WorldWideScience

Sample records for monitoring vegetation recovery

  1. Monitoring the vegetation recovery in Østerild Plantage 2013. Part 1

    DEFF Research Database (Denmark)

    Wind, Peter

    The trees in a part of Østerild Plantage have been cut down to give room for a national test center. Before the afforestation DCE has performed a baseline monitoring in the summer of 2011. DCE has in late summer 2013 re-monitored the recovery of the vegetation cover in the northernmost part...

  2. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data

    Directory of Open Access Journals (Sweden)

    Willem J. D. van Leeuwen

    2008-03-01

    Full Text Available This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR and examine burn severity at the selected sites. The phenological metrics (pheno-metrics included the timing and greenness (i.e. NDVI for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation

  3. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    Science.gov (United States)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  4. Post-fire vegetation recovery in Portugal based ewline on spot/vegetation data

    Directory of Open Access Journals (Sweden)

    C. Gouveia

    2010-04-01

    Full Text Available A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI, with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation

  5. Development of indicators of vegetation recovery based on time series analysis of SPOT Vegetation data

    Science.gov (United States)

    Lhermitte, S.; Tips, M.; Verbesselt, J.; Jonckheere, I.; Van Aardt, J.; Coppin, Pol

    2005-10-01

    Large-scale wild fires have direct impacts on natural ecosystems and play a major role in the vegetation ecology and carbon budget. Accurate methods for describing post-fire development of vegetation are therefore essential for the understanding and monitoring of terrestrial ecosystems. Time series analysis of satellite imagery offers the potential to quantify these parameters with spatial and temporal accuracy. Current research focuses on the potential of time series analysis of SPOT Vegetation S10 data (1999-2001) to quantify the vegetation recovery of large-scale burns detected in the framework of GBA2000. The objective of this study was to provide quantitative estimates of the spatio-temporal variation of vegetation recovery based on remote sensing indicators. Southern Africa was used as a pilot study area, given the availability of ground and satellite data. An automated technique was developed to extract consistent indicators of vegetation recovery from the SPOT-VGT time series. Reference areas were used to quantify the vegetation regrowth by means of Regeneration Indices (RI). Two kinds of recovery indicators (time and value- based) were tested for RI's of NDVI, SR, SAVI, NDWI, and pure band information. The effects of vegetation structure and temporal fire regime features on the recovery indicators were subsequently analyzed. Statistical analyses were conducted to assess whether the recovery indicators were different for different vegetation types and dependent on timing of the burning season. Results highlighted the importance of appropriate reference areas and the importance of correct normalization of the SPOT-VGT data.

  6. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    Science.gov (United States)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  7. Modelling post-fire vegetation recovery in Portugal

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; Dacamara, C. C.; Trigo, R. M.

    2011-12-01

    Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 years (1998-2009), at 1 km × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland

  8. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography

    Directory of Open Access Journals (Sweden)

    Zhenwang Li

    2014-03-01

    Full Text Available On 12 May 2008, the 8.0-magnitude Wenchuan earthquake occurred in Sichuan Province, China, triggering thousands of landslides, debris flows, and barrier lakes, leading to a substantial loss of life and damage to the local environment and infrastructure. This study aimed to monitor the status of geologic hazards and vegetation recovery in a post-earthquake disaster area using high-resolution aerial photography from 2008 to 2011, acquired from the Center for Earth Observation and Digital Earth (CEODE, Chinese Academy of Sciences. The distribution and range of hazards were identified in 15 large, representative geologic hazard areas triggered by the Wenchuan earthquake. After conducting an overlay analysis, the variations of these hazards between successive years were analyzed to reflect the geologic hazard development and vegetation recovery. The results showed that in the first year after the Wenchuan earthquake, debris flows occurred frequently with high intensity. Resultantly, with the source material becoming less available and the slope structure stabilizing, the intensity and frequency of debris flows gradually decreased with time. The development rate of debris flows between 2008 and 2011 was 3% per year. The lithology played a dominant role in the formation of debris flows, and the topography and hazard size in the earthquake affected area also had an influence on the debris flow development process. Meanwhile, the overall geologic hazard area decreased at 12% per year, and the vegetation recovery on the landslide mass was 15% to 20% per year between 2008 and 2011. The outcomes of this study provide supporting data for ecological recovery as well as debris flow control and prevention projects in hazard-prone areas.

  9. Modelling post-fire vegetation recovery in Portugal

    Directory of Open Access Journals (Sweden)

    A. Bastos

    2011-12-01

    Full Text Available Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion.

    The main goals of the present work are (i to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively.

    The study relies on monthly values of NDVI over 11 years (1998–2009, at 1 km × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to

  10. Post Fire Vegetation Recovery in Portugal

    Science.gov (United States)

    Gouveia, Celia; Bastos, Ana; DaCamara, Carlos; Trigo, Ricardo M.

    2011-01-01

    Fires in Portugal, as in the Mediterranean ecosystems, have a complex effect on vegetation regeneration due to the different responses of vegetation to the variety of fire regimes and to the complexity of landscape structures. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In 2005, Portugal suffered a strong damage from forest fires that damaged an area of 300 000 ha of forest and shrub. This year are particularly interesting because it is associated the severe drought of 2005. The aim of the present study is to identify large burnt scars in Portugal during the 2005 fire seasons and monitoring vegetation behaviour throughout the pre and the post fire periods. The mono-parametric model developed by Gouveia et al. (2010), based on monthly values of NDVI, at the 1km×1km spatial scale, as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2009, was used.

  11. Post Fire Vegetation Recovery in Greece after the large Drought event of 2007

    Science.gov (United States)

    Gouveia, Célia M.; Bastos, Ana; DaCamara, Carlos; Trigo, Ricardo

    2013-04-01

    Fire is a natural factor of Mediterranean ecosystems. However, fire regimes in the European Mediterranean areas have been changing in the last decades, mainly due to land-use changes and climate driven factors possibly associated with climatic warming (e.g. decline of precipitation, increasing temperatures but also higher frequency of heatwaves). In Greece, the fire season of 2007 was particularly devastating, achieving the new all-time record of estimated burnt area (225 734 ha), since 1980. Additionally, we must stress that prior to the summer fire season in 2007, Greece suffered an exceptional drought event. This severe drought had a strong negative impact in vegetation dynamics. Since water availability is a crucial factor in post-fire vegetation recovery, it is desirable to assess the impact that such water-stress conditions had on fire sensitivity and post-fire vegetation recovery. Based on monthly values of NDVI, at the 1km×1km spatial scale, as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2010, large burnt scars are identified in Greece, during 2007 fire season. Vegetation recovery is then assessed based on a mono parametric regression model originally developed by Gouveia et al. (2010) to identify large burnt scars in Portugal during the 2003 fire season and after applied to 2005 fire season (Bastos et al., 2012). Some large burnt areas are selected and the respective NDVI behaviour is monitored throughout the pre and the post fire period. The vegetation dynamics during the pre-fire period is analysed and related to the extreme climatic events that characterised the considered period. An analysis is made of the dependence of recovery rates on land cover types and fire damage. Finally results are compared to results already obtained for Portugal (Gouveia et al. 2010). This work emphasises the use of a simple methodology, when applied to low resolution satellite imagery in order to monitor vegetation recovery after large fires events over

  12. Vegetation recovery assessment following large wildfires in the Mediterranean Basin

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; Trigo, R. M.; DaCamara, C. C.

    2012-04-01

    fire season considered in this study. The influence of driving factors such as pre-fire land-cover type and fire damage on vegetation recovery was assessed by means of a spatial analysis on recovery time fields. Finally, post-fire behaviour of vegetation over the selected regions and the role of the driving factors were compared. This work draws attention to the fact that the simple model applied by Bastos et al. (2011) to monitor vegetation recovery in Portugal following large wildfires is still applicable over other Mediterranean regions using coarse resolution remotely sensed data. Bastos A., Gouveia C., DaCamara C.C., and Trigo R.M.: Modelling post-fire vegetation recovery in Portugal. Biogeosciences, 8, 4559-4601, 2011. Gouveia C., DaCamara C.C. and Trigo R.M.: Post fire vegetation recovery in Portugal based on SPOT-VEGETATION data. Natural Hazards and Earth System Sciences, 10, 673-684, 2010. Malkinson D., Wittenberg, L., Beeri O. and Barzilai R.: Effects of repeated fires on the structure, composition, and dynamics of Mediterranean maquis: Short- and long-term perspectives. Ecosystems, 14, 478-488, 2011.

  13. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    Science.gov (United States)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires

  14. Monitoring post-fire recovery of shrublands in Mediterranean-type ecosystems using MODIS and TM/ETM+ data

    Science.gov (United States)

    Hope, Allen; Albers, Noah; Bart, Ryan

    2010-05-01

    Wildland fires in Mediterranean-Type Ecosystems (MTEs) are episodic events that dramatically alter land-cover conditions. Monitoring post-fire vegetation recovery is important for land management applications such as the scheduling of prescribed burns, post-fire resource management and soil erosion control. Full recovery of MTE shrublands may take many years and have a prolonged effect on water, energy and carbon fluxes in these ecosystems. Comparative studies of fynbos ecosystems in the Cape Floristic Region of South Africa (Western Cape Region) and chaparral ecosystems of California have demonstrated that there is a considerable degree of convergence in some aspects of post-fire vegetation regeneration and marked differences in other aspects. Since these MTEs have contrasting rainfall and soil nutrient conditions, an obvious question arises as to the similarity or dissimilarity in remotely sensed post-fire recovery pathways of vegetation stands in these two regions and the extent to which fire severity and drought impact the rate of vegetation recovery. Post-fire recovery pathways of chaparral and fynbos vegetation stands were characterized using the normalized difference vegetation index (NDVI) based on TM/ETM+ and MODIS (250 m) data. Procedures based on stands of unburned vegetation (control) were implemented to normalize the NDVI for variations associated with inter-annual differences in rainfall. Only vegetation stands that had not burned for 20 years were examined in this study to eliminate potential effects of variable fire histories on the recovery pathways. Post-fire recovery patterns of vegetation in both regions and across different vegetation types were found to be very similar. Post-fire stand age was the primary control over vegetation recovery and the NDVI returned to pre-fire values within seven to 10 years of the fires. Droughts were shown to cause slight interruptions in recovery rates while fire severity had no discernable effect. Intra

  15. Post-wildfire recovery of riparian vegetation during a period of water scarcity in the southwestern USA

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; Christian Gunning; Roy Jemison; Jeffrey F. Kelly

    2009-01-01

    Wildland fires occur with increasing frequency in southwestern riparian forests, yet little is known about the effects of fire on populations of native and exotic vegetation. From 2003 to 2006, we monitored recovering woody vegetation in wildfire sites in the bosque (riparian forest) along the Middle Rio Grande of central New Mexico, USA. To examine recovery potential...

  16. Enhancing Pre- and Post-Wildfire Vegetation Recovery and Understanding Feedbacks of Cheatgrass invasion Using NASA Earth Observations

    Science.gov (United States)

    Olsen, N.; Counts, A.; Quistorff, C.; Ohr, C. A.; Toner, C.

    2017-12-01

    Increasing wildfire frequency and severity has emphasized the importance of post-wildfire recovery efforts in southern Idaho's sagebrush ecosystems. These changing fire regimes favor invasive grass species while hindering native sagebrush habitat regeneration, causing a positive feedback cycle of invasive growth - wildfires - invasive growth. Due to this undesirable process and anthropogenic influences, the sagebrush ecosystem is one of the most endangered in the US. In this project the NASA DEVELOP group of Pocatello, Idaho partnered with the Bureau of Land Management, Idaho Department of Fish and Game, and the US Department of Agriculture to characterize ecosystem recovery following the Crystal (2006), Henry Creek (2016), Jefferson (2010), and Soda (2015) wildfires. Determining vegetation cover heterogeneity and density can be time consuming and the factors affecting ecosystem recovery can be complex. In addition, restoration success is difficult to determine as vegetation composition is not often known prior to wildfire events and monitoring vegetation composition after restoration efforts can be resource intensive. These wildfires temporal monitoring consisted of 2001 to 2017 using NASA Earth observations such as Landsat 5 Thermal Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography Mission (SRTM) to determine the most significant factors of wildfire recovery and the influence targeted grazing could have for recovery. In addition, this project will include monitoring of invasive species propagation and whether spatial patterns or extents of the wildfire contribute to propagation. Understanding the key variables that made reseeding and natural recovery work in some areas, assessing why they failed in others, and identifying factors that made non-native propagation ideal are important issues for land managers in this region.

  17. On the characterization of vegetation recovery after fire disturbance using Fisher-Shannon analysis and SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series

    Science.gov (United States)

    Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano

    2015-04-01

    Time series can fruitfully support fire monitoring and management from statistical analysis of fire occurrence (Tuia et al. 2008) to danger estimation (lasaponara 2005), damage evaluation (Lanorte et al 2014) and post fire recovery (Lanorte et al. 2014). In this paper, the time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers. Reference Lanorte A, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to

  18. Vegetation damage and recovery after Chiginagak Volcano Crater drainage event

    Data.gov (United States)

    Department of the Interior — From August 20 — 23, 2006, I revisited Chiginigak volcano to document vegetation recovery after the crater drainage event that severely damaged vegetation in May of...

  19. Mapping the recovery of the burnt vegetation by classifying pre- and post-fire spectral indices

    Directory of Open Access Journals (Sweden)

    M. A Peña

    2017-12-01

    Full Text Available This study analyzed the state of recovery of the burnt vegetation in the National Park of Torres del Paine between December, 2011 and March, 2012. The calculation and comparison of the NVDI (normalized difference vegetation index of the burnt area throughout a time series of 24 Landsat images acquired before, during and after the fire (2009- 2015, showed the temporal variation in the biomass levels of the burnt vegetation. The subsequent classification and comparison of the spectral indices: NDVI, NBR (normalized burnt ratio and NDWI (normalized difference water index on a full-data available and phenologically matched pre- and post-fire image pair (acquired in October 2009 and 2014, enabled to analyze and mapping the state of recovery of the burnt vegetation. The results show that the area of the lowest classes of all the spectral indices of the pre-fire date became the most dominant on the post-fire date. The pre- and post- fire NDVI class crossing by a confusion matrix showed that the highest and most prevailing pre-fire NDVI classes, mostly corresponding to hydromorphic forests and Andean scrubs, turned into the lowest class in 2014. The remaining area, comprising Patagonian steppe, reestablished its biomass levels in 2014, mostly exhibiting the same pre-fire NDVI classes. These results may provide guidelines to monitor and manage the regeneration of the vegetation impacted by this fire.

