WorldWideScience

Sample records for monitoring water resources

  1. Environmental monitoring of Norwegian water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tollan, A.

    1980-01-01

    A national environmental monitoring program was started in Norway in 1980, under the auspices of the Norwegian State Pollution Control Authority. Within this program The Norwegian Institute for Water Research is responsible for: (1) Chemical and biological monitoring of selected rivers and fjord areas. Typically, the monitoring of a particular river or fjord starts with a basic investigation of 1-3 years, comprising physiography, human impacts on the water quality and a broad description of the present water quality status. This stage is followed by a permanent monitoring of carefully selected variables at a limited number of stations. Special water quality problems may be studied separately. (2) Participation in a coordinated monitoring of long-range transported atmospheric pollution, and its effects on water chemistry, aquatic life and soil properties. (3) Methodological development, standardization of analytical procedures and evaluation techniques for water quality assessment, and assistance as a national reference laboratory for water analyses. (4) Depository for environmental data collected within the national monitoring program.

  2. Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

    NARCIS (Netherlands)

    Altenburger, R.; Ait-Aissa, S.; Antczak, P.; Backhaus, T.; Barcelo, D.; Seiler, T.; Brion, F.; Focks, A.

    2015-01-01

    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a

  3. A versatile and interoperable network sensors for water resources monitoring

    Science.gov (United States)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  4. Land Cover Monitoring for Water Resources Management in Angola

    Science.gov (United States)

    Miguel, Irina; Navarro, Ana; Rolim, Joao; Catalao, Joao; Silva, Joel; Painho, Marco; Vekerdy, Zoltan

    2016-08-01

    The aim of this paper is to assess the impact of improved temporal resolution and multi-source satellite data (SAR and optical) on land cover mapping and monitoring for efficient water resources management. For that purpose, we developed an integrated approach based on image classification and on NDVI and SAR backscattering (VV and VH) time series for land cover mapping and crop's irrigation requirements computation. We analysed 28 SPOT-5 Take-5 images with high temporal revisiting time (5 days), 9 Sentinel-1 dual polarization GRD images and in-situ data acquired during the crop growing season. Results show that the combination of images from different sources provides the best information to map agricultural areas. The increase of the images temporal resolution allows the improvement of the estimation of the crop parameters, and then, to calculate of the crop's irrigation requirements. However, this aspect was not fully exploited due to the lack of EO data for the complete growing season.

  5. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  6. Long Term Resource Monitoring Program Water Quality Component Review

    Science.gov (United States)

    2006-06-01

    rapid, and plankton ) that are ignored under the existing cost- effective manner. design of the monitoring program, but which A major purpose of the... mussels on dissolved oxygen and planktonic specifically focus on local areas where projects chlorophyll levels at selected locations, but are...term goals of the Program are to understand the system, determine resource trends and effects , develop management alternatives, manage information, and

  7. A tentative discussion on the monitoring of water resources in China

    Science.gov (United States)

    Yang, Jianqing; Dai, Ning; Wu, Mengying; Wang, Guangsheng

    2016-10-01

    With the rapid economy development and social civilization progress, the Chinese Government also is improving ecological environmental conditions. More efforts have been made to solve water problems through the implementation of stringent water resources management, as a key government policy on water. Thus, monitoring of water resources has been strengthened, being a main component of the hydrological work in recent years. Compared with routine hydrological monitoring, water resources monitoring pays more attention to the quantity and quality variations of regional waters, to reflect the status of water in river basins and administrative regions. In this paper, the overall layout of the hydrometric network in China is presented, monitoring efforts of the natural water cycle and water consumptions are analyzed, methodologies of water resources monitoring, which are commonly applied in the country, are summed up. Taking the hydrometric network planning on interprovincial boundary waterbodies as example, a summary of the planning at interprovincial boundary river sections is presented. The planning can meet the need of water resources management of administrative divisions. It can also improve the overall water resources monitoring for the country.

  8. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    Science.gov (United States)

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More

  9. Citizen science for water resources management: toward polycentric monitoring and governance?

    Science.gov (United States)

    Buytaert, Wouter; Dewulf, Art; De Bièvre, Bert; Clark, Julian; Hannah, David

    2016-04-01

    Novel and more affordable technologies are allowing new actors to engage increasingly in the monitoring of hydrological systems and the assessment of water resources. This trend may shift data collection from a small number of mostly formal institutions (e.g., statutory monitoring authorities, water companies) toward a much more dynamic, decentralized, and diverse network of data collectors (including citizens and other non-specialists). Such a move towards a more diverse and polycentric type of monitoring may have important consequences for the generation of knowledge about water resources and the way that this knowledge is used to govern these resources. An increasingly polycentric approach to monitoring and data collection will change inevitably the relation between monitoring and decision-making for water resources. On a technical level, it may lead to improve availability of, and access to, data. The opportunity for actors to design and implement monitoring may also lead to data collection strategies that are tailored better to locally specific management questions. However, in a policy context the evolution may also shift balances of knowledge and power. For example, it will be easier to collect data and generate evidence to support specific agendas, or for non-specialists to challenge existing agreements, laws, and statutory authorities. Analysing a case study in the Peruvian Andes, we identify strong links with polycentric models of river basin management and governance. Polycentric models recognize the existence of multiple centres of decision-making within a catchment and provide a potential alternative to the top-down centralizing tendencies of integrated water resources management. Although polycentric systems are often associated with data scarcity, we argue that citizen science provides a framework for data collection in such systems and that it provides opportunities for knowledge generation, institutional capacity building and policy support, in

  10. Use of landsat thermal imagery in monitoring evapotranspiration and managing water resources

    Science.gov (United States)

    Freshwater resources are becoming increasingly limited in many parts of the world, and decision makers are demanding new tools for monitoring water availability and rates of consumption. Remotely sensed thermal-infrared imagery collected by Landsat provides estimates of land-surface temperature tha...

  11. Near Real-Time Monitoring of Global Evapotranspiration and its Application to Water Resource Management

    Science.gov (United States)

    Halverson, G. H.; Fisher, J.; Jewell, L. A.; Moore, G.; Verma, M.; McDonald, T.; Kim, S.; Muniz, A.

    2016-12-01

    Water scarcity and its impact on agriculture is a pressing world concern. At the heart of this crisis is the balance of water exchange between the land and the atmosphere. The ability to monitor evapotranspiration provides a solution by enabling sustainable irrigation practices. The Priestley-Taylor Jet Propulsion Laboratory model of evapotranspiration has been implemented to meet this need as a daily MODIS product with 1 to 5 km resolution. An automated data pipeline for this model implementation provides daily data with global coverage and near real-time latency using the Geospatial Data Abstraction Library. An interactive map providing on-demand statistical analysis enables water resource managers to monitor rates of water loss. To demonstrate the application of remotely-sensed evapotranspiration to water resource management, a partnership has been arranged with the New Mexico Office of the State Engineer (NMOSE). The online water research management tool was developed to meet the specifications of NMOSE using the Leaflet, GeoServer, and Django frameworks. NMOSE will utilize this tool to monitor drought and fire risk and manage irrigation. Through this test-case, it is hoped that real-time, user-friendly remote sensing tools will be adopted globally to make resource management decisions informed by the NASA Earth Observation System.

  12. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection

    Science.gov (United States)

    Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M

    2016-01-01

    Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.

  13. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Science.gov (United States)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity

  14. Citizen Science: Participatory Monitoring of Water Resources Management in Mustang District, Nepal

    Science.gov (United States)

    Regmi, S.; Bhusal, J.; Gurung, P.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2016-12-01

    Abstract The Mustang region of the Himalayas has unique geographical and climatic features. This region is characterized by a cold-arid climate with total annual precipitation of less than 300mm. Agriculture and livestock grazing lands are the major ecosystem services, which support directly the livelihoods of local populations yet, are strongly determined by low water availability. As a result, optimizing water resources management is paramount to support local development, but this is severely complicated by the lack of information about water availability. This problem is further aggravated by increasing pressure on the social, physical and climatic environments. In order to support the management of scarce water in irrigation and domestic uses, stream flow and precipitation monitoring networks were established using a participatory approach under the principle of citizen science. Data collection, and the following interpretation and application of the co-generated knowledge relies on local users, whereas the establishment of the system, knowledge co-generation, and development of application tools particularly is part of a collaboration of members of the general public with professional scientists. We show how the resulting data enable local users to quantify the water balance in the area and reduce the uncertainty associated to data-scarcity, which leads to the generation of useable information about water availability for irrigation, livestock grazing, and domestic demand. We contrast the current scenario of water use, under different conditions of natural variability and environmental change, with an optimized water management strategy generated and agreed with local users. This approach contributes to an optimal use of water, to an improvement in ecosystem services supporting to livelihood development and economic progress of local populations. Key words: ecosystem services, climate change, water balance, knowledge generation, irrigation

  15. Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination

    Science.gov (United States)

    Hamidullah, S.; Tariq, S.; Shah, M. T.; Bishop, M. P.; Kamp, U.; Olsenholler, J.

    2002-05-01

    Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination Terrorism has temporarily constrained the dynamism of the world it was enjoying before September 11, 2001, but also has opened avenues for people of all ethnicities, creeds, and professions to join hands in combating it. Scientific efforts to combat terrorism are likely to lead to better use of existing scientific knowledge as well as to discoveries that will increase world organization, interconnectivity, and peace promotion. Afghanistan and surrounding regions are major focal points for current anti-terrorist activities of the USA and its allies, including Pakistan. The United States, Pakistan, and Afghanistan have shared many similar political objectives, as well as differences, in cold war and post-cold-war eras, reflected by variable provisions of material aid. It is well recognized that understanding Afghanistan requires comprehension of the Pakistan situation as well, especially for common resources. Water is paramount because it is absolutely vital, but can be contaminated by internal or cross-border terrorism. The Kabul and Indus rivers originate in the Hindu Kush - Himalaya ranges. The Kabul River flows from Afghanistan into Pakistan, and after irrigating Peshawar basin, joins the Indus. The Indus, after its origin in Tibet and flow through the Indian Himalaya, enters Pakistan and flows south as the irrigation lifeblood of the country. Any terroristic addition of radioactive nuclides or contaminants to either river could dramatically impact the dependent riverine ecologies. Monitoring cells thus need to be established at locations in Afghanistan and Pakistan to assess base-line river variances for possible future contamination by terrorists. This paper presents a general view and the physical and chemical parameters of parts of the two rivers, and of the surrounding underground water in Peshawar Basin, including pH, conductivity, total

  16. Malaysia's Experience in the Monitoring of Investment and Results of Water Resources Management

    Science.gov (United States)

    Zakaria, Salmah Binti; Lee, Jin

    2010-05-01

    The current status of IWRM implementation in Malaysia, overview of development planning process and financial allocations together with monitoring of IWRM in Malaysia are first presented. This is followed by a case study review of Malaysia's 9th 5-year Development Plan (2005-2010) so as to provide a deeper understanding and appreciation of the current approach adopted by the Malaysian government in the formulation of development policies, project planning, budget allocation and o monitoring of projects. Arising from the review it was highlighted that the water-related, sectoral developmental objectives are found in all the 5 developmental thrusts in the 9th Malaysia Plan. This is because water is an essential natural resource and is also an economic good. Thus, it was concluded that in order for the monitoring of investments in IWRM and results to be effective and useful to support policy formulation to achieve the goal of IWRM there is a need for a collation of all information reported under the different, water-related, sectoral developmental objectives in the 9th Malaysia Plan to be organised within an IWRM framework. It was also concluded that a major IWRM challenge for Malaysia is how to make the transition from the current, narrow, sector-specific, financial and budgeting paradigm of the sectorial agencies to the “total cost” paradigm that involves taking into consideration and integrating the costs in other sectors affected by any projects proposed within a sector. The current, sectorial-focus approach, adopted in the 9th Malaysia Plan, logically measures the effectiveness of sectorial agencies by their ability to achieve their immediate sectorial goals and targets, most often with emphasis on infrastructure projects since the impacts of such projects are usually immediate and visible. However, the use of such approach alone, without taking into account the costs that are borne by other interfacing sectors, and also within the sector over the long term

  17. A review of methods for monitoring streamflow for sustainable water resource management

    Science.gov (United States)

    Dobriyal, Pariva; Badola, Ruchi; Tuboi, Chongpi; Hussain, Syed Ainul

    2016-10-01

    Monitoring of streamflow may help to determine the optimum levels of its use for sustainable water management in the face of climate change. We reviewed available methods for monitoring streamflow on the basis of six criteria viz. their applicability across different terrains and size of the streams, operational ease, time effectiveness, accuracy, environmental impact that they may cause and cost involve in it. On the basis of the strengths and weaknesses of each of the methods reviewed, we conclude that the timed volume method is apt for hilly terrain having smaller streams due to its operational ease and accuracy of results. Although comparatively expensive, the weir and flume methods are suitable for long term studies of small hill streams, since once the structure is put in place, it yields accurate results. In flat terrain, the float method is best suited for smaller streams for its operational ease and cost effectiveness, whereas, for larger streams, the particle image velocimetry may be used for its accuracy. Our review suggests that the selection of a method for monitoring streamflow may be based on volume of the stream, accuracy of the method, accessibility of the terrain and financial and physical resources available.

  18. Boosting Scientific Exploitation of Sentinel Data: The Earth Observation Data Centre for Water Resources Monitoring

    Science.gov (United States)

    Wagner, Wolfgang; Fröhlich, Johannes; Stowasser, Rainer; Wotawa, Gerhard; Hoffmann, Christian; Federspiel, Christian; Nortarnicola, Claudia; Zebisch, Marc; Boresch, Alexander

    2014-05-01

    an increasing trend towards more specialisation and cooperation. Also this strategy has already led to remarkable advances in the provision of high-quality scientific EO data sets. Nonetheless, many of these collaborative developments stand on shaky grounds given that the scientific and technical know-how and the data processing capabilities remain largely fragmented. This is because the cooperation between different EO teams is typically project-based and can end abruptly after the end of a project. In other words, few EO teams cooperate on a more strategic level that involves e.g. the sharing of software code or the joint use of common IT resources. In recognition of the problems discussed above, and with a view on the high potential of the upcoming Sentinel satellites for monitoring of global water resources (Wagner et al. 2011, Hornáček et al. 2012), we are proposing the foundation of an Earth Observation Data Centre for Water Resources Monitoring (EODC-Water). The EODC-Water will be a collaborative undertaking of research organisations, public agencies and private industry with the goal to foster the use of EO data for monitoring of global water resources. It will do so by proving a collaborative computer cloud that connects several data centres throughout Europe, thereby enabling the archiving, distributing, and processing of large EO data sets. The basic idea is to move the processing to the data instead of moving the data to where the software is. This sounds simple, but its realisation will overhaul the way of how EO data processing and distribution are organised. Another important element of EODC-Water will be its partner organisations which have agreed to participate in a collaborative software development process for establishing end-to-end EO data processing chains. EODC-Water will boost the scientific exploitation of EO data by allowing its scientific users to focus their efforts on scientific problems rather than having to deal with standard

  19. Kansas environmental and resource study: A Great Plains model. Monitoring fresh water resources. [water quality of reservoirs

    Science.gov (United States)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1974-01-01

    The author has identified the following significant results. Processing and analysis of CCT's for numerous ground truth supported passes over Kansas reservoirs has demonstrated that sun angle and atmospheric conditions are strong influences on water reflectance levels as detected by ERTS-1 and can suppress the contributions of true water quality factors. Band ratios, on the other hand, exhibit very little dependence on sun angle and sky conditions and thus are more directly related to water quality. Band ratio levels can be used to reliably determine suspended load. Other water quality indicators appear to have little or no affect on reflectance levels.

  20. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  1. Water resource monitoring in semi-arid environment through the synergic use of SAR data and hydrological models

    Science.gov (United States)

    Amitrano, Donato; Di Martino, Gerardo; Iodice, Antonio; Mitidieri, Francesco; Papa, Maria Nicolina; Riccio, Daniele; Ruello, Giuseppe

    2016-10-01

    In semi-arid regions, small reservoirs are widely employed for facing seasonal in water availability due to the alternation of a short rainy season and of a very long dry season. Therefore, their monitoring is fundamental for local rural communities wellness. In this paper, we present a novel framework for water resources management exploiting the synergy of synthetic aperture radar (SAR) data and hydrological models. The pilot project was implemented in Burkina Faso, showing good potentialities for cheap and continuous monitoring of the environment through the exploitation of a multi-disciplinary framework.

  2. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    Science.gov (United States)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land

  3. Twelve Year of Water Resource Monitoring over the Yangtze Middle Reaches Exploiting Dragon Time Series and Field Measurements

    Science.gov (United States)

    Huber, Claire; Li, Jiren; Daillet, Sylviane; Chen, Xiaoling; Lai, Xijun; Cretaux, Jean Francois; Zhang, Wei; Uribe, Carlos; Stuber, Mathias; Huang, Shifeng; Averty, Stephane; Burnham, James; Yesou, Herve

    2013-01-01

    Within the framework of the DRAGON program, a relative long term surveillance, 12 years, of the Poyang and Dongting lakes, considered as key elements of the Yangtze watershed in terms of water resource, flood redaction and for biodiversity maintain has been realized. This was done combing altimetry, in situ measurements, SAR and optical MR and HR time series with a high revisiting frequency of 10 days. A first major output corresponds, particularly within the context of lost of Envisat and Sentinels’ data availability expected in 2014,corresponds to the potential’sanalysis of a large range of MR and HR optical and SAR data for water bodies monitoring in term of quality, potential and accuracy. Over the years, changes in the type of data used are very indicative of a share of the resource available, and also of technological improvement over the years. It can be noticed since 2008, that, the part of HR optical data, Beijing1, DEIMOS, HJ1 A-B has increased significantly. In regards to the two years gap in term of data resource before the availability of the first Sentinel data, some recommendations can be given to insure the monitoring of large water bodies. Thematically specking, major outputs is the characterization of the important inter annual, and intra annual variations in term of water height and water extent of both lakes, variations that are linked with rainfall variations at sub basins and Yangtze basin scales. This 12 years period is marked by general non linear tendencies of water resources decreasing even if two major flood events occurred in 2002 and 2010. Drought tendency and drought intensity has been precised. During winter 2011-2012, EO data analysis allowed given the real size of the water surface extent as 720 km2 when Medias were speaking about 200 km2; the driest winter for the latest decade being the 2003-2004 as shown by the time series comparison. These analysis also highlight the very fast change from extreme stage to another as in June

  4. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  5. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  6. Monitoring Changes in Water Resources Systems Using High Resolution Satellite Observations: Application to Lake Urmia

    Science.gov (United States)

    Norouzi, H.; AghaKouchak, A.; Madani, K.; Mirchi, A.; Farahmand, A.; Conway, C.

    2013-12-01

    Lake Urmia with its unique ecosystem in northwestern Iran is the second largest saltwater lake in the world. It is home of more than 300 species of birds, reptiles, and mammals with high salinity level of more than 300 g/l. In recent years, a significant water retreat has occurred in this lake. In this study, we tried to monitor the desiccation of the lake over more than four decades using remote sensing observations. Multi-spectral high-resolution LandSat images of the Lake Urmia region from 1972 to 2012 were acquired to derive the lake area. The composite maps of the lake were created, and a Bayesian Maximum Likelihood classification technique was used to classify land and water in the composite maps. The time series of the lake area reveals that it has shrunk by more than 40% in the past ten years. Moreover, water budget related components such as precipitation, soil moisture, and drought indices from remote sensing of the lake basin were utilized to investigate if droughts or climate change are the primary driving forces behind this phenomenon. These analyses show that the retreat of the lake is not related to droughts or global climate change as it has survived several drought events before year 2000. Similar analyses conducted on Lake Van located about 400 km west of Lake Urmia with very similar climate pattern revealed no significant areal change despite the lake's exposure to similar drought events. These results raise serious concern about the destructive role of unbridled development coupled with supply-oriented water management scheme driven by a classic upstream-downstream competition for water in the Lake Urmia region. There is an urgent need to investigate sustainable restoration initiatives for Lake Urmia in order to prevent an environmental disaster comparable to catastrophic death of Aral Sea.

  7. Water quality monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Conio, O. [Azienda Mediterranea Gas e Acqua spa, Genua (Italy)

    1998-12-31

    By involving institutions and rules, and technology as well, water resources management presents remarkable complexity. In institutions such a complexity is due to division of competence into monitoring activities, quality control, water utility supply and water treatment. As far as technology goes, complexity results from a wide range of physical, chemical and biological requisites, which define water quality according to specific water uses (for populations, farms, factories). Thus it`s necessary to have reliable and in-time environmental data, so to fulfil two complementary functions: 1) the control of any state of emergency, such as floods and accidental pollution, in order to take immediate measures by means of timely available information; 2) the mid- and long-term planning of water resources, so to achieve their reclamation, conservation and exploitation. An efficient and reliable way to attain these goals is to develop integrated continuous monitoring systems, which allow to control the quality of surface and underground water, the flow of bodies of water and those weather conditions that directly affect it. Such systems compose an environmental information network, which enables to collect and process data relative to the state of the body of water, its aquifer, and the weather conditions.

  8. The Story Behind the Numbers: Lessons Learned from the Integration of Monitoring Resources in Addressing an ISS Water Quality Anomaly

    Science.gov (United States)

    McCoy, Torin; Flint, Stephanie; Straub, John, II; Gazda, Dan; Schultz, John

    2011-01-01

    Beginning in June of 2010 an environmental mystery was unfolding on the International Space Station (ISS). The U.S. Water Processor Assembly (WPA) began to produce water with increasing levels of total organic carbon (TOC). A surprisingly consistent upward TOC trend was observed through weekly in-flight total organic carbon analyzer (TOCA) monitoring. As TOC is a general organics indicator, return of water archive samples was needed to make better-informed crew health decisions and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to its health-based screening limit before archive samples could be returned on Soyuz 22 and analyzed. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were the source. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of silicon-containing compounds present on ISS. A toxicological limit was set for DMSD and a forward plan developed for operations given this new understanding of the source of the TOC. This required extensive coordination with ISS stakeholders and innovative use of available in-flight and archive monitoring resources. Behind the numbers and scientific detail surrounding this anomaly, there exists a compelling story of multi-disciplinary awareness, teamwork, and important environmental lessons learned.

  9. Water Resources Overlays Users Guide

    Science.gov (United States)

    1990-12-01

    ORGANIZATION REPORT NUMBER Water Resources Division TEC-SR3 U.S. Geological Survey Reston, Virginia 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...SPONSORING/ MONITORING AGENCY REPORT NUMBER U.S. Army Topographic Engineering Center Fort Belvoir, Virginia 22060-5546 11. SUPPLEMENTARY NOTES...overlay, nor is there any other apparent source of water. However, the ranks and towers could be provided warer from an unmapped pipeline, or could be

  10. Discussion of Water Resources Monitoring and Management System Construction in Qinghai%青海水资源监控管理系统建设的探讨

    Institute of Scientific and Technical Information of China (English)

    马金蹄

    2014-01-01

    水资源监控管理系统为实行最严格的水资源管理制度提供数据支撑,通过对青海水资源管理特点、水资源监控体系的现状分析,结合水资源监控能力建设项目的实施,提出从监测体系、网络环境、资源整合、运维体系等方面建设完善监控管理系统,保障监控目标的实现。%Water resources monitoring and management system provides data support for implementing the most stringent water management system. Through the analysis of the water resources management characteristics and water monitoring system status in Qinghai, combining with the implementation of water resources monitoring capacity-building projects, it proposes building a sound monitoring and management system from monitoring system, network environment, resource integration, operation and maintenance system to ensure the realization of monitoring objectives.

  11. Best Management Practices (BMP) Monitoring Manual Field Guide: Implementation and Effectiveness for Protection of Water Resources

    Science.gov (United States)

    David Welsch; Roger Ryder; Tim Post

    2006-01-01

    The specific purpose of the BMP protocol is to create an economical, standardized, and repeatable BMP monitoring process that is completely automated, from data gathering through report generation, in order to provide measured data, ease of use, and compatibility with State BMP programs.The protocol was developed to meet the following needs:? Document the use and...

  12. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  13. Comparison of accuracy and completeness of data obtained from three types of automatic water-quality monitors. Water Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Katzenbach, M.S.

    1990-01-01

    A comparison of data (specific conductance, dissolved-oxygen concentration, temperature, and pH) collected by the U.S. Geological Survey flowthrough monitor, the U.S. Geological Survey minimonitor, and a self-contained commercial packaged-sensor system indicates that the data obtained by means of the flowthrough-monitor system were the most accurate and the most complete of the three systems. Minimonitors were installed at four sites in Ohio where U.S. Geological Survey flowthrough monitors were in operation. Two packaged-sensor systems also were assigned to each site and were alternated every two weeks. Detailed records were kept of field measurements, for comparison with monitor-system data from each instrument, and equipment problems that resulted in loss of data. Results of the comparisons show that the flow-through monitor gave the most accurate and the most complete data.

  14. Modern water resources engineering

    CERN Document Server

    Yang, Chih

    2014-01-01

    The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed...

  15. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  16. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  17. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  18. U.S. Geological Survey water-resource monitoring activities in support of the Wyoming Landscape Conservation Initiative

    Science.gov (United States)

    Soileau, Suzanna; Miller, Kirk

    2013-01-01

    The quality of the Nation’s water resources are vital to the health and well-being of both our communities and the natural landscapes we value. The U.S. Geological Survey investigates the occurrence, quantity, quality, distribution, and movement of surface water and groundwater and provides this information to engineers, scientists, managers, educators, and the general public. This information also supplements current (2013) and historical water data provided by the National Water Information System. The U.S. Geological Survey collects and shares data nationwide, but how those data are used is often site specific; this variety of data assists natural-resource managers in addressing unique, local, and regional challenges.

  19. Monitoring and visualizing information resources

    Energy Technology Data Exchange (ETDEWEB)

    McCrickard, D.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Graphics, Visualization, and Usability Center; Rowan, T.H. [Oak Ridge National Lab., TN (United States)

    1996-07-01

    The continuous increase in information necessitates monitoring and display techniques that maximize comprehension yet minimize effort. In this paper, we discuss the use of hypertools, confluent zoom and graphical encoding of text as solutions to this problem, and we introduce Irwin and information resource and display tool.

  20. RCRA (Resource Conservation and Recovery Act of 1976) ground-water monitoring projects for Hanford facilities: Progress report, October 1--December 31, 1988: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-04-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period October 1 to December 31, 1988. There are 16 individual hazardous waste facilities covered by the 13 ground-water monitoring projects. The Grout Treatment Facility is included in this series of quarterly reports for the first time. The 13 projects discussed in this report were designed according to applicable interim-status ground-water monitoring requirements specified in the Resource Conservation and Recovery Act of 1976 (RCRA). During this quarter, field activities primarily consisted of sampling and analyses, and water-level monitoring. The 200 Areas Low-Level Burial Grounds section includes sediment analyses in addition to ground-water monitoring results. Twelve new wells were installed during the previous quarter: two at the 216-A-29 Ditch, six at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells include drillers' logs and other drilling and site characterization data, and are provided in Volume 2 or on microfiche in the back of Volume 1. 26 refs., 28 figs., 74 tabs.

  1. Preface: Remote Sensing of Water Resources

    OpenAIRE

    Deepak R. Mishra; Eurico J. D’Sa; Sachidananda Mishra

    2016-01-01

    The Special Issue (SI) on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  2. Water Quality Monitoring Sites

    Data.gov (United States)

    Vermont Center for Geographic Information — Water Quality Monitoring Site identifies locations across the state of Vermont where water quality data has been collected, including habitat, chemistry, fish and/or...

  3. Water resources (Chapter 12)

    Science.gov (United States)

    Thomas C. Brown; Romano Foti; Jorge Ramirez

    2012-01-01

    In this chapter, we focus on the vulnerability of U.S. freshwater supplies considering all lands, not just forest and rangelands. We do not assess the condition of those lands or report on how much of our water supply originates on lands of different land covers or ownerships, because earlier Resources Planning Act (RPA) Assessment work addressed these topics....

  4. Water Quality Monitoring Manual.

    Science.gov (United States)

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  5. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  6. Monitoring Lake Victoria Water Quality from Space: Opportunities for Strengthening Trans-boundary Information Sharing for Effective Resource Management

    Science.gov (United States)

    Mugo, R. M.; Korme, T.; Farah, H.; Nyaga, J. W.; Irwin, D.; Flores, A.; Limaye, A. S.; Artis, G.

    2014-12-01

    Lake Victoria (LV) is an important freshwater resource in East Africa, covering 68,800 km2, and a catchment that spans 193,000km2. It is an important source of food, energy, drinking and irrigation water, transport and a repository for agricultural, human and industrial wastes generated from its catchment. For such a lake, and a catchment transcending 5 international boundaries, collecting data to guide informed decision making is a hard task. Remote sensing is currently the only tool capable of providing information on environmental changes at high spatio-temporal scales. To address the problem of information availability for LV, we tackled two objectives; (1) we analyzed water quality parameters retrieved from MODIS data, and (2) assessed land cover changes in the catchment area using Landsat data. We used L1A MODIS-Aqua data to retrieve lake surface temperature (LST), total suspended matter (TSM), chlorophyll-a (CHLa) and diffuse attenuation coefficient (KD490) in four temporal periods i.e. daily, weekly, monthly and seasonal scales. An Empirical Orthogonal Function (EOF) analysis was done on monthly data. An analysis of land cover change was done using Landsat data for 3 epochs in order to assess if land degradation contributes to water quality changes. Our results indicate that MODIS-Aqua data provides synoptic views of water quality changes in LV at different temporal scales. The Winam Gulf in Kenya, the shores of Jinja town in Uganda, as well as the Mwanza region in Tanzania represent water quality hotspots due to their relatively high TSM and CHLa concentrations. High levels of KD490 in these areas would also indicate high turbidity and thus low light penetration due to the presence of suspended matter, algal blooms, and/or submerged vegetation. The EOF analysis underscores the areas where LST and water color variability are more significant. The changes can be associated with corresponding land use changes in the catchment, where for instance wetlands are

  7. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Burnet, Jean-Baptiste, E-mail: jeanbaptiste.burnet@gmail.com [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Université de Liège (ULg), Department of Environmental Sciences and Management, 165 avenue de Longwy, B-6700 Arlon (Belgium); Penny, Christian, E-mail: penny@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Ogorzaly, Leslie, E-mail: ogorzaly@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Cauchie, Henry-Michel, E-mail: cauchie@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg)

    2014-02-01

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10{sup 9} and 10{sup 10} (oo)cysts.d{sup −1}, respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log{sub 10} removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10{sup 6} to 10{sup 7} (oo)cysts.d{sup −1}) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment

  8. Ranch business planning and resource monitoring for rangeland sustainability

    Science.gov (United States)

    Kristie A. Maczko; John A. Tanaka; Michael Smith; Cindy Garretson-Weibel; Stanley F. Hamilton; John E. Mitchell; Gene Fults; Charles Stanley; Dick Loper; Larry D. Bryant; J. K. (Rooter) Brite

    2012-01-01

    Aligning a rancher's business plan goals with the capability of the ranch's rangeland resources improves the viability and sustainability of family ranches. Strategically monitoring the condition of soil, water, vegetation, wildlife, livestock production, and economics helps inform business plan goals. Business planning and resource monitoring help keep...

  9. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: implications for monitoring and risk assessment.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Penny, Christian; Ogorzaly, Leslie; Cauchie, Henry-Michel

    2014-02-15

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10(9) and 10(10) (oo)cysts.d(-1), respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log10 removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10(6) to 10(7) (oo)cysts.d(-1)) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment-wide analysis described here

  10. Advances in water resources technology

    Science.gov (United States)

    The presentation of technological advances in the field of water resources will be the focus of Advances in Water Resources Technology, a conference to be held in Athens, Greece, March 20-23, 1991. Organized by the European Committee for Water Resources Management, in cooperation with the National Technical University of Athens, the conference will feature state-of-the art papers, contributed original research papers, and poster papers. Session subjects will include surface water, groundwater, water resources conservation, water quality and reuse, computer modeling and simulation, real-time control of water resources systems, and institutions and methods for technology.The official language of the conference will be English. Special meetings and discussions will be held for investigating methods of effective technology transfer among European countries. For this purpose, a wide representation of research institutions, universities and companies involved in water resources technology will be attempted.

  11. Preface: Remote Sensing of Water Resources

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-02-01

    Full Text Available The Special Issue (SI on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  12. Monitoring Global Freshwater Resources with GRACE

    Science.gov (United States)

    Rodell, Matt; Famiglietti, Jay; Velicogna, Isabella; Swenson, Sean; Chambers, Don

    2011-01-01

    Freshwater resources include surface waters, groundwater, and seasonal snowpack. Given adequate ground based measurements, all of these can be monitored effectively, however, outside of the developed world such measurements often are not systematic and the data not centralized, and as a result reports of freshwater availability may be largely anecdotal. Even in the developed world it can be difficult to quantify changes in groundwater storage over large scales. Owing to its global coverage, satellite remote sensing has become a valuable tool for freshwater resources assessment. In particular, the Gravity Recovery and Climate Experiment (GRACE) has demonstrated an unequaled ability to monitor total terrestrial water storage including groundwater at regional to continental scales. In this presentation we will identify apparent trends in terrestrial water storage observed by GRACE over the past nine years and attempt to explain their origins and predict whether they are likely to continue. Trends in certain regions where groundwater extraction has significantly depleted aquifers, including northern India and California, will be discussed in detail.

