wagner theory developed by water entry community we shown the self-similar structure of the velocity field and the pressure field. The latter is shown to exhibit a maximum not near the impact point, but rather at the contact line. The motion of the contact line is furthermore shown to exhibit a transition from ``tank treading'' motion to pure sweeping when the lamella appears. We performed numerical simulations with the open-cource code Gerris which are in good agreement with theoretical predictions. Interestingly the inviscid self-similar impact pressure and velocities depend on the self-similar variable r /√{ t} . This allows to construct a seamless uniform analytical solution encompassing both impact and viscous effects. We predict quantitatively observables of interest, such as the evolution of total and maximum viscous shear stresses and net total force. We finally demonstrate that the structure of the flow resembles a stagnation point flow unexpectedly involving r /√{ t} .

  2. [Analysis of allelic drop-out at short tandem repeat loci].

    Science.gov (United States)

    Chen, Wen-jing; Li, Yue; Wu, Xiao-jie; Zhang, Yin-ming; Liu, Su-juan; Chen, Yong; Chen, Wei-hong; Sun, Hong-yu

    2012-06-01

    To explore the cause for allelic drop-out at short tandem repeat (STR) loci upon paternity testing with a PowerPlex® 16 kit. A total of 10 642 DNA confirmed paternity testing cases (18 314 parent/child allelic transfers) were analyzed with the PowerPlex® 16 kit. Samples suspected for having allelic drop-out were verified with an Identifiler™ kit and/or locus-specific singleplex amplification systems. PCR products of null alleles were separated and directly sequenced. Eight cases of allelic drop-out were found. The overall rate of null allele in the PowerPlex® 16 system was 0.437 × 10(-3). DNA sequencing has confirmed single base variations within the binding region of published primers, in which 4 cases involved the D18S51 locus (2 cases with G>A transitions at 79 bp upstream of the repeats, 1 case with G>T transversion at 162 bp downstream of the repeats and 1 case with G>C transversion at 74 bp upstream of the repeats), 2 cases involved the D21S11 locus (1 case with C>A transversion at 17 bp upstream of the repeats and 1 case with A>G transition at 12 bp upstream of the repeats). One case involved the FGA locus (1 case with G>A transition at 142 bp downstream of the repeats) and 1 case involved TPOX locus (1 case with G>A transition at 198 bp downstream of the repeats). Base variation in the primer binding region may cause failed PCR and result in null allele reports. Alternative primer sets should be used to verify the suspected allelic drop-out. Attention should be paid to this during paternity testing and data exchange for personal identification.

  3. A study of the drop size distributions and hold-up in short Kühni columns

    Directory of Open Access Journals (Sweden)

    N. S. Oliveira

    2008-12-01

    Full Text Available The hydrodynamic behaviour of a short Kühni column was investigated under no mass transfer conditions using the binary system water (continuous phase and Exxsol D-80 (dispersed phase. The counter-current flow pattern of the liquid phases was characterised regarding the Sauter mean drop diameter, drop size distribution and hold-up; a photographic method was used to assess drop sizes. The following operating variables were studied: rotor speed, flow rate of both liquid phases and column stage. The log-normal probability density function was found to be adequate to fit the experimental drop size distributions along the column. As expected, smaller drops and more uniform drop size distributions were obtained with the increase of rotor speed and column stage number, thus indicating the predominance of drop breakage phenomena in short columns. The total hold-up was influenced mainly by rotor speed and flow rate of the dispersed phase. Recommended correlations available in the literature were found to be inadequate for predicting experimental drop sizes and hold-up, so alternative expressions, valid only for short Kühni columns, were proposed.

  4. Remote Monitoring System for Communication Base Based on Short Message

    Directory of Open Access Journals (Sweden)

    Han Yu Fu

    2013-07-01

    Full Text Available This paper presents design and development of an automatic monitoring system of communication base which is an important means to realize modernization of mobile communication base station management. Firstly, this paper proposes the architecture of the monitoring system. The proposed system consists of mocrocontrollers, sensors, GSM module and MFRC500 etc. The value of parameters is measured in the system including terminal is studied and designed, including hardware design based on embedded system and software design. Finally, communication module is discussed. The monitoring system which is designed  based on GSM SMS(short message service can improve the integrity, reliability, flexibility and intellectuality of monitoring system.

  5. Drop impact on a solid surface: short time self-similarity

    CERN Document Server

    Philippi, Julien; Antkowiak, Arnaud

    2015-01-01

    The early stages of drop impact onto a solid surface are considered. Detailed numerical simulations and detailed asymptotic analysis of the process reveal a self-similar structure both for the velocity field and the pressure field. The latter is shown to exhibit a maximum not near the impact point, but rather at the contact line. The motion of the contact line is furthermore shown to exhibit a 'tank treading' motion. These observations are apprehended at the light of a variant of Wagner theory for liquid impact. This framework offers a simple analogy where the fluid motion within the impacting drop may be viewed as the flow induced by a flat rising expanding disk. The theoretical predictions are found to be in very close agreement both qualitatively and quantitatively with the numerical observations for about three decades in time. Interestingly the inviscid self-similar impact pressure and velocities are shown to depend solely on the self-similar variables $(r/\\sqrt{t},z/\\sqrt{t})$. The structure of the boun...

  6. Monitoring Agent for Detecting Malicious Packet Drops for Wireless Sensor Networks in the Microgrid and Grid-Enabled Vehicles

    Directory of Open Access Journals (Sweden)

    Jongbin Ko

    2012-05-01

    Full Text Available Of the range of wireless communication technologies, wireless sensor networks (WSN will be one of the most appropriate technologies for the Microgrid and Grid-enabled Vehicles in the Smartgrid. To ensure the security of WSN, the detection of attacks is more efficient than their prevention because of the lack of computing power. Malicious packet drops are the easiest means of attacking WSNs. Thus, the sensors used for constructing a WSN require a packet drop monitoring agent, such as Watchdog. However, Watchdog has a partial drop problem such that an attacker can manipulate the packet dropping rate below the minimum misbehaviour monitoring threshold. Furthermore, Watchdog does not consider real traffic situations, such as congestion and collision, and so it has no way of recognizing whether a packet drop is due to a real attack or network congestion. In this paper, we propose a malicious packet drop monitoring agent, which considers traffic conditions. We used the actual traffic volume on neighbouring nodes and the drop rate while monitoring a sending node for specific period. It is more effective in real network scenarios because unlike Watchdog it considers the actual traffic, which only uses the Pathrater. Moreover, our proposed method does not require authentication, packet encryption or detection packets. Thus, there is a lower likelihood of detection failure due to packet spoofing, Man-In-the Middle attacks or Wormhole attacks. To test the suitability of our proposed concept for a series of network scenarios, we divided the simulations into three types: one attack node, more than one attack nodes and no attack nodes. The results of the simulations meet our expectations.

  7. Monitoring Agent for Detecting Malicious Packet Drops for Wireless Sensor Networks in the Microgrid and Grid-enabled Vehicles

    Directory of Open Access Journals (Sweden)

    Jongbin Ko

    2012-05-01

    Full Text Available Of the range of wireless communication technologies, wireless sensor networks (WSN will be one of the most appropriate technologies for the Microgrid and Grid‐enabled Vehicles in the Smartgrid. To ensure the security of WSN, the detection of attacks is more efficient than their prevention because of the lack of computing power. Malicious packet drops are the easiest means of attacking WSNs. Thus, the sensors used for constructing a WSN require a packet drop monitoring agent, such as Watchdog. However, Watchdog has a partial drop problem such that an attacker can manipulate the packet dropping rate below the minimum misbehaviour monitoring threshold. Furthermore, Watchdog does not consider real traffic situations, such as congestion and collision, and so it has no way of recognizing whether a packet drop is due to a real attack or network congestion. In this paper, we propose a malicious packet drop monitoring agent, which considers traffic conditions. We used the actual traffic volume on neighbouring nodes and the drop rate while monitoring a sending node for specific period. It is more effective in real network scenarios because unlike Watchdog it considers the actual traffic, which only uses the Pathrater. Moreover, our proposed method does not require authentication, packet encryption or detection packets. Thus, there is a lower likelihood of detection failure due to packet spoofing, Man‐In‐the Middle attacks or Wormhole attacks. To test the suitability of our proposed concept for a series of network scenarios, we divided the simulations into three types: one attack node, more than one attack nodes and no attack nodes. The results of the simulations meet our expectations.

  8. Film-wise and drop-wise condensation of steam on short inclined plates

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bum Jin; Kim, Min Chan [Cheju National University, Jeju (Korea, Republic of); Ahmadinejad, Mehrdad [Johnson Matthey Blount' s Court, Reading (United Kingdom)

    2008-01-15

    Film-wise and drop-wise condensation experiments were carried out at atmospheric pressure varying the condensing plates, their inclinations and orientations (upward or downward facing), and the air concentrations. As expected, dropwise condensation showed much higher heat transfer rates than corresponding film-wise condensation in the pure steam cases. However, with the presence of air, both modes of condensation showed similar heat transfer rates due to the high thermal resistance of the air-rich layer. Both modes of condensation showed systematic decreases in heat transfer as the angle of the plate to the horizontal decreased and as the concentration of air increased. A noteworthy observation made during the tests on the plate orientation showed that condensation heat transfer rates on the upward facing plate were slightly higher than those beneath the downward facing plate in the pure steam cases but that the trends were reversed in the steam and air mixture cases

  9. Deformation Monitoring of Retrofitted Short Concrete Columns with Laser Sensor

    Science.gov (United States)

    Avsar, E. Ö.; Celik, M. F.; Binbir, E.; Arslan, A. E.; Çokkeçeci, D.; Seker, D. Z.; Pala, S.

    2016-06-01

    This paper presents one of the applications of monitoring mechanical tests carried out in Construction Materials Laboratory of Istanbul Technical University. In Turkey, as in many countries, large amount of existing buildings exposed to seismic hazard, therefore various analytical and experimental studies are being conducted to contribute to the solution of the problem. One of the new generation retrofitting techniques is to strength the structural members by using Fiber Reinforcing Polymer (FRP). This study summarize the results of monitoring of deformations short concrete column samples under the incremental compression load. In this study, result of two rectangular short columns are given. One of them was tested as a reference sample, the other sample were tested after strengthening by PET reinforced polymer composite materials. Besides conventional displacement and strain measurement systems, laser scanning method was used to get three dimensional deformed shape of sample at each selected steps.

  10. Characterizing the Air Temperature Drop in Mediterranean Courtyards from Monitoring Campaigns

    Directory of Open Access Journals (Sweden)

    Enrique Ángel Rodríguez Jara

    2017-08-01

    Full Text Available As microclimate modifiers, courtyards may be a good passive strategy for enhancing thermal comfort and reducing the energy demands of buildings. Thus, it is necessary to be able to quantify their tempering effect in dominant summer climates. This is frequently done using calculation methods based on CFD, but these have the drawback of their high computational cost and complexity, so their use is limited to advanced users with a high level of knowledge. Thus, an alternative is required based on a simplified method that can explain and predict the air temperature drop in courtyards. This would be extremely useful for professionals looking for the optimal design of this kind of space through energy assessment programs integrating these methods. This study proposes a simplified method of characterization that aims to identify the functional dependencies of the decrease in air temperatures in courtyards, and so to predict the air temperature inside them from that outside, if available. From the results of several experimental campaigns, three variables have been identified that characterize the decrease in the air temperature in courtyards, all of which depend on the confinement factor of the courtyard. Finally, the proposed predictive method was validated by means of an additional monitoring campaign. The results show a good fit of the calculated values to the measured ones, R2 being equal to 0.98.

  11. Short term Heart Rate Variability to predict blood pressure drops due to standing: a pilot study.

    Science.gov (United States)

    Sannino, G; Melillo, P; Stranges, S; De Pietro, G; Pecchia, L

    2015-01-01

    Standing from a bed or chair may cause a significant lowering of blood pressure (ΔBP), which may have severe consequences such as, for example, falls in older subjects. The goal of this study was to develop a mathematical model to predict the ΔBP due to standing in healthy subjects, based on their Heart Rate Variability, recorded in the 5 minutes before standing. Heart Rate Variability was extracted from an electrocardiogram, recorded from 10 healthy subjects during the 5 minutes before standing. The blood pressure value was measured before and after rising. A mathematical model aiming to predict ΔBP based on Heart Rate Variability measurements was developed using a robust multi-linear regression and was validated with the leave-one-subject-out cross-validation technique. The model predicted correctly the ΔBP in 80% of experiments, with an error below the measurement error of sphygmomanometer digital devices (± 4.5 mmHg), a false negative rate of 7.5% and a false positive rate of 10%. The magnitude of the ΔBP was associated with a depressed and less chaotic Heart Rate Variability pattern. The present study showes that blood pressure lowering due to standing can be predicted by monitoring the Heart Rate Variability in the 5 minutes before standing.

  12. Standoff Stack Emissions Monitoring Using Short Range Lidar

    Science.gov (United States)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin

    2016-06-01

    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  13. MONITORING SHORT-TERM COSMIC-RAY SPECTRAL VARIATIONS USING NEUTRON MONITOR TIME-DELAY MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Nutaro, T.; Rujiwarodom, M.; Tooprakai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C. [Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Asavapibhop, B. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Bieber, J. W.; Clem, J.; Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Munakata, K., E-mail: david.ruf@mahidol.ac.th [Physics Department, Shinshu University, Matsumoto, Nagano 390-8621 (Japan)

    2016-01-20

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007–2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  14. Monitoring Short-term Cosmic-ray Spectral Variations Using Neutron Monitor Time-delay Measurements

    Science.gov (United States)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P.; Nutaro, T.; Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C.; Rujiwarodom, M.; Tooprakai, P.; Asavapibhop, B.; Bieber, J. W.; Clem, J.; Evenson, P.; Munakata, K.

    2016-01-01

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007-2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  15. Monitoring markers of muscle damage during a 3 week periodized drop-jump exercise programme

    DEFF Research Database (Denmark)

    Kamandulis, Sigitas; Skurvydas, Albertas; Snieckus, Audrius;

    2011-01-01

    The aim of this study was to examine changes in indirect markers of muscle damage during 3 weeks of stretch-shortening exercise with a progressively increasing load and continued modulation of various key training variables. Eight healthy untrained men performed a drop-jump programme involving a ......-stimulation-evoked torque decreased acutely after each training session relative to pre-exercise values (P ......The aim of this study was to examine changes in indirect markers of muscle damage during 3 weeks of stretch-shortening exercise with a progressively increasing load and continued modulation of various key training variables. Eight healthy untrained men performed a drop-jump programme involving...... a progressive increase in load impact with respect to the number of jumps performed, drop (platform) height, squat depth amplitude, and addition of weights. Maximal concentric and isometric knee extensor strength were assessed immediately before and 10 min after each training session. Voluntary and 100 Hz...

  16. Colorimetric determinations of lithium levels in drop-volumes of human plasma for monitoring patients with bipolar mood disorder.

    Science.gov (United States)

    Qassem, M; Hickey, M; Kyriacou, P A

    2016-08-01

    Lithium preparations are considered the most reliable form of mood stabilizing medication for patients with Bipolar disorder. Nevertheless, lithium is a toxic element and its therapeutic range is extremely narrow, with levels of 0.61.0 mEq considered normal, whereas levels above 1.5 mEq are toxic. Thus unfortunately, many patients reach toxic levels that lead to unnecessary complications. It is believed that personal monitoring of blood lithium levels would benefit patients taking lithium medication. Therefore, our aim is to develop a personal lithium blood level analyzer for patients with bipolar mood disorder, and we report here our initial results of a colorimetric-based method used to test drop-volumes of human plasma that had been spiked with lithium. It was possible to validate results with standard flame photometry readings. Applying the Partial Least Squares (PLS) method on preprocessed spectra, therapeutic concentrations of lithium in a single drop can be predicted in a rapid manner, and furthermore, the calibration results were used to select effective wavelengths which were employed as inputs in Multiple Linear Regression (MLR). The simplified algorithms of this would prove useful when developing a personal lithium analyzer. Overall, both calibration methods gave high correlation and small error outputs with a R2= 0.99036 and RMSEC = 0.03778, and R2= 0.994148 and RMSEC= 0.0294404, for PLS and MLR methods, respectively. The results show that the spectrophotometric determination of blood lithium levels can be extended beyond laboratory applications and indicate the capability of this testing principle to be employed in a personal monitoring device. Future work will now focus on the technical development of a miniaturized system for measurement of lithium levels in blood with an acceptable level of accuracy and sensitivity.

  17. Effect of short-term fatigue, induced by high-intensity exercise, on the profile of the ground reaction force during single-leg anterior drop-jumps

    Science.gov (United States)

    Watanabe, Saya; Aizawa, Junya; Shimoda, Manabu; Enomoto, Mitsuhiro; Nakamura, Tomomasa; Okawa, Atushi; Yagishita, Kazuyoshi

    2016-01-01

    [Purpose] Fatigue may be an important contributing factor to non-contact anterior cruciate ligament injuries in sports. The purpose of this study was to evaluate the effects of controlled lower limb fatigue, induced by a short-term, high-intensity exercise protocol, on the profile of the ground reaction force during landings from single-leg anterior drop-jumps. [Subjects and Methods] Twelve healthy males, 18 to 24 years old, performed single-leg anterior drop-jumps, from a 20 cm height, under two conditions, ‘fatigue’ and ‘non-fatigue’. Short-term fatigue was induced by high-intensity interval cycling on an ergometer. Effects of fatigue on peak vertical ground reaction force, time-to-peak of the vertical ground reaction force, and loading rate were evaluated by paired t-test. [Results] Fatigue shortened the time-to-peak duration of the vertical ground reaction force by 10% (non-fatigue, 44.0 ± 16.8 ms; fatigue, 39.6 ± 15.8 ms). Fatigue also yielded a 3.6% lowering in peak vertical ground reaction force and 9.4% increase in loading rate, although these effects were not significant. [Conclusion] The effects of fatigue in reducing time-to-peak of the vertical ground reaction force during single-leg anterior drop-jumps may increase the risk for non-contact anterior cruciate ligament injury in males. PMID:28174454

  18. Growth monitoring and diagnostic work-up of short stature: An International Inventorization

    NARCIS (Netherlands)

    Grote, F.K.; Oostdijk, W.; Muinck Keizer-Schrama, S.M.P.F. de; Dekker, F.W.; Verkerk, P.H.; Wit, J.M.

    2005-01-01

    Background/Aims: Growth monitoring is almost universally performed, but few data are available on which referral criteria and diagnostic work-up are used worldwide for children with short stature. Methods: A short questionnaire, containing questions on auxological screening and on diagnostic criteri

  19. Growth monitoring and diagnostic work-up of short stature: An International Inventorization

    NARCIS (Netherlands)

    Grote, F.K.; Oostdijk, W.; Muinck Keizer-Schrama, S.M.P.F. de; Dekker, F.W.; Verkerk, P.H.; Wit, J.M.

    2005-01-01

    Background/Aims: Growth monitoring is almost universally performed, but few data are available on which referral criteria and diagnostic work-up are used worldwide for children with short stature. Methods: A short questionnaire, containing questions on auxological screening and on diagnostic

  20. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    Science.gov (United States)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  1. Foraging of the Indian Short-nosed Fruit Bat Cynopterus sphinx on banana in shops and on the pieces dropped by monkeys at a temple

    Directory of Open Access Journals (Sweden)

    A. Rathinakumar

    2016-11-01

    Full Text Available The Indian Short-nosed Fruit Bat Cynopterus sphinx fed on the pieces of banana fruit that were dropped by monkeys on the tower of a temple and in nearby shops.  The monkeys obtained fruits from devotees and shop owners.  The peak number of bat visits occurred during pre- and post- midnight hours at the tower and shops, respectively, coinciding with the lights off situation and reduced human disturbance.  The bats landed on bunches of ripe bananas hanging in the front of shops.  The number of bat landings on the tower was greater than that in the shops.  The overall number of bat visits were higher during October when compared to other periods of the year.  This may be due to the occurrence of more festivals during October.  Our study is an example of opportunistic feeding, in which banana pieces dropped while monkeys were feeding on them were eaten by the bats.

  2. Using the first drop of blood for monitoring blood glucose values in critically ill patients: An observational study

    Science.gov (United States)

    Saini, Sunita; Kaur, Sukhpal; Das, Karobi; Saini, Vikas

    2016-01-01

    Context: Using the first drop or second drop of blood while measuring blood glucose (BG) values. Objective: The study was planned to compare the BG values from the first and second drops of blood. Research Settings: The study was conducted at the Main Intensive Care Unit, PGIMER, Chandigarh, India. Research Design: This study was a comparative study. Materials and Methods: Ninety patients aged 2–93 years were enrolled in this study. BG values from the first and second drops of blood were taken and compared. Statistical Analysis Used: Agreement between two drops was assessed using Bland–Altman analysis. A bias of <10 mg/dl was considered clinically acceptable. Linear regression of the mean difference (bias) with the BG readings was performed. Results: One thousand four hundred and seven pairs of BG readings were taken from the enrolled patients. BG values had a bias of 3.9 ± 14.9 mg/dl. Nearly 96.7% of BG readings were within the limits of agreement. The absolute difference between first and second drops of blood was calculated; nearly 75.4% of the readings had fallen between 0 and 10 mg/dl, i.e. clinically acceptable range. Conclusion: There is no compete concordance of values of blood glucose between the first and the second drops of blood; any of the drops can be used for measuring BG values as the difference is not statistically significant. However, if hands are visibly clean and to decrease the blood loss in the critically ill patients where the BG values are measured frequently, using the first drop of blood is advised. PMID:27994381

  3. Twin signal signature sensing: Application to shorted winding monitoring, detection and localization

    Energy Technology Data Exchange (ETDEWEB)

    Streifel, R.J.; Marks, R.J.; El-Sharkawi, A.E.; Kerszenbaum, I. [Univ. of Washington, Seattle, WA (United States)

    1995-12-31

    Using twin signal sensing we propose a method to monitor, detect and localize shorts in power system devices with windings: including rotors, transformers and motors. There has, to date, been no effective way to do so. The most obvious approach, time domain reflectometry, fails due to the reactive coupling of the windings. Twin signal signature sensing of shorts results from identical signals being simultaneously injected in both sides of the windings. The reflected signals are measured and the difference amplified to produce the signature signal. The signature signal characterizes the current state of the windings. When winding shorts are present, the electrical characteristics of the device will be different and thus the signature signal will also change. The changes in the signature signal can be monitored to detect shorted windings. While a device is in operation, the signature signals can be monitored and the development of winding shorts can be diagnosed through the process of novelty detection. After a device is cleaned or otherwise known to be functioning correctly (no winding shorts), signature signals can be collected which represent the healthy device. If a sufficient number of signals can be collected, the signal space representing healthy windings can be characterized. A detection surface can be placed around the healthy signature signals to provide a partition of the signal space into two regions: healthy and faulty. Any signature signal which is not within the healthy signature partition will indicate a faulted device.

  4. A new method to predict the epidemiology of fungal keratitis by monitoring the sales distribution of antifungal eye drops in Brazil.

    Directory of Open Access Journals (Sweden)

    Marlon Moraes Ibrahim

    Full Text Available PURPOSE: Fungi are a major cause of keratitis, although few medications are licensed for their treatment. The aim of this study is to observe the variation in commercialisation of antifungal eye drops, and to predict the seasonal distribution of fungal keratitis in Brazil. METHODS: Data from a retrospective study of antifungal eye drops sales from the only pharmaceutical ophthalmologic laboratory, authorized to dispense them in Brazil (Opthalmos were gathered. These data were correlated with geographic and seasonal distribution of fungal keratitis in Brazil between July 2002 and June 2008. RESULTS: A total of 26,087 antifungal eye drop units were sold, with a mean of 2.3 per patient. There was significant variation in antifungal sales during the year (p<0.01. A linear regression model displayed a significant association between reduced relative humidity and antifungal drug sales (R2 = 0.17,p<0.01. CONCLUSIONS: Antifungal eye drops sales suggest that there is a seasonal distribution of fungal keratitis. A possible interpretation is that the third quarter of the year (a period when the climate is drier, when agricultural activity is more intense in Brazil, suggests a correlation with a higher incidence of fungal keratitis. A similar model could be applied to other diseases, that are managed with unique, or few, and monitorable medications to predict epidemiological aspects.

  5. The Gaia spectrophotometric standard stars survey - III. Short-term variability monitoring

    CERN Document Server

    Marinoni, S; Altavilla, G; Bellazzini, M; Galleti, S; Tessicini, G; Valentini, G; Cocozza, G; Ragaini, S; Braga, V; Bragaglia, A; Federici, L; Schuster, W J; Carrasco, J M; Castro, A; Figueras, F; Jordi, C

    2016-01-01

    We present the results of the short-term constancy monitoring of candidate Gaia Spectrophotometric Standard Stars (SPSS). We obtained time series of typically 1.24 hour - with sampling periods from 1-3 min to a few hours, depending on the case - to monitor the constancy of our candidate SPSS down to 10 mmag, as required for the calibration of Gaia photometric data. We monitored 162 out of a total of 212 SPSS candidates. The observing campaign started in 2006 and finished in 2015, using 143 observing nights on nine different instruments covering both hemispheres. Using differential photometry techniques, we built light curves with a typical precision of 4 mmag, depending on the data quality. As a result of our constancy assessment, 150 SPSS candidates were validated against short term variability, and only 12 were rejected because of variability including some widely used flux standards such as BD+174708, SA 105-448, 1740346, and HD 37725.

  6. The Gaia spectrophotometric standard stars survey - III. Short-term variability monitoring

    Science.gov (United States)

    Marinoni, S.; Pancino, E.; Altavilla, G.; Bellazzini, M.; Galleti, S.; Tessicini, G.; Valentini, G.; Cocozza, G.; Ragaini, S.; Braga, V.; Bragaglia, A.; Federici, L.; Schuster, W. J.; Carrasco, J. M.; Castro, A.; Figueras, F.; Jordi, C.

    2016-11-01

    We present the results of the short-term constancy monitoring of candidate Gaia Spectrophotometric Standard Stars (SPSS). We obtained time series of typically 1.24 h - with sampling periods from 1-3 min to a few hours, depending on the case - to monitor the constancy of our candidate SPSS down to 10 mmag, as required for the calibration of Gaia photometric data. We monitored 162 out of a total of 212 SPSS candidates. The observing campaign started in 2006 and finished in 2015, using 143 observing nights on nine different instruments covering both hemispheres. Using differential photometry techniques, we built light curves with a typical precision of 4 mmag, depending on the data quality. As a result of our constancy assessment, 150 SPSS candidates were validated against short-term variability, and only 12 were rejected because of variability including some widely used flux standards such as BD+174708, SA 105-448, 1740346, and HD 37725.

  7. Soft drop

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Marzani, Simone [Institute for Particle Physics Phenomenology, Durham University,South Road, Durham DH1 3LE (United Kingdom); Soyez, Gregory [IPhT, CEA Saclay, CNRS URA 2306,F-91191 Gif-sur-Yvette (France); Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-05-29

    We introduce a new jet substructure technique called “soft drop declustering”, which recursively removes soft wide-angle radiation from a jet. The soft drop algorithm depends on two parameters — a soft threshold z{sub cut} and an angular exponent β — with the β=0 limit corresponding roughly to the (modified) mass drop procedure. To gain an analytic understanding of soft drop and highlight the β dependence, we perform resummed calculations for three observables on soft-dropped jets: the energy correlation functions, the groomed jet radius, and the energy loss due to soft drop. The β=0 limit of the energy loss is particularly interesting, since it is not only “Sudakov safe” but also largely insensitive to the value of the strong coupling constant. While our calculations are strictly accurate only to modified leading-logarithmic order, we also include a discussion of higher-order effects such as multiple emissions and (the absence of) non-global logarithms. We compare our analytic results to parton shower simulations and find good agreement, and we also estimate the impact of non-perturbative effects such as hadronization and the underlying event. Finally, we demonstrate how soft drop can be used for tagging boosted W bosons, and we speculate on the potential advantages of using soft drop for pileup mitigation.

  8. Drop Tower Physics

    Science.gov (United States)

    Dittrich, William A. Toby

    2014-10-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in The Physics Teacher1 in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at the drop tower in Bremen, Germany. Using these drop towers, one can briefly investigate various physical systems operating in this near zero-g environment. The resulting "Drop Tower Physics" is a new and exciting way to challenge students with a physical example that requires solid knowledge of many basic physics principles, and it forces them to practice the scientific method. The question is, "How would a simple toy, like a pendulum, behave when it is suddenly exposed to a zero-g environment?" The student must then postulate a particular behavior, test the hypothesis against physical principles, and if the hypothesis conforms to these chosen physical laws, the student can formulate a final conclusion. At that point having access to a drop tower is very convenient, in that the student can then experimentally test his or her conclusion. The purpose of this discussion is to explain the response of these physical systems ("toys") when the transition is made to a zero-g environment and to provide video demonstrations of this behavior to support in-class discussions of Drop Tower Physics.

  9. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  10. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  11. Soft Drop

    CERN Document Server

    Larkoski, Andrew J; Soyez, Gregory; Thaler, Jesse

    2014-01-01

    We introduce a new jet substructure technique called "soft drop declustering", which recursively removes soft wide-angle radiation from a jet. The soft drop algorithm depends on two parameters--a soft threshold $z_\\text{cut}$ and an angular exponent $\\beta$--with the $\\beta = 0$ limit corresponding roughly to the (modified) mass drop procedure. To gain an analytic understanding of soft drop and highlight the $\\beta$ dependence, we perform resummed calculations for three observables on soft-dropped jets: the energy correlation functions, the groomed jet radius, and the energy loss due to soft drop. The $\\beta = 0$ limit of the energy loss is particularly interesting, since it is not only "Sudakov safe" but also largely insensitive to the value of the strong coupling constant. While our calculations are strictly accurate only to modified leading-logarithmic order, we also include a discussion of higher-order effects such as multiple emissions and (the absence of) non-global logarithms. We compare our analytic r...

  12. Short-term memory predictions across the lifespan: monitoring span before and after conducting a task.

    Science.gov (United States)

    Bertrand, Julie Marilyne; Moulin, Chris John Anthony; Souchay, Céline

    2017-05-01

    Our objective was to explore metamemory in short-term memory across the lifespan. Five age groups participated in this study: 3 groups of children (4-13 years old), and younger and older adults. We used a three-phase task: prediction-span-postdiction. For prediction and postdiction phases, participants reported with a Yes/No response if they could recall in order a series of images. For the span task, they had to actually recall such series. From 4 years old, children have some ability to monitor their short-term memory and are able to adjust their prediction after experiencing the task. However, accuracy still improves significantly until adolescence. Although the older adults had a lower span, they were as accurate as young adults in their evaluation, suggesting that metamemory is unimpaired for short-term memory tasks in older adults. •We investigate metamemory for short-term memory tasks across the lifespan. •We find younger children cannot accurately predict their span length. •Older adults are accurate in predicting their span length. •People's metamemory accuracy was related to their short-term memory span.

  13. Near-field acousto monitoring shear interactions inside a drop of fluid: The role of the zero-slip condition

    Science.gov (United States)

    Wang, Xiaohua; Fernandez, Rodolfo; Li, Nan; Hung, Hsien-Chih; Venkataraman, Anuradha; Nordstrom, Richard; La Rosa, Andres H.

    2016-05-01

    A full understanding of nanometer-range (near-field) interactions between two sliding solid boundaries, with a mesoscopic fluid layer sandwiched in between, remains challenging. In particular, the origin of the blue-shift resonance frequency experienced by a laterally oscillating probe when approaching a substrate is still a matter of controversy. A simpler problem is addressed here, where a laterally oscillating solid probe interacts with a more sizable drop of fluid that rests on a substrate, aiming at identifying interaction mechanisms that could also be present in the near-field interaction case. It is found that the inelastic component of the probe-fluid interaction does not constitute the main energy-dissipation channel and has a weak dependence on fluid's viscosity, which is attributed to the zero-slip hydrodynamic condition. In contrast, the acoustic signal engendered by the fluid has a stronger dependence on the fluid's viscosity (attributed also to the zero-slip hydrodynamic condition) and correlates well with the probe's resonance frequency red-shift. We propose a similar mechanism happens in near field experiments, but a blue-shift in the probe's resonance results as a consequence of the fluid molecules (subjected to the zero-slip condition at both the probe and substrate boundaries) exerting instead a spring type restoring force on the probe.

  14. On-line quality monitoring in short-circuit gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Adolfsson, S. [Univ. of Karlskrono/Ronneby (Sweden). Dept. of Signal Processing]|[Lund Univ. (Sweden). Dept. of Production and Materials Engineering; Bahrami, A. [Technology Center of Kronoberg, Vaexjoe (Sweden)]|[Lund Univ. (Sweden); Bolmsjoe, G. [Lund Univ. (Sweden); Claesson, I. [Univ. of Karlskrono/Ronneby (Sweden)

    1999-02-01

    This paper addresses the problems involved in the automatic monitoring of the weld quality produced by robotized short-arc welding. A simple statistical change detection algorithm for the weld quality, the repeated Sequential Probability Ratio Test (SPRT), was used. The algorithm may similarly be viewed as a cumulative sum (CUSUM) type test, and is well-suited to detecting sudden minor changes in the monitored test statistic. The test statistic is based on the variance of the weld voltage, wherein it will be shown that the variance decreases when the welding process is not operating under optimal conditions. The performance of the algorithm is assessed through the use of experimental data. The results obtained from the algorithm show that it is possible to detect changes in weld quality automatically and on-line.

  15. Spreading of liquid drops over porous substrates.

    Science.gov (United States)

    Starov, V M; Zhdanov, S A; Kosvintsev, S R; Sobolev, V D; Velarde, M G

    2003-07-01

    the other is a combination of permeability and effective capillary pressure inside the porous layer. Two additional experiments were used for an independent determination of these two parameters. The system of differential equations does not include any fitting parameter after these two parameters were determined. Experiments were carried out on the spreading of silicone oil drops over various dry nitrocellulose microfiltration membranes (permeable in both normal and tangential directions). The time evolution of the radii of both the drop base and the wetted region inside the porous layer was monitored. In agreement with our theory all experimental data fell on two universal curves if appropriate scales were used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer using a dimensionless time scale. Theory predicts that (a). the dynamic contact angle dependence on the dimensionless time should be a universal function, (b). the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in our system. These predictions are in the good agreement with our experimental observations. In the case of spreading of liquid drops over thick porous substrates (complete wetting) the spreading process goes in two similar stages as in the case of thin porous substrates. In this case also both the drop base and the radii of the wetted area on the surface of the porous substrates were monitored. Spreading of oil drops (with a wide range of viscosities) on dry porous substrates having similar porosity and average pore size shows universal behavior as in the case of thin porous substrates. However, the spreading behavior on porous substrates having different average pore sizes deviates from the

  16. Short-term monitoring of aridland lichen cover and biomass using photography and fatty acids

    Science.gov (United States)

    Bowker, M.A.; Johnson, N.C.; Belnap, J.; Koch, G.W.

    2008-01-01

    Biological soil crust (BSC) communities (composed of lichens, bryophytes, and cyanobacteria) may be more dynamic on short-time scales than previously thought, requiring new and informative short-term monitoring techniques. We used repeat digital photography and image analysis, which revealed a change in area of a dominant BSC lichen, Collema tenax. The data generated correlated well with gross photosynthesis (r=0.57) and carotenoid content (r=0.53), two variables that would be expected to be positively related to lichen area. We also extracted fatty acids from lichen samples and identified useful phospholipid fatty acid (PLFA) indicators for the Collema mycobiont (20:1, 15:0, 23:0), and the Collema photobiont (18:3??3). The 18:3??3 correlated well with chlorophyll a (r=0.66), a more traditional proxy for cyanobacterial biomass. We also compared total PLFA as a proxy for total Collema biomass with our photographically generated areal change data, and found them to be moderately correlated (r=0.44). Areal change proved to be responsive on short-time scales, while fatty acid techniques were information-rich, providing data on biomass of lichens, and both photo- and mycobionts separately, in addition to the physiological status of the mycobiont. Both techniques should be refined and tested in field situations. ?? 2007 Elsevier Ltd. All rights reserved.

  17. Probing the Nature of Short Swift Bursts via Deep INTEGRAL Monitoring of GRB 050925

    Science.gov (United States)

    Sakamoto, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2010-01-01

    We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: 1) galactic plane (b=-0.1 deg) localization, 2) 150 msec duration, and 3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than -1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in approximately 5 Ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the H(sub II), regions (W 58) at the galactic longitude of 1=70 deg, we also discuss the source frame properties of GRB 050925.

  18. Design and Implementation of Remote/Short-range Smart Home Monitoring System Based on ZigBee and STM32

    Directory of Open Access Journals (Sweden)

    Yuanxin Lin

    2013-03-01

    Full Text Available As the continuous development of Internet of Things (IOT, life intelligent gradually. Therefore, home devices of remote/short-range monitoring become the inevitable trend of development. Based on this background, the smart home monitoring system is presented based on the STM32 and ZigBee technology. The system uses a low-power-cost STM32 processor as the main controller and porting of µC/OS-II and µC/GUI on the system is achieved. The system uses a resistive touch screen as the human-computer interaction interface, combined with the ZigBee technology to achieve a short-range monitoring of home devices. The system transplanted and modified the procedures of UIP network protocol. The master controller is connected to the Ethernet and erected a WEB server, achieved the remote monitoring of home devices. And finally give the implementation details of the prototype system and functional testing.

  19. Real-time monitoring and short-term forecasting of drought in Norway

    Science.gov (United States)

    Kwok Wong, Wai; Hisdal, Hege

    2013-04-01

    Drought is considered to be one of the most costly natural disasters. Drought monitoring and forecasting are thus important for sound water management. In this study hydrological drought characteristics applicable for real-time monitoring and short-term forecasting of drought in Norway were developed. A spatially distributed hydrological model (HBV) implemented in a Web-based GIS framework provides a platform for drought analyses and visualizations. A number of national drought maps can be produced, which is a simple and effective way to communicate drought conditions to decision makers and the public. The HBV model is driven by precipitation and air temperature data. On a daily time step it calculates the water balance for 1 x 1 km2 grid cells characterized by their elevation and land use. Drought duration and areal drought coverage for runoff and subsurface storage (sum of soil moisture and groundwater) were derived. The threshold level method was used to specify drought conditions on a grid cell basis. The daily 10th percentile thresholds were derived from seven-day windows centered on that calendar day from the reference period 1981-2010 (threshold not exceeded 10% of the time). Each individual grid cell was examined to determine if it was below its respective threshold level. Daily drought-stricken areas can then be easily identified when visualized on a map. The drought duration can also be tracked and calculated by a retrospective analysis. Real-time observations from synoptic stations interpolated to a regular grid of 1 km resolution constituted the forcing data for the current situation. 9-day meteorological forecasts were used as input to the HBV model to obtain short-term hydrological drought forecasts. Downscaled precipitation and temperature fields from two different atmospheric models were applied. The first two days of the forecast period adopted the forecasts from Unified Model (UM4) while the following seven days were based on the 9-day forecasts

  20. Monitoring polio supplementary immunization activities using an automated short text messaging system in Karachi, Pakistan

    Science.gov (United States)

    Murtaza, A; Khoja, S; Zaidi, AK; Ali, SA

    2014-01-01

    Abstract Problem Polio remains endemic in many areas of Pakistan, including large urban centres such as Karachi. Approach During each of seven supplementary immunization activities against polio in Karachi, mobile phone numbers of the caregivers of a random sample of eligible children were obtained. A computer-based system was developed to send two questions – as short message service (SMS) texts – automatically to each number after the immunization activity: “Did the vaccinator visit your house?” and “Did the enrolled child in your household receive oral polio vaccine?” Persistent non-responders were phoned directly by an investigator. Local setting A cluster sampling technique was used to select representative samples of the caregivers of young children in Karachi in general and of such caregivers in three of the six “high-risk” districts of the city where polio cases were detected in 2011. Relevant changes In most of the supplementary immunization activities investigated, vaccine coverages estimated using the SMS system were very similar to those estimated by interviewing by phone those caregivers who never responded to the SMS messages. In the high-risk districts investigated, coverages estimated using the SMS system were also similar to those recorded – using lot quality assurance sampling – by the World Health Organization. Lessons learnt For the monitoring of coverage in supplementary immunization activities, automated SMS-based systems appear to be an attractive and relatively inexpensive option. Further research is needed to determine if coverage data collected by SMS-based systems provide estimates that are sufficiently accurate. Such systems may be useful in other large-scale immunization campaigns. PMID:24700982

  1. Drop spreading with random viscosity

    CERN Document Server

    Xu, Feng

    2016-01-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated v...

  2. Analysis Methods for Post Occupancy Evaluation of Energy-Use in High Performance Buildings Using Short-Term Monitoring

    Science.gov (United States)

    Singh, Vipul

    2011-12-01

    The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of 'green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility

  3. Liquid Drop Measuring Device for Analyzing Liquid Properties

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the correlation between certain properties of liquid and the properties of the corresponding liquid drop formed under given conditions, a liquid drop measuring device is utilized to monitor the drop formation process of the liquid sample with photoelectric measuring methods. The mechanical and optical characteristic of the liquid is explored with the optical fibers from the internal of the liquid drop during its formation. The drop head capacitor is utilized to monitor the growth process of the liquid drop to gain the drop volume information related to the physical property of liquid. The unique liquid drop trace containing the integrated properties of liquid is generated, and it is proved by experiment that for different liquids their liquid drop traces are different. The analysis on liquid properties and discrimination between different liquids can be proceeded with the liquid drop trace obtained by the liquid drop measuring device.

  4. ARBRE monitoring - ecology of short rotation coppice. Four year study involving wildlife monitoring of commercial SCR plantations planted on arable land and arable control plots

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.D.; Bishop, J.D.; McKay, H.V.; Sage, R.B.

    2004-07-01

    This report summarises the findings of the UK Department of Trade and Industry (DTI) funded project monitoring wildlife within and around a number of commercially managed Short Rotation Coppice (SRC) plantations aimed at using the information gathered to assess the ecological impact of SRC plantations on the wildlife in the area. The background to the study is traced, and details are given of the monitoring programme examining the distribution of flora and fauna within the plantations, and the monitoring of birds, plants, insects and butterflies. The greater diversity of wildlife and plants in the SRC plots, the higher densities of birds, and the increasing number of butterfly species are discussed along with the increased mean number of invertebrate orders with subsequent growth of willow coppices, and the habitats at the edges of the plots and at headlands designed for access to machinery within the plots.

  5. Correlations between short-term mobile monitoring and long-term passive sampler measurements of traffic-related air pollution.

    Science.gov (United States)

    Riley, Erin A; Schaal, LaNae; Sasakura, Miyoko; Crampton, Robert; Gould, Timothy R; Hartin, Kris; Sheppard, Lianne; Larson, Timothy; Simpson, Christopher D; Yost, Michael G

    2016-05-01

    Mobile monitoring has provided a means for broad spatial measurements of air pollutants that are otherwise impractical to measure with multiple fixed site sampling strategies. However, the larger the mobile monitoring route the less temporally dense measurements become, which may limit the usefulness of short-term mobile monitoring for applications that require long-term averages. To investigate the stationarity of short-term mobile monitoring measurements, we calculated long term medians derived from a mobile monitoring campaign that also employed 2-week integrated passive sampler detectors (PSD) for NOx, Ozone, and nine volatile organic compounds at 43 intersections distributed across the entire city of Baltimore, MD. This is one of the largest mobile monitoring campaigns in terms of spatial extent undertaken at this time. The mobile platform made repeat measurements every third day at each intersection for 6-10 minutes at a resolution of 10 s. In two-week periods in both summer and winter seasons, each site was visited 3-4 times, and a temporal adjustment was applied to each dataset. We present the correlations between eight species measured using mobile monitoring and the 2-week PSD data and observe correlations between mobile NOx measurements and PSD NOx measurements in both summer and winter (Pearson's r = 0.84 and 0.48, respectively). The summer season exhibited the strongest correlations between multiple pollutants, whereas the winter had comparatively few statistically significant correlations. In the summer CO was correlated with PSD pentanes (r = 0.81), and PSD NOx was correlated with mobile measurements of black carbon (r = 0.83), two ultrafine particle count measures (r =0.8), and intermodal (1-3 μm) particle counts (r = 0.73). Principal Component Analysis of the combined PSD and mobile monitoring data revealed multipollutant features consistent with light duty vehicle traffic, diesel exhaust and crankcase blow by. These features were more consistent

  6. Position paper concerning substance related enviromental monitoring: short version; Positionspapier zum stoffbezogenen Umweltmonitoring. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.; Schroeter-Kermani, N.T.; Schulze, T.; Schwarzbauer, J.; Theobald, N.; Trenck, K.T. von der; Wagner, G.; Wiesmueller, G.A. [Arbeitskreis Umweltmonitoring in der GDCh-Fachgruppe Umweltchemie und Oekotoxikologie (Germany); Ruedel, H.; Bester, K.; Eisentraeger, A.; Franzaring, J.; Haarich, M.; Koehler, J.; Koerner, W.; Oehlmann, J.; Paschke, A.; Ricking, M.

    2008-07-01

    Background: Due to the requirements of the EU Water Framework Directive and other legal regulations (e.g., national laws like the German Federal Soil Protection Act), but also due to the implementation of the new EU chemicals management system REACh, environmental monitoring will gain increasing importance for the surveillance of environmental quality. Therefore, the Working Group on 'Environmental Monitoring' of the Division of 'Environmental Chemistry and Ecotoxicology' within the German Chemical Society has compiled a position paper on substance-related environmental monitoring. Scope: The main focus of the position paper is the coverage of aspects which have to be observed for the preparation and implementation of a monitoring program. Essential is the clear specification of the targets which determine the development of the monitoring concept and its realization. Of course, also the properties of the substances are important (e.g. lipophilicity/bioaccumulation as pre-requisite for an exposure monitoring with organisms). Moreover, important aspects of the phases sample planning, sampling, storage and transport of samples, selection of analytical methods, quality assurance as well as reporting are discussed. Perspectives: An important issue for the future is to link chemical analyses (exposure and pollution monitoring) more closely to the study of biological effects (effect monitoring) than it was the case up to now. By this means and a spatial differentiation an as comprehensive as possible evaluation of the state of an ecosystem should be obtained and the relevance of the results be improved. (orig.)