  20. Salt marsh recovery from a crude oil spill: Vegetation, oil weathering, and response

    International Nuclear Information System (INIS)

    Hoff, R.Z.; Shigenaka, G.; Henry, C.B. Jr.

    1993-01-01

    When a spill of Prudhoe Bay crude oil covered a fringing Salicornia virginica marsh in Fidalgo Bay, Washington (northern Puget Sound) in February 1991, response personnel used several low-impact techniques to remove oil from the marsh, and minimized access by cleanup workers. Following the response, a monitoring program was established to track marsh recovery, and to document the effectiveness of the response techniques used and their impacts on the marsh. Through monthly sampling over a 16-month period, vegetative growth was monitored and chemical degradation of remaining oil was tracked. Sampling was conducted along transects located in four areas affected in different ways by the spill, including an oiled, trampled section; an oiled, vacuumed section; and an oiled, washed, and vacuumed section. In addition, a control transect was established in an unoiled adjacent marsh. The study included both biological and chemical components. Biological measurements included percent cover of live vegetation (sampled monthly) and below-ground plant biomass (sampled at the beginning of each growing season in April 1991 and April 1992). Sediment samples included surface sediment (monthly) and core samples collected at the beginning and end of the growing seasons. Sediment samples were analyzed using gas chromatography/mass spectroscopy, and indicator compounds were tracked to determine rates of oil degradation. Results from 16 months of post-spill monitoring show that foot trampling was most detrimental to marsh plants, while washing with vacuuming removed the most oil and minimized adverse impacts to vegetation. Dense clay substrate helped prevent oil from penetrating the sediment, thus minimizing acute toxic effects from oil exposure to marsh plant rootstock. By the second growing season post-spill, Salicornia and other marsh plants were growing in all areas except one heavily oiled patch

  1. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.

    Science.gov (United States)

    Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M

    2017-07-01

    that native vegetation are responsive and resilient to high-severity fire, and show the usefulness of remote sensing tools such as LiDAR to monitor post-fire vegetation recovery over large areas in situ. © 2017 by the Ecological Society of America.

  2. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  3. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-07-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  4. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-01-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  5. Ten Years of Post-Fire Vegetation Recovery following the 2007 Zaca Fire using Landsat Satellite Imagery

    Science.gov (United States)

    Hallett, J. K. E.; Miller, D.; Roberts, D. A.

    2017-12-01

    Forest fires play a key role in shaping eco-systems. The risk to vegetation depends on the fire regime, fuel conditions (age and amount), fire temperature, and physiological characteristics such as bark thickness and stem diameter. The 2007 Zaca Fire (24 kilometers NE of Buellton, Santa Barbara County, California) burned 826.4 km2 over the course of 2 months. In this study, we used a time series of Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager imagery, to evaluate plant burn severity and post fire recovery as defined into classes of above average recovery, normal recovery, and below average recovery. We spectrally unmixed the images into green vegetation (GV), non-photosynthetic vegetation (NPV), soil surface (SOIL), and ash with a spectral library developed using Constrained Reference Endmember Selection (CRES). We delineated the fire perimeter using the differenced Normalized Burn Ratio (dNBR) and evaluated changes in this index and the Normalized Difference Vegetation Index through time. The results showed an immediate decline in GV and NPV fractions, with a rise in soil and ash fractions directly following the fire, with a slow recovery in GV fraction and a loss of bare soil cover. The was a sharp increase in the ash fraction following the fire and gradual decrease in the year after. Most areas have recovered as of 2017, with prominent recovery in the center of the burn scar and reduced recovery in areas to the south. These results indicate how post-fire vegetation varies based on initial burn severity and pre-fire GV and NPV fractions.

  6. Monitoring of vegetation response to elk population and habitat management in Rocky Mountain National Park, 2008–14

    Science.gov (United States)

    Zeigenfuss, Linda C.; Johnson, Therese L.

    2015-12-17

    Since 2008, Rocky Mountain National Park in Colorado has been implementing an elk and vegetation management plan with the goal of managing elk populations and their habitats to improve the condition of key vegetation communities on elk winter range. Management actions that have been taken thus far include small reductions in the elk herd through culling of animals and temporary fencing of large areas of willow and aspen habitat to protect them from elk browsing. As part of the park’s elk and vegetation management plan (EVMP), a monitoring program was established to assess effectiveness of management actions in achieving vegetation goals. We collected data to monitor offtake (consumption) of upland herbaceous plants and willow annually from 2008 to 2014 and to assess aspen stand structure and regeneration and willow cover and height in 2013, 5 years after plan implementation. Loss of many willow and a few aspen monitoring sites to a fire in late 2012 complicated data collection and interpretation of results but will provide opportunities to observe habitat recovery following fire and in the presence and absence of elk herbivory, which will offer important insights into the use of prescribed fire as an additional management tool in these habitats.

  7. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  8. Study on the forest vegetation restoration monitoring using HJ-1A hyperspectral data

    International Nuclear Information System (INIS)

    Chuan, Zhang; Fawang, Ye; Hongcheng, Liu; Haixia, He

    2014-01-01

    In this paper, Xunke County was studied using HJ-1A hyperspectral data for monitoring vegetation restoration after forest fires. The pre-processing procedure including data format conversion, image mosaicing and atmospheric correction. Support vector machine classification was used to perform surface feature identification based on the extracted spectral end-members. On that basis, the image area was divided into seven categories and statistical analysis of classification types was performed. The results showed that HJ-1A hyperspectral data had great potential in fine classification of surface features and the accuracy of classification was 91.8%. The mild and severe fire-affected area extraction provided useful reference for disaster recovery monitoring. Furthermore, the distinction between coniferous forest and broadleaved forest can offer useful information for forest fire prevention and early warning to some extent

  9. Multidimensional Monitoring of Recovery Status and Implications for Performance.

    Science.gov (United States)

    Heidari, Jahan; Beckmann, Jürgen; Bertollo, Maurizio; Brink, Michel; Kallus, Wolfgang; Robazza, Claudio; Kellmann, Michael

    2018-03-15

    Monitoring of recovery in the context of athletic performance has gained significant importance during recent years. As a systematic process of data collection and evaluation, the monitoring of recovery can be implemented for various purposes. It may aid to prevent negative outcomes of training or competition, such as underrecovery, overtraining, or injuries. Further, it aims at establishing routines and strategies necessary to guarantee athletes' readiness for performance by restoring their depleted resources. Comprehensive monitoring of recovery ideally encompasses a multidimensional approach, thereby considering biological, psychological, and social monitoring methods. From a biological perspective, physiological (e.g., cardiac parameters), biochemical (e.g., creatine kinase), hormonal (e.g., salivary cortisol) and immunological (e.g., immunoglobulin A) markers can be taken into account to operationalize training loads and recovery needs. Psychological approaches suggest the application of validated and reliable psychometric questionnaires (e.g., Recovery-Stress Questionnaire for Athletes) to measure a subjective perception of recovery as well as the subjective degree of training- or competition-induced fatigue. Social aspects also play a role in performance monitoring and may hence provide essential performance-related information. The implementation of a monitoring routine within athletic environments represents a continuous process which functions as an effective addition to training and depends on a range of conditions (e.g., organizational regulations, commitment of athletes). Current research in the field of monitoring aims at establishing individualized monitoring regimes that are referring to intraindividual reference values with the help of innovative technological devices.

  10. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery

    Science.gov (United States)

    Mitri, George H.; Gitas, Ioannis Z.

    2013-02-01

    Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

  11. Post-fire vegetation dynamics in Portugal

    Science.gov (United States)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2009-04-01

    The number of fires and the extent of the burned surface in Mediterranean Europe have increased significantly during the last three decades. This may be due either to modifications in land-use (e.g. land abandonment and fuel accumulation) or to climatic changes (e.g. reduction of fuel humidity), both factors leading to an increase of fire risk and fire spread. As in the Mediterranean ecosystems, fires in Portugal have an intricate effect on vegetation regeneration due to the complexity of landscape structures as well as to the different responses of vegetation to the variety of fire regimes. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In the above mentioned context remote sensing plays an important role because of its ability to monitor and characterise post-fire vegetation dynamics. A number of fire recovery studies, based on remote sensing, have been conducted in regions characterised by Mediterranean climates and the use of NDVI to monitor plant regeneration after fire events was successfully tested (Díaz-Delgado et al., 1998). In particular, several studies have shown that rapid regeneration occurs within the first 2 years after the fire occurrences, with distinct recovery rates according to the geographical facing of the slopes (Pausas and Vallejo, 1999). In 2003 Portugal was hit by the most devastating sequence of large fires, responsible by a total burnt area of 450 000 ha (including 280 000 ha of forest), representing about 5% of the Portuguese mainland (Trigo et al., 2006). The aim of the present work is to assess and monitor the vegetation behaviour over Portugal following the 2003 fire episodes. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2008. We developed a methodology to identify large burnt scars in Portugal for the 2003 fire season. The vegetation dynamics was then

  12. Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures

    NARCIS (Netherlands)

    Tamis, J.; Sorokin, D.Y.; Jiang, Y.; Van Loosdrecht, M.C.M.; Kleerebezem, R.

    2015-01-01

    Background Many waste streams have a relatively high vegetable oil content, which is a potential resource that should be recovered. Microbial storage compound production for the recovery of lipids from lipid-water emulsions with open (unsterilized) microbial cultures was investigated in a sequencing

  13. Diagnosis of vegetation recovery within herbaceous sub-systems in the West African Sahel Region

    Science.gov (United States)

    Anchang, J.; Hanan, N. P.; Prihodko, L.; Sathyachandran, S. K.; Ji, W.; Ross, C. W.

    2017-12-01

    The West African Sahel (WAS) region is an extensive water limited environment that features a delicate balance of herbaceous and woody vegetation sub systems. These play an important role in the cycling of carbon while also supporting the dominant agro-pastoral human activities in the region. Quantifying the temporal trends in vegetation with regard to these two systems is therefore very important in assessing resource sustainability and food security. In water limited areas, rainfall is a primary driver of vegetation productivity and past watershed scale studies in the WAS region have shown that increase in the slope of the productivity-to-rainfall relationship is indicative of increasing cover and density of herbaceous plants. Given the importance of grazing resources to the region, we perform a wall-to-wall pixel based analysis of changing short-term vegetation sensitivity to changing annual rainfall (hereafter referred to as dS) to examine temporal trends in herbaceous vegetation health. Results indicate that 43% of the Sahelian region has experienced changes (P Western and Central Mali and South Western Niger. Positive dS is indicative of herbaceous vegetation recovery, in response to changing management and rainfall conditions that promote long-term herbaceous community recovery following degradation during the 1970-1980s droughts.

  14. PROBLEMS IN VEGETATION MONITORING IN NATURE MANAGEMENT PRACTICE: TWO CASE STUDIES

    Directory of Open Access Journals (Sweden)

    I. DE RONDE

    2007-04-01

    Full Text Available One of the major requirements of the monitoring of vegetation is the comparability of data between years. Therefore, a proper sampling scheme is essential. However, through the years, in nature management practice lots of data collected without a primary monitoring goal. Afterwards, it often seems very valuable to include these older data in the analysis for several reasons. In two examples from military ranges in the Netherlands, two of the problems which can be met with in comparing unequivalent or biased data in monitoring are shown. In the first example, the frequency of grassland species in two sets of relevés is examined. A solution is presented for the overrepresentation of relevés from one or more vegetation types from the first year, based on the area of the vegetation types on the vegetation map of this same year. In the second example, two sequential vegetation maps are compared. A major problem is often the thematic incongruence of sequential vegetation maps. Afterwards, this can only be resolved by upscaling one or both maps. It is concluded that the use of old data for monitoring purposes can be very valuable, but that this often calls for creative data handling, in which GIS and modern computer programmes are very helpful.

  15. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    Science.gov (United States)

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  16. Long-term monitoring of stream bank stability under different vegetation cover

    Science.gov (United States)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  17. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    Science.gov (United States)

    Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.

  18. Innovative Remote Sensing techniques for vegetation monitoring

    International Nuclear Information System (INIS)

    Borfecchia, F.; De Cecco, L.; Della Rocca, A.B.; Farneti, A.; La Porta, L.; Martini, S.; Giordano, L.; Trotta, C.; Marcoccia, S.

    2008-01-01

    This paper describes methods developed for using ASPIS (Advanced Spectroscopic Imaging System) to monitor biophysical parameters in studying the effects of climatic change, desertification and land degradation on semi-natural and agricultural vegetation in the Mediterranean region [it

  19. Monitoring vegetation cover in the postfire in Tavira - São Brás de Alportel (southern Portugal)

    Science.gov (United States)

    Ramos-Simões, Nuno A.; Granja-Martins, Fernando M.; Neto-Paixão, Helena M.; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    1. INTRODUCTION Often, restoration of areas affected by fire faces lack of knowledge of how ecosystems respond to the action of fire. Depending on environmental conditions, structure and diversity of the vegetation or the severity of the fire, burnt systems can provide responses ranging from spontaneous recovery in a relatively short time to onset of severe degradation processes. For this reason, it is necessary to monitor the evolution of post-burned in the fire, in order to plan effective strategies for restoring systems and soil erosion control. In order to assess soil erosion risk, this research aims to is to analyse the evolution of vegetation cover in a Mediterranean burnt forest soil, using vegetation indexes derived from Landsat-7 (Thematic Mapper sensor-TM) and Landsat-8 (Operation Land Imager sensor, OLI). 2. METHODS This study was carried out in a forest area affected by a wildfire by 18-22 July 2012. The study area is located within the coordinates 37o 9' - 37o 21' N and 7o 40' - 7o 53' W, including part of the municipalities of Tavira and São Brás de Alportel (southern Portugal). The relief in the studied area has an irregular topography. Soils are shallow and develop mainly metamorphic rocks (as slates or quartzite) and igneous rocks, which produce acidic and nutrient-poor soils, poorly developed in depth. The wildfire was one of the most important fires in Portugal during the recent years, and affected more than 24000 ha. Vegetation is dominated by cork oak (Quercus suber) ,holm oaks (Quercus ilex), strawberry tree (Arbutus unedo) and sclerophyllous vegetation (mostly formed by Quercus coccifera and Rosmarinus officinalis). These species are adapted to acidic-poor soils and show a great capability of resprouting and germination after fire. The study area is poorly developed, with cork and timber harvesting and other forest products or tourism as main economic activities. The area shows a highly fragmented urban fabric with the sparse

  20. Phenological Indicators of Vegetation Recovery in Wetland Ecosystems

    Science.gov (United States)

    Taddeo, S.; Dronova, I.