  13. Multi-temporal study of BELVEDERE glacier for hydrologic hazard monitoring and water resource estimation using UAV: tests and first results

    Science.gov (United States)

    Piras, Marco; Cina, Alberto; De Michele, Carlo; Pinto, Livio; Barzaghi, Riccardo; Maschio, Paolo F.; Avanzi, Francesco; Bianchi, Alberto; Deidda, Cristina; Donizetti, Alberto; Giani, Giulia; Giarrizzo, Giuseppe; Negrini, Alessandro; Rampazzo, Alessandro; Savaia, Gianluca; Soria, Enrica

    2016-04-01

    Nowadays, expected effects of climate change at local, regional and global scales endanger hydrologic budgets of Alpine regions. An example is the massive shrinkage of mountain glaciers, with the consequent problem of water resources reduction for civil population and ecosystems. Therefore, it is very important to monitor glaciers' evolution, in order to allow an estimation of glaciers' reduction and possible effects on the hydrologic cycle. In 2015, a research team called DREAM (Drone Technology for Water Resources and hydrologic hazards Monitoring) has been created within the framework of "Alta Scuola Politecnica", joint initiative between Politecnico di Milano and Politecnico di Torino (Italy), and composed by 15 people among students, research associates and professors belonging to the two universities. The goal of the research team is to investigate new technologies and tools, including Unmanned Aerial Vehicle (UAVs), for monitoring natural hazard and evaluating water resources at different scales. In particular, in this first step, the DREAM team has selected as test site the eastern slopes of Monte Rosa and its long glacier tongue (Belvedere glacier). This area of Monte Rosa massif has an altitude range between 2000 m up to 4500 m ASL, while the glacier tongue has an extension greater than 3 km 2. Usually, glacier thickness and area evolution are monitored using, e.g., time-consuming field activities based on point stratigraphy and mass balances, or radar sounding, which do not allow to obtain a continuous-time, detailed and accurate information about surface and volume evolution at fine spatial resolutions. In this framework, we have used a fixed-wing UAV (eBee sensesly) to acquire RGB images, in order to generate a dense DSM (DDSM) and an orthophoto of the glacier, with a high resolution (4-6 cm). In this way, we aim at analyzing the variations of glacier volume in time. The acquisition was carried out with two different campaigns of measurement in October

  14. Water resources planning and management

    National Research Council Canada - National Science Library

    Grafton, R. Quentin; Hussey, Karen

    2011-01-01

    .... There are growing concerns about water as a renewable resource, its availability for a wide range of users, aquatic ecosystem health, and global issues relating to climate change, water security...

  15. 面向城市水资源监测的WSN拓扑控制算法%The WSN Hierarchical Topology Control Algorithm for Urban Water Resources Monitoring

    Institute of Scientific and Technical Information of China (English)

    齐华; 马岚; 刘军

    2015-01-01

    To solve the problems of traditional water resources monitoring systems ’ monitoring cycle being long,degree of automation being low, a water resources monitoring system for the urban areas based on WSN is proposed in this paper.The LEECH algorithm of the existing WSN hierarchi-cal topology control algorithm’s cluster head nodes in the network are randomly distribution,so it is easy for imbalanced communication distance be-tween cluster member nodes and cluster heads, cluster head node and network gateway nodes. This study is an effort to solve this problem. Through the Matlab software,the performance of the algorithm is simulated,and the results show that the improved algorithm LEACH E can better balance node energy consumption.On the basis of stable network connectivity,the survival time of the network monitoring,compared with LEACH algorithm,is enhanced by about 26%, thereby saving the operation costs of the monitoring net-work.%针对传统的水资源监测系统监测周期长、自动化程度低的问题,提出了一种基于 WSN 的城市水资源监测系统。对已有的 WSN 层次拓扑控制的LEACH 算法,由于簇头节点在网络内的分布是随机的,容易造成簇成员节点与簇头间、簇头节点与网关节点间的通信距离不平衡,故对此不足进行了改进。通过 Matlab 仿真软件对算法性能进行仿真,结果表明该改进算法 LEACH E 能够更好地均衡节点的能量消耗,在保证网络连通性的前提下,监测网络的生存时间比 LEACH 算法提升了约26%,从而节约了监测网络的运行成本。

  16. Game theory and water resources

    Science.gov (United States)

    Madani, Kaveh

    2010-02-01

    SummaryManaging water resources systems usually involves conflicts. Behaviors of stakeholders, who might be willing to contribute to improvements and reach a win-win situation, sometimes result in worse conditions for all parties. Game theory can identify and interpret the behaviors of parties to water resource problems and describe how interactions of different parties who give priority to their own objectives, rather than system's objective, result in a system's evolution. Outcomes predicted by game theory often differ from results suggested by optimization methods which assume all parties are willing to act towards the best system-wide outcome. This study reviews applicability of game theory to water resources management and conflict resolution through a series of non-cooperative water resource games. The paper illustrates the dynamic structure of water resource problems and the importance of considering the game's evolution path while studying such problems.

  17. Water resources (Chapter 5)

    CSIR Research Space (South Africa)

    Hobbs, Philip

    2016-01-01

    Full Text Available Water availability/supply for shale gas development (SGD) in the assessment study area is severely constrained. Surface water availability is generally low, with large areas of non-perennial, episodic and ephemeral streams experiencing very high...

  18. Water Conservation Resource List.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  19. Resource Monitoring Tool for CMS production

    CERN Document Server

    Osman, Asif; Willers, Ian Malcolm

    2003-01-01

    A monitoring tool is described which not only tracks and recognises errors but also works together with a management system that is responsible for resource allocation. In cluster/grid computing, the resources of all accessible computers are at the disposal of end users. With that much power at hand, the responsibility of the software managing these resources also increases. The better utilization of resources means that a monitoring system should make the collected data persistent, so that the management system has up-to-date information but also has a meaningful historical record. This database can then be consulted for finding the best available resources in a given scenario, and can also be used for understanding historical trends. The Resource Monitoring Tool, RMT, is such a tool, which caters for these needs. Its framework is designed in such a way that its potential can be enhanced easily by adding more modules.

  20. Integration of In-Flight and Post-Flight Water Monitoring Resources in Addressing the U.S. Water Processor Assembly Total Organic Carbon (TOC) Anomaly

    Science.gov (United States)

    Straub, John E., II; McCly, J. Torin

    2011-01-01

    Beginning in June of 2010, the total organic carbon (TOC) concentration in the U.S. Water Processor Assembly (WPA) product water started to increase. A surprisingly consistent upward TOC trend was observed through weekly ISS total organic carbon analyzer (TOCA) monitoring. As TOC is a general organic compound indicator, return of water archive samples was needed to make better-informed crew health decisions on the specific compounds of concern and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to the health-based screening limit of 3,000 g/L before archive samples were returned. Archive samples were returned on 22 Soyuz in September 2010 and on ULF5 in November of 2010. The samples were subjected to extensive analysis. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were detected at high levels. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of siloxanes which are thought to be ubiquitous in the ISS atmosphere. A toxicological limit was set for DMSD and a forward plan was developed for conducting operations in the context of understanding the composition of the TOC measured in flight. This required careful consideration of existing ISS flight rules, coordination with ISS stakeholders, and development of a novel approach for the blending of inflight TOCA data with archive results to protect crew health. Among other challenges, team members had to determine how to utilize TOCA readings when making decisions about crew consumption of WPA water. This involved balancing very real concerns associated with the assumption that TOC would continue to be comprised of only DMSD. Demonstrated teamwork, multidisciplinary awareness, and innovative problem-solving were required to respond effectively to this anomaly.

  1. Water resources data, Indiana, water year 1993

    Science.gov (United States)

    Stewart, James A.; Keeton, Charles R.; Benedict, Brian L.; Hammil, Lowell E.

    1994-01-01

    Water resources data for the 1993 water year for Indiana consist of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 175 stream-gaging station, stage for 5 stream station, 1 sediment station, stage and contents for 1 reservoir, water quality for 3 streams, and water levels for 80 lakes and 94 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal agencies.

  2. Water resources data, Indiana, water year 1992

    Science.gov (United States)

    Stewart, James A.; Keeton, Charles R.; Benedict, Brian L.; Hammil, Lowell E.

    1993-01-01

    Water resources data for the 1992 water year for Indiana consist of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 175 stream-gaging stations, stage for 7 stream stations, 1 sediment station, stage and contents for 1 reservoir, water quality for 3 streams, and water levels for 80 lakes and 94 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal agencies.

  3. Water resources data, Indiana, water year 1991

    Science.gov (United States)

    Stewart, James A.; Deiwert, Clyde E.

    1992-01-01

    Water resources data for the 1991 water year for Indiana consist of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 183 stream-gaging stations, stage for 7 stream stations, stage and contents for 1 reservoir, water quality for 3 streams, and water levels for 80 lakes and 95 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal Agencies.

  4. Department of Water Resources a

    African Journals Online (AJOL)

    USER

    2016-07-14

    Jul 14, 2016 ... river basin managers in managing and planning of water resources and facilities development. ... construction, maintenance and operation of projects for the control ... scope with occasional rocky outcrops in the north western ...

  5. Current perspectives in contaminant hydrology and water resources sustainability

    Science.gov (United States)

    Bradley, Paul M.

    2013-01-01

    Human society depends on liquid freshwater resources to meet drinking, sanitation and hygiene, agriculture, and industry needs. Improved resource monitoring and better understanding of the anthropogenic threats to freshwater environments are critical to efficient management of freshwater resources and ultimately to the survival and quality of life of the global human population. This book helps address the need for improved freshwater resource monitoring and threat assessment by presenting current reviews and case studies focused on the fate and transport of contaminants in the environment and on the sustainability of groundwater and surface-water resources around the world. It is intended for students and professionals working in hydrology and water resources management.

  6. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  7. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  8. Water resources data, Indiana, water year 2001

    Science.gov (United States)

    Stewart, James A.; Keeton, Charles R.; Hammil, Lowell E.; Nguyen, Hieu T.; Majors, Deborah K.

    2002-01-01

    Water resources data for the 2001 water year for Indiana consists of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 163 stream-gaging stations, stage for 8 stream stations, stage and contents for 1 reservoir, water quality for 1 stream, water temperature at 11 sites, sediment analysis for 1 stream, water levels for 78 lakes and 88 observation wells. Also included are records of miscellaneous discharge measurements, miscellaneous levels and miscellaneous water-quality, not part of the systematic data-collection program. Data contained in this report represent that part of the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal agencies.

  9. Virtual water trade and world water resources.

    Science.gov (United States)

    Oki, T; Kanae, S

    2004-01-01

    Global virtual water trade was quantitatively estimated and evaluated. The basic idea of how to estimate unit requirement of water resources to produce each commodity is introduced and values for major agricultural and stock products are presented. The concept of virtual water and the quantitative estimates can help in assessing a more realistic water scarcity index in each country, projecting future water demand for food supply, increasing public awareness on water, and identifying the processes wasting water in the production. Really required water in exporting countries is generally smaller than virtually required water in importing countries, reflecting the comparative advantage of water use efficiency, and it is estimated to be 680 km3/y for 2000. On the contrary the virtually required water for the same year is estimated to be 1,130 km3/y, and the difference of 450 km3/y is virtually saved by global trade. However, solely virtual water should not be used for any decision making since the idea of virtual water implies only the usage and influence of water and no concerns on social, cultural, and environmental implications. Virtual water trade also does not consider other limiting factors than water.

  10. Water resources data, Indiana, water year 2000

    Science.gov (United States)

    Stewart, James A.; Keeton, Charles R.; Hammil, Lowell E.; Nguyen, Hieu T.; Majors, Deborah K.

    2001-01-01

    Water resource data for the 2000 water year for Indiana consists of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 166 stream-gaging stations, stage for 7 stream stations, stage and contents for 1 reservoir, water quality for 2 streams, sediment analysis for 1 stream, water levels for 79 lakes and 89 observation wells. Also included are records of miscellaneous discharge measurements, miscellaneous levels and miscellaneous water-quality, not part of the systematic data-collection program. Data contained in this report represent that part of the the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal agencies.

  11. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period October 1 to December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E. (eds.)

    1990-03-01

    This is Volume 1 of a two-volume document that describes the progress of 15 Hanford Site ground-water monitoring projects for the period October 1 to December 31, 1989. This volume discusses the projects. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the samples aquifer meets regulatory standards for drinking water quality. 51 refs., 35 figs., 86 tabs.

  12. Water Resources Availability in Kabul, Afghanistan

    Science.gov (United States)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  13. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  14. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  15. World Water Resources Assessment for 2050

    Science.gov (United States)

    Oki, T.; Agata, Y.; Kanae, S.; Musiake, K.; Saruhashi, T.

    2003-04-01

    nticipated water scarcity in the first half of this century is one of the most concerned international issues to be assessed adequately. However, even though the issue has an international impact and world wide monitoring is critical, there are limited number of global estimates at present. In this study, annual water availability was derived from annual runoff estimated by land surface models using Total Runoff Integrating Pathways (TRIP) with 0.5 degree by 0.5 degree longitude/latitude resolution globally. Global distribution of water withdrawal for each sector in the same horizontal spatial resolution was estimated based on country-base statistics of municipal water use, industrial water use, and agricultural intake, using global geographical information system with global distributions of population and irrigated crop land area. The total population under water stress estimated for 1995 corresponded very well with former estimates, however, the number is highly depend on how to assume the ratio how much water from upstream of the region can be considered as ``available'' water resources within the region. It suggests the importance of regional studies evaluating the the water quality deterioration in the upper stream, the real consumption of water resources in the upper stream, and the accessibility to water. The last factor should be closely related to how many large scale water withdrawal schemes are implemented in the region. Further studies by an integrated approach to improve the accuracy of future projections on both the natural and social sides of the water resources should be promoted. About the future projection of the global water resources assessment, population growth, climatic change, and the increase of water consumption per capita are considered. Population growth scenario follows the UN projection in each country. Change in annual runoff was estimated based on the climatic simulation by a general circulation model by the Center of Climate System

  16. Water Quality Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Our water quality sampling program is to determine the quality of Moosehorn's lakes and a limited number of streams. Water quality is a measure of the body of water,...

  17. Water Resources of Ascension Parish

    Science.gov (United States)

    Griffith, J.M.; Fendick, R.B.

    2009-01-01

    Ascension Parish, located along the banks of the Mississippi River in south-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 202 million gallons per day (Mgal/d) were withdrawn from water sources in Ascension Parish. About 94 percent (190 Mgal/d) was withdrawn from surface water, and 6 percent (12 Mgal/d) was withdrawn from groundwater. Additional water is supplied to Ascension Parish for public-supply use from East Baton Rouge Parish. Withdrawals for industrial use accounted for 95 percent (192 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public-supply (4 Mgal/d), rural-domestic (3 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Ascension Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  18. Hydrological Monitoring and Environmental Modeling to Assess the Quality and Sustainability of the Water Resources in an Uranium Mine Area, Caetité - Brazil

    Science.gov (United States)

    Franklin, M. R.; van Slobbe, E.; Fernandes, N. F.; Palma, J.; van Dalen, D.; Santos, A. C.; Melo, V.; Reis, R. G.; Carmo, R.; Fernandes, H. M.

    2009-12-01

    Uranium mining and processing constitute the front-end of the nuclear fuel-cycle and respond for most of its radiological impacts. For many years it has been accepted that the key driving force associated with these radiological impacts was related with radon exhalation from mill tailings. However, evidences coming from other mining sites showed that impacts in superficial and ground waters could also play a significant role. In Brazil, the newest uranium production unit presents a unique opportunity to integrate all the above concepts in a logical framework that will lead to sound and environmental balanced operations. The production center (Caetité plant) consists of open pit mine and sulfuric acid Heap Leach operations and is located at a semi-arid region in northeastern Brazil. Because groundwater is the sole perennial source of water for human consumption and industrial use, this resource has to be managed wisely and efficiently. Therefore, this paper intends to summarize the components of an ongoing project of groundwater management in uranium mining areas. The results will guide the adequate management of groundwater use and provide the basis for the appropriate impact assessment of the potential releases of pollutants. The methodology starts with the mathematical simulation of the long-term behavior of the hydrogeological system based on an experimental basin approach. The occurrence and pattern of groundwater flow in the Caetité experimental basin (CEB) are mainly conditioned by the degree of faulting/fracturing of rocks (predominantly gneisses and granites). Two faulting systems are observed in the area, the principal one, parallel to the foliation (with NW direction) and the secondary one with NE direction. The main water reservoirs in the CEB are related to the intrusion of a diabase dike, which increased the density of fractures in the rocks. This dike serves as natural barrier to the water flow and constrains the potential contamination of

  19. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  20. Water resources development in Turkey

    Institute of Scientific and Technical Information of China (English)

    Bulent Acma

    2010-01-01

    The Southeastern Anatolia Project(GAP),one of the most important projects for developing remarkable natural resources of the world,is accepted as a change for getting benefit from rich water and agricultural resources of the Southeastern Anatolia Region.The GAP Project has been considered as a regional development projects through years,but the dimensions of sustainability,protection of environment and participatory have been attached to the master of the project in recent years.When the GAP Project is completed,the Upper Mesopotomia,the centers of many civilisation,will re-again its importance as it had in the ancient times,and will be alive a center of civilisation.Moreover,when the problem of water shortage and water supplies in the world for the future is kept in mind,the importance of Southeastern Anatolia's water supplies will be doubled.For this reason,the GAP Project,developed by depending on water and natural resources of the region,will have an important place in the world.The aim of this study is to introduce the region with rich natural resources and the GAP Project.For this reason,firstly,the natural potential of the region will be introduced.Second,the GAP Project will be presented in details.In the third stage,the projects being processed for protecting the natural sources and environment will be analyzed.In the last stage,strategies and policies to develop and to protect the natural resources of the region in short,mid,and long terms will be proposed.

  1. Humble View on Soil Water Resources

    Institute of Scientific and Technical Information of China (English)

    CHENZHI-XIONG; ZHOULIU-ZONG

    1993-01-01

    Soil water is one of renewable water resources.Some properties of soil water concerning with its availability to plant are briefly described.An equation for estimating the amount of soil water resource is presented.Based on the evaporation demand of atmosphere,the evaluation coefficient for soil water resource is suggested.

  2. Water Resources: Management and Strategies in Nigeria ...

    African Journals Online (AJOL)

    Water Resources: Management and Strategies in Nigeria. ... flood conditions. Suggestions were made on ways of planning sustainable water supply systems for Nigeria. Key words: Water Resources, Management, Strategies, Climate Change ...

  3. Environmental Impact Assessment in Sustainable Water Resources ...

    African Journals Online (AJOL)

    Environmental Impact Assessment in Sustainable Water Resources Development: ... the current level of understanding of environmental impact assessment of water ... In the arena of Integrated Water Resources Management, the environment ...

  4. Smart Markets for Water Resources

    Science.gov (United States)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  5. Higher Resolution for Water Resources Studies

    Science.gov (United States)

    Dumenil-Gates, L.

    2009-12-01

    The Earth system science community is providing an increasing range of science results for the benefit of achieving the Millennium Development Goals. In addressing questions such as reducing poverty and hunger, achieving sustainable global development, or by defining adaptation strategies for climate change, one of the key issues will be the quantitative description and understanding of the global water cycle, which will allow useful projections of available future water resources for several decades ahead. The quantities of global water cycle elements that we observe today - and deal with in hydrologic and atmospheric modeling - are already very different from the natural flows as human influence on the water cycle by storage, consumption and edifice has been going on for millennia, and climate change is expected to add more uncertainty. In this case Tony Blair’s comment that perhaps the most worrying problem is climate change does not cover the full story. We shall also have to quantify how the human demand for water resources and alterations of the various elements of the water cycle may proceed in the future: will there be enough of the precious water resource to sustain current and future demands by the various sectors involved? The topics that stakeholders and decision makers concerned with managing water resources are interested in cover a variety of human uses such as agriculture, energy production, ecological flow requirements to sustain biodiversity and ecosystem services, or human cultural aspects, recreation and human well-being - all typically most relevant at the regional or local scales, this being quite different from the relatively large-scale that the IPCC assessment addresses. Halfway through the Millennium process, the knowledge base of the global water cycle is still limited. The sustainability of regional water resources is best assessed through a research program that combines high-resolution climate and hydrologic models for expected

  6. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  7. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  8. DRINKING WATER RESOURCES IN CROATIA

    Directory of Open Access Journals (Sweden)

    Darko Mayer

    1996-12-01

    Full Text Available Annualy renewed resources of drinking water on the Earth are about 45000 cu. km. With today's stage of development that quantity is enough for living 4.5 to 9 billion of people. As it is expected that by 2025 the population on our planet will be over 8.5 billion people, it is clear that the next century will be characterized by the problem of ensuring enaugh quantities of drinking water. This problem will be particularly emphasized in the developing countries and large cities. In the poor countries of arid and subarid areas water deficit will cause the food production crisis and large migrations of the population with almost unpredistable sociological, economical and political consequences could be expected. In the developed world the "water crisis" will stimulate scientific and tehnological progress. The Republic of Croatia, if examined as a whole, regarding the climatic, hydrological, hydrogeological and demographic conditions, has planty of good quality water. It is our duty to preserve this resources for future generations (the paper is published in Croatian.

  9. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  10. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-02-01

    This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs.

  11. Resources Allocation Schemas for Web Information Monitoring

    Institute of Scientific and Technical Information of China (English)

    CHEN Kang; SHEN Meiming; ZHENG Weimin

    2005-01-01

    The web is an extremely dynamic world where information is updated even every second. A web information monitoring system fetches information from the web continuously and finds changes by comparing two versions of the same page. The updating of a specific web page is modeled as a Poisson process with parameter to indicate the change frequency. As the amount of computing resources is limited, it is necessary to find some policies for reducing the overall change-detection time. Different allocation schemas are evaluated experimentally to find out which one is the most suitable for the web information monitoring problem. The experimental data shows the runtime characteristics of the overall system performance and the relationship to the total amount of resources.

  12. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  13. User requirements and user acceptance of current and next-generation satellite mission and sensor complement, oriented toward the monitoring of water resources

    Science.gov (United States)

    Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.; Robinson, P.

    1975-01-01

    Principal water resources users were surveyed to determine the applicability of remotely sensed data to their present and future requirements. Analysis of responses was used to assess the levels of adequacy of LANDSAT 1 and 2 in fulfilling hydrological functions, and to derive systems specifications for future water resources-oriented remote sensing satellite systems. The analysis indicates that water resources applications for all but the very large users require: (1) resolutions on the order of 15 meters, (2) a number of radiometric levels of the same order as currently used in LANDSAT 1 (64), (3) a number of spectral bands not in excess of those used in LANDSAT 1, and (4) a repetition frequency on the order of 2 weeks. The users had little feel for the value of new sensors (thermal IR, passive and active microwaves). What is needed in this area is to achieve specific demonstrations of the utility of these sensors and submit the results to the users to evince their judgement.

  14. Assessment and utilization of soil water resources

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analyses of water interactions and water balance, this paper discusses the issues on the assessment and regulation of soil water resources, which lays the scientific basis for limited irrigation and water-saving agriculture.

  15. Ion Mobility Spectrometry for Water Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current water quality monitors aboard the International Space Station (ISS) are specialized and provide limited data. The Colorimetric Water Quality Monitor Kit...

  16. Water resources. [mapping and management

    Science.gov (United States)

    Salomonson, V. V.

    1974-01-01

    Substantial progress has been made in applying ERTS-1 data to water resources problems, nevertheless, more time and effort still appear necessary for further quantification of results, including the specification of thematic measurement accuracies. More modeling can be done very profitably. In particular, more strategy models describing the processes wherein ERTS-1 data would be acquired, analyzed, processed, and utilized in operational situations could be profitably accomplished. It is generally observed that the ERTS-1 data applicability is evident in several areas and that the next most general and substantive steps in the implementation of the data in operational situations would be greatly encouraged by the establishment of an operational earth resources satellite organization and capability. Further encouragement of this operational capability would be facilitated by all investigators striving to document their procedures as fully as possible and by providing time and cost comparisons between ERTS-1 and conventional acquisition approaches.

  17. Water resources assessment and prediction in China

    Science.gov (United States)

    Wang, Guangsheng; Dai, Ning; Yang, Jianqing; Wang, Jinxing

    2016-10-01

    Water resources assessment in China, can be classified into three groups: (i) comprehensive water resources assessment, (ii) annual water resources assessment, and (iii) industrial project water resources assessment. Comprehensive water resources assessment is the conventional assessment where the frequency distribution of water resources in basins or provincial regions are analyzed. For the annual water resources assessment, water resources of the last year in basins or provincial regions are usually assessed. For the industrial project water resources assessment, the water resources situation before the construction of industrial project has to be assessed. To address the climate and environmental changes, hydrological and statistical models are widely applied for studies on assessing water resources changes. For the water resources prediction in China usually the monthly runoff prediction is used. In most low flow seasons, the flow recession curve is commonly used as prediction method. In the humid regions, the rainfall-runoff ensemble prediction (ESP) has been widely applied for the monthly runoff prediction. The conditional probability method for the monthly runoff prediction was also applied to assess next month runoff probability under a fixed initial condition.

  18. Ballast Water Self Monitoring

    Science.gov (United States)

    2011-11-01

    water treatment systems for disinfection including:  Chlorination  Electrochlorination  Ozonation  Chlorine dioxide  Peracetic acid ...presents a challenge since the reagents used are themselves chemically hazardous. Peracetic acid and hydrogen peroxide (provided as a blend of the two...dosage and usage -Hydrogen peroxide readings from both on-line sensor and sample analysis -Hydrogen peroxide dosage and usage Peracetic acid On

  19. Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources.

    Science.gov (United States)

    El Mallahi, Ahmed; Minetti, Christophe; Dubois, Frank

    2013-01-01

    In this paper, we investigate the use of a digital holographic microscope working with partially coherent spatial illumination for an automated detection and classification of living organisms. A robust automatic method based on the computation of propagating matrices is proposed to detect the 3D position of organisms. We apply this procedure to the evaluation of drinking water resources by developing a classification process to identify parasitic protozoan Giardia lamblia cysts among two other similar organisms. By selecting textural features from the quantitative optical phase instead of morphological ones, a robust classifier is built to propose a new method for the unambiguous detection of Giardia lamblia cyst that present a critical contamination risk.

  20. Water resources data for Texas, water year 1997. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1996-30 September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1997-12-03

    Water-resources data for the 1997 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 790 observation wells and 245 water-quality data for monitoring wells.

  1. Water resources data for Texas, water year 1996. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1995-30 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1996-11-22

    Water-resources data for the 1996 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 845 observation wells and 187 water-quality data for monitoring wells.

  2. [Probe into monitoring mechanism of Chinese materia medica resources].

    Science.gov (United States)

    Zhang, Xiao-Bo; Li, Da-Ning; Guo, Lan-Ping; Lu, Jian-Wei; Sun, Li-Ying; Huang, Lu-Qi

    2013-10-01

    Focusing on the problems of Chinese materia medica resources,and combining with the national Chinese materia medica resources survey, the paper probes into monitoring mechanism of Chinese materia medica resources. The establishment of the monitoring mechanism needs one organization and management agencies to supervise and guide monitoring work, one network system to gather data information, a group of people to perform monitoring work, a system of technical methods to assure monitoring work scientific and practical, a series of achievements and products to figure out the methods for solving problems, a group of monitoring index system to accumulate basic data, and a plenty of funds to keep normal operation of monitoring work.

  3. Long Term Resource Monitoring Program procedures: fish monitoring

    Science.gov (United States)

    Ratcliff, Eric N.; Glittinger, Eric J.; O'Hara, T. Matt; Ickes, Brian S.

    2014-01-01

    This manual constitutes the second revision of the U.S. Army Corps of Engineers’ Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element Fish Procedures Manual. The original (1988) manual merged and expanded on ideas and recommendations related to Upper Mississippi River fish sampling presented in several early documents. The first revision to the manual was made in 1995 reflecting important protocol changes, such as the adoption of a stratified random sampling design. The 1995 procedures manual has been an important document through the years and has been cited in many reports and scientific manuscripts. The resulting data collected by the LTRMP fish component represent the largest dataset on fish within the Upper Mississippi River System (UMRS) with more than 44,000 collections of approximately 5.7 million fish. The goal of this revision of the procedures manual is to document changes in LTRMP fish sampling procedures since 1995. Refinements to sampling methods become necessary as monitoring programs mature. Possible refinements are identified through field experiences (e.g., sampling techniques and safety protocols), data analysis (e.g., planned and studied gear efficiencies and reallocations of effort), and technological advances (e.g., electronic data entry). Other changes may be required because of financial necessity (i.e., unplanned effort reductions). This version of the LTRMP fish monitoring manual describes the most current (2014) procedures of the LTRMP fish component.

  4. Monitoring market power in electricity market. Prepared for Competition Authority and Norwegian Water Resources and Energy Directorate; Overvaakning av markedsmakt i kraftmarkedet. Utarbeidet for Konkurransetilsynet og NVE

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    The report outlines a plan to monitor competition in the physical energy market in Norway. As an indicator of short-term exercise of market power,it is proposed to base the calculations of a daily index that measures the average price premium compared to an estimated value of water in combination with an index which measures the maximum price mark-up. To investigate whether there are indications on strategic movement of water over long periods, it is necessary to compare market solution with model simulations of efficient water allocation. Both approaches are tested on the market adaptation of the hydrological year 2002/2003. In both cases, we find deviations that can not simply be explained by price taker behavior, but which can not be taken as evidence of strategic behavior. To investigate whether the adaptation is due to strategic behavior, noise or other factors, it is necessary to enter into individual participants' bidding in the spot market. (AG)

  5. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NARCIS (Netherlands)

    Wood, E.F.; Roundy, J.K.; Troy, T.J.; Beek, L.P.H. van; Bierkens, M.F.P.; Blyth, E.; Roo, A.A. de; Doll, P.; Ek, M.; Famiglietti, J.; Gochis, D.; Giesen, N. van de; Houser, P.; Jaffe, P.R.; Kollet, S.; Lehner, B.; Lettenmaier, D.P.; Peters-Liedard, C.; Sivapalan, M.; Sheffield, J.; Wade, A.; Whitehead, P.

    2011-01-01

    Monitoring Earth’s terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and

  6. World water dynamics: global modeling of water resources.

    Science.gov (United States)

    Simonovic, Slobodan P

    2002-11-01

    The growing scarcity of fresh and clean water is among the most important issues facing civilization in the 21st century. Despite the growing attention to a chronic, pernicious crisis in world's water resources our ability to correctly assess and predict global water availability, use and balance is still quite limited. An attempt is documented here in modeling global world water resources using system dynamics approach. Water resources sector (quantity and quality) is integrated with five sectors that drive industrial growth: population; agriculture; economy; nonrenewable resources; and persistent pollution. WorldWater model is developed on the basis of the last version of World3 model. Simulations of world water dynamics with WorldWater indicate that there is a strong relationship between the world water resources and future industrial growth of the world. It is also shown that the water pollution is the most important future water issue on the global level.

  7. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  8. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...... efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment...

  9. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  10. Water resource management: an Indian perspective.

    Science.gov (United States)

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  11. International cooperation in water resources

    Science.gov (United States)

    Jones, J.R.; Beall, R.M.; Giusti, E.V.

    1979-01-01

    bewildering variety of organizations, there certainly exists, for any nation, group, or individual, a demonstrated mechanism for almost any conceivable form of international cooperation in hydrology and water resources. ?? 1979 Akademische Verlagsgesellschaft.

  12. 太湖流域水资源保护天地一体化监测体系构想%An Idea of An Integrated Sky-earth Monitoring System for Water Resources Protection in Taihu Lake Valley

    Institute of Scientific and Technical Information of China (English)

    左一鸣; 李健; 林荷娟

    2013-01-01

    According to current status and existing problems of monitoring for water resources protection in the Taihu lake valley, the essay provides an idea of an integrated sky-earth monitoring system for water resources protection in the Taihu lake valley based on the application of remote sensing at water environment monitoring. The system consists of network guarantee system, standard system, satellite-earth monitoring system, analysis and evaluation system, and early-warning system. The satellite-earth monitoring system offers monitoring measures of satellite remote-sensing imagery monitoring, automatic water quantity and quality station monitoring, conventional tour gauging and additional mobile gauging. Through a comparison between tour gauging data, automatic monitoring station data and analytic data from satellite remote-sensing images, water environment status distribution of the valley can be analogized. By using standard system to ensure data consistency, network guarantee system to ensure data integration, analysis and evaluation system to describe data utility, and early-warning system to predict and prevent future events based on monitoring data, an overall integrated monitoring is realized.%  针对太湖流域原有水资源保护监测的现状和存在问题,结合遥感技术在水环境监测中的应用,提出太湖流域水资源保护天地一体化监测体系的构想。一体化监测体系包括网络保障、标准、星地监测、分析评价和预警等系统,其中星地监测体系包括遥感卫片监测、水量水质自动站监测、常规巡测和移动加测,这4种监测手段各有优缺点,具体监测时以常规巡测和自动站监测数据为基础,通过与遥感卫片解析数据进行比对,建立相关关系,类推出全流域水环境现状分布情况;标准体系建设保障监测数据的一致性;网络保障体系建设保障数据的完整性;分析评价系统是对监测数据的实用性

  13. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  14. Responding to National Water Resources Challenges

    Science.gov (United States)

    2010-08-01

    resources come into focus as a shared responsibility for which collaboration is an imperative, not an elective choice. Water resource planning to...from farms, sewers, roads, and sidewalks ; compet- ing uses for water; weather extremes from droughts to floods that create situations of too little or

  15. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  16. Water resources of Washington Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-06-13

    Information concerning the availability, use, and quality of water in Washington Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  17. Water resources of East Feliciana Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in East Feliciana Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information is presented on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  18. Water resources of St. Helena Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in St. Helena Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  19. Water resources of Livingston Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in Livingston Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  20. Water resources of Tangipahoa Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-25

    Information concerning the availability, use, and quality of water in Tangipahoa Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  1. Used water resource recovery using green microalgae

    DEFF Research Database (Denmark)

    Wágner, Dorottya Sarolta

    A paradigm shift is promoted in wastewater treatment whereby wastewater is considered as a source of nutrients, water and energy, rather than waste and it is referred to as used water. Microalgae cultivation on used water resources offers the potential to recover nitrogen, phosphorus, water...... and energy. When coupling with used water treatment, microalgae is mostly considered to produce energy through biofuel production. A novel used water resource recovery approach was presented earlier, referred to as TRENS – a fully biochemical process for the removal, recovery and reuse of used water...... as a result of their deficiencies. Some lack e.g., accounting for the storage of nitrogen and phosphorus and for the potential for microalgae to grow heterotrophic on organic carbon that are relevant processes for used water resource recovery systems. Therefore, the first objective of this thesis...