  7. Simultaneous monitoring of protein adsorption at the solid-liquid interface from sessile solution droplets by ellipsometry and axisymmetric drop shape analysis by profile

    NARCIS (Netherlands)

    Wormeester, H; Busscher, HK

    1999-01-01

    In this paper two in situ techniques are combined to simultaneously examine protein adsorption at the solid-liquid interface from sessile solution droplets. With axisymmetric drop shape analysis by profile (ADSA-P) the change in solid-liquid interfacial tension is determined, while ellipsometry is e

  8. Simultaneous monitoring of protein adsorption at the solid–liquid interface from sessile solution droplets by ellipsometry and axisymmetric drop shape analysis by profile

    NARCIS (Netherlands)

    Noordmans, Jaap; Wormeester, Herbert; Busscher, Henk J.

    1999-01-01

    In this paper two in situ techniques are combined to simultaneously examine protein adsorption at the solid–liquid interface from sessile solution droplets. With axisymmetric drop shape analysis by profile (ADSA-P) the change in solid–liquid interfacial tension is determined, while ellipsometry is e

  9. Coalescence of a Drop inside another Drop

    Science.gov (United States)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  10. Monitoring and Early Warning of Control Rod State in Rod Drop Test%落棒试验对控制棒状态的监测与预警

    Institute of Scientific and Technical Information of China (English)

    李刚; 柴伟东; 张大勇; 何庆琼

    2012-01-01

    The paper introduces the method and improvement of control rod drop test in Daya Bay and Ling'Ao NPP. The accuracy and versatility of the improved automatic calculation program is verified in recent outages, and meet the requirements of the control rod drop test. The program extends inspecting contents in the control rod drop test, provides a new method for monitoring and early warning of thecontrol rod state.%介绍了大亚湾和岭澳核电站控制棒落棒试验数据处理方法及其改进.近几次大修落棒数据的验证表明,改进后自动化程序的精确性和通用性均能够满足落棒试验的基本要求,程序扩充了落棒试验检查的项目,为控制棒状态的监测和预警提供了一种新的方法和手段.

  11. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    1999-05-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques.

  12. Eye Drop Tips

    Science.gov (United States)

    ... Involved News About Us Donate In This Section Eye Drop Tips en Español email Send this article ... the reach of children. Steps For Putting In Eye Drops: Start by tilting your head backward while ...

  13. Dilating Eye Drops

    Science.gov (United States)

    ... Corneal Abrasions Dilating Eye Drops Lazy eye (defined) Pink eye (defined) Retinopathy of Prematurity Strabismus Stye (defined) Vision ... Corneal Abrasions Dilating Eye Drops Lazy eye (defined) Pink eye (defined) Retinopathy of Prematurity Strabismus Stye (defined) Vision ...

  14. Yolk coelomitis in a white-throated monitor lizard (Varanus albigularis : short communication

    Directory of Open Access Journals (Sweden)

    B.R. Gardner

    2010-05-01

    Full Text Available Yolk coelomitis as a result of pre-ovulatory follicular stasis is a common disorder in captive reptiles, especially in captive lizards of various genera. The clinical signs are generally fairly non-specific and diagnosis is based on clinical signs together with most of the common diagnostic modalities. The condition is most likely a husbandry and environment-related reproductive disorder. It has not been reported in wild free-living specimens. This report describes the clinical presentation and post mortem lesions in a white-throated monitor lizard that died during treatment for non-specific clinical signs related to a severe yolk coelomitis.

  15. Short-wavelength light beam in situ monitoring growth of InGaN/GaN green LEDs by MOCVD.

    Science.gov (United States)

    Sun, Xiaojuan; Li, Dabing; Song, Hang; Chen, Yiren; Jiang, Hong; Miao, Guoqing; Li, Zhiming

    2012-05-31

    In this paper, five-period InGaN/GaN multiple quantum well green light-emitting diodes (LEDs) were grown by metal organic chemical vapor deposition with 405-nm light beam in situ monitoring system. Based on the signal of 405-nm in situ monitoring system, the related information of growth rate, indium composition and interfacial quality of each InGaN/GaN QW were obtained, and thus, the growth conditions and structural parameters were optimized to grow high-quality InGaN/GaN green LED structure. Finally, a green LED with a wavelength of 509 nm was fabricated under the optimal parameters, which was also proved by ex situ characterization such as high-resolution X-ray diffraction, photoluminescence, and electroluminescence. The results demonstrated that short-wavelength in situ monitoring system was a quick and non-destroyed tool to provide the growth information on InGaN/GaN, which would accelerate the research and development of GaN-based green LEDs.

  16. Satellite-based forest monitoring: spatial and temporal forecast of growing index and short-wave infrared band.

    Science.gov (United States)

    Bayr, Caroline; Gallaun, Heinz; Kleb, Ulrike; Kornberger, Birgit; Steinegger, Martin; Winter, Martin

    2016-04-18

    For detecting anomalies or interventions in the field of forest monitoring we propose an approach based on the spatial and temporal forecast of satellite time series data. For each pixel of the satellite image three different types of forecasts are provided, namely spatial, temporal and combined spatio-temporal forecast. Spatial forecast means that a clustering algorithm is used to group the time series data based on the features normalised difference vegetation index (NDVI) and the short-wave infrared band (SWIR). For estimation of the typical temporal trajectory of the NDVI and SWIR during the vegetation period of each spatial cluster, we apply several methods of functional data analysis including functional principal component analysis, and a novel form of random regression forests with online learning (streaming) capability. The temporal forecast is carried out by means of functional time series analysis and an autoregressive integrated moving average model. The combination of the temporal forecasts, which is based on the past of the considered pixel, and spatial forecasts, which is based on highly correlated pixels within one cluster and their past, is performed by functional data analysis, and a variant of random regression forests adapted to online learning capabilities. For evaluation of the methods, the approaches are applied to a study area in Germany for monitoring forest damages caused by wind-storm, and to a study area in Spain for monitoring forest fires.

  17. Multiparameter monitoring of short-term earthquake precursors and its physical basis. Implementation in the Kamchatka region

    Directory of Open Access Journals (Sweden)

    Pulinets Sergey

    2016-01-01

    Full Text Available We apply experimental approach of the multiparameter monitoring of short-term earthquake precursors which reliability was confirmed by the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC model created recently [1]. A key element of the model is the process of Ion induced Nucleation (IIN and formation of cluster ions occurring as a result of the ionization of near surface air layer by radon emanating from the Earth's crust within the earthquake preparation zone. This process is similar to the formation of droplet’s embryos for cloud formation under action of galactic cosmic rays. The consequence of this process is the generation of a number of precursors that can be divided into two groups: a thermal and meteorological, and b electromagnetic and ionospheric. We demonstrate elements of prospective monitoring of some strong earthquakes in Kamchatka region and statistical results for the Chemical potential correction parameter for more than 10 years of observations for earthquakes with M≥6. As some experimental attempt, the data of Kamchatka volcanoes monitoring will be demonstrated.

  18. Analysis of allelic drop-out at short tandem repeat loci%短串联重复序列基因座等位基因丢失现象的研究

    Institute of Scientific and Technical Information of China (English)

    陈文静; 李越; 吴小洁; 张胤鸣; 刘素娟; 陈勇; 陈维红; 孙宏钰

    2012-01-01

    [Objective]To explore the cause for allelic drop-out at short tandem repeat (STR) loci upon paternity testing with a PowerPlex(R) 16 kit.[Methods] A total of 10 642 DNA-confirmed paternity testing cases (18 314 parent/child allelic transfers) were analyzed with the PowerPlex(R) 16 kit.Samples suspected for having allelic drop-out were verified with an IdentifilerTM kit and/or locus-specific singleplex amplification systems.PCR products of null alleles were separated and directly sequenced.[Results] Eight cases of allelic drop-out were found.The overall rate of null allele in the PowerPlex(R)16 system was 0.437×10-3,DNA sequencing has confirmed single base variations within the binding region of published primers,in which 4 cases involved the D18S51 locus (2 cases with G>A transitions at 79 bp upstream of the repeats,1 case with G>T transversion at 162 bp downstream of the repeats and 1 case with G>C transversion at 74 bp upstream of the repeats),2 cases involved the D21Sll locus (1 case with C>A transversion at 17 bp upstream of the repeats and 1 case with A>G transition at 12 bp upstream of the repeats).One case involved the FGA locus (1 case with G>A transition at 142 bp downstream of the repeats) and 1 case involved TPOX locus (1 case with G>A transition at 198 bp downstream of the repeats).[Conclusion] Base variation in the primer binding region may cause tailed PCR and result in null allele reports.Alternative primer sets should be used to verify the suspected allelic drop-out.Attention should be paid to this during paternity testing and data exchange for personal identification.%目的 探讨用PowerPlex(R) 16体系短串联重复(short tandem repeat,STR)基因座分型时等位基因丢失的现象及原因.方法 分析10 642宗肯定亲权的亲子鉴定案件(涉及18 314次减数分裂),对PowerPlex(R) 16体系疑似发生等位基因丢失的样本采用IdentifilerTM体系和单基因座引物体系进行验证,分离丢失的等位基

  19. Improving medication adherence in diabetes type 2 patients through Real Time Medication Monitoring: a randomised controlled trial to evaluate the effect of monitoring patients' medication use combined with short message service (SMS) reminders.

    NARCIS (Netherlands)

    Vervloet, M.; Dijk, L. van; Santen-Reestman, J.; Vlijmen, B. van; Bouvy, M.L.; Bakker, D.H. de

    2011-01-01

    BACKGROUND: Innovative approaches are needed to support patients' adherence to drug therapy. The Real Time Medication Monitoring (RTMM) system offers real time monitoring of patients' medication use combined with short message service (SMS) reminders if patients forget to take their medication. This

  20. Improving medication adherence in diabetes type 2 patients through Real Time Medication Monitoring: a randomised controlled trial to evaluate the effect of monitoring patients' medication use combined with short message service (SMS) reminders.

    NARCIS (Netherlands)

    Vervloet, M.; Dijk, L. van; Santen-Reestman, J.; Vlijmen, B. van; Bouvy, M.L.; Bakker, D.H. de

    2011-01-01

    Background: Innovative approaches are needed to support patients' adherence to drug therapy. The Real Time Medication Monitoring (RTMM) system offers real time monitoring of patients' medication use combined with short message service (SMS) reminders if patients forget to take their medication. This

  1. Short communication: Monitoring nutritional quality of Amiata donkey milk: effects of lactation and productive season.

    Science.gov (United States)

    Martini, Mina; Altomonte, Iolanda; Salari, Federica; Caroli, Anna M

    2014-11-01

    Milk nutritional characteristics are especially interesting when donkey milk is aimed at consumption by children and the elderly. The aim of this study was to monitor the nutritional quality of Amiata donkey milk during lactation and productive season to provide information on the milk characteristics and to study action plans to improve milk yield and quality. Thirty-one pluriparous jennies belonging to the same farm were selected. Individual samples of milk from the morning milking were taken once per month starting from the d 30 of lactation until d 300. Milk yield and dry matter, fat, and ash content were constant throughout the experimental period. Milk total protein content showed a progressive decrease during the first 6 mo of lactation; after this period, the protein percentages remained constant (1.50%). Caseins and lactose were lower until d 60 of lactation and remained constant thereafter. During summer and autumn, milk yield and casein and lactose contents were higher, whereas during the spring season, higher protein and ash contents were found. The percentages of fat and dry matter were stable as were most of the minerals in the milk, except for calcium, which was higher in the spring. In conclusion, Amiata donkey milk was found to be relatively stable during lactation. This is an advantage in terms of the production and trade of a food product with consistent characteristics. The different milk yield and quality during the productive seasons were probably related to better adaptability of the animals to warm and temperate periods.

  2. A New Approach to Detection of Systematic Errors in Secondary Substation Monitoring Equipment Based on Short Term Load Forecasting.

    Science.gov (United States)

    Moriano, Javier; Rodríguez, Francisco Javier; Martín, Pedro; Jiménez, Jose Antonio; Vuksanovic, Branislav

    2016-01-12

    In recent years, Secondary Substations (SSs) are being provided with equipment that allows their full management. This is particularly useful not only for monitoring and planning purposes but also for detecting erroneous measurements, which could negatively affect the performance of the SS. On the other hand, load forecasting is extremely important since they help electricity companies to make crucial decisions regarding purchasing and generating electric power, load switching, and infrastructure development. In this regard, Short Term Load Forecasting (STLF) allows the electric power load to be predicted over an interval ranging from one hour to one week. However, important issues concerning error detection by employing STLF has not been specifically addressed until now. This paper proposes a novel STLF-based approach to the detection of gain and offset errors introduced by the measurement equipment. The implemented system has been tested against real power load data provided by electricity suppliers. Different gain and offset error levels are successfully detected.

  3. A New Approach to Detection of Systematic Errors in Secondary Substation Monitoring Equipment Based on Short Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Javier Moriano

    2016-01-01

    Full Text Available In recent years, Secondary Substations (SSs are being provided with equipment that allows their full management. This is particularly useful not only for monitoring and planning purposes but also for detecting erroneous measurements, which could negatively affect the performance of the SS. On the other hand, load forecasting is extremely important since they help electricity companies to make crucial decisions regarding purchasing and generating electric power, load switching, and infrastructure development. In this regard, Short Term Load Forecasting (STLF allows the electric power load to be predicted over an interval ranging from one hour to one week. However, important issues concerning error detection by employing STLF has not been specifically addressed until now. This paper proposes a novel STLF-based approach to the detection of gain and offset errors introduced by the measurement equipment. The implemented system has been tested against real power load data provided by electricity suppliers. Different gain and offset error levels are successfully detected.

  4. Non-invasive biomarkers for monitoring the fibrogenic process in liver: A short survey

    Institute of Scientific and Technical Information of China (English)

    Axel M Gressner; Chun-Fang Gao; Olav A Gressner

    2009-01-01

    The clinical course of chronic liver diseases is signifi-cantly dependent on the progression rate and the extent of fibrosis, i.e. the non-structured replacement of necrotic parenchyma by extracellular matrix. Fibrogenesis,i.e. the development of fibrosis can be regarded as an unlimited wound healing process, which is based on matrix (connective tissue) synthesis in activated hepatic stellate cells, fibroblasts (fibrocytes), hepatocytes and biliary epithelial cells, which are converted to matrix-producing (myo-)fibroblasts by a process de-fined as epithelial-mesenchymal transition. Blood (noninvasive) biomarkers of fibrogenesis and fibrosis can be divided into class Ⅱ and class Ⅱ analytes. Class Ⅱ biomarkers are those single tests, which are based on the pathophysiology of fibrosis, whereas class Ⅱ biomarkers are mostly multiparametric algorithms, which have been statistically evaluated with regard to the detection and activity of ongoing fibrosis. Currently available markers fulfil the criteria of ideal clinical-chemical tests only partially, but increased understanding of the complex pathogenesis of fibrosis offers additional ways for pathophysiologically well based serum (plasma) biomarkers.They include TGF-β-driven marker proteins,bone marrow-derived cells (fibrocytes), and cytokines,which govern pro- and anti-fibrotic activities. Proteomic and glycomic approaches of serum are under investigation to set up specific protein or carbohydrate profiles in patients with liver fibrosis. These and other novel parameters will supplement or eventually replace parameters will supplement or eventually replace liver biopsy/histology, high resolution imaging analysis,and elastography for the detection and monitoring of patients at risk of developing liver fibrosis.

  5. 滴眼药液监码系统的功能分析与研究%Functional Analysis and Research on the System of Monitoring Code of Eye Drops

    Institute of Scientific and Technical Information of China (English)

    王广林

    2015-01-01

    According to the "drug regulatory code production line Fu code system" requirements formulated by the State Food and drug administration, combined with Shapuaisi eye drops of actual production and management requirements, to meet the ba-sic needs of, the function of eye drop physic liquor supervision code system were analysis and research, describes the project background, research significance and system function, and discusses the design and implementation of monitoring system func-tion code.%根据国家食品药品监督管理局制定的对“药品监管码生产线赋码系统”的需求,结合莎普爱思滴眼液的实际生产情况及管理要求,在满足基本需求的基础上,对滴眼药液监码系统功能进行了分析与研究,阐述了项目的背景、研究意义以及系统的功能,并探讨了监码系统功能的设计与实现。

  6. 甲基纤维素滴眼液使用和存放过程中的微生物监测分析%Microbial monitoring analysis of methylcellulose eye drops during use and storage

    Institute of Scientific and Technical Information of China (English)

    宫瑞中; 张红; 王丽; 王峻峰; 王婧; 张琳; 冀明

    2015-01-01

    香味菌和木糖葡萄球菌.结论 防腐剂尼泊金乙酯可以降低MC滴眼液使用过程中的微生物污染率;滴眼液的常见使用环境对MC滴眼液的微生物污染情况无明显影响.MC滴眼液污染的菌群均属于大气、土壤等环境菌种,并非眼部常见致病菌.%Background It is imperative for the microbial monitor after opening the bottle of eyedrops in order to ensure the safety during use of ophthalmic solutions with multi-dose packaging.Objective This study was to research the microbiological properties and sterile duration of methylcellulose (MC) eye drops in three common environmental conditions,including room temperature condition of community,refrigeration condition of community and room temperature condition of hospital.Methods MC eye drops were assigned to the community room temperature group,community refrigeration group and hospital room temperature group,and 200 bottles of MC eye drops with or without ethylparaben were collected in each group,including sealed or unsealed drugs at average.The containers of all the eye drops were opened and the opening times were record.The drugs was admistered 1 drop for 3 times per day,with the opening period for 5-10 seconds.Then the drugs were preserved in different environments based on grouping.Microbial isolation and purification were performed by the same lab technician at 8:00 from 1 through 10 days after opening of drugs with automatic microbial analyzer.Results In the unsealed MC eye drops without ethylparaben,the bacterial positive rates were about 30% in the community room temperature group,community refrigeration group and hospital room temperature group,but no microbial colony was seen in the sealed eye drops.Ten days after opening of containers,the bacterial cultured rates were 30%,32% and 36% in the eye drops without ethylparaben in the community room temperature group,community refrigeration group and hospital room temperature group,and those in the eye drops

  7. Environmental monitoring and assessment of short-term exposures to hazardous chemicals of a sterilization process in hospital working environments.

    Directory of Open Access Journals (Sweden)

    Koda S

    1999-10-01

    Full Text Available In order to assess short-term exposures to ethylene oxide, formaldehyde and glutaraldehyde in a sterilization process, the authors conducted continuous environmental monitoring of these chemicals in the breathing zone of workers in 2 hospitals. The arithmetic mean of ethylene oxide was 1.2 ppm near unventilated cabinets housing sterilizing materials, and environmental concentrations of ethylene oxide could not be reduced under threshold limit values time weighted average by only managing general ventilation. Environmental concentration of formaldehyde was lower in a properly ventilated pathology division in which no large specimens were stored (0.3 ppm than in the pathology division where large specimens were stored (2.3 ppm. Although environmental concentrations of glutaraldehyde in an endoscopy unit with proper general ventilation were not detectable, environmental concentration levels in an endoscopy unit without general ventilation system were 0.2 and 0.5 ppm. According to the results of environmental monitoring in the breathing zone of workers, extremely high concentrations were observed in some work practices (ethylene oxide, 300 ppm; formaldehyde, 8.6 ppm; glutaraldehyde, 2.6 ppm. In order to avoid occupational exposures to these chemicals and prevent potential chronic and acute health hazards, good communications with these chemicals, good work practices, appropriate personal protective equipment, and engineering controls should be required.

  8. Drag on Sessile Drops

    Science.gov (United States)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  9. Bubble and drop interfaces

    CERN Document Server

    Miller

    2011-01-01

    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  10. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    Veen, van der Roeland Cornelis Adriaan

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study t

  11. Youth Crime Drop. Report.

    Science.gov (United States)

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  12. Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression.

    Science.gov (United States)

    Hu, Rongrong; Wang, Chenkun; Gu, Yangshun; Racette, Lyne

    2016-02-01

    Detection of progression is paramount to the clinical management of glaucoma. Our goal is to compare the performance of standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology (FDT) perimetry in monitoring glaucoma progression.Longitudinal data of paired SAP, SWAP, and FDT from 113 eyes with primary open-angle glaucoma enrolled in the Diagnostic Innovations in Glaucoma Study or the African Descent and Glaucoma Evaluation Study were included. Data from all tests were expressed in comparable units by converting the sensitivity from decibels to unitless contrast sensitivity and by expressing sensitivity values in percent of mean normal based on an independent dataset of 207 healthy eyes with aging deterioration taken into consideration. Pointwise linear regression analysis was performed and 3 criteria (conservative, moderate, and liberal) were used to define progression and improvement. Global mean sensitivity (MS) was fitted with linear mixed models.No statistically significant difference in the proportion of progressing and improving eyes was observed across tests using the conservative criterion. Fewer eyes showed improvement on SAP compared to SWAP and FDT using the moderate criterion; and FDT detected less progressing eyes than SAP and SWAP using the liberal criterion. The agreement between these test types was poor. The linear mixed model showed a progressing trend of global MS overtime for SAP and SWAP, but not for FDT. The baseline estimate of SWAP MS was significantly lower than SAP MS by 21.59% of mean normal. FDT showed comparable estimation of baseline MS with SAP.SWAP and FDT do not appear to have significant benefits over SAP in monitoring glaucoma progression. SAP, SWAP, and FDT may, however, detect progression in different glaucoma eyes.

  13. Time-lapse ERT and DTS for seasonal and short-term monitoring of an alpine river hyporheic zone

    Science.gov (United States)

    Boaga, Jacopo; Laura, Busato; Mariateresa, Perri; Giorgio, Cassiani

    2016-04-01

    The hyporheic zone (HZ) is the area located beneath and adjacent to rivers and streams, where the interactions between surface water and groundwater take place. This complex physical domain allows the transport of several substances from a stream to the unconfined aquifer below, and vice versa, thus playing a fundamental role in the river ecosystem. The importance of the hyporheic zone makes its characterization a goal shared by several disciplines, which range from applied geophysics to biogeochemistry, from hydraulics to ecology. The frontier field of HZ characterization stays in applied non-invasive methodologies as Electrical Resistivity Tomography - ERT - and Distributed Temperature Sensing - DTS. ERT is commonly applied in cross-well configuration or with a superficial electrodes deployment while DTS is used in hydro-geophysics in the last decade, revealing a wide applicability to the typical issues of this field of study. DTS for hydro-geophysics studies is based on Raman scattering and employs heat as tracer and uses a fiber-optic cable to acquire temperature values. We applied both techniques for an alpine river case studies located in Val di Sole, TN, Italy. The collected measurements allow high-resolution characterization of the hyporheic zone, overcoming the critical problem of invasive measurements under riverbeds. In this work, we present the preliminary results regarding the characterization of the hyporheic zone of the alpine river obtained combining ERT and DTS time-lapse measurements. The data collection benefits from an innovative instrumentation deployment, which consists of both an ERT multicore cable and a DTS fiber-optic located in two separated boreholes drilled 5m under the watercourse and perpendicular to it. In particular we present the first year monitoring results and a short time-lapse monitoring experiment conducted during summer 2015. The site and the results here described are part of the EU FP7 CLIMB (Climate Induced Changes on the

  14. Integration of MODIS data and Short Baseline Subset (SBAS) technique for land subsidence monitoring in Datong, China

    Science.gov (United States)

    Zhao, Chao-ying; Zhang, Qin; Yang, Chengsheng; Zou, Weibao

    2011-07-01

    Datong is located in the north of Shanxi Province, which is famous for its old-fashioned coal-mining preservation in China. Some serious issues such as land subsidence, ground fissures, mining collapse, and earthquake hazards have occurred over this area for a long time resulting in significant damages to buildings and roads. In order to monitor and mitigate these natural man-made hazards, Short Baseline Subsets (SBAS) InSAR technique with ten Envisat ASAR data is applied to detect the surface deformation over an area of thousands of square kilometers. Then, five MODIS data are used to check the atmospheric effects on InSAR interferograms. Finally, nine nonlinear land subsidence cumulative results during September 2004 and February 2008 are obtained. Based on the deformation data, three kinds of land subsidence are clearly detected, caused by mine extraction, underground water withdrawal and construction of new economic zones, respectively. The annual mean velocity of subsidence can reach 1 to 4 cm/year in different subsidence areas. A newly designed high-speed railway (HSR) with speeds of 350 km/h will cross through the Datong hi-tech zone. Special measures should be taken for the long run of this project. In addition, another two subsidence regions need further investigation to mitigate such hazards.

  15. Integration of MODIS data and short baseline subset (SBAS) technique for land subsidence monitoring in Datong, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.Y.; Zhang, Q.; Yang, C.S.; Zou, W.B. [Changan University, Xian (China)

    2011-07-15

    Datong is located in the north of Shanxi Province, which is famous for its old-fashioned coal-mining preservation in China. Some serious issues such as land subsidence, ground fissures, mining collapse, and earthquake hazards have occurred over this area for a long time resulting in significant damages to buildings and roads. In order to monitor and mitigate these natural man-made hazards, Short Baseline Subsets (SBAS) InSAR technique with ten Envisat ASAR data is applied to detect the surface deformation over an area of thousands of square kilometers. Then, five MODIS data are used to check the atmospheric effects on InSAR interferograms. Finally, nine nonlinear land subsidence cumulative results during September 2004 and February 2008 are obtained. Based on the deformation data, three kinds of land subsidence are clearly detected, caused by mine extraction, underground water withdrawal and construction of new economic zones, respectively. The annual mean velocity of subsidence can reach 1 to 4 cm/year in different subsidence areas. A newly designed high-speed railway (HSR) with speeds of 350 km/h will cross through the Datong hi-tech zone. Special measures should be taken for the long run of this project. In addition, another two subsidence regions need further investigation to mitigate such hazards.

  16. A single recessive gene conferring short leaves in romaine x Latin type lettuce (Lactuca sativa L.) crosses, and its effect on plant morphology and resistance to lettuce drop caused by Sclerotinia minor Jagger.

    Science.gov (United States)

    Understanding the relationship between plant morphology and disease resistance is crucial to successful breeding, particularly resistance to lettuce drop caused by Sclerotinia minor. Latin type lettuce cultivars are small plants with upright leaves longer than they are wide, similar to romaine type...

  17. Monitoring of residual disease and guided donor leucocyte infusion after allogeneic bone marrow transplantation by chimaerism analysis with short tandem repeats

    NARCIS (Netherlands)

    de Weger, RA; Tilanus, MGJ; Scheidel, KC; van den Tweel, JG; Verdonck, LF

    2000-01-01

    In this study, we analysed the chimaeric status of peripheral blood leucocytes (PBLs) in recipients of allogeneic bone marrow transplantation (BMT) with the use of short tandem repeat (STR) microsatellite markers for monitoring the efficacy of BMT and donor leucocyte infusions (DLIs). A set of four

  18. Rain Drop Charge Sensor

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  19. Predicting Students Drop Out: A Case Study

    Science.gov (United States)

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  20. Lambda-dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    1997-01-01

    ;rbæk's case study presented at PEPM '95, most polyvariant specializers for procedural programs operate on recursive equations. To this end, in a pre-processing phase, they lambda-lift source programs into recursive equations, As a result, residual programs are also expressed as recursive equations, often......Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all...... with dozens of parameters, which most compilers do not handle efficiently. Lambda-dropping in a post-processing phase restores their block structure and lexical scope thereby significantly reducing both the compile time and the run time of residual programs....

  1. 基于数据流聚类的手机短信监管系统%Monitoring system of short message based on data steam clustering

    Institute of Scientific and Technical Information of China (English)

    綦科; 谢冬青

    2011-01-01

    To solve the problem of personalized needs and source tracking of the short message monitoring, a scheme of monitoring system for short message based on data steam clustering is proposed in which two-layer monitoring model based on receiver and SMS center is designed. By the side of SMS center, the short message is segmented with Chinese lexical analysis system and data stream mining and Bayes classification algorithm are used to realize short message monitoring and source tracking. By the side of receiver, the personalized features library is established and Bayes classification algorithm is used to meet the personalized classification. The experimental results show that the scheme can accurately realize short message monitoring and source tracking in SMS center, and can meet the personalized monitoring needs of short message receiver.%为解决手机短信监管的个性化需求和源头追踪问题,提出了一种基于数据流聚类的手机短信实时监管系统的设计方案,设计了短信客户端和短信中心端互动的二层监管模型:在短信中心端应用中文分词算法对短信文本进行分词,采用数据流聚类算法和Bayes分类算法,利用短信中心可以集中监控发送者的优势,在实现短信的个性化监管和源头跟踪;在短信客户端建立个性化短信特征库,通过对接收的短信文本进行分词和Bayes分类,实现客户端个性化短信分类判别.实验结果表明,该方案可以较为精确的在短信中心端实现集中式短信监管和源头跟踪,同时在客户端可以满足短信接收者的个性化分类需求.

  2. The Drop Tower Bremen -An Overview

    Science.gov (United States)

    von Kampen, Peter; Könemann, Thorben; Rath, Hans J.

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100

  3. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Science.gov (United States)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  4. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  5. Automatic trace metal monitoring station use for early warning and short term events in polluted rivers: application to streams loaded by mining tailing.

    Science.gov (United States)

    Lourino-Cabana, Beatriz; Iftekhar, Shafia; Billon, Gabriel; Mikkelsen, Oyvind; Ouddane, Baghdad

    2010-10-06

    An automatic trace metal monitoring station (ATMS) system was implemented to study seasonal and short time changes in selected metal concentrations in two river courses influenced by mine drainage. High frequency monitoring over periods of months revealed daily variations of zinc, iron and copper, and also proved the use of ATMS as an early warning system in such polluted environments. Complementary measurements with ICP-MS (inductively coupled plasma-mass spectrometry), ionic chromatography, and thermodynamic equilibrium calculations also gave some new insights into the geochemical behaviour of the metals in these two rivers.

  6. Use of the short physical performance battery and step monitoring to evaluate improvements after epidural steroid injections in an elderly patient

    Directory of Open Access Journals (Sweden)

    Rene Przkora, MD PhD

    2015-06-01

    Full Text Available Treatment options for symptomatic lumbar spinal stenosis are limited in elderly patients. Injection therapies, such as lumbar epidural steroid injections, are one accepted alternative; however, objective evidence is usually not reported. We describe the use of the Short Physical Performance Battery (SPPB and step count monitoring for the first time to demonstrate physical improvements in our patient with lumbar stenosis. The patient underwent two lumbar epidural steroid injections. Pain scores, the SPPB, and step count monitoring were measured at baseline and prior to and after each injection. Improvements were noted in the numerical pain score, the walk test, and the step count.

  7. Coalescence of sessile drops

    CERN Document Server

    Nikolayev, Vadim; Pomeau, Yves; Andrieu, Claire

    2016-01-01

    We present an experimental and theoretical description of the kinetics of coalescence of two water drops on a plane solid surface. The case of partial wetting is considered. The drops are in an atmosphere of nitrogen saturated with water where they grow by condensation and eventually touch each other and coalesce. A new convex composite drop is rapidly formed that then exponentially and slowly relaxes to an equilibrium hemispherical cap. The characteristic relaxation time is proportional to the drop radius R * at final equilibrium. This relaxation time appears to be nearly 10 7 times larger than the bulk capillary relaxation time t b = R * $\\eta$/$\\sigma$, where $\\sigma$ is the gas--liquid surface tension and $\\eta$ is the liquid shear viscosity. In order to explain this extremely large relaxation time, we consider a model that involves an Arrhenius kinetic factor resulting from a liquid--vapour phase change in the vicinity of the contact line. The model results in a large relaxation time of order t b exp(L/R...

  8. Sessile drops in microgravity

    CERN Document Server

    Sparavigna, Amelia Carolina

    2013-01-01

    Interfaces with a liquid are governing several phenomena. For instance, these interfaces are giving the shape of sessile droplets and rule the spread of liquids on surfaces. Here we analyze the shape of sessile axisymmetric drops and how it is depending on the gravity, obtaining results in agreement with experimental observations under conditions of microgravity.

  9. UNSTEADY MODEL OF DROP MARANGONI MIGRATION IN MICROGRAVITY

    Institute of Scientific and Technical Information of China (English)

    耿荣慧; 胡文瑞; 金友兰; 敖超

    2002-01-01

    The experiments of drop Marangoni migration have been performed by the drop shift facility of short period of 4.5 s, and the drop accelerates gradually to an asymptotic velocity during the free fall. The unsteady and axisymmetric model is developed to study the drop migration for the case of moderate Reynolds number Re = O(1), and the results are compared with the experimental ones in the present paper. Both numerical and experimental results show that the migration velocity for moderate Reynolds number is several times smaller than that given by the linear YGB theory.

  10. Microwave Dielectric Heating of Drops in Microfluidic Devices

    CERN Document Server

    Issadore, David; Brown, Keith A; Sandberg, Lori; Weitz, David; Westervelt, Robert M

    2009-01-01

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30 degrees C above the base temperature of the microfluidi...

  11. Coalescence of Liquid Drops

    CERN Document Server

    Eggers, J; Stone, H A; Eggers, Jens; Lister, John R.; Stone, Howard A.

    1999-01-01

    When two drops of radius $R$ touch, surface tension drives an initially singular motion which joins them into a bigger drop with smaller surface area. This motion is always viscously dominated at early times. We focus on the early-time behavior of the radius $\\rmn$ of the small bridge between the two drops. The flow is driven by a highly curved meniscus of length $2\\pi \\rmn$ and width $\\Delta\\ll\\rmn$ around the bridge, from which we conclude that the leading-order problem is asymptotically equivalent to its two-dimensional counterpart. An exact two-dimensional solution for the case of inviscid surroundings [Hopper, J. Fluid Mech. ${\\bf 213}$, 349 (1990)] shows that R)]$; and thus the same is true in three dimensions. The case of coalescence with an external viscous fluid is also studied in detail both analytically and numerically. A significantly different structure is found in which the outer fluid forms a toroidal bubble of radius $\\Delta \\propto \\rmn^{3/2}$ at the meniscus and $\\rmn \\sim (t\\gamma/4\\pi\\eta)...

  12. Hydrodynamics of evaporating sessile drops

    CERN Document Server

    Barash, L Yu

    2010-01-01

    Several dynamical stages of the Marangoni convection of an evaporating sessile drop are obtained. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop and the diffusion of vapor in air. The stages are characterized by different number of vortices in the drop and the spatial location of vortices. During the early stage the array of vortices arises near a surface of the drop and induces a non-monotonic spatial distribution of the temperature over the drop surface. The number of near-surface vortices in the drop is controlled by the Marangoni cell size, which is calculated similar to that given by Pearson for flat fluid layers. The number of vortices quickly decreases with time, resulting in three bulk vortices in the intermediate stage. The vortex structure finally evolves into the single convection vortex in the drop, existing during about 1/2 of the evaporation time.

  13. Leidenfrost Drop on a Step

    Science.gov (United States)

    Lagubeau, Guillaume; Le Merrer, Marie; Clanet, Christophe; Quere, David

    2008-11-01

    When deposited on a hot plate, a water droplet evaporates quickly. However, a vapor film appears under the drop above a critical temperature, called Leidenfrost temperature, which insulates the drop from its substrate. Linke & al (2006) reported a spontaneous movement of such a drop, when deposited on a ratchet. We study here the case of a flat substrate decorated with a single micrometric step. The drop is deposited on the lower part of the plate and pushed towards the step at small constant velocity. If the kinetic energy of the drop is sufficient, it can climb up the step. In that case, depending on the substrate temperature, the drop can either be decelerated or accelerated by the step. We try to understand the dynamics of these drops, especially the regime where they accelerate. Taking advantage of this phenomenon, we could then build a multiple-step setup, making it possible for a Leidenfrost drop to climb stairs.

  14. Superheated drop neutron spectrometer

    CERN Document Server

    Das, M; Roy, B; Roy, S C; Das, Mala

    2000-01-01

    Superheated drops are known to detect neutrons through the nucleation caused by the recoil nuclei produced by the interactions of neutrons with the atoms constituting the superheated liquid molecule. A novel method of finding the neutron energy from the temperature dependence response of SDD has been developed. From the equivalence between the dependence of threshold energy for nucleation on temperature of SDD and the dependence of dE/dx of the recoil ions with the energy of the neutron, a new method of finding the neutron energy spectrum of a polychromatic as well as monochromatic neutron source has been developed.

  15. Axisymmetric model of drop spreading on a horizontal surface

    Science.gov (United States)

    Mistry, Aashutosh; Muralidhar, K.

    2015-09-01

    Spreading of an initially spherical liquid drop over a textured surface is analyzed by solving an integral form of the governing equations. The mathematical model extends Navier-Stokes equations by including surface tension at the gas-liquid boundary and a force distribution at the three phase contact line. While interfacial tension scales with drop curvature, the motion of the contact line depends on the departure of instantaneous contact angle from its equilibrium value. The numerical solution is obtained by discretizing the spreading drop into disk elements. The Bond number range considered is 0.01-1. Results obtained for sessile drops are in conformity with limiting cases reported in the literature [J. C. Bird et al., "Short-time dynamics of partial wetting," Phys. Rev. Lett. 100, 234501 (2008)]. They further reveal multiple time scales that are reported in experiments [K. G. Winkels et al., "Initial spreading of low-viscosity drops on partially wetting surfaces," Phys. Rev. E 85, 055301 (2012) and A. Eddi et al., "Short time dynamics of viscous drop spreading," Phys. Fluids 25, 013102 (2013)]. Spreading of water and glycerin drops over fully and partially wetting surfaces is studied in terms of excess pressure, wall shear stress, and the dimensions of the footprint. Contact line motion is seen to be correctly captured in the simulations. Water drops show oscillations during spreading while glycerin spreads uniformly over the surface.

  16. Short-term biological variation of clinical chemical values in dumeril's monitors (Varanus dumerili)

    DEFF Research Database (Denmark)

    Bertelsen, Mads Frost; Kjelgaard-Hansen, Mads Jens; Howell, Jennifer R.

    2007-01-01

    Plasma biochemical values are routinely used in the medical management of ill reptiles, and for monitoring the health of clinically normal animals. Laboratory tests, including clinical biochemical values, are subject to biological and analytical variation, the magnitude of which determines the ut...

  17. Short communication. Platform for bee-hives monitoring based on sound analysis. A perpetual warehouse for swarms daily activity

    Energy Technology Data Exchange (ETDEWEB)

    Atauri Mezquida, D.; Llorente Martinez, J.

    2009-07-01

    Bees and beekeeping are suffering a global crisis. Constant information on swarms conditions would be a key to study new diseases like colony collapse disorder and to develop new beekeeping tools to improve the hive management and make it more efficient. A platform for beehives monitoring is presented. It is based on the analysis of the colonies buzz which is registered by a bunch of sensors sending the data to a common database. Data obtained through sound processing shows plenty of patterns and tendency lines related to colonies activities and their conditions. It shows the potential of the sound as a swarm activity gauge. The goal of the platform is the possibility to store information about the swarms activity. The objective is to build a global net of monitored hives covering apiaries with different climates, razes and managements. (Author) 21 refs.

  18. Longitudinal impedance monitoring in the SPS with single short bunches at 26 GeV/c (RF on)

    CERN Document Server

    Bohl, T; Shaposhnikova, E; CERN. Geneva. AB Department

    2008-01-01

    In the course of monitoring the low frequency impedance of the SPS over the years usually the quadrupole frequency shift as a function of intensity is measured with single bunches at 26 GeV/c with RF on using the peak detected signal. The additional acquisition of longitudinal bunch profiles allows the evaluation of various parameters of the injected beam, details of its quadrupole oscillation and the evolution of the bunch length as a function of time. Data acquired between 1999 and 2007 will be analysed in this respect. It will be shown that the bunch length data at 600 ms indicates clearly the effect of the SPS impedance reduction programme realised in 2000/2001 and that from then on the absolute value of the quadrupole frequency shift shows a tendency to increase over the years, indicating an impedance increase. However, it does not allow to monitor unambiguously the changes from one year to the next. The reason that the quadrupole frequency shift is not very well determined is attributed to the lack of r...

  19. Monitoring of hematopoietic chimerism after transplantation for pediatric myelodysplastic syndrome: real-time or conventional short tandem repeat PCR in peripheral blood or bone marrow?

    Science.gov (United States)

    Willasch, Andre M; Kreyenberg, Hermann; Shayegi, Nona; Rettinger, Eva; Meyer, Vida; Zabel, Marion; Lang, Peter; Kremens, Bernhard; Meisel, Roland; Strahm, Brigitte; Rossig, Claudia; Gruhn, Bernd; Klingebiel, Thomas; Niemeyer, Charlotte M; Bader, Peter

    2014-12-01

    Quantitative real-time PCR (qPCR) has been proposed as a highly sensitive method for monitoring hematopoietic chimerism and may serve as a surrogate marker for the detection of minimal residual disease minimal residual disease in myelodysplastic syndrome (MDS), until specific methods of detection become available. Because a systematic comparison of the clinical utility of qPCR with the gold standard short tandem repeat (STR)-PCR has not been reported, we retrospectively measured chimerism by qPCR in 54 children transplanted for MDS in a previous study. Results obtained by STR-PCR in the initial study served as comparison. Because the detection limit of qPCR was sufficiently low to detect an autologous background, we defined the sample as mixed chimera if the proportion of recipient-derived cells exceeded .5%. The true positive rates were 100% versus 80% (qPCR versus STR-PCR, not significant), and mixed chimerism in most cases was detected earlier by qPCR than by STR-PCR (median, 31 days) when chimerism was quantified concurrently in peripheral blood and bone marrow. Both methods revealed a substantial rate of false positives (22.7% versus 13.6%, not significant), indicating the importance of serial testing of chimerism to monitor its progression. Finally, we propose criteria for monitoring chimerism in pediatric MDS with regard to the subtypes, specimens, PCR method, and timing of sampling.

  20. Investigations of levitated helium drops

    Science.gov (United States)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  1. Short-eared Owl (Asio flammeus surveys in the North American Intermountain West: utilizing citizen scientists to conduct monitoring across a broad geographic scale

    Directory of Open Access Journals (Sweden)

    Robert A. Miller

    2016-06-01

    Full Text Available The Short-eared Owl (Asio flammeus is an open-country species breeding in the northern United States and Canada, and has likely experienced a long-term, range-wide, and substantial decline. However, the cause and magnitude of the decline is not well understood. We set forth to address the first two of six previously proposed conservation priorities to be addressed for this species: (1 better define habitat use and (2 improve population monitoring. We recruited 131 volunteers to survey over 6.2 million ha within the state of Idaho for Short-eared Owls during the 2015 breeding season. We surveyed 75 transects, 71 of which were surveyed twice, and detected Short-eared Owls on 27 transects. We performed multiscale occupancy modeling to identify habitat associations, and performed multiscale abundance modeling to generate a state-wide population estimate. Our results suggest that within the state of Idaho, Short-eared Owls are more often found in areas with marshland or riparian habitat or areas with greater amounts of sagebrush habitat at the 1750 ha transect scale. At the 50 ha point scale, Short-eared Owls tend to associate positively with fallow and bare dirt agricultural land and negatively with grassland. Cropland was not chosen at the broader transect scale suggesting that Short-eared Owls may prefer more heterogeneous landscapes. On the surface our results may seem contradictory to the presumed land use by a "grassland" species; however, the grasslands of the Intermountain West, consisting largely of invasive cheatgrass (Bromus tectorum, lack the complex structure shown to be preferred by these owls. We suggest the local adaptation to agriculture represents the next best habitat to their historical native habitat preferences. Regardless, we have confirmed regional differences that should be considered in conservation planning for this species. Last, our results demonstrate the feasibility, efficiency, and effectiveness of utilizing public

  2. Advances in superheated drop (bubble) detector techniques

    Energy Technology Data Exchange (ETDEWEB)

    d`Errico, F. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Alberts, W.G.; Matzke, M. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1997-09-01

    State-of-the-art neutron dosemeters based on superheated drop (bubble) detectors are described. These are either active systems for area monitoring, which rely on the acoustical recording of drop vaporisations, or passive pen size ones for personal dosimetry, based on optical bubble counting. The technological solutions developed for the construction of robust devices for health physics applications are described with special emphasis on methods adopted to reduce mechanical shock and temperature sensitivity of the detectors. Finally, a review is given of some current research activities. In particular, a new approach to neutron spectrometry is presented which relies on the thermal effects for the definition of the response matrix of the system. (author).

  3. Gas Pressure-Drop Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  4. Pressure drop in contraction flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) page 178. DPL gives an equation for the pressure drop in a tapered (and circular) contraction, valid only at low angles. Here the general definition of contraction flow (the Bagley correction) and a more general method to find...... the pressure drop in a contraction are given....

  5. The importance of monitoring metabolic recovery in the coral Acropora cervicornis after short-term exposure to drilling muds: Calcification rate and protein concentration

    Science.gov (United States)

    Kendall, J. J.; Powell, E. N.; Connor, S. J.; Bright, T. J.; Zastrow, C. E.

    1984-04-01

    The effect of used drilling muds on coral health was examined by monitoring changes in calcification rate and soluble tissue protein concentration in the coral Acropora cervicornis. Exposure to 25 ppm (v/v) of one mud for 24 h reduced calcification rate in the growing tips by as much as 62%. In recovery experiments, corals were exposed to drilling muds for 24 h; some of them were allowed to recover in clean seawater for 48 h. After the 24-hour exposure, calcification rates were significantly less than those of the controls. After a 48-hour recovery period, calcification rates returned to control levels for one mud but were still significantly below control levels for another. The results indicate that the capacity for recovery after exposure cannot be predicted from the results of experiments on exposure only. Recovery capacity must be independently verified for all studies on the effects of short-term exposure to drilling muds.