    2017-12-01

    Landscape phenology is increasingly used to measure the impacts of climatic and environmental disturbances on plant communities. As plants show rapid phenological responses to environmental changes, variation in site phenology can help characterize vegetation recovery following restoration treatments and qualify their resistance to environmental fluctuations. By leveraging free remote sensing datasets, a phenology-based analysis of vegetation dynamics could offer a cost-effective assessment of restoration progress in wetland ecosystems. To fulfill this objective, we analyze 20 years of free remote sensing data from NASA's Landsat archive to offer a landscape-scale synthesis of wetland restoration efforts in the Sacramento-San Joaquin Delta of California, USA. Through an analysis of spatio-temporal changes in plant phenology and greenness, we assess how 25 restored wetlands across the Delta have responded to restoration treatments, time, and landscape context. We use a spline smoothing approach to generate both site-wide and pixel-specific phenological curves and identify key phenological events. Preliminary results reveal a greater variability in greenness and growing season length during the initial post-restoration years and a significant impact of landscape context in the time needed to reach phenological stability. Well-connected sites seem to benefit from an increased availability of propagules enabling them to reach peak greenness and maximum growing season length more rapidly. These results demonstrate the potential of phenological analyses to measure restoration progress and detect factors promoting wetland recovery. A thorough understanding of wetland phenology is key to the quantification of ecosystem processes including carbon sequestration and habitat provisioning.

  1. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  2. Advances in monitoring vegetation and land use dynamics in the Sahel

    DEFF Research Database (Denmark)

    Mbow, Cheikh; Fensholt, Rasmus; Nielsen, Thomas Theis

    2014-01-01

    of CO2 in the atmosphere, grazing pressure, bush fires and agricultural expansion or contraction. The use of satellite data in combination with field data played a major role in the monitoring of vegetation dynamics and land use in the Sahel, since the mega drought of the 1970s and the 1980s. This paper...... briefly reviews the advance of satellite-based monitoring of vegetation dynamics over these 40 years. We discuss the promises of current and likely future data sources and analysis tools, as well as the need to strengthen in situ data collection to support and validate satellite-based vegetation and land...

  3. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  4. Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence

    Science.gov (United States)

    Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.

    2017-12-01

    Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence

  5. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands.

    Science.gov (United States)

    Meng, Ran; Dennison, Philip E; D'Antonio, Carla M; Moritz, Max A

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.

  6. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    Science.gov (United States)

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh A.; Hundy, Laura C.; McGinnis, Tommy E.

    2015-12-04

    A Vegetation Volume (VV) variable and Vegetation Volume Index (VVI) have been developed for the Coastwide Reference Monitoring System (CRMS). The VV is a measure of the amount of three-dimensional vegetative structure present at each CRMS site and is based on vegetation data collected annually. The VV uses 10 stations per CRMS site to quantify four vegetation layers: carpet, herbaceous, shrub, and tree. For each layer an overall live vegetation percent cover and height are collected to create a layer volume; the individual layer volumes are then summed to generate a site vegetation volume profile. The VV uses the two-dimensional area of live vegetative cover (in square meters) multiplied by the height (in meters) of each layer to produce a volume (in cubic meters) for each layer present in a 2-meter by 2-meter station. These layers are additive, yielding a total volume for each of the 10 herbaceous vegetation stations and an overall CRMS marsh site average.

  7. Mapping Post-Fire Vegetation Recovery at Different Lithologies of Taygetos mt (greece) with Multi-Temporal Remote Sensing Data

    Science.gov (United States)

    Vassilakis, Emmanuel; Mallinis, George; Christopoulou, Anastasia; Farangitakis, Georgios-Pavlos; Papanikolaou, Ioannis; Arianoutsou, Margarita

    2017-04-01

    Mt Taygetos (2407m), located at southern Peloponnese (Greece) suffered a large fire during the summer of 2007. The fire burned approximately 45% of the area covered by the endemic Greek fir (Abies cephalonica) and Black Pine (Pinus nigra) forest ecosystems. The aim of the current study is to examine the potential differences on post-fire vegetation recovery imposed by the lithology as well as the geomorphology of the given area over sites of the same climatic and landscape conditions (elevation, aspect, slope etc.). The main lithologies consist of carbonate, permeable, not easily erodible formations (limestones and marbles) and clastic, impermeable (schists, slate and flysch) erodible ones. A time-series of high spatial resolution satellite images were interpreted, analyzed and compared in order to detect changes in vegetation coverage which could prioritize areas of interest for fieldwork campaigns. The remote sensing datasets were acquired before (Ikonos-2), a few months after (Quickbird-2) and some years after (Worldview-3) the 2007 fire. High resolution Digital Elevation Model was used for the ortho-rectification and co-registration of the remote sensing data, but also for the extraction of the mountainous landscape characteristics. The multi-temporal image dataset was analyzed through GEographic-Object Based Image Analysis (GEOBIA). Objects corresponding to different vegetation types through time were identified through spectral and textural features. The classification results were combined with basic layers such as lithological outcrops, pre-fire vegetation, landscape morphology etc., supplementing a spatial geodatabase used for classifying burnt areas with varying post-fire plant community recovery. We validated the results of the classification during fieldwork and found that at a local scale, where the landscape features are quite similar, the bedrock type proves to be an important factor for vegetation recovery, as it clearly defines the soil generation

  8. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    Science.gov (United States)

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  9. Monitoring and diagnosis of vegetable growth based on internet of things

    Science.gov (United States)

    Zhang, Qian; Yu, Feng; Fu, Rong; Li, Gang

    2017-10-01

    A new condition monitoring method of vegetable growth was proposed, which was based on internet of things. It was combined remote environmental monitoring, video surveillance, intelligently decision-making and two-way video consultation together organically.

  10. A Remote Sensing and GIS Approach to Study the Long-Term Vegetation Recovery of a Fire-Affected Pine Forest in Southern Greece

    Directory of Open Access Journals (Sweden)

    Foula Nioti

    2015-06-01

    Full Text Available Management strategies and silvicultural treatments of fire-prone ecosystems often rely on knowledge of the regeneration potential and long-term recovery ability of vegetation types. Remote sensing and GIS applications are valuable tools providing cost-efficient information on vegetation recovery patterns and their associated environmental factors. In this study we used an ordinal classification scheme to describe the land cover changes induced by a wildfire that occurred in 1983 in Pinus brutia woodlands on Karpathos Aegean Island, south-eastern Greece. As a proxy variable that indicates ecosystem recovery, we also estimated the difference between the NDVI and NBR indices a few months (1984 and almost 30 years after the fire (2012. Environmental explanatory variables were selected using a digital elevation model and various thematic maps. To identify the most influential environmental factors contributing to woodland recovery, binary logistic regression and linear regression techniques were applied. The analyses showed that although a large proportion of the P. brutia woodland has recovered 26 years after the fire event, a considerable amount of woodland had turned into scrub vegetation. Altitude, slope inclination, solar radiation, and pre-fire woodland physiognomy were identified as dominant factors influencing the vegetation’s recovery probability. Additionally, altitude and inclination are the variables that explain changes in the satellite remote sensing vegetation indices reflecting the recovery potential. Pinus brutia showed a good post-fire recovery potential, especially in parts of the study area with increased moisture availability.

  11. A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables.

    Science.gov (United States)

    Sánchez, G; Elizaquível, P; Aznar, R

    2012-01-03

    Fresh-cut vegetables are prone to be contaminated with foodborne pathogens during growth, harvest, transport and further processing and handling. As most of these products are generally eaten raw or mildly treated, there is an increase in the number of outbreaks caused by viruses and bacteria associated with fresh vegetables. Foodborne pathogens are usually present at very low levels and have to be concentrated (i.e. viruses) or enriched (i.e. bacteria) to enhance their detection. With this aim, a rapid concentration method has been developed for the simultaneous recovery of hepatitis A virus (HAV), norovirus (NV), murine norovirus (MNV) as a surrogate for NV, Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica. Initial experiments focused on evaluating the elution conditions suitable for virus release from vegetables. Finally, elution with buffered peptone water (BPW), using a Pulsifier, and concentration by polyethylene glycol (PEG) precipitation were the methods selected for the elution and concentration of both, enteric viruses and bacteria, from three different types of fresh-cut vegetables by quantitative PCR (qPCR) using specific primers. The average recoveries from inoculated parsley, spinach and salad, were ca. 9.2%, 43.5%, and 20.7% for NV, MNV, and HAV, respectively. Detection limits were 132 RT-PCR units (PCRU), 1.5 50% tissue culture infectious dose (TCID₅₀), and 6.6 TCID₅₀ for NV, MNV, and HAV, respectively. This protocol resulted in average recoveries of 57.4%, 64.5% and 64.6% in three vegetables for E. coli O157:H7, L. monocytogenes and Salmonella with corresponding detection limits of 10³, 10² and 10³ CFU/g, respectively. Based on these results, it can be concluded that the procedure herein is suitable to recover, detect and quantify enteric viruses and foodborne pathogenic bacteria within 5 h and can be applied for the simultaneous detection of both types of foodborne pathogens in fresh-cut vegetables. Copyright

  12. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  13. Vegetation description, rare plant inventory, and vegetation monitoring for Craig Mountain, Idaho

    International Nuclear Information System (INIS)

    Mancuso, M.; Moseley, R.

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals

  14. Recovery of a soil under different vegetation one year after a high intensity wildfire

    Directory of Open Access Journals (Sweden)

    A. Martín

    2013-05-01

    Full Text Available Studies on soil recovery in fragile ecosystems following high intensity wildfires are scarce. The aim of the present investigation is to evaluate the impact of a high intensity wildfire in an ecosystem under different vegetation (shrubland and pinewood located at Vilardevós (Galicia, NW Spain and highly susceptible to suffer soil erosion due to the steep relief and high erositivity of the rainfall. Soil samples were collected from the A horizon (0-5 cm 1 year after the fire and soil quality was evaluated by analysis of several physical, chemical and biochemical properties measured in the fraction chemical properties > physical properties. The data also showed that the fire impact was different depending on the soil vegetation considered (shrubland and pinewood. Moreover, the data confirmed the slow soil recovery in this fragile ecosystem and, therefore, the need of adopting post-fire stabilisation and rehabilitation treatments in order to minimize the post-fire erosion and soil degradation.

  15. Monitoring Plan for Pesticide Residues in Fruits and Vegetables

    International Nuclear Information System (INIS)

    2013-01-01

    The power point presentation has as objective of the study is monitoring in fruits and vegetables species, chemical submit higher risk for the consumer and for the purpose of establishing an order of priority in the products sampled

  16. Aridity influences the recovery of vegetation and shrubland birds after wildfire

    OpenAIRE

    Puig Gironès, Roger; Brotons, Lluís; Pons Ferran, Pere

    2017-01-01

    Wildfires play a determining role in the composition and structure of many plant and animal communities. On the other hand, climate change is considered to be a major driver of current and future fire regime changes. Despite increases in drought in many areas of the world, the effects of aridity on post-fire colonization by animals have been rarely addressed. This study aims to analyse how a regional aridity gradient affects post-fire recovery of vegetation, bird species richness and the numb...

  17. Aridity influences the recovery of vegetation and shrubland birds after wildfire.

    Science.gov (United States)

    Puig-Gironès, Roger; Brotons, Lluís; Pons, Pere

    2017-01-01

    Wildfires play a determining role in the composition and structure of many plant and animal communities. On the other hand, climate change is considered to be a major driver of current and future fire regime changes. Despite increases in drought in many areas of the world, the effects of aridity on post-fire colonization by animals have been rarely addressed. This study aims to analyse how a regional aridity gradient affects post-fire recovery of vegetation, bird species richness and the numbers of four early to middle-successional warbler species associated with the shrub cover. The database contains bird relative abundance and environmental variables from 3072 censuses in 695 transects located in 70 recently burnt areas (1 to 11 years after wildfire) in Catalonia (Spain), which were sampled between 2006 and 2013. Generalized linear mixed models (GLMMs) showed that plant cover was affected by time since fire, aridity and forest management. However, only the highest vegetation height layer (>100 cm) recovered slower in arid areas after fire. Time since fire positively influenced bird species richness and the relative abundance of the four focal species. The post-fire recovery of Melodious (Hippolais polyglotta) and Subalpine warblers (Sylvia cantillans) was hampered by aridity. Although this was not demonstrated for Dartford (S. undata) and Sardinian warblers (S. melanocephala), their occurrence was low in the driest areas during the first three years after fire. Overall, this study suggests that future increases in aridity can affect plant regeneration after fire and slow down the recovery of animal populations that depend on understorey and shrublands. Given the recently highlighted increases in aridity and fire frequency in Mediterranean-climate regions, improved knowledge on how aridity affects ecological succession is especially necessary.

  18. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.

    Science.gov (United States)

    Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong

    2018-02-01

    Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.

  19. Atmosphere Resource Recovery and Environmental Monitoring

    Science.gov (United States)

    Roman, Monsi; Howard, David

    2015-01-01

    Atmosphere Resource Recovery and Environmental Monitoring (ARREM) is a project focused on evolving existing and maturing emerging 'closed loop' atmosphere revitalization (AR) life support systems that produce clean, breathable air for crewmembers, and developing a suite of low mass, low power environmental monitors to detect and measure air- and waterborne constituents and contaminants. The objective is to improve reliability and efficiency, reduce mass and volume, and increase recovery of oxygen from carbon dioxide created by human metabolism from 43% to greater than 90%. The technology developments under ARREM are vital to extending human space missions from low-Earth orbit like the International Space Station to destinations deeper into space such as Mars where dependency on Earth for resupply of maintenance items and critical life support elements such as water and oxygen is not possible. The primary goal of the ARREM project is to demonstrate that systems meet the more stringent performance parameters for deep space exploration and are compatible with other systems within closed loop life support through a series of integrated tests performed in an environmental test chamber capable of simulating human metabolic activities and measuring systems outputs.