  2. An innovative method for water resources carrying capacity research--Metabolic theory of regional water resources.

    Science.gov (United States)

    Ren, Chongfeng; Guo, Ping; Li, Mo; Li, Ruihuan

    2016-02-01

    The shortage and uneven spatial and temporal distribution of water resources has seriously restricted the sustainable development of regional society and economy. In this study, a metabolic theory for regional water resources was proposed by introducing the biological metabolism concept into the carrying capacity of regional water resources. In the organic metabolic process of water resources, the socio-economic system consumes water resources, while products, services and pollutants, etc. are output. Furthermore, an evaluation index system which takes into the characteristics of the regional water resources, the socio-economic system and the sustainable development principle was established based on the proposed theory. The theory was then applied to a case study to prove its availability. Further, suggestions aiming at improving the regional water carrying capacity were given on the basis of a comprehensive analysis of the current water resources situation.

  3. Water resources management in Rostov region (Russia)

    Science.gov (United States)

    Nazarenko, O.

    2009-04-01

    Proper management of water resources leads to the development of the region. Nowadays there is an urgent problem - water shortage. Many European countries face this problem, Russia is not the excluding. In addition, there is a problem not only of water quantity, but quality as well. Although Rostov region is well provided with fresh water, the water resources are unevenly disturbed within region. Rostov region is heavily populated and receive moderate rainfall. Groundwater has a limited capacity for renewal. At the same time, Rostov region is industrial and agricultural one that is why pressures from agriculture, industry and domestic users affect the quantity of water resources. Both water quality and availability must be integrated in long-term planning and policy implications concerning water management. In Russia there are high standards for water quality. Effectively managed water-supply and resource protection systems generate the indispensable basis for agricultural and industrial production. Throughout the Region, urban and rural development has thrived where water sources have been effectively managed. Rostov region can be divided into three parts: northern districts, central part of the region and southern ones. Main cities in the region have not enough available drinking water. In the region ground water is used for curing and water supplying purpose.

  4. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Julie B. Braun

    2009-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  5. Teale Department of Water Resources

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state...

  6. Water Resources Compound Systems: A Macro Approach to Analysing Water Resource Issues under Changing Situations

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-12-01

    Full Text Available Water resource crises are an increasing threat to human survival and development. To reveal the nature of water resource issues under changing situations, the water resources system needs to be studied from a macro and systematic perspective. This report develops a water resources system into a water resources compound system that is constantly evolving under the combined action of the development, resistant, and coordination mechanisms. Additionally, the water quotient is defined as a quantitative representation of the sustainable development state of the water resources compound system. Four cities in China, Beijing, Fuzhou, Urumqi, and Lhasa, were selected as the study areas. The differences in the three types of mechanisms and the water quotient of the water resources compound system of each city in 2013 were compared. The results indicate that the different subsystems that comprise the compound system of a given area have different development mechanisms and resistant mechanisms. There are clear differences in the mechanisms and the water quotients for the water resources compound systems of different regions. Pertinent measures should be taken into account during integrated water resource management to improve the sustainable development status of regional water resources compound systems.

  7. Groundwater resources monitoring and population displacement in northern Uganda

    Science.gov (United States)

    Chalikakis, K.; Hammache, Y.; Nawa, A.; Slinski, K.; Petropoulos, G.; Muteesasira, A.

    2009-04-01

    Northern Uganda has been devastated by more than 20 years of open conflict by the LRA (Lord's Resistance Army) and the Government of Uganda. This war has been marked by extreme violence against civilians, who had been gathered in protected IDP (Internally Displaced Persons) camps. At the height of the displacement in 2007, the UN office for coordination of humanitarian affairs, estimated that nearly 2.5 million people were interned into approximately 220 camps throughout Northern Uganda. With the improved security since mid-2006, the people displaced by the conflict in Northern Uganda started to move out of the overcrowded camps and return either to their villages/parishes of origin or to resettlement/transit sites. However, basic water, sanitation and hygiene infrastructure in the return areas or any new settlements sites are minimal. People returning to their villages of origin encounter a situation where in many cases there is no access to safe water. Since 1998 ACF (Action Against Hunger, part of the Action Contre la Faim International Network) activities have been concentrated in the Acholi and Lango regions of Northern Uganda. ACF's WASH (Water, sanitation and hygiene) department interventions concern sanitation infrastructure, hygiene education and promotion as well as water points implementation. To ensure safe water access, actions are focused in borehole construction and traditional spring rehabilitation, also called "protected" springs. These activities follow the guidelines as set forth by the international WASH cluster, led by UNICEF. A three year project (2008-2010) is being implemented by ACF, to monitor the available groundwater resources in Northern Uganda. The main objectives are: 1. to monitor the groundwater quality from existing water points during different hydrological seasons, 2. to identify, if any, potential risks of contamination from population concentrations and displacement, lack of basic infrastructure and land use, and finally 3. to

  8. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  9. 30 CFR 402.6 - Water-Resources Research Program.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §...

  10. Used water resource recovery using green microalgae

    DEFF Research Database (Denmark)

    Wágner, Dorottya Sarolta

    A paradigm shift is promoted in wastewater treatment whereby wastewater is considered as a source of nutrients, water and energy, rather than waste and it is referred to as used water. Microalgae cultivation on used water resources offers the potential to recover nitrogen, phosphorus, water...... and energy. When coupling with used water treatment, microalgae is mostly considered to produce energy through biofuel production. A novel used water resource recovery approach was presented earlier, referred to as TRENS – a fully biochemical process for the removal, recovery and reuse of used water...... content can be used for aquifer recharge. Design and optimization of bacterial-microalgal systems requires process models that can be readily combined with consensus used water treatment models, e.g. the activated sludge models (ASM). Previous microalgal process models cannot be used for such purposes...

  11. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    We reviewed published literature on water resources ... to have sustainable agricultural production for the reduction of poverty ... health, tourism, coastal development, and biodiversity ...... Tanzania: Centre for Energy, Environment,. Science ...

  12. Water resources of Cameron Parish, Louisiana

    Science.gov (United States)

    Prakken, Lawrence B.

    2014-01-01

    This fact sheet presents a brief overview of groundwater and surface-water resources in Cameron Parish, Louisiana. Information on the availability, use, and quality of water from groundwater and surface-water sources in the parish is discussed. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of this information.

  13. Water as an urban resource and nuisance

    Science.gov (United States)

    Thomas, H.E.; Schneider, William Joseph

    1970-01-01

    Generally, when people speak of water as a resource, they are considering its good aspects and recognizing that it is essential for life and living. Sometimes or at some places or to some people, the same water may be annoying or unpleasant and thus a nuisance-for example, rain at a picnic, snow at any time except Christmas Eve, ground water in a basement, floodwater inundating personal property, and any water after it has been polluted by somebody else.

  14. WATER RESOURCE EVALUATION ON HUNGARY NOWADAYS

    OpenAIRE

    Éva, Neubauer

    2013-01-01

    In our work we tried to determine asset value of water from natural resources. After reviewing existing methods with formatting specific system, we tried to model the value added framework in which so-called sustainability values, values of natural conditions of water resource and values of social utilization appear with different weight. In the model these factors can be upgraded as well, by adopting and taking into consideration economic, social and environmental changes. During the researc...

  15. Sustainability criteria for water resource systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Professionals in the water resource industry have an obligation to design and manage water resource systems which can contribute to an improved quality of life for all humans. This book reviews various guidelines that have been suggested for achieving a greater degree of sustainability and the extent to which they have been applied. The authors online some approaches for measuring and modeling sustainability and illustrate ways in which these measures and models might be used when evaluating alternative designs and operating policies.

  16. Glossary of Water Resource Terms.

    Science.gov (United States)

    Titelbaum, Olga Adler

    Twelve reference sources were used in the compilation of this glossary of water pollution control terminology. Definitions for 364 words, acronyms, and phrases are included with cross references. (KP)

  17. Glossary of Water Resource Terms.

    Science.gov (United States)

    Titelbaum, Olga Adler

    Twelve reference sources were used in the compilation of this glossary of water pollution control terminology. Definitions for 364 words, acronyms, and phrases are included with cross references. (KP)

  18. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Julie B. Williams; Brenda Pace

    2013-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

  19. Drought Monitoring and Water Resources Allocation Technology Framework of the Yellow River Basin%黄河流域旱情监测与水资源调配技术框架

    Institute of Scientific and Technical Information of China (English)

    王煜; 彭少明

    2016-01-01

    针对黄河水资源短缺、干旱频发、旱灾损失大等重大问题,以应对干旱的黄河流域水资源调配为切入点,开展大型灌区旱情实时监测、应对干旱的径流洪水预报、大型梯级水库群优化调度以及干旱风险管理等关键技术研究,提出干旱评估与演变特征识别、灌区干旱实时监测、洪水/径流预报、多年调节水库旱限水位最优控制、水库多分期汛限水位优化、梯级水库群协同优化调度、干旱应对与风险管理等关键技术,形成大型灌区旱情实时监测、径流/洪水预报以及黄河梯级水库群调度等技术平台,集成黄河流域旱灾监测与预警、抗旱水源调度等综合技术体系框架,实现黄河流域干旱的有序应对,显著提升应对干旱的黄河水资源调配技术水平。%Aiming at the major problems of water resources shortage, frequent drought and huge loss by drought disasters, etc., taking water resources allocation for drought of the Yellow River basin as an entry point, the key technology studies on real⁃time drought monitoring of large irrigation area, flood/runoff forecasting for drought, optimal operation of large cascade reservoirs and drought risk management have been conducted. The key technologies such as drought assessment and characteristics identification, real⁃time drought monitoring of irrigation area, flood/runoff forecasting for drought, optimal control of drought limit water level for multi⁃year regulating storage reservoir, optimal study on more stage flood control level, the collaborative optimization dispatching of cascade reservoirs and drought risk management have been created. The technology platforms of real⁃time drought monitoring of large irrigation area, flood and runoff forecast for drought and optimal dispatching of large cascade reservoirs, drought monitoring and early warning for the Yellow River basin and optimal dispatching of water sources for

  20. Recent Advances in Point-of-Access Water Quality Monitoring

    Science.gov (United States)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  1. Water resources activities, Georgia District, 1986

    Science.gov (United States)

    Casteel, Carolyn A.; Ballew, Mary D.

    1987-01-01

    The U.S. Geological Survey, through its Water Resources Division , investigates the occurrence, quantity, quality, distribution, and movement of the surface and underground water that composes the Nation 's water resources. Much of the work is a cooperative effort in which planning and financial support are shared by state and local governments and other federal agencies. This report contains a brief description of the water-resources investigations in Georgia in which the Geological Survey participates, and a list of selected references. Water-resources data for the 1985 water year for Georgia consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and groundwater levels. These data include discharge records for 108 gaging stations; water quality for 43 continuous stations, 109 periodic stations, and miscellaneous sites; peak stage and discharge only for 130 crest-stage partial-record stations and 44 miscellaneous sites; and water levels of 27 observation wells. Nineteen Georgia District projects are summarized. (Lantz-PTT)

  2. Water resources of La Salle Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in La Salle Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  3. Water resources of Sabine Parish, Louisiana

    Science.gov (United States)

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Sabine Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s (USGS) National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  4. Sustainable use of water resources

    DEFF Research Database (Denmark)

    Battilani, A; Jensen, Christian Richardt; Liu, Fulai;

    2013-01-01

    , there was no difference between RDI and PRD for the total and marketable yield. In 2008, PRD increased the marketable yield by 14.8% while the total yield was similar to RDI. Water Use Efficiency (WUE) was higher with PRD (+14%) compared to RDI. PRD didn’t improve fruit quality, although in 2007 a better °Brix, colour...... and acidity were observed. PRD reduced irrigation water volume (-9.0% of RDI) while a higher dry matter accumulation in the fruits was recorded both in 2007 and 2008. The income for each cubic meter of irrigation water was 10.6 € in RDI and 14.8 € in PRD, respectively. The gross margin obtained with each kg...

  5. Sustainable use of water resources

    DEFF Research Database (Denmark)

    Battilani, A; Jensen, Christian Richardt; Liu, Fulai

    2013-01-01

    , there was no difference between RDI and PRD for the total and marketable yield. In 2008, PRD increased the marketable yield by 14.8% while the total yield was similar to RDI. Water Use Efficiency (WUE) was higher with PRD (+14%) compared to RDI. PRD didn’t improve fruit quality, although in 2007 a better °Brix, colour...... and acidity were observed. PRD reduced irrigation water volume (-9.0% of RDI) while a higher dry matter accumulation in the fruits was recorded both in 2007 and 2008. The income for each cubic meter of irrigation water was 10.6 € in RDI and 14.8 € in PRD, respectively. The gross margin obtained with each kg...

  6. Guide to Louisiana's ground-water resources

    Science.gov (United States)

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  7. WaterWatch -- Current Water Resources Conditions

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — WaterWatch (http://waterwatch.usgs.gov) is a U.S. Geological Survey (USGS) World Wide Web site that displays maps, graphs, and tables describing real-time, recent,...

  8. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  9. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  10. Water resources in the next millennium

    Science.gov (United States)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  11. Water resources of Calcasieu Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in Calcasieu Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://dx.doi.org/10.5066/F7P55KJN) are the primary sources of the information presented here.

  12. Water resources of Iberia Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Iberia Parish, Louisiana, is critical for proper water-resource management. This fact sheet summarizes the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish for water managers, parish residents, and others to assist in stewardship of this vital resource. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, about 31.24 million gallons per day (Mgal/d) of water were withdrawn in Iberia Parish, Louisiana, including about 23.13 Mgal/d from groundwater sources and 8.11 Mgal/d from surface-water sources. Withdrawals for public supply and industrial use each accounted for about 32 percent of the total water withdrawn. Other water-use categories included rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals in Iberia Parish peaked at about 58.57 Mgal/d in 1975.

  13. Hydrogeophysical monitoring of water infiltration processes

    Science.gov (United States)

    Bevilacqua, Ivan; Cassiani, Giorgio; Deiana, Rita; Canone, Davide; Previati, Maurizio

    2010-05-01

    Non-invasive subsurface monitoring is growing in the last years. Techniques like ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) can be useful in soil water content monitoring (e.g., Vereecken et al., 2006). Some problems remain (e.g. spatial resolution), but the scale is consistent with many applications and hydrological models. The research has to to provide even more quantitative tools, without remaining in the qualitative realm. This is a very crucial step in the way to provide data useful for hydrological modeling. In this work a controlled field infiltration experiment has been done in August 2009 in the experimental site of Grugliasco, close to the Agricultural Faculty of the University of Torino, Italy. The infiltration has been monitored in time lapse by ERT, GPR, and TDR (Time Domain Reflectometry). The sandy soil characteristics of the site has been already described in another experiment [Cassiani et al. 2009a].The ERT was èperformed in dipole-dipole configuration, while the GPR had 100 MHz and 500 MHz antennas in WARR configuration. The TDR gages had different lengths. The amount of water which was sprinkled was also monitored in time.Irrigation intensity has been always smaller than infiltration capacity, in order not toh ave any surface ponding. Spectral induced polarization has been used to infer constitutive parameters from soil samples [Cassiani et al. 2009b]. 2D Richards equation model (Manzini and Ferraris, 2004) has been then calibrated with the measurements. References. Cassiani, G., S. Ferraris, M. Giustiniani, R. Deiana and C.Strobbia, 2009a, Time-lapse surface-to-surface GPR measurements to monitor a controlled infiltration experiment, in press, Bollettino di Geofisica Teorica ed Applicata, Vol. 50, 2 Marzo 2009, pp. 209-226. Cassiani, G., A. Kemna, A.Villa, and E. Zimmermann, 2009b, Spectral induced polarization for the characterization of free-phase hydrocarbon contamination in sediments with low clay content

  14. Polymer microcantilevers for water quality monitoring

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2012-10-01

    Full Text Available The microcantilever project aims to develop novel polymer based microcantilevers able to detect E.coli in water samples for use as a rapid diagnostic for on-site water quality monitoring....

  15. A Dynamic and Interactive Monitoring System of Data Center Resources

    Directory of Open Access Journals (Sweden)

    Yu Ling-Fei

    2016-01-01

    Full Text Available To maximize the utilization and effectiveness of resources, it is very necessary to have a well suited management system for modern data centers. Traditional approaches to resource provisioning and service requests have proven to be ill suited for virtualization and cloud computing. The manual handoffs between technology teams were also highly inefficient and poorly documented. In this paper, a dynamic and interactive monitoring system for data center resources, ResourceView, is presented. By consolidating all data center management functionality into a single interface, ResourceView shares a common view of the timeline metric status, while providing comprehensive, centralized monitoring of data center physical and virtual IT assets including power, cooling, physical space and VMs, so that to improve availability and efficiency. In addition, servers and VMs can be monitored from several viewpoints such as clusters, racks and projects, which is very convenient for users.

  16. Urban Fresh Water Resources Consumption of China

    Institute of Scientific and Technical Information of China (English)

    ZHU Peng; LU Chunxia; ZHANG Lei; CHENG Xiaoling

    2009-01-01

    From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban fresh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban fresh water consumption increased 561.7×109m3, and the proportion to the total national fresh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi-rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.

  17. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  18. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  19. Iowater Water Quality Monitoring Sites

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage contains points representing monitoring locations on streams, lakes and ponds that have been registered by IOWATER monitors. IOWATER, Iowa's volunteer...

  20. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  1. Guide to effective monitoring of aquatic and riparian resources

    Science.gov (United States)

    Jeffrey L. Kershner; Eric K. Archer; Marc Coles-Ritchie; Ervin R. Cowley; Richard C. Henderson; Kim Kratz; Charles M. Quimby; David L. Turner; Linda C. Ulmer; Mark R. Vinson

    2004-01-01

    This monitoring plan for aquatic and riparian resources was developed in response to monitoring needs addressed in the Biological Opinions for bull trout (U.S. Department of the Interior, Fish and Wildlife Service 1998) and steelhead (U.S. Department of Commerce, National Marine Fisheries Service). It provides a consistent framework for implementing the effectiveness...

  2. Sampling for spatial inventory and monitoring of natural resources

    NARCIS (Netherlands)

    Gruijter, de J.J.

    2000-01-01

    A broad review is presented of statistical methodology for spatial inventory and monitoring of natural resources. This report deals with sampling design and analysis of sample data, and is intended to help researchers with developing good sampling schemes and monitoring systems. The emphasis is on

  3. Sampling for spatial inventory and monitoring of natural resources

    NARCIS (Netherlands)

    Gruijter, de J.J.

    2000-01-01

    A broad review is presented of statistical methodology for spatial inventory and monitoring of natural resources. This report deals with sampling design and analysis of sample data, and is intended to help researchers with developing good sampling schemes and monitoring systems. The emphasis is on t

  4. Relative Efficiency Evaluation on Water Resource Utilization

    Institute of Scientific and Technical Information of China (English)

    MA Ying

    2011-01-01

    Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators

  5. Remote Sensing of Water Resources During the California Drought

    Science.gov (United States)

    David, Cedric; Reager, John; Das, Narendra; Famiglietti, James; Farr, Thomas; Painter, Thomas

    2016-07-01

    The combination of human population growth and changes in water availability increasingly raises global awareness on the importance of sustainable water usage and management. While the traditional in situ measurements provide a detailed description of local water availability, space science and technology can depict a broader perspective that has great potential for securing our global water future. We use the severe drought that the State of California has been experiencing since the beginning of 2011 as an example of a comprehensive water resources characterization and monitoring allowed by satellites. We focus here on observations of water availability on and underneath the land surface, and provide a summary of the findings from the following remote sensing assets: the Soil Moisture Active Passive (SMAP) mission, the Gravity Recovery And Climate Experiment (GRACE) mission, the Airborne Snow Observatory (ASO), and Synthetic Aperture Radars (SAR) missions such as PALSAR, Radarsat-2, and UAVSAR.

  6. Linking water resources to food security through virtual water

    Science.gov (United States)

    Tamea, Stefania

    2014-05-01

    The largest use of global freshwater resources is related to food production. While each day we drink about 2 liters of water, we consume (eating) about 4000 liters of ''virtual water'', which represents the freshwater used to produce crop-based and livestock-based food. Considering human water consumption as a whole, most part originates from agriculture (85.8%), and only minor parts come from industry (9.6%) or households (4.6%). These numbers shed light on the great pressure of humanity on global freshwater resources and justify the increasing interest towards this form of environmental impact, usually known as ''water footprint''. Virtual water is a key variable in establishing the nexus between water and food. In fact, water resources used for agricultural production determine local food availability, and impact the international trade of agricultural goods. Trade, in turn, makes food commodities available to nations which are not otherwise self-sufficient, in terms of water resources or food, and it establishes an equilibrium between food demand and production at the global scale. Therefore, food security strongly relies on international food trade, but also on the use of distant and foreign water resources, which need to be acknowledged and investigated. Virtual water embedded in production and international trade follows the fate of food on the trade network, generating virtual flows of great magnitude (e.g., 2800 km3 in 2010) and defining local and global virtual water balances worldwide. The resulting water-food nexus is critical for the societal and economic development, and it has several implications ranging from population dynamics to the competing use of freshwater resources, from dietary guidelines to globalization of trade, from externalization of pollution to policy making and to socio-economic wealth. All these implications represent a great challenge for future research, not only in hydrology but in the many fields related to this

  7. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  8. Water Resources Impacts on Tribal Irrigation Projects

    Science.gov (United States)

    Minihane, M.

    2015-12-01

    The Bureau of Indian Affairs (BIA) Branch of Irrigation and Power provides oversight and technical support to select irrigation projects and systems on tribal lands. The BIA provides operations and maintenance support for 16 irrigation systems. To make the best use of limited resources, the BIA must incorporate climate change impacts on hydrology and water management for these irrigation systems in the coming decades. The 16 irrigation projects discussed here are divided into three climatological regions: the Pacific Northwest Region, the Greater Rocky Mountain Region, and the Western, Southwest, & Navajo Region. Significant climate projections that impact irrigation systems in one or more of these regions include increased temperatures and evaporative demand, earlier snowmelt and runoff, an increase in floods, an increase in heavy precipitation events, an increase in the frequency and intensity of droughts, and declining water supplies. Some irrigation projects are particularly vulnerable to these climate impacts because they are in already water-stressed areas or areas in which water resources are over-allocated. Other irrigation projects will have to adjust their storage and water management strategies to accommodate changes in the timing of streamflow. Overall, though, the BIA will be better able to assist tribal nations by incorporating expected climate impacts into their water resources management practices.

  9. Satellite radar for monitoring forest resources

    Science.gov (United States)

    Hoffer, Roger M.; Lee, Kyu-Sung

    1990-01-01

    An evaluation is made of the computer analysis results of a study which used Seasat satellite radar data obtained in 1978 and Shuttle Imaging Radar-B data obtained in 1984. The change-detection procedures employed demonstrate that deforestation and reforestation activities can be effectively monitored on the basis of radar data gathered at satellite altitudes. The computer-processing techniques applied to the data encompassed (1) overlay display, (2) ratios, (3) differences, (4) principal-component analysis, and (5) classification; of these, overlay display is noted to quickly and easily yield a qualitative display of the multidate data.

  10. A vision for Water Resources Research

    Science.gov (United States)

    Clark, Martyn P.; Bahr, Jean A.; Bierkens, Marc F. P.; Cai, Ximing; Hogue, Terri S.; Luce, Charles H.; Lundquist, Jessica D.; Mackay, D. Scott; van Meerveld, H. J. (Ilja); Rajaram, Harihar; Sanchez-Vila, Xavier; Troch, Peter A.

    2017-06-01

    Water Resources Research (WRR) continues to evolve as the team of international editors begins a new 4 year term of service. In this Editorial we summarize the importance of WRR in the hydrologic sciences, the challenges ahead, and the plans for the future of the journal.

  11. Early successional forest habitats and water resources

    Science.gov (United States)

    James Vose; Chelcy Ford

    2011-01-01

    Tree harvests that create early successional habitats have direct and indirect impacts on water resources in forests of the Central Hardwood Region. Streamflow increases substantially immediately after timber harvest, but increases decline as leaf area recovers and biomass aggrades. Post-harvest increases in stormflow of 10–20%, generally do not contribute to...

  12. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir......As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open......-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost-effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current...

  13. Water resource conflicts in the Middle East.

    Science.gov (United States)

    Drake, C

    1997-01-01

    This article discusses the causes and sources of water resource conflict in the 3 major international river basins of the Middle East: the Tigris-Euphrates, the Nile, and the Jordan-Yarmuk. The physical geography of the Middle East is arid due to descending air, northeast trade winds, the southerly location, and high evaporation rates. Only Turkey, Iran, and Lebanon have adequate rainfall for population needs. Their mountainous geography and more northerly locations intercept rain and snow bearing westerly winds in winter. Parts of every other country are vulnerable to water shortages. Rainfall is irregular. Water resource conflicts are due to growing populations, economic development, rising standards of living, technological developments, political fragmentation, and poor water management. Immigration to the Jordan-Yarmuk watershed has added to population growth in this location. Over 50% of the population in the Middle East lives in urban areas where populations consume 10-12 times more water than those in rural areas. Water is wasted in irrigation schemes and huge dams with reservoirs where increased evaporation occurs. Technology results in greater water extraction of shallow groundwater and pollution of rivers and aquifers. British colonial government control led to reduced friction in most of the Nile basin. Now all ethnic groups have become more competitive and nationalistic. The Cold War restrained some of the conflict. Israel obtains 40% of its water from aquifers beneath the West Bank and Gaza. Geopolitical factors determine the mutual goodwill in managing international water. The 3 major water basins in the Middle East pose the greatest risk of water disputes. Possible solutions include conservation, better management, prioritizing uses, technological solutions, increased cooperation among co-riparians, developing better and enforceable international water laws, and reducing population growth rates.

  14. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    Science.gov (United States)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  15. Water resources of Concordia Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Concordia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, over 50 million gallons per day (Mgal/d) of water were withdrawn in Concordia Parish, including about 28.7 Mgal/d from groundwater sources and 22.3 Mgal/d from surface-water sources. Withdrawals for agricultural use, composed of livestock, rice irrigation, general irrigation, and aquaculture accounted for about 77 percent (39.2 Mgal/d) of the total water withdrawn. Other categories of use included public supply, power generation, and rural domestic. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2010.

  16. Water resources of Catahoula Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Catahoula Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, 30.01 million gallons per day (Mgal/d) of water were withdrawn in Catahoula Parish, Louisiana, including about 22.63 Mgal/d from groundwater sources and 7.38 Mgal/d from surface-water sources. Withdrawals for agricultural use, composed of aquaculture, general irrigation, livestock, and rice irrigation, accounted for about 93 percent (28.05 Mgal/d) of the total water withdrawn. Other categories of use included public supply and rural domestic. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2000 at 30.99 Mgal/d.

  17. Water resources of the Chad Basin Region

    Directory of Open Access Journals (Sweden)

    Franklyn R. Kaloko

    2013-07-01

    Full Text Available River basin development is seen as a very effective means of improving agricultural productivity. In the Chad Basin area of the Sahelian Zone of the West African Sub-Region, the water resources have been harnessed to ensure viable agricultural programmes for Nigeria. However,the resultant successes have met by many problems that range from physical to socio-economic and of which water losses have been the most threatening. The study has called for the use of Hexa.deconal (C1-OH film on the water surface of the Chad as a means of reducing evaporation.

  18. Global Public Water Education: The World Water Monitoring Day Experience

    Science.gov (United States)

    Araya, Yoseph Negusse; Moyer, Edward H.

    2006-01-01

    Public awareness of the impending world water crisis is an important prerequisite to create a responsible citizenship capable of participating to improve world water management. In this context, the case of a unique global water education outreach exercise, World Water Monitoring Day of October 18, is presented. Started in 2002 in the United…

  19. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  20. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  1. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  2. A review on water pricing problem for sustainable water resource

    Science.gov (United States)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  3. Integrated water resources modelling for assessing sustainable water governance

    Science.gov (United States)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  4. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao;

    2015-01-01

    be the focus in China in future research:More attention need to paid to studying the unified management policy and mechanism of water resources, studying the water resources cycle and transformation under environmental change, studying new methods for water resources carrying capacity and evaluation......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area....... The progress of research on the rational allocation of water resources in irrigation districts both at home and abroad may be summarized in four key aspects of the policy regarding water re?sources management:① The mechanism of water resource cycle and ② Transformation in irrigation district, ③ The water...

  5. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    Directory of Open Access Journals (Sweden)

    Jonny Crocker

    2014-07-01

    Full Text Available Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states, Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  6. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries.

    Science.gov (United States)

    Crocker, Jonny; Bartram, Jamie

    2014-07-18

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  7. Application of Satellite Gravimetry for Water Resource Vulnerability Assessment

    Science.gov (United States)

    Rodell, Matthew

    2012-01-01

    The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.

  8. ``Virtual water'': An unfolding concept in integrated water resources management

    Science.gov (United States)

    Yang, Hong; Zehnder, Alexander

    2007-12-01

    In its broadest sense, virtual water refers to the water required for the production of food commodities. Issues relating to virtual water have drawn much attention in scientific communities and the political sphere since the mid 1990s. This paper provides a critical review of major research issues and results in the virtual water literature and pinpoints the remaining questions and the direction of research in future virtual water studies. We conclude that virtual water studies have helped to raise the awareness of water scarcity and its impact on food security and to improve the understanding of the role of food trade in compensating for water deficit. However, the studies so far have been overwhelmingly concerned with the international food trade, and many solely quantified virtual water flows associated with food trade. There is a general lack of direct policy relevance to the solutions to water scarcity and food insecurity, which are often local, regional, and river basin issues. The obscurity in the conceptual basis of virtual water also entails some confusion. The methodologies and databases of the studies are often crude, affecting the robustness and reliability of the results. Looking ahead, future virtual water studies need to enhance the policy relevance by strengthening their linkages with national and regional water resources management. Meanwhile, integrated approaches taking into consideration the spatial and temporal variations of blue and green water resources availability and the complexity of natural, socioeconomic, and political conditions are necessary in assessing the trade-offs of the virtual water strategy in dealing with water scarcity. To this end, interdisciplinary efforts and quantitative methods supported by improved data availability are greatly important.

  9. WATER RESOURCES AND URBAN PLANNING: THE CASE OF A COASTAL AREA IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Iana Alexandra Alves Rufino

    2009-06-01

    Full Text Available Urban planning requires the integration of several disciplines, among them ones related to water resources. The impacts of urban development on those resources, and viceversa, are well known, but some aspects have not been well characterized in literature. This research analyzes a case that shows interesting relationships between urban planning, its legislation, the evolution of urban occupation and several aspects of water resources: groundwater, surface water, drainage and saltwater intrusion. The research argues for integrated and dynamic planning, monitoring and directive enforcement of the urban processes, including environmental dimension and water resources. Advanced decision support techniques are suggested as tools for supporting this integrated approach.

  10. WATER RESOURCES AND URBAN PLANNING: THE CASE OF A COASTAL AREA IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Iana A. A. Rufino

    2009-01-01

    Full Text Available Urban planning requires the integration of several disciplines, among them ones related to water resources. The impacts of urban development on those resources, and viceversa, are well known, but some aspects have not been well characterized in literature. This research analyzes a case that shows interesting relationships between urban planning, its legislation, the evolution of urban occupation and several aspects of water resources: groundwater, surface water, drainage and saltwater intrusion. The research argues for integrated and dynamic planning, monitoring and directive enforcement of the urban processes, including environmental dimension and water resources. Advanced decision support techniques are suggested as tools for supporting this integrated approach.