  6. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Eric; Briggs, Michael S. [University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Connaughton, Valerie [Universities Space Research Association, Science and Technology Institute, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Zhang, Bin-Bin [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Lien, Amy [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Goldstein, Adam [NASA Postdoctoral Program, Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pelassa, Veronique [Smithsonian Astrophysical Observatory, P.O. Box 97, Amado, AZ 85645 (United States); Troja, Eleonora, E-mail: eb0016@uah.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-20

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors.

  7. Do the Fermi Gamma-Ray Burst Monitor and Swift Burst Alert Telescope see the Same Short Gamma-Ray Bursts?

    CERN Document Server

    Burns, Eric; Zhang, Bin-Bin; Lien, Amy; Briggs, Michael S; Goldstein, Adam; Pelassa, Veronique; Troja, Eleonora

    2015-01-01

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field-of-view, and that the Fermi GBM SGRB detection threshold remains flatter across its field-of-view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and...

  8. Capturing the sensitivity of land-use regression models to short-term mobile monitoring campaigns using air pollution micro-sensors.

    Science.gov (United States)

    Minet, L; Gehr, R; Hatzopoulou, M

    2017-11-01

    The development of reliable measures of exposure to traffic-related air pollution is crucial for the evaluation of the health effects of transportation. Land-use regression (LUR) techniques have been widely used for the development of exposure surfaces, however these surfaces are often highly sensitive to the data collected. With the rise of inexpensive air pollution sensors paired with GPS devices, we witness the emergence of mobile data collection protocols. For the same urban area, can we achieve a 'universal' model irrespective of the number of locations and sampling visits? Can we trade the temporal representation of fixed-point sampling for a larger spatial extent afforded by mobile monitoring? This study highlights the challenges of short-term mobile sampling campaigns in terms of the resulting exposure surfaces. A mobile monitoring campaign was conducted in 2015 in Montreal; nitrogen dioxide (NO2) levels at 1395 road segments were measured under repeated visits. We developed LUR models based on sub-segments, categorized in terms of the number of visits per road segment. We observe that LUR models were highly sensitive to the number of road segments and to the number of visits per road segment. The associated exposure surfaces were also highly dissimilar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Short-term use of continuous glucose monitoring system adds to glycemic control in young type 1 diabetes mellitus patients in the long run: A clinical trial

    Directory of Open Access Journals (Sweden)

    Bukara-Radujković Gordana

    2011-01-01

    Full Text Available Background/Aim. Balancing strict glycemic control with setting realistic goals for each individual child and family can optimize growth, ensure normal pubertal development and emotional maturation, and control long term complications in children with type 1 diabetes (T1DM. The aim of this study was to evaluate the efficacy of short-term continuous glucose monitoring system (CGMS application in improvement of glycemic control in pediatric type 1 diabetes mellitus (T1DM patients. Methods. A total of 80 pediatric T1DM patients were randomly assigned into the experimental and the control group. The experimental group wore CGMS sensor for 72 hours at the beginning of the study. Self-monitored blood glucose (SMBG levels and hemoglobin A1c (HbA1c levels were obtained for both groups at baseline, and at 3 and 6 months. Results. There was a significant improvement in HbA1c (p < 0.001, in both the experimental and the control group, without a significant difference between the groups. Nevertheless, after 6 months the improvement of mean glycemia was noticed only in the experimental group. This finding was accompanied with a decrease in the number of hyperglycemic events and no increase in the number of hypoglycemic events in the experimental group. Conclusions. The results suggest that the CGMS can be considered as a valuable tool in treating pediatric T1DM patients, however further research is needed to more accurately estimate to what extent, if any, it outperforms intensive self-monitoring of blood glucose.

  10. Liquid drops on soft solids

    Science.gov (United States)

    Lubbers, Luuk A.; Weijs, Joost H.; Das, Siddhartha; Botto, Lorenzo; Andreotti, Bruno; Snoeijer, Jacco H.

    2014-03-01

    A sessile drop can elastically deform a substrate by the action of capillary forces. The typical size of the deformation is given by the ratio of surface tension and the elastic modulus, γ / E , which can reach up to 10-100 microns for soft elastomers. In this talk we theoretically show that the contact angles of drops on such a surface exhibit two transitions when increasing γ / E : (i) the microsocopic geometry of the contact line first develops a Neumann-like cusp when γ / E is of the order of few nanometers, (ii) the macroscopic angle of the drop is altered only when γ / E reaches the size of the drop. Using the same framework we then show that two neighboring drops exhibit an effective interaction, mediated by the deformation of the elastic medium. This is in analogy to the well-known Cheerios effect, where small particles at a liquid interface attract each other due to the meniscus deformations. Here we reveal the nature of drop-drop interactions on a soft substrate by combining numerical and analytical calculations.

  11. Remote monitoring of inhaled bronchodilator use and weekly feedback about asthma management: an open-group, short-term pilot study of the impact on asthma control.

    Directory of Open Access Journals (Sweden)

    David Van Sickle

    Full Text Available OBJECTIVE: Adequate symptom control is a problem for many people with asthma. We asked whether weekly email reports on monitored use of inhaled, short-acting bronchodilators might improve scores on composite asthma-control measures. METHODS: Through an investigational electronic medication sensor attached to each participant's inhaler, we monitored 4 months' use of inhaled, short-acting bronchodilators. Participants completed surveys, including the Asthma Control Test(TM (ACT, to assess asthma control at entry and monthly thereafter. After the first month, participants received weekly email reports for 3 months. The reports summarized inhaled bronchodilator use during the preceding week and provided suggestions derived from National Asthma Education and Prevention Program (NAEPP guidelines. Paired t-tests and random-effects mixed models were implemented to assess changes in primary asthma endpoints. RESULTS: Thirty individuals participated in the 4-month study; 29 provided complete asthma control information. Mean age was 36.8 years (range: 19-74 years; 52% of respondents were female. Mean ACT scores were 17.6 (Standard Deviation [SD]  = 3.35 at entry and 18.4 (SD = 3.60 at completion of the first month. No significant difference appeared between ACT values at entry and completion of the first month (p = 0.66; however, after participants began receiving email reports and online information about their inhaler use, mean ACT scores increased 1.40 points (95% CI: 0.61, 2.18 for each subsequent study month. Significant decreases occurred in 2-week histories of daytime symptoms (β = -1.35, 95% CI: -2.65, -0.04 and nighttime symptoms (β = -0.84, 95% CI: -1.25, -0.44; no significant change in activity limitation (β = -0.21, 95% CI: -0.69, 0.26 was observed. Participants reported increased awareness and understanding of asthma patterns, level of control, bronchodilator use (timing, location and triggers, and improved

  12. Remote monitoring of inhaled bronchodilator use and weekly feedback about asthma management: an open-group, short-term pilot study of the impact on asthma control.

    Science.gov (United States)

    Van Sickle, David; Magzamen, Sheryl; Truelove, Shaun; Morrison, Teresa

    2013-01-01

    Adequate symptom control is a problem for many people with asthma. We asked whether weekly email reports on monitored use of inhaled, short-acting bronchodilators might improve scores on composite asthma-control measures. Through an investigational electronic medication sensor attached to each participant's inhaler, we monitored 4 months' use of inhaled, short-acting bronchodilators. Participants completed surveys, including the Asthma Control Test(TM) (ACT), to assess asthma control at entry and monthly thereafter. After the first month, participants received weekly email reports for 3 months. The reports summarized inhaled bronchodilator use during the preceding week and provided suggestions derived from National Asthma Education and Prevention Program (NAEPP) guidelines. Paired t-tests and random-effects mixed models were implemented to assess changes in primary asthma endpoints. Thirty individuals participated in the 4-month study; 29 provided complete asthma control information. Mean age was 36.8 years (range: 19-74 years); 52% of respondents were female. Mean ACT scores were 17.6 (Standard Deviation [SD]  = 3.35) at entry and 18.4 (SD = 3.60) at completion of the first month. No significant difference appeared between ACT values at entry and completion of the first month (p = 0.66); however, after participants began receiving email reports and online information about their inhaler use, mean ACT scores increased 1.40 points (95% CI: 0.61, 2.18) for each subsequent study month. Significant decreases occurred in 2-week histories of daytime symptoms (β = -1.35, 95% CI: -2.65, -0.04) and nighttime symptoms (β = -0.84, 95% CI: -1.25, -0.44); no significant change in activity limitation (β = -0.21, 95% CI: -0.69, 0.26) was observed. Participants reported increased awareness and understanding of asthma patterns, level of control, bronchodilator use (timing, location) and triggers, and improved preventive practices. Weekly email reports and

  13. Excited Sessile Drops Perform Harmonically

    CERN Document Server

    Chang, Chun-Ti; Steen, Paul H

    2013-01-01

    In our fluid dynamics video, we demonstrate our method of visualizing and identifying various mode shapes of mechanically oscillated sessile drops. By placing metal mesh under an oscillating drop and projecting light from below, the drop's shape is visualized by the visually deformed mesh pattern seen in the top view. The observed modes are subsequently identified by their number of layers and sectors. An alternative identification associates them with spherical harmonics, as demonstrated in the tutorial. Clips of various observed modes are presented, followed by a 10-second quiz of mode identification.

  14. MHD pressure drop in ferritic pipes of fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, J.; Buehler, Leo E-mail: leo.buehler@iket.fzk.de; Messadek, K.; Stieglitz, R

    2003-09-01

    Magnetohydrodynamic flows in pipes of ferromagnetic material is an important issue for liquid metal blanket concepts using MANET as wall material. Fusion relevant magnetic fields of 4-8 T cause high pressure drop in the blanket header where a massive structure of ferromagnetic material exists. It is briefly outlined that in the blanket the reduction of pressure drop due to magnetic shielding is limited to about 10%. Remarkable reduction of pressure drop is possible by means of electrical insulation that prevents currents from short-circuiting through the very thick walls of the headers. Direct contact of the insulating material with the liquid metal is excluded by using metallic liners. Results are reported on the fabrication of such a test section and corresponding pressure drop measurements confirm the effective contribution of the electrical decoupling.

  15. 45-FOOT HIGH DROP TOWER

    Data.gov (United States)

    Federal Laboratory Consortium — The Drop Tower is used to simulate and measure the impact shocks that are exerted on parachute loads when they hit the ground. It is also used for HSL static lift to...

  16. Probable warfarin interaction with menthol cough drops.

    Science.gov (United States)

    Coderre, Karen; Faria, Claudio; Dyer, Earl

    2010-01-01

    Warfarin is a widely used and effective oral anticoagulant; however, the agent has an extensive drug and food interaction profile. We describe a 46-year-old African-American man who was receiving warfarin for a venous thromboembolism and experienced a decrease in his international normalized ratio (INR). No corresponding reduction had been made in his warfarin dosage, and no changes had been made in his concomitant drug therapy or diet. The patient's INR fell from a therapeutic value of 2.6 (target range 2-3) to 1.6 while receiving a weekly warfarin dose of 50 mg. His INR remained stable at 1.6 for 3 weeks despite incremental increases in his warfarin dose. The patient reported that he had been taking 8-10 menthol cough drops/day due to dry conditions at his workplace during the time period that the INR decreased. Five days after discontinuing the cough drops, his INR increased from 1.6 to 2.9. Over the subsequent 5 weeks, his INR was stabilized at a much lower weekly warfarin dose of 40 mg. Use of the Naranjo adverse drug reaction probability scale indicated that the decreased INR was probably related to the concomitant use of menthol cough drops during warfarin therapy. The mechanism for this interaction may be related to the potential for menthol to affect the cytochrome P450 system as an inducer and inhibitor of certain isoenzymes that would potentially interfere with the metabolism of warfarin. To our knowledge, this is the second case report of an interaction between warfarin and menthol. Patients receiving warfarin should be closely monitored, as they may choose to take over-the-counter products without considering the potential implications, and counseled about a possible interaction with menthol cough drops.

  17. Single-molecule enzymology based on the principle of the Millikan oil drop experiment.

    Science.gov (United States)

    Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2014-03-01

    The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity.

  18. Improving medication adherence in diabetes type 2 patients through Real Time Medication Monitoring: a Randomised Controlled Trial to evaluate the effect of monitoring patients' medication use combined with short message service (SMS reminders

    Directory of Open Access Journals (Sweden)

    Bouvy Marcel L

    2011-01-01

    Full Text Available Abstract Background Innovative approaches are needed to support patients' adherence to drug therapy. The Real Time Medication Monitoring (RTMM system offers real time monitoring of patients' medication use combined with short message service (SMS reminders if patients forget to take their medication. This combination of monitoring and tailored reminders provides opportunities to improve adherence. This article describes the design of an intervention study aimed at evaluating the effect of RTMM on adherence to oral antidiabetics. Methods/Design Randomised Controlled Trial (RCT with two intervention arms and one control arm involving diabetes type 2 patients with suboptimal levels of adherence to oral antidiabetics (less than 80% based on pharmacy refill data. Patients in the first intervention arm use RTMM including SMS reminders and a personal webpage where they can monitor their medication use. Patients in the second intervention arm use RTMM without SMS reminders or webpage access. Patients in the control arm are not exposed to any intervention. Patients are randomly assigned to one of the three arms. The intervention lasts for six months. Pharmacy refill data of all patients are available from 11 months before, until 11 months after the start of the intervention. Primary outcome measure is adherence to oral antidiabetics calculated from: 1 data collected with RTMM, as a percentage of medication taken as prescribed, and as percentage of medication taken within the correct time interval, 2 refill data, taking the number of days for which oral antidiabetics are dispensed during the study period divided by the total number of days of the study period. Differences in adherence between the intervention groups and control group are studied using refill data. Differences in adherence between the two intervention groups are studied using RTMM data. Discussion The intervention described in this article consists of providing RTMM to patients with

  19. Why Do Higher Education Students Drop Out? Evidence from Spain

    Science.gov (United States)

    Lassibille, Gerard; Gomez, Lucia Navarro

    2008-01-01

    This paper seeks to advance our understanding of the drop-out behavior of students in higher education. Our results are based on longitudinal data for 7000 students who embarked on short and long programs from one university in Spain and who were observed over an eight-year period ending in 2004. The statistical analysis is carried out in a…

  20. Evaluating the Performance of Short-Term Heat Storage in Alluvial Aquifer with 4D Electrical Resistivity Tomography and Hydrological Monitoring

    Science.gov (United States)

    Hermans, T.; Robert, T.; Paulus, C.; Bolly, P. Y.; Koo Seen Lin, E.; Nguyen, F.

    2015-12-01

    In the context of energy demand side management (DSM), energy storage solutions are needed to store energy during high production periods and recover energy during high demand periods. Among currently studied solutions, storing energy in the subsurface through heat pumps and/or exchangers (thermal energy storage) is relatively simple with low investment costs. However, the design and functioning of such systems have strong interconnections with the geology of the site which may be complex and heterogeneous, making predictions difficult. In this context, local temperature measurements are necessary but not sufficient to model heat flow and transport in the subsurface. Electrical resistivity tomography (ERT) provides spatially distributed information on the temperature distribution in the subsurface. In this study, we monitored, with 4D ERT combined with multiple hydrological measurements in available wells, a short-term heat storage experiment in a confined alluvial aquifer. We injected heated water (ΔT=30K) during 6 hours with a rate of 3 m³/h. We stored this heat during 3 days, and then we pumped it back to estimate the energy balance. We collected ERT data sets using 9 parallel profiles of 21 electrodes and cross-lines measurements. Inversion results clearly show the ability of ERT to delimit the thermal plume growth during injection, the diffusion and decrease of temperature during storage, and the decrease in size after pumping. Quantitative interpretation of ERT in terms of temperature estimates is difficult at this stage due to strong spatial variations of the total dissolved solid content in the aquifer, due to historical chloride contamination of the site. However, we demonstrated that short-term heat storage in alluvial aquifer is efficient and that ERT combined with hydrological measurements is a valuable tool to image and estimate the temperature distribution in the subsurface. Moreover, energy balance shows that up to 75% of the energy can be easily

  1. SHORT-TIMESCALE MONITORING OF THE X-RAY, UV, AND BROAD DOUBLE-PEAK EMISSION LINE OF THE NUCLEUS OF NGC 1097

    Energy Technology Data Exchange (ETDEWEB)

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa [Instituto de Física, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS (Brazil); Grupe, Dirk [Space Science Center, Morehead State University, 235 Martindale Drive, Morehead, KY 40351 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Peterson, Bradley M. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Baldwin, Jack A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48864 (United States); Nemmen, Rodrigo S. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil); Winge, Cláudia, E-mail: silva.schimoia@ufrgs.br [Gemini South Observatory, c/o AURA Inc., Casilla 603, La Serena (Chile)

    2015-02-10

    Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previous campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.

  2. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  3. Capillary-Inertial Colloidal Catapult upon Drop Coalescence

    Science.gov (United States)

    Chavez, Roger; Liu, Fangjie; Feng, James; Chen, Chuan-Hua

    2014-11-01

    To discharge micron-sized particles such as colloidal contaminants and biological spores, an enormous power density is needed to compete against the strong adhesive forces between the small particles and the supporting surface as well as the significant air friction exerted on the particles. Here, we demonstrate a colloidal catapult that achieves such a high power density by extracting surface energy released upon drop coalescence within an extremely short time period, which is governed by the capillary-inertial process converting the released surface energy into the bulk inertia of the merged drop. When two drops coalesce on top of a spherical particle, the resulting capillary-inertial oscillation is perturbed by the solid particle, giving rise to a net momentum eventually propelling the particle to launch from the supporting surface. The measured launching velocity follows a scaling law that accounts for the redistribution of the momentum of the merged drop onto the particle-drop complex, and is therefore proportional to the capillary-inertial velocity characterizing the coalescing drops. The interfacial flow process associated with the colloidal catapult is elucidated with both high-speed imaging and phase-field simulations.

  4. Drop stability in wind: theory

    Science.gov (United States)

    Lee, Sungyon

    2015-11-01

    Water drops may remain pinned on a solid substrate against external forcing due to contact angle hysteresis. Schmucker and White investigated this phenomenon experimentally in a high Reynolds number regime, by measuring the critical wind velocity at which partially wetting water drops depin inside a wind tunnel. Due to the unsteady turbulent boundary layer, droplets are observed to undergo vortex-shedding induced oscillations. By contrast, the overall elongation of the drop prior to depinning occurs on a much slower timescale with self-similar droplet shapes at the onset. Based on these observations, a simple, quasi-static model of depinning droplet is developed by implementing the phenomenological description of the boundary layer. The resultant model successfully captures the critical onset of droplet motion and is the first of on-going studies that connect the classical boundary layer theory with droplet dynamics.

  5. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  6. Fluid flow in drying drops

    NARCIS (Netherlands)

    Gelderblom, H.

    2013-01-01

    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also pr

  7. New identities for sessile drops

    CERN Document Server

    Hajirahimi, Maryam; Fatollahi, Amir H

    2014-01-01

    A new set of mathematical identities is presented for axi-symmetric sessile drops on flat and curved substrates. The geometrical parameters, including the apex curvature and height, and the contact radius, are related by the identities. The validity of the identities are checked by various numerical solutions both for flat and curved substrates.

  8. Egg Drop: An Invention Workshop

    Science.gov (United States)

    McCormack, Alan J.

    1973-01-01

    Describes an activity designed to stimulate elementary and junior high students to become actively engaged in thinking creatively rather than only analytically, convergently, or repetitively. The activity requires students to devise means of dropping an egg from a height without it breaking. (JR)

  9. Evaporating Drops of Alkane Mixtures

    OpenAIRE

    Guéna, Geoffroy; Poulard, Christophe; Cazabat, Anne-Marie

    2005-01-01

    22 pages 9 figures; Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained.

  10. ``Quantum'' interference with bouncing drops

    Science.gov (United States)

    Bohr, Tomas; Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens

    2013-11-01

    In a series of recent papers (most recently) Yves Couder and collaborators have explored the dynamics of walking drops on the surface of a vibrated bath of silicon oil and have demonstrated a close analogy to quantum phenomena. The bouncing drop together with the surface wave that it excites seems to be very similar to the pilot wave envisaged by de Broglie for quantum particles. In particular, have studied a double slit experiment with walking drops, where an interference pattern identical to the quantum version is found even though it is possible to follow the orbits of the drops and unambigously determine which slit it goes through, something which in quantum mechanics would be ruled out by the Heisenberg uncertainly relations. We have repeated the experiment and present a somewhat more complicated picture. Theoretically, we study a Schrödinger equation with a source term originating from a localised ``particle'' being simultaneously guided by the wave. We present simple solutions to such a field theory and discuss the fundamental difficulties met by such a theory in order to comply with quantum mechanics.

  11. Drops, contact lines, and electrowetting

    NARCIS (Netherlands)

    Mannetje, 't D.J.C.M.

    2013-01-01

    In this work, we study the behaviour of drops and contact lines under the influence of electric fields, and how these can answer fundamental and industrial questions. Our focus is on studying the varying balance of the electric field, hysteresis forces and inertia as the speed of a contact line chan

  12. Evaporating Drops of Alkane Mixtures

    CERN Document Server

    Gu'ena, G; Poulard, C; Cazabat, Anne-Marie; Gu\\'{e}na, Geoffroy; Poulard, Christophe

    2005-01-01

    Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained.

  13. Drops spreading on flexible fibers

    Science.gov (United States)

    Somszor, Katarzyna; Boulogne, François; Sauret, Alban; Dressaire, Emilie; Stone, Howard

    2015-11-01

    Fibrous media are encountered in many engineered systems such as textile, paper and insulating materials. In most of these materials, fibers are randomly oriented and form a complex network in which drops of wetting liquid tend to accumulate at the nodes of the network. Here we investigate the role of the fiber flexibility on the spreading of a small volume of liquid on a pair of crossed flexible fibers. A drop of silicone oil is dispensed at the point of contact of the fibers and we characterize the liquid morphologies as we vary the volume of liquid, the angle between the fibers, and the length and bending modulus of the fibers. Drop morphologies previously reported for rigid fibers, i.e. a drop, a column and a mixed morphology, are also observed on flexible fibers with modified domains of existence. Moreover, at small inclination angles of the fibers, a new behavior is observed: the fibers bend and collapse. Depending on the volume, the liquid can adopt a column or a mixed morphology on the collapsed fibers. We rationalize our observations with a model based on energetic considerations. Our study suggests that the fiber flexibility adds a rich variety of behaviors that can be crucial for industrial applications.

  14. Pressure drop in contraction flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) page 178. DPL gives an equation for the pressure drop in a tapered (and circular) contraction, valid only at low angles. Here the general definition of contraction flow (the Bagley correction) and a more general method to find...

  15. Short Message Monitoring System Based on Social Network Mechanism%基于社交网络机理的短信息监控系统

    Institute of Scientific and Technical Information of China (English)

    仲玉芳; 王慧芬; 叶星; 吴明光

    2011-01-01

    短信息实时过滤基于社交网络机理,从社交网络的聚类现象切入,通过确认发送者的身份实现短信息实时监控过滤.首先根据接收者与发送者之间是否存在通信历史对发送的短信进行预处理,进而根据接收者与发送者、接收者之间的通信历史记录实施二度实时过滤,确认发送者身份,拦截文本或多媒体形式的垃圾短信.并行过滤算法在对称多处理(SMP)的硬件平台上运行.%Real-time monitoring and filtering for mobile short message service (SMS) system is in terms of the clustering phenomenon of social network to check the sender's identify. At first pre-process SMS based on whether there are historical records between the sender and receiver, then take two degrees of real-time filtering in the light of statistics of both historical records from receivers to the sender and those among receivers. Parallel filtering algorithm and multinuclear hardware platform with symmetric multiprocessor (SMP) structure are used. It can be expected to solve the problem of filtering junk SMS, like text, sound and media in any language radically.

  16. Implementation and Operational Research: CD4 Count Monitoring Frequency and Risk of CD4 Count Dropping Below 200 Cells Per Cubic Millimeter Among Stable HIV-Infected Patients in New York City, 2007–2013

    Science.gov (United States)

    Xia, Qiang; Torian, Lucia V.; Irvine, Mary; Harriman, Graham; Sepkowitz, Kent A.; Shepard, Colin W.

    2016-01-01

    Introduction: The evidence has begun to mount for diminishing the frequency of CD4 count testing. To determine whether these observations were applicable to an urban US population, we used New York City (NYC) surveillance data to explore CD4 testing among stable patients in NYC, 2007–2013. Methods: We constructed a population-based retrospective open cohort analysis of NYC HIV surveillance data. HIV+ patients aged ≥13 years with stable viral suppression (≥1 viral load the previous year; all 90% among those with initial CD4 ≥350 cells per cubic millimeter, suggesting that limited CD4 monitoring in these patients is appropriate. PMID:26536317

  17. Vortex Ring generation during drop impact into a shallow pool

    CERN Document Server

    Wilkens, Andreas; van Heijst, GertJan

    2013-01-01

    When a drop falls from a moderate height into a shallow fluid pool whose depth is of the order of the drop-radius two pairs of vortex rings are generated. The inner pair forms at the edge of the crater created by the impacting drop while the outer pair is laid off from the spreading wave. One ring of each of these pairs is short-lived while the other persists. Each of the rings has a measureable non-zero circulation (whose sign, however, is opposite to that of the well-known deep-water drop vortex rings) which persists long after the wave has receded. Furthermore under certain conditions they develop instabilities typical to ring vortices. Although the rings are well reproducible, aspects of their later development are very sensitive to changes in some of the experimental parameters. This paper reports on experiments distinguishing reproducible aspects of these drop- generated rings and documenting their dependence on material and geometrical parameters.

  18. Non-coalescence of oppositely charged drops

    CERN Document Server

    Ristenpart, W D; Belmonte, A; Dollar, F; Stone, H A

    2009-01-01

    Oppositely charged drops have long been assumed to experience an attractive force that favors their coalescence. In this fluid dynamics video we demonstrate the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to `bounce' off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops.

  19. How to freeze drop oscillations with powders

    Science.gov (United States)

    Marston, Jeremy; Zhu, Ying; Vakarelski, Ivan; Thoroddsen, Sigurdur

    2012-11-01

    We present experiments that show when a water drop impacts onto a bed of fine, hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. For all drop impact speeds, the drop rebounds due to the hydrophobic nature of the powder. However, we observe that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a complete coverage of powder, thus creating a deformed liquid marble. This powder coating acts to freeze the drop oscillations during rebound.

  20. Dancing drops over vibrating substrates

    Science.gov (United States)

    Borcia, Rodica; Borcia, Ion Dan; Helbig, Markus; Meier, Martin; Egbers, Christoph; Bestehorn, Michael

    2017-04-01

    We study the motion of a liquid drop on a solid plate simultaneously submitted to horizontal and vertical harmonic vibrations. The investigation is done via a phase field model earlier developed for describing static and dynamic contact angles. The density field is nearly constant in every bulk region (ρ = 1 in the liquid phase, ρ ≈ 0 in the vapor phase) and varies continuously from one phase to the other with a rapid but smooth variation across the interfaces. Complicated explicit boundary conditions along the interface are avoided and captured implicitly by gradient terms of ρ in the hydrodynamic basic equations. The contact angle θ is controlled through the density at the solid substrate ρ S , a free parameter varying between 0 and 1 [R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)]. We emphasize the swaying and the spreading modes, earlier theoretically identified by Benilov and Billingham via a shallow-water model for drops climbing uphill along an inclined plane oscillating vertically [E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)]. The numerical phase field simulations will be completed by experiments. Some ways to prevent the release of the dancing drops along a hydrophobic surface into the gas atmosphere are also discussed in this paper.

  1. Star-shaped Oscillations of Leidenfrost Drops

    CERN Document Server

    Ma, Xiaolei; Burton, Justin C

    2016-01-01

    We experimentally investigate the self-organized, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with $n = 2-13$ lobes around the drop periphery. We find that both the wavelength and frequency of the oscillations depend only on the capillary length of the liquid, and are independent of the drop radius and substrate temperature. However, the number of observed modes depend sensitively on the liquid viscosity. The dominant frequency of pressure variations under the drop is approximately twice that the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results suggest that the star-shaped oscillations are hydrodynamic in origin, and are driven by capillary waves beneath the drop. The exact mechanism by which the vapor flow initiates the capillary waves is likely related to static "brim waves" in levitated, viscous drops.

  2. Critical point wetting drop tower experiment

    Science.gov (United States)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  3. Electrohydrodynamics of a particle-covered drop

    Science.gov (United States)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  4. Optical scattering methods applicable to drops and bubbles

    Science.gov (United States)

    Marston, Philip L.

    1990-01-01

    An overview of optical scattering properties of drops and bubbles is presented. The properties lead to unconventional methods for optically monitoring the size or shape of a scatterer and are applicable to acoustically levitated objects. Several of the methods are applicable to the detection and measurement of small amplitude oscillations. Relevant optical phenomena include: (1) rainbows; (2) diffraction catastrophes from spheroids; (3) critical angle scattering; (4) effects of coatings; (5) glory scattering; and (6) optical levitation.

  5. Solid surface wetting and the deployment of drops in microgravity

    Science.gov (United States)

    Trinh, E. H.; Depew, J.

    1994-02-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simultaneously retracting dual-injector system in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors under dynamic stimuli from the continuous injection flow as well as from the stepped motion of the injectors. The final released drop must have a well determined volume and negligible residual linear or angular momentum. The outcome of Earth-based short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts. They were successfully utilized during the USML-1 Spacelab mission as the primary tips. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module range between 0.3 and 2.7 cm. The tests conducted on-orbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  6. Progress on Concepts for Next-Generation Drop Tower Systems

    Science.gov (United States)

    Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus; Kaczmarczik, Ulrich

    2016-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM about 100 scientists, engineers, and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important research center for space sciences and technologies in Europe. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM's ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10-6 g (microgravity), which is one of the best achievable for ground-based flight opportunities. Scientists may choose up to three times a day between a single drop experiment with 4.74 s in simple free fall and an experiment in ZARM's worldwide unique catapult system with 9.3 s in weightlessness. Since the start of operation of the facility in 1990, over 7500 drops or catapult launches of more than 160 different experiment types from various scientific fields like fundamental physics, combustion, fluid dynamics, planetary formation / astrophysics, biology and materials sciences have been accomplished so far. In addition, more and more technology tests have been conducted under microgravity conditions at the Bremen Drop Tower in order to effectively prepare appropriate space missions in advance. In this paper we report on the progress on concepts for next-generation drop tower systems based on the GraviTower idea utilizing a guided electro-magnetic linear drive. Alternative concepts motivated by the scientific demand for higher

  7. Drop shaping by laser-pulse impact

    CERN Document Server

    Klein, Alexander L; Visser, Claas Willem; Lhuissier, Henri; Sun, Chao; Snoeijer, Jacco H; Villermaux, Emmanuel; Lohse, Detlef; Gelderblom, Hanneke

    2015-01-01

    We study the hydrodynamic response of a falling drop hit by a laser pulse. Combining high-speed with stroboscopic imaging we report that a millimeter-sized dyed water drop hit by a milli-Joule nanosecond laser-pulse deforms and propels forward at several meters per second, until it eventually fragments. We show that the drop motion results from the recoil momentum imparted at the drop surface by water vaporization. We measure the propulsion speed and the time-deformation law of the drop, complemented by boundary integral simulations. We explain the drop propulsion and shaping in terms of the laser pulse energy and drop surface tension. These findings are crucial for the generation of extreme ultraviolet (EUV) light in lithography machines.

  8. Unstable Leidenfrost Drops on Roughened Surfaces

    CERN Document Server

    Boreyko, Jonathan B

    2010-01-01

    Drops placed on a surface with a temperature above the Leidenfrost point float atop an evaporative vapor layer. In this fluid dynamics video, it is shown that for roughened surfaces the Leidenfrost point depends on the drop size, which runs contrary to previous claims of size independence. The thickness of the vapor layer is known to increase with drop radius, suggesting that the surface roughness will not be able to penetrate the vapor layer for drops above a critical size. This size dependence was experimentally verified: at a given roughness and temperature, drops beneath a critical size exhibited transition boiling while drops above the critical size were in the Leidenfrost regime. These Leidenfrost drops were unstable; upon evaporation down to the critical size the vapor film suddenly collapsed.

  9. Evaporation of sessile water/ethanol drops in a controlled environment.

    Science.gov (United States)

    Liu, Chuanjun; Bonaccurso, Elmar; Butt, Hans-Jürgen

    2008-12-21

    The evaporation of water/ethanol drops with different mixing ratios was investigated at controlled vapor pressure of water (relative humidity) and ethanol in the background gas. Therefore, a drop of about 1 microL was deposited on a hydrophobized silicon substrate at room temperature in a closed cell. With a microscope camera we monitored the contact angle, the volume and the contact radius of the drops as function of time. Pure water drops evaporated in constant contact angle mode. The evaporation rate of water decreased with increasing humidity. In mixed drops ethanol did not evaporate completely at first, but a fraction still remained in the drop until the end of evaporation. Depending on ethanol concentration in the drop and on relative humidity in the background gas, water vapor condensed at the beginning of the evaporation of mixed drops. Also, at a high vapor pressure of ethanol, ethanol condensed at the beginning of the evaporation. The presence of ethanol vapor accelerated the total evaporation time of water drops.

  10. Total sleep time severely drops during adolescence.

    Directory of Open Access Journals (Sweden)

    Damien Leger

    Full Text Available UNLABELLED: Restricted sleep duration among young adults and adolescents has been shown to increase the risk of morbidities such as obesity, diabetes or accidents. However there are few epidemiological studies on normal total sleep time (TST in representative groups of teen-agers which allow to get normative data. PURPOSE: To explore perceived total sleep time on schooldays (TSTS and non schooldays (TSTN and the prevalence of sleep initiating insomnia among a nationally representative sample of teenagers. METHODS: Data from 9,251 children aged 11 to 15 years-old, 50.7% of which were boys, as part of the cross-national study 2011 HBSC were analyzed. Self-completion questionnaires were administered in classrooms. An estimate of TSTS and TSTN (week-ends and vacations was calculated based on specifically designed sleep habits report. Sleep deprivation was estimated by a TSTN - TSTS difference >2 hours. Sleep initiating nsomnia was assessed according to International classification of sleep disorders (ICSD 2. Children who reported sleeping 7 hours or less per night were considered as short sleepers. RESULTS: A serious drop of TST was observed between 11 yo and 15 yo, both during the schooldays (9 hours 26 minutes vs. 7 h 55 min.; p<0.001 and at a lesser extent during week-ends (10 h 17 min. vs. 9 h 44 min.; p<0.001. Sleep deprivation concerned 16.0% of chidren aged of 11 yo vs. 40.5% of those of 15 yo (p<0.001. Too short sleep was reported by 2.6% of the 11 yo vs. 24.6% of the 15 yo (p<0.001. CONCLUSION: Despite the obvious need for sleep in adolescence, TST drastically decreases with age among children from 11 to 15 yo which creates significant sleep debt increasing with age.

  11. Leidenfrost drops on a heated liquid pool

    Science.gov (United States)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  12. Effect of drop jump technique on the reactive strength index

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-09-01

    Full Text Available The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI for countermovement drop jumps (CDJs and bounce drop jumps (BDJs. The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05 between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05 than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05 than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  13. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    Science.gov (United States)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  14. Karakteristik Penderita Drop out Pengobatan Tuberkulosis Paru di Garut

    Directory of Open Access Journals (Sweden)

    Nevi Nurkomarasari

    2014-02-01

    Observed Treatment Short course Chemotherapy (DOTS recomended by World Health Organization has been used, the drop out cases is still high. This study aim was to describe factors contributing to drop out cases in Sukamerang Health Center, Garut during year 2011. This was a cross sectional study using standard questionairres based on Ministry of Health Tuberculosis handbook. Subjects were all , 30  drop out patients during medication at Sukamerang Health Center. Statistical Programee for social science (SPSS version 17 was used to analize the result. The study results showed  that majority of drop out cases were male less than 35 years old with junior high school education and monthly earning of less than IDR 800.000. Knowledge of TB and attitude towards medication were not satisfactory although the role of pengawas minum obat (PMO was quite good. The results showed that the problem was heightened by their difficulty to access the health services. The important aspect in the treatment of tuberculosis is determining how to motivate people to complete the treatment in accordance with the established regiment. To achieve that, various pulmonary TB control programs needs to be enhanced to assist pulmonary TB patients. Key words: Drop out, knowledge and attitude, tuberculosis (TB

  15. Imaging in short stature

    Directory of Open Access Journals (Sweden)

    Vikas Chaudhary

    2012-01-01

    Full Text Available Short stature can be a sign of disease, disability, and social stigma causing psychological stress. It is important to have an early diagnosis and treatment. Short stature may result from skeletal dysplasias, endocrine disorders, may be familial, or may be the result of malnutrition and chronic illnesses. A team effort of the healthcare professionals like pediatricians, endocrinologists, radiologists, and pathologists is required to diagnose, treat and monitor various pathological conditions associated with growth abnormality. In this review, we have discussed the role of imaging in diagnosing and characterizing various pathological conditions associated with short stature.

  16. Footprint Geometry and Sessile Drop Resonance

    Science.gov (United States)

    Chang, Chun-Ti; Daniel, Susan; Steen, Paul H.

    2016-11-01

    How does a sessile drop resonate if its footprint is square (square drop)? In this talk, we discuss the two distinct families of observed modes in our experiments. One family (spherical modes) is identified with the natural modes of capillary spherical caps, and the other (grid modes) with Faraday waves on a square bath (square Faraday waves). A square drop exhibits grid or spherical modes depending on its volume, and the two families of modes arise depending on how wavenumber selection of footprint geometry and capillarity compete. For square drops, a dominant effect of footprint constraint leads to grid modes which are constrained response; otherwise the drops exhibit spherical modes, the characteristic of sessile drops on flat plates. Chun-Ti Chang takes his new position at National Taiwan University on Aug. 15th, 2016. Until then, Chun-Ti Chang is affiliated with Technical University Dortmund, Germany.

  17. Sepsis from dropped clips at laparoscopic cholecystectomy

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Sarwat E-mail: sarwathussain@hotmail.com

    2001-12-01

    We report seven patients in whom five dropped surgical clips and two gallstones were visualized in the peritoneal cavity, on radiological studies. In two, subphrenic abscesses and empyemas developed as a result of dropped clips into the peritoneal cavity during or following laparoscopic cholecystectomy. In one of these two, a clip was removed surgically from the site of an abscess. In two other patients dropped gallstones, and in three, dropped clips led to no complications. These were seen incidentally on studies done for other indications. Abdominal abscess secondary to dropped gallstones is a well-recognized complication of laparoscopic cholecystectomy (LC). We conclude that even though dropped surgical clips usually do not cause problems, they should be considered as a risk additional to other well-known causes of post-LC abdominal sepsis.

  18. A Different Cone: Bursting Drops in Solids

    Science.gov (United States)

    Zhao, Xuanhe

    2013-03-01

    Drops in fluids tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nano-fibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops but also suggest a new failure mechanism of high-energy-density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  19. Short communication: prospective comparison of qualitative versus quantitative polymerase chain reaction for monitoring virologic treatment failure in HIV-infected patients.

    Science.gov (United States)

    Jeong, Su Jin; Kim, Min Hyung; Song, Je Eun; Ahn, Jin Young; Kim, Sun Bean; Ann, Hea Won; Kim, Jae Kyung; Choi, Heun; Ku, Nam Su; Han, Sang Hoon; Kim, June Myung; Smith, Davey M; Kim, Hyon-Suk; Choi, Jun Yong

    2014-08-01

    Less costly but still accurate methods for monitoring HIV treatment response are needed. We prospectively evaluated if a qualitative polymerase chain reaction (PCR) amplification assay for virologic monitoring could maintain accuracy while reducing costs in Seoul, South Korea. We conducted the first prospective study comparing a qualitative PCR amplification of HIV-1 reverse transcriptase (RT) versus a commercial real time PCR assay (i.e., viral load) for virologic monitoring of 150 patients receiving antiretroviral therapy (ART) between November 2011 and August 2012 at an urban hospital in Seoul, South Korea. A total of 215 blood plasma samples from 150 patients receiving ART for more than 6 months were evaluated. Using the individual viral load assay, 12 of 215 (5.6%) plasma samples had more than 500 HIV RNA copies/ml. The qualitative PCR amplification assay detected individual samples with ≥500 HIV RNA copies/ml with 100% sensitivity. The specificities of the qualitative PCR amplification of the HIV-1 RT assay were 94.1%, 93.6%, and 93.2% compared to the real time PCR at 500, 1,000, and 5,000 threshold of HIV RNA copies/ml, respectively, and $24,940 USD would have been saved for 150 patients during 10 months. The qualitative PCR amplification of the HIV-1 RT assay might be a useful approach to effectively monitor patients receiving ART and save resources.

  20. 基于射频数字化的中短波广播监测系统探究%Exploration on Medium Short Wave Radio Monitoring System Based on RF Digitalization

    Institute of Scientific and Technical Information of China (English)

    赵静; 杨苏卫

    2016-01-01

    In recent years the rapid development of communication and broadcast, etc, make the medium short wave spectrum occupied, channel interference problem is increasingly serious, medium-wave radio in transmission, construction, use and other aspects, it is dififcult to give full play to the advantages of for intermediate frequency spectrum efifciency, reduce the interference between channels, people try to establish medium-wave radio monitoring system and application of radio frequency digital correlation technology, make long-distance medium-wave radio signal receiving, storage, reduction, etc. Articles on medium-wave radio monitoring system based on rf digitalization of cognition, the theoretical basis of medium short wave radio signal rf digitalization in and the present stage medium short wave radio monitoring system architecture on the basis of system analysis, the medium short wave radio monitoring system based on radio frequency digital architecture study.%近年来通信和广播等方面的快速发展,使中短波频谱被占用、频道受干扰的问题日益严重,中短波广播在传播、建设、使用等方面的优势难以充分发挥,为有效利用中短波频谱,降低频道之间的干扰,人们尝试建立中短波广播监测系统并应用射频数字化相关技术,使中短波广播信号异地接收、存储、还原等成为可能。文章对基于射频数字化的中短波广播监测系统产生较全面的认知,在对中短波广播信号射频数字化理论基础和现阶段中短波广播监测系统架构进行系统分析的基础上,对基于射频数字化的中短波广播监测系统架构展开研究。

  1. Wireless system for location of permanent faults by short circuit current monitoring in electric power distribution network; Sistema wireless para localizacao de faltas permanentes atraves da monitoracao da corrente de curto-circuito em redes de distribuicao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Machado, A.G.; Correa, A.C.; Machado, R.N. das M.; Ferreira, A.M.D.; Pinto, J.A.C. [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil)], E-mail: alcidesmachado000@yahoo.com.br; Barra Junior, W. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Tecnologia. Faculdade de Engenharia Eletrica], E-mail: walbarra@ufpa.br

    2009-07-01

    This paper presents the development of an automatic system for permanent short-circuits location in medium voltage (13.8 kV) electric power system distribution feeders, by indirect monitoring of the line current. When a permanent failure occurs, the developed system uses mobile telephony (GSM) text messages (SMS) to inform the power company operation center where the failure most likely took place. With this information in real time, the power company operation center may provide the network restoration in a faster and efficient way. (author)

  2. Mass Remaining During Evaporation of Sessile Drop

    Science.gov (United States)

    2008-09-01

    to> \\fyj Greek Symbols P Contact angle of sessile drop . n Droplet shape factor = h/d 6 Non-dimensional time = t/i V Air kinematic viscosity...factor n, = h / d (where h = maximum height of the drop ), which can also be directly related to the contact angle (P) of the drop , that is r| = (l-cos(P...three drop size (initial mass or volume) conditions with all other conditions the same. These runs have a constant contact angle , (3 = 16.5° ± 1.5

  3. Rapid Drop Dynamics During Superhydrophobic Condensation

    Science.gov (United States)

    Zhang, Xiaodong; Boreyko, Jonathan; Chen, Chuan-Hua

    2008-11-01

    Rapid drop motion is observed on superhydrophobic surfaces during condensation; condensate drops with diameter of order 10 μm can move at above 100G and 0.1 m/s. When water vapor condenses on a horizontal superhydrophobic surface, condensate drops move in a seemingly random direction. The observed motion is attributed to the energy released through coalescence of neighboring condensate drops. A scaling analysis captured the initial acceleration and terminal velocity. Our work is a step forward in understanding the dynamics of superhydrophobic condensation occurring in both natural water-repellant plants and engineered dropwise condensers.

  4. Numerical simulations of vibrating sessile drop

    Science.gov (United States)

    Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar

    2016-11-01

    A vibrated drop constitutes a very rich physical system, blending both interfacial and volume phenomena. A remarkable experimental study was performed by M. Costalonga highlighting sessile drop motion subject to horizontal, vertical and oblique vibration. Several intriguing phenomena are observed such as drop walking and rapid droplet ejection. We perform three-dimensional direct numerical simulations of vibrating sessile drops where the phenomena described above are computed using the massively parallel multiphase code BLUE. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).

  5. Impact force of a falling drop

    Science.gov (United States)

    Soto, Dan; Clanet, Cristophe; Quere, David; Xavier Boutillon Collaboration

    2012-11-01

    Controlling droplet deposition is crucial in many industrial processes such as spraying pesticides on crops, inkjet printing or spray coating. Therefore, the dynamics of drop impacts have been extensively studied for more than one century. However, few literature describe the impacting force of a drop on a solid flat surface, although it might be a way to measure the size distribution of a collection of falling drops. We investigated experimentally how the instantaneous force at impact depends on impact velocity and drop radius. We also propose a new model to understand our observations. Physique et Mecanique des Milieux Heterogenes, CNRS, ESPCI, Paris France & Ladhyx, CNRS, Ecole Polytechnique, Palaiseau, France.