  20. Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, Shamaraz; Anwar, Shahzad

    2015-01-01

    Raman spectroscopy has been found useful for monitoring the dengue patient diagnostic and recovery after infection. In the present work, spectral changes that occurred in the blood sera of a dengue infected patient and their possible utilization for monitoring of infection and recovery were investigated using 532 nm wavelength of light. Raman spectrum peaks for normal and after recovery of dengue infection are observed at 1527, 1170, 1021 cm −1 attributed to guanine, adenine, TRP (protein) carbohydrates peak for solids, and skeletal C–C stretch of lipids acyl chains. Where in the dengue infected patient Raman peaks are at 1467, 1316, 1083, and 860 attributed to CH2/CH3 deformation of lipids and collagen, guanine (B, Z-marker), lipids and protein bands. Due to antibodies and antigen reactions the portions and lipids concentration totally changes in dengue viral infection compared to normal blood. These chemical changes in blood sera of dengue viral infection in human blood may be used as possible markers to indicate successful remission and suggest that Raman spectroscopy may provide a rapid optical method for continuous monitoring or evaluation of a protein bands and an antibodies population. Accumulate acquisition mode was used to reduce noise and thermal fluctuation and improve signal to noise ratio. This in vitro dengue infection monitoring methodology will lead in vivo noninvasive on-line monitoring and screening of viral infected patients and their recovery. (letter)

  1. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring.

    Science.gov (United States)

    Kellmann, M

    2010-10-01

    In sports, the importance of optimizing the recovery-stress state is critical. Effective recovery from intense training loads often faced by elite athletes can often determine sporting success or failure. In recent decades, athletes, coaches, and sport scientists have been keen to find creative, new methods for improving the quality and quantity of training for athletes. These efforts have consistently faced barriers, including overtraining, fatigue, injury, illness, and burnout. Physiological and psychological limits dictate a need for research that addresses the avoidance of overtraining, maximizes recovery, and successfully negotiates the fine line between high and excessive training loads. Monitoring instruments like the Recovery-Stress Questionnaire for Athletes can assist with this research by providing a tool to assess their perceived state of recovery. This article will highlight the importance of recovery for elite athletes and provide an overview of monitoring instruments. © 2010 John Wiley & Sons A/S.

  2. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  3. The D0 online monitoring and automatic DAQ recovery

    International Nuclear Information System (INIS)

    Haas, A.

    2004-01-01

    The DZERO experiment, located at the Fermi National Accelerator Laboratory, has recently started the Run 2 physics program. The detector upgrade included a new Data Acquisition/Level 3 Trigger system. Part of the design for the DAQ/Trigger system was a new monitoring infrastructure. The monitoring was designed to satisfy real-time requirements with 1-second resolution as well as nonreal-time data. It was also designed to handle a large number of displays without putting undue load on the sources of monitoring information. The resulting protocol is based on XML, is easily extensible, and has spawned a large number of displays, clients, and other applications. It is also one of the few sources of detector performance available outside the Online System's security wall. A tool, based on this system, which provides for auto-recovery of DAQ errors, has been designed. This talk will include a description of the DZERO DAQ/Online monitor server, based on the ACE framework, the protocol, the auto-recovery tool, and several of the unique displays which include an ORACLE-based archiver and numerous GUIs

  4. Long-term vegetation monitoring for different habitats in floodplains

    Directory of Open Access Journals (Sweden)

    LANG Petra

    2014-03-01

    Full Text Available A floodplain-restoration project along the Danube between Neuburg and Ingolstadt (Germany aims to bring back water and sediment dynamic to the floodplain. The accompanied long-term monitoring has to document the changes in biodiversity related to this new dynamics. Considerations on and results of the vegetation monitoring concept are documented in this paper. In a habitat rich ecosystem like a floodplain different habitats (alluvial forest, semi-aquatic/aquatic sites have different demands on the sampling methods. Therefore, different monitoring designs (preferential, random, systematic, stratified random and transect sampling are discussed and tested for their use in different habitat types of the floodplain. A stratified random sampling is chosen for the alluvial forest stands, as it guarantees an equal distribution of the monitoring plots along the main driving factors, i.e. influence of water. The parameters distance to barrage, ecological flooding, height above thalweg and distance to the new floodplain river are used for stratifying and the plots are placed randomly into these strata, resulting in 117 permanent plots. Due to small changes at the semi-aquatic/aquatic sites a transect sampling was chosen. Further, a rough stratification (channel bed, river bank adjacent floodplain was implemented, which was only possible after the start of the restoration project. To capture the small-scale changes due to the restoration measures on the vegetation, 99 additional plots completed the transect sampling. We conclude that hetereogenous study areas need different monitoring approaches, but, later on, a joint analysis must be possible.

  5. Recovery of South African fynbos vegetation following alien woody plant clearing and fire: implications for restoration

    CSIR Research Space (South Africa)

    Holmes, PM

    2000-12-01

    Full Text Available The recovery of fynbos vegetation after invasion by dense stands of alien trees, and clearing by either 'burn standing’,’ fell and burn', or 'fell, remove and burn' treatments, was investigated in two watersheds in the Western Cape Province, South...

  6. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    International Nuclear Information System (INIS)

    Amundsen, C.C.

    1975-01-01

    A study, begun in 1971, has been undertaken to determine the environmental factors which affect the recovery of damaged tundra vegetation. A sampling technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Attempts were made to sample across all examples of aspect, slope steepness and exposure. The data were analyzed and we concluded that there was no directional secondary succession on the Amchitka tundra, although there was vigorous recovery on organic soils. The study led to recommendations which resulted in a smaller effort than planned to reclaim damaged areas by seeding and fertilizing at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscape, whether for energy production, or military or other reasons, we are expanding our sampling to other tundra areas. Immediate plans include sampling at Adak Island and Barrow, Alaska. (U.S.)

  7. An optical sensor network for vegetation phenology monitoring and satellite data calibration

    DEFF Research Database (Denmark)

    Eklundh, L.; Jin, H.; Schubert, P.

    2011-01-01

    -board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations......We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located...... and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity....

  8. Recovery of endemic dragonflies after removal of invasive alien trees.

    Science.gov (United States)

    Samways, Michael J; Sharratt, Norma J

    2010-02-01

    Because dragonflies are very sensitive to alien trees, we assessed their response to large-scale restoration of riparian corridors. We compared three types of disturbance regime--alien invaded, cleared of alien vegetation, and natural vegetation (control)--and recorded data on 22 environmental variables. The most significant variables in determining dragonfly assemblages were percentage of bank cover and tree canopy cover, which indicates the importance of vegetation architecture for these dragonflies. This finding suggests that it is important to restore appropriate marginal vegetation and sunlight conditions. Recovery of dragonfly assemblages after the clearing of alien trees was substantial. Species richness and abundance at restored sites matched those at control sites. Dragonfly assemblage patterns reflected vegetation succession. Thus, initially eurytopic, widespread species were the main beneficiaries of the removal of alien trees, and stenotopic, endemic species appeared after indigenous vegetation recovered over time. Important indicator species were the two national endemics (Allocnemis leucosticta and Pseudagrion furcigerum), which, along with vegetation type, can be used to monitor return of overall integrity of riparian ecology and to make management decisions. Endemic species as a whole responded positively to restoration, which suggests that indigenous vegetation recovery has major benefits for irreplaceable and widespread generalist species.

  9. Understanding the role of local management in vegetation recovery around pastoral settlements in northern Kenya.

    Science.gov (United States)

    Roba, Hassan G; Oba, Gufu

    2013-04-01

    The recent greening of the Sahel region and increase in vegetation cover around pastoral settlements previously described as "man-made deserts", have raised important questions on the permanency of land degradation associated with the over-exploitation of woody plants. Evidence presented is mostly on increased wetness, while management by local communities has received limited attention. This study evaluated changes in woody vegetation cover around the settlements of Kargi and Korr in northern Kenya, using satellite imagery (1986/2000), ecological ground surveys and interviews with local elders, in order to understand long-term changes in vegetation cover and the role of local community in vegetation dynamics. At both settlements, there were increments in vegetation cover and reduction in the extent of bare ground between 1986 and 2000. At Kargi settlement, there were more tree seedlings in the centre of settlement than further away. Mature tree class was more abundant in the centre of Korr than outside the settlement. The success of the regeneration and recovery of tree cover was attributed to the actions of vegetation management initiative including stringent measures by the local Environmental Management Committees. This study provides good evidence that local partnership is important for sustainable management of resources especially in rural areas where the effectiveness of government initiative is lacking.

  10. Recovery of Vegetation Cover and Soil after the Removal of Sheep in Socorro Island, Mexico

    Directory of Open Access Journals (Sweden)

    Antonio Ortíz-Alcaraz

    2016-04-01

    Full Text Available For over 140 years, the habitat of Socorro Island in the Mexican Pacific has been altered by the presence of exotic sheep. Overgrazing, jointly with tropical storms, has caused soil erosion, and more than 2000 hectares of native vegetation have been lost. Sheep eradication was conducted from 2009 to 2012. Since then, the vegetation has begun to recover passively, modifying soil properties. The objective of our study was to verify that this island was resilient enough to be recovered and in a relatively short time scale. To confirm our hypothesis, we analyzed changes in the physical-chemical properties of the soil and vegetation cover, the last one in different times and habitats after sheep eradication. The change in vegetation cover was estimated by comparing the normalized difference vegetation index (NDVI between 2008 and 2013. In sites altered by feral sheep, soil compaction was assessed, and soil samples were taken, analyzing pH, electrical conductivity, organic carbon, total nitrogen, phosphorus, calcium, and magnesium. After a year of total sheep eradication, clear indications in the recovery of vegetation cover and improvement of soil quality parameters were observed and confirmed, specifically compaction and nitrogen, organic carbon, phosphorus, and calcium. The results seem to support our hypothesis.

  11. Atmosphere Resource Recovery & Environmental Monitoring for Long Duration Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Atmosphere Resource Recovery & Environmental Monitoring (ARREM) for Long Duration Exploration Project project is maturing Atmosphere Revitalization...

  12. Recovery of the Chaparral Riparian Zone After Wildfire

    Science.gov (United States)

    Frank W. Davis; Edward A. Keller; Anuja Parikh; Joan Florsheim

    1989-01-01

    After the Wheeler Fire in southern California in July 1985, we monitored sediment deposition and vegetation recovery in a section of the severely burned chaparral riparian zone of the North Fork of Matilija Creek, near Ojai, California. Increased runoff was accompanied by low magnitude debris flows and fluvial transport of gravel, most of which was added to the channel...

  13. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the

  14. Evaluation and prioritization of stream habitat monitoring in the Lower Columbia Salmon and Steelhead Recovery Domain as related to the habitat monitoring needs of ESA recovery plans

    Science.gov (United States)

    Puls, Amy L.; Anlauf Dunn, Kara; Graham Hudson, Bernadette

    2014-01-01

    The lower Columbia River and its tributaries once supported abundant runs of salmon and steelhead; however, there are five species currently listed under the federal Endangered Species Act (ESA). The National Marine Fisheries Service has completed, and is proposing for adoption, a comprehensive ESA Recovery Plan for the Lower Columbia Evolutionarily Significant Units (ESUs) based on the recovery plans developed by Oregon and Washington. One of the primary factors attributed to the decline of these species is habitat degradation. There are numerous entities conducting status and/or trends monitoring of instream habitat in the lower Columbia River Basin, but because the programs were developed for agency specific reasons, the existing monitoring efforts are not well coordinated, and often lack the spatial coverage, certainty, or species coverage necessary to answer questions related to status and trends of the ESA listed populations. The Pacific Northwest Aquatic Monitoring Partnership’s Integrated Status and Trends Monitoring (ISTM) project was initiated to improve integration of existing and new monitoring efforts by developing recommendations for sampling frames, protocols, and data sharing. In an effort to meet the ISTM project goals, five objectives were identified: (1) identify and prioritize decisions, questions, and monitoring objectives, (2) evaluate how existing programs align with these management decisions, questions, and objectives, (3) identify the most appropriate monitoring design to inform priority management decisions, questions, and objectives, (4) use trade-off analysis to develop specific recommendations for monitoring based on outcomes of Objectives 1-3 and (5) recommend implementation and reporting mechanisms. This report summarizes the effort to address Objectives 1 and 2, detailing the commonalities among the habitat characteristics that all entities measure and monitor, and how the metrics align with the priorities listed in the

  15. 4-D tomographic monitoring of enhanced oil recovery

    International Nuclear Information System (INIS)

    Brzostowski, M.A.; McMechan, G.A.

    1991-01-01

    One application of tomography that has recently received considerable attention is reservoir monitoring for Enhanced Oil Recovery (EOR). Tomographic monitoring of a moving steam front uses the significant decrease in compressional wave velocity that occurs as hydrocarbon temperature increases. The purposes of this paper are to present a working algorithm for 3-D tomography, to demonstrate the feasibility of 3-D imaging of a simulated reservoir in which the position of a steam front changes with time, and to illustrate the relations between survey geometry and the resolution of the target

  16. MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    W. K. van Iersel

    2016-06-01

    Full Text Available River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1 evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2 to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1 the vertical accuracy of UAV normalized digital surface models (nDSMs is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2 vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm, (3 temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  17. Knowlton's cactus (Pediocactus knowltonii): Eighteen years of monitoring and recovery actions

    Science.gov (United States)

    Robert C. Sivinski; Charlie McDonald

    2007-01-01

    Pediocactus knowltonii is a rare, endemic cactus that is presently known to occur on a single 10-hectare hill in northwestern New Mexico near the Colorado border. It was listed as federally endangered in 1979. Population monitoring and recovery actions were initiated when the Recovery Plan was adopted in 1985. The land at the type locality has been...

  18. Nekton density patterns and hurricane recovery in submerged aquatic vegetation, and along non-vegetated natural and created edge habitats

    Science.gov (United States)

    La Peyre, M.K.; Gordon, J.