  11. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  12. The Water Resources Board: England and Wales’ Venture into National Water Resources Planning, 1964-1973

    Directory of Open Access Journals (Sweden)

    Christine S. McCulloch

    2009-10-01

    Full Text Available An era of technocratic national planning of water resources is examined against the views of a leading liberal economist and critics, both contemporary and retrospective. Post Second World War Labour Governments in Britain failed to nationalise either land or water. As late as 1965, the idea of public ownership of all water supplies appeared in the Labour Party manifesto and a short-lived Ministry of Land and Natural Resources, 1964-1966, had amongst its duties the development of plans for reorganising the water supply industry under full public ownership. However, instead of pursuing such a politically dangerous takeover of the industry, in July 1964, a Water Resources Board (WRB, a special interest group dominated by engineers, was set up to advise on the development of water resources. In its first Annual Report (1965 WRB claimed its role as "the master planner of the water resources of England and Wales". The WRB had a great deal of influence and justified its national planning role by promoting large-scale supply schemes such as interbasin transfers of water, large reservoirs and regulated rivers. Feasibility studies were even carried out for building innovative, large storage reservoirs in tidal estuaries. Less progress was made on demand reduction. Yet the seeds of WRB’s demise were contained in its restricted terms of reference. The lack of any remit over water quality was a fatal handicap. Quantity and quality needed to be considered together. Privatisation of the water industry in 1989 led to a shift from national strategic planning by engineers to attempts to strengthen economic instruments to fit supply more closely to demand. Engineers have now been usurped as leaders in water resources management by economists and accountants. Yet climate change may demand a return to national strategic planning of engineered water supply, with greater democratic input.

  13. Uso do solo e monitoramento dos recursos hídricos no córrego do Ipê, Ilha Solteira, SP Land use and monitoring of water resources of Ipê stream, Ilha Solteira, SP

    Directory of Open Access Journals (Sweden)

    Gilmar O. Santos

    2013-01-01

    Full Text Available O Brasil possui grande potencial hídrico porém com deficiência em termos de monitoramento qualitativo, quantitativo e conhecimento das influências do uso do solo. Assim, realizou-se trabalho com o propósito de apresentar o monitoramento qualitativo e quantitativo das águas para fins de irrigação e as influências ocasionadas pelo uso e ocupação do solo na microbacia do córrego do Ipê, município de Ilha Solteira, São Paulo. O monitoramento qualitativo foi realizado no período de 2006 a 2011 e o quantitativo de 2009 a 2011. Para se constatar as influências utilizou-se a análise de correlação de Pearson. Verificou-se que, em sua maior parte, a microbacia é composta pela cultura de cana-de-açúcar e o maior uso em conflito com as áreas de preservação permanente são as áreas ociosas e de pastagem. A microbacia se caracterizou com altas concentrações de ferro e coliformes originados das áreas de pastagens degradadas e uso irregular e ocupação urbana e rural. As reduzidas áreas de preservação permanente, a má conservação do solo e a expansão das áreas urbanas, implicam na deterioração da qualidade e disponibilidade hídrica, gerando impactos socioeconômico e ambiental para a região.Brazil has great potential of water resources, however, with deficiency in terms of qualitative and quantitative monitoring and knowledge of the influences of land use. So, this study had the purpose of presenting the qualitative and quantitative monitoring of water for irrigation and the influences caused by the use and occupation of land in the watershed of Ipê stream, in the municipality of Ilha Solteira, São Paulo. The qualitative monitoring was conducted from 2006 to 2011 and the quantitative monitoring from 2009 to 2011. In order to evaluate the influences, the Pearson correlation analysis was used. It was found that the watershed is mostly made up by the crop of sugar cane and the use in conflict with areas of permanent

  14. Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities

    Science.gov (United States)

    2017-02-27

    Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities Nicole T. Carter Specialist in Natural Resources Policy...of Engineers: Water Resource Authorizations, Appropriations, and Activities Congressional Research Service Summary The U.S. Army Corps of...congressional attention because its water resource projects can have significant local and regional economic benefits and environmental effects

  15. Dynamic computing resource allocation in online flood monitoring and prediction

    Science.gov (United States)

    Kuchar, S.; Podhoranyi, M.; Vavrik, R.; Portero, A.

    2016-08-01

    This paper presents tools and methodologies for dynamic allocation of high performance computing resources during operation of the Floreon+ online flood monitoring and prediction system. The resource allocation is done throughout the execution of supported simulations to meet the required service quality levels for system operation. It also ensures flexible reactions to changing weather and flood situations, as it is not economically feasible to operate online flood monitoring systems in the full performance mode during non-flood seasons. Different service quality levels are therefore described for different flooding scenarios, and the runtime manager controls them by allocating only minimal resources currently expected to meet the deadlines. Finally, an experiment covering all presented aspects of computing resource allocation in rainfall-runoff and Monte Carlo uncertainty simulation is performed for the area of the Moravian-Silesian region in the Czech Republic.

  16. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State...; and (4) identify a comprehensive approach for efficient management of basin water supplies....

  17. Omaha District Final Cultural Resource Site Monitoring Plan

    Science.gov (United States)

    2014-06-01

    Game , Fish, Parks and Recreation FINAL CULTURAL RESOURCES SITE MONITORING PLAN U.S. ARMY CORPS OF ENGINEERS, OMAHA DISTRICT JUNE 2014 Page | 2...to collect routine monitoring data, which is uploaded into CR-DMS. Pathfinder Office is utilized for pre and post processing of data. Detailed...collecting. The data dictionary is created in Pathfinder office and transferred to the unit. The data dictionary is utilized to collect information

  18. Managing new resources in Arctic marine waters

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Fernandez, Linda; Kaiser, Brooks

    and management of the resource which poses challenges due its nature as a ‘sedentary species’ colonizing the Barents Sea continental shelf shared by Norway and Russia and approaching the fishery protection zone around Svalbard. Conversely, little research has looked into the implications of the invasion partly...... fishery straddling Arctic waters which lends towards different productivity under different management and we delineate acceptable risk levels in order build up a bioeconomic framework that pinpoints the underlying trade-offs. We also address the difficulties of managing the resource under uncertainty......Along with the Arctic’s icy barriers melting which allows species to move northwards, new invasion corridors also arise with the opening of new shipping routes. The Snow Crab in the North West Atlantic is suspected to be a stowaway transferred via ballast water from the North Pacific...

  19. Game theory and shared water resource management

    Science.gov (United States)

    Najafi, H.; Bagheri, A.

    2011-12-01

    Based on the "New Periodic Table" (NPT) of 2×2 order games by Robinson and Goforth (2005) this study explores all possible game structures, representing a conflict over a shared water resource between two countries. Each game is analyzed to find the possible outcomes (equilibria), Pareto-optimal outcomes, as well as dominant strategies of the players. It is explained why in practice, parties may behave in a way, resulting in Pareto-inferior outcomes and how parties may change their behavior with the structural changes of the game. Further, how parties may develop cooperative solutions through negotiations and involvement of third parties. This work provides useful policy insights into shared water resource problems and identifies the likely structure of such games in the future and the evolution path of the games.

  20. Climate change, water resources and child health.

    Science.gov (United States)

    Kistin, Elizabeth J; Fogarty, John; Pokrasso, Ryan Shaening; McCally, Michael; McCornick, Peter G

    2010-07-01

    Climate change is occurring and has tremendous consequences for children's health worldwide. This article describes how the rise in temperature, precipitation, droughts, floods, glacier melt and sea levels resulting from human-induced climate change is affecting the quantity, quality and flow of water resources worldwide and impacting child health through dangerous effects on water supply and sanitation, food production and human migration. It argues that paediatricians and healthcare professionals have a critical leadership role to play in motivating and sustaining efforts for policy change and programme implementation at the local, national and international level.

  1. The Connotation and Extension of Agricultural Water Resources Security

    Institute of Scientific and Technical Information of China (English)

    LIU Bu-chun; MEI Xu-rong; LI Yu-zhong; YANG You-lu

    2007-01-01

    The objective of this study is to define agricultural water resources security and its connotation and extension. The definitions of water security, water resources security, and water environment security were summarized, and their relationship was differentiated and analyzed. Based on these, the elements of the conception of agricultural water resources security were hashed and the conception was defined. Agricultural water resources security is the provision of water resource that ensures protection of agriculture against threat, hazards, destruction, and loss. Moreover, the connotation and extension of agricultural water resources security were ascertained. In detail, the connotation of the definition has natural attributes, socioeconomic attributes, and cultural attributes. The extensions of agricultural water resources security include both broad and narrow ones, as well as, food security, agroenvironmental security, agroeconomic security, rural society security, etc. The definition will serve as the frame of reference for developing the researches, limiting the frame of the theory, and founding a appraising system for agricultural water resources security.

  2. Monitoring the condition of natural resources in US national parks.

    Science.gov (United States)

    Fancy, S G; Gross, J E; Carter, S L

    2009-04-01

    The National Park Service has developed a long-term ecological monitoring program for 32 ecoregional networks containing more than 270 parks with significant natural resources. The monitoring program assists park managers in developing a broad-based understanding of the status and trends of park resources as a basis for making decisions and working with other agencies and the public for the long-term protection of park ecosystems. We found that the basic steps involved in planning and designing a long-term ecological monitoring program were the same for a range of ecological systems including coral reefs, deserts, arctic tundra, prairie grasslands, caves, and tropical rainforests. These steps involve (1) clearly defining goals and objectives, (2) compiling and summarizing existing information, (3) developing conceptual models, (4) prioritizing and selecting indicators, (5) developing an overall sampling design, (6) developing monitoring protocols, and (7) establishing data management, analysis, and reporting procedures. The broad-based, scientifically sound information obtained through this systems-based monitoring program will have multiple applications for management decision-making, research, education, and promoting public understanding of park resources. When combined with an effective education program, monitoring results can contribute not only to park issues, but also to larger quality-of-life issues that affect surrounding communities and can contribute significantly to the environmental health of the nation.

  3. Does Integrated Water Resources Management Support Institutional Change? The Case of Water Policy Reform in Israel

    Directory of Open Access Journals (Sweden)

    Itay Fischhendler

    2010-03-01

    Full Text Available Many international efforts have been made to encourage integrated water resources management through recommendations from both the academic and the aid and development sectors. Recently, it has been argued that integrated water resources management can help foster better adaptation of management and policy responses to emerging water crises. Nevertheless, few empirical studies have assessed how this type of management works in practice and what an integrated water management system implies for institutional adaptation and change. Our assessment of the Israeli water sector provides one view of how they can be shaped by an integrated structure in the water sector. Our analysis of recent efforts to adapt Israel's water management system to new conditions and uncertainties reveals that the interconnectedness of the system and the consensus decision-making process, led by a dominant actor who coordinates and sets the policy agenda, tends to increase the complexity of negotiations. In addition, the physical integration of water management leads to sunk costs of large-scale physical infrastructure. Both these factors create a path dependency that empowers players who receive benefits from maintaining the existing system. This impedes institutional reform of the water management system and suggests that integrated water resources management creates policy and management continuity that may only be amenable to incremental changes. In contrast, real adaptation that requires reversibility and the ability to change management strategies in response to new information or monitoring of specific management outcomes.

  4. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  5. Water Pollution: Monitoring the Source.

    Science.gov (United States)

    Wilkes, James W.

    1980-01-01

    Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)

  6. Geospatial Data Standards for Indian Water Resources Systems

    Science.gov (United States)

    Goyal, A.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2016-12-01

    Sustainable management of water resources is fundamental to the socio-economic development of any nation. There is an increasing degree of dependency on digital geographical data for monitoring, planning, managing and preserving the water resources and environmental quality. But the rising sophistication associated with the sharing of geospatial data among organizations or users, demands development of data standards for seamless information exchange among collaborators. Therefore, due to the realization that these datasets are vital for efficient use of Geographical Information Systems, there is a growing emphasis on data standards for modeling, encoding and communicating spatial data. Real world hydrologic interactions represented in a digital framework requires geospatial standards that may vary in contexts like: governance, resource inventory, cultural diversity, identifiers, role and scale. Though the prevalent standards for the hydrology data facilitate a particular need in a particular context but they lack a holistic approach. However, several worldwide initiatives such as Consortium for the Advancement of Hydrologic Sciences Inc. (USA), Infrastructure for Spatial Information in the European Community (Europe), Australian Water Resources Information System, etc., endeavour to address this issue of hydrology specific spatial data standards in a wholesome manner. But unfortunately there is no such provision for hydrology data exchange within the Indian community. Moreover, these standards somehow fail in providing powerful communication of the spatial hydrologic data. This study thus investigates the shortcomings of the existing industry standards for the hydrologic data models and then demonstrates a set of requirements for effective exchange of the hydrologic information in the Indian scenario.

  7. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    -source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost-effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current...

  8. 40 CFR 141.701 - Source water monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Source water monitoring. 141.701... Monitoring Requirements § 141.701 Source water monitoring. (a) Initial round of source water monitoring... sampling frequency is evenly spaced throughout the monitoring period. (b) Second round of source water...

  9. Sustainable Water Resources in Semiarid Agroecosystems

    Science.gov (United States)

    Reedy, R. C.; Favreau, G.; Gates, J. B.; Mukherjee, A.; Scanlon, B. R.; Zheng, C.

    2009-12-01

    Developing sustainable water resources management in agroecosystems is difficult in semiarid regions with limited or sporadic water inputs and heavy reliance on irrigation. Sustainable water management needs to consider both water quantity and water quality. Conversion of natural ecosystems to rain-fed agroecosystems has increased groundwater recharge in many semiarid regions in Australia, SW US, and W. Africa; however, such changes are not sustainable because rising water tables may ultimately reach the land surface and direct evaporation would cause salinization, as found in dryland salinity in Australia. In addition, increased recharge mobilizes pre-existing salt reservoirs that accumulated in soil profiles over millennia since the previous glaciation in Australia and the SW US. Increased recharge can also mobilize pre-existing nutrient reservoirs to underlying aquifers or create new reservoirs from soil organic nitrogen as in SW US and W. Africa. It is much more difficult to develop sustainable water management in irrigated agroecosystems as shown by water table declines of up to 1 m/yr in the north China Plain and up to 1.4 m/yr in the US High Plains. In addition to mobilizing pre-existing salts, irrigation also adds salts and nutrients to the system through irrigation water and fertilizers as seen in the US High Plains and Rajasthan, India. Various approaches are being considered to make agricultural water management more sustainable. Approaches include switching from rain-fed to groundwater fed irrigated agriculture in the US High Plains to prevent water tables from reaching the land surface, proposed expansion of irrigation with fresh groundwater in west Africa to reduce water tables, deficit irrigation and rotation of irrigation with rain-fed agriculture to reduce overexploitation of aquifers in irrigated areas in the US High Plains and parts of India, improved timing of fertilizer applications to reduce leaching, and consideration of nutrients in

  10. High Impedance Comparator for Monitoring Water Resistivity.

    Science.gov (United States)

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  11. Monitoring eastern Oklahoma lake water quality using Landsat

    Science.gov (United States)

    Barrett, Clay

    The monitoring of public waters for recreational, industrial, agricultural, and drinking purposes is a difficult task assigned to many state water agencies. The Oklahoma Water Resources Board (OWRB) is only physically monitoring a quarter of the lakes it is charged with monitoring in any given year. The minimal sample scheme adopted by the OWRB is utilized to determine long-term trends and basic impairment but is insufficient to monitor the water quality shifts that occur following influx from rains or to detect algal blooms, which may be highly localized and temporally brief. Recent work in remote sensing calibrates reflectance coefficients between extant water quality data and Landsat imagery reflectance to estimate water quality parameters on a regional basis. Remotely-sensed water quality monitoring benefits include reduced cost, more frequent sampling, inclusion of all lakes visible each satellite pass, and better spatial resolution results. The study area for this research is the Ozark foothills region in eastern Oklahoma including the many lakes impacted by phosphorus flowing in from the Arkansas border region. The result of this research was a moderate r2 regression value for turbidity during winter (0.52) and summer (0.65), which indicates that there is a seasonal bias to turbidity estimation using this methodology and the potential to further develop an estimation equation for this water quality parameter. Refinements that improve this methodology could provide state-wide estimations of turbidity allowing more frequent observation of water quality and allow better response times by the OWRB to developing water impairments.

  12. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  13. Monitoring Telluric Water Absorption with CAMAL

    Science.gov (United States)

    Baker, Ashley; Blake, Cullen; Sliski, David

    2017-01-01

    Ground-based observations are severely limited by telluric water vapor absorption features, which are highly variable in time and significantly complicate both spectroscopy and photometry in the near-infrared (NIR). To achieve the stability required to study Earth-sized exoplanets, monitoring the precipitable water vapor (PWV) becomes necessary to mitigate the impact of telluric lines on radial velocity measurements and transit light curves. To address this issue, we present the Camera for the Automatic Monitoring of Atmospheric Lines (CAMAL), a stand-alone, inexpensive 6-inch aperture telescope dedicated to measuring PWV at the Whipple Observatory. CAMAL utilizes three NIR narrowband filters to trace the amount of atmospheric water vapor affecting simultaneous observations with the MINiature Exoplanet Radial Velocity Array (MINERVA) and MINERVA-Red telescopes. We present the current design of CAMAL, discuss our calibration methods, and show PWV measurements taken with CAMAL compared to those of a nearby GPS water vapor monitor.

  14. Water Resource Inventory and Assessment (WRIA) - Port Louisa NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water Resource Inventory and Assessment (WRIA) for Port Louisa NWR, including an inventory, assessment, and summary of water rights, water quantity, water quality,...

  15. Okefenokee National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Resource Inventory and Assessment (WRIA) for Okefenokee National Wildlife Refugesummarizes available information relevant to refuge water resources,...

  16. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.

    Science.gov (United States)

    Sweeney, Michael W; Kabouris, John C

    2016-10-01

    A review of the literature published in 2015 on topics relating to water resource recovery facilities (WRRF) in the areas of modeling, automation, measurement and sensors and optimization of wastewater treatment (or water resource reclamation) is presented.

  17. Quivira National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Quivira NWR describes current hydrologic information, provides an assessment of water resource needs and...

  18. Cape Romain National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes available information relevant to refuge water resources, provides an assessment of refuge water resource needs and issues of concern, and...

  19. Water Resource Inventory and Assessment: Pixley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Pixley National Wildlife Refuge describes hydrologic information, provides an assessment of water resource...

  20. Water Resources Inventory and Assessment: Patuxent Research Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Patuxent Research Refuge describes current hydrologic information, provides an assessment of water resource...

  1. Water resources of Indiana County, Pennsylvania

    Science.gov (United States)

    Williams, D.R.; McElroy, T.A.

    1997-01-01

    Indiana County, west-central Pennsylvania, is a major producer of coal and natural gas. Water managers and residents are concerned about the effects of mining and natural gas exploration on the surface- and ground-water resources of the county. This study assesses the quality and quantity of water in Indiana County. Ground- and surface-water sources are used for public supplies that serve 61 percent of the total population of the county. The remaining 39 percent of the population live in rural areas and rely on cisterns and wells and springs that tap shallow aquifers. Most of the county is underlain by rocks of Middle to Upper Pennsylvanian age. From oldest to youngest, they are the Allegheny Group, the Glenshaw Formation, the Casselman Formation, and the Monongahela Group. Almost all the coals mined are in the Allegheny Group and the Monongahela Group. Ground water in Indiana County flows through fractures in the rock. The size and extent of the fractures, which are controlled by lithology, topography, and structure, determine the sustained yield of wells. Topography has a significant control over the yields of wells sited in the Allegheny Group. Properly sited wells in the Glenshaw Formation may have yields adequate for municipal, commercial, or industrial uses. The Casselman Formation yields adequate amounts of water for domestic use. Yield of the Monongahela Group is small, and the water may not be of suitable quality for most uses. Yields of hilltop wells may be marginal, but valley wells may yield sufficient amounts for large-volume users. Data on the other rock units are sparse to nonexistent. Few wells in the county yield more than 40 gallons per minute. Most of the wells that do are in valleys where alluvial deposits are extensive enough to be mapable. Short-term water-level fluctuations are variable from well to well. Seasonal water-level fluctuations are controlled by time of year and amount of precipitation. The quality of water from the Casselman

  2. INL Cultural Resource Monitoring Report for FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Brenda Ringe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, Christina Liegh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gilbert, Hollie Kae [Idaho National Lab. (INL), Idaho Falls, ID (United States); Holmer, Marie Pilkington [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2015. Throughout the year, 67 total monitoring visits were completed, with several especially sensitive resources visited on more than one occasion. Overall, FY 2015 monitoring included surveillance of the following 49 individual cultural resource localities: three locations with human remains, one of which is also a cave; nine additional caves; twenty prehistoric archaeological sites; five historic archaeological sites; two historic trails; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located at EBR-I; and eight Arco Naval Proving Ground (NPG) property types. Several INL work processes and projects were also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On two occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Finally, the current location housing INL Archives and Special Collections was evaluated once. Most of the cultural resources monitored in FY 2015 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted 13 times. In one case, a portion of a historic trail was graded without prior review or coordination with the INL CRM Office, resulting in impacts to the surface of the trail and one archaeological site. Evidence of unauthorized artifact collection/ looting was also documented at three archaeological sites located along INL powerlines. Federal agents concluded a FY 2012 investigation by filing civil charges and levying fine under the Archaeological Resource Protection Act against one INL employee for this kind

  3. Earth and water resources and hazards in Central America

    Science.gov (United States)

    Cunningham, Charles G.; Fary, R.W.; Guffanti, Marianne; Laura, Della; Lee, M.P.; Masters, C.D.; Miller, R.L.; Quinones-Marques, Ferdinand; Peebles, R.W.; Reinemund, J.A.; Russ, D.P.

    1984-01-01

    Long-range economic development in Central America will depend in large part on production of indigenous mineral, energy, and water resources and on mitigation of the disastrous effects of geologic and hydrologic hazards such as landslides, earthquakes, volcanic eruptions, and floods. The region has six world-class metal mines at present as well as additional evidence of widespread mineralization. Systematic investigations using modern mineral exploration techniques should reveal more mineral deposits suitable for development. Widespread evidence of lignite and geothermal resources suggests that intensive studies could identify producible energy sources in most Central American countries. Water supply and water quality vary greatly from country to country. Local problems of ground- and surface-water availability and of contamination create a need for systematic programs to provide better hydrologic data, capital improvements, and management. Disastrous earthquakes have destroyed or severely damaged many cities in Central America. Volcanic eruptions, landslides, mudflows, and floods have devastated most of the Pacific side of Central America at one time or another. A regional approach to earthquake, volcano, and flood-risk analysis and monitoring, using modern technology and concepts, would provide the facilities and means for acquiring knowledge necessary to reduce future losses. All Central American countries need to strengthen institutions and programs dealing with earth and water resources and natural hazards. Some of these needs may be satisfied through existing or pending projects and technical and economic assistance from U.S. or other sources. The need for a comprehensive study of the natural resources of Central America and the requirements for their development is evident. The U.S. Caribbean Basin Initiative offers both an excellent opportunity for a regional approach to these pervasive problems and an opportunity for international cooperation.

  4. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  5. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  6. Monitoring the waste water of LEP

    CERN Document Server

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  7. Accelerated Capacity Development in Water Resources Education: the experiences of the Ethiopian Institute of Water Resources

    Science.gov (United States)

    Alamirew, T.; Mekonnen, G.; Viglione, A.

    2012-04-01

    Ethiopia recently recognises that the water resources development is the major entry point in poverty alleviation and sustainable development. Water in Ethiopia plays a key role in the Water-Energy-Food-nexus. Over 98% of the electricity in the country is generated using hydropower and yet about 2000 MW has been developed. Out of the 3.5 Mha potentially irrigable land, only 0.25 Mha has been developed to date. Access to drinking water supply coverage is among the lowest in the world. One of the limiting factors in harnessing the resource base is the absence of water professionals to face the fast growing demand in education, research, development in the water sector. Recognising this, in collaboration with University of Connecticut of the United States, Addis Ababa University launched the Ethiopian Institute of Water Resources (EIWR) by enrolling 18 PhD and 24 MSc students. The program is unique in that much of the course instructors are coming from US and European Universities, but deliver courses together with Ethiopian collaborators. This is supposed to facilitate knowledge and experience transfer from the US/EU scientist to Ethiopian counterparts. The theses/dissertations are designed to focus on Ethiopia's immediate hydrological problems on selected basins, and will be coordinated by three advisors for each PhD - one from US/EU, one from Ethiopian Universities, and one water professional from the sector. We report here the lessons learned in setting up the EIWR institute and the education program.

  8. Increasing life expectancy of water resources literature

    Science.gov (United States)

    Heistermann, M.; Francke, T.; Georgi, C.; Bronstert, A.

    2014-06-01

    In a study from 2008, Larivière and colleagues showed, for the field of natural sciences and engineering, that the median age of cited references is increasing over time. This result was considered counterintuitive: with the advent of electronic search engines, online journal issues and open access publications, one could have expected that cited literature is becoming younger. That study has motivated us to take a closer look at the changes in the age distribution of references that have been cited in water resources journals since 1965. Not only could we confirm the findings of Larivière and colleagues. We were also able to show that the aging is mainly happening in the oldest 10-25% of an average reference list. This is consistent with our analysis of top-cited papers in the field of water resources. Rankings based on total citations since 1965 consistently show the dominance of old literature, including text books and research papers in equal shares. For most top-cited old-timers, citations are still growing exponentially. There is strong evidence that most citations are attracted by publications that introduced methods which meanwhile belong to the standard toolset of researchers and practitioners in the field of water resources. Although we think that this trend should not be overinterpreted as a sign of stagnancy, there might be cause for concern regarding how authors select their references. We question the increasing citation of textbook knowledge as it holds the risk that reference lists become overcrowded, and that the readability of papers deteriorates.

  9. Optimality versus stability in water resource allocation.

    Science.gov (United States)

    Read, Laura; Madani, Kaveh; Inanloo, Bahareh

    2014-01-15

    Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an

  10. AOIPS water resources data management system

    Science.gov (United States)

    Merritt, E. S.; Shotwell, R. L.; Place, M. C.; Belknap, N. J.

    1976-01-01

    A geocoded data management system applicable for hydrological applications was designed to demonstrate the utility of the Atmospheric and Oceanographic Information Processing System (AOIPS) for hydrological applications. Within that context, the geocoded hydrology data management system was designed to take advantage of the interactive capability of the AOIPS hardware. Portions of the Water Resource Data Management System which best demonstrate the interactive nature of the hydrology data management system were implemented on the AOIPS. A hydrological case study was prepared using all data supplied for the Bear River watershed located in northwest Utah, southeast Idaho, and western Wyoming.

  11. 21 CFR 868.2450 - Lung water monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung...

  12. Geothermal Energy Resource Development Reporting and Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Arnold

    1977-02-01

    A Monitoring System is described for reporting, in a timely and comprehensive fashion, the important aspects of the development and utilization of geothermal energy in the United States. The Federal program for geothermal energy addresses technological, environmental, institutional, economic and financial problems. The system for monitoring geothermal resource development has been designed to measure progress in developing geothermal energy online and progress in enabling geothermal resources for development, thereby increasing the potential for future exploitation of geothermal resources, as a consequence of successes in the Federal program in solving technological, environmental, institutional, economic and financial problems that currently impede exploitation of geothermal resources. The key indicator of progress in the development of geothermal energy will be ''power online''. Projections of power online will signal deviations from national goals with sufficient warning time to effect corrective action. Correlation of Federal programs with national progress indicators will show where corrective action is needed. Preliminary indicators of geothermal resource development, based on very limited data, are presented. The analyses are illustrative rather than definitive. Some conclusions are drawn from these analyses.

  13. Water resources of the Flint area, Michigan

    Science.gov (United States)

    Wiitala, Sulo Werner; Vanlier, K.E.; Krieger, Robert A.

    1964-01-01

    This report describes the water resources of Genesee County, Mich., whose principal city is Flint. The sources of water available to the county are the Flint and Shiawassee Rivers and their tributaries, inland lakes, ground water, and Lake Huron. The withdrawal use of water in the county in 1958 amounted to about 45 mgd. Of this amount, 36 mgd was withdrawn from the Flint River by the Flint public water-supply system. The rest was supplied by wells. At present (1959) the Shiawassee River and its tributaries and the inland lakes are not used for water supply. Flint River water is used for domestic, industrial, and waste-dilution requirements in Flint. About 60 percent of the water supplied by the Flint public water system is used by Flint industry. At least 30 mgd of river water is needed for waste dilution in the Flint River during warm weather.Water from Holloway Reservoir, which has a storage capacity of 5,760 million gallons, is used to supplement low flows in the Flint River to meet water-supply and waste-dilution requirements. About 650 million gallons in Kearsley Reservoir, on a Flint River tributary, is held in reserve for emergency use. Based on records for the lowest flows during the period 1930-52, the Flint River system, with the two reservoirs in operation, is capable of supplying about 60 mgd at Flint, less evaporation and seepage losses. The 1958 water demands exceeded this amount. Development of additional storage in the Flint River basin is unlikely because of lack of suitable storage sites. Plans are underway to supply Flint and most of Genesee County with water from Lake Huron.The principal tributaries of the Flint River in and near Flint could furnish small supplies of water. Butternut Creek, with the largest flow of those studied, has an estimated firm yield of 0.054 mgd per sq mi for 95 percent of the time. The Shiawassee River at Byron is capable of supplying at least 29 mgd for 95 percent of the time.Floods are a serious problem in Flint

  14. Development of a new risk-based framework to guide investment in water quality monitoring.

    Science.gov (United States)

    Barrington, Dani J; Ghadouani, Anas; Sinang, Som Cit; Ivey, Gregory N

    2014-04-01

    An innovative framework for optimising investments in water quality monitoring has been developed for use by water and environmental agencies. By utilising historical data, investigating the accuracy of monitoring methods and considering the risk tolerance of the management agency, this new methodology calculates optimum water quality monitoring frequencies for individual water bodies. Such information can be applied to water quality constituents of concern in both engineered and natural water bodies and will guide the investment of monitoring resources. Here we present both the development of the framework itself and a proof of concept by applying it to the occurrence of hazardous cyanobacterial blooms in freshwater lakes. This application to existing data demonstrates the robustness of the approach and the capacity of the framework to optimise the allocation of both monitoring and mitigation resources. When applied to cyanobacterial blooms in the Swan Coastal Plain of Western Australia, we determined that optimising the monitoring regime at individual lakes could greatly alter the overall monitoring schedule for the region, rendering it more risk averse without increasing the amount of monitoring resources required. For water resources with high-density temporal data related to constituents of concern, a similar reduction in risk may be observed by applying the framework.

  15. Resources for National Water Savings for Outdoor Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-05-01

    In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (section 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.

  16. Common accounting system for monitoring the ATLAS Distributed Computing resources

    CERN Document Server

    Karavakis, E; The ATLAS collaboration; Campana, S; Gayazov, S; Jezequel, S; Saiz, P; Sargsyan, L; Schovancova, J; Ueda, I

    2014-01-01

    This paper covers in detail a variety of accounting tools used to monitor the utilisation of the available computational and storage resources within the ATLAS Distributed Computing during the first three years of Large Hadron Collider data taking. The Experiment Dashboard provides a set of common accounting tools that combine monitoring information originating from many different information sources; either generic or ATLAS specific. This set of tools provides quality and scalable solutions that are flexible enough to support the constantly evolving requirements of the ATLAS user community.

  17. Frequencies of decision making and monitoring in adaptive resource management

    Science.gov (United States)

    Williams, Byron K.; Johnson, Fred A.

    2017-01-01

    Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both). There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and discuss management

  18. 40 CFR 141.706 - Reporting source water monitoring results.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Reporting source water monitoring... Cryptosporidium Source Water Monitoring Requirements § 141.706 Reporting source water monitoring results. (a) Systems must report results from the source water monitoring required under § 141.701 no later than 10...

  19. Hampton roads regional Water-Quality Monitoring Program

    Science.gov (United States)

    Porter, Aaron J.; Jastram, John D.

    2016-12-02

    IntroductionHow much nitrogen, phosphorus, and suspended solids are contributed by the highly urbanized areas of the Hampton Roads region in Virginia to Chesapeake Bay? The answer to this complex question has major implications for policy decisions, resource allocations, and efforts aimed at restoring clean waters to Chesapeake Bay and its tributaries. To quantify the amount of nitrogen, phosphorus, and suspended solids delivered to the bay from this region, the U.S. Geological Survey has partnered with the Hampton Roads Sanitation District (HRSD), in cooperation with the Hampton Roads Planning District Commission (HRPDC), to conduct a water-quality monitoring program throughout the Hampton Roads region.

  20. Using DNA damage to monitor water environment

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxicological study and environmental risk assessment. In this article, main types of DNA damage caused by pollutants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.

  1. Agricultural Applications for Remotely Sensed Evapotranspiration Data in Monitoring Water Use, Water Quality, and Water Security

    Science.gov (United States)

    Anderson, M. C.; Hain, C.; Gao, F.; Yang, Y.; Sun, L.; Dulaney, W.; Sharifi, A.; Holmes, T. R.; Kustas, W. P.

    2016-12-01

    Across the U.S. and globally there are ever increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers globally, which are being unsustainably depleted due to over-extraction primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water use, water quality and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  2. Applications for remotely sensed evapotranspiration data in monitoring water quality, water use, and water security

    Science.gov (United States)

    Anderson, Martha; Hain, Christopher; Feng, Gao; Yang, Yun; Sun, Liang; Yang, Yang; Dulaney, Wayne; Sharifi, Amir; Kustas, William; Holmes, Thomas

    2017-04-01

    Across the globe there are ever-increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers that are being unsustainably depleted due to over-extraction, primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water quality, water use and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  3. Data processing for water monitoring system

    Science.gov (United States)

    Monford, L.; Linton, A. T.