  6. Drops moving along and across a filament

    Science.gov (United States)

    Sahu, Rakesh P.; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2013-11-01

    The present work is devoted to the experimental study of oil drop motion both along and across a filament due to the air jet blowing. In case of drop moving along the filament, phenomena such as drop stick-slip motion, shape oscillations, shedding of a tail along the filament, the tail capillary instability and drop recoil motion were observed which were rationalized in the framework of simplified models. Experiments with cross-flow of the surrounding gas relative to the filament with an oil drop on it were conducted, with air velocity in the range of 7.23 to 22.7 m s-1. The Weber number varied from 2 to 40 and the Ohnesorge number varied from 0.07 to 0.8. The lower and upper critical Weber numbers were introduced to distinguish between the beginning of the drop blowing off the filament and the onset of the bag-stamen breakup. The range of the Weber number between these two critical values is filled with three types of vibrational breakup: V1 (a balloon-like drop being blown off), V2 (a drop on a single stamen being blown off), and V3 (a drop on a double stamen being blown off). The Weber number/Ohnesorge number plane was delineated into domains of different breakup regimes. The work is supported by the Nonwovens Cooperative Research Center (NCRC).

  7. Drop deformation by laser-pulse impact

    CERN Document Server

    Gelderblom, Hanneke; Klein, Alexander L; Bouwhuis, Wilco; Lohse, Detlef; Villermaux, Emmanuel; Snoeijer, Jacco H

    2015-01-01

    A free-falling absorbing liquid drop hit by a nanosecond laser-pulse experiences a strong recoil-pressure kick. As a consequence, the drop propels forward and deforms into a thin sheet which eventually fragments. We study how the drop deformation depends on the pulse shape and drop properties. We first derive the velocity field inside the drop on the timescale of the pressure pulse, when the drop is still spherical. This yields the kinetic-energy partition inside the drop, which precisely measures the deformation rate with respect to the propulsion rate, before surface tension comes into play. On the timescale where surface tension is important the drop has evolved into a thin sheet. Its expansion dynamics is described with a slender-slope model, which uses the impulsive energy-partition as an initial condition. Completed with boundary integral simulations, this two-stage model explains the entire drop dynamics and its dependance on the pulse shape: for a given propulsion, a tightly focused pulse results in a...

  8. A study to assess the feasibility of undertaking a randomized controlled trial of adherence with eye drops in glaucoma patients

    Directory of Open Access Journals (Sweden)

    Richardson C

    2013-10-01

    Full Text Available Cliff Richardson,1 Lisa Brunton,1 Nicola Olleveant,1 David B Henson,1 Mark Pilling,1 Jane Mottershead,2 Cecilia H Fenerty,2 Anne Fiona Spencer,2 Heather Waterman1 1School of Nursing, Midwifery and Social Work, University of Manchester, 2Royal Manchester Eye Hospital, Central Manchester Foundation Trust, Manchester, United Kingdom Background: Adherence with therapy could influence the progression of glaucoma and ultimately affect the onset of visual impairment in some individuals. This feasibility study evaluated the measures to be used for a future randomized controlled trial assessing the effects of group-based education on adherence with eye drops. Methods: People diagnosed with glaucoma within the previous 12 months attending a regional ophthalmology clinic in the North West of England were recruited. A two-session education program delivered one week apart had been devised as part of a previous project. A combined adult learning and health needs approach to education was taken. Outcomes measured were knowledge of glaucoma, self-report of adherence, illness perception, beliefs about medicines, patient enablement, and general health (Short Form-12. Adherence was also measured objectively using a Medical Events Monitoring System device. Results: Twenty-six participants consented to undertake the educational program and 19 produced analyzable data. Knowledge of glaucoma, illness perception, beliefs about medicine, and patient enablement all showed statistically significant improvements after education. Mean adherence with eye drops was maintained above 85% before and for 3 months after attendance at the educational program. Self-report exaggerated adherence by at least 10% when compared with the objective Medical Events Monitoring System data, and in fact the kappa agreement was zero. Conclusion: All questionnaires other than the Short Form-12 were considered to be valuable measures and use of a Medical Events Monitoring System device was

  9. Correlation for Sessile Drop Evaporation

    Science.gov (United States)

    Kelly-Zion, Peter; Pursell, Christopher; Wassom, Gregory; Mandelkorn, Brenton; Nkinthorn, Chris

    2016-11-01

    To better understand how the evaporation of sessile drops and small puddles is controlled by the vapor phase transport mechanisms of mass diffusion and buoyancy-induced convection, the evaporation rates of eight liquids evaporating under a broad range of ambient conditions were correlated with physical and geometrical properties. Examination of the correlation provides valuable insight into how the roles of diffusive and convective transport change with physical and geometrical parameters. The correlation predicts measured evaporation rates to within a root-mean-square error of 7.3%. The correlation is composed of two terms, a term which provides the rate of evaporation under diffusion-only conditions, and a term which provides the influence of convection. This second term suggests the manner in which the processes of diffusion and convection are coupled. Both processes are dependent on the distribution of the vapor, through the molar concentration gradient for diffusion and through the mass density gradient for convection. The term representing the influence of convection is approximately inversely proportional to the square root of diffusivity, indicating the tendency of diffusive transport to reduce convection by making the vapor distribution more uniform. Financial support was provided by the ACS Petroleum Research Fund.

  10. Microgravity Experiment Programs for Students at the Bremen Drop Tower

    Science.gov (United States)

    Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus

    The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM established as a research center and currently headed by Prof. Dr. Claus Lämmerzahl is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM more than 70 scientists, engineers and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important university institutes for space sciences and technologies in Europe as well as worldwide well known in the space community. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM’s ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10 (-6) g (microgravity). The provided quality is one of the purest for experiments under weightlessness worldwide achieved. The scientists may choose between a single drop experiment with 4.74 s in simple free fall and a catapult experiment with 9.3 s of weightlessness. Either in the drop or in the worldwide unique catapult operation routine the repetition rates of microgravity experiments at ZARM are always the same, generally up to 3 times per day. Since the start of operation of the facility in 1990, over 6750 launches of more than 160 different experiment types from various scientific fields like Fundamental Physics, Combustion, Fluid Dynamics, Planetary Formation / Astrophysics, Biology and Materials Sciences have been successfully accomplished so far. In our paper we will report and inform about microgravity experiment programs for students like „Drop Your Thesis!“ by ESA and

  11. Single-Molecule Enzymology Based On The Principle Of The Millikan Oil Drop Experiment

    OpenAIRE

    Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2013-01-01

    The ability to monitor the progress of single molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan Oil Drop Experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions which result in a change in substrate charge, polymerization on a...

  12. Biofilm formation over surface patterned with pico-liter oil micro-drop array

    Science.gov (United States)

    Jalali, Maryam; Sheng, Jian

    2015-11-01

    It has been suggested that biodegradation by microbes is an effective process in the cleansing of oil polluted marine environments. It has also been speculated that dispersants could further enhance processes amid no direct evidence. The studies in the relevant scales are severely hampered by lack of techniques to generate uniform micro-scale drops allowing in-situ monitoring of these processes. In this paper, we present a microfabrication technique allowing patterning microfluidic surfaces with arrays of micro oil drops. The array of oil drops was printed by micro transfer molding/printing with negative PDMS stamps. The printed micro-drops have dimensions ranging from 5 μm to 50 μm. Non-circular shapes, such as square and triangle, can also be printed and maintained for weeks. Atomic force microscopy is used to characterize the topology and interfacial structures of droplets. The results reveal that although the drop with different base shapes assumes dome like profile asymptotically, donut and top-hat shapes are also observed. Time evolution measurement elucidates that in the absences of inviscid mechanisms in comparison to a micro-liter drop, subtle interplays between interfacial forces and viscosity play crucial role in the shape of pico-liter drop. With the developed surfaces, the effects of oil drop sizes and interfacial structures on biofilm formation are studied and reported.

  13. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  14. Aging, Terminal Decline, and Terminal Drop

    Science.gov (United States)

    Palmore, Erdman; Cleveland, William

    1976-01-01

    Data from a 20-year longitudinal study of persons over 60 were analyzed by step-wise multiple regression to test for declines in function with age, for terminal decline (linear relationship to time before death), and for terminal drop (curvilinear relationship to time before death). There were no substantial terminal drop effects. (Author)

  15. Self-Excited Drop Oscillations in Electrowetting

    NARCIS (Netherlands)

    Baret, Jean-Christophe; Decre, Michel M.J.; Mugele, Frieder

    2007-01-01

    We studied millimeter-sized aqueous sessile drops in an ambient oil environment in a classical electrowetting configuration with a wire-shaped electrode placed at a variable height above the substrate. Within a certain range of height and above a certain threshold voltage, the drop oscillates period

  16. Static shapes of levitated viscous drops

    Science.gov (United States)

    Duchemin, L.; Lister, J. R.; Lange, U.

    2005-06-01

    We consider the levitation of a drop of molten glass above a spherical porous mould, through which air is injected with constant velocity. The glass is assumed to be sufficiently viscous compared to air that motion in the drop is negligible. Thus static equilibrium shapes are determined by the coupling between the lubricating pressure in the supporting air cushion and the Young-Laplace equation. The upper surface of the drop is under constant atmospheric pressure; the static shape of the lower surface of the drop is computed using lubrication theory for the thin air film. Matching of the sessile curvature of the upper surface to the curvature of the mould gives rise to a series of capillary "brim" waves near the edge of the drop which scale with powers of a modified capillary number. Several branches of static solutions are found, such that there are multiple solutions for some drop volumes, but no physically reasonable solutions for other drop volumes. Comparison with experiments and full Navier-Stokes calculations suggests that the stability of the process can be predicted from the solution branches for the static shapes, and related to the persistence of brim waves to the centre of the drop. This suggestion remains to be confirmed by a formal stability analysis.

  17. University Drop-Out: An Italian Experience

    Science.gov (United States)

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea

    2010-01-01

    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  18. Many Drops Make a Lake

    Directory of Open Access Journals (Sweden)

    Chaitanya S. Mudgal

    2014-03-01

    greater knowledge, better skills and disseminate this knowledge through this journal to influence as many physicians and their patients as possible. They have taken the knowledge of their teachers, recognized their giants and are now poised to see further than ever before. My grandmother often used to quote to me a proverb from India, which when translated literally means “Many drops make a lake”. I cannot help but be amazed by the striking similarities between the words of Newton and this Indian saying. Therefore, while it may seem intuitive, I think it must be stated that it is vital for the betterment of all our patients that we recognize our own personal lakes to put our drops of knowledge into. More important is that we recognize that it is incumbent upon each and every one of us to contribute to our collective lakes of knowledge such as ABJS. And finally and perhaps most importantly we need to be utterly cognizant of never letting such lakes of knowledge run dry.... ever.

  19. Dynamic Stability of Equilibrium Capillary Drops

    Science.gov (United States)

    Feldman, William M.; Kim, Inwon C.

    2014-03-01

    We investigate a model for contact angle motion of quasi-static capillary drops resting on a horizontal plane. We prove global in time existence and long time behavior (convergence to equilibrium) in a class of star-shaped initial data for which we show that topological changes of drops can be ruled out for all times. Our result applies to any drop which is initially star-shaped with respect to a small ball inside the drop, given that the volume of the drop is sufficiently large. For the analysis, we combine geometric arguments based on the moving-plane type method with energy dissipation methods based on the formal gradient flow structure of the problem.

  20. CPAS Preflight Drop Test Analysis Process

    Science.gov (United States)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  1. Temperature Effect on Photovoltaic Modules Power Drop

    Directory of Open Access Journals (Sweden)

    Qais Mohammed Aish

    2015-06-01

    Full Text Available In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di selenide (CIGS. The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di selenide module has the lowest power drop (with the average percentage power drop 0.38%/oC while monocrystalline module has the highest power drop (with the average percentage power drop 0.54%/oC, while polycrystalline module has a percentage power drop of 0.49%/oC.

  2. Pressure drop in CIM disk monolithic columns.

    Science.gov (United States)

    Mihelic, Igor; Nemec, Damjan; Podgornik, Ales; Koloini, Tine

    2005-02-11

    Pressure drop analysis in commercial CIM disk monolithic columns is presented. Experimental measurements of pressure drop are compared to hydrodynamic models usually employed for prediction of pressure drop in packed beds, e.g. free surface model and capillary model applying hydraulic radius concept. However, the comparison between pressure drop in monolith and adequate packed bed give unexpected results. Pressure drop in a CIM disk monolithic column is approximately 50% lower than in an adequate packed bed of spheres having the same hydraulic radius as CIM disk monolith; meaning they both have the same porosity and the same specific surface area. This phenomenon seems to be a consequence of the monolithic porous structure which is quite different in terms of the pore size distribution and parallel pore nonuniformity compared to the one in conventional packed beds. The number of self-similar levels for the CIM monoliths was estimated to be between 1.03 and 2.75.

  3. Universality in freezing of an asymmetric drop

    Science.gov (United States)

    Ismail, Md Farhad; Waghmare, Prashant R.

    2016-12-01

    We present the evidence of universality in conical tip formation during the freezing of arbitrary-shaped sessile droplets. The focus is to demonstrate the relationship between this universality and the liquid drop shape. We observe that, in the case of asymmetric drops, this universal shape is achieved when the tip reconfigures by changing its location, which subsequently alters the frozen drop shape. The proposed "two-triangle" model quantifies the change in the tip configuration as a function of the asymmetry of the drop that shows a good agreement with the experimental evidence. Finally, based on the experimental and theoretical exercise, we propose the scaling dependence between the variations in the tip configuration and the asymmetry of the drop.

  4. Patients dropping out of treatment in Italy.

    Science.gov (United States)

    Morlino, M; Martucci, G; Musella, V; Bolzan, M; de Girolamo, G

    1995-07-01

    The aim of this study was to explore the extent and the specific features of drop-out for patients having a first contact with an university psychiatric outpatient clinic in Italy over the course of 1 year and to determine which variables were associated with early termination of treatment. Of the 158 patients selected for this study, there was an overall 3-month drop-out rate following the first visit of 63%. Of the 59 patients who had returned once after the initial contact, 28 interrupted subsequently the treatment, although the therapist's plan included further visits. The overall drop-out rate at 3 months was thus 82%. The only 2 variables associated with drop-out rates were the patients' perception of the severity of their disorder and the psychiatric history: continuing patients were more frequently in agreement with the clinician's judgment as compared with those who dropped out and were more likely to have already been in psychiatric treatment.

  5. Condensation on surface energy gradient shifts drop size distribution toward small drops.

    Science.gov (United States)

    Macner, Ashley M; Daniel, Susan; Steen, Paul H

    2014-02-25

    During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is achieved with gravity. However, in applications with small length scales or in low gravity environments, other methods of removal, such as a surface energy gradient, are required. This study examines how chemical modification of a cooled surface affects drop growth and coalescence, which in turn influences how a population of drops evolves. Steam is condensed onto a horizontally oriented surface that has been treated by silanization to deliver either a spatially uniform contact angle (hydrophilic, hydrophobic) or a continuous radial gradient of contact angles (hydrophobic to hydrophilic). The time evolution of number density and associated drop size distributions are measured. For a uniform surface, the shape of the drop size distribution is unique and can be used to identify the progress of condensation. In contrast, the drop size distribution for a gradient surface, relative to a uniform surface, shifts toward a population of small drops. The frequent sweeping of drops truncates maturation of the first generation of large drops and locks the distribution shape at the initial distribution. The absence of a shape change indicates that dropwise condensation has reached a steady state. Previous reports of heat transfer enhancement on chemical gradient surfaces can be explained by this shift toward smaller drops, from which the high heat transfer coefficients in dropwise condensation are attributed to. Terrestrial applications using gravity as the primary removal mechanism also stand to benefit from inclusion of gradient surfaces because the critical threshold size required for

  6. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p biofilms as well as the remineralizing potential of the particles.

  7. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    Science.gov (United States)

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view.

  8. Short-term in-vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application.

    Directory of Open Access Journals (Sweden)

    René Geyeregger

    Full Text Available Adenoviral infections are a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT in pediatric patients. Adoptive transfer of donor-derived human adenovirus (HAdV-specific T-cells represents a promising treatment option. However, the difficulty in identifying and selecting rare HAdV-specific T-cells, and the short time span between patients at high risk for invasive infection and viremia are major limitations. We therefore developed an IL-15-driven 6 to 12 day short-term protocol for in vitro detection of HAdV-specific T cells, as revealed by known MHC class I multimers and a newly identified adenoviral CD8 T-cell epitope derived from the E1A protein for the frequent HLA-type A*02∶01 and IFN-γ. Using this novel and improved diagnostic approach we observed a correlation between adenoviral load and reconstitution of CD8(+ and CD4(+ HAdV-specific T-cells including central memory cells in HSCT-patients. Adaption of the 12-day protocol to good manufacturing practice conditions resulted in a 2.6-log (mean expansion of HAdV-specific T-cells displaying high cytolytic activity (4-fold compared to controls and low or absent alloreactivity. Similar protocols successfully identified and rapidly expanded CMV-, EBV-, and BKV-specific T-cells. Our approach provides a powerful clinical-grade convertible tool for rapid and cost-effective detection and enrichment of multiple virus-specific T-cells that may facilitate broad clinical application.

  9. Short-term in-vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application.

    Science.gov (United States)

    Geyeregger, René; Freimüller, Christine; Stevanovic, Stefan; Stemberger, Julia; Mester, Gabor; Dmytrus, Jasmin; Lion, Thomas; Rammensee, Hans-Georg; Fischer, Gottfried; Eiz-Vesper, Britta; Lawitschka, Anita; Matthes, Susanne; Fritsch, Gerhard

    2013-01-01

    Adenoviral infections are a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT) in pediatric patients. Adoptive transfer of donor-derived human adenovirus (HAdV)-specific T-cells represents a promising treatment option. However, the difficulty in identifying and selecting rare HAdV-specific T-cells, and the short time span between patients at high risk for invasive infection and viremia are major limitations. We therefore developed an IL-15-driven 6 to 12 day short-term protocol for in vitro detection of HAdV-specific T cells, as revealed by known MHC class I multimers and a newly identified adenoviral CD8 T-cell epitope derived from the E1A protein for the frequent HLA-type A*02∶01 and IFN-γ. Using this novel and improved diagnostic approach we observed a correlation between adenoviral load and reconstitution of CD8(+) and CD4(+) HAdV-specific T-cells including central memory cells in HSCT-patients. Adaption of the 12-day protocol to good manufacturing practice conditions resulted in a 2.6-log (mean) expansion of HAdV-specific T-cells displaying high cytolytic activity (4-fold) compared to controls and low or absent alloreactivity. Similar protocols successfully identified and rapidly expanded CMV-, EBV-, and BKV-specific T-cells. Our approach provides a powerful clinical-grade convertible tool for rapid and cost-effective detection and enrichment of multiple virus-specific T-cells that may facilitate broad clinical application.

  10. Liquid drops attract or repel by the inverted Cheerios effect

    Science.gov (United States)

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A.; Weijs, Joost H.; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H.

    2016-01-01

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop–drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the “Cheerios effect.” The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology. PMID:27298348

  11. Short tunnels.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1965-01-01

    Before dealing with the question of lighting short tunnels, it is necessary define what is meant by a tunnel and when it should be called 'short'. Confined to motorized road traffic the following is the most apt definition of a tunnel: every form of roofing-over a road section, irrespective of it le

  12. Thin-Layer Spectroelectrochemistry on an Aqueous Micro-drop

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A.; Chatterjee, Sayandev; Heineman, William R.; Bryan, Samuel A.

    2012-05-01

    Here we report the ability to perform thin-layer spectroelectrochemistry using an aqueous micro-drop. The thin-layer setup was evaluated using [Fe(CN){sub 6}]{sup 3-/4-} as a absorbance based model analyte and [Ru(bpy){sub 3}]{sup 3+/2+} as an emission based model analyte. The thin-layer capability of the electrochemical cell was validated with these two chemical systems using cyclic voltammetry, and UV-visible absorbance and luminescence spectroscopies. This work supports our FCRD process monitoring work and is a direct result of the collaboration under subcontract with University of Cincinnati.

  13. Applicability of superheated drop (bubble) detectors to reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    d`Errico, F.; Curzio, G. [Univ. degli Studi di Pisa (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Alberts, W.G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Apfel, R.E.; Guldbakke, S. [Yale Univ., New Haven, CT (United States). Dept. of Mechanical Engineering

    1994-12-31

    The characteristics of superheated drop (bubble) detectors (SDD`s) have been reviewed with respect to the possible application of these devices in reactor dosimetry. In particular, their ability to measure neutrons in the presence of a high noise level, elevated temperatures and intense {gamma} background has been investigated. Based on these studies, the use of SDD`s is proposed for the monitoring and analysis of neutron emission from spent fuel assemblies. Finally, the possibility to employ these detectors in radiation protection dosimetry around power plants is discussed.

  14. Leidenfrost drops on a heated liquid pool

    CERN Document Server

    Maquet, Laurent; Darbois-Texier, Baptiste; Brandenbourger, Martin; Rednikov, Alexey; Colinet, Pierre; Dorbolo, Stéphane

    2016-01-01

    We show that a volatile liquid drop placed at the surface of a non-volatile liquid pool warmer than the boiling point of the drop can experience a Leidenfrost effect even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014)] is developed in order to rationalize the experimental data. The shapes of the drop and of the substrate are analyzed. The model notably provides scalings for the vapor film thickness. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrea...

  15. Interaction of Drops on a Soft Substrate

    Science.gov (United States)

    Lubbers, Luuk A.; Weijs, Joost H.; Das, Siddhartha; Botto, Lorenzo; Andreotti, Bruno; Snoeijer, Jacco H.

    2013-11-01

    A sessile drop can elastically deform a substrate by the action of capillary forces. The typical size of the deformation is given by the ratio of surface tension and the elastic modulus, γ / E , which can reach up to 10-100 microns for soft elastomers. In this talk we theoretically show that the contact angles of drops on such a surface exhibit two transitions when increasing γ / E : (i) the microsocopic geometry of the contact line first develops a Neumann-like cusp when γ / E is of the order of few nanometers, (ii) the macroscopic angle of the drop is altered only when γ / E reaches the size of the drop. Using the same framework we then show that two neighboring drops exhibit an effective interaction, mediated by the deformation of the elastic medium. This is in analogy to the well-known Cheerios effect, where small particles at a liquid interface attract eachother due to the meniscus deformations. Here we reveal the nature of drop-drop interactions on a soft substrate by combining numerical and analytical calculations.

  16. Drop impact splashing and air entrapment

    KAUST Repository

    Thoraval, Marie-Jean

    2013-03-01

    Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.

  17. Conically shaped drops in electric fields

    Science.gov (United States)

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.

    1996-11-01

    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  18. Vibration-induced drop atomization and bursting

    Science.gov (United States)

    James, A. J.; Vukasinovic, B.; Smith, Marc K.; Glezer, A.

    2003-02-01

    A liquid drop placed on a vibrating diaphragm will burst into a fine spray of smaller secondary droplets if it is driven at the proper frequency and amplitude. The process begins when capillary waves appear on the free surface of the drop and then grow in amplitude and complexity as the acceleration amplitude of the diaphragm is slowly increased from zero. When the acceleration of the diaphragm rises above a well-defined critical value, small secondary droplets begin to be ejected from the free-surface wave crests. Then, quite suddenly, the entire volume of the drop is ejected from the vibrating diaphragm in the form of a spray. This event is the result of an interaction between the fluid dynamical process of droplet ejection and the vibrational dynamics of the diaphragm. During droplet ejection, the effective mass of the drop diaphragm system decreases and the resonance frequency of the system increases. If the initial forcing frequency is above the resonance frequency of the system, droplet ejection causes the system to move closer to resonance, which in turn causes more vigorous vibration and faster droplet ejection. This ultimately leads to drop bursting. In this paper, the basic phenomenon of vibration-induced drop atomization and drop bursting will be introduced, demonstrated, and characterized. Experimental results and a simple mathematical model of the process will be presented and used to explain the basic physics of the system.

  19. Terminal Effect of Drop Coalescence on Single Drop Mass Transfer Measurements and Its Minimization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For the mass transfer to single drops during the stage of steady buoyancy-driven motion, experimental measurement is complicated with the terminal effect of additional mass transfer during drop formation and coa lescence at the drop collector. Analysis reveals that consistent operating conditions and experimental procedure are of critical significance for minimizing the terminal effect of drop coalescence on the accuracy of mass transfer measurements. The novel design of a totally-closed extraction column is proposed for this purpose, which guaran tees that the volumetric rate of drop phase injection is exactly equal to that of withdrawal of drops. Tests in two extraction systems demonstrate that the experimental repeatability is improved greatly and the terminal effect of mass transfer during drop coalescence is brought well under control.

  20. Laplacian drop shapes and effect of random perturbations on accuracy of surface tension measurement for different drop constellations.

    Science.gov (United States)

    Saad, Sameh M I; Neumann, A Wilhelm

    2015-08-01

    Theoretical drop shapes are calculated for three drop constellations: pendant drops, constrained sessile drops, and unconstrained sessile drops. Based on total Gaussian curvature, shape parameter and critical shape parameter are discussed as a function of different drop sizes and surface tensions. The shape parameter is linked to physical parameters for every drop constellation. The as yet unavailable detailed dimensional analysis for the unconstrained sessile drop is presented. Results show that the unconstrained sessile drop shape depends on a dimensionless volume term and the contact angle. Random perturbations are introduced and the accuracy of surface tension measurement is assessed for precise and perturbed profiles of the three drop constellations. It is concluded that pendant drops are the best method for accurate surface tension measurement, followed by constrained sessile drops. The unconstrained sessile drops come last because they tend to be more spherical at low and moderate contact angles. Of course, unconstrained sessile drops are the only option if contact angles are to be measured.

  1. Idiopathic short stature

    Directory of Open Access Journals (Sweden)

    Vlaški Jovan

    2013-01-01

    Full Text Available Growth is a complex process and the basic characteristic of child- hood growth monitoring provides insight into the physiological and pathological events in the body. Statistically, the short stature means departure from the values of height for age and sex (in a particular environment, which is below -2 standard deviation score, or less than -2 standard deviation, i.e. below the third percentile. Advances in molecular genetics have contributed to the improvement of diagnostics in endocrinology. Analysis of patients’ genotypes should not be performed before taking a classical history, detailed clinical examination and appropriate tests. In patients with idiopathic short stature specific causes are excluded, such as growth hormone deficiency, Turner syndrome, short stature due to low birth weight, intrauterine growth retardation, small for gestational age, dysmorphology syndromes and chronic childhood diseases. The exclusion of abovementioned conditions leaves a large number of children with short stature whose etiology includes patients with genetic short stature or familial short stature and those who are low in relation to genetic potential, and who could also have some unrecognized endocrine defect. Idiopathic short stature represents a short stature of unknown cause of heterogeneous etiology, and is characterized by a normal response of growth hormone during stimulation tests (>10 ng/ml or 20 mJ/l, without other disorders, of normal body mass and length at birth. In idiopathic short stature standard deviation score rates <-2.25 (-2 to -3 or <1.2 percentile. These are also criteria for the initiation of growth hormone therapy. In children with short stature there is also the presence of psychological and social suffering. Goals of treatment with growth hormone involve achieving normal height and normal growth rate during childhood.

  2. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    Science.gov (United States)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  3. Deviation of viscous drops at chemical steps

    CERN Document Server

    Semprebon, Ciro; Filippi, Daniele; Perlini, Luca; Pierno, Matteo; Brinkmann, Martin; Mistura, Giampaolo

    2016-01-01

    We present systematic wetting experiments and numerical simulations of gravity driven liquid drops sliding on a plane substrate decorated with a linear chemical step. Surprisingly, the optimal direction to observe crossing is not the one perpendicular to the step, but a finite angle that depends on the material parameters. We computed the landscapes of the force acting on the drop by means of a contact line mobility model showing that contact angle hysteresis dominates the dynamics at the step and determines whether the drop passes onto the lower substrate. This analysis is very well supported by the experimental dynamic phase diagram in terms of pinning, crossing, sliding and sliding followed by pinning.

  4. New Hydrodynamic Mechanism for Drop Coarsening

    CERN Document Server

    Nikolayev, Vadim; Guenoun, Patrick

    2016-01-01

    We discuss a new mechanism of drop coarsening due to coalescence only, which describes the late stages of phase separation in fluids. Depending on the volume fraction of the minority phase, we identify two different regimes of growth, where the drops are interconnected and their characteristic size grows linearly with time, and where the spherical drops are disconnected and the growth follows (time) 1/3. The transition between the two regimes is sharp and occurs at a well defined volume fraction of order 30%.

  5. On the Deepwater Horizon drop size distributions

    Science.gov (United States)

    Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brock, C. A.; McKeen, S. A.

    2014-12-01

    Model simulations of the fate of gas and oil released following the Deepwater Horizon blowout in 2012 depend critically on the assumed drop size distributions. We use direct observations of surfacing time, surfacing location, and atmospheric chemical composition to infer an average drop size distribution for June 10, 2012, providing robust first-order constraints on parameterizations in models. We compare the inferred drop size distribution to published work on Deepwater Horizon and discuss the ability of this approach to determine the efficacy of subsurface dispersant injection.

  6. Scaling During Drop Formation and Filament (Thread) Breakup

    Science.gov (United States)

    Wagoner, Brayden; Thete, Sumeet; Basaran, Osman

    2016-11-01

    Many free surface flows such as drop formation, filament (thread) breakup, and drop coalescence are important in applications as diverse as ink jet printing, atomization, and emulsion science and technology. A common feature of these flows is that they all exhibit finite time singularities. When a liquid filament undergoes capillary thinning and tends toward pinch-off, it is instructive to monitor how certain quantities, such as the thread's radius, vary with time remaining until the pinch-off singularity. Experimental determination of this so-called scaling behavior of thread radius and other quantities is important for testing scaling theories and the accuracy of numerical simulations of free surface flows. Conversely, the experimental measurements can be used to develop new theories when none are available. In this talk, we will present some novel ways of experimentally measuring scaling behaviors. The results will be highlighted in terms of experiments involving the formation and breakup of drops and filaments of (a) simple or pure Newtonian fluids and also (b) particle-laden liquids or suspensions containing non-Brownian particles.

  7. Automated microfluidic screening assay platform based on DropLab.

    Science.gov (United States)

    Du, Wen-Bin; Sun, Meng; Gu, Shu-Qing; Zhu, Ying; Fang, Qun

    2010-12-01

    This paper describes DropLab, an automated microfluidic platform for programming droplet-based reactions and screening in the nanoliter range. DropLab can meter liquids with picoliter-scale precision, mix multiple components sequentially to assemble composite droplets, and perform screening reactions and assays in linear or two-dimensional droplet array with extremely low sample and reagent consumptions. A novel droplet generation approach based on the droplet assembling strategy was developed to produce multicomponent droplets in the nanoliter to picoliter range with high controllability on the size and composition of each droplet. The DropLab system was built using a short capillary with a tapered tip, a syringe pump with picoliter precision, and an automated liquid presenting system. The tapered capillary was used for precise liquid metering and mixing, droplet assembling, and droplet array storage. Two different liquid presenting systems were developed based on the slotted-vial array design and multiwell plate design to automatically present various samples, reagents, and oil to the capillary. Using the tapered-tip capillary and the picoliter-scale precision syringe pump, the minimum unit of the droplet volume in the present system reached ~20 pL. Without the need of complex microchannel networks, various droplets with different size (20 pL-25 nL), composition, and sequence were automatically assembled, aiming to multiple screening targets by simply adjusting the types, volumes, and mixing ratios of aspirated liquids on demand. The utility of DropLab was demonstrated in enzyme inhibition assays, protein crystallization screening, and identification of trace reducible carbohydrates.

  8. Inverted Cheerios effect: Liquid drops attract or repel by elasto-capillarity

    CERN Document Server

    Karpitschka, S; Lubbers, L A; Weijs, J H; Botto, L; Das, S; Andreotti, B; Snoeijer, J H

    2016-01-01

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the migration velocity of the droplets. Remarkably, we find that while on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs which prevents the two drops from coming into direct contact. This versatile, new interaction is the liquid-on-solid analogue of the "Cheerios effect". The effect will strongly influence the condensation and coarsening of drop soft polymer films, and has potential impli...

  9. Proceedings of the Second International Colloquium on Drops and Bubbles

    Science.gov (United States)

    Lecroissette, D. H. (Editor)

    1982-01-01

    Applications of bubble and drop technologies are discussed and include: low gravity manufacturing, containerless melts, microballoon fabrication, ink printers, laser fusion targets, generation of organic glass and metal shells, and space processing. The fluid dynamics of bubbles and drops were examined. Thermomigration, capillary flow, and interfacial tension are discussed. Techniques for drop control are presented and include drop size control and drop shape control.

  10. Electric field induced deformation of sessile drops

    Science.gov (United States)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  11. How to Use Nose Drops Properly

    Science.gov (United States)

    ... Use nose drops only as long as directed Store medications out of reach of children Copyright 2013, American Society of Health-System Pharmacists. All rights reserved. This material may not be reproduced, displayed, modified, or distributed ...

  12. How to Use Eye Drops Properly

    Science.gov (United States)

    ... doses Use the exact number of drops recommended Store medications out of reach of children Copyright 2013, American Society of Health-System Pharmacists. All rights reserved. This material may not be reproduced, displayed, modified, or distributed ...

  13. Drop impact of shear thickening liquids

    CERN Document Server

    Boyer, Francois; Dijksman, J Frits; Lohse, Detlef

    2013-01-01

    The impact of drops of concentrated non-Brownian suspensions (cornstarch and polystyrene spheres) onto a solid surface is investigated experimentally. The spreading dynamics and maxi- mal deformation of the droplet of such shear thickening liquids are found to be markedly different from the impact of Newtonian drops. A particularly striking observation is that the maximal de- formation is independent of the drop velocity and that the deformation suddenly stops during the impact phase. Both observations are due to the shear-thickening rheology of the suspensions, as is theoretically explained from a balance between the kinetic energy and the viscously-dissipated en- ergy, from which we establish a scaling relation between drop maximal deformation and rheological parameters of concentrated suspensions.

  14. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-07-18

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  15. Design of Dataflow Monitoring and Searches for B to omega gamma, B to phi gamma and B to phi K-short gamma at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Swain, J

    2004-03-16

    In May 2003 PEP-II achieved instantaneous luminosities in excess of 6 x 10{sup 33} cm{sup -2}s{sup -1}, twice the design luminosity. To permit BABAR to operate in this challenging environment, development work on the data acquisition system continued after detector commissioning. A vital part of this process is understanding the performance of the data acquisition system. Considerable effort was invested in the design and implementation of an application capable of collecting performance statistics from hundreds of CPUs in the data acquisition system during data collection. The monitoring application and some examples of its operation are presented in this thesis. Also presented here are the searches for the exclusive radiative one-loop decays, B {yields} {omega}{gamma}, B {yields} {phi}{gamma} and B{sup 0} {yields} {phi}K{sub S}{sup 0}{gamma}, using a sample of 89 million B{bar B} events. No significant signal is seen in any of the channels. Upper limits on the branching ratios, {Beta}, were found to be {Beta}(B {yields} {omega}{gamma}) < 3.0 x 10{sup -6}, {Beta}(B {yields} {phi}{gamma}) < 2.9 x 10{sup -6}, and {Beta}(B{sup 0} {yields} {phi}K{sub S}{sup 0}{gamma}) < 3.8 x 10{sup -6}, at the 90% confidence level.

  16. Glycemic Variability Assessed by Continuous Glucose Monitoring and Short-Term Outcome in Diabetic Patients Undergoing Percutaneous Coronary Intervention: An Observational Pilot Study

    Directory of Open Access Journals (Sweden)

    Annunziata Nusca

    2015-01-01

    Full Text Available Poor glycemic control is associated with unfavorable outcome in patients undergoing percutaneous coronary intervention (PCI, irrespective of diabetes mellitus. However a complete assessment of glycemic status may not be fully described by glycated hemoglobin or fasting blood glucose levels, whereas daily glycemic fluctuations may influence cardiovascular risk and have even more deleterious effects than sustained hyperglycemia. Thus, this paper investigated the effectiveness of a continuous glucose monitoring (CGM, registering the mean level of glycemic values but also the extent of glucose excursions during coronary revascularization, in detecting periprocedural outcome such as renal or myocardial damage, assessed by serum creatinine, neutrophil gelatinase-associated lipocalin (NGAL, and troponin I levels. High glycemic variability (GV has been associated with worse postprocedural creatinine and NGAL variations. Moreover, GV, and predominantly hypoglycemic variations, has been observed to increase in patients with periprocedural myocardial infarction. Thus, our study investigated the usefulness of CGM in the setting of PCI where an optimal glycemic control should be achieved in order to prevent complications and improve outcome.

  17. Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.

    Science.gov (United States)

    Saad, Sameh M I; Neumann, A Wilhelm

    2014-02-01

    Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number.

  18. Short stature

    Science.gov (United States)

    ... condition. Bone or skeletal disorders, such as: Rickets Achondroplasia Chronic diseases, such as: Asthma Celiac disease Congenital ... growth seems slow or your child seems small. TREATMENT Your child's short stature may affect her self- ...

  19. Short communication

    African Journals Online (AJOL)

    preferred customer

    ABSTRACT: Nutrients, metabolizable energy (ME), anti-nutritional factors, digestible organic ... for animals are in short supply and expensive, ... peels from hotels (Hawassa); sisal waste from ..... chain omega-3 fatty acids in livestock meat and.

  20. Continuous monitoring α-activity on aerosol filters by the pseudo-coincidence-technique. Explicitly taking into account the short lived Po-218 activity; Kontinuierliche Ueberwachung der α-Aktivitaet eines Aerosolfilters mit der Pseudokoinzidenzmesstechnik. Explizite Beruecksichtigung der kurzlebigen Po-218 Aktivitaetsbeitraaege

    Energy Technology Data Exchange (ETDEWEB)

    Kraut, W.; Schwarz, W. [Duale Hochschule Baden-Wuerttemberg (DHBW), Karlsruhe (Germany). Studiengang Sicherheitswesen; Kraut, B. [Berthold Technologies GmbH und Co.KG, Bad Wildbad (Germany)

    2015-07-01

    Pseudo-coincidence-technique is applied to continuous monitoring of α-activity on aerosolfilters by proportional counters. Filter activity can markedly increase or decrease by changing air conditions especially by the amount of short lived Po-218 activity. Conditions of constant proportions of activity concentrations for the short lived species for operating this technique are seldom fulfilled. The dynamic behavior of artificial (long lived) and natural (short lived) activity is mathematically modelled and the measured moving count rates are analyzed under this model by a multivariate regression analysis for activity concentrations of artificial resp. short lived activity. Results are compared to standard recommendations of DIN ISO 11929.

  1. Fluid Flower : Microliquid Patterning via Drop Impact

    CERN Document Server

    Lee, Minhee

    2008-01-01

    In microfluidic technologies, direct patterning of liquid without resorting to micromachined solid structures has various advantages including reduction of the frictional dissipation and the fabrication cost. This fluid dynamics video illustrates the method to micropattern a liquid on a solid surface with drop impact. We experimentally show that a water drop impacting with the wettability-patterned solid retracts fast on the hydrophobic regions while being arrested on the hydrophilic areas.

  2. Blood drop patterns: Formation and applications.

    Science.gov (United States)

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis.

  3. 基于外场场强测量的短波天线辐射效率监测%Monitoring of Short-wave Antenna Radiation Efficiency Based on Outfield Measurement

    Institute of Scientific and Technical Information of China (English)

    赵鹏; 陈斌; 杨路刚

    2015-01-01

    Aiming at the problem of too many difficulties to monitor the radiation efficiency of short-wave antennas on site,a method based on outfield measurement of field strength to monitor the short-wave antennas'radiation efficiency was researched.This method combined technologies of antenna modeling and measurement,solved and analyzed the potential-type dyadic Green's function of medium half space by the domain-transformation method.The RWG Method of Moment (RWG-MoM)was adopted to discrete the Mixed Potential Integral Equation (MPIE)in formulation C of planar multi-lay-ered media,and the relative distribution of short-wave antenna radiation power was obtained.The outfield antenna radiation field strength was measured to get the real density of electromagnetic power,which was made as the sample to estimate the antenna radiation power,and the radiation efficiency was calculated by the ratio of the radiation power and the input power. And then,taking short-wave dipole antenna as example,the measurement of field strength in far field was conducted by air-ship field strength measuring platform,and the normalized radiation patterns obtained in experiments were in good agree-ment with simulation.The radiation efficiency calculated by this method coincided well with published papers',and the moni-toring of short-wave antennas'radiation efficiency was achieved.%针对短波天线辐射效率难以现场监测的问题,研究一种基于外场场强测量的短波天线辐射效率监测方法。该方法结合天线仿真与测量技术,通过域变换法解析介质半空间位型并矢格林函数,采用RWG 矩量法(RWG-MoM)离散平面分层介质 C 类混合位电场积分方程(MPIE),得到天线辐射功率的相对分布。测量天线外场场强,得到场点电磁功率面密度作为样本估计天线辐射功率,由辐射功率与输入功率的比值计算得到天线辐射效率。以短波双极天线为例,基于现有的飞艇场强测量平台,

  4. Drop Performance Test of CRDMs for JRTR

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Chung, Jong-Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jung-Hyun [POSCO Plandtec Co. Ltd, Ulsan (Korea, Republic of); Lee, Kwan-Hee [RIST, Pohang (Korea, Republic of)

    2015-10-15

    The drop test results of CRDMs with AC-type electromagnet show that the initial delay times are not satisfied with the requirement, 0.15 seconds. After the replacement of the electromagnet from AC-type to DCtype, the drop times of CARs and accelerations due to the impact of moving parts are satisfied with all requirements. As a result, it is found that four CRDMs to be installed at site have a good drop performance, and meet all performance requirements. A control rod drive mechanism (CRDM) is a device to control the position of a control absorber rod (CAR) in the core by using a stepping motor which is commanded by the reactor regulating system (RRS) to control the reactivity during the normal operation of the reactor. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the performances such as the stepping, drop, endurance, vibration, seismic and structural integrity for active components. Especially, the CAR drop curves are important data for the safety analysis. This paper describes the test results to demonstrate the drop performances of a prototype and 4 CRDMs to be installed at site. The tests are carried out at a test rig simulating the actual reactor's conditions.

  5. Transition Mode Shapes in a Vibrating Drop

    Science.gov (United States)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    2000-11-01

    Vertical, time-periodic vibration of a diaphragm has been used to atomize a primary sessile drop into a fine spray of secondary droplets. The evolution and rate of atomization depend on the coupled dynamics of the sessile drop and the piezoelectrically-driven, low-mass diaphragm. The evolution of the free surface of the drop is characterized by the appearance of a hierarchy of surface waves that we investigated using high-speed imaging and laser vibrometry. At low-driving amplitudes, we see the appearance of time-harmonic axisymmetric waves on the drop's free surface induced by the motion of the contact line. As the vibration amplitude increases, azimuthal waves at the subharmonic of the forcing frequency appear around the periphery of the drop and propagate towards its center. A striking lattice mode emerges upon the breakdown of the axisymmetric wave pattern, followed by the appearance of the highly-agitated free surface of the pre-ejection mode shape. Subsequent to the breakdown of the lattice structure, the frequency of the most energetic mode is a subharmonic of the driving frequency. The complex interaction of the fundamental and subharmonic waves ultimately leads to the breakdown of the free surface and the atomization of the drop.

  6. Neutron ambient dosimetry with superheated drop (bubble) detectors

    Energy Technology Data Exchange (ETDEWEB)

    d`Errico, F.; Noccioni, P. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Alberts, W.G.; Dietz, E.; Siebert, B.R.L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Gualdrini, G. [ENEA, Bologna (Italy); Kurkdjian, J. [CEA Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    A prototype neutron area monitor was developed which improves the performance of superheated drop detectors based on halocarbon-12. The detectors are thermally controlled: this removes external temperature effects while ensuring a dose equivalent response optimised with respect to its energy dependence. The system was first characterised through calibrations with monoenergetic neutron beams. In the intermediate energy range, where experimental investigations were not possible, Monte Carlo response calculations were carried out. The prototype was then extensively tested by means of simulated and in-field irradiations with broad neutron spectra. All these tests indicated a remarkably constant dose equivalent response regardless of the neutron energy distributions. The current device is a fairly delicate system which can be operated reliably when environmental conditions are not extreme. Nevertheless, when it was possible to employ it, this monitor demonstrated an accuracy far superior to that of conventional meters used in routine surveillance. (author).

  7. Design and Implementation of 10 Gbps Optical Add-Drop Transponder

    Institute of Scientific and Technical Information of China (English)

    Byoung-Sung; Kim; Seung-Il; Myong; Jung-Chan; Lee; Je-Soo; Ko

    2003-01-01

    10 Gbps optical add-drop transponder, which can accommodate VSR (very short reach) to LR (long reach) subnetworks, is designed and implemented. The transponder consists of an OCA (optical transport network connection assembly), a SCA (sub-network connection assembly), and a FECA (forward error correction assembly).

  8. Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics

    Science.gov (United States)

    Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha

    2015-11-01

    Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.

  9. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Wase, Nishikant; Pham, Trong Khoa; Ow, Saw Yen; Wright, Phillip C

    2014-09-23

    A quantitative proteomics and metabolomics analysis was performed using iTRAQ, HPLC and GC-MS in the filamentous cyanobacterium Nostoc punctiforme ATCC 29133 to understand the effect of short and long term UV-A exposure. Changes in the proteome were measured for short-term stress (4-24h) using iTRAQ. Changes in the photosynthetic pigments and intracellular metabolites were observed at exposures of up to 7days (pigments) and up to 11days (intracellular metabolites). To assess iTRAQ measurement quality, pseudo selected reaction monitoring (pSRM) was used, with this confirming underestimation of protein abundance levels by iTRAQ. Our results suggest that short term UV-A radiation lowers the abundance of PS-I and PS-II proteins. We also observed an increase in abundance of intracellular redox homeostasis proteins and plastocyanin. Additionally, we observed statistically significant changes in scytonemin, Chlorophyll A, astaxanthin, zeaxanthin, and β-carotene. Assessment of intracellular metabolites showed significant changes in several, suggesting their potential role in the Nostoc's stress mitigation strategy. Cyanobacteria under UV-A radiation have reduced growth due to intensive damage to essential functions, but the organism shows a defense response by remodeling bioenergetics pathway, induction of the UV protection compound scytonemin and increased levels of proline and tyrosine as a mitigation response. The effect of UV-A radiation on the proteome and intracellular metabolites of N. punctiforme ATCC 29133 including photosynthetic pigments has been described. We also verify the expression of 13 iTRAQ quantified protein using LC-pSRM. Overall we observed that UV-A radiation has a drastic effect on the photosynthetic machinery, photosynthetic pigments and intracellular amino acids. As a mitigation strategy against UV-A radiation, proline, glycine, and tyrosine were accumulated. Copyright © 2014. Published by Elsevier B.V.