    2012-01-01

    We compared nekton habitat value of submerged aquatic vegetation, flooded non-vegetated natural and man-made edge habitats in mesohaline interior marsh areas in southwest Louisiana using a 1-m 2 throw trap and 3-mm bag seine. When present, SAV habitats supported close to 4 times greater densities and higher species richness of nekton as compared to either natural or man-made edge habitats, which supported similar densities to one another. Three species of concern (bayou killifish, diamond killifish, chain pipefish) were targeted in the analysis, and two of the three were collected almost entirely in SAV habitat. During the course of the study, Hurricanes Ike and Gustav passed directly over the study sites in September 2008. Subsequent analyses indicated significant reductions in resident nekton density 1-mo post hurricanes, and only limited recovery 13-mo post-hurricane. Possible alteration of environmental characteristics such as scouring of SAV habitat, deposition of sediment over SAV, edge erosion and marsh loss, and extended high salinities may explain these lasting impacts. ?? 2011.

  19. Monitoring post-fire vegetation rehabilitation projects: A common approach for non-forested ecosystems

    Science.gov (United States)

    Wirth, Troy A.; Pyke, David A.

    2007-01-01

    Emergency Stabilization and Rehabilitation (ES&R) and Burned Area Emergency Response (BAER) treatments are short-term, high-intensity treatments designed to mitigate the adverse effects of wildfire on public lands. The federal government expends significant resources implementing ES&R and BAER treatments after wildfires; however, recent reviews have found that existing data from monitoring and research are insufficient to evaluate the effects of these activities. The purpose of this report is to: (1) document what monitoring methods are generally used by personnel in the field; (2) describe approaches and methods for post-fire vegetation and soil monitoring documented in agency manuals; (3) determine the common elements of monitoring programs recommended in these manuals; and (4) describe a common monitoring approach to determine the effectiveness of future ES&R and BAER treatments in non-forested regions. Both qualitative and quantitative methods to measure effectiveness of ES&R treatments are used by federal land management agencies. Quantitative methods are used in the field depending on factors such as funding, personnel, and time constraints. There are seven vegetation monitoring manuals produced by the federal government that address monitoring methods for (primarily) vegetation and soil attributes. These methods vary in their objectivity and repeatability. The most repeatable methods are point-intercept, quadrat-based density measurements, gap intercepts, and direct measurement of soil erosion. Additionally, these manuals recommend approaches for designing monitoring programs for the state of ecosystems or the effect of management actions. The elements of a defensible monitoring program applicable to ES&R and BAER projects that most of these manuals have in common are objectives, stratification, control areas, random sampling, data quality, and statistical analysis. The effectiveness of treatments can be determined more accurately if data are gathered using

  20. Development of a Long-term Sampling Network to Monitor Restoration Success in the Southwest Coastal Everglades: Vegetation, Hydrology, and Sediments

    Science.gov (United States)

    Smith, Thomas J.

    2004-01-01

    Introduction and History Hurricane Andrew, a Category 5 storm, crossed the southern Florida peninsula on the morning of August 24, 1992 (Fig. 1). Following the storm, the National Park Service conducted an environmental damage assessment to gauge the storm's impacts on the natural resources of south Florida Park Service holdings (Pimm et al., 1994). Although hurricanes have impacted Park Service lands such as the Everglades in the past (Houston and Powell, 2003), no systematic, permanent sampling scheme has been established to monitor long-term recovery (or lack thereof) following disturbance. In October 1992, vegetation monitoring plots were established in heavily damaged areas of mangrove forest on the southwest coast of the Everlgades, along the Lostmans and Broad Rivers (Smith et al., 1994, see Fig. 2). As the permanent plot network was being established, funding was awarded for the South Florida Global Climate Change project (SOFL-GCC). This led to the establishment of a network of hydrological monitoring stations (Anderson and Smith, 2004). Finally, sediment elevation tables (SETs) were installed at many locations. SETs provide the means to measure very small changes (2 mm) in the sediment surface elevation accurately over time (Cahoon et al., 2002). We also set up marker horizons to measure accretion of sediment at each site (Smith and Cahoon, 2003). Sampling sites were located along three transects extending from upstream freshwater wetlands to downstream saltwater wetlands along the Shark, Lostmans and Chatham Rivers in Everglades National Park (Fig. 2). While we were developing our sampling network for basic scientific research needs, concern mounted over the health of the Greater Everglades Ecosystem and in particular over the influence of decreased freshwater flows (Smith et al., 1989). Ecosystem restoration planning was begun, resulting in the multi-agency, $8 billion Comprehensive Everglades Restoration Plan (CERP). Our co-located sampling networks

  1. Effects of post-fire wood management strategies on vegetation recovery and land surface temperature (LST) estimated from Landsat images

    Science.gov (United States)

    Vlassova, Lidia; Pérez-Cabello, Fernando

    2016-02-01

    The study contributes remote sensing data to the discussion about effects of post-fire wood management strategies on forest regeneration. Land surface temperature (LST) and Normalized Differenced Vegetation Index (NDVI), estimated from Landsat-8 images are used as indicators of Pinus halepensis ecosystem recovery after 2008 fire in areas of three post-fire treatments: (1) salvage logging with wood extraction from the site on skidders in suspended position (SL); (2) snag shredding in situ leaving wood debris in place (SS) performed two years after the event; and (3) non-intervention control areas (CL) where all snags were left standing. Six years after the fire NDVI values ∼0.5 estimated from satellite images and field radiometry indicate considerable vegetation recovery due to efficient regeneration traits developed by the dominant plant species. However, two years after management activities in part of the burnt area, the effect of SL and SS on ecosystem recovery is observed in terms of both LST and NDVI. Statistically significant differences are detected between the intervened areas (SL and SS) and control areas of non-intervention (CL); no difference is registered between zones of different intervention types (SL and SS). CL areas are on average 1 °C cooler and 10% greener than those corresponding to either SL or SS, because of the beneficial effects of burnt wood residuals, which favor forest recovery through (i) enhanced nutrient cycling in soils, (ii) avoidance of soil surface disturbance and mechanical damage of seedlings typical to the managed areas, and (iii) ameliorated microclimate. The results of the study show that in fire-resilient ecosystems, such as P. halepensis forests, NDVI is higher and LST is lower in areas with no management intervention, being an indication of more favorable conditions for vegetation regeneration.

  2. An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat

    Science.gov (United States)

    Tavernia, Brian G.; Lyons, James E.; Loges, Brian W.; Wilson, Andrew; Collazo, Jaime A.; Runge, Michael C.

    2016-01-01

    Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.

  3. Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands

    Science.gov (United States)

    Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785

  4. 75 FR 45144 - Recovery Fact Sheet 9580.203, Debris Monitoring

    Science.gov (United States)

    2010-08-02

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2010-0045] Recovery Fact Sheet 9580.203, Debris Monitoring AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice of availability; request for comments. SUMMARY: The Federal Emergency Management Agency (FEMA) is...

  5. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  6. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  7. [Factors affecting the vegetation restoration after fires in cold temperate wetlands: A review].

    Science.gov (United States)

    Zhao, Feng-Jun; Wang, Li-Zhong; Shu, Li-Fu; Chen, Peng-Yu; Chen, Li-guang

    2013-03-01

    Cold temperate wetland plays an important role in maintaining regional ecological balance. Fire is an important disturbance factor in wetland ecosystem. Severe burning can induce the marked degradation of the ecological functions of wetland ecosystem. The vegetation restoration, especially the early vegetation restoration, after fires, is the premise and basis for the recovery of the ecological functions of the ecosystem. This paper reviewed the research progress on the factors affecting the vegetation restoration after fires in wetlands. The vegetation restoration after fires in cold temperate wetlands was controlled by the fire intensity, fire size, vegetation types before fires, regeneration characteristics of plant species, and site conditions. It was considered that the long-term monitoring on the post-fire vegetation restoration in cold temperate wetland, the key factors affecting the vegetation restoration, the roles of frozen soil layer on the post-fire vegetation restoration, and the theories and technologies on the vegetation restoration would be the main research directions in the future.

  8. PROBA-V, the small saellite for global vegetation monitoring

    Science.gov (United States)

    Deronde, Bart; Benhadj, Iskander; Clarijs, Dennis; Dierckx, Wouter; Dries, Jan; Sterckx, Sindy; van Roey, Tom; Wolters, erwin

    2015-04-01

    PROBA-V, the small satellite for global vegetation monitoring Bart Deronde, Iskander Benhadj, Dennis Clarijs, Wouter Dierckx, Jan Dries, Sindy Sterck, Tom Van Roey, Erwin Wolters (VITO NV) Exactly one year ago, in December 2013, VITO (Flemish Institute for Technological Research) started up the real time operations of PROBA-V. This miniaturised ESA (European Space Agency) satellite was launched by ESA's Vega rocket from Kourou, French-Guyana on May 7th, 2013. After six months of commissioning the mission was taken into operations. Since mid-December 2013 PROBA-V products are processed on an operational basis and distributed to a worldwide user community. PROVA-V is tasked with a full-scale mission: to map land cover and vegetation growth across the entire planet every two days. It is flying a lighter but fully functional redesign of the 'VEGETATION' imaging instruments previously flown on France's full-sized SPOT-4 and SPOT-5 satellites, which have been observing Earth since 1998. PROBA-V, entirely built by a Belgian consortium, continues this valuable and uninterrupted time series with daily products at 300 m and 1 km resolution. Even 100 m products will become available early 2015, delivering a global coverage every 5 days. The blue, red, near-infrared and mid-infrared wavebands allow PROBA-V to distinguish between different types of land cover/use and plant species, including crops. Vital uses of these data include day-by-day tracking of vegetation development, alerting authorities to crop failures, monitoring inland water resources and tracing the steady spread of deserts and deforestation. As such the data is also highly valuable to study climate change and the global carbon cycle. In this presentation we will discuss the in-flight results, one year after launch, from the User Segment (i.e. the processing facility) point of view. The focus will be on geometric and radiometric accuracy and stability. Furthermore, we will elaborate on the lessons learnt from the

  9. Potential and Limitations of Low-Cost Unmanned Aerial Systems for Monitoring Altitudinal Vegetation Phenology in the Tropics

    Science.gov (United States)

    Silva, T. S. F.; Torres, R. S.; Morellato, P.

    2017-12-01

    Vegetation phenology is a key component of ecosystem function and biogeochemical cycling, and highly susceptible to climatic change. Phenological knowledge in the tropics is limited by lack of monitoring, traditionally done by laborious direct observation. Ground-based digital cameras can automate daily observations, but also offer limited spatial coverage. Imaging by low-cost Unmanned Aerial Systems (UAS) combines the fine resolution of ground-based methods with and unprecedented capability for spatial coverage, but challenges remain in producing color-consistent multitemporal images. We evaluated the applicability of multitemporal UAS imaging to monitor phenology in tropical altitudinal grasslands and forests, answering: 1) Can very-high resolution aerial photography from conventional digital cameras be used to reliably monitor vegetative and reproductive phenology? 2) How is UAS monitoring affected by changes in illumination and by sensor physical limitations? We flew imaging missions monthly from Feb-16 to Feb-17, using a UAS equipped with an RGB Canon SX260 camera. Flights were carried between 10am and 4pm, at 120-150m a.g.l., yielding 5-10cm spatial resolution. To compensate illumination changes caused by time of day, season and cloud cover, calibration was attempted using reference targets and empirical models, as well as color space transformations. For vegetative phenological monitoring, multitemporal response was severely affected by changes in illumination conditions, strongly confounding the phenological signal. These variations could not be adequately corrected through calibration due to sensor limitations. For reproductive phenology, the very-high resolution of the acquired imagery allowed discrimination of individual reproductive structures for some species, and its stark colorimetric differences to vegetative structures allowed detection of the reproductive timing on the HSV color space, despite illumination effects. We conclude that reliable

  10. Spectral Induced Polarization (SIP) monitoring during Microbial Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.

    2010-12-01

    Jeffrey Heenan, Dimitrios Ntarlagiannis, Lee Slater Department of Earth and Environmental Sciences, Rutgers University, Newark NJ Microbial Enhanced Oil Recovery (MEOR) is an established, cost effective, method for enhancing tertiary oil recovery. Although not commonly used for shallow heavy oils, it could be a viable alternative since it can offer sustainable economic recovery and minimal environmental impact. A critical component of successful MEOR treatments is accurate, real time monitoring of the biodegradation processes resulting from the injection of microbial communities into the formation; results of recent biogeophysical research suggest that minimally-invasive geophysical methods could significantly contribute to such monitoring efforts. Here we present results of laboratory experiments, to assess the sensitivity of the spectral induced polarization method (SIP) to MEOR treatments. We used heavy oil, obtained from a shallow oilfield in SW Missouri, to saturate three sand columns. We then followed common industry procedures,and used a commercially available microbial consortia, to treat the oil columns. The active MEOR experiments were performed in duplicate while a control column maintained similar conditions, without promoting microbial activity and oil degradation. We monitored the SIP signatures, between 0.001 Hz and 1000 Hz, for a period of six months. To support the geophysical measurements we also monitored common geochemical parameters, including pH, Eh and fluid conductivity, and collected weekly fluid samples from the outflow and inflow for further analysis; fluid samples were analyzed to confirm that microbes actively degraded the heavy oils in the column while destructive analysis of the solid materials was performed upon termination of the experiment. Preliminary analysis of the results suggests that SIP is sensitive to MEOR processes. In both inoculated columns we recorded an increase in the low frequency polarization with time; measureable

  11. Toward daily monitoring of vegetation conditions at field scale through fusing data from multiple sensors

    Science.gov (United States)

    Vegetation monitoring requires remote sensing data at fine spatial and temporal resolution. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for crop and rangeland monitoring. The Landsat satellite s...

  12. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    Directory of Open Access Journals (Sweden)

    David Helman

    2015-09-01

    Full Text Available We present an efficient method for monitoring woody (i.e., evergreen and herbaceous (i.e., ephemeral vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS. The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI in the dry season was attributed to the woody vegetation (NDVIW. A constant NDVI value was assumed for soil background during this period. In the wet season, changes in NDVI were attributed to the development of ephemeral herbaceous vegetation in the forest floor and its maximum value to the peak green cover (NDVIH. NDVIW and NDVIH agreed well with field estimates of leaf area index and fraction of vegetation cover in two differently structured Mediterranean forests. To further assess the method’s assumptions, understory NDVI was retrieved form MODIS Bidirectional Reflectance Distribution Function (BRDF data and compared with NDVIH. After calibration, leaf area index and woody and herbaceous vegetation covers were assessed for those forests. Applicability for pre- and post-fire monitoring is presented as a potential use of this method for forest management in Mediterranean-climate regions.