    1978-01-01

    Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.

  4. Hydrography - MO 2014 Outstanding National Resource Water Watersheds (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains watersheds associated with Missouri's use designations for waters listed in Table D - Outstanding National Resource Waters of the Water...

  5. Water resources of the Yap Islands

    Science.gov (United States)

    Van der Brug, Otto

    1984-01-01

    The Yap Islands consist of four major islands, Yap, Gagil-Tamil, Maap, and Rumung. Of these, Yap Island has more than half the total land area, most of the population, and almost all of the economic development. The islands of Maap and Rumung together compose only 15 percent of the land area and population. Average annual rainfall over the Yap Islands amounts to 122 inches. Rainfall-runoff comparisons indicate that about half of the annual rainfall runs off to the ocean on Yap Island and Gagil-Tamil. Streams on Gagil-Tamil are perennial but streams on Yap Island are dry an average of 3 months per year due to geologic differences. Analyses of water samples from 23 sources show the good quality and the chemical similarity of surface and ground water. This report summarizes the hydrologic data collected and provides interpretations that can be used by the planning and public works officials of Yap to make decisions concerning development and management of their water resources.

  6. Remote Sensing and GIS for Water Resource Decision Making

    Science.gov (United States)

    Stough, T. M.; Scantlin, P.; Granger, S. L.; Geller, G.; Molotch, N. P.; Hyon, J.

    2009-12-01

    Climatological controls on snow distribution and associated cycling of water and energy dictates water availability for sustaining ecosystems and for meeting the demands of the Western US. Over the past 50 years, climate change and associated increases in air temperature have accelerated snowmelt rates throughout the region. Projecting these trends into the coming century, climate and economic models predict decreases in water availability and an associated devaluation of California's agricultural lands by ~15% - an economic loss amounting to billions of dollars annually. Improving knowledge of physical processes related to snow distribution is critical for reducing uncertainty in these predictions and in turn enabling mitigation of impacts through informed environmental policy and efficient resource management. We are collaborating with the Los Angeles Department of Water and Power (LADWP) to incorporate a GIS-based information product that integrates snowpack observations from ground, airborne, and remotely sensed data into their water forecasting process. The central data product is a snow water equivalence (SWE) reconstruction that computes the SWE for the snow maximum for each season of interest (Molotch, 2009). The SWE product is then analyzed in ArcGIS using watersheds (computed using NHD+ hyrography data) that feed stream gauges monitored by LADWP. In this way, we integrate snowpack from multiple sources to develop a GIS-based process for comparing LADWP runoff measurements with estimates from space-based observations. We will present the results of our case study of five watersheds in the Owens Valley for the 2001 through 2007 snow seasons.

  7. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  8. Water resources of south-central Missouri

    Science.gov (United States)

    Gann, E.E.; Harvey, Edward Joseph; Miller, Don E.

    1976-01-01

    This atlas describes hydrology in an area of approximately 23 ,000 sq mi and includes all or parts of 38 counties in Missouri. The area is bounded on the north by the southern edge of the Missouri River flood plain, on the east by the Mississippi River and the Plateaus-Lowlands boundary (Ozark Escarpment), on the south by the Missouri-Arkansas State line, and on the west by the western drainage divides of the Gasconade and White River basins. The alluvial valley of the Missouri River is excluded. Although the populations of several rural counties in the area have declined in recent years, significant population increases have occurred in the vicinity of the two principal population centers, St. Louis in the northeast and Springfield in the southwest. Future population increases are expected to occur as a result of continued urban expansion, increased recreational use of land and water resources, and additional development of the mining industry. (Woodard-USGS)

  9. A comparison between remote sensing approaches to water extent monitoring

    Science.gov (United States)

    elmi, omid; javad tourian, mohammad; sneeuw, nico

    2013-04-01

    Monitoring the variation of water storage in a long period is a primary issue for understanding the impact of climate change and human activities on earth water resources. In order to obtain the change in water volume in a lake and reservoir, in addition to water level, water extent must be repeatedly determined in an appropriate time interval. Optical satellite imagery as a passive system is the main source of determination of coast line change as it is easy to interpret. Optical sensors acquire the reflected energy from the sunlight in various bands from visible to near infrared. Also, panchromatic mode provides more geometric details. Establishing a ratio between visible bands is the most common way of extract coastlines because with this ratio, water and land can be separated directly. Also, since the reflectance value of water is distinctly less than soil in infrared bands, applying a histogram threshold on this band is a effective way of coastline extraction. However, optical imagery is highly vulnerable to occurrence of dense clouds and fog. Moreover, the coastline is hard to detect where it is covered by dense vegetation. Synthetic aperture radar (SAR) as an active system provides an alternative source for monitoring the spatial change in coastlines. Two methods for monitoring the shoreline with SAR data have been published. First, the backscatter difference is calculated between two images acquired at different times. Second, the change in coastline is detected by computing the coherence of two SAR images acquired at different times. A SAR system can operate in all weather, so clouds and fog don't impact its efficiency. Also, it can penetrate into the plant canopy. However, in comparison with optical imagery, interpretation of SAR image in this case is relatively hard because of limitation in the number of band and polarization modes, also due to effects caused by speckle noises, slant-range imaging and shadows. The primary aim of this study is a

  10. Disinfection Tests of MF-2 Disinfectant on Nature Water Resource

    Institute of Scientific and Technical Information of China (English)

    WANG Jinlan; LIU Qingzeng; CUI Ying

    2002-01-01

    Objective To furnish evidence for practical application by examining the disinfection effect of MF - 2 disinfectant on different degree of contaminated water. Methods According to the determining methods of total bacterial count and coli - index of drinking water stimulated by the state conduct the forthwith disinfection experiments and accumulate disinfection experiments. Results Adding the MF - 2 into water resource to specific concentration according with the water resource sanitation criterion stipulated by the sater, after pointed time, it can chang water quality of severe contaminated water and questionable contaminated water into that of clean water, the quality of less contaminated water into that of drinking water. Conclusions MF - 2 disinfectant is applicable for disinfection of nature contaminated water resource in an outlying district and field - operation especially for urgent drinking water disinfection the area where there is neither clean water nor heating condition.

  11. The perceptions of research values and priorities in water resource ...

    African Journals Online (AJOL)

    Abstract. Research has played an important role in water resource management and a consensus on research objectives would increase the efficiency of these practices. ... related to the lack of enforcement or to human resource constraints.

  12. Conservation and maintenance of soil and water resources

    Science.gov (United States)

    Brian G. Tavernia; Mark D. Nelson; Titus S. Seilheimer; Dale D. Gormanson; Charles H. (Hobie) Perry; Peter V. Caldwell; Ge. Sun

    2016-01-01

    Forest ecosystem productivity and functioning depend on soil and water resources. But the reverse is also true—forest and land-use management activities can significantly alter forest soils, water quality, and associated aquatic habitats (Ice and Stednick 2004, Reid 1993, Wigmosta and Burges 2001). Soil and water resources are protected through the allocation of land...

  13. Hydrology and water resources in Caspian Sea

    Science.gov (United States)

    Haddadi Moghaddam, Kourosh

    2016-10-01

    Precipitation is the main driver of the water balance variability of the water over space and time, and changes in precipitation have very important implications for hydrology and water resources. Variations in precipitation over daily, seasonal, annual, and decadal time scales influence hydrological variability over time in a catchment. Flood frequency is affected by changes in the year-to-year variability in precipitation and by changes in short-term rainfall properties. Desiccation of the Caspian Sea is one of the world's most serious ecosystem catastrophes. The Persian Sturgeon (Acipenser persicus) caught under 10 m depth using bottom trawl net by research vessel during winter 2012, summer and winter 2013 and spring 2014 in east, central and west of southern parts of Caspian Sea, then, their diets were investigated. During 136 trawling in the aimed seasons, Persian sturgeon with 1 to 2 years old and 179.67 × 0.2 g (body weight) and 29.97 ± 0.4 cm (Total length) captured. Examination of stomach contents in the sturgeon specimens revealed that the food spectrum was composed of bony fishes (Neogobius sp., Atherina sp. and Clupeonella delicatula), invertebrates belonging to the family Ampharetidae polychaeta worms including (Hypanai sp. and Nereis diversicolor), various crustaceans (Gammarus sp. and Paramysis sp.). Investigation on stomach contents of sturgeon Acipenser persicus caught under 10 m depth in 2012 to 2013 surveys showed that there is significant difference in the consumed food. The most food diversity have been observed in winter 2013, also Polychaeta is the primary consumed food and crustacean is the secondary one (P > 0.05), no new types of food (such as bony fishes or benthics) have been observed on food chain of Acipenser persicus and shows no significant difference (P > 0.05).

  14. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  15. Philippines -- country wide water development projects and funds needed. Water crisis in Manila coincide with parliamentarians seminar on water resources and population.

    Science.gov (United States)

    1997-01-01

    The Philippines' Clean Water Act was developed to protect the country's remaining water resources by institutionalizing mechanisms to monitor, regulate, and control human and industrial activities which contribute to the ongoing environmental degradation of marine and freshwater resources. Approximately 70 participants attended the Philippine Parliamentarians' Conference on Water Resources, Population and Development held December 3-4, 1997, at the Sulo Hotel in Quezon City. Participants included the legislative staff of the members of the House of Representatives and the Senate, Committee Secretaries of the House and Senate, and government and nongovernmental organization officials. Following the opening programs, panel discussions were held on the role of nongovernmental organizations as legitimate monitors of governments' activities; the need to evaluate water sector assessment methods, water policy and strategy, and water legislation standards; and waste water treatment and sewerage systems used in households and industries. The following issues were raised during the conference's open forum: the need to implement new methods in water resource management; the handling of water for both economic and social purposes; the need to implement guidelines, policies, and pricing mechanisms on bottled water; regulating the construction of recreational facilities such as golf courses; and transferring watershed rehabilitation from the Department of Environment and Natural Resources to local water districts. A declaration was prepared and signed by the participants at the close of the conference.

  16. Multi-agent Water Resources Management

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  17. REVIEW OF DEVELOPMENTS IN SPACE REMOTE SENSING FOR MONITORING RESOURCES.

    Science.gov (United States)

    Watkins, Allen H.; Lauer, D.T.; Bailey, G.B.; Moore, D.G.; Rohde, W.G.

    1984-01-01

    Space remote sensing systems are compared for suitability in assessing and monitoring the Earth's renewable resources. Systems reviewed include the Landsat Thematic Mapper (TM), the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), the French Systeme Probatoire d'Observation de la Terre (SPOT), the German Shuttle Pallet Satellite (SPAS) Modular Optoelectronic Multispectral Scanner (MOMS), the European Space Agency (ESA) Spacelab Metric Camera, the National Aeronautics and Space Administration (NASA) Large Format Camera (LFC) and Shuttle Imaging Radar (SIR-A and -B), the Russian Meteor satellite BIK-E and fragment experiments and MKF-6M and KATE-140 camera systems, the ESA Earth Resources Satellite (ERS-1), the Japanese Marine Observation Satellite (MOS-1) and Earth Resources Satellite (JERS-1), the Canadian Radarsat, the Indian Resources Satellite (IRS), and systems proposed or planned by China, Brazil, Indonesia, and others. Also reviewed are the concepts for a 6-channel Shuttle Imaging Spectroradiometer, a 128-channel Shuttle Imaging Spectrometer Experiment (SISEX), and the U. S. Mapsat.

  18. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Science.gov (United States)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  19. Water resources of the Milford area, Utah, with emphasis on ground water

    Science.gov (United States)

    Mower, R.W.; Cordova, R.M.

    1974-01-01

    The investigation of the water resources of the Milford area was made as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The primary purpose of this report is to provide basic hydrologic information needed for the effective administration and adjudication of water rights in the valley.

  20. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  1. Mapping and monitoring renewable resources with space SAR

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  2. Radionuclide Sensors for Subsurface Water Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  3. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  4. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  5. The strategy for improving water-quality monitoring in the United States; final report of the Intergovernmental Task Force on Monitoring Water Quality; technical appendices

    Science.gov (United States)

    ,

    1995-01-01

    The Intergovernmental Task Force on Monitoring Water Quality (ITFM) prepared this report in collaboration with representatives of all levels of government and the private sector. The report recommends a strategy for nationwide water-quality monitoring and technical monitoring improvements to support sound water-quality decisionmaking. The strategy is intended to achieve a better return on public and private investments in monitoring, environmental protection, and natural resources management. It is also designed to expand the base of information useful to a variety of users at multiple geographic scales. Institutional and technical changes are needed to improve water-quality monitoring and to meet the full range of monitoring requirements. Monitoring must be incorporated as a critical element of program planning, implementation, and evaluation. The strategy includes recommendations in many key elements, such as the development of goal-oriented monitoring and indicators, institutional collaboration, and methods comparability. Initial actions have been taken to implement the strategy. Several Federal agencies have jointly purchased and shared remotely sensed land-cover information needed for water assessment. Major agency data systems are using common data-element names and reference tables that will ensure easy sharing of data. A number of States have held meetings with collectors of water information to initiate statewide monitoring strategies. New monitoring guidance has been developed for Federal water-quality grants to States. Many State offices have changed monitoring programs to place emphasis on priority watersheds and to improve assessment of water quality. As the competition increases for adequate supplies of clean water, concerns about public health and the environment escalate, and more demands are placed on the water information infrastructure. To meet these demands, the collaborative approach has already produced benefits, which will continue to grow as

  6. Sampling design for compliance monitoring of surface water quality: A case study in a Polder area

    NARCIS (Netherlands)

    Brus, D.J.; Knotters, M.

    2008-01-01

    International agreements such as the EU Water Framework Directive (WFD) ask for efficient sampling methods for monitoring natural resources. In this paper a general methodology for designing efficient, statistically sound monitoring schemes is described. An important decision is the choice between a

  7. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  8. A stochastic optimization approach for integrated urban water resource planning.

    Science.gov (United States)

    Huang, Y; Chen, J; Zeng, S; Sun, F; Dong, X

    2013-01-01

    Urban water is facing the challenges of both scarcity and water quality deterioration. Consideration of nonconventional water resources has increasingly become essential over the last decade in urban water resource planning. In addition, rapid urbanization and economic development has led to an increasing uncertain water demand and fragile water infrastructures. Planning of urban water resources is thus in need of not only an integrated consideration of both conventional and nonconventional urban water resources including reclaimed wastewater and harvested rainwater, but also the ability to design under gross future uncertainties for better reliability. This paper developed an integrated nonlinear stochastic optimization model for urban water resource evaluation and planning in order to optimize urban water flows. It accounted for not only water quantity but also water quality from different sources and for different uses with different costs. The model successfully applied to a case study in Beijing, which is facing a significant water shortage. The results reveal how various urban water resources could be cost-effectively allocated by different planning alternatives and how their reliabilities would change.

  9. Role of Water Resources in Determining Spatial Planning of Region

    Directory of Open Access Journals (Sweden)

    Alif Noor Anna

    2004-01-01

    Full Text Available In planning a spatial order in a territory , it is necessary to take acount of three aspects of natural resources, human resources, and living environment. Based on the reality, so it is necessary  to think of two sides: potential human resources and environment and human resources. One of the resources that is absolutely needed by creatures is water. Concerning the spatial order, the water is greatly needed in a variety of life. As the other resources, the reserve of the water also get limited. Because of its limitation, it is necessary to control the potential water sources in a territory before determining a design of good spatial order. It means that in planning the spatial order must be based on the rule and regulation of preserving its resource.

  10. Water resource management: a comparative evaluation of Brazil, Rio de Janeiro, the European Union, and Portugal.

    Science.gov (United States)

    Araújo, Ronaldo S; da Gloria Alves, Maria; Condesso de Melo, M Teresa; Chrispim, Zélia M P; Mendes, M Paula; Silva Júnior, Gerson C

    2015-04-01

    This paper presents an overview of water resource management in Brazil, in particular the state of Rio de Janeiro, and in the European Union, with an emphasis on member country Portugal. The study examines the primary laws, governing bodies and water resource plans. The paper describes the concerns and interests of the scientific community and other sectors of society with regard to water resource management. The paper also draws attention to challenges and opportunities concerning the main objective of water resource management, which is to ensure the availability of water of high quality and sustainable quantity. Additionally, it also mentions good and poor management practices. Among the concerns highlighted are integrated water resource management and water resource monitoring. The objective of this study was to contribute to water resource management processes. The primary reasons for this study are the growing scarcity of freshwater in the world, recurrent problems in managing this resource and a desire to contribute to the improvement of the current situation. The study of water management in different contexts allows for a greater understanding of the subject, thereby assisting the decision-making of managers and society in general with regard to environmental quality and ecological and human health. There is an increasing interest in efficient water resource management, which creates a demand for information on the subject. Both Brazil and the European Union are facing problems related to quantity and quality of water. Problems like scarcity of freshwater, contamination, salinization, and floods. This makes the realities of them quite close, despite the physical distance between them. In general, Brazil, Rio de Janeiro, the European Union and Portugal have similar water resource management requirements. If these regions are to supply a consistent quantity of high-quality water to present and future generations, then they need effective laws and plans

  11. Water resources activities of the U.S. Geological Survey in Afghanistan from 2004 through 2014

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Vining, Kevin C.; Amer, Saud A.; Zaheer, Mohammad F.; Medlin, Jack H.

    2014-01-01

    Safe and reliable supply of water, for irrigation and domestic consumption, is one of Afghanistan’s critical needs for the country’s growing population. Water is also needed for mining and mineral processing and the associated business and community development, all of which contribute to the country’s economic growth and stability. Beginning in 2004, U.S. Geological Survey scientists have aided efforts to rebuild Afghanistan’s capacity to monitor water resources, working largely with scientists in the Afghanistan Geological Survey of the Ministry of Mines and Petroleum as well as with scientists in the Afghanistan Ministry of Energy and Water, the Afghanistan Ministry of Agriculture, Irrigation, and Livestock, and nongovernmental organizations in Afghanistan. Considerable efforts were undertaken by the U.S. Geological Survey to compile or recover hydrologic data on Afghanistan’s water resources. These collaborative efforts have assisted Afghan scientists in developing the data collection networks necessary for improved understanding, managing these resources, and monitoring critical changes that may affect future water supplies and conditions. The U.S. Geological Survey, together with Afghan scientists, developed a regional groundwater flow model to assist with water resource planning in the Kabul Basin. Afghan scientists are now independently developing the datasets and conducting studies needed to assess water resources in other population centers of Afghanistan.

  12. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  13. Integrated water resource planning in the city of Cape Town

    African Journals Online (AJOL)

    driniev

    Demand Management Strategy and Policy which was officially adopted and ... how to initiate an integrated resource planning approach. .... Free basic water of 6Kl per ... water week activities, marketing at the World Summit, the Schools.

  14. Water Resources Inventory and Assessment: Montezuma National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Montezuma National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  15. Water Resources Inventory and Assessment: Cape May National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Cape May National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  16. Water Resource References: Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Reports and publications relevant to the CCNWR Water Resource Inventory and Assessment. List of references involving water quality and/or quantity data that directly...

  17. Water Resource Inventory and Assessment: Ruby Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Ruby Lake National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  18. Overview of water resource assessment in South Africa: Current ...

    African Journals Online (AJOL)

    is essential to planners and designers of water supply schemes and those ... Particular emphasis is given to the evolution of the computer as an ... we now call the historical firm yield. ..... In their article, Strategic planning for water resources in.

  19. Hydrography - MO 2013 Outstanding Resource Waters - Rivers and Streams (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains Missouri's Outstanding State Resource Waters - Rivers and Streams listed in Table E of the Water Quality Standards rule as published in...

  20. Hydrography - MO 2013 Outstanding National Resource Waters (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains Missouri's Outstanding National Resource Waters listed in Table D of the Water Quality Standards rule as published in the Code of State...

  1. Hydrography - MO 2013 Outstanding Resource Waters - Marshes (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains Missouri's Outstanding State Resource Waters - Marshes listed in Table E of the Water Quality Standards rule as published in the Code of...

  2. Cache River National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) for Cache River National Wildlife Refuge summarizes available and relevant information for refuge water...

  3. Water resources of the Menominee Indian Reservation of Wisconsin

    Science.gov (United States)

    Krohelski, J.T.; Kammerer, P.A.; Conlon, Terrence D.

    1994-01-01

    Water resources of the Menominee Indian Reservation, Wisconsin, were investigated during the period October 1981 through September 1987. The report presents baseline data and some interpretation of ground- and surface-water hydrology and quality of the Reservation.

  4. Initial Survey Instructions for Spring Water Monitoring : Quality

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for 1.04 spring water monitoring (quality) and 1.06 management unit water monitoring (quality) at Fish Springs National Wildlife Refuge....

  5. Manage water resources allocation and water use in the Susquehanna River Basin with a GIS-based model

    Science.gov (United States)

    Zhang, Z.; Balay, J.

    2012-12-01

    Water supply is one of the priority management areas of the Susquehanna River Basin Commission. The desired results of the water supply is to meet immediate and future water needs of the people of the basin, in order to maintain sustainable economic viability, protect instream uses, and ensure ecological diversity. In this study, a GIS-based model is designed and developed to assist water resource planning and management in the Susquehanna River Basin. A comprehensive basin-wide water use geographic database is compiled by integrating reported/approved water use and estimated water use if no monitoring data is available, such as agriculture water use. Then water availability at each WBD10 watersheds within the Susquehanna River Basin are then determined based on the ecosystem flow needs and acceptable hydrologic alternation. A GIS-based basin-wide model integrates the water use and water availability and couples with a module that allows iterative evaluation of water resources management alternatives. The model is capable of quantification and graphic presentation of water use and availability at various spatial scale and performance of spatial analysis and scenario analysis to aid in determining optimized water resources management.

  6. Drought Characterisation and the Application of Indices in UK Water Resource Management

    Science.gov (United States)

    Lennard, Amy; Macdonald, Neil

    2016-04-01

    Drought is a complex phenomenon, occurring in most climatic zones, including both high and low rainfall regions. Recent drought events (2004-2006 & 2010-2012) in the UK have highlighted a continued vulnerability to this hazard. The period 2010-2012 was characterised by departures from typical seasonal climatic conditions, resulting in a severe drought, which had a significant impact on water resources in parts of the UK. Recent droughts highlight the need for better understanding of extreme drought events, particularly from a water resource perspective. The UK has a wealth of long climate series that are under used for water resource management planning. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the application of these metrics for operational water resource management needs further investigation, particularly links between meteorological drought indices, streamflow, groundwater and water supply systems. This work uses standardised drought indices to investigate the propagation from meteorological drought to hydrological drought using observed data from rivers, aquifers and reservoirs 2013 within a 21,000km2 water supply region serving 7.4 million people. In order to develop a better understanding of the links between drought indices and observed drought impacts. Exploring how meteorological drought indicators link to the water supply region helps build an understanding of their utility for water resource management.

  7. Continuous monitoring of plant water potential.

    Science.gov (United States)

    Schaefer, N L; Trickett, E S; Ceresa, A; Barrs, H D

    1986-05-01

    Plant water potential was monitored continuously with a Wescor HR-33T dewpoint hygrometer in conjunction with a L51 chamber. This commercial instrument was modified by replacing the AC-DC mains power converter with one stabilized by zener diode controlled transistors. The thermocouple sensor and electrical lead needed to be thermally insulated to prevent spurious signals. For rapid response and faithful tracking a low resistance for water vapor movement between leaf and sensor had to be provided. This could be effected by removing the epidermis either by peeling or abrasion with fine carborundum cloth. A variety of rapid plant water potential responses to external stimuli could be followed in a range of crop plants (sunflower (Helianthus annuus L., var. Hysun 30); safflower (Carthamus tinctorious L., var. Gila); soybean (Glycine max L., var. Clark); wheat (Triticum aestivum L., var. Egret). These included light dark changes, leaf excision, applied pressure to or anaerobiosis of the root system. Water uptake by the plant (safflower, soybean) mirrored that for water potential changes including times when plant water status (soybean) was undergoing cyclical changes.

  8. EPA's Safe and Sustainable Water Resources Research Program: Water Systems Research

    Science.gov (United States)

    Water systems challenged by limited resources, aging infrastructure, shifting demographics, climate change, and extreme weather events need transformative approaches to meet public health and environmental goals, while optimizing water treatment and maximizing resource recovery a...

  9. The Water Resources Council's Principles and Standards for Planning Water and Related Land Resources Projects were established in response to the Water Resources Planning Act

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The overall purpose of water and land resource planning is to promote the quality of life by reflecting society's preferences for attainment of the objectives...

  10. The water footprint and its relationship with the virtual water: nuances of the water resources commodification

    Directory of Open Access Journals (Sweden)

    Jairo Bezerra Silva

    2014-03-01

    Full Text Available The aim of this article is to examine how the concepts of water footprint and virtual water articulate themselves under an ideological matrix which has been justified by alleged situations of global hydric resources scarcity. Due to the idea of an increasing shortage of water in the world, new discourses on that subject promote strategies to solve the alleged global water crisis without focusing on deep material and cultural changes. We discuss here the nuances of the international agenda for the hydric resources field, which is based in the general idea according to which in order to face the water scarcity, large international corporations should control their increasing need of water using methodologies to calculate the amount they should use as those of water footprint and virtual water.JEL-Code | O13; Q25; Q56.

  11. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  12. Water pricing towards sustainability of water resources: A case study in Beijing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The role of water pricing for managing water resources iswidely recognized in many areas of the world because of theincreasing scarcity of water resources, a high competition betweenwater uses and environmental degradation. Based on the analysis ofcost of water, this paper explores which types of cost should bereflected in the water pricing enhancing the sustainability ofwater resources. The principle of full cost pricing in which thecost should include supply cost, opportunity cost and externalitiesis proposed as a means to achieve the sustainability of waterresources. In a case study of Beijing, low water price is analyzedas one reason for unsustainable water consumption. Thus waterpricing justified is necessary and pressing. It is proposed tojustify water price in phased manner and eventually towards fullcost pricing. The assessment of impacts on water resources byraising water price shows water pricing could alleviate the conflict between water supply and demand. This paper concludes thatwater pricing can play an effective role in enhancing thesustainability of water resources in Beijing.

  13. 40 CFR 130.4 - Water quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1.../quality control guidance. (b) The State's water monitoring program shall include collection and analysis...

  14. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  15. The Wealth of Water: The Value of an Essential Resource

    Science.gov (United States)

    Rathburn, Melanie K.; Baum, Karina J.

    2011-01-01

    Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…

  16. The Wealth of Water: The Value of an Essential Resource

    Science.gov (United States)

    Rathburn, Melanie K.; Baum, Karina J.

    2011-01-01

    Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…

  17. Emergence of Integrated Water Resources Management: measuring implementation in Vietnam

    NARCIS (Netherlands)

    Akkerman, M.; Khanh, N.T.; Witter, M.; Rutten, M.M.

    2015-01-01

    Recently, the changes in laws and regulations, such as the revised Law on Water Resources in 2012, have sought to provide a legal framework for the internationally recognized practices of Integrated Water Resources Management (IWRM) in Vietnam. With IWRM being a novel approach for Vietnam, it would

  18. Developing Economic Arrangements for Water Resources Management : The potential of stakeholder oriented Water Valuation

    NARCIS (Netherlands)

    Hermans, L.M.; Halsema, van G.E.; Renault, D.

    2006-01-01

    As water is increasingly recognized as a scarce resource, the use of economic arrangements for water resources management seems increasingly promising. Experiences show that economic arrangements can contribute to a more efficient use of water resources but only if specific conditions are met, relat

  19. A water quality monitoring network design using fuzzy theory and multiple criteria analysis.

    Science.gov (United States)

    Chang, Chia-Ling; Lin, You-Tze

    2014-10-01

    A proper water quality monitoring design is required in a watershed, particularly in a water resource protected area. As numerous factors can influence the water quality monitoring design, this study applies multiple criteria analysis to evaluate the suitability of the water quality monitoring design in the Taipei Water Resource Domain (TWRD) in northern Taiwan. Seven criteria, which comprise percentage of farmland area, percentage of built-up area, amount of non-point source pollution, green cover ratio, landslide area ratio, ratio of over-utilization on hillsides, and density of water quality monitoring stations, are selected in the multiple criteria analysis. The criteria are normalized and weighted. The weighted method is applied to score the subbasins. The density of water quality stations needs to be increased in priority in the subbasins with a higher score. The fuzzy theory is utilized to prioritize the need for a higher density of water quality monitoring stations. The results show that the need for more water quality stations in subbasin 2 in the Bei-Shih Creek Basin is much higher than those in the other subbasins. Furthermore, the existing water quality station in subbasin 2 requires maintenance. It is recommended that new water quality stations be built in subbasin 2.

  20. GNSS-Reflectometry based water level monitoring

    Science.gov (United States)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  1. Monitoring Continental Water Mass Variations by GRACE

    Science.gov (United States)

    Mercan, H.; Akyılmaz, O.

    2015-12-01

    The low-low satellite-to-satellite tracking mission GRACE (Gravity Recovery And Climate Experiment), launched in March 2002, aims to determine Earth's static gravity field and its temporal variations. Geophysical mass changes at regional and global scale, which are related with terrestrial water bodies, ocean and atmosphere masses, melting and displacements of ice sheets and tectonic movements can be determined from time-dependent changes of the Earth's gravity field. In this study, it is aimed to determine total water storage (TWS) (soil moisture, groundwater, snow and glaciers, lake and river waters, herbal waters) variations at different temporal and spatial resolution, monitoring the hydrologic effect causing time-dependent changes in the Earth's gravity field by two different methods. The region between 30°-40° northern latitudes and 36°-48° eastern longitudes has been selected as a study area covering the Euphrates - Tigris basin. TWS maps were produced with (i) monthly temporal and 400 km spatial resolution, based on monthly mean global spherical harmonic gravity field models of GRACE satellite mission (L2), and with (ii) monthly and semi-monthly temporal and spatial resolution as fine as 200 km based on GRACE in-situ observations (L1B). Decreasing trend of water mass anomalies from the year 2003 to 2013 is proved by aforesaid approaches. Monthly TWS variations are calculated using two different methods for the same region and time period. Time series of both solutions are generated and compared.

  2. Application of Stochastic Cooperative Games in Water Resources

    OpenAIRE

    Zara, Stefano; Patrone, Fioravante; Moretti, Stefano; Dinar, Ariel

    2006-01-01

    Traditionally, cooperative game theory has been applied to a variety of water resource problems assuming a deterministic pattern of supply. On the other hand, in view of the important role that water plays in regional and local projects, and taking into account that with climate change affecting the water cycle, the world is expected to face more stochastic and extreme events of water supply, incorporating stochastic consideration of water supply becomes more acute in designing water faciliti...

  3. Climate change and mountain water resources: overview and recommendations for research, management and politics

    Directory of Open Access Journals (Sweden)

    D. Viviroli

    2010-05-01

    Full Text Available Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered from anticipated climate change. How well do we understand these changes today, and what are implications for water resources management and for policy?

    With these questions in mind, a dozen researchers – most of them with experience in collaborating with water managers – from around the world assembled for a workshop in Göschenen, Switzerland on 16–19 September 2009 by invitation of the Mountain Research Initiative (MRI. Their goal was to develop an up-to-date overview of mountain water resources and climate change and to identify pressing issues with relevance for science and society.

    This special issue of Hydrology and Earth System Sciences assembles contributions providing insight into climate change and water resources for selected case-study mountain regions from around the world. The present introductory article is based on analysis of these regions and on the workshop discussions. We will give a brief overview of the subject (Sect. 1, introduce the case-study regions (Sect. 2 and examine the state of knowledge regarding the importance of water supply from mountain areas for water resources in the adjacent lowlands and anticipated climate change impacts (Sect. 3. From there, we will identify research and monitoring needs (Sect. 4, make recommendations for research, water resources management and policy (Sect. 5 and finally draw conclusions (Sect. 6.

  4. Water quality monitoring and data collection in the Mississippi sound

    Science.gov (United States)

    Runner, Michael S.; Creswell, R.

    2002-01-01

    The United States Geological Survey and the Mississippi Department of Marine Resources are collecting data on the quality of the water in the Mississippi Sound of the Gulf of Mexico, and streamflow data for its tributaries. The U.S. Geological Survey is collecting continuous water-level data, continuous and discrete water-temperature data, continuous and discrete specific-conductance data, as well as chloride and salinity samples at two locations in the Mississippi Sound and three Corps of Engineers tidal gages. Continuous-discharge data are also being collected at two additional stations on tributaries. The Mississippi Department of Marine Resources collects water samples at 169 locations in the Gulf of Mexico. Between 1800 and 2000 samples are collected annually which are analyzed for turbidity and fecal coliform bacteria. The continuous data are made available real-time through the internet and are being used in conjunction with streamflow data, weather data, and sampling data for the monitoring and management of the oyster reefs, the shrimp fishery and other marine species and their habitats.

  5. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    Directory of Open Access Journals (Sweden)

    Radoslaw Guzinski

    2014-08-01

    Full Text Available The Water Observation and Information System (WOIS is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO data. The WOIS has been developed by, among others, the authors of this paper under the TIGER-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements of the participating key African water authorities, and demonstrated with dedicated case studies utilizing the software in operational scenarios. They cover a wide range of themes and information products, including basin-wide characterization of land and water resources, lake water quality monitoring, hydrological modeling and flood forecasting and mapping. For each monitoring task, step-by-step workflows were developed, which can either be adjusted by the user or largely automatized to feed into existing data streams and reporting schemes. The WOIS enables African water authorities to fully exploit the increasing EO capacity offered by current and upcoming generations of satellites, including the Sentinel missions.