  10. 基于GSM的短信息的电源监控系统的设计%Design of monitor system of power supply for short message based on GSM

    Institute of Scientific and Technical Information of China (English)

    王文亮; 冀文超

    2011-01-01

    With the development of GSM, short message is developing very quickly and widely as a simple and convenient ways of data communicalion. The structure and the design proposal of the power source monitor system based on GSM were introduced. and a real time and accurate monitoring by existing GMS network resources was carried out The system is suitable to the field which requires less data transmission and dispersed detected point%随着GSM网络的发展,短信息作为GSM系统中最为简单和方便的数据通信方式,得到了迅猛的发展.介绍了基于短消息业务的电源监控系统的组成结构和设计方案,利用了GSM移动通讯网络短信息服务快捷的性能对电源进行实时、准确的监控.该系统对于监测点分散,数据传送量较少,需要监控的领域具有较大的实用价值.

  11. Charge and Size Distributions of Electrospray Drops

    Science.gov (United States)

    de Juan L; de la Mora JF

    1997-02-15

    The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.

  12. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    Science.gov (United States)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  13. Shape oscillation of a levitated drop in an acoustic field

    CERN Document Server

    Ran, Weiyu

    2013-01-01

    A `star drop' refers to the patterns created when a drop, flattened by some force, is excited into shape mode oscillations. These patterns are perhaps best understood as the two dimensional analog to the more common three dimensional shape mode oscillations. In this fluid dynamics video an ultrasonic standing wave was used to levitate a liquid drop. The drop was then flattened into a disk by increasing the field strength. This flattened drop was then excited to create star drop patterns by exciting the drop at its resonance frequency. Different oscillatory modes were induced by varying the drop radius, fluid properties, and frequency at which the field strength was modulated.

  14. Control rod reactivity measurement by rod-drop method at a fast critical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, L.; Yin, Y.; Lian, X.; Zheng, C. [Inst. of Nuclear Physics and Chemistry in CAEP, P. O. Box 919 210, Mianyang, Sichuan, 621900 (China)

    2012-07-01

    Rod-drop experiments were carried out to estimate the reactivity of the control rod of a fast critical assembly operated by CAEP. Two power monitor systems were used to obtain the power level and integration method was used to process the data. Three experiments were performed. The experimental results of the reactivity from the two power monitor systems were consistent and showed a reasonable range of reactivity compared to results from positive period method. (authors)

  15. Drops with non-circular footprints

    CERN Document Server

    Ravazzoli, Pablo D; Diez, Javier A

    2015-01-01

    In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. This type of drops is a consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to hysteresis effects of the contact angle since some parts of the contact line are wetting, while others are dewetting. Here, we obtain a peculiar drop shape from the rupture of a long liquid filament sitting on a solid substrate, and analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non--trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of...

  16. Drop splash on a smooth, dry surface

    Science.gov (United States)

    Riboux, Guillaume; Gordillo, Jose Manuel; Korobkin, Alexander

    2013-11-01

    It is our purpose here to determine the conditions under which a drop of a given liquid with a known radius R impacting against a smooth impermeable surface at a velocity V, will either spread axisymmetrically onto the substrate or will create a splash, giving rise to usually undesired star-shaped patterns. In our experimental setup, drops are generated injecting low viscosity liquids falling under the action of gravity from a stainless steel hypodermic needle. The experimental observations using two high speed cameras operating simultaneously and placed perpendicularly to each other reveal that, initially, the drop deforms axisymmetrically, with A (T) the radius of the wetted area. For high enough values of the drop impact velocity, a thin sheet of liquid starts to be ejected from A (T) at a velocity Vjet > V for instants of time such that T >=Tc . If Vjet is above a certain threshold, which depends on the solid wetting properties as well as on the material properties of both the liquid and the atmospheric gas, the rim of the lamella dewets the solid to finally break into drops. Using Wagner's theory we demonstrate that A (T) =√{ 3 RVT } and our results also reveal that Tc We - 1 / 2 =(ρV2 R / σ) - 1 / 2 and Vjet We 1 / 4 .

  17. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.

    2013-04-29

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  18. Drops with non-circular footprints

    Science.gov (United States)

    Ravazzoli, Pablo D.; González, Alejandro G.; Diez, Javier A.

    2016-04-01

    In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. These drops are consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to the hysteresis of the contact angle since there is a wetting process in some parts of the contact line, while a dewetting occurs in other parts. Here, we obtain a characteristic drop shape from the rupture of a long liquid filament sitting on a solid substrate. We analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non-trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and we compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of the full Navier-Stokes equation, where we emulate the hysteretic effects with an appropriate spatial distribution of the static contact angle over the substrate.

  19. Drop Testing Representative Multi-Canister Overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  20. Bubble and Drop Nonlinear Dynamics (BDND)

    Science.gov (United States)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  1. Settling of copper drops in molten slags

    Science.gov (United States)

    Warczok, A.; Utigard, T. A.

    1995-02-01

    The settling of suspended metal and sulfide droplets in liquid metallurgical, slags can be affected by electric fields. The migration of droplets due to electrocapillary motion phenomena may be used to enhance the recovery of suspended matte/metal droplets and thereby to increase the recovery of pay metals. An experimental technique was developed for the purpose of measuring the effect of electric fields on the settling rate of metallic drops in liquid slags. Copper drops suspended in CaO-SiO2-Al2O3-Cu2O slags were found to migrate toward the cathode. Electric fields can increase the settling rate of 5-mm-diameter copper drops 3 times or decrease the settling until levitation by reversal of the electric field. The enhanced settling due to electric fields decreases with increasing Cu2O contents in the slag.

  2. The surface temperature of free evaporating drops

    Science.gov (United States)

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.

    2016-10-01

    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  3. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  4. Drop impact on a flexible fiber

    CERN Document Server

    Dressaire, Emilie; Boulogne, François; Stone, Howard A

    2015-01-01

    When droplets impact fibrous media, the liquid can be captured by the fibers or contact then break away. Previous studies have shown that the efficiency of drop capture by a rigid fiber depends on the impact velocity and defined a threshold velocity below which the drop is captured. However, it is necessary to consider the coupling of elastic and capillary effects to achieve a greater understanding of the capture process for soft substrates. Here, we study experimentally the dynamics of a single drop impacting on a thin flexible fiber. Our results demonstrate that the threshold capture velocity depends on the flexibility of fibers in a non-monotonic way. We conclude that tuning the mechanical properties of fibers can optimize the efficiency of droplet capture.

  5. Secondary breakup of coal water slurry drops

    Science.gov (United States)

    Zhao, Hui; Liu, Hai-Feng; Xu, Jian-Liang; Li, Wei-Feng

    2011-11-01

    To investigate secondary atomization of coal water slurry (CWS), deformation and breakup of eight kinds of CWS drops are presented using high speed digital camera. Based on morphology, deformation and breakup regimes of CWS drops can be termed some different modes: deformation, multimode breakup (including two sub-modes: hole breakup and tensile breakup), and shear breakup. Correlations on the ranges of breakup modes are also obtained. The conventional Weber number and Ohnesorge number are found to be insufficient to classify all breakup modes of CWS drops, so two other non-dimensional numbers based on rheology of CWS are suggested to use in the deformation and breakup regime map. Finally, total breakup time is studied and correlated, which increases with Ohnesorge number.

  6. A novel approach to Lab-In-Syringe Head-Space Single-Drop Microextraction and on-drop sensing of ammonia.

    Science.gov (United States)

    Šrámková, Ivana; Horstkotte, Burkhard; Sklenářová, Hana; Solich, Petr; Kolev, Spas D

    2016-08-31

    A novel approach to the automation technique Lab-In-Syringe, also known as In-Syringe Analysis, is proposed which utilizes a secondary inlet into the syringe void, used as a size-adaptable reaction chamber, via a channel passing through the syringe piston. This innovative approach allows straightforward automation of head-space single-drop microextraction, involving accurately controlled drop formation and handling, and the possibility of on-drop analyte quantification. The syringe was used in upside-down orientation and in-syringe magnetic stirring was carried out, which allowed homogenous mixing of solutions, promotion of head-space analyte enrichment, and efficient syringe cleaning. The superior performance of the newly developed system was illustrated with the development of a sensitive method for total ammonia determination in surface waters. It is based on head-space extraction of ammonia into a single drop of bromothymol blue indicator created inside the syringe at the orifice of the syringe piston channel and on-drop sensing of the color change via fiber optics. The slope of the linear relationship between absorbance and time was used as the analytical signal. Drop formation and performance of on-drop monitoring was further studied with rhodamine B solution to give a better understanding of the system's performance. A repeatability of 6% RSD at 10 μmol L(-1) NH3, a linear range of up to 25 μmol L(-1) NH3, and a limit of detection of 1.8 μmol L(-1) NH3 were achieved. Study of interferences proved the high robustness of the method towards humic acids, high sample salinity, and the presence of detergents, thus demonstrating the method superiority compared to the state-of-the-art gas-diffusion methods. A mean analyte recovery of 101.8% was found in analyzing spiked environmental water samples.

  7. Water drops dancing on ice: how sublimation leads to drop rebound.

    Science.gov (United States)

    Antonini, C; Bernagozzi, I; Jung, S; Poulikakos, D; Marengo, M

    2013-07-05

    Drop rebound is a spectacular event that appears after impact on hydrophobic or superhydrophobic surfaces but can also be induced through the so-called Leidenfrost effect. Here we demonstrate that drop rebound can also originate from another physical phenomenon, the solid substrate sublimation. Through drop impact experiments on a superhydrophobic surface, a hot plate, and solid carbon dioxide (commonly known as dry ice), we compare drop rebound based on three different physical mechanisms, which apparently share nothing in common (superhydrophobicity, evaporation, and sublimation), but lead to the same rebound phenomenon in an extremely wide temperature range, from 300 °C down to even below -79 °C. The formation and unprecedented visualization of an air vortex ring around an impacting drop are also reported.

  8. The new Drop Tower catapult system

    Science.gov (United States)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  9. Electrohydrodynamic removal of particles from drop surfaces

    Science.gov (United States)

    Nudurupati, S.; Janjua, M.; Singh, P.; Aubry, N.

    2009-07-01

    A uniform electric field is used for cleaning drops of the particles they often carry on their surface. In a first step, particles migrate to either the drop’s poles or equator. This is due to the presence of an electrostatic force for which an analytical expression is derived. In a second step, particles concentrated near the poles are released into the ambient liquid via tip streaming, and those near the equator are removed by stretching the drop and breaking it into several droplets. In the latter case, particles are all concentrated in a small middle daughter droplet.

  10. Development of revolving drop surface tensiometer.

    Science.gov (United States)

    Mitani, S; Sakai, K

    2012-01-01

    A revolving drop surface tensiometer, which measures the surface tension of a small amount of liquid, is proposed. A remarkable feature of this device is that while using the pendant drop method, it employs a centrifugal force to deform the liquid droplet. The centrifugal force induces a large distortion of the droplet, which enables an accurate measurement of the surface tension to be made. In our experimental setup, the centrifugal force can be increased so that the apparent acceleration becomes up to 100 times larger than that due to gravity, and the capability of this method to measure surface tensions was demonstrated with ethylene glycol.

  11. Millikan "oil drop" stabilized by growth.

    Science.gov (United States)

    Sun, L K; Gertler, A W; Reiss, H

    1979-01-26

    A diffusion cloud chamber has been used to qualitatively study some dynamic properties of liquid drops by suspending them in an electric field at the plane of saturation (p/ps = 1, where p is the actual partial pressure of the vapor at a given elevation and ps is the equilibrium pressure at that temperature characteristic of that elevation). By varying the strength of the electric field, it is possible to change the size of the suspended droplets and even, if desired, to isolate a single drop.

  12. Transformation of the bridge during drop separation

    Science.gov (United States)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2016-05-01

    The geometry of flows during separation of pendant drops of liquids with significantly different physical properties (alcohol, water, glycerin, oil) has been studied by high-speed video recording. The dynamics of the processes involving the formation of bridges of two characteristic shapes—slightly nonuniform in thickness and with thinning of the upper and lower ends—has been investigated. It has been shown that the shape change of the separated bridge has a number of stages determined by the properties of the liquid. As a result, the bridge is transformed into a small drop—a satellite drop.

  13. Treatment outcomes and predictors of drop out for problem gamblers in South Australia: a cohort study.

    Science.gov (United States)

    Smith, David; Harvey, Peter; Battersby, Malcolm; Pols, Rene; Oakes, Jane; Baigent, Michael

    2010-10-01

    Recent prevalence studies in Australia, the USA and Canada have estimated 1-2% of the adult population meet the diagnostic criteria for problem or pathological gambling. The Statewide Gambling Therapy Service (SGTS) provides treatment for problem gamblers in key metropolitan and rural regions in South Australia. The aims of this study were two-fold: to analyse the short and mid-term outcomes following treatment provided by SGTS and to identify factors associated with treatment drop-out. A cohort of treatment seeking problem gamblers was recruited through SGTS in 2008. Repeated outcome measures included problem gambling screening, gambling related cognitions and urge. Treatment drop-out was defined as participants attending three or less treatment sessions, whilst potential predictors of drop-out included perceived social support , anxiety and sensation-seeking traits. Of 127 problem gamblers who participated in the study, 69 (54%) were males with a mean age of 43.09 years (SD = 12.65 years) and with 65 (52%) reporting a duration of problem gambling greater than 5 years. Follow up time for 50% of participants was greater than 8.9 months and, overall, 41 (32%) participants were classified as treatment drop-outs. Results indicated significant improvement over time on all outcome measures except alcohol use for both treatment completers and drop-outs, although to a lesser extent for the treatment drop-out group. A significant predictor of treatment drop-out was sensation-seeking traits. These results will inform future treatment planning and service delivery, and guide research into problem gambling including aspects of treatment drop-out.

  14. 14 CFR 23.727 - Reserve energy absorption drop test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  15. Best Measuring Time for a Millikan Oil Drop Experiment

    Science.gov (United States)

    Kapusta, J. I.

    1975-01-01

    In a Millikan oil drop experiment, there is a best measuring time for observing the drop, due to Brownian motion of the drop and the experimenter's reaction time. Derives an equation for the relative error in the measurement of the drop's excess charge, and obtains a formula for the best measuring time. (Author/MLH)

  16. Short Review

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Rühli, Frank

    2015-01-01

    modality in ancient mummy research. The aim of this short review is to address the advantages and pitfalls of this particular technique for such unique samples. We recommend that when results of X-ray examination of mummies are presented, the specific recording data should be listed, and any given finds......, for example, of Paleopathology, should be cross-checked against other sources, for example, CT-scanning, direct inspection (also by endoscopy), and so forth....

  17. Sessile drop deformations under an impinging jet

    Science.gov (United States)

    Feng, James Q.

    2015-08-01

    The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier-Stokes equations. For effective material deposition in Aerosol printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol printing.

  18. Drop impact entrapment of bubble rings

    CERN Document Server

    Thoraval, M -J; Etoh, T G; Thoroddsen, S T

    2012-01-01

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting onto a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. [Phys. Rev. Lett. 108, 264506 (2012)]. These dynamics occur mostly within 50 {\\mu}s after the first contact, requiring imaging at 1 million frames/sec. For a water drop impacting onto a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Re above about 12 000, up to 10 partial bubble-rings have been observed at the base of the ejecta, starting when the contact is about 20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into microbubbles. The different refractive index in the pool l...

  19. Scaling the drop size in coflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Hernandez, E; Gordillo, J M [Area de Mecanica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla (Spain); Gundabala, V; Fernandez-Nieves, A [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)], E-mail: jgordill@us.es

    2009-07-15

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  20. Drop Shaping by Laser-Pulse Impact

    NARCIS (Netherlands)

    Klein, A.L.; Bouwhuis, W.; Visser, C.W.; Lhuissier, H.E.; Sun, C.; Snoeijer, J.H.; Villermaux, E.; Lohse, D.; Gelderblom, H.

    2015-01-01

    We show how the deposition of laser energy induces propulsion and strong deformation of an absorbing liquid body. Combining high speed with stroboscopic imaging, we observe that a millimeter-sized dyed water drop hit by a millijoule nanosecond laser pulse propels forward at several meters per second

  1. Thermocapillary motion of bubbles and drops

    Science.gov (United States)

    Subramanian, R. S.

    1992-01-01

    An account is given of interface-driven motions of drops and bubbles. It is shown that even in the simplest cases, theory predicts exotic flow topologies. Attention is given to several unsolved problems that must be addressed both theoretically and experimentally.

  2. Equilibrium drop surface profiles in electric fields

    NARCIS (Netherlands)

    Mugele, F.; Buehrle, J.

    2007-01-01

    Electrowetting is becoming a more and more frequently used tool to manipulate liquids in various microfluidic applications. On the scale of the entire drop, the effect of electrowetting is to reduce the apparent contact angle of partially wetting conductive liquids upon application of an external vo

  3. Sliding viscoelastic drops on slippery surfaces

    Science.gov (United States)

    Xu, H.; Clarke, A.; Rothstein, J. P.; Poole, R. J.

    2016-06-01

    We study the sliding of drops of constant-viscosity dilute elastic liquids (Boger fluids) on various surfaces caused by sudden surface inclination. For smooth or roughened hydrophilic surfaces, such as glass or acrylic, there is essentially no difference between these elastic liquids and a Newtonian comparator fluid (with identical shear viscosity, surface tension, and static contact angle). In contrast for embossed polytetrafluoroethylene superhydrophobic surfaces, profound differences are observed: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string like phenomena. Microscopy images indicate that the strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of the order ˜30 μm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop and leaving behind striking branch-like structures on much larger scales.

  4. Liquid drops sliding down an inclined plane

    CERN Document Server

    Kim, Inwon

    2012-01-01

    We investigate a one-dimensional model describing the motion of liquid drops sliding down an inclined plane (the so-called quasi-static approximation model). We prove existence and uniqueness of a solution and investigate its long time behavior for both homogeneous and inhomogeneous medium (i.e. constant and non-constant contact angle). We also obtain some homogenization results.

  5. Drop-Out Challenges: Pathways to Success

    Science.gov (United States)

    Conner, Evguenia; McKee, Jan

    2008-01-01

    This article describes an action research at an alternative high school which explores drop-out prevention strategies with first-year students. Student retention is extremely challenging for alternative schools. Because their mission is to provide a second chance to students who could not succeed in a regular setting, those schools regularly must…

  6. 49 CFR 178.965 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... Large Packaging design types and performed periodically as specified in § 178.955(e) of this subpart. (b... § 178.960(d). (d) Test method. (1) Samples of all Large Packaging design types must be dropped onto a... be restored to the upright position for observation. (2) Large Packaging design types with a capacity...

  7. Utah Drop-Out Drug Use Questionnaire.

    Science.gov (United States)

    Governor's Citizen Advisory Committee on Drugs, Salt Lake City, UT.

    This questionnaire assesses drug use practices in high school drop-outs. The 79 items (multiple choice or apply/not apply) are concerned with demographic data and use, use history, reasons for use/nonuse, attitudes toward drugs, availability of drugs, and drug information with respect to narcotics, amphetamines, LSD, Marijuana, and barbiturates.…

  8. Standardisation of superheated drop and bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F.; D' Errico, F

    2002-07-01

    This study presents an analysis of the commercially available superheated drop detectors and bubble detectors, performed in substantial accordance with the guidelines developed by the International Organisation for Standardization (ISO). The analysis was performed in terms of linearity, reproducibility, ageing, minimum detection thresholds, energy and angular dependence of the response and the influence of various climatic conditions. (author)

  9. Utah Drop-Out Drug Use Questionnaire.

    Science.gov (United States)

    Governor's Citizen Advisory Committee on Drugs, Salt Lake City, UT.

    This questionnaire assesses drug use practices in high school drop-outs. The 79 items (multiple choice or apply/not apply) are concerned with demographic data and use, use history, reasons for use/nonuse, attitudes toward drugs, availability of drugs, and drug information with respect to narcotics, amphetamines, LSD, Marijuana, and barbiturates.…

  10. Particle and substrate charge effects on colloidal self-assembly in a sessile drop.

    Science.gov (United States)

    Yan, Qingfeng; Gao, Li; Sharma, Vyom; Chiang, Yet-Ming; Wong, C C

    2008-10-21

    By direct video monitoring of dynamic colloidal self-assembly during solvent evaporation in a sessile drop, we investigated the effect of surface charge on the ordering of colloidal spheres. The in situ observations revealed that the interaction between charged colloidal spheres and substrates affects the mobility of colloidal spheres during convective self-assembly, playing an important role in the colloidal crystal growth process. Both ordered and disordered growth was observed depending on different chemical conditions mediated by surface charge and surfactant additions to the sessile drop system. These different self-assembly behaviors were explained by the Coulombic and hydrophobic interactions between surface-charged colloidal spheres and substrates.

  11. Annual Occurrence of Meteorite-Dropping Fireballs

    Science.gov (United States)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  12. Contact angle dependence of the resonant properties of sessile drops

    Science.gov (United States)

    Sharp, James

    2012-02-01

    A simple optical deflection technique was used to monitor the vibrations of microlitre sessile drops of glycerol/water mixtures with glycerol compositions ranging from 0% to 75%. A photodiode was used to detect time dependent variations in the intensity of laser light reflected from the droplets. The intensity variations were Fourier transformed to obtain information about the resonant properties of the drops (frequency and width of the resonance). These experiments were performed on a range of different substrates where the contact angle formed by the droplets varied between 38±2^o and 160±4^o. The measured resonant frequency values were found to be in agreement with a recently developed theory of vibrations which considers standing wave states along the profile length of the droplet. The widths of the resonances were also compared with theories which predict the influence of substrate effects, surface contamination effects and bulk viscous effects on the damping of capillary waves at the free surface of the droplets. These experiments indicate that the dominant source of damping in sessile liquid droplet is due to bulk viscous effects but that for small contact angles damping due to the droplet/substrate interaction becomes more important.

  13. Short esophagus.

    Science.gov (United States)

    Kunio, Nicholas R; Dolan, James P; Hunter, John G

    2015-06-01

    In the presence of long-standing and severe gastroesophageal reflux disease, patients can develop various complications, including a shortened esophagus. Standard preoperative testing in these patients should include endoscopy, esophagography, and manometry, whereas the objective diagnosis of a short esophagus must be made intraoperatively following adequate mediastinal mobilization. If left untreated, it is a contributing factor to the high recurrence rate following fundoplications or repair of large hiatal hernias. A laparoscopic Collis gastroplasty combined with an antireflux procedure offers safe and effective therapy.

  14. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I: Drop-in biofuel production via conventional and advanced routes

    Energy Technology Data Exchange (ETDEWEB)

    Karatzos, Sergios [IEA Bioenergy Task 39 and Forest Products Biotechnology/Bioenergy Group, University of British Columbia, Vancouver BC Canada; van Dyk, J. Susan [IEA Bioenergy Task 39 and Forest Products Biotechnology/Bioenergy Group, University of British Columbia, Vancouver BC Canada; McMillan, James D. [IEA Bioenergy Task 39 and National Renewable Energy Laboratory, Denver Colorado; Saddler, Jack [IEA Bioenergy Task 39 and Forest Products Biotechnology/Bioenergy Group, University of British Columbia, Vancouver BC Canada

    2017-01-23

    Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercial growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. However, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.

  15. Coalescence collision of liquid drops I: Off-center collisions of equal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2011-09-01

    Full Text Available The Smoothed Particle Hydrodynamics method (SPH is used here to model off-center collisions of equal-size liquid drops in a three-dimensional space. In this study the Weber number is calculated for several conditions of the droplets dynamics and the velocity vector fields formed inside the drops during the collision process are shown. For the permanent coalescence the evolution of the kinetic and internal energy is shown and also the approaching to equilibrium of the resulting drop. Depending of the Weber number three possible outcomes for the collision of droplets is obtained: permanent coalescence, flocculation and fragmentation. The fragmentation phenomena are modeled and the formation of small satellite drops can be seen. The ligament that is formed follows the “end pinching” mechanism and it is transformed into a flat structure.

  16. Coalescence collision of liquid drops II: Off-center collisions of unequal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2011-09-01

    Full Text Available We applied the Smoothed Particle Hydrodynamics method to simulate for first time in the three-dimensional space the hydrodynamic off-center collisions of unequal-size liquid drops in a vacuum environment. The Weber number for several conditions of the droplets dynamics is determined. Also the velocity vector fields inside the drops are shown in the collision process. The evolution of the kinetic and internal energy is shown for the permanent coalescence case. The resulting drops tend to deform, and depending of the Weber number two possible outcomes for the collision of droplets arise: either permanent coalescence or flocculation. In the permanent coalescence of the drops a fragmentation case is modeled, yielding the formation of little satellite droplets.

  17. What predicts outcome, response, and drop-out in CBT of depressive adults? a naturalistic study.

    Science.gov (United States)

    Schindler, Amrei; Hiller, Wolfgang; Witthöft, Michael

    2013-05-01

    The efficacy of CBT for unipolar depressive disorders is well established, yet not all patients improve or tolerate treatment. To identify factors associated with symptomatic outcome, response, and drop-out in depressive patients under naturalistic CBT. 193 patients with major depression or dysthymia were tested. Sociodemographic and clinical variables were entered as predictors in hierarchical regression analyses. A higher degree of pretreatment depression, early improvement, and completion of therapy were identified as predictors for symptomatic change and response. Drop-out was predicted by concurrent personality disorder, less positive outcome expectancies, and by failure to improve early in treatment. Our results highlight the importance of early response to predict improvement in routine CBT. Attempts to refine the quality of treatment programs should focus on avoiding premature termination (drop-out) and consider motivational factors in more depth. Routinely administered standardized assessments would enhance symptom monitoring and help to identify persons at risk of not improving under therapy.

  18. A Distributed Protocol for Detection of Packet Dropping Attack in Mobile Ad Hoc Networks

    CERN Document Server

    Sen, Jaydip; Balamuralidhar, P; G., Harihara S; Reddy, Harish

    2011-01-01

    In multi-hop mobile ad hoc networks (MANETs),mobile nodes cooperate with each other without using any infrastructure such as access points or base stations. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms, absence of centralized monitoring points, and lack of clear lines of defense. Among the various attacks to which MANETs are vulnerable, malicious packet dropping attack is very common where a malicious node can partially degrade or completely disrupt communication in the network by consistently dropping packets. In this paper, a mechanism for detection of packet dropping attack is presented based on cooperative participation of the nodes in a MANET. The redundancy of routing information in an ad hoc network is utilized to make the scheme robust so that it works effectively even in presence of transient network partitioning and Byzantine failure of nodes. The proposed scheme is fully cooperative an...

  19. Pollination Drop in Juniperus communis: Response to Deposited Material

    Science.gov (United States)

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-01-01

    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal

  20. Semisupervised Community Detection by Voltage Drops

    Directory of Open Access Journals (Sweden)

    Min Ji

    2016-01-01

    Full Text Available Many applications show that semisupervised community detection is one of the important topics and has attracted considerable attention in the study of complex network. In this paper, based on notion of voltage drops and discrete potential theory, a simple and fast semisupervised community detection algorithm is proposed. The label propagation through discrete potential transmission is accomplished by using voltage drops. The complexity of the proposal is OV+E for the sparse network with V vertices and E edges. The obtained voltage value of a vertex can be reflected clearly in the relationship between the vertex and community. The experimental results on four real networks and three benchmarks indicate that the proposed algorithm is effective and flexible. Furthermore, this algorithm is easily applied to graph-based machine learning methods.

  1. SURVEY OF PACKET DROPPING ATTACK IN MANET

    Directory of Open Access Journals (Sweden)

    A.Janani

    2014-03-01

    Full Text Available Mobile Ad-hoc NETwork (MANET is an application of wireless network with self-configuring mobile nodes. MANET does not require any fixed infrastructure. Its development never has any threshold range. Nodes in MANET can communicate with each other if and only if all the nodes are in the same range. This wide distribution of nodes makes MANET vulnerable to various attacks, packet dropping attack or black hole attack is one of the possible attack. It is very hard to detect and prevent. To prevent from packet dropping attack, detection of misbehavior links and selfish nodes plays a vital role in MANETs. In this paper, a omprehensive investigation on detection of misbehavior links and malicious nodes is carried out.

  2. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  3. Diffraction and interference of walking drops

    Science.gov (United States)

    Pucci, Giuseppe; Harris, Daniel M.; Bush, John W. M.

    2016-11-01

    A decade ago, Yves Couder and Emmanuel Fort discovered a wave-particle association on the macroscopic scale: a drop can bounce indefinitely on a vibrating bath of the same liquid and can be piloted by the waves that it generates. These walking droplets have been shown to exhibit several quantum-like features, including single-particle diffraction and interference. Recently, the original diffraction and interference experiments of Couder and Fort have been revisited and contested. We have revisited this system using an improved experimental set-up, and observed a strong dependence of the behavior on system parameters, including drop size and vibrational forcing. In both the single- and the double-slit geometries, the diffraction pattern is dominated by the interaction of the walking droplet with a planar boundary. Critically, in the double-slit geometry, the walking droplet is influenced by both slits by virtue of its spatially extended wave field. NSF support via CMMI-1333242.

  4. Measuring Pressure Drop Under Non Ideal Conditions

    Directory of Open Access Journals (Sweden)

    Austin M

    2014-12-01

    Full Text Available The method of measurement of the pressure drop (PD of cigarette filter rods and the draw resistance of cigarettes is defined in ISO 6565-2002 (1. This standard defines the calibration and use of a transfer standard to calibrate the measuring instrument and also defines the measurement procedure for cigarette and filter samples. The procedure described in the standard assumes that the measurement conditions are constant and that the sample is in equilibrium with the measurement environment.

  5. Impact of water drops on small targets

    Science.gov (United States)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  6. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; Hossain, A.; Islam, M A

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  7. Low-Pressure-Drop Shutoff Valve

    Science.gov (United States)

    Thornborrow, John

    1994-01-01

    Flapper valve remains open under normal flow conditions but closes upon sudden increases to high rate of flow and remains closed until reset. Valve is fluid/mechanical analog of electrical fuse or circuit breaker. Low-pressure-drop shutoff valve contains flapper machined from cylindrical surface. During normal flow conditions, flapper presents small cross section to flow. (Useful in stopping loss of fluid through leaks in cooling systems.)

  8. Modeling Evaporation of Drops of Different Kerosenes

    Science.gov (United States)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  9. Drop floating on a granular raft

    Science.gov (United States)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protiere, Suzie

    2015-11-01

    When a droplet comes in contact with a bath of the same liquid, it coalesces to minimize the surface energy. This phenomenon reduces emulsion stability and is usually fought with surfactant molecules. Another way to slow down coalescence is to use colloidal solid particles. In this case the particles spontaneously migrate to the interface to form ``Pickering'' emulsions and act as a barrier between droplets. Here we use dense, large particles (~ 500 μm) which form a monolayer at an oil/water interface that we call a granular raft. When a droplet is placed on top of such a raft, for a given set of particle properties (contact angle/size), the raft prevents coalescence indefinitely. However, in contrast to what happens when a droplet is placed on a hydrophobic surface and never wets the surface, here the droplet is strongly anchored to the raft and deforms it. We will use this specific configuration to probe the mechanical response of the granular raft: by controlling the droplet volume we can impose tensile or compressive stresses. Finally we will show that the drop, spherical at first, slowly takes a more complex shape as it's volume increases. This shape is not reversible as the drop volume is decreased. The drop can become oblate or prolate with wrinkling of the raft.

  10. Drop impacts on electrospun nanofiber membranes

    Science.gov (United States)

    Sahu, Rakesh P.; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2013-11-01

    This work reports a study of drop impacts of polar and non-polar liquids onto electrospun nanofiber membranes (of 8-10 mm thickness and pore sizes of 3-6 nm) with an increasing degree of hydrophobicity. The nanofibers used were electrospun from polyacrylonitrile (PAN), nylon 6/6, polycaprolactone (PCL) and Teflon. It was found that for any liquid/fiber pair there exists a threshold impact velocity (1.5 to 3 m/s) above which water penetrates membranes irrespective of their wettability. The low surface tension liquid left the rear side of sufficiently thin membranes as a millipede-like system of tiny jets protruding through a number of pores. For such a high surface tension liquid as water, jets immediately merged into a single bigger jet, which formed secondary drops due to capillary instability. An especially non-trivial result is that superhydrophobicity of the porous nano-textured Teflon skeleton with the interconnected pores is incapable of preventing water penetration due to drop impact, even at relatively low impact velocities close to 3.46 m/s. A theoretical estimate of the critical membrane thickness sufficient for complete viscous dissipation of the kinetic energy of penetrating liquid corroborates with the experimental data. The current work is supported by the Nonwovens Cooperative Research Center (NCRC).

  11. Cusp formation in drops inside Taylor cones

    Science.gov (United States)

    Marin, Alvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2005-11-01

    Here, we report the formation of cusp in insulating drops inside compound Taylor cones. The action of the electrical shear stress acting on the outer interface, which is transmitted by viscous forces inside the Taylor cone, tends to deform the drop of insulating liquid placed inside. For appropriate values of the capillary number, the insulating drop develops a steady cusp angle which depends on both the capillary number and the conducting to insulating viscosity ratio. A self-similar analysis has been developed to qualitatively describe the flow inside these compounds Taylor cones. Any perturbation of the cusp gives rise to an intermittent emission of tiny droplets; this effect may recall the tip-streaming observed by G.I. Taylor in his four-roll mill device. This emission can be stabilized by an appropriate control of the injected flow rate of the insulating liquid. When the capillary number increases, the cusped interface turns into a spout which flows coated by the conducting liquid forming the electrified coaxial jet which has been successfully employed for the production of nanocapsules, coaxial nanofibers and nanotubes (Science 295, n. 5560, 1695, 2002; JACS 126, 5376, 2004).

  12. Ultrafast Drop Movements Arising from Curvature Gradient

    CERN Document Server

    Lv, Cunjing; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Zheng, Quanshui

    2011-01-01

    We report experimental observation of a kind of fast spontaneous movements of water drops on surfaces of cones with diameters from 0.1 to 1.5 mm. The observed maximum speed (0.22 m/s) under ambient conditions were at least two orders of magnitude higher than that resulting from any known single spontaneous movement mechanism, for example, Marangoni effect due to gradient of surface tension. We trapped even higher spontaneous movement speeds (up to 125 m/s) in virtual experiments for drops on nanoscale cones by using molecular dynamics simulations. The underlying mechanism is found to be universally effective - drops on any surface either hydrophilic or hydrophobic with varying mean curvature are subject to driving forces toward the gradient direction of the mean curvature. The larger the mean curvature of the surface and the lower the contact angle of the liquid are, the stronger the driving force will be. This discovery can lead to more effective techniques for transporting droplets.

  13. Low arc drop hybrid mode thermionic converter

    Science.gov (United States)

    Shimada, K.

    1977-01-01

    The hybrid mode operation for the reduction of plasma drops is being investigated. This report discusses the results obtained from two molybdenum emitter converters. One converter had a molybdenum collector and the other a nickel collector. The molybdenum collector converter was operated in a hybrid mode (at an interelectrode distance of 1.7 mm) and produced a minimum barrier index of 1.96 eV at an emitter temperature of 1500 K. The arc drop was calculated to be 0.14 eV, using the published results for a molybdenum collector. On the other hand, the nickel collector converter was operated in a conventional ignited mode (at an interelectrode distance of 0.5 mm) and produced a minimum barrier index of 2.1 eV at an emitter temperature of 1700 K. It is tentatively concluded that a large-gap operation of the hybrid mode converter permits the diffusion of cesium ions to a distance in the order of one millimeter for an effective neutralization of electron space charge. By employing a low work function collector (1.55 eV) in a hybrid mode converter with an arc drop of 0.14 eV, it appears that a barrier index as low as 1.69 eV could be achieved.

  14. Estimating Y-STR allelic drop-out rates and adjusting for interlocus balances.

    Science.gov (United States)

    Andersen, Mikkel Meyer; Mogensen, Helle Smidt; Eriksen, Poul Svante; Olofsson, Jill Katharina; Asplund, Maria; Morling, Niels

    2013-05-01

    Y chromosome short tandem repeats (Y-STRs) are valuable genetic markers in certain areas of forensic case-work. However, when the Y-STR DNA profile is weak, the observed Y-STR profile may not be complete--i.e. locus drop-out may have occurred. Another explanation could be that the stain DNA did not have a Y-STR allele that was detectable with the method used (the allele is a 'null allele'). If the Y-STR profile of a stain is strong, one would be reluctant to consider drop-out as a reasonable explanation of lack of a Y-STR allele and would maybe consider 'null allele' as an explanation. On the other hand, if the signal strengths are weak, one would most likely accept drop-out as a possible explanation. We created a logistic regression model to estimate the probability of allele drop-out with the Life Technologies/Applied Biosystems AmpFlSTR(®) Yfiler(®) kit such that the trade-off between drop-outs and null alleles could be quantified using a statistical model. The model to estimate the probability of drop-out uses information about locus imbalances, signal strength, the number of PCR cycles, and the fragment size of Yfiler. We made two temporarily separated experiments and found no evidence of temporal variation in the probability of drop-out. Using our model, we found that for 30 PCR cycles with a 150 bp allele, the probability of drop-out was 1:5000 corresponding to the average estimate of the probability of Y-STR null alleles at a signal strength of 1249 RFU. This means that the probability of a null allele is higher than that of an allele drop-out at e.g. 4000 RFU and the probability of drop-out is higher than that of a null allele at e.g. 75 RFU. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Vertical Drop Testing and Simulation of Anthropomorphic Test Devices

    Science.gov (United States)

    Polanco, Michael A.; Littell, Justin D.

    2011-01-01

    A series of 14 vertical impact tests were conducted using Hybrid III 50th Percentile and Hybrid II 50th Percentile Anthropomorphic Test Devices (ATDs) at NASA Langley Research Center. The purpose of conducting these tests was threefold: to compare and contrast the impact responses of Hybrid II and Hybrid III ATDs under two different loading conditions, to compare the impact responses of the Hybrid III configured with a nominal curved lumbar spine to that of a Hybrid III configured with a straight lumbar spine, and to generate data for comparison with predicted responses from two commercially available ATD finite element models. The two loading conditions examined were a high magnitude, short duration acceleration pulse, and a low magnitude, long duration acceleration pulse, each created by using different paper honeycomb blocks as pulse shape generators in the drop tower. The test results show that the Hybrid III results differ from the Hybrid II results more for the high magnitude, short duration pulse case. The comparison of the lumbar loads for each ATD configuration show drastic differences in the loads seen in the spine. The analytical results show major differences between the responses of the two finite element models. A detailed discussion of possible sources of the discrepancies between the two analytical models is also provided.

  16. Surfactant and nonlinear drop dynamics in microgravity

    Science.gov (United States)

    Jankovsky, Joseph Charles

    2000-11-01

    Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu

  17. Dielectrophoresis of a surfactant-laden viscous drop

    Science.gov (United States)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-06-01

    The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is

  18. Drop by drop scattering properties of a radar bin : a numerical experiment

    Science.gov (United States)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    This paper presents the development and initial results of a numerical simulation of pseudo-radar observations computed as the sum of the electric field backscattered by each drop. Simulations are carried out for three successive radar bins with a gate length of 30 m and beam width of 1°. The first step is the simulation of a 100 m x 100 m x 100 m volume with all its drops. The 3D raindrop generator relies on the findings on the rainfall field very small scales (mm to few tens of m) spatio-temporal structure, of the HYDROP experiment and a recent analysis of 2D video disdrometer data in a Multifractal framework. More precisely: (i) The Liquid Water Content (LWC) distribution is represented with the help a multiplicative cascade down to 0.5 m, below which it is considered as homogeneous. (ii) Within each 0.5 x 0.5 x 0.5 m3 patch, liquid water is distributed into drops according to a pre-defined Drop Size Distribution (DSD) and located randomly uniformly. (iii) Such configuration is compared with the one consisting of the same drops uniformly distributed over the 50 x 50 x 50 m3 volume. Then the backscattered field by the drops located within a radar bin are computed as the sum a individual contribution. Antenna beam weighing is taken into account Due to the fact that the radar wave length is much smaller than the "patches" size for rainfall, it appears that as theoretically expected we retrieved an exponential distribution for potential measure horizontal reflectivity. A much lower dispersion is noticed for differential reflectivity. We show that a simple ballistic assumption for drop velocities does not enable to reproduce radar observations, and turbulence must be taken into account. Finally the sensitivity of these outputs to the various model parameters is quantified.

  19. Experimental Investigation of Pendant and Sessile Drops in Microgravity

    Science.gov (United States)

    Zhu, Zhi-Qiang; Brutin, David; Liu, Qiu-Sheng; Wang, Yang; Mourembles, Alexandre; Xie, Jing-Chang; Tadrist, Lounes

    2010-09-01

    The experiments regarding the contact angle behavior of pendant and sessile evaporating drops were carried out in microgravity environment. All the experiments were performed in the Drop Tower of Beijing, which could supply about 3.6 s of microgravity (free-fall) time. In the experiments, firstly, drops were injected to create before microgravity. The wettability at different surfaces, contact angles dependance on the surface temperature, contact angle variety in sessile and pendant drops were measured. Different influence of the surface temperature on the contact angle of the drops were found for different substrates. To verify the feasibility of drops creation in microgravity and obtain effective techniques for the forthcoming satellite experiments, we tried to inject liquid to create bigger drop as soon as the drop entering microgravity condition. The contact angle behaviors during injection in microgravity were also obtained.

  20. Rolling ferrofluid drop on the surface of a liquid

    CERN Document Server

    Sterr, V; Morozov, K I; Rehberg, I; Engel, A; Richter, R

    2008-01-01

    We report on the controlled transport of drops of magnetic liquid, which are swimming on top of a non-magnetic liquid layer. A magnetic field which is rotating in a vertical plane creates a torque on the drop. Due to surface stresses within the immiscible liquid beneath, the drop is propelled forward. We measure the drop speed for different field amplitudes, field frequencies and drop volumes. Simplifying theoretical models describe the drop either as a solid sphere with a Navier slip boundary condition, or as a liquid half-sphere. An analytical expression for the drop speed is obtained which is free of any fitting parameters and is well in accordance with the experimental measurements. Possible microfluidic applications of the rolling drop are also discussed.

  1. Oscillating and star-shaped drops levitated by an airflow

    CERN Document Server

    Bouwhuis, Wilco; Peters, Ivo R; Brunet, Philippe; van der Meer, Devaraj; Snoeijer, Jacco H

    2013-01-01

    We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a breaking of axisymmetry and the appearance of `star drops'. This is strongly reminiscent of the Leidenfrost stars that are observed for drops floating above a hot substrate. The key advantage of this work is that we inject the airflow at a constant rate below the drop, thus eliminating thermal effects and allowing for a better control of the flow rate. We perform experiments with drops of different viscosities and observe stable states, oscillations and chimney instabilities. We find that for a given drop size the instability appears above a critical flow rate, where the latter is largest for small drops. All these observations are reproduced by numerical simulations, where we treat the drop using potential flow and the gas as a viscous lubrication layer. Qualitatively, the onset of instability agrees with the experimental results, although the typical flow rates are too large by a factor 10. Our results...

  2. Simplified procedure for determining of drop and stilling basin

    Directory of Open Access Journals (Sweden)

    Ali R. Vatankhah

    2014-03-01

    Full Text Available Drops are used to effectively dissipate the surplus energy of the water flow. A closed conduit drop conveys water and stills it at its downstream. I-type pipe drop is one kind of the closed conduit drops which is used in irrigation networks as a typical hydraulic structure. Sump elevation is an important design parameter for I-type pipe drop. Similarly, in supercritical flow structures, such as open channel chutes, determination of stilling basin invert elevation is very important. At present, these key design parameters are determined by the momentum and energy equations using tedious trial-and-error procedure. In this study, square conduit drop, pipe drop, and rectangular stilling basin are considered, and three explicit equations have been developed by (multiple nonlinear regression technique to determine the sump and stilling basin invert elevations. Being very simple and accurate, these equations can be easily used to design the closed conduit drops and stilling basins by hydraulic engineers.

  3. Potential of Svalbard reindeer winter droppings for emission/absorption of methane and nitrous oxide during summer

    Science.gov (United States)

    Hayashi, Kentaro; Cooper, Elisabeth J.; Loonen, Maarten J. J. E.; Kishimoto-Mo, Ayaka W.; Motohka, Takeshi; Uchida, Masaki; Nakatsubo, Takayuki

    2014-06-01

    Droppings of Svalbard reindeer (Rangifer tarandus platyrhynchus) could affect the carbon and nitrogen cycles in tundra ecosystems. The aim of this study was to evaluate the potential of reindeer droppings originating from the winter diet for emission and/or absorption of methane (CH4) and nitrous oxide (N2O) in summer. An incubation experiment was conducted over 14 days using reindeer droppings and mineral subsoil collected from a mound near Ny-Ålesund, Svalbard, to determine the potential exchanges of CH4 and N2O for combinations of two factors, reindeer droppings (presence or absence) and soil moisture (dry, moderate, or wet). A line transect survey was conducted to determine the distribution density of winter droppings at the study site. The incubation experiment showed a weak absorption of CH4 and a weak emission of N2O. Reindeer droppings originating from the winter diet had a negligible effect on the exchange fluxes of both CH4 and N2O. Although the presence of droppings resulted in a short-lasting increase in N2O emissions on day 1 (24 h from the start) for moderate and wet conditions, the emission rates were still very small, up to 3 μg N2O m-2 h-1.