  13. Monitoring and optimization of thermal recovery wells at Nexen's Long Lake project

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, S.; Howe, A.; Wozney, G.; Zaffar, S. [Nexen Inc. (Canada); Nelson, A. [Matrikon Inc. (Canada)

    2011-07-01

    The Long Lake project, operated by Nexen and situated in the Athabasca Oil Sands area in Alberta, Canada is a steam assisted gravity drainage scheme. In such thermal recovery processes, access to real time information is crucial. Nexen used specific tools to optimize monitoring in its Long Lake project and the aim of this paper is to present those customized well and facilities dashboards and reservoir trends. Real time and historical data on pressure, temperature injection and production rates are used in a Honeywell PHD Historian connected to a Delta-V DCS system to optimize recovery from the deposit. Results showed that these enhanced monitoring capabilities provided Nexen the ability to react rapidly to abnormal conditions, which resulted in significant financial benefits. The implementation of dashboard and reservoir trends in its Long Lake project helped Nexen to better monitor the reservoir and thus to optimize bitumen recovery.

  14. Association between mapped vegetation and Quaternary geology on Santa Rosa Island, California

    Science.gov (United States)

    Cronkite-Ratcliff, C.; Corbett, S.; Schmidt, K. M.

    2017-12-01

    Vegetation and surficial geology are closely connected through the interface generally referred to as the critical zone. Not only do they influence each other, but they also provide clues into the effects of climate, topography, and hydrology on the earth's surface. This presentation describes quantitative analyses of the association between the recently compiled, independently generated vegetation and geologic map units on Santa Rosa Island, part of the Channel Islands National Park in Southern California. Santa Rosa Island was heavily grazed by sheep and cattle ranching for over one hundred years prior to its acquisition by the National Park Service. During this period, the island experienced significant erosion and spatial reduction and diversity of native plant species. Understanding the relationship between geology and vegetation is necessary for monitoring the recovery of native plant species, enhancing the viability of restoration sites, and understanding hydrologic conditions favorable for plant growth. Differences in grain size distribution and soil depth between geologic units support different plant communities through their influence on soil moisture, while differences in unit age reflect different degrees of pedogenic maturity. We find that unsupervised machine learning methods provide more informative insight into vegetation-geology associations than traditional measures such as Cramer's V and Goodman and Kruskal's lambda. Correspondence analysis shows that unique vegetation-geology patterns associated with beach/dune, grassland, hillslope/colluvial, and fluvial/wetland environments can be discerned from the data. By combining geology and vegetation with topographic variables, mixture models can be used to partition the landscape into multiple representative types, which then be compared with conceptual models of plant growth and succession over different landforms. Using this collection of methods, we show various ways that that Quaternary geology

  15. Vegetation monitoring to detect and predict vegetation change: Connecting historical and future shrub/steppe data in Yellowstone National Park

    Science.gov (United States)

    Geneva Chong; David Barnett; Benjamin Chemel; Roy Renkin; Pamela Sikkink

    2011-01-01

    A 2002 National Research Council (NRC) evaluation of ungulate management practices in Yellowstone specifically concluded that previous (1957 to present) vegetation monitoring efforts were insufficient to determine whether climate or ungulates were more influential on shrub/steppe dynamics on the northern ungulate winter range. The NRC further recommended that the...

  16. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    OpenAIRE

    David Helman; Itamar M. Lensky; Naama Tessler; Yagil Osem

    2015-01-01

    We present an efficient method for monitoring woody (i.e., evergreen) and herbaceous (i.e., ephemeral) vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI) time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI ...

  17. Monitoring of oil palm plantations and growth variations with a dense vegetation model

    DEFF Research Database (Denmark)

    Teng, Khar Chun; Koay, Jun Yi; Tey, Seng Heng

    2014-01-01

    The development of microwave remote sensing models for the monitoring of vegetation has received wide attention in recent years. For vegetation in the tropics, it is necessary to consider a dense medium model for the theoretical modelling of the microwave interaction with the vegetation medium....... In this paper, a multilayer model based on the radiative transfer theory for a dense vegetation medium is developed where the coherence effects and near field interaction effects of closely spaced leaves and branches are considered by incorporating the Dense Medium Phase and Amplitude Correction Theory (DM......-PACT) and Fresnel Phase Corrections. The iterative solutions of the radiative transfer model are computed with input based on ground truth measurements of physical parameters of oil palm plantations in the state of Perak, Malaysia, and compared with the SAR images obtained from RADARSAT2. Preliminary results...

  18. Improving Multi-Sensor Drought Monitoring, Prediction and Recovery Assessment Using Gravimetry Information

    Science.gov (United States)

    Aghakouchak, Amir; Tourian, Mohammad J.

    2015-04-01

    Development of reliable drought monitoring, prediction and recovery assessment tools are fundamental to water resources management. This presentation focuses on how gravimetry information can improve drought assessment. First, we provide an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using remote sensing observations and model simulations. Then, we present a framework for integration of satellite gravimetry information for improving drought prediction and recovery assessment. The input data include satellite-based and model-based precipitation, soil moisture estimates and equivalent water height. Previous studies show that drought assessment based on one single indicator may not be sufficient. For this reason, GIDMaPS provides drought information based on multiple drought indicators including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. MSDI incorporates the meteorological and agricultural drought conditions and provides composite multi-index drought information for overall characterization of droughts. GIDMaPS includes a seasonal prediction component based on a statistical persistence-based approach. The prediction component of GIDMaPS provides the empirical probability of drought for different severity levels. In this presentation we present a new component in which the drought prediction information based on SPI, SSI and MSDI are conditioned on equivalent water height obtained from the Gravity Recovery and Climate Experiment (GRACE). Using a Bayesian approach, GRACE information is used to evaluate persistence of drought. Finally, the deficit equivalent water height based on GRACE is used for assessing drought recovery. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from 2014

  19. Monitoring and evaluating recovery from natural disasters using remote sensing - towards creating guidelines on the use of satellite images in the context of disaster recovery

    Science.gov (United States)

    Saito, K.; Brown, D.; Spence, R.; Chenvidyakarn, T.; Adams, B.; Bevington, J.; Platt, S.; Chuenpagdee, R.; Juntarashote, K.; Khan, A.

    2009-04-01

    The use of high-resolution optical satellite images is being investigated for evaluating and monitoring recovery after natural disasters. Funded by EPSRC, UK, the aim of the RECOVERY project is to develop indicators of recovery that can exploit the wealth of data now available, including those from satellite imagery, internet-based statistics and advanced field survey techniques. The final output will be a set of guidelines that suggests how remote sensing can be used to help monitor and evaluate the recovery process after natural disasters. The final guideline that will be produced at the end of the two year project, which started in February 2008, will be freely available to aid agencies and anyone that is interested. Currently there is no agreed standard approach for evaluating the effectiveness of recovery aid, although international frameworks such as PDNA (Post-Disaster Needs Assessment, United Nations Development Program, European Commission and World Bank) is currently being developed, and TRIAMS (Tsunami Recovery and Impact Assessment and Monitoring System, by UNDP and WHO) is being implemented to monitor the recovery from the Indian Ocean Tsunami. The RECOVERY project consists of three phases. Phase 1 was completed by September 2008 and focused on user needs survey, developing the recovery indicators and satellite image data identification/acquisition. The user needs survey was conducted to identify whether there were any indicators that the aid community would like to see prioritised. The survey result suggested that most indicators are equally important. Based on this result and also referring to the TRIAMS framework, a comprehensive list of indicators were developed which belong to six large categories, i.e. housing, infrastructure, services, livelihood, environment, social/security, risk reduction. For the RECOVERY project, two case study sites have been identified, i.e. the village of Baan Nam Khem on the west coast of Thailand, which was heavily

  20. Satellite-based hybrid drought monitoring tool for prediction of vegetation condition in Eastern Africa: A case study for Ethiopia

    Science.gov (United States)

    Tadesse, Tsegaye; Demisse, Getachew Berhan; Zaitchik, Ben; Dinku, Tufa

    2014-03-01

    An experimental drought monitoring tool has been developed that predicts the vegetation condition (Vegetation Outlook) using a regression-tree technique at a monthly time step during the growing season in Eastern Africa. This prediction tool (VegOut-Ethiopia) is demonstrated for Ethiopia as a case study. VegOut-Ethiopia predicts the standardized values of the Normalized Difference Vegetation Index (NDVI) at multiple time steps (weeks to months into the future) based on analysis of "historical patterns" of satellite, climate, and oceanic data over historical records. The model underlying VegOut-Ethiopia capitalizes on historical climate-vegetation interactions and ocean-climate teleconnections (such as El Niño and the Southern Oscillation (ENSO)) expressed over the 24 year data record and also considers several environmental characteristics (e.g., land cover and elevation) that influence vegetation's response to weather conditions to produce 8 km maps that depict future general vegetation conditions. VegOut-Ethiopia could provide vegetation monitoring capabilities at local, national, and regional levels that can complement more traditional remote sensing-based approaches that monitor "current" vegetation conditions. The preliminary results of this case study showed that the models were able to predict the vegetation stress (both spatial extent and severity) in drought years 1-3 months ahead during the growing season in Ethiopia. The correlation coefficients between the predicted and satellite-observed vegetation condition range from 0.50 to 0.90. Based on the lessons learned from past research activities and emerging experimental forecast models, future studies are recommended that could help Eastern Africa in advancing knowledge of climate, remote sensing, hydrology, and water resources.

  1. Recovery of Arctic and Sub-Arctic vegetation nine summers after crude and diesel oil spills

    National Research Council Canada - National Science Library

    Hutchinson, T. C

    1984-01-01

    In August 1980 experimental oil spill sites set up in spruce taiga at Norman Wells and on tundra at Tuktoyaktuk from 1972-75 were monitored to determine degree of recovery of vegeta tion from summer & winter spills...

  2. Identifying optimal remotely-sensed variables for ecosystem monitoring in Colorado Plateau drylands

    Science.gov (United States)

    Poitras, Travis; Villarreal, Miguel; Waller, Eric K.; Nauman, Travis; Miller, Mark E.; Duniway, Michael C.

    2018-01-01

    Water-limited ecosystems often recover slowly following anthropogenic or natural disturbance. Multitemporal remote sensing can be used to monitor ecosystem recovery after disturbance; however, dryland vegetation cover can be challenging to accurately measure due to sparse cover and spectral confusion between soils and non-photosynthetic vegetation. With the goal of optimizing a monitoring approach for identifying both abrupt and gradual vegetation changes, we evaluated the ability of Landsat-derived spectral variables to characterize surface variability of vegetation cover and bare ground across a range of vegetation community types. Using three year composites of Landsat data, we modeled relationships between spectral information and field data collected at monitoring sites near Canyonlands National Park, UT. We also developed multiple regression models to assess improvement over single variables. We found that for all vegetation types, percent cover bare ground could be accurately modeled with single indices that included a combination of red and shortwave infrared bands, while near infrared-based vegetation indices like NDVI worked best for quantifying tree cover and total live vegetation cover in woodlands. We applied four models to characterize the spatial distribution of putative grassland ecological states across our study area, illustrating how this approach can be implemented to guide dryland ecosystem management.

  3. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we

  4. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  5. Significant impacts of nutrient enrichment on High Arctic vegetation and soils despite two decades of recovery

    Science.gov (United States)

    Street, L. E.; Burns, N. R.; Woodin, S. J.

    2012-04-01

    We re-visit a unique field manipulation study in Svalbard to assess the long-term recovery of plant species composition, leaf tissue chemistry and total ecosystem carbon storage from nutrient enrichment. The experiment was established in 1991. The original aim was to quantify the 'critical load' of nitrogen (N) for tundra; that is, the minimum rate of N deposition affecting ecosystem structure and function. Dissolved N was applied to heath vegetation, both alone and in combination with phosphorous (P), during the growing season over three years. The rates of N addition were lower than in most other nutrient manipulation studies, and were designed to represent typical rates of deposition in the Scottish highlands (50 kg N ha-1 yr-1) and maximum deposition rates experienced in the Arctic (10 kg N ha-1 yr-1). Significant changes in shrub cover, the greenness and N content of the moss layer, and the extent of ecosystem N saturation had occurred by the end of the treatment period. After 18 years of recovery without further treatment, we assessed primary productivity using CO2 flux measurements, and the 'greenness' of vegetation using the Normalised Difference Vegetation Index. We made destructive measurements of above- and below-ground carbon and nutrient stocks, quantified species composition and sampled leaf tissue for chemical analysis. Total carbon storage in organic soils and vegetation was c. 40 % lower in the plots treated with 50 kg N ha-1 yr-1 compared to controls. Species composition in N treated plots also differed significantly, but there was no clear treatment effect on primary productivity. Where 50 kg N ha-1 yr-1 was applied in combination with P (at 5 kg P ha-1 yr-1 ), organic carbon storage was c. 70 % greater than controls, the vegetation was greener, and primary productivity higher. Effects of the treatments were also still clearly apparent in moss tissue nutrient status, even at the lower nitrogen application rate. Our results imply that the effects

  6. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  7. Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state

    Directory of Open Access Journals (Sweden)

    Fernández-Espejo Davinia

    2010-09-01

    Full Text Available Abstract Background The rate of recovery from the vegetative state (VS is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI and diffusion tensor imaging (DTI to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.

  8. Measurement of Streaming Potential in Downhole Application: An Insight for Enhanced Oil Recovery Monitoring

    Directory of Open Access Journals (Sweden)

    Tengku Mohd Tengku Amran

    2017-01-01

    Full Text Available Downhole monitoring using streaming potential measurement has been developing in order to respond to actual reservoir condition. Most studies have emphasized on monitoring water flooding at various reservoir condition and improving the approaches of measurement. Enhanced Oil Recovery (EOR could significantly improve oil recovery and the efficiency of the process should be well-monitored. Alkaline-surfactant-polymer (ASP flooding is the most promising chemical EOR method due to its synergy of alkaline, surfactant and polymer, which could enhance the extraction of residual oil. However, limited studies have been focused on the application of streaming potential in EOR processes, particularly ASP. Thus, this paper aims to review the streaming potential measurement in downhole monitoring with an insight for EOR application and propose the potential measurement in monitoring ASP flooding. It is important for a preliminary study to investigate the synergy in ASP and the effects on oil recovery. The behaviour of streaming potential should be investigated when the environment of porous media changes with respect to ASP flooding. Numerical model can be generated from the experimental data to forecast the measured streaming potential signal during production associated with ASP flooding. Based on the streaming potential behaviour on foam assisted water alternate gas (FAWAG and water alternate gas (WAG processes, it is expected that the streaming potential could change significantly when ASP flooding alters the environment and surface properties of porous media. The findings could provide new prospect and knowledge in the relationship between streaming potential and ASP mechanisms, which could be a potential approach in monitoring the efficiency of the process.