  6. Vegetation plays an important role in mediating future water resources

    Science.gov (United States)

    Ukkola, A. M.; Keenan, T. F.; Kelley, D. I.; Prentice, I. C.

    2016-09-01

    Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. We show surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmospheric CO2) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified by CO2-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections.

  7. Learning about water resource sharing through game play

    Science.gov (United States)

    Ewen, Tracy; Seibert, Jan

    2016-10-01

    Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  8. Albemarle Sound demonstration study of the national monitoring network for US coastal waters and their tributaries

    Science.gov (United States)

    Michelle Moorman; Sharon Fitzgerald; Keith Loftin; Elizabeth Fensin

    2016-01-01

    The U.S. Geological Survey’s (USGS) is implementing a demonstration project in the Albemarle Sound for the National Monitoring Network for U.S. coastal waters and their tributaries. The goal of the National Monitoring Network is to provide information about the health of our oceans and coastal ecosystems and inland influences on coastal waters for improved resource...

  9. Water resources of West Baton Rouge Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-11-23

    Information concerning the availability, use, and quality of water in West Baton Rouge Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  10. Water resources investigations in Mississippi, 1984-85

    Science.gov (United States)

    Lamonds, A.G.; Moss, Carol

    1984-01-01

    This report describes the activities of the Water Resources Division in Mississippi. It summarizes progress made in water-resources investigations and related activities in the current fiscal year ending September 30, 1984, and outlines the work to be accomplished during the fiscal year ending September 30, 1985. Its specific purpose is to inform cooperating State, local, and other Federal agencies about all activities of this Division in water investigations in Mississippi and to give those cooperators a better understanding of how their participation fits into the total USGS program of water resources investigations. (USGS)

  11. Water Resource Dynamics in Asian Pacific Cities

    OpenAIRE

    Berk, Richard; Rothenberg, Sarah

    2003-01-01

    Adequate water supplies are an obvious necessity for the health of cities and their residents. Water is used for drinking, hygiene, cleaning, waste disposal, irrigation, transportation, and a host of industrial processes. Yet, projections of the match between the demand for water and supply of water are grim (Lettenmaier et al. 1999; Gleick, 2000; HELP Task Force, 2000, Cosgrove and Rijsberman, 2000, Aldhous, 2003). For example, Jakarta and Bangkok may not be able to meet water demand within ...

  12. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    of the growing demand for water to irrigation, industrial and domestic uses. As a response, the Chinese authorities have launched the 2011 No. 1 Central Policy Document, which set targets related to water scarcity and water quality and marks the first step towards sustainable management of the Chinese water...... resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...... basin-wide costs of water supply and water curtailment. Water users are characterized by water demand and economic value, turning the complex water management problem into a single objective cost minimization problem. The physical system and management scenarios are represented as constraints...

  13. Rate Predictions and Trigger/DAQ Resource Monitoring in ATLAS

    CERN Document Server

    Schaefer, D M; The ATLAS collaboration

    2012-01-01

    Since starting in 2010, the Large Hadron Collider (LHC) has pro- duced collisions at an ever increasing rate. The ATLAS experiment successfully records the collision data with high eciency and excel- lent data quality. Events are selected using a three-level trigger system, where each level makes a more re ned selection. The level-1 trigger (L1) consists of a custom-designed hardware trigger which seeds two higher software based trigger levels. Over 300 triggers compose a trig- ger menu which selects physics signatures such as electrons, muons, particle jets, etc. Each trigger consumes computing resources of the ATLAS trigger system and oine storage. The LHC instantaneous luminosity conditions, desired physics goals of the collaboration, and the limits of the trigger infrastructure determine the composition of the ATLAS trigger menu. We describe a trigger monitoring frame- work for computing the costs of individual trigger algorithms such as data request rates and CPU consumption. This framework has been used...

  14. Monitoring of computing resource utilization of the ATLAS experiment

    CERN Document Server

    Rousseau, D; The ATLAS collaboration; Vukotic, I; Aidel, O; Schaffer, RD; Albrand, S

    2012-01-01

    Due to the good performance of the LHC accelerator, the ATLAS experiment has seen higher than anticipated levels for both the event rate and the average number of interactions per bunch crossing. In order to respond to these changing requirements, the current and future usage of CPU, memory and disk resources has to be monitored, understood and acted upon. This requires data collection at a fairly fine level of granularity: the performance of each object written and each algorithm run, as well as a dozen per-job variables, are gathered for the different processing steps of Monte Carlo generation and simulation and the reconstruction of both data and Monte Carlo. We present a system to collect and visualize the data from both the online Tier-0 system and distributed grid production jobs. Around 40 GB of performance data are expected from up to 200k jobs per day, thus making performance optimization of the underlying Oracle database of utmost importance.

  15. Monitoring of computing resource utilization of the ATLAS experiment

    Science.gov (United States)

    Rousseau, David; Dimitrov, Gancho; Vukotic, Ilija; Aidel, Osman; Schaffer, Rd; Albrand, Solveig

    2012-12-01

    Due to the good performance of the LHC accelerator, the ATLAS experiment has seen higher than anticipated levels for both the event rate and the average number of interactions per bunch crossing. In order to respond to these changing requirements, the current and future usage of CPU, memory and disk resources has to be monitored, understood and acted upon. This requires data collection at a fairly fine level of granularity: the performance of each object written and each algorithm run, as well as a dozen per-job variables, are gathered for the different processing steps of Monte Carlo generation and simulation and the reconstruction of both data and Monte Carlo. We present a system to collect and visualize the data from both the online Tier-0 system and distributed grid production jobs. Around 40 GB of performance data are expected from up to 200k jobs per day, thus making performance optimization of the underlying Oracle database of utmost importance.

  16. Assessment of the Physicochemical Quality of Drinking Water Resources in the Central Part of Iran.

    Science.gov (United States)

    Nikaeen, Mahnaz; Shahryari, Ali; Hajiannejad, Mehdi; Saffari, Hossein; Kachuei, Zahra Moosavian; Hassanzadeh, Akbar

    2016-01-01

    The aim of the study described in this article was to assess the physicochemical quality of water resources in Isfahan province, located in the central part of Iran, from June to November 2012. Comparison of the results with the acceptable limits recommended by the World Health Organization (WHO) for drinking water showed that nitrate, chloride, iron, and fluoride concentrations exceeded the maximum acceptable level in 12.3%, 9.2%, 6.8%, and 1.5% of samples, respectively. Total dissolved solids (TDS) and turbidity values also exceeded the maximum acceptable level in 9.2% and 3.1% of samples, respectively. In general, the quality of drinking water resources in the central part of Iran at present is mostly acceptable and satisfactory. It may be deteriorated in the future, however, because water quantity and quality in arid and semiarid areas are highly variable over time. Therefore, continued monitoring of the water resources quality is extremely important to environmental safety.

  17. Treatment of petroleum-contaminated water resources: modern techniques

    Science.gov (United States)

    Pogharnitskaya, O. V.; Konovalov, V. V.; Dmitrieva, N. V.; Belozerova, D. S.; Strelnikova, A. B.

    2016-09-01

    The article deals with the issue of petroleum-contaminated water resources. The authors have analyzed the dynamics of oil spills, including the world's largest ones, and claimed the issue to be global. The modern methods of mitigating oil spill effects have been studied, as well as the modern techniques of water resource treatment. The particular attention is paid to peat sorbent production, which is considered a promising trend of petroleum- contaminated water treatment.

  18. Treatment of petroleum-contaminated water resources: modern techniques

    OpenAIRE

    Pozharnitskaya, Olga Vyacheslavovna; Konovalov, Vyacheslav Vasilievich; N. V. Dmitrieva; Belozerova, D. S.; Strelnikova, A. B.

    2016-01-01

    The article deals with the issue of petroleum-contaminated water resources. The authors have analyzed the dynamics of oil spills, including the world's largest ones, and claimed the issue to be global. The modern methods of mitigating oil spill effects have been studied, as well as the modern techniques of water resource treatment. The particular attention is paid to peat sorbent production, which is considered a promising trend of petroleum- contaminated water treatment.

  19. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    Science.gov (United States)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  20. Land, water and mineral resources in science education

    Energy Technology Data Exchange (ETDEWEB)

    Graves, N.J.

    1987-01-01

    This volume, the fourth in a nine-volume series concerned with different aspects of science education at all levels, examines the value of teaching about natural resources; the content areas which might be included; and the teaching strategies that may be appropriate. Contents (partial): Preface; Introduction; Education for the use of land, water and mineral resources; Land Use; Viewpoint; Land use: its human uses; Environmental deterioration; Using local resources; Soil and land: activity module for the primary level; Water Resources; Possible activities; Water and health for the primary level; Sewage; Mineral Resources; Types of minerals, their uses and identification; Traditional prospecting; Techniques of mineral exploration; Student activities; Mining and processing; The impact of mineral resource development.

  1. Evolutionary multiobjective optimization in water resources: The past, present, and future

    Science.gov (United States)

    Reed, P. M.; Hadka, D.; Herman, J. D.; Kasprzyk, J. R.; Kollat, J. B.

    2013-01-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with four or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are given for the new algorithms that should serve as the benchmarks for innovations in the water resources literature. The future of MOEAs in water resources needs to emphasize self-adaptive search, new technologies for visualizing tradeoffs, and the next generation of computing technologies.

  2. Monitoring and modeling of microbial and biological water quality

    Science.gov (United States)

    Microbial and biological water quality informs on the health of water systems and their suitability for uses in irrigation, recreation, aquaculture, and other activities. Indicators of microbial and biological water quality demonstrate high spatial and temporal variability. Therefore, monitoring str...

  3. Service Water and Impoundment Monitoring Database (SWIM1)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Service Water and Impoundment Monitoring (SWIM1) database was developed for the purpose of managing water level and water quality (salinity) data for areas...

  4. Service Water and Impoundment Monitoring Database (SWIM2)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Service Water and Impoundment Monitoring (SWIM2) database was developed for the purpose of managing water level and water quality (salinity) data for areas...

  5. Water resource management and the poor

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Schoengold, K.; Zilberman, D.

    2008-01-01

    Water allocations as well as water quality and health concerns are often due to inadequate policies and institutions, which pose major challenges for policy reform. The necessary ingredients of such reform include four elements: rules to improve the decision-making process about water projects, prin

  6. Water resource management and the poor

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Schoengold, K.; Zilberman, D.

    2008-01-01

    Water allocations as well as water quality and health concerns are often due to inadequate policies and institutions, which pose major challenges for policy reform. The necessary ingredients of such reform include four elements: rules to improve the decision-making process about water projects,

  7. Evaluating participation in water resource management: A review

    Science.gov (United States)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  8. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  9. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    Science.gov (United States)

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  10. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Rachel Peletz

    2016-03-01

    Full Text Available Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies, served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05. Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  11. Water resources of Taos County, New Mexico

    Science.gov (United States)

    Garrabrant, Lynn A.

    1993-01-01

    In Taos County, ground water generally is unconfined and moves toward the Rio Grande or perennial streams. Water quality is good except in some areas where water has high values of specific conductance and hardness and contains high concentrations of dissolved solids and fluoride. Most wells are completed in alluvial sediments of Quaternary and Tertiary age in the Costilla Plains. A few wells are completed in basalt of the Taos Plateau and in alluvium of stream channels in the Sangre de Cristo Mountains. Depths to water in wells range from less than 1 to 1,080 feet below land surface. Well yields range from 1 to 3,000 gallons per minute. Water levels in wells in Sunshine Valley dropped 5 to 50 feet between 1955 and 1970. Ground-water irrigation has since declined and water levels have risen. Surface-water records show the county is a net producer of water. The average discharge gained in the Rio Grande as it flows through the county was 271,700 acre-feet per year for water years 1931-89. The highest mean monthly discharge occurs in May or June due to snowmelt runoff. Water quality ranges from good in upstream reaches to fair in lower reaches. Surface water was the source for 93 percent of water withdrawn in 1990, but ground water was used for all public supply, domestic, and industrial purposes. The largest water use is irrigation. About 28,500 acres were irrigated in 1990; alfalfa, native pasture, and planted pasture accounted for 91 percent of this acreage.

  12. Water Resource Management in Thailand: An Economic Perspective

    OpenAIRE

    Kaosa-ard, Mingsarn

    1996-01-01

    In Thailand, water is life. Recently however, water has been more associated with conflict and problems, both natural and manmade, from drought to floods to dams to pollution. This paper investigates two major problems related to the management of water resources, dry-season allocation and water quality. In Thailand, water allocation has been considered an administrative problem and solutions have largely been supply- oriented. Economic instruments have not been used to solve them. In dealing...

  13. How to monitor and adjust in real time the total water consumption and water use efficiency: Earned value method

    Science.gov (United States)

    Du, Zhong; Dong, Zengchuan; Wu, Huixiu; Yang, Lin

    2017-03-01

    The evaluation indexes of total water consumption and water use efficiency have the characteristics of post feedback. In this paper we introduce the basic concept and specific theory of Earned value method (EVM) from project management, and reconstruct parameters in the method to adapt to water resources monitoring. The case of Dandong was studied, by analyzing the industry and irrigation water utilization. Although the total water consumption of two aspects reaches standards, the industrial added value and water use efficiency of irrigation are not up to standard. The results show that PV can be used as a baseline for real-time monitoring and adjustment, and the advantage of the EVM is that it can be an organic unity of water consumption and efficiency, so we can analyze comprehensively water utilization process.

  14. Guidelines for use of water-quality monitors

    Science.gov (United States)

    Gordon, A. Brice; Katzenbach, Max S.

    1983-01-01

    This manual contains methods and procedures used by the U.S. Geological Survey (USGS) for collecting specific conductance, dissolved oxygen, water temperature, and pH data for ground water, streams, lakes, reservoirs, and estuaries by means of permanently installed, continuously recording, water quality monitors. The topics discussed include the selection of monitoring sites, selection and installation of shelters and equipment, and standard methods of calibration, operation and maintenance of water-quality monitors.

  15. Climate change and mountain water resources: overview and recommendations for research, management and policy

    Directory of Open Access Journals (Sweden)

    D. Viviroli

    2011-02-01

    Full Text Available Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy.

    After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields.

    We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction.

  16. Theory and model of water resources complex adaptive allocation system

    Institute of Scientific and Technical Information of China (English)

    ZHAOJianshi; WANGZhongjing; WENGWenbin

    2003-01-01

    Complex adaptive system theory is a new and important embranchment of system science,which provides a new thought to research water resources allocation system.Based on the analysis of complexity and complex adaptive mechanism of water resources allocation system,a fire-new analysis model is presented in this paper.With the description of Dynamical mechanism of system,behavior characters of agents and the evalustion method of system status,an integrity research system is built to analyse the evolvement rule of water resources allocation system.And a brief research for the impact of water resources allocation in beneficial regions of the Water Transfer from south to North China Project is conducted.

  17. Monograph for using paleoflood data in Water Resources Applications

    Science.gov (United States)

    Swain, R.E.; Jarrett, R.D.

    2004-01-01

    The Environmental and Water Resources Institute (EWRI) Technical Committee on Surface Water Hydrology is sponsoring a Task Committee on Paleoflood Hydrology to prepare a monograph entitled, "Use of Paleoflood and Historical Data in Water Resources Applications." This paper introduces the subject of paleoflood hydrology and discusses the topics, which are expected to be included in the monograph. The procedure for preparing and reviewing the monograph will also be discussed. The paleoflood hydrology monograph will include a discussion of types of hydrologic and paleoflood data, paleostage indicators, flood chronology, modeling methods, interpretation issues, water resources applications and case studies, and research needs. Paleoflood data collection and analysis techniques will be presented, and various applications in water-resources investigations will be provided. An overview of several flood frequency analysis approaches, which consider historical and paleoflood data along with systematic streamflow records, will be presented. The monograph is scheduled for completion and publication in 2001. Copyright ASCE 2004.

  18. [Optimal allocation of irrigation water resources based on systematical strategy].

    Science.gov (United States)

    Cheng, Shuai; Zhang, Shu-qing

    2015-01-01

    With the development of the society and economy, as well as the rapid increase of population, more and more water is needed by human, which intensified the shortage of water resources. The scarcity of water resources and growing competition of water in different water use sectors reduce water availability for irrigation, so it is significant to plan and manage irrigation water resources scientifically and reasonably for improving water use efficiency (WUE) and ensuring food security. Many investigations indicate that WUE can be increased by optimization of water use. However, present studies focused primarily on a particular aspect or scale, which lack systematic analysis on the problem of irrigation water allocation. By summarizing previous related studies, especially those based on intelligent algorithms, this article proposed a multi-level, multi-scale framework for allocating irrigation water, and illustrated the basic theory of each component of the framework. Systematical strategy of optimal irrigation water allocation can not only control the total volume of irrigation water on the time scale, but also reduce water loss on the spatial scale. It could provide scientific basis and technical support for improving the irrigation water management level and ensuring the food security.

  19. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water d

  20. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water

  1. Economics research supporting water resource stewardship in the Pacific Northwest.

    Science.gov (United States)

    Laurie L. Houston; Jeffrey D. Kline; Ralph J. Alig

    2002-01-01

    The use of water increasingly involves complex tradeoffs among biophysical, economic, ecological, and societal values. Knowledge about the value of water to different users and methods with which to evaluate biophysical, economic, ecological, and social tradeoffs associated with allocating limited water resources among competing uses is vital to devising appropriate...

  2. Evaluation and Prediction of Water Resources Based on AHP

    Science.gov (United States)

    Li, Shuai; Sun, Anqi

    2017-01-01

    Nowadays, the shortage of water resources is a threat to us. In order to solve the problem of water resources restricted by varieties of factors, this paper establishes a water resources evaluation index model (WREI), which adopts the fuzzy comprehensive evaluation (FCE) based on analytic hierarchy process (AHP) algorithm. After considering influencing factors of water resources, we ignore secondary factors and then hierarchical approach the main factors according to the class, set up a three-layer structure. The top floor is for WREI. Using analytic hierarchy process (AHP) to determine weight first, and then use fuzzy judgment to judge target, so the comprehensive use of the two algorithms reduce the subjective influence of AHP and overcome the disadvantages of multi-level evaluation. To prove the model, we choose India as a target region. On the basis of water resources evaluation index model, we use Matlab and combine grey prediction with linear prediction to discuss the ability to provide clean water in India and the trend of India’s water resources changing in the next 15 years. The model with theoretical support and practical significance will be of great help to provide reliable data support and reference for us to get plans to improve water quality.

  3. Application and Prospect of Big Data in Water Resources

    Science.gov (United States)

    Xi, Danchi; Xu, Xinyi

    2017-04-01

    Because of developed information technology and affordable data storage, we h ave entered the era of data explosion. The term "Big Data" and technology relate s to it has been created and commonly applied in many fields. However, academic studies just got attention on Big Data application in water resources recently. As a result, water resource Big Data technology has not been fully developed. This paper introduces the concept of Big Data and its key technologies, including the Hadoop system and MapReduce. In addition, this paper focuses on the significance of applying the big data in water resources and summarizing prior researches by others. Most studies in this field only set up theoretical frame, but we define the "Water Big Data" and explain its tridimensional properties which are time dimension, spatial dimension and intelligent dimension. Based on HBase, the classification system of Water Big Data is introduced: hydrology data, ecology data and socio-economic data. Then after analyzing the challenges in water resources management, a series of solutions using Big Data technologies such as data mining and web crawler, are proposed. Finally, the prospect of applying big data in water resources is discussed, it can be predicted that as Big Data technology keeps developing, "3D" (Data Driven Decision) will be utilized more in water resources management in the future.

  4. INFLUENCE OF CLIMATE CHANGES ON WATER RESOURCES IN MOLDOVA

    Directory of Open Access Journals (Sweden)

    Violeta Ivanov

    2012-06-01

    Full Text Available The paper aims to analyze the current state of affairs with water resources in Moldova, the challenges it faces for its national human and economic development, having in mind that the water resources are quite limited in Moldova, which encounters pollution, degradation influenced by climate change and unwise human activity to their biodiversity and ecosystems, availability and accessibility. It also attempts to highlight the relationship between climate change and water resources in Moldova, which has adverse effects on both environment and people’s health, and raise significant hurdles to the international, regional and sectoral development.

  5. Radio resource management using geometric water-filling

    CERN Document Server

    He, Peter; Zhou, Sheng; Niu, Zhisheng

    2014-01-01

    This brief introduces the fundamental theory and development of managing radio resources using a water-filling algorithm that can optimize system performance in wireless communication. Geometric Water-Filling (GWF) is a crucial underlying tool in emerging communication systems such as multiple input multiple output systems, cognitive radio systems, and green communication systems. Early chapters introduce emerging wireless technologies and provide a detailed analysis of water-filling. The brief investigates single user and multi-user issues of radio resource management, allocation of resources

  6. The Role of Desalinated Water in Integrated Water Resource Management in Abu Dhabi Emirate-UAE

    OpenAIRE

    Al-Omar, Muthanna

    2012-01-01

    Water resources components in Abu Dhabi encompass the conventional sources (rain, springs, ponds and groundwater), and unconventional sources (desalinated water and reclaimed wastewater). The latter represent the most important resources for the time being, since ground water is brackish or salty and the annual rainfall is very low in Abu Dhabi Emirate. Thus conventional water resources are considered under sever depletion and exceeded their natural recharging capacity by 24 times. Per capita...

  7. Resources

    Science.gov (United States)

    ... resources Alzheimer's - resources Anorexia nervosa - resources Arthritis - resources Asthma and allergy - resources Autism - resources Blindness - resources BPH - resources Breastfeeding - resources Bulimia - resources Burns - resources Cancer - resources Cerebral ...

  8. Subsidiarity in Principle: Decentralization of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Ryan Stoa

    2014-05-01

    Full Text Available The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1 the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2 decentralization promotes community and stakeholder engagement when decision-making is localized; 3 inefficiencies are reduced by eliminating reliance on central government bureaucracies and budgetary constraints; and 4 laws and institutions can be adapted to reflect localized conditions at a scale where integrated natural resources management and climate change adaptation is more focused. Accordingly, the principle of subsidiarity has been welcomed by many states committed to decentralized governance, integrated water resources management, and/or civic participation. However, applications of decentralization have not been uniform, and in some cases have produced frustrating outcomes for states and water resources. Successful decentralization strategies are heavily dependent on dedicated financial resources and human resource capacity. This article explores the nexus between the principle of subsidiarity and the enabling environment, in the hope of articulating factors likely to contribute to, or detract from, the success of decentralized water resources management. Case studies from Haiti, Rwanda, and the United States’ Florida Water Management Districts provide examples of the varied stages of decentralization.

  9. Subsidiarity in Principle: Decentralization of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Ryan Stoa

    2014-05-01

    Full Text Available The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1 the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2 decentralization promotes community and stakeholder engagement when decision-making is localized; 3 inefficiencies are reduced by eliminating reliance on central government bureaucracies and budgetary constraints; and 4 laws and institutions can be adapted to reflect localized conditions at a scale where integrated natural resources management and climate change adaptation is more focused. Accordingly, the principle of subsidiarity has been welcomed by many states committed to decentralized governance, integrated water resources management, and/or civic participation. However, applications of decentralization have not been uniform, and in some cases have produced frustrating outcomes for states and water resources. Successful decentralization strategies are heavily dependent on dedicated financial resources and human resource capacity. This article explores the nexus between the principle of subsidiarity and the enabling environment, in the hope of articulating factors likely to contribute to, or detract from, the success of decentralized water resources management. Case studies from Haiti, Rwanda, and the United States’ Florida Water Management Districts provide examples of the varied stages of decentralization.

  10. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    Science.gov (United States)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  11. Residual water bactericide monitor development program

    Science.gov (United States)

    1973-01-01

    A silver-ion bactericidal monitor is considered for the Space Shuttle Potable Water System. Potentiometric measurement using an ion-selective electrode is concluded to be the most feasible of available techniques. Four commercially available electrodes and a specially designed, solid-state, silver-sulfide electrode were evaluated for their response characteristics and suitability for space use. The configuration of the solid-state electrode with its Nernstian response of 10 to 10,000 ppb silver shows promise for use in space. A pressurized double-junction reference electrode with a quartz-fiber junction and a replaceable bellows electrolyte reservoir was designed verification-tested, and paired with a solid-state silver-sulfide electrode in a test fixture.

  12. An Expert System Applied in Construction Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Leila Ooshaksaraie

    2011-01-01

    Full Text Available Problem statement: An untoward environmental impact of urban growth in Malaysia has been deterioration in a number of watercourses due to severe siltation and other pollutants from the construction site. Water quality monitoring is a plan for decision makers to take into account the adverse impacts of construction activities on the receiving water bodies. It is also a process for collecting the construction water quality monitoring, baseline data and standard level. Approach: In recent years, expert systems have been used extensively in different applications areas including environmental studies. In this study, expert system software -CWQM- developed by using Microsoft Visual Basic was introduced. CWQM to be used for water quality monitoring during construction activities was designed based on the legal process in Malaysia. Results: According to the water quality monitoring regulation enacted in Malaysia, construction activities require mandatory water quality monitoring plans duly approved by Department of Environment before staring activities. CWQM primarily aims to provide educational and support system for water quality monitoring engineers and decision-makers during construction activities. It displays water quality monitoring plan in report form, water sampling location in GIS format and water quality monitoring data in graph. Conclusion: When the use of CWQM in construction water quality monitoring becomes widespread, it is highly possible that it will be benefited in terms of having more accurate and objective decisions on construction projects which are mainly focused on reducing the stormwater pollution.

  13. Real time water chemistry monitoring and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreau, T.M.; Choi, S.S. [EPRIsolutions, Palo Alto, CA (United States)

    2002-07-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  14. Cahaba River National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) report for Cahaba River National Wildlife Refuge describes current hydrologic information, provides an assessment...

  15. Hydrogeology and water resources of Ruby Valley northeastern Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This water-resources evaluation of Ruby Valley was divided into two 3-year phases. Phase 1 was designed to quantify annual evapotranspiration (ET) from the Ruby Lake...

  16. Water Resource Inventory and Assessment (WRIA) - Horicon National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Horicon National Wildlife Refuges describes current hydrologic information, provides an...

  17. Water Resource Inventory and Assessment (WRIA) - Shiawassee National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Shiawassee National Wildlife Refuge (NWR) describes current hydrologic information, provides...

  18. Water Resources Inventory and Assessment: Parker River National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Parker River National Wildlife Refuge describes current hydrologic information, provides an assessment of...

  19. Water Resources Inventory and Assessment: Canaan Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Canaan Valley National Wildlife Refuge describes current hydrologic information, provides an assessment of...

  20. Key challenges facing water resource management in South Africa

    CSIR Research Space (South Africa)

    Ashton, P

    2008-11-01

    Full Text Available Resource Managers The Dichotomy of Water Source of destruction, dispute and poverty • Drought and desertification • Flooding and erosion • Salinization • Malnutrition and starvation • Contamination • Epidemics and diseases • Dispute...

  1. Atchafalaya Basin (Water and Land Resources), Louisiana Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Atchafalaya Basin (Water and Land Resources), Louisiana, study is being conducted in response to resolutions adopted by the United States Senate and House of...

  2. Index of current water-resources activities in Ohio, 1985

    Science.gov (United States)

    Eberle, Michael

    1985-01-01

    This report summarizes the U. S. Geological Survey 's Water Resources Division 's program in Ohio in 1985. The work of the Ohio District is carried out through the District office in Columbus and a field office in New Philadelphia. Collection of basic data needed for continuing determination and evaluation of the quantity, quality, and use of Ohio 's water resources is the responsibility of the District 's Hydrologic Surveillance Section. The Hydrologic Investigations Section conducts analytical and interpretive water-resource appraisals describing the occurrence, availability, and the physical, chemical, and biological characteristics of surface and groundwater. In addition to introductory material describing the structure of the Ohio District, information is presented on current projects, sites at which basic surface- and groundwater data are collected , and reports of Ohio 's water resources published by the U.S. Geological Survey and cooperating agencies. (USGS)

  3. Condition, use, and management of water resources among ...

    African Journals Online (AJOL)

    Agadaga

    2012-09-17

    Sep 17, 2012 ... ISSN 1996-0786 ©2012 Academic Journals. Full Length Research Paper. Condition, use ... The study recommends that strong assistance is required in ... gender relations in using, managing and controlling water resources.

  4. The perceptions of research values and priorities in water resource ...

    African Journals Online (AJOL)

    2011-06-29

    Jun 29, 2011 ... Centre for Environmental Management, Internal Box 67, University of the Free State, PO Box 339, ... stakeholders involved in water resource management in south- ... environmental practices (in this case, research) are likely.

  5. Energy and Water Resources of Burkina Faso as Catalyst for ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... It is therefore necessary to carry out the engineering and ... this project is to determine potential resources as well as ... and oil refinery with 2 million tons capacity. Field work and ..... proper water treatment. Because of that,.

  6. A Water Quality Monitoring Programme for Schools and Communities

    Science.gov (United States)

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  7. A Water Quality Monitoring Programme for Schools and Communities

    Science.gov (United States)

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  8. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based .... The measures for improvement of monitoring were: .... purposes, the effectiveness and desirability of a government.

  9. Radio Frequency Based Water Level Monitor and Controller for ...

    African Journals Online (AJOL)

    Radio Frequency Based Water Level Monitor and Controller for Residential Applications. ... Nigerian Journal of Technology ... This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor ...

  10. Initial Survey Instructions for Spring Water Monitoring : Flow

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for the Spring Water Monitoring - Flow 1.02 survey at Fish Springs National Wildlife Refuge. This coop baseline monitoring survey has...

  11. Characterization of Electrospray Ionization for Spaceflight Water Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current methods for monitoring the water used on the ISS rely heavily on ground analysis of archival samples. Air monitors presently on board the ISS could be used...

  12. CryoSat-2 radar altimetry for monitoring freshwater resources of China

    DEFF Research Database (Denmark)

    Jiang, Liguang; Nielsen, Karina; Andersen, Ole Baltazar

    2017-01-01

    -scale monitoring dataset of surface water bodies in China is not available. Over the last two decades, satellite altimetry has been used successfully for inland water monitoring. Here, we use CryoSat-2 radar altimetry to monitor water level variations of large lakes, reservoirs and rivers across China...

  13. Water resources assessment issues and isotope hydrology application in China

    Institute of Scientific and Technical Information of China (English)

    刘恒; 陈明忠

    2001-01-01

    As one of the largest countries in the world, China has a highest population and great potential in water resources and land. Water is a key issue for sustainable development in the fu-rure, because the average water and land availability per-capita is much lower than the world averages. Water resources assessment plays a very important role. However, certain problems could not be solved due to lack of hydrological data, such as groundwater in arid and semi-arid zones. Environment isotope technologies have been applied and show promise of wide application.

  14. Issues of governance in water resource management and spatial planning

    NARCIS (Netherlands)

    Rocco de Campos Pereira, R.C.; Schweitzer, R.

    2013-01-01

    This paper describes governance arrangements in regional spatial planning and water resources management at the regional level from a normative point of view. It discusses the need to integrate spatial planning and resources management in order to deliver socially sustainable integral territorial ma

  15. Impact of future energy policy on water resources in Kazakhstan

    Science.gov (United States)

    Rivotti, Pedro; Karatayev, Marat; Sobral Mourão, Zenaida; Shah, Nilay; Clarke, Michèle; Konadu, D. Dennis

    2017-04-01

    As part of its commitment to become one of the top-30 developed countries in the world, Kazakhstan set out an ambitious target of increasing the share of renewables and alternative sources of energy in its power generation mix to 50% by 2050. This vision greatly contrasts with the current situation, with coal and natural gas power plants producing around 90% of total electricity in 2016. While this transition provides a unique opportunity to improve the sustainability of the national energy system, major natural resources challenges currently faced in the country should be taken into account. Particularly in the case of water resources management, the current system is characterised by significant losses, heavy reliance on irrigation for the agricultural sector, unevenly distributed surface water, vulnerability to climate change and variations in transboundary inflows, amongst other issues. In this context, this study aims to investigate the future availability of water resources to support food production and the transition to a new energy system. Given the challenges mentioned above, tackling this question requires an integrated analysis of the water-energy-food systems in Kazakhstan. This is done in three stages: (1) characterising the water supply and demand in the country; (2) establishing the linkages between water resources and activities in the power production and agricultural sectors; and (3) identifying potential conflicts at the nexus between water, energy and food, taking into account future energy policy scenarios, trends for food production and water resource use.

  16. Essays on Water Resource Economics and Agricultural Extension

    OpenAIRE

    Buck, Steven Charles

    2011-01-01

    This dissertation discusses topics in the microeconomics of water resource economics and agricultural extension. In one chapter I use a hedonic model to explain the price of land transactions, and from this an implied value of irrigation water is inferred. In a separate chapter I develop measures of willingness-to-pay for water supply reliability measures, and estimate how consumers respond to changes in the price of residential water. My final chapter develops a model of a farmer's decision ...