  4. Stress Drop as a Result of Splitting, Brittle and Transitional Faulting of Rock Samples in Uniaxial and Triaxial Compression Tests

    Directory of Open Access Journals (Sweden)

    Cieślik Jerzy

    2015-03-01

    Full Text Available Rock samples can behave brittle, transitional or ductile depending on test pressure, rate of loading and temperature. Axial stiffness and its changes, relative and absolute dilatancy, yield, and fracture thresholds, residual strength are strongly pressure dependent. In this paper the stress drop as an effect of rock sample strength loss due to failure was analyzed. Uniaxial and triaxial experiments on three types of rock were performed to investigate the stress drop phenomenon. The paper first introduces short background on rock behavior and parameters defining a failure process under uniaxial and triaxial loading conditions. Stress drop data collected with experiments are analyzed and its pressure dependence phenomenon is described. Two methods for evaluation of stress drop value are presented.

  5. Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in.

    Science.gov (United States)

    Mitchell, Adele A; Tamariz, Jeannie; O'Connell, Kathleen; Ducasse, Nubia; Budimlija, Zoran; Prinz, Mechthild; Caragine, Theresa

    2012-12-01

    DNA mixture analysis is a current topic of discussion in the forensics literature. Of particular interest is how to approach mixtures where allelic drop-out and/or drop-in may have occurred. The Office of Chief Medical Examiner (OCME) of The City of New York has developed and validated the Forensic Statistical Tool (FST), a software tool for likelihood ratio analysis of forensic DNA samples, allowing for allelic drop-out and drop-in. FST can be used for single source samples and for mixtures of DNA from two or three contributors, with or without known contributors. Drop-out and drop-in probabilities were estimated empirically through analysis of over 2000 amplifications of more than 700 mixtures and single source samples. Drop-out rates used by FST are a function of the Identifiler(®) locus, the quantity of template DNA amplified, the number of amplification cycles, the number of contributors to the sample, and the approximate mixture ratio (either unequal or approximately equal). Drop-out rates were estimated separately for heterozygous and homozygous genotypes. Drop-in rates used by FST are a function of number of amplification cycles only. FST was validated using 454 mock evidence samples generated from DNA mixtures and from items handled by one to four persons. For each sample, likelihood ratios (LRs) were computed for each true contributor and for each profile in a database of over 1200 non-contributors. A wide range of LRs for true contributors was obtained, as true contributors' alleles may be labeled at some or all of the tested loci. However, the LRs were consistent with OCME's qualitative assessments of the results. The second set of data was used to evaluate FST LR results when the test sample in the prosecution hypothesis of the LR is not a contributor to the mixture. With this validation, we demonstrate that LRs generated using FST are consistent with, but more informative than, OCME's qualitative sample assessments and that LRs for non

  6. Hydrodynamics and evaporation of a sessile drop of capillary size

    CERN Document Server

    Barash, L Yu

    2010-01-01

    Fluid dynamics video of an evaporating sessile drop of capillary size is presented. The corresponding simulation represents the description taking into account jointly time dependent hydrodynamics, vapor diffusion and thermal conduction in an evaporating sessile drop. The fluid convection in the drop is driven by Marangoni forces associated with the temperature dependence of the surface tension. For the first time the evolution of the vortex structure in the drop during an evaporation process is obtained.

  7. Hydrodynamics and evaporation of a sessile drop of capillary size

    OpenAIRE

    Barash, L. Yu.

    2010-01-01

    Fluid dynamics video of an evaporating sessile drop of capillary size is presented. The corresponding simulation represents the description taking into account jointly time dependent hydrodynamics, vapor diffusion and thermal conduction in an evaporating sessile drop. The fluid convection in the drop is driven by Marangoni forces associated with the temperature dependence of the surface tension. For the first time the evolution of the vortex structure in the drop during an evaporation process...

  8. Electrohydrodynamic deformation of drops and bubbles at large Reynolds numbers

    Science.gov (United States)

    Schnitzer, Ory

    2015-11-01

    In Taylor's theory of electrohydrodynamic drop deformation by a uniform electric field, inertia is neglected at the outset, resulting in fluid velocities that scale with E2, E being the applied-field magnitude. When considering strong fields and low viscosity fluids, the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number analysis. Balancing viscous and electrical stresses reveals that the velocity scales with E 4 / 3. Considering a gas bubble, the external flow is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. Remarkably, at leading order in the Capillary number the unique scaling allows through application of integral mass and momentum balances to obtain a closed-form expression for the O (E2) bubble deformation. Owing to a concentrated pressure load at the vicinity of the collision region, the deformed profile features an equatorial dimple which is non-smooth on the bubble scale. The dynamical importance of internal circulation in the case of a liquid drop leads to an essentially different deformation mechanism. This is because the external boundary layer velocity attenuates at a short distance from the interface, while the internal boundary-layer matches with a Prandtl-Batchelor (PB) rotational core. The dynamic pressure associated with the internal circulation dominates the interfacial stress profile, leading to an O (E 8 / 3) deformation. The leading-order deformation can be readily determined, up to the PB constant, without solving the circulating boundary-layer problem. To encourage attempts to verify this new scaling, we shall suggest a favourable experimental setup in which inertia is dominant, while finite-deformation, surface-charge advection, and gravity effects are negligible.

  9. Transport of Substances on Different Stages of Processes Initiated by Free Fallen Drop Impact on Surface of Quiescent Water

    Science.gov (United States)

    Ilyinykh, A. Yu.

    2012-04-01

    Collision of a free fallen drop with a surface of quiescent layer of water initiates a sequence of processes including initial shock, formation of cavern and crown with a chevron edge emitted small water drops, wide central trough surrounding by a train of running surface circular capillary waves, splash, secondary cavern collapsing with a streamer discharge and gradual decal of all disturbances. Fine structure of the drop splashes and transport of substances carrying by the drop inside accepting target fluid are studied by methods of direct registering of flow images by fast video- and photo cameras. Different directions of observations were realized that are side, top and bottom view of flow patterns. Flow patterns produced by clean and coloured water, alcohol (changing the surface tension) and oil drops were investigated. Attention was concentrated on small scale processes dynamics studying which produce fast variations of water surface shapes with sharp local irregularities. Shapes and textures of craters and surrounding rim surfaces as well as coloured filaments of a drop substance inside the fluid body were registered and analyzed. Two groups of flows with relatively large scales defined by the drop diameter and very fine scales were identified. It is supposed that short living and fast changing flow components are result of strong short-acting forces impact. Their manifestations depend on surface tension on the boundaries fluid-fluid and fluid-air. Effects of surface tension gradients on the drop dye propagation pattern are also demonstrated and discussed. Experiments were performed on set-up USU "HPC IPMec RAS" under support of Ministry of Education and Science RF (Goscontract No. 16.518.11.7059).

  10. How microstructures affect air film dynamics prior to drop impact

    NARCIS (Netherlands)

    Veen, van der R.C.A.; Hendrix, M.H.W.; Tran, A.T.; Sun, C.; Tsai, P.A.; Lohse, D.

    2014-01-01

    When a drop impacts a surface, a dimple can be formed due to the increased air pressure beneath the drop before it wets the surface. We employ a high-speed color interferometry technique to measure the evolution of the air layer profiles under millimeter-sized drops impacting hydrophobic micropatter

  11. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Boreyko, Jonathan B [ORNL; Collier, Pat [ORNL

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  12. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.

    Science.gov (United States)

    Adda-Bedia, M; Kumar, S; Lechenault, F; Moulinet, S; Schillaci, M; Vella, D

    2016-05-03

    We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density ρd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,ρd) parameter space that separates them.

  13. Impact dynamics of oxidized liquid metal drops

    Science.gov (United States)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  14. Particle-area dependence of mineral dust in the immersion mode: investigations with freely suspended drops in an acoustic levitator

    Directory of Open Access Journals (Sweden)

    K. Diehl

    2014-05-01

    Full Text Available The heterogeneous freezing temperatures of supercooled drops were measured by using an acoustic levitator. This technique allows to freely suspending single drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. Heterogeneous nucleation caused by several mineral dust particles (montmorillonite, two types of illite was investigated in the immersion mode. Drops of 1 \\unit{mm} in radius were monitored by a~video camera during cooling down to −28 °C to simulate the tropospheric temperature range. The surface temperature of the drops was remotely determined with an infra-red thermometer so that the onset of freezing was indicated. For comparisons, measurements with one particle type were additionally performed in the Mainz vertical wind tunnel with drops of 340 \\unit{{\\mu}m} radius freely suspended. The data were interpreted regarding the particle surfaces immersed in the drops. Immersion freezing was observed in a~temperature range between −13 and −26 °C in dependence of particle type and surface area per drop. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model.

  15. Monitoring of Field Winding Inter-turn Short Circuit Based on Unbalanced Current Effective Value in Main Protection%基于主保护不平衡电流有效值的转子匝间短路故障监测

    Institute of Scientific and Technical Information of China (English)

    郝亮亮; 孙宇光; 邱阿瑞; 王祥珩

    2011-01-01

    In order to use current transformer installed for the generator main protection to monitor inter-turn short circuits of field winding, taking Three Gorges VGS generator as an example the after-fault unbalanced current entering into various main protections is calculated and analyzed with multi-loop method. Then the defects of fault monitoring using single harmonic in unbalanced current are pointed out and a monitoring principle of field winding inter-turn short circuit based on unbalanced current effective value for the main protection is proposed. Through the calculation and theoretical analysis of faults with different short circuit turn ratios of field winding, it is pointed out that unbalanced current flowing between two neutral points is not suitable for reflecting inter-turn short circuits fault of field winding, and the monitoring method reflecting the internal unbalanced current of each phase winding should be adopted instead. Finally the coordination between the inter-turn short circuits monitoring of field windings and other conventional protections is illustrated, laying a theoretical foundation for the field windings inter-turn short circuit fault on-line monitoring.%为利用发电机主保护所配电流互感器来监测励磁绕组匝间短路故障,以三峡VGS发电机为例,采用多回路方法对故障后进入各主保护的不平衡电流进行了计算与分析;在此基础上,指出利用不平衡电流中的单次谐波进行故障监测的不足,由此提出基于主保护不平衡电流有效值的励磁绕组匝间短路故障监测原理;通过对不同短路匝比故障的计算与理论分析,指出流过中性点间的不平衡电流不适合用来反应于励磁绕组匝间短路故障,而应采用反应于每相绕组内部不平衡电流的监测方法;最后阐述了励磁绕组匝间短路监测与其他常规保护之间的配合,为发电机转子匝间短路故障的在线监测奠定了基础.

  16. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.

    2015-10-07

    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  17. Dynamics of Ferrofluidic Drops Impacting Superhydrophobic Surfaces

    CERN Document Server

    Bolleddula, D A; Alliseda, A; Bhosale, P; Berg, J C

    2010-01-01

    This is a fluid dynamics video illustrating the impact of ferrofluidic droplets on surfaces of variable wettability. Surfaces studied include mica, teflon, and superhydrophobic. A magnet is placed beneath each surface, which modifies the behavior of the ferrofluid by applying additional downward force apart from gravity resulting in reduced droplet size and increased droplet velocity. For the superhydrophobic droplet a jetting phenomena is shown which only occurs in a limited range of impact speeds, higher than observed before, followed by amplified oscillation due to magnetic field as the drop stabilizes on the surface.

  18. DNA Dynamics in A Water Drop

    CERN Document Server

    Mazur, A K

    2002-01-01

    Due to its polyionic character the DNA double helix is stable and biologically active only in salty aqueous media where its charge is compensated by solvent counterions. Monovalent metal ions are ubiquitous in DNA environment and they are usually considered as the possible driving force of sequence-dependent modulations of DNA structure that make it recognizable by proteins. In an effort to directly examine this hypothesis, MD simulations of DNA in a water drop surrounded by vacuum were carried out, which relieves the requirement of charge neutrality. Surprisingly, with zero concentration of counterions a dodecamer DNA duplex appears metastable and its structure remains similar to that observed in experiments.

  19. PROGRAM DROP: A computer program for prediction of evaporation from freely falling multicomponent drops

    Energy Technology Data Exchange (ETDEWEB)

    Gavin, P.M. [Gavin Consulting, Newark, OH (United States)

    1996-12-01

    PROGRAM DROP consists of a series of FORTRAN routine which together are used to model the evaporation of a freely falling, multicomponent drop composed of an arbitrary number of volatile species and a single nonvolatile, inert component. The physics underlying the model are clearly identified, and the model`s relationship to previous work in the literature is described. Test cases are used to illustrate the viability of the model and to highlight its potential usefulness in the accurate prediction of multicomponent droplet vaporization in a variety of applications.

  20. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  1. Detailed model of bouncing drops on a bounded, vibrated bath

    Science.gov (United States)

    Blanchette, Francois; Gilet, Tristan

    2014-11-01

    We present a detailed model of drops bouncing on a bounded vibrated bath. These drops are known to bounce indefinitely and to exhibit complex and varied vertical dynamics depending on the acceleration of the bath. In addition, in a narrow parameter regime, these drops travel horizontally while being guided by the waves they generate. Our model tracks the drop's vertical radius and position, as well as the eigenmodes of the waves generated via ordinary differential equations only. We accurately capture the vertical dynamics, as well as some of the horizontal dynamics. Our model may be extended to account for interactions with other drops or obstacles, such as slits and corrals.

  2. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy

    2012-09-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  3. The bounce-splash of a viscoelastic drop

    CERN Document Server

    Hernandez-Sanchez, Federico; Zenit, Roberto

    2008-01-01

    This is an entry for the Gallery of Fluid Motion of the 61st Annual Meeting of the APS-DFD (fluid dynamics videos). This video shows the collision and rebound of viscoelastic drops against a solid wall. Using a high speed camera, the process of approach, contact and rebound of drops of a viscoelastic liquid is observed. We found that these drops first splash, similar to what is observed in Newtonian colliding drops; after a few instants, the liquid recoils, recovering its original drop shape and bounce off the wall.

  4. Development of a Drop Tester for Portable Electronic Products

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Portable electronic products are susceptible to accidental drop impact which can cause various functional and physical damage. This paper first presents a patent pending drop tester which allows portable electronic products free drop at any orientation and drop height, and then introduces the drop tester experiment setup and its design principle. Using a cellular phone as an experiment object, we obtain some data such as the impact forces, the impact accelerations, and the strain of an interested spot. By analyzing experiment data the influence of impact to products in various states is investigated with the aim to provide help for the design of products and improvement of reliability.

  5. Impact Dynamics of Oxidized Liquid Metal Drops

    CERN Document Server

    Xu, Qin; Jaeger, Heinrich M

    2013-01-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during the impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number $We^{\\star}$ is employed that uses an effective surface...

  6. Vlasov simulations of parallel potential drops

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2013-07-01

    Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.

  7. Direct observation of drops on slippery lubricant-infused surfaces.

    Science.gov (United States)

    Schellenberger, Frank; Xie, Jing; Encinas, Noemí; Hardy, Alexandre; Klapper, Markus; Papadopoulos, Periklis; Butt, Hans-Jürgen; Vollmer, Doris

    2015-10-14

    For a liquid droplet to slide down a solid planar surface, the surface usually has to be tilted above a critical angle of approximately 10°. By contrast, droplets of nearly any liquid "slip" on lubricant-infused textured surfaces - so termed slippery surfaces - when tilted by only a few degrees. The mechanism of how the lubricant alters the static and dynamic properties of the drop remains elusive because the drop-lubricant interface is hidden. Here, we image the shape of drops on lubricant-infused surfaces by laser scanning confocal microscopy. The contact angle of the drop-lubricant interface with the substrate exceeds 140°, although macroscopic contour images suggest angles as low as 60°. Confocal microscopy of moving drops reveals fundamentally different processes at the front and rear. Drops recede via discrete depinning events from surface protrusions at a defined receding contact angle, whereas the advancing contact angle is 180°. Drops slide easily, as the apparent contact angles with the substrate are high and the drop-lubricant interfacial tension is typically lower than the drop-air interfacial tension. Slippery surfaces resemble superhydrophobic surfaces with two main differences: drops on a slippery surface are surrounded by a wetting ridge of adjustable height and the air underneath the drop in the case of a superhydrophobic surface is replaced by lubricant in the case of a slippery surface.

  8. Characterization of biofluids prepared by sessile drop formation.

    Science.gov (United States)

    Esmonde-White, Karen A; Esmonde-White, Francis W L; Morris, Michael D; Roessler, Blake J

    2014-06-07

    Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50-90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50-90°, a ring-shaped deposit was formed. Analysis of the drying drop's geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques.

  9. Drop-out from the Swedish addiction compulsory care system.

    Science.gov (United States)

    Padyab, Mojgan; Grahn, Robert; Lundgren, Lena

    2015-04-01

    Drop-out of addiction treatment is common, however, little is known about drop-out of compulsory care in Sweden. Data from two national register databases were merged to create a database of 4515 individuals sentenced to compulsory care 2001-2009. The study examined (1) characteristics associated with having dropped out from a first compulsory care episode, (2) the relationship between drop-out and returning to compulsory care through a new court sentence, and (3) the relationship between drop-out and mortality. Multivariable logistic regression analysis was used to address Aim 1 and Cox proportional hazards regression modeling was applied to respond to Aims 2 and 3. Age and previous history of crime were significant predictors for drop-out. Clients who dropped out were 1.67 times more likely to return to compulsory care and the hazard of dying was 16% higher than for those who dropped-out. This study finds that 59% of clients assigned to compulsory care drop-out. Younger individuals are significantly more likely to drop-out. Those who drop out are significantly more likely to experience negative outcomes (additional sentence to compulsory care and higher risk of mortality). Interventions need to be implemented that increase motivation of youth to remain in compulsory care. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Vibration of an Inviscid Incompressible Sessile Drop

    Science.gov (United States)

    Smith, Marc

    2009-11-01

    The fundamental frequencies and normal modes of vibration of a sessile drop supported on a horizontal planar surface are found using an integrated analytical and numerical technique. Spherical coordinates are used to describe the interface shape, but the potential flow field inside the drop is computed numerically using the finite element method. The numerical velocity potentials at the interface for both the fluid inside the drop and outside are fitted using a Legendre series. When these series are combined in the interfacial normal-stress balance the result is a linear eigenvalue problem that is solved numerically. Results will be presented for sessile drops with different contact angles without gravity and compared to experimental data. This technique can also be extended to sessile drops with gravity, in which the drop shape is flattened, and to substrate geometries that are not planar, such as a drop in a shallow cavity or hole.

  11. Asymmetry of Drop Impacts on Patterned Hydrophobic Microstructures

    Science.gov (United States)

    Willmott, Geoff; Robson, Simon; Broom, Matheu

    2016-11-01

    When a water drop falls on to a flat solid surface, asymmetries in the geometry of the spreading drop can be specifically determined by patterned surface microstructures. For hydrophobic (or superhydrophobic) micropillar arrays, the most important asymmetric mechanisms appear to be the surface energy of contact lines, and pathways for gas escaping from penetrated microstructure. In this presentation, static wetting and drop impact experiments will be discussed in relation to drop asymmetries. In addition to micropillar arrays, natural superhydrophobic surfaces (leaves) have been studied, and may suggest possibilities for controlling drop impacts in applications. Some of the clearest large scale drop asymmetries on leaves, which are similar to those associated with low drop impact contact times on synthetic surfaces, appear to be caused by features which generate high contact angle hysteresis, and are therefore indicative of poor superhydrophocity.

  12. Destabilising Pickering emulsions by drop flocculation and adhesion.

    Science.gov (United States)

    Whitby, Catherine P; Khairul Anwar, Hunainah; Hughes, James

    2016-03-01

    We have investigated how emulsions of water drops coated by organoclay particles destabilise in organic solvents. The drops destabilise and the emulsions undergo a fluid-solid transition if the particles are poorly wetted by the solvent. We show that the drops adhere together and form three-dimensional networks as the fraction of the poor-quality solvent in the mixture increases. Microscopic observations revealed that the drops coalesce into buckled, non-spherical shapes in mixtures rich in poor-quality solvent. A key finding is that destabilisation is favoured under conditions where the energy of adhesion between the particle layers coating drops is comparable to the energy required to detach the particles from the drops. Rupture of the interfacial layer produces particle flocs and uncoated, unstable water drops that settle out of the emulsion.

  13. Rhizosphere dynamics of two riparian plant species from the water fluctuation zone of Three Gorges Reservoir, P.R. China - pH, oxygen and LMWOA monitoring during short flooding events

    Science.gov (United States)

    Schreiber, Christina M.; Schurr, Ulrich; Zeng, Bo; Höltkemeier, Agnes; Kuhn, Arnd J.

    2010-05-01

    Since the construction of the Three Gorges Dam at the Yangtze River in China, the reservoir management created a new 30m water fluctuation zone 45-75m above the original water level. Only species well adapted to long-time flooding (up to several months) will be able to vegetate the river banks and replace the original vegetation. To investigate how common species of the riverbanks cope with submergence, Alternanthera philoxeroides Mart. and Arundinella anomala Steud., two flooding resistant riparian species, have been examined in a rhizotron environment. Short-time (2 days waterlogging, 2 days flooding, 2 days recovery) flooding cycles in the original substrate and long time (14 days waterlogging, flooding, recovery) flooding cycles, in original substrate and sterile glass bead substrate, have been simulated in floodable two-way access rhizotrons. Oxygen- and pH-sensitive foils (planar optodes, PreSens) automatically monitored root reaction in a confined space (2cm2 each) on the backside of the rhizotron, while soil solution samples were taken 2 times a day from the other side of the rhizotron at the corresponding area through filter and steel capillaries. The samples were analyzed by capillary electrophoresis for low molecular weight organic acids (LMWOA, i.e. oxalic, formic, succinic, malic, acetic, glyoxylic, lactic and citric acid). Results show diurnal rhythms of rhizospheric acidification for both species in high resolution, combined with oxygen entry into the root surrounding during waterlogged state. Flooding caused stronger acidification in the rhizosphere, that were however not accompanied by increased occurrence of LMWOA except for acetic and glyoxylic acid. First results from longer flooding periods show stable diurnal rhythms during waterlogging, but no strongly increased activity during the flooding event. Performance of the two species is not hampered by being waterlogged, and they follow a silencing strategy during a longer phase of anoxia without

  14. Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.

    Science.gov (United States)

    Dugyala, Venkateshwar Rao; Basavaraj, Madivala G

    2015-03-05

    Liquid drops containing insoluble solutes when dried on solid substrates leave distinct ring-like deposits at the periphery or along the three-phase contact line-a phenomena popularly known as the coffee-ring or the coffee stain effect. The formation of such rings as well as their suppression is shown to have applications in particle separation and disease diagnostics. We present an experimental study of the evaporation of sessile drops containing silica rods to elucidate the structural arrangement of particles in the ring, an effect of the addition of surfactant and salt. To this end, the evaporation of aqueous sessile drops containing model rod-like silica particles of aspect ratio ranging from ∼4 to 15 on a glass slide is studied. We first show that when the conditions such as (1) solvent evaporation, (2) nonzero contact angle, (3) contact line pinning, (4) no surface tension gradient driven flow, and (5) repulsive particle-particle/particle-substrate interactions, that are necessary for the formation of the coffee-ring are met, the suspension drops containing silica rods upon evaporation leave a ring-like deposit. A closer examination of the ring deposits reveals that several layers of silica rods close to the edge of the drop are ordered such that the major axis of the rods are oriented parallel to the contact line. After the first few layers of ordered arrangement of particles, a random arrangement of particles in the drop interior is observed indicating an order-disorder transition in the ring. We monitor the evolution of the ring width and particle velocity during evaporation to elucidate the mechanism of the order-disorder transition. Moreover, when the evaporation rate is lowered, the ordering of silica rods is observed to extend over large areas. We demonstrate that the nature of the deposit can be tuned by the addition of a small quantity of surfactant or salt.

  15. The Oil Drop Experiment: How Did Millikan Decide What Was an Appropriate Drop?

    Science.gov (United States)

    Niaz, Mansoor

    2003-01-01

    The oil drop experiment is considered an important contribution to the understanding of modern physics and chemistry. The objective of this investigation is to study and contrast the views and understanding with respect to the experiment of physicists or philosophers of science with those of authors of physics or chemistry textbooks and…

  16. Drop Pinch-Off for Discrete Flows from a Capillary

    Directory of Open Access Journals (Sweden)

    Wilson M.C.T.

    2013-07-01

    Full Text Available The problem of drop formation and pinch-off from a capillary tube under the influence of gravity has been extensively studied when the internal capillary pressure gradient is constant. This ensures a continuous time independent flow field inside the capillary tube typically of the Poiseuille flow type. Characteristic drop ejection behaviour includes: periodic drop ejection, drop ejection with associated satellite production, complex dripping, chaotic behaviour and jetting. It is well known that this characteristic behaviour is governed by the Weber (We and Ohnesorge (Oh numbers (for a given Bond number and may be delineated in a We verses Oh operability diagram. An in-depth physical understanding of drop ejection is also of great importance to industry where the tight control of drop size and ejection velocity are of critical importance in industrial processes such as sealants used in electronics assembly and inkjet printing. However, the use of such a continuous flow approach for drop ejection in industry is often impractical since such flows cannot be operator controlled. For this reason it is important to investigate so-called discrete pipe flows where the flow can be turned on and off at will. This means the flow inside the pipe is now time-dependent being controlled in a step-wise fashion. As a first stage in the investigation of drop pinch-off behaviour in discrete pipe flows this paper will study the critical pinch-off time required for drop ejection starting from a pendant drop. This is the discrete amount of time the pipe flow is turned on for in order for a drop to be ejected from the capillary. A Newtonian incompressible free-surface CFD flow code developed at the University of Leeds is used to investigate the critical pinch-off time for a range of internal pipe velocities (the central flow maximum in Poiseuille flow. It is found that the time required for drop ejection to occur decreases exponentially with internal pipe velocity

  17. Drop splashing is independent of substrate wetting

    CERN Document Server

    Latka, Andrzej; Nagel, Sidney R; de Pablo, Juan J

    2016-01-01

    A liquid drop impacting a dry solid surface with sufficient kinetic energy will splash, breaking apart into numerous secondary droplets. This phenomenon shows many similarities to forced wetting, including the entrainment of air at the contact line. Because of these similarities and the fact that forced wetting has been shown to depend on the wetting properties of the surface, existing theories predict splashing to depend on wetting properties as well. However, using high-speed interference imaging we observe that wetting properties have no effect on splashing for various liquid-surface combinations. Additionally, by fully resolving the Navier-Stokes equations at length and time scales inaccessible to experiments, we find that the shape and motion of the air-liquid interface at the contact line are independent of wettability. We use these findings to evaluate existing theories and to compare splashing with forced wetting.

  18. Nonlinear Resonance of Mechanically Excited Sessile Drops

    Science.gov (United States)

    Chang, Chun-Ti; Daniel, Susan; Steen, Paul

    2013-11-01

    The spectrum of frequencies and mode shapes for an inviscid drop on a planar substrate have recently been documented. For vertical excitation, zonal modes respond to the driving frequency harmonically and non-zonal modes subharmonically, consistent with the prior literature. In this study, we report observations from the regime of nonlinear response. Here, zonals can respond non-harmonically, both sub- and super-harmonic responses are reported. The principal challenge to generating and observing superharmonic resonances of higher zonal modes is a mode-mixing behavior. However, using a simple visual simulation based on the ray-tracing technique, the individual contributions to the mixed resonance behavior can be extracted. In summary, results from experiment and theory show that the zonal modes, which respond harmonically and can mix with non-zonal modes without interfering with one another in the linear regime, tend to respond sub- or superharmonically and compete with non-zonal modes in the nonlinear regime.

  19. Drop Impact on to Moving Liquid Pools

    Science.gov (United States)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  20. Drop Impact on a Solid Surface

    KAUST Repository

    Josserand, C.

    2015-09-22

    © Copyright 2016 by Annual Reviews. All rights reserved. A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

  1. Sessile Drop Evaporation and Leidenfrost Phenomenon

    Directory of Open Access Journals (Sweden)

    A. K. Mozumder

    2010-01-01

    Full Text Available Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot metallic surface was measured and compared with a proposed correlation as well. With the time temperature plot of these experimental data, the Leidenfrost phenomena had been elucidated. In the pool boiling curve for liquid, just after the transition boiling region and before the film boiling region, the heat transfer approaches its minimum value. The corresponding temperature of this minimum value was termed as the Leidenfrost temperature and the phenomenon is known as Leidenfrost phenomena. According to the experimental data, the Leidenfrost temperature was within a range of 150-200°C for all the experimental conditions. Results: This revealed that Leidenfrost temperature was independent of thermo-physical properties of solid and liquid. Sessile drop evaporation time was the maximum for water, then decreases gradually for Nacl solution, methanol and was the minimum for ethanol for a particular solid material. On the other hand, this time was the highest for copper and the lowest for mild steel for a specific liquid. Conclusion: The experimental data for the evaporation time fairly agree with the proposed correlation within a certain range. The collected time and temperature data may be used as a good data bank for the researchers.

  2. Interaction of two deformable viscous drops under external temperature gradient

    CERN Document Server

    Berejnov, V V; Nir, A

    2001-01-01

    The axisymmetric deformation and motion of interacting droplets in an imposed temperature gradient is considered using boundary-integral techniques for slow viscous motion. Results showing temporal drop motion, deformations and separation are presented for equal-viscosity fluids. The focus is on cases when the drops are of equal radii or when the smaller drop trails behind the larger drop. For equal-size drops, our analysis shows that the motion of a leading drop is retarded while the motion of the trailing one is enchanced compared to the undeformable case. The distance between the centers of equal-sized deformable drops decreases with time. When a small drop follows a large one, two patterns of behavior may exist. For moderate or large initial separation the drops separate. However, if the initial separation is small there is a transient period in which the separation distance initially decreases and only afterwards the drops separate. This behavior stems from the multiple time scales that exist in the syst...

  3. Dynamics of Vapor Layer Under a Leidenfrost Drop

    CERN Document Server

    Caswell, Thomas A

    2014-01-01

    In the Leidenfrost effect a small drop of fluid is levitated above a sufficiently hot surface, on a persistent vapor layer generated by evaporation from the drop. The vapor layer thermally insulates the drop from the surface leading to extraordinarily long drop lifetimes. The top-view shape of the levitated drops can exhibit persistent star-like vibrations. I extend recent work [Burton et al. PRL 2012] to study the bottom surface of the drop using interference-imaging. In this work I use a high-speed camera and automated image analysis to image, locate and classify the interference fringes. From the interference fringes I reconstruct the shape and height profile of the rim where the drop is closest to the surface. I measure the drop-size dependence of the planar vibrational mode frequencies, which agree well with previous work. I observe a distinct breathing mode in the average radius of the drop, the frequency of which scales differently with drop size than the other modes. This breathing mode can be tightly...

  4. Final Programmatic Environmental Assessment for the Short Range Air Drop Target System

    Science.gov (United States)

    1998-05-01

    surrounding areas. 3.10.2 Range of Conditions The ROI could include a wide range of landcover types, from desert, to forest, to tundra, to coastal areas...relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands, and encompassing (at a minimum) areas subject...two general types of floodplains: riverine and coastal . Riverine floodplains are valley areas adjacent to streams and rivers that are subject to

  5. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes.

    Science.gov (United States)

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2015-01-13

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes.

  6. Drop-out from addiction treatment: a systematic review of risk factors.

    Science.gov (United States)

    Brorson, Hanne H; Ajo Arnevik, Espen; Rand-Hendriksen, Kim; Duckert, Fanny

    2013-12-01

    Completion of addiction treatment is one of the most consistent factors associated with a favorable treatment outcome. Unfortunately, it is more common for a patient to drop-out of addiction treatment than to complete the treatment. To prevent drop-out, risk factors must be identified. This box-score review focuses on studies investigating the risk factors associated with drop-out from addiction treatment published in peer-reviewed journals from 1992 to 2013. A total of 122 studies involving 199,331 participants met the inclusion criteria. Contrary to recommendations from previous reviews, 91% of the included studies focused primarily on enduring patient factors, mainly demographics. The most consistent risk factors across the different study designs, samples, and measurement methods were cognitive deficits, low treatment alliance, personality disorder, and younger age. With the exception of younger age, none of the demographic factors emerged as consistent risk factors. Further research on the relationship between simple demographic factors and drop-out risk is of limited value. However, little is known about the potential risk factors related to treatment programs and to the treatment processes. Based on the review, clinical recommendations include assessing cognitive functioning and personality disorders at baseline and continuous monitoring of treatment alliance.

  7. 40 CFR 63.11583 - What are my monitoring requirements?

    Science.gov (United States)

    2010-07-01

    ... practices at all times. (b) Operate a control device parameter (such as pressure drop or water flow, as... pressure drop. (2) Installation of the bag leak detector, parameter monitoring device, or CPMS at a... alert operators of a leak in the control device filter material. If a bag leak detection system...

  8. Drop motion due to oscillations of an inclined substrate

    Science.gov (United States)

    Xia, Yi; Chang, Chun-Ti; Daniel, Susan; Steen, Paul

    2014-11-01

    A sessile drop on a stationary inclined substrate remains pinned unless the angle of inclination is greater than some critical value. Alternatively, when shaken at even small angles of inclination, the drop undergoes shape deflections which may lead to drop translation. Translation occurs when large contact angle fluctuations, favored by oscillations at resonance, overcome contact angle hysteresis. In this study, resonance is triggered by substrate-normal oscillations. The drop translation is typically observed to be of constant speed for a given set of parameters. The speed is measured experimentally as a function of resonance mode, driving amplitude and drop volume. This technique of activating the motion of drops having a particular volume can be utilized for applications of droplet selection and transport.

  9. Collision between chemically-driven self-propelled drops

    CERN Document Server

    Yabunaka, Shunsuke

    2016-01-01

    We consider analytically and numerically head-on collision between two self-propelled drops. Each drop is driven by chemical reactions that produce or consume the concentration isotropically. The isotropic distribution of the concentration field is destabilized by motion of the drop which is itself made by Marangoni flow from concentration-dependent surface tension. This symmetry-breaking self-propulsion is distinct from other self-propulsion mechanisms due to the intrinsic polarity such as squirmers and self-phoretic motion; there is a bifurcation point below which the drop is stationary and above which it moves spontaneously. When two drops moving along the same axis with opposite direction, the interactions arise both from hydrodynamics and concentration overlap. We found that two drops exhibit either elastic collision or fusion depending on the distance from the bifurcation point controlled, for instance, by viscosity. The elastic collision results from the balance between dissipation and energy injection...

  10. Drop Test Results of CRDM under Seismic Loads

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively.

  11. Drop Impact on Textile Material: Effect of Fabric Properties

    Directory of Open Access Journals (Sweden)

    Romdhani Zouhaier

    2014-09-01

    Full Text Available This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on the drop profile and the spreading behaviour. An important drop deformation at the surface impact was observed. Then, fabric construction as the weft count deeply affects the drop impact. For plain weave, an increase of weft count causes a decrease in penetration and increase in the spreading rate. The same result was obtained for coated fabric. Therefore, the impact energy was modified and the drop shape was affected, which directly influenced the spreading rate.

  12. How geometry determines the coalescence of low-viscosity drops

    CERN Document Server

    Eddi, A; Snoeijer, J H

    2013-01-01

    The coalescence of water drops on a substrate is studied experimentally. We focus on the rapid growth of the bridge connecting the two drops, which very quickly after contact ensues from a balance of surface tension and liquid inertia. For drops with contact angles below $90^\\circ$, we find that the bridge grows with a self-similar dynamics that is characterized by a height $h\\sim t^{2/3}$. By contrast, the geometry of coalescence changes dramatically for contact angles at $90^\\circ$, for which we observe $h\\sim t^{1/2}$, just as for freely suspended spherical drops in the inertial regime. We present a geometric model that quantitatively captures the transition from 2/3 to 1/2 exponent, and unifies the inertial coalescence of sessile drops and freely suspended drops.

  13. Coalescence of bubbles and drops in an outer fluid

    CERN Document Server

    Paulsen, Joseph D; Kannan, Anerudh; Burton, Justin C; Nagel, Sidney R

    2014-01-01

    When two liquid drops touch, a microscopic connecting liquid bridge forms and rapidly grows as the two drops merge into one. Whereas coalescence has been thoroughly studied when drops coalesce in vacuum or air, many important situations involve coalescence in a dense surrounding fluid, such as oil coalescence in brine. Here we study the merging of gas bubbles and liquid drops in an external fluid. Our data indicate that the flows occur over much larger length scales in the outer fluid than inside the drops themselves. Thus we find that the asymptotic early regime is always dominated by the viscosity of the drops, independent of the external fluid. A phase diagram showing the crossovers into the different possible late-time dynamics identifies a dimensionless number that signifies when the external viscosity can be important.

  14. Decrease in Corneal Damage due to Benzalkonium Chloride by the Addition of Mannitol into Timolol Maleate Eye Drops.

    Science.gov (United States)

    Nagai, Noriaki; Yoshioka, Chiaki; Tanino, Tadatoshi; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2015-01-01

    We investigated the protective effects of mannitol on corneal damage caused by benzalkonium chloride (BAC), which is used as a preservative in commercially available timolol maleate eye drops, using rat debrided corneal epithelium and a human cornea epithelial cell line (HCE-T). Corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera; eye drops were instilled into rat eyes five times a day after corneal epithelial abrasion. The viability of HCE-T cells was calculated by TetraColor One; and Escherichia coli (ATCC 8739) were used to measure antimicrobial activity. The reducing effects on transcorneal penetration and intraocular pressure (IOP) of the eye drops were determined using rabbits. The corneal wound healing rate and rate constant (kH), as well as cell viability, were higher following treatment with 0.005% BAC solution containing 0.5% mannitol than in the case BAC solution alone; the antimicrobial activity was approximately the same for BAC solutions with and without mannitol. In addition, the kH for rat eyes instilled with commercially available timolol maleate eye drops containing 0.5% mannitol was significantly higher than that for eyes instilled with timolol maleate eye drops without mannitol, and the addition of mannitol did not affect the corneal penetration or IOP reducing effect of the timolol maleate eye drops. A preservative system comprising BAC and mannitol may provide effective therapy for glaucoma patients requiring long-term treatment with anti-glaucoma agents.

  15. Shaping and Capturing Leidenfrost drops with a magnetic field

    CERN Document Server

    Piroird, Keyvan; Clanet, Christophe; Quéré, David

    2012-01-01

    Liquid oxygen, which is intrinsically paramagnetic, also undergoes Leidenfrost effect at room temperature. In this article, we first study the deformation of oxygen drops in a magnetic field via an effective capillary length, that includes the magnetic force. In a second part, we show that these ultra-mobile drops passing above a magnet significantly slow down and can even be trapped if slow enough. The critical velocity below which a drop is captured is determined from the deformation induced by the field.

  16. Behavior of liquid drop situated between two oscillating planes

    Energy Technology Data Exchange (ETDEWEB)

    Korenchenko, A E [Institute of Metallurgy, Russian Academy of Science, Ural Branch, 101 Amundsen str., Ekaterinburg 620219 (Russian Federation); Beskachko, V P [South Ural State University, 76 Lenin str., Chelyabinsk 454080 (Russian Federation)], E-mail: korenchenko@physics.susu.ac.ru

    2008-02-15

    The levitation drop technique is widely used for the measurement of the surface tension and viscosity of liquids. An experiment with a drop situated between two horizontal rigid planes gives the same possibilities. The dynamic problem is solved numerically in the following cases: (1) the free oscillations of the drop when the plates are motionless; (2) the forced oscillations when the upper plate makes a translational vibration in the normal direction. The possibility of viscosity determination in such experiments is shown.

  17. On the coalescence of sessile drops with miscible liquids.

    Science.gov (United States)

    Borcia, R; Bestehorn, M

    2011-08-01

    Sessile drops sitting on highly wettable solid substrates fuse in qualitatively different ways after contact, depending on the surface tension gradients between the mixing droplets. In early time evolution the drop coalescence can be fast or delayed (intermittent). In long time evolution a secondary drop formation can occur. We study numerically droplet dynamics during coalescence in two and three spatial dimensions, within a phase field approach. We discuss criteria to distinguish different coalescence regimes. A comparison with recent experiments will be done.

  18. A drop jumps to weightlessness: a lecture demo

    Science.gov (United States)

    Mayer, V. V.; Varaksina, E. I.; Saranin, V. A.

    2017-04-01

    The paper discusses the lecture demonstration of the phenomenon in which a drop lying on a solid unwettable substrate jumps when making the transition to weightlessness. An elementary theory of the phenomenon is given. A jump speed estimate is obtained for small and large drops. The natural vibrational frequency of a flying drop is determined. A full-scale model of Einstein’s elevator is described. Experimental and theoretical results are found to agree satisfactorily.

  19. Drop-out from a psychodynamic group psychotherapy outpatient unit.

    Science.gov (United States)

    Jensen, Hans Henrik; Mortensen, Erik Lykke; Lotz, Martin

    2014-11-01

    BACKGROUND. Drop-out from psychotherapy is common and represents a considerable problem in clinical practice and research. Aim. To explore pre-treatment predictors of early and late drop-out from psychodynamic group therapy in a public outpatient unit for non-psychotic disorders in Denmark. Methods. Naturalistic design including 329 patients, the majority with mood, neurotic and personality disorders referred to 39-session group therapy. Predictors were socio-demographic and clinical variables, self-reported symptoms (Symptom Check List-90-Revised) and personality style (Millon Clinical Multiaxial Inventory-II). Drop-out was classified into early and late premature termination excluding patients who dropped out for external reasons. Results. Drop-out comprised 20.6% (68 patients) of the sample. Logistic regression revealed social functioning, vocational training, alcohol problems and antisocial behavior to be related to drop-out. However, early drop-outs had prominent agoraphobic symptoms, lower interpersonal sensitivity and compulsive personality features, and late drop-outs cognitive and somatic anxiety symptoms and antisocial personality features. Clinical and psychological variables accounted for the major part of variance in predictions of drop-out, which ranged from 15.6% to 19.5% (Nagelkerke Pseudo R-Square). Conclusion. Social functioning was consistently associated with drop-out, but personality characteristics and anxiety symptoms differentiated between early and late drop-out. Failure to discriminate between stages of premature termination may explain some of the inconsistencies in the drop-out literature. Clinical implications. Before selection of patients to time-limited psychodynamic groups, self-reported symptoms should be thoroughly considered. Patients with agoraphobic symptoms should be offered alternative treatment. Awareness of and motivation to work with interpersonal issues may be essential for compliance with group therapy.

  20. Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    Science.gov (United States)

    Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard

    2011-01-01

    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.

  1. "Drop in" gastroscopy outpatient clinic - experience after 9 months

    Directory of Open Access Journals (Sweden)

    Huppertz-Hauss Gert

    2012-02-01

    Full Text Available Abstract Background Logistics handling referrals for gastroscopy may be more time consuming than the examination itself. For the patient, "drop in" gastroscopy may reduce uncertainty, inadequate therapy and time off work. Methods After an 8-9 month run-in period we asked patients, hospital staff and GPs to fill in a questionnaire to evaluate their experience with "drop in" gastroscopy and gastroscopy by appointment, respectively. The diagnostic gain was evaluated. Results 112 patients had "drop in" gastroscopy and 101 gastroscopy by appointment. The number of "drop in" patients varied between 3 and 12 per day (mean 6.5. Mean time from first GP consultation to gastroscopy was 3.6 weeks in the "drop in" group and 14 weeks in the appointment group. The half-yearly number of outpatient gastroscopies increased from 696 before introducing "drop in" to 1022 after (47% increase and the proportion of examinations with pathological findings increased from 42% to 58%. Patients and GPs expressed great satisfaction with "drop in". Hospital staff also acclaimed although it caused more unpredictable working days with no additional staff. Conclusions "Drop in" gastroscopy was introduced without increase in staff. The observed increase in gastroscopies was paralleled by a similar increase in pathological findings without any apparent disadvantages for other groups of patients. This should legitimise "drop in" outpatient gastroscopies, but it requires meticulous observation of possible unwanted effects when implemented.

  2. How to optimize the drop plate method for enumerating bacteria.

    Science.gov (United States)

    Herigstad, B; Hamilton, M; Heersink, J

    2001-03-01

    The drop plate (DP) method can be used to determine the number of viable suspended bacteria in a known beaker volume. The drop plate method has some advantages over the spread plate (SP) method. Less time and effort are required to dispense the drops onto an agar plate than to spread an equivalent total sample volume into the agar. By distributing the sample in drops, colony counting can be done faster and perhaps more accurately. Even though it has been present in the laboratory for many years, the drop plate method has not been standardized. Some technicians use 10-fold dilutions, others use twofold. Some technicians plate a total volume of 0.1 ml, others plate 0.2 ml. The optimal combination of such factors would be useful to know when performing the drop plate method. This investigation was conducted to determine (i) the standard deviation of the bacterial density estimate, (ii) the cost of performing the drop plate procedure, (iii) the optimal drop plate design, and (iv) the advantages of the drop plate method in comparison to the standard spread plate method. The optimal design is the combination of factor settings that achieves the smallest standard deviation for a fixed cost. Computer simulation techniques and regression analysis were used to express the standard deviation as a function of the beaker volume, dilution factor, and volume plated. The standard deviation expression is also applicable to the spread plate method.

  3. Underwater sound produced by individual drop impacts and rainfall

    DEFF Research Database (Denmark)

    Pumphrey, Hugh C.; Crum, L. A.; Jensen, Leif Bjørnø

    1989-01-01

    An experimental study of the underwater sound produced by water drop impacts on the surface is described. It is found that sound may be produced in two ways: first when the drop strikes the surface and, second, when a bubble is created in the water. The first process occurs for every drop......; the second occurs for some impacts but not others. A range of conditions is described in which a bubble is produced for every drop impact, and it is shown that these conditions are likely to be met by a significant fraction of the raindrops in a typical shower. Underwater sound produced by artificial as well...

  4. Numerical investigation of phase relationships in an oscillating sessile drop

    Science.gov (United States)

    Korenchenko, A. E.; Malkova, J. P.