  9. Monitoring riparian-vegetation composition and cover along the Colorado River downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.; Johnson, Taylor C.

    2018-06-05

    Vegetation in the riparian zone (the area immediately adjacent to streams, such as stream banks) along the Colorado River downstream of Glen Canyon Dam, Arizona, supports many ecosystem and societal functions. In both Glen Canyon and Grand Canyon, this ecosystem has changed over time in response to flow alterations, invasive species, and recreational use. Riparian-vegetation cover and composition are likely to continue to change as these pressures persist and new ones emerge. Because this system is a valuable resource that is known to change in response to flow regime and other disturbances, a long-term monitoring protocol has been designed with three primary objectives:Annually measure and summarize the status (composition and cover) of native and non-native vascular-plant species within the riparian zone of the Colorado River between Glen Canyon Dam and Lake Mead.At 5-year intervals, assess change in vegetation composition and cover in the riparian zone, as related to geomorphic setting and dam operations, particularly flow regime.Collect data in a manner that can be used by multiple stakeholders, particularly the basinwide monitoring program overseen by the National Park Service’s Northern Colorado Plateau Network Inventory and Monitoring program.A protocol for the long-term monitoring of riparian vegetation is described in detail and standard operating procedures are included herein for all tasks. Visual estimates of foliar and ground covers are collected in conjunction with environmental measurements to assess correlations of foliar cover with abiotic and flow variables. Sample quadrats are stratified by frequency of inundation, geomorphic feature, and by river segment to account for differences in vegetation type. Photographs of sites are also taken to illustrate qualitative characteristics of the site at the time of sampling. Procedures for field preparation, generating random samples, data collection, data management, collecting and managing unknown

  10. Satellite-Based Evaluation of the Post-Fire Recovery Process from the Worst Forest Fire Case in South Korea

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Ryu

    2018-06-01

    Full Text Available The worst forest fire in South Korea occurred in April 2000 on the eastern coast. Forest recovery works were conducted until 2005, and the forest has been monitored since the fire. Remote sensing techniques have been used to detect the burned areas and to evaluate the recovery-time point of the post-fire processes during the past 18 years. We used three indices, Normalized Burn Ratio (NBR, Normalized Difference Vegetation Index (NDVI, and Gross Primary Production (GPP, to temporally monitor a burned area in terms of its moisture condition, vegetation biomass, and photosynthetic activity, respectively. The change of those three indices by forest recovery processes was relatively analyzed using an unburned reference area. The selected unburned area had similar characteristics to the burned area prior to the forest fire. The temporal patterns of NBR and NDVI, not only showed the forest recovery process as a result of forest management, but also statistically distinguished the recovery periods at the regions of low, moderate, and high fire severity. The NBR2.1 for all areas, calculated using 2.1 μm wavelengths, reached the unburned state in 2008. The NDVI for areas with low and moderate fire severity levels became significantly equal to the unburned state in 2009 (p > 0.05, but areas with high severity levels did not reach the unburned state until 2017. This indicated that the surface and vegetation moisture conditions recovered to the unburned state about 8 years after the fire event, while vegetation biomass and health required a longer time to recover, particularly for high severity regions. In the case of GPP, it rapidly recovered after about 3 years. Then, the steady increase in GPP surpassed the GPP of the reference area in 2015 because of the rapid growth and high photosynthetic activity of young forests. Therefore, the concluding scientific message is that, because the recovery-time point for each component of the forest ecosystem is

  11. Assessment of Post-Fire Vegetation Recovery Using Fire Severity and Geographical Data in the Mediterranean Region (Spain

    Directory of Open Access Journals (Sweden)

    Alba Viana-Soto

    2017-12-01

    Full Text Available Wildfires cause disturbances in ecosystems and generate environmental, economic, and social costs. Studies focused on vegetation regeneration in burned areas acquire interest because of the need to understand the species dynamics and to apply an adequate restoration policy. In this work we intend to study the variables that condition short-term regeneration (5 years of three species of the genus Pinus in the Mediterranean region of the Iberian Peninsula. Regeneration modelling has been performed through multiple regressions, using Ordinary Least Squares (OLS and Geographic Weight Regression (GWR. The variables used were fire severity, measured through the Composite Burn Index (CBI, and a set of environmental variables (topography, post-fire climate, vegetation type, and state after fire. The regeneration dynamics were measured through the Normalized Difference Vegetation Index (NDVI obtained from Landsat images. The relationship between fire severity and regeneration dynamics showed consistent results. Short-term regeneration was slowed down when severity was higher. The models generated by GWR showed better results in comparison with OLS (adjusted R2 = 0.77 for Pinus nigra and Pinus pinaster; adjusted R2 = 0.80 for Pinus halepensis. Further studies should focus on obtaining more precise variables and considering new factors which help to better explain post-fire vegetation recovery.

  12. [Determination of gossypol in edible vegetable oil with high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Wenhua; Huang, Chaoqun; Xie, Wen; Shen, Li

    2014-06-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of gossypol in edible vegetable oil. The sample was extracted with ethyl alcohol by vortex-excited oscillation. The extract was cleaned up by 0.22 microm filter membrane and centrifuged for 5 min at 4 000 r/min after standing in a fridge at 4 degrees C for 30 min. The compound was separated on a C18 column (100 mm x 2.1 mm, 3.5 microm) with acetonitrile and 1% (v/v) formic acid aqueous solution as mobile phase. The detection of gossypol was carried out by LC-MS/MS with positive electrospray ionization under multiple reaction monitoring (MRM) mode using external standard method. The limits of quantification (S/N > 10) of gossypol in edible vegetable oil was 1 mg/kg. The recoveries were from 87.4% to 100% at the spiked levels of 1, 2, 200 mg/kg of gossypol in edible vegetable oil with the relative standard deviations (RSDs) between 3.9% and 12.2%. The method, with high sensitivity, good precision and high recovery, was suitable for the confirmation and quantification of gossypol residue in edible vegetable oil.

  13. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Science.gov (United States)

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  14. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact

    Directory of Open Access Journals (Sweden)

    Shruti Khanna

    2018-02-01

    Full Text Available Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened data. Higher quality sensor optics and higher signal-to-noise ratio (SNR may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with

  15. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  16. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    Science.gov (United States)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  17. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  18. Flavonoids as fruit and vegetable intake biomarkers

    DEFF Research Database (Denmark)

    Krogholm, Kirstine Suszkiewicz

    of fruit and vegetable intakes. In Paper I, the urinary recovery of the 7 flavonoids in morning spot urine (i.e. all urine voids from midnight including the first morning void) was also found to respond to moderate increases in the intake of fruits and vegetables. However, the association was somewhat...... weaker than in 24h urine samples, indicating that the 24h urinary recovery of the 7 flavonoids is a stronger biomarker of the intake of fruit and vegetables than the urinary recovery of the 7 flavonoids in morning spot urine. In Paper II, the biokinetic profiles of some of the most important dietary......-individual variation in the absorption and urinary recovery of the flavonoids, and this makes it very difficult to separate individuals according to intake by use of the flavonoid biomarker in urine. The intra-individual variation was on the contrary low, and Paper II therefore supports the assumption, that 24h...

  19. Evaluating the utility and seasonality of NDVI values for assessing post-disturbance recovery in a subalpine forest.

    Science.gov (United States)

    Buma, Brian

    2012-06-01

    Forest disturbances around the world have the potential to alter forest type and cover, with impacts on diversity, carbon storage, and landscape composition. These disturbances, especially fire, are common and often large, making ground investigation of forest recovery difficult. Remote sensing offers a means to monitor forest recovery in real time, over the entire landscape. Typically, recovery monitoring via remote sensing consists of measuring vegetation indices (e.g., NDVI) or index-derived metrics, with the assumption that recovery in NDVI (for example) is a meaningful measure of ecosystem recovery. This study tests that assumption using MODIS 16-day imagery from 2000 to 2010 in the area of the Colorado's Routt National Forest Hinman burn (2002) and seedling density counts taken in the same area. Results indicate that NDVI is rarely correlated with forest recovery, and is dominated by annual and perennial forb cover, although topography complicates analysis. Utility of NDVI as a means to delineate areas of recovery or non-recovery are in doubt, as bootstrapped analysis indicates distinguishing power only slightly better than random. NDVI in revegetation analyses should carefully consider the ecology and seasonal patterns of the system in question.

  20. Monitoring and Optimization of the Process of Drying Fruits and Vegetables Using Computer Vision: A Review

    Directory of Open Access Journals (Sweden)

    Flavio Raponi

    2017-11-01

    Full Text Available An overview is given regarding the most recent use of non-destructive techniques during drying used to monitor quality changes in fruits and vegetables. Quality changes were commonly investigated in order to improve the sensory properties (i.e., appearance, texture, flavor and aroma, nutritive values, chemical constituents and mechanical properties of drying products. The application of single-point spectroscopy coupled with drying was discussed by virtue of its potentiality to improve the overall efficiency of the process. With a similar purpose, the implementation of a machine vision (MV system used to inspect foods during drying was investigated; MV, indeed, can easily monitor physical changes (e.g., color, size, texture and shape in fruits and vegetables during the drying process. Hyperspectral imaging spectroscopy is a sophisticated technology since it is able to combine the advantages of spectroscopy and machine vision. As a consequence, its application to drying of fruits and vegetables was reviewed. Finally, attention was focused on the implementation of sensors in an on-line process based on the technologies mentioned above. This is a necessary step in order to turn the conventional dryer into a smart dryer, which is a more sustainable way to produce high quality dried fruits and vegetables.

  1. Year-one recovery of an intermediate marsh in south Louisiana after an in-situ burn for oil spill remediation. Volume 1

    International Nuclear Information System (INIS)

    Baustian, J.J.; Mendelssohn, I.A.; Lin, Q.; Rapp, J.; Myers, J.

    2007-01-01

    This study examined the recovery of an intermediate marsh in south Louisiana following an oil spill caused by a storage tank that ruptured during Hurricane Katrina. In situ burning of the oil spill was shown to be a successful form of cleanup that did not cause extensive physical damage to the marsh. The burn plan and execution of the burn was described, with particular focus on vegetation recovery in 28 recovery plots. Plots were monitored for aboveground biomass, plant height and stem density. The study showed that when done properly, in-situ burning eliminates oil from the marsh while combusting the oiled aboveground vegetation, leaving the belowground portions of the plant unharmed. Burns performed with as little as 2 cm of water on the marsh surface can buffer the root zone from the burn and increase plant survival. In this study, the structural and functional attributes of burned areas that were heavily and moderately oil were compared to 2 unburned and unoiled reference marshes. Within 9 months of the in situ burn, the above ground vegetation in the marsh had completely recovered. The burn adequately removed the oiled vegetation and allowed for the natural regrowth of the marsh vegetation. 27 refs., 2 tabs., 2 figs

  2. Survival of Saplings in Recovery of Riparian Vegetation of Pandeiros River (MG)

    OpenAIRE

    Nathalle Cristine Alencar Fagundes; Lílian de Lima Braga; Wesley Alves Silva; Chirley Alves Coutinho; Walter Viana Neves; Ricardo Almeida de Souza; Maria das Dores Magalhães Veloso; Yule Roberta Ferreira Nunes

    2018-01-01

    ABSTRACT This study monitored the survival of saplings planted according to different recovery models in a riparian forest of the Pandeiros river (Januária, MG). The models consisted of planting the saplings in lines of 2 or 4 m with presence (T2S and T4S, respectively) or absence of direct seeding (T2 and T4, respectively). We planted 16,259 saplings of 17 botanical families, 32 genera and 33 species. The saplings, in general, presented a survival rate after one year of 34.4% (±1.8). The spe...

  3. The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula

    NARCIS (Netherlands)

    Francos, Marcos; Úbeda, Xavier; Tort, Joan; Panareda, Josep María; Cerda Bolinches, Artemio

    2016-01-01

    Wildfires are a widespread phenomenon in Mediterranean environments. Wildfires result in different fire severities, and then in contrasting plant cover and floristic composition. This paper analyses the recovery of the vegetation eighteen years after a wildfire in Catalonia. The Pinus pinaster

  4. Monitoring pesticides residues and contaminants for some leafy vegetables at the market level

    International Nuclear Information System (INIS)

    Ibrahim, A. B. H.

    2004-03-01

    Pesticide residues and contaminants in selected leafy vegetables, namely (lettuce, garden rocket and salad onion) were monitored at market level in Riyadh City in Saudi Arabia, during the period june to july 2001. Fifteen samples of vegetables from the City vegetable market of Riyadh were collected and subjected to multi-pesticide residue detection and analysis by gas chromatography with mass spectrometer and electron capture detectors (GC/MS,ECD). Results of sample extracts analysis showed that the two vegetables of: garden rocket and salad onion contain pesticide residues and contaminants which have no Maximum Residue Limits (MRL) prescribed by Codex Alimentarius Commission (CAC) collaborate with World Health and Food and Agriculture Organizations (WHO/FAO). Whereas lettuce vegetable was found free of any identified pesticide residues or contaminants. Garden rocket was shown to contain dibutyl phthalate (0.04 ppm)-steryl chloride (0.02 ppm) tridecane (0.06 ppm)-hexadecane (0.07 ppm)-BIS (ethylhexyl) phthalate (0.006 ppm) and pyridinium, 1-hexyl chloride (0.01 ppm). The salad onion was found to contain 9-octadecanamide (0.13 ppm)-tridecane (0.15 ppm) and tetradecane (0.16 ppm). There are no established MRL s for these pesticides and contaminants detected in garden rocket and salad onion, although when impacts on human health were reviewed some of them were found probably hazardous. (Author)

  5. Using MODIS NDVI products for vegetation state monitoring on the oil production territory in Western Siberia

    OpenAIRE

    Kovalev, Anton; Tokareva, Olga Sergeevna

    2016-01-01

    Article describes the results of using remote sensing data for vegetation state monitoring on the oil field territories in Western Siberia. We used MODIS data product providing the normalized difference vegetation index (NDVI) values. Average NDVI values of each studied area were calculated for the period from 2010 to 2015 with one year interval for June, July and August. Analysis was carried out via an open tool of geographic information system QGIS used for spatial analysis and calculation ...