  17. Challenges of Integrated Water Resources Management in Indonesia

    OpenAIRE

    Mohamad Ali Fulazzaky

    2014-01-01

    The increased demands for water and land in Indonesia as a consequence of the population growth and economic development has reportedly have been accelerated from the year to year. The spatial and temporal variability of human induced hydrological changes in a river basin could affect quality and quantity of water. The challenge is that integrated water resources management (IWRM) should cope with complex issues of water in order to maximize the resultant economic and social welfare in an eq...

  18. Environmental issues and countermeasures in exploiting water resources of rivers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hou-gui

    2006-01-01

    Based on affirming the tremendous benefits that water resources of rivers can provide in their exploitation, main environmental problems and their countermeasures have been proposed and analyzed in this paper. It is argued that multiple measures should be applied to solving those problems by simultaneously carrying out engineering measures, scientific research and also programs to cultivate the society's awareness, aimed at a sustainable development strategy for exploiting water resources.

  19. Balancing water resources conservation and food security in China

    OpenAIRE

    2014-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targ...

  20. Ethiopia : Managing Water Resources to Maximize Sustainable Growth

    OpenAIRE

    2006-01-01

    This report looks at, and beyond, the management hydrological variability to interventions aimed at decreasing the vulnerability of the economy to these shocks. It helps clarify linkages between the country's economic performance and its water resources endowment and management. It then uses this analysis to recommend both water resource strategies and economic and sectoral policies that will enhance growth and insulate the Ethiopian people and economy from the often devastating, economy-wide...

  1. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  2. GPS inland water buoys for precise and high temporal resolution water level and movement monitoring

    Science.gov (United States)

    Apel, Heiko; Nghia Hung, Nguyen; Thoss, Heiko; Güntner, Andreas

    2010-05-01

    Monitoring of river and lake stages is one of the basic issues in understanding catchment hydrology and hydraulic systems. There are numerous techniques available for this, but in case of large water bodies technical as well as financial problems may restrict the use of traditional techniques. Therefore we explored the potential of GPS based altimetry for stage monitoring by developing small and easy to handle buoys with mounted high precision GPS devices. The advantages of the buoys are the freedom of positioning over the whole water body and their quick and easy deployment. The developed devices were tested in the Mekong Delta, Vietnam in two different locations: On the Mekong river where high currents over the flood season occur and in a small lake with hydraulic connections to a major channel with hardly any currents present. The collected GPS data were processed differentially and tested against standard pressure gauge data. The recorded stages proved to be of high quality and a valuable resource for flood monitoring and modeling. In addition to the stage data, the high-precision GPS positioning data could also be used for monitoring the movement of the buoys, from which alternating currents caused by ocean tides and flood waves could be detected, thus providing an additional information on the hydraulic system. We conclude that the developed buoys add well to the existing hydrological monitoring pool and are a goof option for the monitoring in large water bodies where a) traditional methods are technically difficult to deploy or are too costly, and b) where additional information about flow direction is needed.

  3. Final Report: California water resources research and applicationscenter

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Norman L.

    2003-05-30

    The California Water Resources RESAC objectives were toutilize NASA data to provide state-of-the-art real-time and forecastinformation (observation and simulation) on hydroclimate, water quantityand quality, and runoff related hazards to water resources managers(e.g., NWS, CA Dept. of Water Resources, USBR), the insurance industry,emergency response agencies, policy decision-makers, and the generalpublic. In addition, the RESAC acts as an umbrella organization fosteringgrowing collaborations and partnerships. It was built on the foundationestablished through the U.S. Global Change Research Program and theNational and California Assessments. It is designed to support theongoing regional and national assessment process by improving ourunderstanding of specific regional features of the climate system and itsimpacts, and facilitating the dissemination of these results throughdata, publications, and outreach.The California Water Resources RESACproduces three types of regional climate products that are enhanced byincorporation of NASA satellite data: (1) short-term (2-3 day) weatherand streamflow forecasts, (2) seasonal hydroclimate, and (3) long-termclimate change scenarios and hydrologic impacts. Our team has built anexcellent record in providing quantitative precipitation and streamflowforecasts to the water resources and weather prediction communities. Wehave been working with scientists from various University of Californiainstitutions and government agencies to improve weather and streamflowpredictions and studies of regional hydroclimate, and its impacts onwater resources, the environment, and the economy.

  4. Monitoring of recharge water quality under woodland

    Science.gov (United States)

    Krajenbrink, G. J. W.; Ronen, D.; Van Duijvenbooden, W.; Magaritz, M.; Wever, D.

    1988-03-01

    The study compares the quality of groundwater in the water table zone and soil moisture below the root zone, under woodland, with the quality of the regional precipitation. The water quality under forest shows evidence of the effect of atmospheric deposition of acidic components (e.g. SO 2) and ammonia volatilized from land and feed lots. Detailed chemical profiles of the upper meter of groundwater under different plots of forest, at varying distances from cultivated land, were obtained with a multilayer sampler, using the dialysis-cell method. Porous ceramic cups and a vacuum method were used to obtain soil moisture samples at 1.20 m depth under various types of trees, an open spot and arable land, for the period of a year. The investigation took place in the recharge area of a pumping station with mainly mixed forest, downwind of a vast agricultural area with high ammonia volatilization and underlain by an ice-deformed aquifer. Very high NO -3 concentrations were observed in soil moisture and groundwater (up to 21 mg Nl -1) under coniferous forest, especially in the border zone. This raises the question of the dilution capacity of recharge water under woodland in relation to the polluted groundwater under farming land. The buffering capacity of the unsaturated zone varies substantially and locally a low pH (4.5) was observed in groundwater. The large variability of leachate composition on different scales under a forest and the lesser but still significant concentration differences in the groundwater prove the importance of a monitoring system for the actual solute flux into the groundwater.

  5. Study on the holistic model for water resources system

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jianshi; WANG Zhongjing; WENG Wenbin

    2004-01-01

    Based on the Theory of Complex Adaptive System developed recently, a holistic model for water resources system is established at the basin level for analyzing water resources management and allocation of the basin. In this holistic model framework,the subsystems of the water resources system, including hydrologic components,agricultural and industrial production, human living, ecosystem and enviorenment are combined in a dynamic connection with inner variables. According to the characteristics of the holistic model framework, a nesting genetic arithmetic is employed to solve the nonlinear optimal model. The model is applied in the Yellow River basin to analyze the rational amount of diversion water for the West Line of Water Transfer Project form South China to North China and its marginal benifit.

  6. Climate Change and Water Resources Management: A Federal Perspective

    Science.gov (United States)

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  7. Integrated Water Resources Management Improving Langat Basin Ecosystem Health

    Directory of Open Access Journals (Sweden)

    Mazlin B. Mokhtar

    2008-01-01

    Full Text Available The ecosystem provides us with all the goods and services that form the base of our economic, social cultural and spiritual life. Good scientific information will be required for managing the environment by using the Ecosystem approach. The groundwater is considered as a possible supplementary of alternative water source, and some factories already started shifting their water source from surface water to groundwater. Uncontrolled use of groundwater, however, may induce serious environmental problems, e.g., land subsidence, saltwater intrusion to the aquifer. The establishment of a balanced multi-sector and integrated groundwater resources and environmental management plan is deemed urgent to attain a sustainable groundwater resources use and to maintain a favorable groundwater quality in the Langat Basin. To achieve sustainable lifestyle in large scale ecosystem requires integrated and holistic approaches from all stakeholders. Through Aquifer Storage Recovery (ASR it was determined a revolutionized water resources management, providing a sustainable supply while minimizing the environmental impact of surface storage. By using underground geologic formations to store water, by integrated water resources management advisory system (IWRMAS aquifer recharge can now easily applied to obviate water resource and environmental problems, including seasonal shortages, emergency storage, ground subsidence and saline intrusion.

  8. Bringing ecosystem services into integrated water resources management.

    Science.gov (United States)

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Thoughts on access to water in Peru within the new Water Resources Law framework

    Directory of Open Access Journals (Sweden)

    Lucía Ruiz Ostoic

    2013-12-01

    Full Text Available The difficulty involved addressing issues related with water management in Peru is the article’s starting point. Therefore, the water issue approach is introduced explaining its administrative procedures, the rights involved and making a critical analysis of 2008 Water Resources Law. Finally, the need for an integrated management analysis of the water resource is highlighted by integrally understanding the General Water Law as well as the current Water Resources Law, and encouraging dialogue among social actors involved in order to avoid future conflicts.

  10. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  11. Chesapeake Bay Water Quality Monitoring Using Satellite Imagery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Work done at Water Resources Center, University of Minnesota has demonstrated the feasibility of performing regional assessment of lake water quality using Landsat...

  12. Treatment Technology and Alternative Water Resources

    Science.gov (United States)

    Chapman, M. J.

    2014-12-01

    At this point in our settlement of the planet Earth, with over seven billion human inhabitants, there are very few unallocated sources of fresh water. We are turning slowly toward "alternatives" such as municipal and industrial wastewater, saline groundwater, the sea, irrigation return flow, and produced water that comes up with oil and gas deposits from deep beneath the surface of the earth. Slowly turning, not because of a lack in technological ability, but because it takes a large capital investment to acquire and treat these sources to a level at which they can be used. The regulatory system is not geared up for alternative sources and treatment processes. Permitting can be circular, contradictory, time consuming, and very expensive. The purpose for the water, or the value of the product obtained using the water, must be such that the capital and ongoing expense seem reasonable. There are so many technological solutions for recovering water quality that choosing the most reliable, economical, and environmentally sound technology involves unraveling the "best" weave of treatment processes from a tangled knot of alternatives. Aside from permitting issues, which are beyond the topic for this presentation, the "best" weave of processes will be composed of four strands specifically fitted to the local situation: energy, pretreatment, driving force for separation processes, and waste management. A range of treatment technologies will be examined in this presentation with a focus on how the quality of the feed water, available power sources, materials, and waste management opportunities aid in choosing the best weave of treatment technologies, and how innovative use of a wide variety of driving forces are increasing the efficiency of treatment processes.

  13. A taxonomy of chemicals of emerging concern based on observed fate at water resource recovery facilities.

    Science.gov (United States)

    Jones, Steven M; Chowdhury, Zaid K; Watts, Michael J

    2017-03-01

    As reuse of municipal water resource recovery facility (WRRF) effluent becomes vital to augment diminishing fresh drinking water resources, concern exists that conventional barriers may prove deficient, and the upcycling of chemicals of emerging concern (CECs) could prove harmful to human health and aquatic species if more effective and robust treatment barriers are not in place. A multiple month survey, of both primary and secondary effluents, from three (3) WRRFs, for 95 CECs was conducted in 2014 to classify CECs by their persistence through conventional water reclamation processes. By sampling the participating WRRF process trains at their peak performance (as determined by measured bulk organics and particulates removal), a short-list of recalcitrant CECs that warrant monitoring to assess treatment performance at advanced water reclamation and production facilities. The list of identified CECs for potable water reclamation (indirect or direct potable reuse) include a herbicide and its degradants, prescription pharmaceuticals and antibiotics, a female hormone, an artificial sweetener, and chlorinated flame retardants.

  14. Exploring the link between meteorological drought and streamflow to inform water resource management

    Science.gov (United States)

    Lennard, Amy; Macdonald, Neil; Hooke, Janet

    2015-04-01

    Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.

  15. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    Cambodia (now the Khmer Republic), in tropical, humid southeast Asia, has an area of 175,630 km and a population of about 5 million. The Mekong River, one of the world's largest rivers, flows through Cambodia. Also, the Tonle Sap (Grand Lac), a highly productive fresh-water lake, functions as a huge off-channel storage reservoir for flood flow of the Mekong River. Surfacewater discharge in streams and rivers of Cambodia is abundant during the wet season, mid-May through mid-November, when 85 percent of the precipitation falls, but is frequently deficient during the remainder of the year. Annual rainfall ranges from 1,370 mm in the central lowlands to more than 5,000 mm in the mountainous highlands. The mean annual temperature for the country is 27.5?C and the evaporation rate is high. During 1960-63, 1,103 holes were drilled in 16 of the 18 khets (provinces), of which 795 or approximately 72 percent, were productive wells at rates ranging from 1.1 to 2,967 l/min. The productive wells ranged in depth from 2 to 209.4 m and were 23.2 m deep on the average. Mr. Rasmussen ' studied the subsurface geology of Cambodia in considerable detail by examining drillers' logs and constructing nine geologic cross sections. The principal aquifer tapped by drilled wells in Cambodia is the Old Alluvium. In many places, however, dug wells and a few shallow drilled wells obtain water from the Young Alluvium. Sandstone of the Indosinias Formation yields moderate to small quantities of water to wells in a number of places. Also, wells tapping water-bearing basalt have a small to moderate yield. The quality of water is recorded in only a few analyses. The dissolved solids concentrations appear to be generally low so that the water is usable for most purposes without treatment. Some well waters, however, are high in iron and would have to be aerated and filtered before use. In this report, well records are tabulated, and the geology and hydrology is discussed by khets. The bulk of the

  16. A Diagnostic Assessment of Evolutionary Multiobjective Optimization for Water Resources Systems

    Science.gov (United States)

    Reed, P.; Hadka, D.; Herman, J.; Kasprzyk, J.; Kollat, J.

    2012-04-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.

  17. 76 FR 27344 - Water Resources Management Plan/Environmental Impact Statement, Mojave National Preserve, San...

    Science.gov (United States)

    2011-05-11

    ... National Park Service Water Resources Management Plan/Environmental Impact Statement, Mojave National... Prepare a Water Resources Management Plan/ Environmental Impact Statement for Mojave National Preserve... to inform preparation of a Water Resources Management Plan/Environmental Impact Statement...

  18. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  19. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Kass, Steve; Huber, Silvia

    2014-01-01

    The Water Observation and Information System (WOIS) is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO) data. The WOIS has been developed by, among others, the authors of this paper under the TIGER...... to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements...... of the participating key African water authorities, and demonstrated with dedicated case studies utilizing the software in operational scenarios. They cover a wide range of themes and information products, including basin-wide characterization of land and water resources, lake water quality monitoring, hydrological...

  20. Environmental geophysics mapping salinity and water resources

    NARCIS (Netherlands)

    Dent, D.

    2007-01-01

    Salinity and fresh water are two sides of the same coin, most conveniently measured by electrical conductivity; they can now be mapped rapidly in three dimensions using airborne electromagnetics (AEM). Recent developments in the calibration of airborne data against in-field measurements and

  1. Biospeckle laser portable equipment monitoring water behavior at coffee tree leaves

    Science.gov (United States)

    Botega, J. V. L.; Braga, R. A.; Machado, M. P. P.; Lima, L. A.; Rabelo, G. F.; Cardoso, R. R.

    2010-09-01

    Water is a noble natural resource and its monitoring and control are key to an efficient and responsible use concerning with the impacts in the ambient. Particularly in irrigation processes there are many approaches to monitor the water consumption, nevertheless the access of water demand in an irrigated crop presents some challenges to the routine methods. The effort to develop a non-destructive methodology associated with the ability to be handle, unfolds the way to the adoption of optical techniques. The biospeckle laser phenomenon can be elected as one of the potential instruments to access the water content in a leaf and to associate this information to the water demand. The sensitiveness of the biospeckle patterns related to biological activities is the basis of the hypothesis which concerns the monitoring of water activity in a leaf. This work evaluated the feasibility to implement the biospeckle laser as a tool to measure the water content in a leaf and to relate it with the demand of water in a perennial crop, such as coffee trees. Complementary it was tested the ability and the robustness of the proposed protocol in a portable assembly. Plants of coffee crop, coffee arabica trees, were prepared to be monitored during water stress. The proposed monitoring were carried out in leaves without detach them from the plant, within 5 consecutive days. The results presented a significant relation between the water content reduction and the biospeckle values.

  2. Water resources and water management in the Bahurutshe heartland

    African Journals Online (AJOL)

    2004-12-03

    Dec 3, 2004 ... well as determine how to sustain the balance ..... proper water services, i.e. to take the water to the people, is cur- rently a bigger ... Warnings that the balance between the carrying capacity of the land, the availability of water, ...

  3. Water resources of Red River Parish, Louisiana

    Science.gov (United States)

    Newcome, Roy; Page, Leland Vernon

    1963-01-01

    Red River Parish is on the eastern flank of the Sabine uplift in northwestern Louisiana. The 'area is underlain by lignitic clay and sand of Paleocene and Eocene age which dip to the east at the rate of about 30 feet per mile. The Red River is entrenched in these rocks in the western part of the parish. Alternating valley filling and erosion during the Quaternary period have resulted in the present lowland with flanking terraces. In the flood-plain area moderate to large quantities of very hard, iron-bearing water, suitable for irrigation, are available to wells in the alluvial sand and gravel of Quaternary age. The aquifer ranges in thickness from 20 to slightly more than 100 feet. It is recharged by downward seepage of rainfall through overlying clay and silt, by inflow from older sands adjacent to and beneath the entrenched valley, and by infiltration from the streams where the water table is below stream level during flood stages or as a result of pumping. Water levels are highest in the middle of the valley. Ground water moves mainly toward the Red River on the east and Bayou Pierre on the west, but small amounts move down the valley. Computations based on water-level and aquifer-test data indicate that the Quaternary alluvium contains more than 330 billion gallons of ground water in storage and that the maximum discharge of ground water to the streams is slightly more than 30 mgd (million gallons per day). At times of high river stage, surface water flows into the aquifer at a rate that depends in part upon the height and duration of the river stage. Moderate supplies of soft, iron-bearing water may be obtained from dissected Pleistocene terrace deposits that flank the flood plains of the Red River and Black Lake Bayou. However, the quantity of water that can be pumped from these deposits varies widely from place to place because of differences in the areal extent and saturated thickness of the segments of the deposits; this extent and thickness are governed

  4. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  5. Ground-water monitoring sites for Carson Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains the monitoring sites where water levels were collected and used to develop a spatial ground-water data base in Carson Valley, west-central...

  6. Modeling and analysis of collective management of water resources

    Science.gov (United States)

    Tilmant, A.; van der Zaag, P.; Fortemps, P.

    2007-01-01

    Integrated Water Resources Management (IWRM) recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  7. Finding practical approaches to integrated water resources management

    NARCIS (Netherlands)

    Butterworth, J.; Warner, J.F.; Moriarty, P.; Smits, S.; Batchelor, Ch.

    2010-01-01

    Integrated Water Resources Management (IWRM) has often been interpreted and implemented in a way that is only really suited to countries with the most developed water infrastructures and management capacities. While sympathetic to many of the criticisms levelled at the IWRM concept and recognising

  8. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  9. Modeling and analysis of collective management of water resources

    Directory of Open Access Journals (Sweden)

    A. Tilmant

    2006-09-01

    Full Text Available Integrated Water Resources Management (IWRM recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  10. Groundwater resource-directed measures software | Dennis | Water ...

    African Journals Online (AJOL)

    ... the need to promote social and economic development through the use of water, ... To be able to implement the National Water Act (NWA), the Minister needs to ... in resource quality objectives which are based on both the classification and ...

  11. Water Resource Uses and Recreational Activities in Rural Nigeria.

    Science.gov (United States)

    Adekoya, Adebola

    1991-01-01

    This study surveys rural Nigerian residents concerning local water resource uses and tourists' recreational activities with respect to scales of awareness, understanding, and incentive. Results indicate a public willingness to encourage and finance the rural development of water bodies for agricultural purposes exclusive of investment for tourism…

  12. EPA's Safe and Sustainable Water Resources Research Program

    Science.gov (United States)

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an inte...

  13. Southwest: a region under stress. [Analysis of environmental, resource-revenues, and water-resources issues

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Kneese, A.V.

    1978-05-01

    The southwestern states of New Mexico, Colorado, Utah, and Arizona share some of the nation's richest natural resources and the poorest people. One goal in the development of the area's resources will be to provide a means of raising the economic level of these people. Three major regional issues (environmental preservation, resource revenues, and water resources) must be faced in terms of the conflicting claims of the states involved. A summary of these issues illustrates the emotional and political strains that have developed. Justification for optimism is seen in the adaptability of new water users, the institutional evolution toward more flexibility in the water rights market, and the growing sophistication and assertiveness of interested parties determined to see that all positions are heard. 14 references.

  14. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program... RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs § 402.7 Water-Resources Technology Development Program. (a) Subject to the availability...

  15. Water resources of Langlade County, Wisconsin

    Science.gov (United States)

    Batten, W. G.

    1987-01-01

    Langlade County depends almost exclusively on ground water pumped from the glacial sand and gravel deposits for its water needs. Well yields of 10 to 20 gallons per minute can be obtained from these deposits throughout most of the county. Yields of 500 to 1,000 gallons per minute are obtained for irrigation of crops from glacial outwash deposits in some areas of the county and particularly in the extensive 125-square-mile outwash plain in south-central Langlade County. Very low yields of less than 5 gallons per minute are obtainable for private domestic use from Precambrian crystalline rocks in areas of the county where overlying glacial material is thin. Glacial deposits are more than 400 feet thick in glacial moraine areas of east-central Langlade County; saturated thicknesses exceed 250 feet in the north-central part of the county.

  16. MOBILLAB-NIVA - a complete station for monitoring water quality

    OpenAIRE

    A. Henriksen; Røgeberg, E.; Andersen, S.; Veidel, A.

    1986-01-01

    MOBILLAB-NIVA is a complete mobile station for monitoring water quality with telemetric transmission of recorded data to a central receiving station. It is intended for use in studies of rapid changes in water quality and its effects on aquatic life and short term studies to decide on water quality monitoring strategy. The present version of Mobillab-niva is specially designed to study effects of acid inputs on water chemistry, fish and invertebrates. The station is equipped with physical and...

  17. Multiscale Parameter Regionalization for consistent global water resources modelling

    Science.gov (United States)

    Wanders, Niko; Wood, Eric; Pan, Ming; Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc F. P.

    2017-04-01

    Due to an increasing demand for high- and hyper-resolution water resources information, it has become increasingly important to ensure consistency in model simulations across scales. This consistency can be ensured by scale independent parameterization of the land surface processes, even after calibration of the water resource model. Here, we use the Multiscale Parameter Regionalization technique (MPR, Samaniego et al. 2010, WRR) to allow for a novel, spatially consistent, scale independent parameterization of the global water resource model PCR-GLOBWB. The implementation of MPR in PCR-GLOBWB allows for calibration at coarse resolutions and subsequent parameter transfer to the hyper-resolution. In this study, the model was calibrated at 50 km resolution over Europe and validation carried out at resolutions of 50 km, 10 km and 1 km. MPR allows for a direct transfer of the calibrated transfer function parameters across scales and we find that we can maintain consistent land-atmosphere fluxes across scales. Here we focus on the 2003 European drought and show that the new parameterization allows for high-resolution calibrated simulations of water resources during the drought. For example, we find a reduction from 29% to 9.4% in the percentile difference in the annual evaporative flux across scales when compared against default simulations. Soil moisture errors are reduced from 25% to 6.9%, clearly indicating the benefits of the MPR implementation. This new parameterization allows us to show more spatial detail in water resources simulations that are consistent across scales and also allow validation of discharge for smaller catchments, even with calibrations at a coarse 50 km resolution. The implementation of MPR allows for novel high-resolution calibrated simulations of a global water resources model, providing calibrated high-resolution model simulations with transferred parameter sets from coarse resolutions. The applied methodology can be transferred to other

  18. Water resources review: Ocoee reservoirs, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  19. Water resources in the Great Basin

    Science.gov (United States)

    Jeanne C. Chambers

    2008-01-01

    The Great Basin Watershed covers 362,600 km (140,110 mi2) and extends from the Sierra Nevada Range in California to the Wasatch Range in Utah, and from southeastern Oregon to southern Nevada (NBC Weather Plus Website). The region is among the driest in the nation and depends largely on winter snowfall and spring runoff for its water supply. Precipitation may be as much...

  20. Waters Without Borders: Scarcity and the Future of State Interactions over Shared Water Resources

    Science.gov (United States)

    2010-04-01

    improve the use of water, there will be more water for others. Worldwide, manufacturing wastes water and consumes large amounts of water by...private firms (water as a profit-driven commodity) and the public interest (water as a right). 150 Poor consumers do frequently end up without... ethnocentric entities (e.g. the ―-stan‖ republics in the Caucasus region of the former Soviet Union). Water resources that were once under strong

  1. On the Law Right of the Gas Water of Water Resources

    Institute of Scientific and Technical Information of China (English)

    Liu Shujun

    2007-01-01

    With the development of science and technology,there searches and application of water resources including the gas water have been constantly developed.Through an analysis on the flaws of the water right theory,and by executing reconstruction and renewal of the theory and system of water fight in modern society,the water right position of the gas water will be established,leading to the maturity of the whole law effectiveness and substantial results of water right.

  2. Water resource quality policy: the approach adopted by the Department of Water Affairs and Forestry under the Water Law principles

    CSIR Research Space (South Africa)

    Harris, J

    1999-01-01

    Full Text Available integrity as an indicator of sustainable use of the resource. While management's goal is to ensure all water users will benefit from access to the water resource, ecological integrity provides a good indication of sustainability in the use of the resource...

  3. The utilization of water resources and its variation tendency in Tarim River Basin

    Institute of Scientific and Technical Information of China (English)

    YE Mao; XU Hailiang; SONG Yudong

    2006-01-01

    Water resources efficient utilization is the key to ecological improvement and economic development in Tarim River Basin. It is necessary to analyze the water resources utilization and its variation tendency in the whole river basin. Based on the monitored data and formation at eight meteorological stations and fifteen hydrological stations, the method of time series, regression analysis are applied to analyzing the water resources utilization and variation trend in the headstreams and mainstream areas especially in recent 10 years. The quantitative results indicate that inflows of the headstream areas have an increasing trend to different extent in the past 40years. The runoff increasing trend is more significant from1994 to 2002, which show the water resources condition in the headstreams is at an advantage.However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10years, the mainstream water flowing from the headstreams has increased less than 0.9985×108 m3. In addition, the runoff at the different hydrologic stations along the Tarim River has a significant linear decreasing trend. It is shown that the degraded trend of ecological environment in the mainstream areas hardly changes even if the Tarim River Basin is in the special water period for ten consecutive years.

  4. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    OpenAIRE

    Zeki Gökalp; Sedat Karaman; Ismail Taş; Halil Kirnak

    2016-01-01

    Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance c...

  5. Conjunctive operation of river facilities for integrated water resources management in Korea

    Science.gov (United States)

    Kim, Hwirin; Jang, Cheolhee; Kim, Sung

    2016-10-01

    With the increasing trend of water-related disasters such as floods and droughts resulting from climate change, the integrated management of water resources is gaining importance recently. Korea has worked towards preventing disasters caused by floods and droughts, managing water resources efficiently through the coordinated operation of river facilities such as dams, weirs, and agricultural reservoirs. This has been pursued to enable everyone to enjoy the benefits inherent to the utilization of water resources, by preserving functional rivers, improving their utility and reducing the degradation of water quality caused by floods and droughts. At the same time, coordinated activities are being conducted in multi-purpose dams, hydro-power dams, weirs, agricultural reservoirs and water use facilities (featuring a daily water intake of over 100 000 m3 day-1) with the purpose of monitoring the management of such facilities. This is being done to ensure the protection of public interest without acting as an obstacle to sound water management practices. During Flood Season, each facilities contain flood control capacity by limited operating level which determined by the Regulation Council in advance. Dam flood discharge decisions are approved through the flood forecasting and management of Flood Control Office due to minimize flood damage for both upstream and downstream. The operational plan is implemented through the council's predetermination while dry season for adequate quantity and distribution of water.

  6. Conjunctive operation of river facilities for integrated water resources management in Korea

    Directory of Open Access Journals (Sweden)

    H. Kim

    2016-10-01

    Full Text Available With the increasing trend of water-related disasters such as floods and droughts resulting from climate change, the integrated management of water resources is gaining importance recently. Korea has worked towards preventing disasters caused by floods and droughts, managing water resources efficiently through the coordinated operation of river facilities such as dams, weirs, and agricultural reservoirs. This has been pursued to enable everyone to enjoy the benefits inherent to the utilization of water resources, by preserving functional rivers, improving their utility and reducing the degradation of water quality caused by floods and droughts. At the same time, coordinated activities are being conducted in multi-purpose dams, hydro-power dams, weirs, agricultural reservoirs and water use facilities (featuring a daily water intake of over 100 000 m3 day−1 with the purpose of monitoring the management of such facilities. This is being done to ensure the protection of public interest without acting as an obstacle to sound water management practices. During Flood Season, each facilities contain flood control capacity by limited operating level which determined by the Regulation Council in advance. Dam flood discharge decisions are approved through the flood forecasting and management of Flood Control Office due to minimize flood damage for both upstream and downstream. The operational plan is implemented through the council's predetermination while dry season for adequate quantity and distribution of water.

  7. IPTV-RM: A Resources Monitoring Architecture for P2P IPTV Systems

    OpenAIRE

    2012-01-01

    Resources monitoring is an important problem of the overall efficient usage and control of P2P IPTV systems. The resources of IPTV can include all distributing servers, programs and peers. Several researches have tried to address this issue, but most of them illuminated P2P traffic characterization, identification and user behavior. The main contributions of this paper are twofold. Firstly, a resources monitoring architecture for P2P IPTV systems, IPTV-RM, was presented based on previous work...

  8. MX Siting Investigation Water Resources Program.

    Science.gov (United States)

    1980-10-31

    Big Sand Springs Valley is influenced by recent volcanic craters and associated lava flows (Rush and Everett, 1966).I Evidence of volcanic activity in...Big Sand Springs Valley is exemplified by the presence of the Lunar Crater in 6N/53E. The crater has a diameter of about 0.75 mile (1.2 km) and an...discharge and low temperature, the springs are believed to be meteoric water (local precipitation and snowmelt as source). Three springs were sampled by

  9. Sustainable or Adaptive Water Resources Management in the Indus River Basin, Pakistan under Uncertainties?

    Science.gov (United States)

    Dars, G. H.; Moradkhani, H.

    2012-12-01

    Pakistan has one of the largest contiguous irrigation systems in the world called as Indus River Irrigation System (IRIS). In 1951, soon after its independence, Pakistan was water abundant country but due to poor management practices the country has now become water scarce. This study will provide a detailed analysis of the water management issues and emerging challenges of the Indus River Basin in Pakistan. The research shows the importance of hydrometeorologic forecast under aleatory and epistemic uncertainties and that the Pakistan needs to focus on adaptive management to climate and land use changes and developing reservoirs to enhance water storage capacity keeping in view environmental degradation, and also adopting modern techniques of monitoring the flow of water to have equitable and justifiable shares from individual watercourse to all provinces so as interprovincial and transboundary water conflicts may not happen in the future. Subsequently, a paradigm shift is needed in water resources development and management for sustainable economic growth.

  10. Challenges of Integrated Water Resources Management in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2014-07-01

    Full Text Available The increased demands for water and land in Indonesia as a consequence of the population growth and economic development has reportedly have been accelerated from the year to year. The spatial and temporal variability of human induced hydrological changes in a river basin could affect quality and quantity of water. The challenge is that integrated water resources management (IWRM should cope with complex issues of water in order to maximize the resultant economic and social welfare in an equitable manner, without compromising the sustainability of vital ecosystems. Even though the government of Indonesia has adopted new paradigm for water resources management by the enactment of Law No. 7/2004 on water resources, the implementation of IWRM may face the technical and managerial challenges. This paper briefly reviews the implementation of IWRM and related principles and provides an overview of potential water-related issues and progress towards implementation of IWRM in Indonesia. The availability of water and a broader range of water-related issues are identified. The recommended actions for improving the future IWRM are suggested. Challenges to improve the capacity buildings of IWRM related to enabling environment, institutional frameworks and management instruments are verified to contribute to the future directions for efficient problem-solving ability.

  11. A review of the sampling theory of comprehensive forest resources monitoring

    Institute of Scientific and Technical Information of China (English)

    Xianxian LUO; Songya XU; Xingang KANG; Hua YANG

    2009-01-01

    Sampling is a key technique in comprehensive forest resources monitoring. The history of the sampling survey was briefly reviewed and sampling theories were classified and compared in detail. On the basis of that, the application of different sampling methods in comprehen-sive forest resources monitoring was illustrated in accordance with the sampling classification of Michael Kohl et al. Improvement of the sampling system in China was discussed to meet the new requirements of forest monitoring.

  12. Water resources transfers through Chinese interprovincial and foreign food trade.

    Science.gov (United States)

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-08

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.