    2015-10-01

    Forced linear oscillations of a viscous drop placed on a horizontal surface vibrating in perpendicular direction are investigated. The problem is solved for two cases: (1) constant contact angle, and (2) pinned contact line. Phase-frequency and amplitude-frequency characteristics of oscillations of the drop apex are found for the first axisymmetrical mode of oscillations. The independence of the difference of oscillation phases of the drop apex and the substrate on fluid density, viscosity, surface tension, and drop size as well as on presence or absence of the gravity force was demonstrated.

  5. Wetting and absorption of water drops on Nafion films.

    Science.gov (United States)

    Goswami, Sharonmoyee; Klaus, Shannon; Benziger, Jay

    2008-08-19

    Water drops on Nafion films caused the surface to switch from being hydrophobic to being hydrophilic. Contact angle hysteresis of >70 degrees between advancing and receding values were obtained by the Wilhelmy plate technique. Sessile drop measurements were consistent with the advancing contact angle; the sessile drop contact angle was 108 degrees . Water drop adhesion, as measured by the detachment angle on an inclined plane, showed much stronger water adhesion on Nafion than Teflon. Sessile water and methanol drops caused dry Nafion films to deflect. The flexure went through a maximum with time. Flexure increased with contact area of the drop, but was insensitive to the film thickness. Methanol drops spread more on Nafion and caused larger film flexure than water. The results suggest that the Nafion surface was initially hydrophobic but water and methanol drops caused hydrophilic sulfonic acid domains to be drawn to the Nafion surface. Local swelling of the film beneath the water drop caused the film to buckle. The maximum flexure is suggested to result from motion of a water swelling front through the Nafion film.

  6. Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops.

    Science.gov (United States)

    Chang, Chun-Ti; Bostwick, Joshua B; Steen, Paul H; Daniel, Susan

    2013-08-01

    In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.

  7. Communications: Wall free capillarity and pendant drop removal.

    Science.gov (United States)

    Hong, Siang-Jie; Chang, Feng-Ming; Chan, Seong Heng; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2010-04-28

    When a sessile drop encounters a pendant drop through a hole, it is generally anticipated that they will coalesce and flow downward due to gravity. However, like "wall-free" capillarity, we show that the pendant drop may be sucked up by a sliding drop instantaneously if the radius of the curvature of the former is smaller than that of the later. This phenomenon can be explained by Laplace-Young equation and convective Ostwald ripening. Our results indicate that superhydrophilic perforated surface can be used as an effective way for the removal of small droplets adhering to the inner walls of microchannel systems.

  8. Studies of the Stability and Dynamics of Levitated Drops

    Science.gov (United States)

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.

    1996-01-01

    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.

  9. Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops

    Science.gov (United States)

    Chang, Chun-Ti; Bostwick, Joshua B.; Steen, Paul H.; Daniel, Susan

    2013-08-01

    In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.

  10. Symmetric and Asymmetric Coalescence of Drops on a Substrate

    CERN Document Server

    Hernandez-Sanchez, J F; Eddi, A; Snoeijer, J H

    2012-01-01

    The coalescence of viscous drops on a substrate is studied experimentally and theoretically. We consider cases where the drops can have different contact angles, leading to a very asymmetric coalescence process. Side view experiments reveal that the "bridge" connecting the drops evolves with self-similar dynamics, providing a new perspective on the coalescence of sessile drops. We show that the universal shape of the bridge is accurately described by similarity solutions of the one-dimensional lubrication equation. Our theory predicts a bridge that grows linearly in time and stresses the strong dependence on the contact angles. Without any adjustable parameters, we find quantitative agreement with all experimental observations.

  11. PRESERVATIVES FROM THE EYE DROPS AND THE OCULAR SURFACE.

    Science.gov (United States)

    Coroi, Mihaela Cristina; Bungau, Simona; Tit, Mirela

    2015-01-01

    The use of preservatives in eye drops (eyewashes) has known glory at the beginning, but the side effects that they have on the ocular surface have led to a decrease of their popularity. Lachrymal film dysfunction, ocular hyperemia, dotted keratitis or toxic keratopathy were reported and analyzed in terms of pathophysiological mechanism of the role played by preservatives in ophthalmic drops (eyewashes). This article reviews the most common preservatives and the existing alternatives for the maintenance of the eye sterile drops. Keywords: preservatives, eye drops, ocular surface

  12. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    Science.gov (United States)

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  13. 40 CFR 63.11527 - What are the monitoring requirements for new and existing sources?

    Science.gov (United States)

    2010-07-01

    ... paragraph (b)(1) of this section. (4) When operating a CPMS, if the 3-hour average pressure drop or scrubber.... Manufacturer's specifications for pressure drop and liquid flow rate will be used to determine normal... filters—(1) Visual monitoring. You must conduct visual monitoring of the monovent or fabric filter...

  14. Acoustics short-term passive monitoring using sonobuoys in the Bering, Chukchi, and Western Beaufort Seas conducted by Alaska Fisheries Scientific Center, National Marine Mammal Laboratory from 2007-08-01 to 2015-09-28 (NCEI Accession 0138863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) has conducted passive acoustic monitoring in the Bering, Chukchi, and Western Beaufort Seas to determine spatio-temporal...

  15. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    Science.gov (United States)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  16. On the spreading of impacting drops

    CERN Document Server

    Wildeman, Sander; Sun, Chao; Lohse, Detlef

    2016-01-01

    The energy budget and dissipation mechanisms during droplet impact on solid surfaces are studied numerically and theoretically. We find that for high impact velocities and negligible surface friction, about one half of the initial kinetic energy is transformed into surface energy, independent of the impact parameters and the detailed energy loss mechanism(s). We argue that this seemingly universal rule is related to the deformation mode of the droplet and is reminiscent of pipe flow undergoing a sudden expansion, for which the head loss can be calculated by multiplying the kinetic energy of the incoming flow by a geometrical factor. For impacts on a no-slip surface also dissipation in the shear boundary layer at the solid surface is important. In this case the head loss acts as a lower bound on the total dissipation for small viscosities. This new view on the impact problem allows for simple analytical estimates of the maximum spreading diameter of impacting drops as a function of the impact parameters and th...

  17. Horizontal Drop of 21- PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2001-04-26

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  18. That's one small drop for Mankind...

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    In August, the members of an ISOLDE project called LOI88 successfully employed a new technique to study the interaction of metal ions in a liquid. It’s the first time that specific ions have been studied in a liquid medium - a technical achievement that opens promising doors for biochemistry.   In the heart of the LOI88 experiment: this is the point where the metal ions (from the left) enter the drop.  “More than half of the proteins in the human body contain metal ions such as magnesium, zinc and copper,” explains Monika Stachura, a biophysicist at the University of Copenhagen and the LOI88 project leader. “We know that these elements are crucial to a protein’s structure and function but their behaviour and interactions are not known in detail.” Detecting these ions directly in  a body-like environment is problematic as their closed atomic shells make them invisible to most spectroscopic techniques. However, using ...

  19. Pressure drop in saturated flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Universidad de Zaragoza, Zaragoza (Spain)

    2003-07-01

    A new mass balance for flow boiling have been recently suggested by the author following a quite simple idea: if the phases have different velocities, they can not cover the same distance -the control volume length for a 1-d system- in the same time. Thus, the time scales of the phases have to be different, and we should scale the time dependent magnitudes of one phase to the other one before combining them. Furthermore, it is reasonable to think that conservation equations should have to include in some manner this evident physical fact. In complete coherence with the former mass balance, a new energy balance, which does include the slip ratio has been also stated. This work, whilst reviews these new fundamentals for saturated flow boiling, stresses those aspects related with the prediction of the pressure drop in saturated flow boiling. The new correlations found for the data carefully measured by Thom during the Cambridge project would confirm the new two-phase flowapproach.

  20. Apparent contact angle of an evaporating drop

    Science.gov (United States)

    Morris, S. J. S.

    2012-11-01

    In experiments by Poulard et al. (2005), a sessile drop of perfectly wetting liquid evaporates from a non-heated substrate into an under-saturated mixture of vapour with an inert gas; evaporation is limited by vapour diffusion. The system exhibits an apparent contact angle θ that is a flow property. Under certain conditions, the apparent contact line was stationary relative to the substrate; we predict θ for this case. Observed values of θ are small, allowing lubrication analysis of the liquid film. The liquid and vapour flows are coupled through conditions holding at the phase interface; in particular, vapour partial pressure there is related to the local value of liquid pressure through the Kelvin condition. Because the droplet is shallow, the interfacial conditions can be transferred to the solid-liquid interface at y = 0 . We show that the dimensionless partial pressure p (x , y) and the film thickness h (x) are determined by solving ∇2 p = 0 for y > 0 subject to a matching condition at infinity, and the conditions - p = L hxx +h-3 and (h3px) x + 3py = 0 at y = 0 . The parameter L controls the ratio of Laplace to disjoining pressure. We analyse this b.v.p. for the experimentally-relevant case L --> 0 .

  1. The Digital Drag and Drop Pillbox

    Science.gov (United States)

    Granger, Bradi B.; Locke, Susan C.; Bowers, Margaret; Sawyer, Tenita; Shang, Howard; Abernethy, Amy P.; Bloomfield, Richard A.; Gilliss, Catherine L.

    2017-01-01

    Objective: We present the design and feasibility testing for the “Digital Drag and Drop Pillbox” (D-3 Pillbox), a skill-based educational approach that engages patients and providers, measures performance, and generates reports of medication management skills. Methods: A single-cohort convenience sample of patients hospitalized with heart failure was taught pill management skills using a tablet-based D-3 Pillbox. Medication reconciliation was conducted, and aptitude, performance (% completed), accuracy (% correct), and feasibility were measured. Results: The mean age of the sample (n = 25) was 59 (36–89) years, 50% were women, 62% were black, 46% were uninsured, 46% had seventh-grade education or lower, and 31% scored very low for health literacy. However, most reported that the D-3 Pillbox was easy to read (78%), easy to repeat-demonstrate (78%), and comfortable to use (tablet weight) (75%). Accurate medication recognition was achieved by discharge in 98%, but only 25% reported having a “good understanding of my responsibilities.” Conclusions: The D-3 Pillbox is a feasible approach for teaching medication management skills and can be used across clinical settings to reinforce skills and medication list accuracy. PMID:28282304

  2. The viruses of wild pigeon droppings.

    Directory of Open Access Journals (Sweden)

    Tung Gia Phan

    Full Text Available Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads, as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.

  3. Factors associated with non-participation and drop-out in a lifestyle intervention for workers with an elevated risk of cardiovascular disease.

    Science.gov (United States)

    Groeneveld, Iris F; Proper, Karin I; van der Beek, Allard J; Hildebrandt, Vincent H; van Mechelen, Willem

    2009-12-01

    Non-response and drop-out are problems that are commonly encountered in health promotion trials. Understanding the health-related characteristics of non-participants and drop-outs and the reasons for non-participation and drop-out may be beneficial for future intervention trials. Male construction workers with an elevated risk of cardiovascular disease (CVD) were invited to participate in a lifestyle intervention study. In order to investigate the associations between participation and CVD risk factors, and drop-out and CVD risk factors, crude and multiple logistic regression analyses were performed. The reasons for non-participation and drop-out were assessed qualitatively. 20% of the workers who were invited decided to participate; 8.6% of the participants dropped out before the first follow-up measurement. The main reasons for non-participation were 'no interest', 'current (para-)medical treatment', and 'feeling healthy', and for drop-out they were 'lack of motivation', 'current (para-)medical treatment', and 'disappointment'. Participants were 4.2 years older, had a higher blood pressure, higher total cholesterol, and lower HDL cholesterol than non-participants, and were more likely to report 'tiredness and/or stress' and 'chest pain and/or shortness of breath'. After adjusting for age, most risk factors were not significantly associated with participation. Drop-outs were 4.6 years younger than those who completed the study. The prevalence of smoking was higher among non-participants and drop-outs. Participants had a worse CVD risk profile than non-participants, mainly because of the difference in age. Non-participants and drop-outs were younger and more likely to be smokers. The main reasons for non-participation and drop-out were health-related. Investigators in the field of health promotion should be encouraged to share comparable information. Current Controlled Trials ISRCTN60545588.

  4. Low-Bond Axisymmetric Drop Shape Analysis for Surface Tension and Contact Angle Measurements of Sessile Drops

    OpenAIRE

    Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D; T. Blu; Unser, M

    2010-01-01

    A new method based on the Young-Laplace equation for measuring contact angles and surface tensions is presented. In this approach, a first-order perturbation technique helps to analytically solve the Young-Laplace equation according to photographic images of axisymmetric sessile drops. When appropriate, the calculated drop contour is extended by mirror symmetry so that reflection of the drop into substrate allows the detection of position of the contact points. To keep a wide range of applica...

  5. Acoustics and hydrodynamics of a drop impact on a water surface

    Science.gov (United States)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2017-01-01

    Hydrodynamic and acoustic processes associated with a drop impact on a water surface were studied experimentally. Acoustic signals were detected underwater (with a hydrophone) and in air (with a microphone), the flow pattern was recorded with a high-speed camera, and the surface perturbation was monitored with a laser detector. The dimensionless parameters of flows (Reynolds, Froude, and Weber numbers) induced by the impact varied with fall height within the ranges of 5000 noted in a series of experiments performed at a constant fall height. The analysis of video data showed that the signal variability was induced by considerable differences in the scenarios of water entry of a drop, which assumed an ovoid shape at the end trajectory segment, in the mentioned experiments.

  6. Axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD): a film balance technique for high collapse pressures.

    Science.gov (United States)

    Saad, Sameh M I; Policova, Zdenka; Acosta, Edgar J; Neumann, A Wilhelm

    2008-10-07

    Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance. It is shown that ADSA-CSD has certain advantages over conventional methods. The ability to measure very low surface tension values (e.g., drop setup, and leak-proof design make the constrained sessile drop constellation a better choice than the pendant drop constellation in many situations. Results of compression isotherms are obtained on three different monolayers: octadecanol, dipalmitoyl-phosphatidyl-choline (DPPC), and dipalmitoyl-phosphatidyl-glycerol (DPPG). The collapse pressures are found to be reproducible and in agreement with previous methods. For example, the collapse pressure of DPPC is found to be 70.2 mJ/m2. Such values are not achievable with a pendant drop. The collapse pressure of octadecanol is found to be 61.3 mJ/m2, while that of DPPG is 59.0 mJ/m2. The physical reasons for these differences are discussed. The results also show a distinctive difference between the onset of collapse and the ultimate collapse pressure (ultimate strength) of these films. ADSA-CSD allows detailed study of this collapse region.

  7. Small-Scale Variability of Large Cloud Drops

    Science.gov (United States)

    Marshak, Alexander; Knyazikhin, Y.; Wiscombe, Warren

    2004-01-01

    Cloud droplet size distribution is one of the most fundamental subjects in cloud physics. Understanding of spatial distribution and small-scale fluctuations of cloud droplets is essential for both cloud physics and atmospheric radiation. For cloud physics, it relates to the coalescence growth of raindrops while for radiation, it has a strong impact on a cloud's radiative properties. Most of the existing cloud radiation and precipitation formation models assume that the mean number of drops with a given radius varies proportionally to volume. The analysis of microphysical data on liquid water drop sizes shows that, for sufficiently small volumes, the number is proportional to the drop size dependent power of the volume. For abundant small drops present, the exponent is 1 as assumed in the conventional approach. However, for rarer large drops, the exponents fall below unity. At small scales, therefore, the mean number of large drops decreases with volume at a slower rate than the conventional approach assumes, suggesting more large drops at these scales than conventional models account for; their impact is consequently underestimated. Size dependent models of spatial distribution of cloud drops that simulate the observed power laws show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. Current theories of photon-cloud interaction and warm rain formation will need radical revision in order to produce these statistics; their underlying equations are unable to yield the observed power law.

  8. Free fall of water drops in laboratory rainfall simulations

    Science.gov (United States)

    Chowdhury, M. Nasimul; Testik, Firat Y.; Hornack, Mathew C.; Khan, Abdul A.

    2016-02-01

    Motivated by various hydrological and meteorological applications, this paper investigates the free fall of water drops to provide guidance in laboratory simulations of natural rainfall and to elucidate drop morphodynamics. Drop fall velocity and shape parameters such as axis ratio (ratio of the maximum vertical and horizontal chords of the drop), chord ratio [ratio of the two orthogonal chords where one chord (cl) is the longest chord in the drop and the other one (cs) is the longest chord that is orthogonal to cl], canting angle (angle between the longest chord of the drop and the horizontal axis), and relative fluctuation of chords (difference between vertical and horizontal chord fluctuations) were investigated for three selected water drop sizes (2.6, 3.7, and 5.1 mm spherical volume equivalent diameter) using high speed imaging. Based upon experimental observations, three distinct fall zones were identified: Zone I, in which source-induced oscillations and shape adjustment take place; Zone II, in which equilibrium-shaped drops accelerate to achieve terminal velocity; and Zone III, in which equilibrium-shaped drops fall at terminal velocity. Our results revealed that the fall distance values of approximately 6 m and 12 m can be used as conservative reference values for rainfall experiments with oscillation-free fall of drops (i.e. end of Zone I and onset of Zone II) and with equilibrium-shaped drops falling at terminal velocities (i.e. end of Zone II and onset of Zone III), respectively, for the entire raindrop size spectrum in natural rainfall. These required fall distance values are smaller than the distances discussed in the literature. Methodology and results presented here will facilitate optimum experimental laboratory simulations of natural rainfall.

  9. Variation of rain intensity and drop size distribution with General Weather Patterns (GWL)

    Science.gov (United States)

    Ghada, Wael; Buras, Allan; Lüpke, Marvin; Menzel, Annette

    2017-04-01

    Short-duration rainfall extremes may cause flash floods in certain catchments (e.g. cities or fast responding watersheds) and pose a great risk to affected communities. In order to predict their occurrence under future climate change scenarios, their link to atmospheric circulation patterns needs to be well understood. We used a comprehensive data set of meteorological data (temperature, rain gauge precipitation) and precipitation spectra measured by a disdrometer (OTT PARSIVEL) between October 2008 and June 2010 at Freising, southern Germany. For the 21 months of the study period, we integrated the disdrometer spectra over intervals of 10 minutes to correspond to the temporal resolution of the weather station data and discarded measurements with air temperatures below 0°C. Daily General Weather Patterns ("Großwetterlagen", GWL) were downloaded from the website of the German Meteorological Service. Out of the 29 GWL, 14 were included in the analysis for which we had at least 12 rain events during our study period. For the definition of a rain event, we tested different lengths of minimum inter-event times and chose 30 min as a good compromise between number and length of resulting events; rain events started when more than 0.001 mm/h (sensitivity of the disdrometer) were recorded. The length of the rain events ranged between 10 min and 28 h (median 130 min) with the maximum rain intensity recorded being 134 mm/h on 24-07-2009. Seasonal differences were identified for rain event average intensities and maximum intensities per event. The influence of GWL on rain properties such as rain intensity and drop size distribution per time step and per event was investigated based on the above mentioned rain event definition. Pairwise Wilcoxon-tests revealed that higher rain intensity and larger drops were associated with the GWL "Low over the British Isles" (TB), whereas low rain intensities and less drops per interval were associated with the GWL "High over Central Europe

  10. Prophylactic Vancomycin Drops Reduce the Severity of Early Bacterial Keratitis in Keratoprosthesis.

    Directory of Open Access Journals (Sweden)

    Aris Konstantopoulos

    .Prophylactic vancomycin drops provided short-term benefit, but did not prevent infection. Achieving MIC in the cornea was not sufficient to prevent Staphylococcus aureus keratitis. Patients should continue to be counselled regarding the risk of infection following keratoprosthesis.

  11. Quality of care and family planning drop-outs in Bukidnon province: a survey study.

    Science.gov (United States)

    Palma-sealza, L

    1993-01-01

    A study was undertaken in the province of Bukidnon in the Philippines to determine the actual percentage of family planning (FP) acceptors who become dropouts, the reasons they drop out, and the factors most strongly associated with this phenomenon. Data were collected through interviews with married women of reproductive age who had been recorded as being a FP acceptor during 1992. The sample size was set at 400 using a probability-proportionate-to-size sampling technique. In examining the extent of the drop-out problem, it was found that the actual FP status of each respondent agreed with the clinic records in 73.4% of cases and that 22% of those thought to be dropouts had actually switched methods. Most of the women who stopped using oral contraceptives said they did so because of side effects. The drop-out problem was most acute among women who were poorer, less educated, and of higher parity. The attitude of a husband towards use of a method was a better predictor of continuation than the wife's attitude. Clients who felt their provider was approachable and friendly were significantly less likely to drop out. Despite the fact that the FP program is modeled on a "cafeteria" approach which provides choices to acceptors, 9.5% of acceptors in this survey claimed they were not offered a choice. Women who received limited information were more likely to become drop-outs. Clients who had to return to clinics frequently for resupply of OCs or condoms were most likely to become drop-outs. While the number of dropouts identified in this study was only half the official estimate for the province, the short time between FP acceptance and the survey may have reduced the number of dropouts. The program implications of these findings are that 1) the occurrence of side effects needs study, 2) groups characterized by high drop-out rates should receive immediate attention, 3) favorable attitudes should be fostered in husbands, 4) women must receive more information on their

  12. Why Did They Not Drop Out? Narratives from Resilient Students

    Science.gov (United States)

    Lessard, Anne; Fortin, Laurier; Marcotte, Diane; Potvin, Pierre; Royer, Egide

    2009-01-01

    There is much to be learned from students who were at-risk for dropping out of school but persevered and graduated. The purpose of the study on which this article is based, was to describe how students who were at-risk for dropping out of school persevered and graduated. The voices of two students are introduced, highlighting the challenges they…

  13. Understanding (sessile/constrained) bubble and drop oscillations.

    Science.gov (United States)

    Milne, A J B; Defez, B; Cabrerizo-Vílchez, M; Amirfazli, A

    2014-01-01

    The diffuse literature on drop oscillation is reviewed, with an emphasis on capillary wave oscillations of constrained drops. Based on the review, a unifying conceptual framework is presented for drop and bubble oscillations, which considers free and constrained drops/bubbles, oscillation of the surface or the bulk (i.e. center of mass) of the drop/bubble, as well as different types of restoring forces (surface tension, gravity, electromagnetic, etc). Experimental results (both from literature and from a new set of experiments studying sessile drops in cross flowing air) are used to test mathematical models from literature, using a novel whole profile analysis technique for the new experiments. The cause of oscillation (cross flowing air, vibrated surface, etc.) is seen not to affect oscillation frequency. In terms of models, simplified models are seen to poorly predict oscillation frequencies. The most advanced literature models are found to be relatively accurate at predicting frequency. However it is seen that no existing models are reliably accurate across a wide range of contact angles, indicating the need for advanced models/empirical relations especially for drops undergoing the lowest frequency mode of oscillation (the order 1 degree 1 non-axisymmetric 'bending' mode that corresponds to a lateral 'rocking' motion of the drop).

  14. Stokes flow near the contact line of an evaporating drop

    NARCIS (Netherlands)

    Gelderblom, H.; Bloemen, O.; Snoeijer, J.H.

    2012-01-01

    The evaporation of sessile drops in quiescent air is usually governed by vapour diffusion. For contact angles below , the evaporative flux from the droplet tends to diverge in the vicinity of the contact line. Therefore, the description of the flow inside an evaporating drop has remained a challenge

  15. Large Eddy Simulation of jets laden with evaporating drops

    Science.gov (United States)

    Leboissetier, A.; Okong'o, N.; Bellan, J.

    2004-01-01

    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  16. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  17. Simulation of the drop impact test for moulded thermoplastic containers

    NARCIS (Netherlands)

    Reed, P.E.; Breedveld, G.; Lim, B.C.

    2000-01-01

    An analysis is made of the drop impact test for moulded plastics containers, as a first step towards the simulation of the impact event for design and development purposes. Experimental data are analysed from instrumented base drop impact testing of water-filled blow-moulded bottles, 20 and 210 l dr

  18. Pressure Drop of Non-Newtonian Liquid Flow Through Elbows

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Experimental data on the pressure drop across different types of elbow for non-Newtonian pseudoplastic liquid flow in laminar condition have been presented. A generalized correlation has been developed for predicting the frictional pressure drop across the elbows in the horizontal plane.

  19. Segregation in desiccated sessile drops of biological fluids.

    Science.gov (United States)

    Tarasevich, Yu Yu; Pravoslavnova, D M

    2007-04-01

    It is shown here that concurrence between advection and diffusion in a drying sessile drop of a biological fluid can produce spatial redistribution of albumen and salt. The result gives an explanation for the patterns observed in the dried drops of the biological fluids.

  20. Simple Model of Shape Evolution of Desiccated Colloidal Sessile Drop

    OpenAIRE

    Tarasevich, Yu. Yu.; Vodolazskaya, I. V.; Isakova, O. P.

    2011-01-01

    We propose simple model of colloidal sessile drop desiccation. The model describes correctly both evolution of the phase boundary between sol and gel inside such a drop and the final shape of the dried film (deposit). The model is based on mass conservation and natural assumption that deposit (gel phase) prevents flows and evaporation.

  1. Electrowetting-driven oscillating drops sandwiched between two substrates

    NARCIS (Netherlands)

    Mampallil, Dileep; Eral, H.B.; Staicu, A.D.; Mugele, F.; Ende, van den D.

    2013-01-01

    Drops sandwiched between two substrates are often found in lab-on-chip devices based on digital microfluidics. We excite azimuthal oscillations of such drops by periodically modulating the contact line via ac electrowetting. By tuning the frequency of the applied voltage, several shape modes can be

  2. Shape of a large drop on a rough hydrophobic surface

    Science.gov (United States)

    Park, Joonsik; Park, Jaebum; Lim, Hyuneui; Kim, Ho-Young

    2013-02-01

    Large drops on solid surfaces tend to flatten due to gravitational effect. Their shapes can be predicted by solving the Young-Laplace equation when their apparent contact angles are precisely given. However, for large drops sitting on rough surfaces, the apparent contact angles are often unavailable a priori and hard to define. Here we develop a model to predict the shape of a given volume of large drop placed on a rough hydrophobic surface using an overlapping geometry of double spheroids and the free energy minimization principle. The drop shape depends on the wetting state, thus our model can be used not only to predict the shape of a drop but also to infer the wetting state of a large drop through the comparison of theory and experiment. The experimental measurements of the shape of large water drops on various micropillar arrays agree well with the model predictions. Our theoretical model is particularly useful in predicting and controlling shapes of large drops on surfaces artificially patterned in microscopic scales, which are frequently used in microfluidics and lab-on-a-chip technology.

  3. Drop-out probabilities of IrisPlex SNP alleles

    DEFF Research Database (Denmark)

    Andersen, Jeppe Dyrberg; Tvedebrink, Torben; Mogensen, Helle Smidt

    2013-01-01

    -out of true alleles is possible. As part of the validation of the IrisPlex assay in our ISO17025 accredited, forensic genetic laboratory, we estimated the probability of drop-out of specific SNP alleles using 29 and 30 PCR cycles and 25, 50 and 100 Single Base Extension (SBE) cycles. We observed no drop...

  4. Maximal air bubble entrainment at liquid-drop impact

    NARCIS (Netherlands)

    Bouwhuis, W.; van der Veen, Roeland; Tran, Tuan; Keij, D.L.; Winkels, K.G.; Peters, I.R.; van der Meer, Roger M.; Sun, Chao; Snoeijer, Jacobus Hendrikus; Lohse, Detlef

    2012-01-01

    At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for

  5. Drops in Space: Super Oscillations and Surfactant Studies

    Science.gov (United States)

    Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Shi, Tao; Chen, X.; Holt, R. Glynn; Trinh, Eugene; Croonquist, Arvid; Thornton, Kathyrn C.; Sacco, Albert, Jr.; Coleman, Catherine; Leslie, Fred W.; Matthiesen, David H.

    1996-01-01

    An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995). The observation was precipitated by the action of an intense sound field which produced a deforming force on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion. Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character. Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a theory which relies on spherical symmetry to solve the momentum and mass transport equations.

  6. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  7. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces.

  8. [Drop-out from clinical psychotherapeutic treatment of personality problems].

    Science.gov (United States)

    Cornelissen, A T J; Poppe, E; Ouwens, M A

    2010-01-01

    Drop-out is a serious problem in psychotherapy. Earlier studies have shown that the main factors associated with drop-out are young age, low socio-economic status and pathological symptoms such as severity of the problems and problematic substance-abuse. To investigate patient's and pathological characteristics that predict drop-out among patients with predominantly personality problems. Patient's characteristics and pathological characteristics of 372 subjects were ascertained via a retrospective study by means of four databases: intake letters, scid-ii personality questionnaires, scid-i and ii interviews and discharge letters. The association between these characteristics and drop-out was tested by means of bivariate and multivariate analysis. results The drop-out rate was 33.3 %. The main predictors of drop-out were young age, a low Global Assessment of Functioning (gaf)-score and the existence of problematic substance-abuse at discharge. The degree and severity of axis i disorders and the nature of personality problems made hardly any contribution to the prediction of drop-out. These findings indicate that more attention needs to be given to the existence of substance-abuse before psychotherapy begins. Drop-out is still a problem and is difficult to predict and hard to influence.

  9. Asymmetric Spreading of a Drop upon Impact onto a Surface.

    Science.gov (United States)

    Almohammadi, H; Amirfazli, A

    2017-06-13

    Study of the spreading of an impacting drop onto a surface has gained importance recently due to applications in printing, coating, and icing. Limited studies are conducted to understand asymmetric spreading of a drop seen upon drop impact onto a moving surface; there is no relation to describe such spreading. Here, we experimentally studied the spreading of a drop over a moving surface; such study also provides insights for systems where a drop impacts at an angle relative to a surface, i.e., drop has both normal and tangential velocities relative to the surface. We developed a model that for the first time allows prediction of time evolution for the asymmetric shape of the lamella during spreading. The developed model is demonstrated to be valid for a range of liquids and surface wettabilities as well as drop and surface velocities, making this study a comprehensive examination of the topic. We also found out how surface wettability can affect the recoil of the drop after spreading and explained the role of contact angle hysteresis and receding contact angle in delaying the recoil process.

  10. Student Drop-Out from German Higher Education Institutions

    Science.gov (United States)

    Heublein, Ulrich

    2014-01-01

    28% of students of any one year currently give up their studies in bachelor degree programmes at German higher education institutions. Drop-out is to be understood as the definite termination in the higher education system without obtaining an academic degree. The drop-out rate is thereby calculated with the help of statistical estimation…

  11. Drop Out Patterns in the East Los Angeles Community College

    Science.gov (United States)

    Waktola, Daniel K.

    2014-01-01

    This study attempted to analyze the drop out problem from spatial perspectives within the context of East Los Angeles Community College, California. Selected urban land-use types, which positively and negatively influence the propensity to drop out or persist-in colleges, were selected and captured during a global positioning system (GPS)-based…

  12. Square wave voltammetry at the dropping mercury electrode: Theory

    Science.gov (United States)

    Christie, J.H.; Turner, J.A.; Osteryoung, R.A.

    1977-01-01

    The theoretical aspects of square wave voltammetry at the dropping mercury electrode are presented. The technique involves scanning the entire potential range of interest on a single drop of a DME. Asymmetries in the waveform as well as variations in current measurement parameters are discussed. Indications are that previous uses of the waveform may not have utilized all its capabilities.

  13. Did Millikan observe fractional charges on oil drops?

    Science.gov (United States)

    Fairbank, William M.; Franklin, Allan

    1982-05-01

    We have reanalyzed Millikan's 1913 data on oil drops to examine the evidence for charge quantization and for fractional residual charge. We find strong evidence in favor of charge quantization and no convincing evidence for fractional residual charges on the oil drops.

  14. Millikan Oil-Drop Experiment in the Introductory Laboratory

    Science.gov (United States)

    Heald, Mark A.

    1974-01-01

    Discusses a simplified Millikan oil-drop experiment which emphasizes the enplanation of basic concepts in mechanics and electrostatics, the use of home-made apparatus, the request for an individual's observation of his own drop, and the application of statistical analysis in data interpretation. (CC)

  15. Size of the top jet drop produced by bubble bursting

    CERN Document Server

    Ghabache, Elisabeth

    2016-01-01

    As a bubble bursts at a liquid-air interface, a tiny liquid jet rises and can release the so-called \\textit{jet drops}. In this paper, the size of the top jet drop produced by a bubble bursting is investigated experimentally. We determine, and discuss, the first scaling law enabling the determination of the top jet drop size as a function of the corresponding mother bubble radius and the liquid properties (viscosity, surface tension, density), along with its regime of existence. Furthermore, in the aim of decoupling experimentally the effects of bubble collapse and jet dynamics on the drop detachment, we propose a new scaling providing the top drop size only as a function of the jet velocity and liquid parameters. In particular, this allows us to untangle the intricate roles of viscosity, gravity and surface tension in the \\textit{end-pinching} of the bubble bursting jet.

  16. Electrowetting-driven oscillating drops sandwiched between two substrates.

    Science.gov (United States)

    Mampallil, Dileep; Eral, H Burak; Staicu, Adrian; Mugele, Frieder; van den Ende, Dirk

    2013-11-01

    Drops sandwiched between two substrates are often found in lab-on-chip devices based on digital microfluidics. We excite azimuthal oscillations of such drops by periodically modulating the contact line via ac electrowetting. By tuning the frequency of the applied voltage, several shape modes can be selected one by one. The frequency of the oscillations is half the frequency of the contact angle modulation by electrowetting, indicating a parametric excitation. The drop response to sinusoidal driving deviates substantially from sinusoidal behavior in a "stop and go" fashion. Although our simple theoretical model describes the observed behavior qualitatively, the resonances appear at lower frequencies than expected. Moreover, the oscillations produce a nonperiodic fluid transport within the drop with a typical velocity of 1 mm/s. In digital microfluidic devices, where the typical drop size is less than 1 mm, this flow can result in very fast mixing on the spot.

  17. Electrowetting-driven oscillating drops sandwiched between two substrates

    Science.gov (United States)

    Mampallil, Dileep; Burak Eral, H.; Staicu, Adrian; Mugele, Frieder; van den Ende, Dirk

    2013-11-01

    Drops sandwiched between two substrates are often found in lab-on-chip devices based on digital microfluidics. We excite azimuthal oscillations of such drops by periodically modulating the contact line via ac electrowetting. By tuning the frequency of the applied voltage, several shape modes can be selected one by one. The frequency of the oscillations is half the frequency of the contact angle modulation by electrowetting, indicating a parametric excitation. The drop response to sinusoidal driving deviates substantially from sinusoidal behavior in a “stop and go” fashion. Although our simple theoretical model describes the observed behavior qualitatively, the resonances appear at lower frequencies than expected. Moreover, the oscillations produce a nonperiodic fluid transport within the drop with a typical velocity of 1 mm/s. In digital microfluidic devices, where the typical drop size is less than 1 mm, this flow can result in very fast mixing on the spot.

  18. Tunable transport of drops on a vibrating inclined fiber

    CERN Document Server

    Bick, Alison; Sauret, Alban; Stone, Howard A

    2015-01-01

    Transport of liquid drops in fibrous media occurs in various engineering systems such as fog harvesting or cleaning of textiles. The ability to tune or to control liquid movement can increase the system efficiency and enable new engineering applications. In this Letter, we experimentally investigate how partially wetting drops on a single fiber can be manipulated by vibrating the fiber. We show that a sliding motion along the fiber or a dripping of the drop can be triggered by standing waves. We identify the conditions on the drop volume, the fiber tilt angle and the amplitude and frequency of oscillations to observe these different behaviors. Finally, we experimentally illustrate that vibrations can be used to control the transport and the collection of water drops along a fiber using a combination of the sliding and dripping transitions.

  19. Emulsion Design. Analysis of Drop Deformations in Mixed Flows

    DEFF Research Database (Denmark)

    Egholm, Runi Ditlev

    2008-01-01

    the drop deformation and drop position a twin camera system is applied. In the subsequent data analysis the recorded movies are analysed using an automated image analysis procedure which leads to the deformation history of the drop and the drop trajectory in the device. However, due to the geometric...... of Brackbill, Kothe & Zemach (1992) are implemented. Due to the high interface curvatures associated with highly deformed drops it is necessary to use a high resolution mesh for our calculations. This leads to extensive computation times mainly due to factorization and back substitution of the discretized flow...... field equations. In order to reduce the computational cost a 2-level procedure is implemented where the fluid tracking algorithms are associated with a fine VOF mesh while the flow field variables are associated with a coarser FE mesh. In the 2-level algorithm the calculation of interfacial tension...

  20. Capillary-inertial colloidal catapults upon drop coalescence

    Science.gov (United States)

    Chavez, Roger L.; Liu, Fangjie; Feng, James J.; Chen, Chuan-Hua

    2016-07-01

    Surface energy released upon drop coalescence is known to power the self-propelled jumping of liquid droplets on superhydrophobic solid surfaces, and the jumping droplets can additionally carry colloidal payloads toward self-cleaning. Here, we show that drop coalescence on a spherical particle leads to self-propelled launching of the particle from virtually any solid surface. The main prerequisite is an intermediate wettability of the particle, such that the momentum from the capillary-inertial drop coalescence process can be transferred to the particle. By momentum conservation, the launching velocity of the particle-drop complex is proportional to the capillary-inertial velocity based on the drop radius and to the fraction of the liquid mass in the total mass. The capillary-inertial catapult is not only an alternative mechanism for removing colloidal contaminants, but also a useful model system for studying ballistospore launching.

  1. Deformation and stability of surfactant - or particle - laden drop

    Science.gov (United States)

    Brosseau, Quentin; Pradillo, Gerardo; Oberlander, Andrew; Vlahovska, Petia; SoftMech@Brown Team

    2015-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant or colloidal particles in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for leaky dielectric fluids: Polybutadiene (PB), Silicon oil (PDMS), and Castor oil (CO). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with existing theoretical models for the steady shape of surfactant covered droplet, and adjusted models taking into account the presence of colloidal spheres with range of electrical properties. We will discuss the complex interplay of shape deformation, surfactant elasticity, particle redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. We acknowledge grant NSF CBET 1437545 for funding.

  2. The migration of a compound drop due to thermocapillarity

    Science.gov (United States)

    Morton, David S.; Subramanian, R. Shankar; Balasubramaniam, R.

    1990-01-01

    The quasistatic thermocapillary motion of a compound drop in an unbounded fluid possessing a uniform temperature gradient is analyzed. For completeness, gravitational effects are included in the treatment. The general model is formulated, and the equations for the concentric case are solved using spherical polar coordinates, while the eccentric case is handled using bispherical coordinates. Results are given for the velocity of the drop as well as that of the droplet with respect to the drop, along with useful approximations. Illustrative results are presented graphically for the thermocapillary migration of a compound drop in the special case when the droplet is a gas bubble. In addition to the velocities of the drop and the bubble, representative isotherms and streamlines also are presented which display interesting qualitative features.

  3. [The antiallergic eye drops "polynadyme": development, experimental and clinical studies].

    Science.gov (United States)

    Maĭchuk, Iu F; Pozdniakov, V I; Pozdniakova, V V; Iakushina, L N

    2006-01-01

    The antiallergic eye drops "Polynadyme", proposed by the Helmgolz Moscow Research Institute of Eye Diseases, have been prepared by the "Sintez" PJSC (Kurgan). The drops exert a combination of antihistaminic and vasoconstrictive effects and, for better tolerability, contain a low-toxic preserving complex. The drops are polymer-based, which ensures a long action and an artificial tear effect. Preclinical rabbit trials have shown the safety of the "Polynadyme" eye drops, their specific activity in preventing an allergic reaction, and their antiallergic effect on a model of allergic conjunctivitis. Comparative clinical trials covering 150 patients have yielded excellent and good results in 93% of cases. In acute allergic reactions, hyperemia, itch, and burning diminished just 5 minutes after administration. The "Polynadyme" eye drops are effective in treating pollinous conjunctivitis, spring (vernal) keratoconjunctivitis, allergic reactions when wearing contact lenses, the dry eye syndrome, drug-induced and toxicoallergic conjunctivitis, and other ocular allergic reactions.

  4. As-placed contact angles for sessile drops.

    Science.gov (United States)

    Tadmor, Rafael; Yadav, Preeti S

    2008-01-01

    As-placed contact angle is the contact angle a drop adapts as a result of its placement on a surface. As expected, the as-placed contact angle, thetaAP, of a sessile drop on a horizontal surface decreases with the drop size due to the increase in hydrostatic pressure. We present a theoretical prediction for thetaAP which shows that it is a unique function of the advancing contact angle, thetaA, drop size, and material properties (surface tensions and densities). We test our prediction with published and new data. The theory agrees with the experiments. From the relation of the as-placed contact angle to drop size the thermodynamic equilibrium contact angle is also calculated.

  5. Factors predicting drop-out in community mental health centres.

    Science.gov (United States)

    Reneses, Blanca; Muñoz, Elena; López-Ibor, Juan José

    2009-10-01

    This study aimed to identify treatment, therapist and patient factors associated with dropping out of treatment in four outpatient mental health services. The experimental group comprised all 789 individuals who attended for the first time the mental health services during one year and dropped out of treatment in the same year or during the two following ones. The control group consisted of the same number of individuals, chosen at random from patients who, in the same year, attended for the first time the services and did not subsequently drop out of treatment. The overall drop-out rate was 33.2%. According to logistic regression analysis, the predictive factors of dropping out were: being treated in a particular centre, the involvement of more than one therapist in treatment, having no previous history of psychiatric disorders, being young and being male.

  6. Building micro-soccer-balls with evaporating colloidal fakir drops

    Science.gov (United States)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  7. A Comparative Study on Pro-drop and Non-pro-drop Language-Taking Chi-nese (Pro-drop Language) and English (Non-pro-drop Language) as the Example

    Institute of Scientific and Technical Information of China (English)

    LIU Li

    2014-01-01

    In Chomsky’s Government and Binding theory, null subject is a kind of Empty Category, namely“pro”. Whether subject can be empty constitutes an important parameter of universal grammar, called pro-drop Parameter which is often used to indicate the syntactic difference in human language. According to that, Chomsky divides human language into two categories:pro-drop language and non pro-drop language. The former one allows the loss of the subject, stood for by Italian, Spanish, Chi-nese, etc. The latter consists of English, French, etc. whose subjects cannot be omitted. Through a comparative study, taking Chi-nese and English as the examples, this paper aims to disclose the differences between pro-drop language and non pro-drop lan-guage.

  8. Symmetry-breaking in drop bouncing on curved surfaces

    CERN Document Server

    Liu, Yahua; Li, Jing; Yeomans, Julia M; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves which have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ~40% reduction in contact time.

  9. Drop oscillation and mass transfer in alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  10. Coalescence and noncoalescence of sessile drops: impact of surface forces.

    Science.gov (United States)

    Karpitschka, Stefan; Hanske, Christoph; Fery, Andreas; Riegler, Hans

    2014-06-17

    Due to capillarity, sessile droplets of identical liquids will instantaneously fuse when they come in contact at their three-phase lines. However, with drops of different, completely miscible liquids, instantaneous coalescence can be suppressed. Instead, the drops remain in a state of noncoalescence for some time, with the two drop bodies connected only by a thin neck. The reason for this noncoalescence is the surface tension difference, Δγ, between the liquids. If Δγ is sufficiently large, then it induces a sufficiently strong Marangoni flow, which keeps the main drop bodies temporarily separated. Studies with spreading drops have revealed that the boundary between instantaneous coalescence and noncoalescence is sharp (Karpitschka, S.; Riegler, H. J. Fluid. Mech. 2014, 743, R1). The boundary is a function of two parameters only: Δγ and Θ(a), the arithmetic mean of the contact angles in the moment of drop-drop contact. It appears plausible that surface forces (the disjoining pressure) could also influence the coalescence behavior. However, in experiments with spreading drops, surface forces always promote coalescence and their influence might be obscured. Therefore, we present here coalescence experiments with partially wetting liquids and compare the results to the spreading case. We adjust different equilibrium contact angles (i.e., different surface forces) with different substrate surface coatings. As for spreading drops, we observe a sharp boundary between regimes of coalescence and noncoalescence. The boundary follows the same power law relation for both partially and completely wetting cases. Therefore, we conclude that surface forces have no significant, explicit influence on the coalescence behavior of sessile drops from different miscible liquids.

  11. A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops

    Science.gov (United States)

    Janssen, P. J. A.; Anderson, P. D.

    2008-10-01

    A boundary-integral method is presented for drop deformation between two parallel walls for non-unit viscosity ratio systems. To account for the effect of the walls the Green's functions are modified and all terms for the double-layer potential are derived. The full three-dimensional implementation is validated, and the model is shown to be accurate and consistent. The method is applied to study drop deformation in shear flow. An excellent match with small-deformation theory is found at low capillary numbers, and our results match with other BIM simulations for pressure-driven flows. For shear flow with moderate capillary numbers, we see that the behavior of a low-viscosity drop is similar to that of drop with a viscosity ratio of unity. High-viscosity drops, on the other hand, are prevented from rotating in shear flow, which results in a larger deformation, but less overshoot in the drop axes is observed. In contrast with unconfined flow, high-viscosity drops can be broken in shear flow between parallel plates; for low-viscosity drops the critical capillary number is higher in confined situations.

  12. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xi [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China); Ma, Hongwen, E-mail: mahw@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Xiaoqian [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Zhouqing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China)

    2014-08-15

    Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are dropping MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.

  13. Theoretical estimation of the impact velocity during the PWR spent drop in water condition

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Joon; Park, Nam Gyu; Lee, Seong Ki; Kim, Jae Ik [KEPCO NF, Daejeon (Korea, Republic of)

    2016-06-15

    The spent fuel stored in the pool is vulnerable to external impacts, since the severe reactor conditions degrade the structural integrity of the fuel. Therefore an accident during shipping and handling should be considered. In an extreme case, the fuel assembly drop can be happened accidentally during handling the nuclear fuel in the spent fuel pool. The rod failure during such drop accident can be evaluated by calculating the impact force acting on the fuel assembly at the bottom of the spent fuel pool. The impact force can be evaluated with the impact velocity at the bottom of the spent fuel pool. Since fuel rods occupies most of weight and volume of a nuclear fuel assembly, the information of the rods are important to estimate the hydraulic resistance force. In this study, the hydraulic force acting on the 3×3 short rod bundle model during the drop accident is calculated, and the result is verified by comparing the numerical simulations. The methodology suggested by this study is expected to be useful for evaluating the integrity of the spent fuel.