  13. Healthy Water Healthy People Field Monitoring Guide

    Science.gov (United States)

    Project WET Foundation, 2003

    2003-01-01

    This 100-page manual serves as a technical reference for the "Healthy Water, Healthy People Water Quality Educators Guide" and the "Healthy Water Healthy People Testing Kits". Yielding in-depth information about ten water quality parameters, it answers questions about water quality testing using technical overviews, data interpretation guidelines,…

  14. Some aspects of integrated water resources management in central Asia

    Science.gov (United States)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    Two main tasks are to be implemented for elaboration of the governmental water distribution criteria in Central Asia: 1 -development of the common methodological basis for the intergovernmental water distribution; and 2 - to reopen and continue both theoretical and experimental researches of various aspects of the wastewater reuse. The prospects of socio economic development of all Central Asian countries are substantially defined by the water resources availability. The water resources of Central Asia belong, mainly, watersheds of the Syr-Darya and Amu Darya rivers. The basic flow of Amu Darya is formed in territory of Tajikistan. Then the Amu Darya river proceeds along border of Afghanistan with Uzbekistan, crosses Turkmenistan and again comes back to Uzbekistan and then runs into the Aral Sea. The Syr-Darya is second river on the water discharge and is first river on length in Central Asia. The basic flow of Syr Darya is formed in territory of Kyrgyzstan. Then the Syr-Darya river crosses of Uzbekistan and Tajikistan and runs into the Aral Sea in territory of Kazakhstan. During the Soviet Union the water resources of two river watersheds were divided among the Central Asian republics on the basis of the general plans developed by the center in Moscow. In the beginning of 90s years, after taking of sovereignty by the former Soviet republics, the unified control system of water resources management was abolished and the various approaches to its transformation caused by features of the national economy developing, elected models of transition from command to market mechanisms of economic activity, and also specificity of political and social processes in each of the states of region were planned. The distinctions of modern priorities of economic development of the states of region have generated the contradiction of interests in the intergovernmental water distribution that can in the long term become complicated even more in connection with the increasing of water

  15. Impact of Water Intensity and Efficiency on Water Resources Sustainability in China

    Science.gov (United States)

    BIN, Lingling; XU, Xinyi; YANG, Zhongwen; XU, Kui

    2015-04-01

    Water problems in China have characters of less per capita, highly developed and low efficiency; it is essential to pay close attention to the sustainable utilization of water resources. This paper aims to explore the impact of human activities on the sustainability of water resources in China. Three important factors affecting sustainability significantly were involved: Water Resources (WR), Water Intensity (WI) and Water Efficiency (WE). Assessment of the three factors were conducted in 356 cities in mainland China, and each indicator is graded from "very low" to "very high" according to the eigenvalue magnitude. China is then classified into four zones to differentiate regional variations of the impact of human activities on water sustainability. Results show that 34% of the areas have high WI values and 58% have low WE values. It is recommended that water resource polices be turned to a more sustainable management strategy in areas with high intensity and low efficiency and sustainability significantly low. Zone I regions should be focused on particular attention for its exploitation of water resources reached an extreme state, water efficiency should be highly improved and water-saving management policy implemented to maintain the sustainable development of water resources and ecosystems.

  16. Are sustainable water resources possible in northwestern India?

    Science.gov (United States)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  17. State-of-the-art lab chip sensors for environmental water monitoring

    Science.gov (United States)

    Jang, Am; Zou, Zhiwei; Kug Lee, Kang; Ahn, Chong H.; Bishop, Paul L.

    2011-03-01

    As a result of increased water demand and water pollution, both surface water and groundwater quantity and quality are of major concern worldwide. In particular, the presence of nutrients and heavy metals in water is a serious threat to human health. The initial step for the effective management of surface waters and groundwater requires regular, continuous monitoring of water quality in terms of contaminant distribution and source identification. Because of this, there is a need for screening and monitoring measurements of these compounds at contaminated areas. However, traditional monitoring techniques are typically still based on laboratory analyses of representative field-collected samples; this necessitates considerable effort and expense, and the sample may change before analysis. Furthermore, currently available equipment is so large that it cannot usually be made portable. Alternatively, lab chip and electrochemical sensing-based portable monitoring systems appear well suited to complement standard analytical methods for a number of environmental monitoring applications. In addition, this type of portable system could save tremendous amounts of time, reagent, and sample if it is installed at contaminated sites such as Superfund sites (the USA's worst toxic waste sites) and Resource Conservation and Recovery Act (RCRA) facilities or in rivers and lakes. Accordingly, state-of-the-art monitoring equipment is necessary for accurate assessments of water quality. This article reviews details on our development of these lab-on-a-chip (LOC) sensors.

  18. Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter

    Directory of Open Access Journals (Sweden)

    Shyamala Loganathan

    2015-01-01

    Full Text Available Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.

  19. Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.

    Science.gov (United States)

    Loganathan, Shyamala; Mukherjee, Saswati

    2015-01-01

    Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.

  20. A framework for evaluating and designing citizen science programs for natural resources monitoring.

    Science.gov (United States)

    Chase, Sarah K; Levine, Arielle

    2016-06-01

    We present a framework of resource characteristics critical to the design and assessment of citizen science programs that monitor natural resources. To develop the framework we reviewed 52 citizen science programs that monitored a wide range of resources and provided insights into what resource characteristics are most conducive to developing citizen science programs and how resource characteristics may constrain the use or growth of these programs. We focused on 4 types of resource characteristics: biophysical and geographical, management and monitoring, public awareness and knowledge, and social and cultural characteristics. We applied the framework to 2 programs, the Tucson (U.S.A.) Bird Count and the Maui (U.S.A.) Great Whale Count. We found that resource characteristics such as accessibility, diverse institutional involvement in resource management, and social or cultural importance of the resource affected program endurance and success. However, the relative influence of each characteristic was in turn affected by goals of the citizen science programs. Although the goals of public engagement and education sometimes complimented the goal of collecting reliable data, in many cases trade-offs must be made between these 2 goals. Program goals and priorities ultimately dictate the design of citizen science programs, but for a program to endure and successfully meet its goals, program managers must consider the diverse ways that the nature of the resource being monitored influences public participation in monitoring.

  1. Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter

    OpenAIRE

    2015-01-01

    Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient schedulin...

  2. ANALYSIS AND CALCULATION OF REGULATED WATER RESOURCES OF GROUNDWATER RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; GAO Shu-qin

    2005-01-01

    Groundwater reservoir is a kind of important engineering, which can optimize water resources arran-gement by means of artificial regulation. Regulated water is the blood and value performance of groundwater reser-voir. To resolve the problem of real-time quantification of regulated water, the paper analyzed sources and composi-tions of regulated water in detail. Then, under the conditions of satisfying water demand inside research area, the pa-per analyzed quantity available and regulation coefficient of different regulated water and established a formula tocalculate regulated water. At last, based on a pore groundwater reservoir in the middle reaches of the Yinma River,Jilin Province, the paper calculated regulated water with the formula and the result shows that the method is feasible.With some constraint conditions, the formula can be adopted in other similar areas.

  3. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup...... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....

  4. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup...... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....

  5. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  6. Power analysis and trend detection for water quality monitoring data. An application for the Greater Yellowstone Inventory and Monitoring Network

    Science.gov (United States)

    Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia

    2012-01-01

    An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.

  7. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  8. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  9. Sustainable water services and interaction with water resources in Europe and in Brazil

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  10. Sustainable water services and interaction with water resources in Europe and in Brazil

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2007-09-01

    Full Text Available The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services – including public water supply, sewage collection and treatment, and in large cities, storm water control –, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  11. Stability monitoring for boiling water reactors

    Science.gov (United States)

    Cecenas-Falcon, Miguel

    1999-11-01

    A methodology is presented to evaluate the stability properties of Boiling Water Reactors based on a reduced order model, power measurements, and a non-linear estimation technique. For a Boiling Water Reactor, the feedback reactivity imposed by the thermal-hydraulics has an important effect in the system stability, where the dominant contribution to this feedback reactivity is provided by the void reactivity. The feedback reactivity is a function of the operating conditions of the system, and cannot be directly measured. However, power measurements are relatively easy to obtain from the nuclear instrumentation and process computer, and are used in conjunction with a reduced order model to estimate the gain of the thermal-hydraulics feedback using an Extended Kalman Filter. The reduced order model is obtained by estimating the thermal-hydraulic transfer function from the frequency-domain BWR code LAPUR, and the stability properties are evaluated based on the pair of complex conjugate eigenvalues. Because of the recursive nature of the Kalman Filter, an estimate of the decay ratio is generated every sampling time, allowing continuous estimation of the stability parameters. A test platform based on a nuclear-coupled boiling channel is developed to validate the capability of the BWR stability monitoring methodology. The thermal-hydraulics for the boiling channel is modeled and coupled with neutron kinetics to analyze the non-linear dynamics of the closed-loop system. The model uses point kinetics to study core-wide oscillations, and normalized modal kinetics are introduced to study out-of-phase oscillations. The coolant flow dynamics is dominant in the power fluctuations observed by in-core nuclear instrumentation, and additive white noise is added to the solution for the channel flow in the thermal-hydraulic model to generate noisy power time series. The operating conditions of the channel can be modified to accommodate a wide range of stability conditions

  12. Managing Water Resource Challenges in the Congo River Basin

    Science.gov (United States)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  13. The Water-Energy-Food Nexus in a Rapidly Developing Resource Sector

    Science.gov (United States)

    Allen, D. M.; Kirste, D. M.

    2014-12-01

    Technological advances and access to global markets have changed the rate at which resource exploitation takes place. The environmental impact of the rapid development and distribution of resources such as minerals and hydrocarbons has led to a greater potential for significant stress on water resources both in terms of quality and quantity. How and where those impacts manifest is crucial to determining appropriate risk management strategies. North East British Columbia has an abundance of shale gas reserves that are anticipated to be exploited at a large scale in coming years, primarily for export as liquefied natural gas (LNG). However, there is growing concern that fracking and other activities related to shale gas development pose risks to water quality and quantity in the region. Water lies at the center of the water-energy-food nexus, with an accelerating water demand for fracking and industrial operations as well as for domestic, environmental and agricultural uses. Climate change is also anticipated to alter the hydrologic regime, posing added stress to the water resource. This case study examines the water-energy-food nexus in the context of a region that is impacted by a rapidly developing resource sector, encompassing water demand/supply, climate change, interaction between deep aquifers and shallow aquifers/surface waters, water quality concerns related to fracking, land use disturbance, and community impacts. Due to the rapid rate of development, there are significant knowledge gaps in our understanding of the water resource. Currently agencies are undertaking water resource assessments and establishing monitoring sites. This research aims to assess water security in North East British Columbia in a coordinated fashion through various partnerships. In addition to collecting baseline knowledge and data, the study will evaluate risk and resilience indicators in relation to water security. A risk assessment framework specific to the shale gas development

  14. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  15. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  16. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  17. The Water Demand Management by Monitoring the Technology Performance and the Water Use Efficiency

    Directory of Open Access Journals (Sweden)

    Fraj Chemak

    2012-01-01

    Full Text Available Problem statement: Given the climate constraints and the limited resources, Tunisia has developed the irrigated sector in order to diversify the agricultural production and to meet the food needs of the population. Today the policy of water supply reaches its limits and the efforts should be turned to the management of the water demand. Within this context, this research aims to analyze the farming system, the technology performance and the water use efficiency of the irrigated farms in the Sidi Bouzid region. Approach: By monitoring the sample of 47 farms during the harvesting years 2007, 2008 and 2009 we have gathered database which involved technical and economical details. By analyzing the farming system we have identified the technology process in order to estimate the production frontier using the Data Envelopment Analysis (DEA approach. The sub-vector approach of the DEA model was used to compute the water use efficiency. Results: The empirical findings showed that farmers grow olive trees, cereal crops, forage crops and horticulture crops. During the surveyed period the share of the different crops did not change significantly. The water consumption reaches only an average of 2700 m3/ha. However, the charge of irrigation represents more than 40% out of the total expenditures. The results of the DEA model showed that 50% of farms are inefficient and the technical efficiency reaches an average of 81%. The average of the scale efficiency reached 88%. However, the water use efficiency did not exceed an average of 68%. Hence, 32% of the water currently used should be saved. Conclusion: There is a wide gap to improve skills and the ability of the farmers to achieve the best of the water use efficiency. Thus, we suggest that the state intervention is necessary not only to reduce the wasting of water but also to set up an accompanying device that reconciles water conservation and the production targets.

  18. How Much Will It Cost To Monitor Microbial Drinking Water Quality in Sub-Saharan Africa?

    Science.gov (United States)

    2017-01-01

    Microbial water quality monitoring is crucial for managing water resources and protecting public health. However, institutional testing activities in sub-Saharan Africa are currently limited. Because the economics of water quality testing are poorly understood, the extent to which cost may be a barrier to monitoring in different settings is unclear. This study used cost data from 18 African monitoring institutions (piped water suppliers and health surveillance agencies in six countries) and estimates of water supply type coverage from 15 countries to assess the annual financial requirements for microbial water testing at both national and regional levels, using World Health Organization recommendations for sampling frequency. We found that a microbial water quality test costs 21.0 ± 11.3 USD, on average, including consumables, equipment, labor, and logistics, which is higher than previously calculated. Our annual cost estimates for microbial monitoring of piped supplies and improved point sources ranged between 8 000 USD for Equatorial Guinea and 1.9 million USD for Ethiopia, depending primarily on the population served but also on the distribution of piped water system sizes. A comparison with current national water and sanitation budgets showed that the cost of implementing prescribed testing levels represents a relatively modest proportion of existing budgets (cost 16.0 million USD per year, which is minimal in comparison to the projected annual capital costs of achieving Sustainable Development Goal 6.1 of safe water for all (14.8 billion USD). PMID:28459563

  19. The current state of water resources of Transcarpathia

    Directory of Open Access Journals (Sweden)

    V. І. Nikolaichuk

    2015-07-01

    Full Text Available Throughout their existence, humans use the water of rivers, lakes and underground sources not only for water supply but also for dumping of polluted waters and wastes into it. Significant development of urbanization, concentration of urban industrial enterprises, transport, increase in mining, expansion of drainage and irrigation reclamation, plowing of the river channels, creating a large number of landfills resulted in significant, and in some regions critical, depletion and contamination of the surface and ground waters. Because of this disastrous situation, the society is getting more and more concerned about the state of the environment. The public became increasingly interested in the state of the soil cover, air, water resources, and biotic diversity. Transcarpathian region (Zakarpattya is situated in the heart of Europe, bordered by four Central European countries (Poland, Slovakia, Hungary and Romania and two regions of Ukraine (Lviv and Ivano-Frankivsk regions. Transcarpathian region (Zakarpattya is one of the richest regions of Ukraine in terms of water resources. The territory is permeated by the dense network of rivers. There are in total 9,429 rivers of 19,866 kmlength flowing in the region. Among them, the rivers Tysa, Borzhava, Latoryca, Uzh have the length of over 100 kmeach. 25 cities and urban settlements of the area are substantially provided with the centralized water intake of underground drinking water. The rural areas have virtually no centralized water supply; mainly, it is carried out due to domestic wells or water boreholes. Predicted resources of underground drinking waters in the region are equal to 1,109,300 m3/day. The use of fresh water in 2014 per capita amounted to 23,769 m3, 15% less than in 2009. The main pollutants of surface water bodies are the facilities of utility companies in the region. Analysis of studies of surface water quality in Transcarpathian region in 2014 shows that water quality meets the

  20. Studies on Monitoring and Tracking Genetic Resources: An Executive Summary

    DEFF Research Database (Denmark)

    Garrity, GM; Thompson, LM; Ussery, David

    2009-01-01

    The principles underlying fair and equitable sharing of benefits derived from the utilization of genetic resources are set out in Article 15 of the UN Convention on Biological Diversity, which stipulate that access to genetic resources is subject to the prior informed consent of the country where...

  1. Roadmap for sustainable water resources in southwestern North America.

    Science.gov (United States)

    Gleick, Peter H

    2010-12-14

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades.

  2. The development of water services and their interaction with water resources in European and Brazilian cities

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  3. The development of water services and their interaction with water resources in European and Brazilian cities

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2008-08-01

    Full Text Available The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  4. CONSTRAINING FACTORS TO SUSTAINABLE UTILIZATION OF WATER RESOURCES AND THEIR COUNTERMEASURES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    ZHAI Jin-liang; FENG Ren-guo; XIA Jun

    2003-01-01

    This paper discusses the constraining factors to sustainable utilization of water resources in China, and the countermeasures to realize sustainable water utilization. The result of comprehensive analysis shows that constraining factors to sustainable utilization of water resources in China are complicated, including physical geographical factors and socio-economic factors, such as uneven distribution of water resources at temporal and spatial scales,inappropriate institutional arrangement and non-water-saving and non-water-conservation production and life mode.The countermeasures against constraining factors to water resources sustainable development are put forward as follows: 1) using wetlands and forests, and through spatial conversion to realize temporally sustainable supply of water resources; 2) transferring water between basins and areas and developing various water resources in water shortage area; 3) establishing water-saving society; 4) strengthening water pollution control and water resources protection;and 5) establishing unified water resources management mechanism.

  5. Surface Water Resources Response to Climate Changes in Jilin Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The response of surface water resources on climate changes was studied.[Method] By dint of monthly average temperature and precipitation in 45 meteorological stations in Jilin Province from 1960 to 2000,monthly runoff in 56 hydrological stations in Songhuajiang and Liaohe region,the surface runoff change and the response of surface water resources to climate change in 41 years were expounded.[Result] The runoff of Songliao region was limited during 1960s and 1970s.It began to increase slowly in ...

  6. Impacts of Groundwater Pumping on Regional and Global Water Resources

    Science.gov (United States)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  7. Value of Landsat in urban water resources planning

    Science.gov (United States)

    Jackson, T. J.; Ragan, R. M.

    1977-01-01

    The reported investigation had the objective to evaluate the utility of satellite multispectral remote sensing in urban water resources planning. The results are presented of a study which was conducted to determine the economic impact of Landsat data. The use of Landsat data to estimate hydrologic model parameters employed in urban water resources planning is discussed. A decision regarding an employment of the Landsat data has to consider the tradeoff between data accuracy and cost. Bayesian decision theory is used in this connection. It is concluded that computer-aided interpretation of Landsat data is a highly cost-effective method of estimating the percentage of impervious area.

  8. Value of Landsat in urban water resources planning

    Science.gov (United States)

    Jackson, T. J.; Ragan, R. M.

    1977-01-01

    The reported investigation had the objective to evaluate the utility of satellite multispectral remote sensing in urban water resources planning. The results are presented of a study which was conducted to determine the economic impact of Landsat data. The use of Landsat data to estimate hydrologic model parameters employed in urban water resources planning is discussed. A decision regarding an employment of the Landsat data has to consider the tradeoff between data accuracy and cost. Bayesian decision theory is used in this connection. It is concluded that computer-aided interpretation of Landsat data is a highly cost-effective method of estimating the percentage of impervious area.

  9. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    Directory of Open Access Journals (Sweden)

    Zeki Gökalp

    2016-07-01

    Full Text Available Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance costs, energy demands, easy operation and low sludge generation. Today, constructed wetland systems are largely used to treat domestic wastewaters, agricultural wastewaters, industrial wastewater and runoff waters and ultimately to prevent water pollution and to improve water quality of receiving water bodies. In present study, currently implemented practices in design, construction, operation and maintenance of constructed wetlands were assessed and potential mistakes made in different phases these systems were pointed out and possible solutions were proposed to overcome these problems.

  10. Integrating policy, disintegrating practice: water resources management in Botswana

    Science.gov (United States)

    Swatuk, Larry A.; Rahm, Dianne

    Botswana is generally regarded as an African ‘success story’. Nearly four decades of unabated economic growth, multi-party democracy, conservative decision-making and low-levels of corruption have made Botswana the darling of the international donor community. One consequence of rapid and sustained economic development is that water resources use and demands have risen dramatically in a primarily arid/semi-arid environment. Policy makers recognize that supply is limited and that deliberate steps must be taken to manage demand. To this end, and in line with other members of the Southern African Development Community (SADC), Botswana devised a National Water Master Plan (NWMP) and undertook a series of institutional and legal reforms throughout the 1990s so as to make water resources use more equitable, efficient and sustainable. In other words, the stated goal is to work toward Integrated Water Resources Management (IWRM) in both policy and practice. However, policy measures have had limited impact on de facto practice. This paper reflects our efforts to understand the disjuncture between policy and practice. The information presented here combines a review of primary and secondary literatures with key informant interviews. It is our view that a number of constraints-cultural, power political, managerial-combine to hinder efforts toward sustainable forms of water resources use. If IWRM is to be realized in the country, these constraints must be overcome. This, however, is no small task.

  11. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  12. Atmospheric Rivers, Floods and the Water Resources of California

    Directory of Open Access Journals (Sweden)

    Daniel R. Cayan

    2011-03-01

    Full Text Available California’s highly variable climate and growing water demands combine to pose both water-supply and flood-hazard challenges to resource managers. Recently important efforts to more fully integrate the management of floods and water resources have begun, with the aim of benefitting both sectors. California is shown here to experience unusually large variations in annual precipitation and streamflow totals relative to the rest of the US, variations which mostly reflect the unusually small average number of wet days per year needed to accumulate most of its annual precipitation totals (ranging from 5 to 15 days in California. Thus whether just a few large storms arrive or fail to arrive in California can be the difference between a banner year and a drought. Furthermore California receives some of the largest 3-day storm totals in the country, rivaling in this regard the hurricane belt of the southeastern US. California’s largest storms are generally fueled by landfalling atmospheric rivers (ARs. The fractions of precipitation and streamflow totals at stations across the US that are associated with ARs are documented here and, in California, contribute 20–50% of the state’s precipitation and streamflow. Prospects for long-lead forecasts of these fractions are presented. From a meteorological perspective, California’s water resources and floods are shown to derive from the same storms to an extent that makes integrated flood and water resources management all the more important.

  13. Successful water quality monitoring: The right combination of intent, measurement, interpretation, and a cooperating ecosystem

    Science.gov (United States)

    Soballe, D.M.

    1998-01-01

    Water quality monitoring is invaluable to ensure compliance with regulations, detect trends or patterns, and advance ecological understanding. However, monitoring typically measures only a few characteristics in a small fraction of a large and complex system, and thus the information contained in monitoring data depends upon which features of the ecosystem are actually captured by the measurements. Difficulties arise when these data contain something other than intended, but this can be minimized if the purpose of the sampling is clear, and the sampling design, measurements, and data interpretations are all compatible with this purpose. The monitoring program and data interpretation must also be properly matched to the structure and functioning of the system. Obtaining this match is sometimes an iterative process that demands a close link between research and monitoring. This paper focuses on water quality monitoring that is intended to track trends in aquatic resources and advance ecological understanding. It includes examples from three monitoring programs and a simulation exercise that illustrate problems that arise when the information content of monitoring data differs from expectation. The examples show (1) how inconsistencies among, or lack of information about, the basic elements of a monitoring program (intent, design, measurement, interpretation, and the monitored system) can produce a systematic difference (bias) between monitoring measurements and sampling intent or interpretation, and (2) that bias is not just a statistical consideration, but an insidious problem that can undermine the scientific integrity of a monitoring program. Some general suggestions are provided and hopefully these examples will help those engaged in water quality monitoring to enhance and protect the value of their monitoring investment.

  14. Modeling resource basis for social and economic development strategies: Water resource case

    Science.gov (United States)

    Kosolapova, Natalia A.; Matveeva, Ludmila G.; Nikitaeva, Anastasia Y.; Molapisi, Lesego

    2017-10-01

    The article substantiates that the effectiveness of implementing socio-economic development strategies is to a large extent determined by the adequate provision of basic resources. The key role of water resources in economic strategic development is empirically illustrated. The article demonstrates the practicability of strategic management of water resources based on the principle of a combination of river basin management approaches and the consideration of regional development strategies. The Game Theory technique was used to develop economic and mathematical tools for supporting decision-making in meeting the needs of regional consumers under water balance deficit conditions. The choice of methods was determined from two positions: the methods should allow for the possibility of multi-variant solutions for the selection of optimal options for the distribution of limited water resources between different consumers; the methods should be orientated on the maximum possible harmonization of multidirectional and multi-scale interests of the subjects in the water management system of the different regions (including the state) in order to achieve a balance. The approbation of developing a toolkit for the example of the regions located in the Don and Kuban river basins resulted in the appropriate selection of priority regions for the allocation of water resources in terms of strategic management as well as the determination of measures of ensuring the sustainable use of the river basins under consideration. The proposed tools can be used for coordinating decisions on the water supply of regional economic systems with actual and projected indicators of socio-economic development of the respective regions for a strategic perspective.

  15. The Need for Regular Monitoring and Prediction of Ephemeral Water Bodies in SERVIR Regions

    Science.gov (United States)

    Anderson, Eric

    2017-01-01

    With remote sensing and modeling techniques available today it is possible to regularly identify and monitor the presence of surface water globally, for a wide range of applications. Many of the available datasets and tools, however, do not adequately resolve small or ephemeral water bodies in a timely enough fashion to make local and subnational decisions about water resources management in developing regions. This presentation introduces a specific need focused on a basin in Senegal to develop a capability to identify and disseminate timely information on small and ephemeral water bodies, and we seek feedback on methods proposed to address this need.

  16. Water-resources optimization model for Santa Barbara, California

    Science.gov (United States)

    Nishikawa, T.

    1998-01-01

    A simulation-optimization model has been developed for the optimal management of the city of Santa Barbara's water resources during a drought. The model, which links groundwater simulation with linear programming, has a planning horizon of 5 years. The objective is to minimize the cost of water supply subject to: water demand constraints, hydraulic head constraints to control seawater intrusion, and water capacity constraints. The decision variables are montly water deliveries from surface water and groundwater. The state variables are hydraulic heads. The drought of 1947-51 is the city's worst drought on record, and simulated surface-water supplies for this period were used as a basis for testing optimal management of current water resources under drought conditions. The simulation-optimization model was applied using three reservoir operation rules. In addition, the model's sensitivity to demand, carry over [the storage of water in one year for use in the later year(s)], head constraints, and capacity constraints was tested.

  17. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  18. Water reservoir as resource of raw material for ceramic industry

    Science.gov (United States)

    Irie, M.; Tarhouni, J.

    2015-04-01

    The industries related to the ceramics such as construction bricks, pottery and tile are the important sectors that cover the large part of the working population in Tunisia. The raw materials, clay or silt are excavated from opencast site of limestone clay stratum. The opencast site give the negative impact on landscape and environment, risks of landslide, soil erosion etc. On the other hand, a most serious problem in water resource management, especially in arid land such as Tunisia, is sedimentation in reservoirs. Sediment accumulation in the reservoirs reduces the water storage capacity. The authors proposed the exploitation of the sediment as raw material for the ceramics industries in the previous studies because the sediment in Tunisia is fine silt. In this study, the potential of the water reservoirs in Tunisia as the resource of the raw material for the ceramics industries is estimated from the sedimentation ratio in the water reservoirs.

  19. Conceptual Model of Water Resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, L. Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  20. GLOBAL WARMING AND ITS IMPACT ON WATER RESOURCES

    OpenAIRE

    Debu Mukherjee

    2016-01-01

    Global warming is the gradual heating of earth's surface, oceans and atmosphere. Global warming is primarily a problem of too much carbon dioxide in the atmosphere which acts as a blanket, trapping heat and warming the planet. The relationship between water, energy, agriculture and climate is a significant one. As the earth’s temperature continues to rise, we can expect a significant impact on our fresh water supplies with the potential for devastating effects on these resources.&nb...

  1. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures

    Directory of Open Access Journals (Sweden)

    Felicity A. Roddick

    2012-11-01

    Full Text Available Biofouling is a critical issue in membrane water and wastewater treatment as it greatly compromises the efficiency of the treatment processes. It is difficult to control, and significant economic resources have been dedicated to the development of effective biofouling monitoring and control strategies. This paper highlights the underlying causes of membrane biofouling and provides a review on recent developments of potential monitoring and control methods in water and wastewater treatment with the aim of identifying the remaining issues and challenges in this area.

  2. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  3. 76 FR 73674 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2011-11-29

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water... resources planning. The discount rate for Federal water resources planning for fiscal year 2012 is 4 percent...

  4. 78 FR 16706 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-03-18

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water... resources planning. The discount rate for Federal water resources planning for fiscal year 2013 is 3.75...

  5. 75 FR 8106 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2010-02-23

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water... resources planning. The discount rate for Federal water resources planning for fiscal year 2010 is 4.375...

  6. 75 FR 82066 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2010-12-29

    ... Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water...

  7. 78 FR 67393 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-11-12

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water... resources planning. The discount rate for Federal water resources planning for fiscal year 2014 is 3.50...

  8. 75 FR 27575 - Agency Information Collection Activities: State Water Resources Research Institute Program Annual...

    Science.gov (United States)

    2010-05-17

    ... Geological Survey Agency Information Collection Activities: State Water Resources Research Institute Program... report on its activities under the grant. The State Water Resources Research Institute Program issues an... Water Resources Research Act of 1984, as amended (42 U.S.C. 10301 et seq.), authorizes a water resources...

  9. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.

    Science.gov (United States)

    Daigger, Glen T

    2009-08-01

    Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban

  10. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    Directory of Open Access Journals (Sweden)

    S. P. Bindra

    2014-12-01

    Full Text Available This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achieved in most area owing to precipitation variability’s and seasonality. It demonstrates that how large increases in water demand with very little recharge from precipitation have strained Libya’s groundwater resources resulting in declines of groundwater levels and its quality, especially on Libyan coastal areas where most of the agriculture, domestic and industrial activities are concentrated. Based on several research studies it demonstrates that how policy and decision making process using best practices for monitoring, analyzing and forecasting variation of climate is a way forward to cope with the impact of sea level rise, and combat some water supplies in vulnerable areas that are becoming unusable due to the penetration of salt water into coastal aquifers (Jifara Plain, Sirt, Jebal El-Akhdar.Finally, a number of Global Climate Models (GCM are reviewed to demonstrate that how better understanding of climate and climate change forecasting helps in devising appropriate adaptation strategies due to the impact of climate change.

  11. Preliminary monitoring of faecal indicator organisms of surface water ...

    African Journals Online (AJOL)

    Preliminary monitoring of faecal indicator organisms of surface water: A case study ... in Mvudi River used as a source of domestic water for people who live around it. ... of Water Affairs and Forestry of South Africa (DWAF) and the World Health ...

  12. Exploration of Water Resource and Multiple Model for Water Resource Development in Karst Areas with the Preferred Plane Theory

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the theory of preferred plane, preferred planes (faults) always control the distribution of bedrock fissure water and hold abundant groundwater. Thus, the exploration of fissure or karst water can be converted into searching for the watery preferred plane (WPP). In the paper, the characteristic of watery preferred planes is analyzed and a series of superior indices has been set up. It is introduced that WPPs are determined by the methods of geological analysis, superior index and complex geophysical analysis. Meanwhile, new multiple model for water resource development in the water-scarce areas of karst mountainous regions are advanced.

  13. Integrated Water-Less Management of Night Soil for Depollution of Water Resources and Water Conservation

    Directory of Open Access Journals (Sweden)

    Pramod R. Chaudhari

    2016-05-01

    Full Text Available Use of water for flushing night soil and enormous sewage disposal are responsible for pollution and depletion of fresh water resources in India and other countries. The review of traditional methods in the world provides idea of zero-waste discharge residential units. Experiences and research in India, China, Japan, America and Sweden has indicated feasibility of waterless management of night soil, composting and use of biofertilizer product in agriculture. A novel idea of ecological management of night soil and urine is presented in which night soil may be conditioned for transportation and treatment by adding suitable waste product(s from industry and other sources. Different night soil treatment methods are reviewed and emphasized the need for further research on whole cycle of ecological management or sustainable sanitation depending on local conditions. The benefits of this system are zero sewage discharge, reuse of waste as resource, recovery of nutrients in waste as fertilizer, production of fuel gas and reduction of pathogens in biofertilizer. This will help in water conservation and regenerating the quality and quantity of river flow for use as water ways and irrigation and to improve the public health. Potential technical intervention and research needs are discussed in this article

  14. Focus on CSIR research in water resources: ECO2 – sharing benefits from water resources

    CSIR Research Space (South Africa)

    Claassen, Marius

    2007-08-01

    Full Text Available Socio-economic development depends on the reliable supply of water for industrial, mining, agricultural, potable and recreational purposes. These activities also generate waste products that are often discharged to surface water. South Africa’s...

  15. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Troppe, W. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  16. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  17. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  18. Formation and utilization of water resources of Tarim River

    Institute of Scientific and Technical Information of China (English)

    雷志栋; 甄宝龙; 尚松浩; 杨诗秀; 丛振涛; 张发旺; 毛晓辉; 周海鹰

    2001-01-01

    The Tarim River is a typical inland river in arid area without runoff yield of itself, and water resources are all supplied by its headstreams. The method of time series analysis is applied to annual runoff series of three headstreams, namely the Aksu River, Yarkant River and Hotan River to analyze their dynamic variations. A model is established to estimate water consumption in the headstream areas. Quantitative results indicate that both total annual runoff of headstreams and water consumption in the headstream areas have an increasing trend. The dynamic trends of annual runoff of hydrologic stations along the mainstream of the Tarim River are also presented to estimate the intermittence drying-up time at each station. Water consumption model of the mainstream area is used to analyze the characteristics of water consumption in the upper and middle reaches. It is shown that water consumption in each river reach of the mainstream decreases with the decrement of inflow and increases with human activities.

  19. Knowledge and information management for integrated water resource management

    Science.gov (United States)

    Watershed information systems that integrate data and analytical tools are critical enabling technologies to support Integrated Water Resource Management (IWRM) by converting data into information, and information into knowledge. Many factors bring people to the table to participate in an IWRM fra...

  20. Water: US Strategic Response to Conflicts Over a Finite Resource

    Science.gov (United States)

    2009-02-25

    2008). 32 Clarke, The Water Atlas, 75. 33 Anthony R. Turton and Anton Earle, “Public Participation In The Development of a Management Plan for An...Information Technology (New York: United Nations University, 2005), 38. 35 Turton , 38-39. 36 Ibid., 40. 37 Ibid., 40-49. 38 Klare, Resource Wars: The New