  14. Spherical silicon solar cell with reflector cup fabricated by decompression dropping method

    Institute of Scientific and Technical Information of China (English)

    MINEMOTO Takashi; OKAMOTO Chikao; MUROZONO Mikio; TAKAKURA Hideyuki; HAMAKAWA Yoshihiro

    2006-01-01

    A spherical Si solar cell with a reflector cup was successfully fabricated by a dropping method at decompression state. In the dropping method, melted Si droplets were instilled at decompression state (0.5× 105Pa) to reduce crystal growth rate, dominating crystal quality such as dislocation density in crystal grains. Spherical Si solar cells were fabricated using the spherical Si crystals with a diameter of 1 mm and then mounted on a reflector cup. The current-voltage measurement of the solar cell shows an energy conversion efficiency of 11.1% (short-circuit current density ( Jsc ):24.7 mA·cm-2,open-circuit voltage: 601 mV, fill factor:74.6%). Minority carrier diffusion length determined by surface photovoltage method was 98 μm. This value can be enhanced by the improvement of crystal quality of spherical Si crystals. These results demonstrate that spherical Si crystals fabricated by the dropping method has a great potential for substrate material of high-efficiency and low-cost solar cells.

  15. Genomic characterization of Indian isolates of egg drop syndrome 1976 virus.

    Science.gov (United States)

    Raj, G D; Sivakumar, S; Sudharsan, S; Mohan, A C; Nachimuthu, K

    2001-02-01

    Five Indian isolates of egg drop syndrome (EDS) 1976 virus and the reference strain 127 were compared by restriction enzyme analysis of viral DNA, and the hexon gene amplified by polymerase chain reaction. Using these techniques, no differences were seen among these viruses. However, partial sequencing of the hexon gene revealed major differences (4.6%) in one of the isolates sequenced, EDS Kerala. Phylogenetic analysis also placed this isolate in a different lineage compared with the other isolates. The need for constant monitoring of the genetic nature of the field isolates of EDS viruses is emphasized.

  16. Effect of humidity on the filter pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  17. Thermal infrared mapping of the Leidenfrost drop evaporation

    Science.gov (United States)

    Wciślik, Sylwia

    2016-09-01

    The paper presents an author complementary study on the Leidenfrost drop evaporation. The research was conducted under ambient conditions and in the film boiling regime. Large water drops were placed on the copper substrate of the constant temperature Tw ranging from 297.6 to 404oC. The initial single drop diameter and its mass was D0 ≈ 1cm and m0 ≈ 1g respectively. One of the obtained results, for each Tw are the drop thermal images versus time. They were used to calculate an average temperature over the drop upper surface (Td). For an exemplary heating surface temperature of Tw = 297.6oC the average drop temperature is approximately 11oC lower than the saturation one and equals Td = 88,95oC. This value is estimated for the first 200s of evaporation and with time step size Δt = 0,5s. The drop upper surface temperature is highly variable and indicates strong convection inside it. This is due to the complex nature of heat and mass transfer. The maximum standard deviation from Td = 88,95oC is SD = 1.21.

  18. Internal flow measurements of drop impacting a solid surface

    Science.gov (United States)

    Kumar, S. Santosh; Karn, Ashish; Arndt, Roger E. A.; Hong, Jiarong

    2017-03-01

    Understanding the fundamental physical process involved in drop impacts is important for a variety of engineering and scientific applications. Despite exhaustive research efforts on the dynamics of drop morphology upon impact, very few studies investigate the fluid dynamics induced within a drop upon impact. This study employs planar particle image velocimetry (PIV) with fluorescent particles to quantify the internal flow field of a drop impact on a solid surface. The image distortion caused by the curved liquid-air interface at the drop boundary is corrected using a ray-tracing algorithm. PIV analysis using the corrected images has yielded interesting insights into the flow initiated within a drop upon impact. Depending on the pre-impact conditions, characterized by impact number, different vortex modes are observed in the recoil phase of the drop impact. Further, the strength of these vortices and the kinetic energy of the internal flow field have been quantified. Our studies show a consistent negative power law correlation between vortex strength, internal kinetic energy and the impact number.

  19. Collision between chemically driven self-propelled drops

    Science.gov (United States)

    Yabunaka, Shunsuke; Yoshinaga, Natsuhiko

    2016-11-01

    We consider analytically and numerically head-on collision between two self-propelled drops. Each drop is driven by chemical reactions that produce or consume the concentration isotropically. The isotropic distribution of the concentration field is destabilized by motion of the drop which is itself made by Marangoni flow from concentration-dependent surface tension. This symmetry-breaking self-propulsion is distinct from other self-propulsion mechanisms due to the intrinsic polarity such as squirmers and self-phoretic motion; there is a bifurcation point below which the drop is stationary and above which it moves spontaneously. When two drops moving along the same axis with opposite direction, the interactions arise both from hydrodynamics and concentration overlap. We found that two drops exhibit either elastic collision or fusion depending on the distance from the bifurcation point controlled, for instance, by viscosity. The elastic collision results from the balance between dissipation and energy injection by chemical reactions. We derive the reduced equations for the collision between two drops and analyze the contributions from the two interactions. The concentration-mediated interaction is found to dominate the hydrodynamic interaction.

  20. Modeling drop impacts on inclined flowing soap films

    Science.gov (United States)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Small drops impinging on soap films flowing at an angle primarily exhibit three fundamental regimes of post-impact dynamics: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow, and (c) it pierces through the film. During impact, the drop deforms along with a simultaneous, almost elastic deformation of the film transverse to the stream direction. Hence, the governing dynamics for this interaction present the rare opportunity to explore the in-tandem effects of elasticity and hydrodynamics alike. In this talk, we outline the analytical framework to study the drop impact dynamics. The model assumes a deformable drop and a deformable three-dimensional soap film and invokes a parametric study to qualify the three mentioned impact types. The physical parameters include the impact angle, drop impact speed, and the diameters of the drop prior to and during impact when it deforms and spreads out. Our model system offers a path towards optimization of interactions between a spray and a flowing liquid.

  1. Bed of polydisperse viscous spherical drops under thermocapillary effects

    Science.gov (United States)

    Sharanya, V.; Raja Sekhar, G. P.; Rohde, Christian

    2016-08-01

    Viscous flow past an ensemble of polydisperse spherical drops is investigated under thermocapillary effects. We assume that the collection of spherical drops behaves as a porous media and estimates the hydrodynamic interactions analytically via the so- called cell model that is defined around a specific representative particle. In this method, the hydrodynamic interactions are assumed to be accounted by suitable boundary conditions on a fictitious fluid envelope surrounding the representative particle. The force calculated on this representative particle will then be extended to a bed of spherical drops visualized as a Darcy porous bed. Thus, the "effective bed permeability" of such a porous bed will be computed as a function of various parameters and then will be compared with Carman-Kozeny relation. We use cell model approach to a packed bed of spherical drops of uniform size (monodisperse spherical drops) and then extend the work for a packed bed of polydisperse spherical drops, for a specific parameters. Our results show a good agreement with the Carman-Kozeny relation for the case of monodisperse spherical drops. The prediction of overall bed permeability using our present model agrees well with the Carman-Kozeny relation when the packing size distribution is narrow, whereas a small deviation can be noted when the size distribution becomes broader.

  2. Trapped liquid drop at the end of capillary.

    Science.gov (United States)

    Wang, Zhengjia; Yen, Hung-Yu; Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-10-01

    The liquid drop captured at the capillary end, which is observed in capillary valve and pendant drop technique, is investigated theoretically and experimentally. Because of contact line pinning of the lower meniscus, the lower contact angle is able to rise from the intrinsic contact angle (θ*) so that the external force acting on the drop can be balanced by the capillary force. In the absence of contact angle hysteresis (CAH), the upper contact angle remains at θ*. However, in the presence of CAH, the upper contact angle can descend to provide more capillary force. The coupling between the lower and upper contact angles determines the equilibrium shape of the captured drop. In a capillary valve, the pinned contact line can move across the edge as the pressure difference exceeds the valving pressure, which depends on the geometrical characteristic and wetting property of the valve opening. When CAH is considered, the valving pressure is elevated because the capillary force is enhanced by the receding contact angle. For a pendant drop under gravity, the maximal capillary force is achieved as the lower contact angle reaches 180° in the absence of CAH. However, in the presence of CAH, four regimes can be identified by three critical drop volumes. The lower contact angle can exceed 180°, and therefore the drop takes on the shape of a light bulb, which does not exist in the absence of CAH. The comparisons between Surface Evolver simulations and experiments are quite well.

  3. Application of Proteomics to the Study of Pollination Drops

    Directory of Open Access Journals (Sweden)

    Natalie Prior

    2013-04-01

    Full Text Available Premise of the study: Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. Methods: Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar, Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper, Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir, Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. Results: Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. Discussion: Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.

  4. Understanding the drop impact on moving hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Almohammadi, H; Amirfazli, A

    2017-03-08

    In this paper, a systematic study was performed to understand the drop impact on hydrophilic and hydrophobic surfaces that were moving in the horizontal direction. Drops (D0 = 2.5 mm) of liquids with three different viscosities were used. Wide ranges of drop normal velocity (0.5 to 3.4 m s(-1)) and surface velocity (0 to 17 m s(-1)) were studied. High speed imaging from the top and side was used to capture the impact phenomena. It was found that drop impact behavior on a moving surface significantly differs from that on a stationary surface at both the lamella extension stage (i.e. t ≤ tmax) and the retraction stage (t > tmax). Starting with the lamella extension stage, it was observed that the drop spreads asymmetrically over a moving surface. It was also found that the splashing behavior of the drop upon impact on a moving surface, unlike the understanding in the literature, is azimuthally different along the lamella contact line. In the case of the drop spreading over a moving surface, the surface movement stretches the expanded lamella in the direction of the surface motion. For hydrophilic surfaces, the stretched lamella pins to the surface and moves with the surface velocity; however, for hydrophobic surfaces, the lamella recoils during such stretching. A new model was developed to determine the splashing threshold of the drop impact on a moving surface. The model is capable of describing the azimuthally different behavior of the splashing which is a function of normal capillary and Weber numbers, surface velocity, and surface wettability. It was also found that the increase of the viscosity decreases the splashing threshold. Finally, comprehensive regime maps of the drop impact outcome on a moving surface were provided for both t ≤ tmax and t > tmax stages.

  5. Partial coalescence of sessile drops with different liquids

    Science.gov (United States)

    Borcia, Rodica; Bestehorn, Michael

    2014-11-01

    We examine numerically the interaction between two deformable drops consisting of two perfectly miscible liquids sitting on a solid substrate under a given contact angle. Driven by solutal Marangoni forces, several distinct coalescence regimes are achieved after the droplets collision. Phase diagrams for different control parameters are emphasized, which give predictions about drop behavior along the solid substrates, control of various interfacial effects, manipulations of tiny droplets in micro- and nano-fluidic devices without power supply, design of droplets or cleaning surfaces. This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under the project ``Dynamics of interfaces between drops with miscible liquids''.

  6. Exact Solution of a Drop-Push Model for Percolation

    Science.gov (United States)

    Majumdar, Satya N.; Dean, David S.

    2002-08-01

    Motivated by a computer science algorithm known as ``linear probing with hashing,'' we study a new type of percolation model whose basic features include a sequential ``dropping'' of particles on a substrate followed by their transport via a ``pushing'' mechanism. Our exact solution in one dimension shows that, unlike the ordinary random percolation model, the drop-push model has nontrivial spatial correlations generated by the dynamics itself. The critical exponents in the drop-push model are also different from those of the ordinary percolation. The relevance of our results to computer science is pointed out.

  7. Self-assembly and manipulation of particles on drop surfaces

    Science.gov (United States)

    Janjua, M.; Fischer, I. S.; Singh, P.

    2013-11-01

    We have recently shown that particles adsorbed on the surface of a drop can be self-assembled at the poles or the equator of the drop by applying a uniform electric field, and that this method can be used to separate on the surface of a drop particles experiencing positive dielectrophoresis from those experiencing negative dielectrophoresis. In this talk we show that the frequency of the electric field is an important parameter which can be used to modify the distribution of self-assembled monolayers.

  8. Contact angle hysteresis of a drop spreading over metal surfaces

    Directory of Open Access Journals (Sweden)

    Kuznetsov Geniy

    2016-01-01

    Full Text Available The paper presents experimental data on the contact angle hysteresis of the distilled water drop spreading over the surfaces of non-ferrous metals. The measurements of the advancing and receding contact angles were carried out by method of sitting drop on the horizontal surface during increasing and decreasing drop volume with a syringe pump. It was found that the contact line speed has a great influence on the hysteresis of the polished non-elastic substrates. The mechanism of spreading was described using the balance of the forces from the physical point of view.

  9. PERSAMAAN DROP SIZE DI DALAM KOLOM BERPENGADUK CAKRAM (RDC

    Directory of Open Access Journals (Sweden)

    Martunus Martunus

    2011-07-01

    Full Text Available Perpindahan massa dari satu fase cair ke fase cair lainnya di dalam kolom ekstraksi cair-cair ditentukan dengan luas perpindahan antara kedua fase. Luas perpindahan ini dapat dinyatakan dengan drop size yang merupakan faktor yang sangat penting dalam perancangan kolom ekstraksi cair-cair berpengaduk (Rotating Disc Contactor, RDC. Tiga model yang berhubungan dengan drop size dikembangkan untuk variabel operasi kolom yang didasarkan pada kecepatan putaran yaitu yaitu model untuk ekstraksi tanpa pengadukan atau pengadukan dengan putaran sangat rendah, model dengan kecepatan pengadukan medium, dan model pengadukan dengan putaran tinggi. Artikel ini berisi pembahasan persamaan drop size yang sudah dipublikasikan menyangkut ketiga kondisi operasi tersebut.

  10. Drop impact on soft surfaces: beyond the static contact angles.

    Science.gov (United States)

    Rioboo, Romain; Voué, Michel; Adão, Helena; Conti, Joséphine; Vaillant, Alexandre; Seveno, David; De Coninck, Joël

    2010-04-06

    The wettability of cross-linked poly(dimethylsiloxane) elastomer films and of octadecyltrichlorosilane self-assembled monolayers with water has been measured and compared using various methods. Contact angle hysteresis values were compared with values reported in the literature. A new method to characterize advancing, receding contact angles, and hysteresis using drop impact have been tested and compared with usual methods. It has been found that for the rigid surfaces the drop impact method is comparable with other methods but that for elastomer surfaces the hysteresis is function of the drop impact velocity which influences the extent of the deformation of the soft surface at the triple line.

  11. Drop interaction with solid boundaries in liquid/liquid systems

    Science.gov (United States)

    Bordoloi, Ankur Deep

    The present experimental work was motivated primarily by the CO 2 sequestration process. In a possible scenario during this process, gravity driven CO2 bubbles coalesce at an interface near the rock surface. In another scenario, trapped CO2 fluid may escape from a porous matrix overcoming interfacial force inside a pore. Based on these potential scenarios, the current research was divided into two broad experimental studies. In the first part, coalescence at a quiescent interface of two analogous fluids (silicone oil and water/glycerin mixture) was investigated for water/glycerin drops with Bond number (Bo) ~7 and Ohnesorge number ~ 0.01 using high-speed imaging and time-resolved tomographic PIV. Two perturbation cases with a solid particle wetted in oil and water/glycerin placed adjacent to the coalescing drop were considered. The results were compared with coalescence of a single drop and that of a drop neighBored by a second drop of equivalent size. Each perturbing object caused an initial tilting of the drop, influencing its rupture location, subsequent film retraction and eventual collapse behavior. Once tilted, drops typically ruptured near their lowest vertical position which was located either toward or away from the perturbing object depending on the case. The trends in local retraction speed of the ruptured film and the overall dynamics of the collapsing drops were discussed in detail. In the second part, the motion of gravity driven drops (B o~0.8-11) through a confining orifice d/Dwater/glycerin, surrounded by silicone oil, fall toward and encounter the orifice plate after reaching terminal speed. The effects of surface wettability were investigated for Both round-edged and sharp-edged orifices. For the round-edged case, a thin film of surrounding oil prevented the drop fluid from contacting the orifice surface, such that the flow outcomes of the drops were independent of surface wettability. For d/Dsurface tension time scale. For the sharp-edged case

  12. Theoretical Exploration of Barrel-Shaped Drops on Cactus Spines.

    Science.gov (United States)

    Luo, Cheng

    2015-11-03

    To survive an arid environment, desert cacti are capable of harvesting water from fog by transporting condensed water drops using their spines. Cactus spines have a conical shape. In this work, on the basis of the difference of liquid pressure, a new theoretical model has been developed for a barrel-shaped liquid drop on a conical wire. This model is further simplified to interpret the effects of contact angles, conical angle, surface microgrooves, and gravity on the drop movement along a cactus spine.

  13. Proposition of stair climb of a drop using chemical wettability gradient

    Science.gov (United States)

    Seerha, Prabh P. S.; Kumar, Parmod; Das, Arup K.; Mitra, Sushanta K.

    2017-07-01

    We propose a passive technique for a drop to climb along the staircase textured surface using chemical wettability gradients. The stair structure, droplet configuration, and contact angle gradient are modeled using Lagrangian smoothed particle hydrodynamics. The stair climb efficiency of the droplet is found to be a function of wettability gradient strength. Using analytical balance of actuation and resistive forces across droplets, physical reasons behind stair climbing are established and influencing parameters are identified. Evolution of the droplet shape along with the advancing and the receding contact angles is presented from where instantaneous actuation and hysteresis forces are calculated. Using history of Lagrangian particles, circulation at the foot of stairs and progressing development of the advancing drop front are monitored. Higher efficiency in stair climbing in the case of a bigger sized drop than smaller one is obtained from simulation results and realized from force balance. Difficulty in climbing steeper stairs is also demonstrated to delineate the effect of gravitational pull against the actuation force due to the wettability gradient.

  14. High-precision drop shape analysis on inclining flat surfaces: Introduction and comparison of this special method with commercial contact angle analysis

    Science.gov (United States)

    Schmitt, Michael; Heib, Florian

    2013-10-01

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in

  15. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.

    Science.gov (United States)

    Schmitt, Michael; Heib, Florian

    2013-10-07

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in

  16. Trends in drop out, drug free discharge and rates of re-presentation: a retrospective cohort study of drug treatment clients in the North West of England

    Directory of Open Access Journals (Sweden)

    McVeigh Jim

    2006-08-01

    Full Text Available Abstract Background Governments aim to increase treatment participation by problematic drug users. In the UK this has been achieved by fiscal investment, an expanded workforce, reduced waiting times and coercive measures (usually criminal justice (CJ led. No assessment of these measures on treatment outcomes has been made. Using established monitoring systems we assessed trends in 'dropped out' and 'discharged drug free' (DDF, since the launch of the national drug strategy, and rates of treatment re-presentation for these cohorts. Methods A longitudinal dataset of drug users (1997 to 2004/05, n = 26,415 was used to identify people who dropped out of, and were DDF from, services for years 1998 to 2001/02, and re-presentations of these people in years to 2004/05. Trends in drop out and DDF, baseline comparisons of those DDF and those who dropped out and outcome comparisons for those referred from the CJ system versus other routes of referral were examined using chi square. Logistic regression analyses identified variables predicting drop out versus DDF and subsequent re-presentation versus no re-presentation. Results The proportion of individuals dropping out has increased from 7.2% in 1998 to 9.6% in 2001/02 (P Conclusion Increasing numbers in treatment is associated with an increased proportion dropping out and an ever-smaller proportion DDF. Rates of drop out are significantly higher for those coerced into treatment via the CJ system. Rates of re-presentation are similar for those dropping out and those DDF. Encouragingly, those who need to re-engage with treatment, particularly those who drop out, are doing so more quickly. The impact of coercion on treatment outcomes and the appropriateness of aftercare provision require further consideration.

  17. [Effect of short term graded physical exercise on the level of glycemia in children and adolescents with type 1 diabetes mellitus: data of long term ECG monitoring and registration of motor activity].

    Science.gov (United States)

    Laptev, D N; Kruzhkova, M N; Riabykina, G V; Poliakov, S D; Korneeva, I T

    2012-01-01

    Study aim was to elucidate effect of graded physical exercise on glycemia level and interval QT duration in children and adolescents with type 1 diabetes mellitus. We carried out 25-hours parallel monitoring of glycemia, ECG and physical activity in 15 children and adolescents aged 9-17 years. During monitoring these patients performed an exercise test (PWC170). We found that there were two periods of significant and prolonged lowering of glycemia: in 120-420 min and 19-21 hours after exercise. Lowering of glycemia after physical exercise was associated with prolongation of QT interval. Registration of motor activity allowed to exclude changes of glycemia due to physical activity unrelated to graded exercise.

  18. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor.

    Science.gov (United States)

    Mura, Maria Chiara; De Felice, Marco; Morlino, Roberta; Fuselli, Sergio

    2010-01-01

    In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6), concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a) node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b) node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c) node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW) non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%); most important, they suggest a possible procedure to optimize network design.

  19. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor

    Directory of Open Access Journals (Sweden)

    Maria Chiara Mura

    2010-12-01

    Full Text Available In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6, concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%; most important, they suggest a possible procedure to optimize network design.

  20. Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface

    Science.gov (United States)

    Boreyko, Jonathan; Chen, Chuan-Hua

    2009-11-01

    When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

  1. Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface

    CERN Document Server

    Boreyko, Jonathan

    2009-01-01

    When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

  2. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.

    2009-03-12

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  3. Drag-shield drop tower residual acceleration optimisation

    Science.gov (United States)

    Figueroa, A.; Sorribes-Palmer, F.; Fernandez De Pierola, M.; Duran, J.

    2016-07-01

    Among the forces that appear in drop towers for microgravity experiments, aerodynamic drag plays a crucial role in the residual acceleration. Buoyancy can also be critical, especially at the first instances of the drop when the low speed of the experimental platform makes the aerodynamic drag small compared with buoyancy. In this paper the perturbation method is used to formulate an analytical model which has been validated experimentally. The experimental test was conduced by undergraduate students of aerospace engineering at the Institute of Microgravity ‘Ignacio Da Riva’ of the Technical University of Madrid (IDR/UPM) microgravity tower. The test helped students to understand the influence of the buoyancy on the residual acceleration of the experiment platform. The objective of the students was to understand the physical process during the drop, identify the main parameters involved in the residual acceleration and determine the most suitable configuration for the next drop tower proposed to be built at UPM.

  4. Deceleration Driven Wetting Transition Druing "Gentle" Drop Depostion

    CERN Document Server

    Kwon, Hyuk-Min; Varanasi, Kripa K; Patankar, Neelesh A

    2010-01-01

    We present high speed video of Cassie-Baxter to Wenzel drop transition during gentle deposition of droplets where the modest amount of energy is channeled via rapid deceleration into a high water hammer pressure.

  5. Influence of Volume Drop on Surface Free Energy of Glass

    National Research Council Canada - National Science Library

    Diana Rymuszka; Konrad Terpiłowski; Lucyna Hołysz

    2014-01-01

    The aim of the research was to determine how the drop size affects the contact angle values and determine its optimal size for further contact angle measurements and comparison of the contact angle...

  6. Sticking around: an up-close look at drop adhesion

    CERN Document Server

    Paxson, Adam T

    2013-01-01

    We present a fluid dynamics video showing the adhesion of a drop to a superhydrophobic surface. We use environmental scanning electron microscopy to observe depinning events at the microscale. As the drop moves along the surface, the advancing portion of the contact line simply lies down onto the upcoming roughness features, contributing negligibly to adhesion. After measuring the local receding contact angle of capillary bridges formed on a micropillar array, we find that these depinning events follow the Gibbs depinning criterion. We further extend this technique to two-scale hierarchical structures to reveal a self-similar depinning mechanism in which the adhesion of the entire drop depends only on the pinning at the very smallest level of roughness hierarchy. With this self-similar depinning mechanism we develop a model to predict the adhesion of drops to superhydrophobic surfaces that explains both the low adhesion on sparsely structured surfaces and the surprisingly high adhesion on surfaces whose featu...

  7. Queues with Dropping Functions and General Arrival Processes.

    Science.gov (United States)

    Chydzinski, Andrzej; Mrozowski, Pawel

    2016-01-01

    In a queueing system with the dropping function the arriving customer can be denied service (dropped) with the probability that is a function of the queue length at the time of arrival of this customer. The potential applicability of such mechanism is very wide due to the fact that by choosing the shape of this function one can easily manipulate several performance characteristics of the queueing system. In this paper we carry out analysis of the queueing system with the dropping function and a very general model of arrival process--the model which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting the actual shape of the interarrival time distribution and its moments. For such a system we obtain formulas for the distribution of the queue length and the overall customer loss ratio. The analytical results are accompanied with numerical examples computed for several dropping functions.

  8. Ready-made allogeneic ABO-specific serum eye drops

    DEFF Research Database (Denmark)

    Harritshøj, Lene Holm; Nielsen, Connie; Ullum, Henrik

    2014-01-01

    , registered and stored at -30°C in the blood bank. Upon request, frozen ABO-identical serum drops in lots of 14 bottles could be provided immediately. Safety and efficacy were evaluated in 34 patients with severe ocular surface disease refractory to conventional medical therapy. Patients were treated six...... serum treatment. CONCLUSION: Ready-made ABO-identical allogeneic serum eye drops were straightforwardly produced, quality-assured and registered as a safe standard blood product for the treatment of certain cases of severe dry eye disease. Therapeutic efficacy was comparable to previous reports......PURPOSE: To overcome problems and delays of the preparation of autologous serum eye drops, a production line of ABO-specific allogeneic serum eye drops from male blood donors was set up in a blood bank. Feasibility, clinical routine, safety and efficacy were evaluated in a cohort of patients...

  9. Oblique drop impact onto a deep liquid pool

    CERN Document Server

    Gielen, Marise V; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Lohse, Detlef; Snoeijer, Jacco H; Versluis, Michel; Gelderblom, Hanneke

    2016-01-01

    Oblique impact of drops on a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here, we study oblique impact onto a deep liquid pool, where we quantify the splashing threshold, maximal cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop independent of the Weber number, while cavity depth and its displacement with respect to the impact position depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  10. The effect of dropping impact on bruising pomegranate fruit

    Directory of Open Access Journals (Sweden)

    M Mohammad Shafie

    2016-04-01

    Full Text Available Introduction: The pomegranate journey from orchard to supermarket is very complex and pomegranates are subjected to the variety of static and dynamic loads that could result in this damage and bruise occurring. Bruise area and bruise volume are the most important parameters to evaluate fruit damage occurred in harvest and postharvest stages. The bruising is defined as damage to fruit flesh usually with no abrasion of the peel. The two different types of dynamic loading which can physically cause fruit bruising are impact and vibration. The impact and vibration loadings may occur during picking or sorting as the pomegranates are dropped into storage bins and during transportation. The focus of this work was on the impact loading as this appeared to be the most prevalent. In view of the limitations of conventional testing methods (ASTM D3332 Standard Test Methods for Mechanical Shock Fragility of Products, the method and procedure for determining dropping bruise boundary of fruit were also established by adapting free-fall dropping tests. Materials and Methods: After the ‘Malas-e-Saveh’ pomegranates had been selected, they were numbered, and the weight and dimension of each sample were measured and recorded. Firmness in cheek region of each fruit was also measured. Fruit firmness was determined by measuring the maximum force during perforating the sample to a depth of 10 mm at a velocity of 100 mm min-1 with an 8 mm diameter cylindrical penetrometer mounted onto a STM-5 Universal Testing Machine (SANTAM, Design CO. LTD., England. Free-fall dropping tests with a series of drop heights (6, 7, 10, 15, 30 and 60 cm were conducted on fresh ‘Malas-e-Saveh’ pomegranates. Three samples were used for each dropping height, and each sample was subjected to impact on two different positions. Before the test was started, it was necessary to control the sample's drop position. The cheek of sample was placed on the fruit holder. An aluminum plate mounted

  11. Universal evolution of a viscous-capillary spreading drop.

    Science.gov (United States)

    Thampi, Sumesh P; Pagonabarraga, Ignacio; Adhikari, Ronojoy; Govindarajan, Rama

    2016-07-13

    The rate of spreading or retraction of a drop on a flat substrate is determined through a balance of surface tension and hydrodynamic flow. While asymptotic regimes are known, no general rate equation has hitherto been available. Here, we revisit this classic problem, in a regime governed by capillary and viscous forces, by performing an exhaustive numerical study of drop evolution as a function of the contact angle with the substrate. Our study reveals a universal evolution of the drop radius parameterised only by the substrate wettability. Two limits of this evolution recover the familiar exponential and algebraic regimes. Our results show quantitative comparison with the evolution derived from lubrication theory, indicating that dissipation at the contact line is the key determinant in drop evolution. Our work, both numerical and theoretical, provides a foundation for studying the full temporal dynamics of droplet evolution under the influence of external fields and thermal fluctuations, which are of importance in nanofluidics.

  12. Streaming instability at the equator of an oblately deformed drop

    Science.gov (United States)

    Brosseau, Quentin; Vlahovska, Petia

    2016-11-01

    Electrohydrodynamic streaming and jet formation from the conical tips formed at the poles of a highly conducting drop in strong electric field is a well known phenomenon. Here we report a novel streaming-like instability occurring with drops less conducting than the suspending medium. In a uniform DC electric field, the drop deforms into a flattened oblate (pancake-like) shape with cusped rim around the equator. The rim emits concentric threads which subsequently break up into tiny droplets forming a Saturn-like rings of droplets around the mother drop. The rate of droplet production is much larger than the classical tip-streaming and suggest a potential new route for "electroemulsification".

  13. The role of drop velocity in statistical spray description

    Science.gov (United States)

    Groeneweg, J. F.; El-Wakil, M. M.; Myers, P. S.; Uyehara, O. A.

    1978-01-01

    The justification for describing a spray by treating drop velocity as a random variable on an equal statistical basis with drop size was studied experimentally. A double-exposure technique using fluorescent drop photography was used to make size and velocity measurements at selected locations in a steady ethanol spray formed by a swirl atomizer. The size-velocity data were categorized to construct bivariate spray density functions to describe the spray immediately after formation and during downstream propagation. It was found that a statistical treatment of drop velocity was supported by the data. Spray density function shapes and modal characteristics depended strongly on position and the amount of droplet-gas interaction that had occurred. Bimodal density functions were formed by environmental interaction during downstream propagation. Large differences were also found between spatial mass density and mass flux size distributions at the same location.

  14. Digital video microscopy in the Millikan oil-drop experiment

    Science.gov (United States)

    Silva, Kenneth J.; Mahendra, Jacquelyn C.

    2005-08-01

    We report on the ease and efficacy of using digital video microscopy techniques and computer software for analyzing data from the Millikan oil-drop experiment in an introductory physics laboratory course setting with applications for more advanced laboratories.

  15. Colon Cancer Rates, Deaths Drop in Americans Over 50

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_163856.html Colon Cancer Rates, Deaths Drop in Americans Over 50 Report ... be an estimated 95,500 new cases of colon cancer and 39,900 new cases of rectal cancer ...

  16. Rotavirus and the Vaccine (Drops) to Prevent It

    Science.gov (United States)

    ... Immunizations Rotavirus and the Vaccine (Drops) to Prevent It Language: English Español (Spanish) Format: Select one PDF [ ... eating and drinking while they are sick. Is it serious? Rotavirus can be very harmful. Diarrhea, vomiting, ...

  17. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    Science.gov (United States)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  18. Cavitation Bubble Dynamics inside Liquid Drops in Microgravity

    OpenAIRE

    Obreschkow, D.; Kobel, P.; Dorsaz, N.; De Bosset, A.; Nicollier, C.; Farhat, M.

    2006-01-01

    We studied spark-generated cavitation bubbles inside water drops produced in microgravity. High-speed visualizations disclosed unique effects of the spherical and nearly isolated liquid volume. In particular, (1) toroidally collapsing bubbles generate two liquid jets escaping from the drop, and the "splash jet" discloses a remarkable broadening. (2) Shockwaves induce a strong form of secondary cavitation due to the particular shockwave confinement. This feature offers a novel way to estimate ...

  19. DIME Students Discuss Final Drop Tower Experiment Design

    Science.gov (United States)

    2002-01-01

    Students discuss fine points of their final design for the Drop Tower experiment during the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  20. Fundamental Studies of Jumping-Drop Thermal Diodes

    Science.gov (United States)

    2016-02-29

    Reverse mode with liquid trapped by the colder superhydrophilic surface. ............... 2 Figure 2. Fabrication of the jumping-drop thermal diode...mode, Figure 1b), liquid water is trapped by it and no phase-change heat transfer takes place; heat mainly escapes through ineffective conduction...self- propelled jumping drops returning the working fluid from the colder superhydrophobic surface; (b) Reverse mode with liquid trapped by the colder

  1. Fiber Concrete under Temperature Drop Load with Stochastic FEM

    Institute of Scientific and Technical Information of China (English)

    QI Feng; ZHANG Wen-jin

    2008-01-01

    Plain concrete plate and fiber concrete plate subjected to temperature drop load were analyzed on stochastic finite element method (FEM). It is found that fibers can enhance concrete ability to resist temperature drop load for improving concrete's fracture energy and deferring the crack process. It is found for concrete not to improve apparently its tensile strength and fracture energy is recommended to be its appraisal parameter.

  2. Stokes flow near the contact line of an evaporating drop

    OpenAIRE

    Gelderblom, Hanneke; Bloemen, Oscar; Snoeijer, Jacco H.

    2011-01-01

    The evaporation of sessile drops in quiescent air is usually governed by vapour diffusion. For contact angles below $90^\\circ$, the evaporative flux from the droplet tends to diverge in the vicinity of the contact line. Therefore, the description of the flow inside an evaporating drop has remained a challenge. Here, we focus on the asymptotic behaviour near the pinned contact line, by analytically solving the Stokes equations in a wedge geometry of arbitrary contact angle. The flow field is d...

  3. Modeling evaporation of sessile drops with moving contact lines.

    Science.gov (United States)

    Murisic, N; Kondic, L

    2008-12-01

    We consider evaporation of pure liquid drops on a thermally conductive substrate. Two commonly used evaporative models are considered: one that concentrates on the liquid phase in determining the evaporative flux and the other one that centers on the gas-vapor phase. A single governing equation for the evolution of drop thickness, including both models, is developed. We show how the derived governing equation can be used to predict which evaporation model is appropriate for different considered experimental conditions.

  4. Blast Mitigation Seat Analysis: Drop Tower Data Review

    Science.gov (United States)

    2014-05-15

    particular seat with green or red, respectively, for the 5 th percentile female during 350 g tests . Lumbar compression is red or yellow (meaning at least...occurs, which is not common in drop tower testing unless a roof structure is installed over the seat. The 5 th percentile female was most sensitive...MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) TECHNICAL SESSION AUGUST 12-14, 2014 - NOVI, MICHIGAN BLAST MITIGATION SEAT ANALYSIS – DROP TOWER

  5. Drop Impact on Textile Material: Effect of Fabric Properties

    OpenAIRE

    2014-01-01

    This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on...

  6. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    OpenAIRE

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accep...

  7. Childhood Short Stature

    OpenAIRE

    Ray, J.

    2012-01-01

    Childhood short stature comprises Varity of endocrinal, systemic, Skeletal & genetic disorders of pediatrics and is not just confined for endocrinal disorder only. A systemic approach often reduces the need for test which is often expensive &unnecessary. Use growth chart & asses bone age during evaluation. Short & heavy child are generally due to Endocrine causes, Short & thin are due to systemic disease, Short with normal velocity are may be due to Constitutional delay in growth &puberty or ...

  8. Morphology of viscoplastic drop impact on viscoplastic surfaces.

    Science.gov (United States)

    Chen, Simeng; Bertola, Volfango

    2017-01-25

    The impact of viscoplastic drops onto viscoplastic substrates characterized by different magnitudes of the yield stress is investigated experimentally. The interaction between viscoplastic drops and surfaces has an important application in additive manufacturing, where a fresh layer of material is deposited on a partially cured or dried layer of the same material. So far, no systematic studies on this subject have been reported in literature. The impact morphology of different drop/substrate combinations, with yield stresses ranging from 1.13 Pa to 11.7 Pa, was studied by high speed imaging for impact Weber numbers between 15 and 85. Experimental data were compared with one of the existing models for Newtonian drop impact onto liquid surfaces. Results show the magnitude of the yield stress of drop/substrate strongly affects the final shape of the impacting drop, permanently deformed at the end of impact. The comparison between experimental data and model predictions suggests the crater evolution model is only valid when predicting the evolution of the crater at sufficiently high Weber numbers.

  9. Drop detachment and motion on fuel cell electrode materials.

    Science.gov (United States)

    Gauthier, Eric; Hellstern, Thomas; Kevrekidis, Ioannis G; Benziger, Jay

    2012-02-01

    Liquid water is pushed through flow channels of fuel cells, where one surface is a porous carbon electrode made up of carbon fibers. Water drops grow on the fibrous carbon surface in the gas flow channel. The drops adhere to the superficial fiber surfaces but exhibit little penetration into the voids between the fibers. The fibrous surfaces are hydrophobic, but there is a substantial threshold force necessary to initiate water drop motion. Once the water drops begin to move, however, the adhesive force decreases and drops move with minimal friction, similar to motion on superhydrophobic materials. We report here studies of water wetting and water drop motion on typical porous carbon materials (carbon paper and carbon cloth) employed in fuel cells. The static coefficient of friction on these textured surfaces is comparable to that for smooth Teflon. But the dynamic coefficient of friction is several orders of magnitude smaller on the textured surfaces than on smooth Teflon. Carbon cloth displays a much smaller static contact angle hysteresis than carbon paper due to its two-scale roughness. The dynamic contact angle hysteresis for carbon paper is greatly reduced compared to the static contact angle hysteresis. Enhanced dynamic hydrophobicity is suggested to result from the extent to which a dynamic contact line can track topological heterogeneities of the liquid/solid interface.

  10. Viscous Coalescence of Two Drops in a Saturated Vapor Phase

    Science.gov (United States)

    Baroudi, Lina; Nagel, Sidney R.; Morris, Jeffrey F.; Lee, Taehun

    2016-11-01

    When two liquid drops come into contact, a microscopic liquid bridge forms between them and rapidly expands until the two drops merge into a single bigger drop. Numerous studies have been devoted to the investigation of the coalescence singularity in the case where the drops coalesce in a medium of negligible vapor pressure such as vacuum or air. However, coalescence of liquid drops may also take place in a medium of relatively high vapor pressure (condensable vapor phase), where the effect of the surrounding vapor phase should not be neglected, such as the merging of drops in clouds. In this study, we carry out Lattice Boltzmann numerical simulations to investigate the dynamics of viscous coalescence in a saturated vapor phase. Attention is paid to the effect of the vapor phase on the formation and growth dynamics of the liquid bridge in the viscous regime. We observe that the onset of the coalescence occurs earlier and the expansion of the bridge initially proceeds faster when the coalescence takes place in a saturated vapor compared to the coalescence in a non-condensable gas. The initially faster evolution of the coalescence process in the saturated vapor is caused by the vapor transport through condensation during the early stages of the coalescence.

  11. Water Penetration through a Superhydrophobic Mesh During a Drop Impact.

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-06

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  12. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  13. Wetting of sessile water drop under an external electrical field

    Science.gov (United States)

    Vancauwenberghe, Valerie; di Marco, Paolo; Brutin, David; Amu Collaboration; Unipi Collaboration

    2013-11-01

    The enhancement of heat and mass transfer using a static electric field is an interesting process for industrial applications, due to its low energy consumption and potentially high level of evaporation rate enhancement. However, to date, this phenomenon is still not understood in the context of the evaporation of sessile drops. We previously synthesized the state of the art concerning the effect of an electric field on sessile drops with a focus on the change of contact angle and shape and the influence of the evaporation rate [1]. We present here the preliminary results of an new experiment set-up. The novelty of the set-up is the drop injection from the bottom that allows to generate safety the droplet under the electrostatic field. The evaporation at room temperature of water drops having three different volumes has been investigated under an electric field up to 10.5 kV/cm. The time evolutions of the contact angles, volumes and diameters have been analysed. As reported in the literature, the drop elongate along the direction of the electric field. Despite the hysteresis effect of the contact angle, the receding contact angle increases with the strength of the electric field. This is clearly observable for the small drops for which the gravity effect can be neglected.

  14. A measurement of a control rod drop using an LVDT

    Science.gov (United States)

    Choi, Myoung-Hwan; Kim, Ji-Ho; Huh, Hyung; Yu, Je-Yong; Sohn, Dong-Seong

    2010-03-01

    A control element drive mechanism is a reactor regulating system, which is to insert, withdraw, or maintain a control rod containing neutron-absorbing material within a reactor core to control the reactivity of the reactor. The ball-screw type CEDM for the small and medium research reactor has a spring-hydraulic damper to reduce the impact force due to the free drop of the CEDM. This paper describes the experimental results to obtain the drop characteristics of the CEDM. The tests are performed by using a full-scale structure except the control element assembly, and a drop time and displacement after an impact are measured by using an LVDT. The influences of the rod weight and the drop height on the drop behavior are also estimated on the basis of test results. In case of the longest stroke, the drop time of the control rod is within 4.5 seconds to meet the design requirement. The behavior after the impact shows a general damping motion of the spring-damper system, and the maximum displacement is measured as 15.6 mm.

  15. Vortex-ring-induced large bubble entrainment during drop impact

    KAUST Repository

    Thoraval, Marie-Jean

    2016-03-29

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  16. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces

    Science.gov (United States)

    Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

    2012-10-01

    Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

  17. Strength of self-pinning in coffee drops

    Science.gov (United States)

    Latka, Andrzej; Kawczinski, Kimberly; Nagel, Sidney

    The equilibrium contact angle θe of a liquid drop placed on a solid surface is uniquely determined by a balance of surface tension forces according to Young's Equation, yet is rarely observed in real systems. Due to contact angle hysteresis, liquids can make contact with a surface at any angle between the receding and advancing contact angle: θR coffee stain. For coffee θR = 0 , thus as the drop evaporates the contact line remains pinned at its initial location. This results in the majority of the coffee being deposited in a characteristic ring at the drop's original boundary. We investigate how solid particles suspended in a liquid could so strongly influence contact angle hysteresis, by measuring the receding contact angle of a drop at various times during the evaporation process. For low solute concentrations, θR slowly decreases as the drop evaporates, but remains positive. Surprisingly, we find that increasing the solute concentration results in θR = 0 and a fully pinned contact line almost immediately after the drop is deposited.

  18. New directions for gravitational wave physics via "Millikan oil drops"

    CERN Document Server

    Chiao, Raymond Y

    2009-01-01

    "Millikan oil drops" are drops of superfluid helium coated with electrons, and levitated in a strong, inhomogeneous magnetic field. When the temperature of the system becomes very low compared to the cyclotron gap energy, the system remains in its quantum ground state. Two such levitated charged drops can have their charge-to-mass ratio critically adjusted so that the forces of gravity and electricity between the drops are in balance. Then it is predicted that the amount of scattered electromagnetic and gravitational radiation from the drops are equalized, along with these two kinds of forces. The cross sections for the scattering of the two kinds of radiation can become large, hard-sphere cross-sections at the first Mie resonance, due to the hard-wall boundary conditions on the surfaces of the spheres for both kinds of radiations. An efficient quantum transduction process between electromagnetic and gravitational radiation by such a pair of drops is predicted at microwave frequencies, and a Hertz-like experi...

  19. Drop formation of black liquor spraying; Mustalipeaen pisaroituminen

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Kankkunen, A.; Nieminen, K.; Laine, J.; Miikkulainen, P. [Helsinki Univ. of Technology, Otaniemi (Finland): Lab. of Energy Technology and Environmental Protection

    1997-10-01

    Black liquor is a spent liquor of the pulp and paper industry. It is burned in kraft recovery boilers for chemical and energy recovery. The high dry solids content and viscosity of black liquor require a high spraying temperature. This affects the performance of the boiler. Kraft recovery boiler deposit formation, emissions and chemical recovery are strongly affected by the drop size and the velocity of the black liquor spray formed by a splashplate nozzle. The sheet breakup mechanism is studied with a system based on a video and image-analysis. The drop size of mill-scale nozzles was measured also with an image-analysis-system. Measurements were carried out in a spray test chamber. The sheet breakup mechanism and drop size tests were carried out both below and over the boiling point of black liquor. Special attention was paid to the effect of flashing on drop formation. Temperature increase normally decreases drop size. In the temperature where the wavy-sheet disintegration changes to perforated-sheet disintegration the drop size increases. Spray velocity rises when the temperature is increased above the boiling point. (orig.)

  20. [A correct understanding of preservatives in eye drops].

    Science.gov (United States)

    Liu, Zuguo; Huang, Caihong

    2015-09-01

    Eye drops are the most commonly used preparations in ophthalmology. Preservatives are usually added in order to protect eye drops against pathogenic organisms and increase the solubility of the drugs in multi-dose containers. Ophthalmologists have paid a lot of attention to the preservatives in eye drops because they remain one of the main reasons for ocular surface damage, and even may lead to serious visual impairment in patients with inappropriate use of eye drops. However, it should be noted that the dangers of preservatives become overstated nowadays. It is necessary to completely evaluate the effects of preservatives in ophthalmic preparations, so that ophthalmologists can guide patients to correctly select eye drops containing preservatives and avoid dangerous side effects, according to their eye disease situation, state of tear function and ocular surface changes, cultural background and financial income, cost and benefit and convenience of the use of drugs, and other factors. The direction of the future development in this field is to establish the clinical guideline for use of eye drops containing preservatives, carry out continuing education courses on preservatives and develop ideal preservatives.