  6. Recovery and evaluation of historical environmental monitoring data at Hanford

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that populations could have received from the nuclear operations at the Hanford site since 1944. The Environmental Monitoring Data Task within HEDR is charged with assembling, evaluating, and summarizing key historical measurements of radionuclide concentrations in the environment on and around the Hanford site. The recovery and evaluation of historical environmental monitoring data are integral parts of the environmental dose reconstruction process. The data generated through historical environmental monitoring programs may be critical in the development of dose modeling codes and in performing a meaningful environmental pathway analysis. In addition, environmental monitoring data are essential in the verification of model calculations and in the validation of the model itself. The paper a task logic flowchart illustrating how the process evolves within the Environmental Monitoring Data Task and the interaction with other project tasks. The reconstruction of such data presents numerous challenges, many of which are not generally encountered in typical scientific studies. This paper discusses the process of reconstructing historical environmental monitoring data at Hanford. Several of the difficulties encountered during this process are presented. Items that may be beneficial and should be considered in performing such a task are identified

  7. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa

    Science.gov (United States)

    Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen

    2015-06-01

    Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.

  8. A decadal glimpse on climate and burn severity influences on ponderosa pine post-fire recovery

    Science.gov (United States)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.; Smith, A.; Khalyani, A. H.

    2016-12-01

    Climate change is predicted to affect plants at the margins of their distribution. Thus, ecosystem recovery after fire is likely to vary with climate and may be slowest in drier and hotter areas. However, fire regime characteristics, including burn severity, may also affect vegetation recovery. We assessed vegetation recovery one and 9-15 years post-fire in North American ponderosa pine ecosystems distributed across climate and burn severity gradients. Using climate predictors derived from downscaled 1993-2011 climate normals, we predicted vegetation recovery as indicated by Normalized Burn Ratio derived from 1984-2012 Landsat time series imagery. Additionally, we collected field vegetation measurements to examine local topographic controls on burn severity and post-fire vegetation recovery. At a regional scale, we hypothesized a positive relationship between precipitation and recovery time and a negative relationship between temperature and recovery time. At the local scale, we hypothesized southern aspects to recovery slower than northern aspects. We also predicted higher burn severity to slow recovery. Field data found attenuated ponderosa pine recovery in hotter and drier regions across all burn severity classes. We concluded that downscaled climate data and Landsat imagery collected at commensurate scales may provide insight into climate effects on post-fire vegetation recovery relevant to ponderosa pine forest managers.

  9. Monitoring Perceived Stress and Recovery in Relation to Cycling Performance in Female Athletes.

    Science.gov (United States)

    Otter, R T A; Brink, M S; van der Does, H T D; Lemmink, K A P M

    2016-01-01

    The purpose was to investigate perceived stress and recovery related to cycling performance of female athletes over one full year. 20 female athletes (age, 27±8 years; ˙VO2max, 50.3±4.6 mL·kg(-1)·min(-1)) were measured 8 times in one year to determine perceived stress and recovery (RESTQ-Sport) in relation to cycling performance (Lamberts and Lambert Submaximal Cycle Test (LSCT)). All 19 RESTQ-Sport scales were calculated and scores of the 4 main categories were determined (i. e., general stress, general recovery, sport-specific stress and sport-specific recovery). A balance score of total stress and recovery was calculated by recovery-stress. Power at the second stage (P80), third stage (P90) and heart rate recovery (HRR60 s) of the LSCT were determined as performance parameters. 110 RESTQ-Sports and LSCTs were analysed using a multilevel approach (random intercepts model). Higher self-efficacy was related to improvement of all performance parameters. Higher total recovery stress, and lower emotional stress were related to improvement of P90 and HRR60 s. Higher sport-specific recovery was related to P80, higher general stress, fatigue and physical complaints were related to decreased P90 and higher social stress and injury were related to decreased HRR60 s. Improved perceived recovery and stress contributed to an improved performance. Relevant information could be provided by monitoring changes in perceived stress and recovery of female athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Drought impact on vegetation in pre and post fire events in Iberian Peninsula

    Science.gov (United States)

    Gouveia, C. M.; Bastos, A.; Trigo, R. M.; DaCamara, C.

    2012-04-01

    In 2004/2005, the Iberian Peninsula was stricken by an exceptional drought that affected more than one third of Portugal and part of southern Spain during more than 9 months. This severe drought had a strong negative impact on vegetation dynamics, as it coincided with the period of high photosynthetic activity (Gouveia et al., 2009). Since water availability is a crucial factor in post-fire vegetation recovery, it is desirable to assess the impact that such water-stress conditions had on fire sensitivity and post-fire vegetation recovery. Fire events in the European Mediterranean areas have become a serious problem and a major ecosystem disturbance, increasing erosion and soil degradation. In Portugal, the years 2003 and 2005 were particularly devastating. In 2003 it was registered the maximal burnt area since 1980, with more than 425000 ha burned, representing about 5% of Portuguese mainland. The 2005 fire season registered the highest number of fire occurrences in Portugal and the second year with the greatest number of fires in Spain. The high number of fire events observed during the summer 2005 in the Iberian Peninsula is linked, in part, to the extreme drought conditions that prevailed during the preceding winter and spring seasons of 2004/2005. Vegetation recovery after the 2003 and 2005 fire seasons was estimated using the mono-parametric model developed by Gouveia et al. (2010), which relies on monthly values of Normalized Difference Vegetation Index (NDVI), from 1999 to 2009, at 1kmresolution, as obtained from the VEGETATION-SPOT5 instrument.. This model was further used to evaluate the effect of drought in pre and post vegetation activity. Besides the standard NDVI, the Normalized Difference Water Index (NDWI) and the Normalized Difference Drought Index (NDDI) were computed in order to evaluate drought intensity. In the case of the burnt scars of 2003, when data corresponding to the months of drought are removed, recovery times are considerably shorter

  11. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  12. Seed banks as a source of vegetation regeneration to support the recovery of degraded rivers: A comparison of river reaches of varying condition.

    Science.gov (United States)

    O'Donnell, Jessica; Fryirs, Kirstie A; Leishman, Michelle R

    2016-01-15

    Anthropogenic disturbance has contributed to widespread geomorphic adjustment and the degradation of many rivers. This research compares for river reaches of varying condition, the potential for seed banks to support geomorphic river recovery through vegetation regeneration. Seven river reaches in the lower Hunter catchment of south-eastern Australia were assessed as being in poor, moderate, or good condition, based on geomorphic and ecological indicators. Seed bank composition within the channel and floodplain (determined in a seedling emergence study) was compared to standing vegetation. Seed bank potential for supporting geomorphic recovery was assessed by measuring native species richness, and the abundance of different plant growth forms, with consideration of the roles played by different growth forms in geomorphic adjustment. The exotic seed bank was considered a limiting factor for achieving ecological restoration goals, and similarly analysed. Seed bank native species richness was comparable between the reaches, and regardless of condition, early successional and pioneer herbs, sedges, grasses and rushes dominated the seed bank. The capacity for these growth forms to colonise and stabilise non-cohesive sediments and initiate biogeomorphic succession, indicates high potential for the seed banks of even highly degraded reaches to contribute to geomorphic river recovery. However, exotic propagules increasingly dominated the seed banks of moderate and poor condition reaches and reflected increasing encroachment by terrestrial exotic vegetation associated with riparian degradation. As the degree of riparian degradation increases, the resources required to control the regeneration of exotic species will similarly increase, if seed bank-based regeneration is to contribute to both geomorphic and ecological restoration goals. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Science.gov (United States)

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  14. Implications of vegetation hydraulic capacitance as an indicator of water stress and drought recovery

    Science.gov (United States)

    Matheny, A. M.; Bohrer, G.

    2017-12-01

    Above-ground water storage in vegetation plays an integral role in the avoidance of hydraulic impairment to transpiration. New high temporal resolution measurements of dynamic changes in tree hydraulic capacitance are facilitating insights into vegetation water use strategies. Diurnal withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. The ability to store and use water varies based on soil- and root-water availability, tree size, wood vessel anatomy and density, and stomatal response strategy (i.e. isohydricity). We present results from a three-year long study of stem capacitance dynamics in five species in a mixed deciduous forest in Michigan. The site receives 800mm of rainfall annually, but water potential in the well-drained sandy soil nears the permanent wilting point several times annually. We demonstrate radical differences in stored water use between drought tolerant and intolerant species. Red maple, a drought intolerant, isohydric species, showed a strong dependence on stem capacitance for transpiration during both wet and dry periods. Red oak, a more drought hearty, deep rooted, anisohydric species, was much less reliant on withdrawal from water storage during all conditions. During well-watered conditions, withdrawal from storage by red maple was 10 kg day-1, yet storage withdrawal from similarly sized red oaks was 1 kg day-1. Red oaks only drew strongly upon stored water during the driest extremes. Metrics of hydration status derived from capacitance provide a means to explore drought response and recovery. Declines in consecutive days' maximum capacitance indicate an inability to restore lost water and can be used to mark the onset of water stress. Drought recovery can be quantified as the time required for stem water content to return to pre-drought volumes. Capacitance withdrawal and depletion exhibit a clear threshold response to declining soil water

  15. Phase 1 summaries of radionuclide concentration data for vegetation, river water, drinking water, and fish

    International Nuclear Information System (INIS)

    Denham, D.H.; Dirkes, R.L.; Hanf, R.W.; Poston, T.M.; Thiede, M.E.; Woodruff, R.K.

    1993-06-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at the Hanford Site since 1944. As part of the HEDR Project, the Environmental Monitoring Data Task (Task 05) staff assemble, evaluate, and summarize key historical measurements of radionuclide concentrations in the environment as a result of Hanford operations. The scope of work performed during Phase I included initiating the search, recovery, and inventory of environmental reports. Summaries of the environmental monitoring data that were recovered and evaluated are presented for specific periods of interest. These periods include vegetation monitoring data (primarily sagebrush) for the years 1945 through 1947, Columbia River water and drinking water monitoring data for the years 1963 through 1966, and fish monitoring data for the years 1964 through 1966. Concern was limited to those radionuclides identified as the most likely major contributors to the dose potentially received by the public during the times of interest: phosphorous-32, copper-64, zinc-65, arsenic-76, and neptunium-239 in Columbia River fish and drinking water taken from the river, and iodine-131 in vegetation. This report documents the achievement of the Phase I objectives of the Environmental Monitoring Data Task

  16. Instrumentation and control systems for monitoring and data acquisition for thermal recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, J.; Hernandez, E.; Perozo, H. [PDVSA Intevep, S.A. (Venezuela)

    2011-07-01

    Thermal recovery methods are often applied to enhance oil recovery in heavy oil reservoirs, one of its challenges is to control the displacement of the thermal front. Methods are thus implemented to obtain data on the temperatures in the wells at any given time and to monitor other variables so that the behaviour of the thermal front can be predicted. The aim of this paper is to present a new control and instrumentation scheme to measure all of the variables. A software was created using Labview a graphs-based programming language software and PostgreSQL, a database management system. Using this software, sensors can be added or removed at any time; trends can be immediately visualized; and quality of the information is ensured since there is no human intervention in the data collection or processing. This paper presented a software which improves monitoring of all of the variables affecting the behaviour of the thermal front.

  17. Damage detection monitoring applications in self-healing concrete structures using embedded piezoelectric transducers and recovery

    International Nuclear Information System (INIS)

    Karaiskos, G; Tsangouri, E; Aggelis, D G; Van Hemelrijck, D; Deraemaeker, A

    2015-01-01

    The ageing, operational and ambient loadings have a great impact in the operational and maintenance cost of concrete structures. Their service life prolongation is of utmost importance and this can be efficiently achieved by using reliable and low-cost monitoring and self-healing techniques. In the present study, the ultrasonic pulse velocity (UPV) method using embedded small-size and low-cost piezoelectric PZT (lead zirconate titanate) ceramic transducers in concrete with self-healing properties is implemented for monitoring not only the setting and hardening phases of concrete since casting time, but also for the detection of damage initiation, propagation and recovery of integrity after healing. A couple of small-scale notched unreinforced concrete beams are subjected to mode-I fracture through three-point bending tests. After a 24-hour healing agent curing period, the beams are reloaded using the same loading scenario. The results demonstrate the excellent performance of the proposed monitoring technique during the hydration, damage generation and recovery periods. (paper)

  18. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  19. Impact and Recovery Pattern of a Spring Fire on a Pacific Coast Marsh - Observations and Implications for Endangered Species

    Science.gov (United States)

    Brown, L. N.; Willis, K. S.; Ambrose, R. F.; MacDonald, G. M.

    2015-12-01

    The flammability of California coastal marsh vegetation is highest in winter and spring when dominant high marsh plants such as Sarcocornia pacifica are dormant. With climate change the number of cool-season fires are increasing in the state, and marsh systems are becoming more vulnerable to fire disturbance. Very little information exists in peer-reviewed or grey literature on the presence of fire in Pacific Coast tidal marshes. In 1993, the Green Meadows fire in Ventura County, California burned a small portion of tidally influenced Sarcocornia­-dominated marsh at Point Mugu. After the May 2013 Springs Fire burned a similar portion of the salt marsh vegetation, we conducted a two-year vegetation recovery survey using transects of surface vegetation plots and MODIS derived NDVI remote sensing monitoring. Recovery during the first year was limited. Sixteen months into the recovery period, percent plant coverage reached an average of approximately 60% for all plots in the burned area, as opposed to an average of 100% in control plots, and remained at that level for the duration of the study. NDVI did not approach near pre-fire conditions until 19 months after the fire. While recovery may have been influenced by California's current extreme drought conditions, the recurrence of fire and rate of recovery raise many important questions as to the role of fire in Pacific coast tidal marshes. For example, the lack of Salicornia cover over more than an entire breeding season would be detrimental to protected species such as Rallus obsoletus. Fire adds new vulnerabilities on critical tidal marsh habitat already taxed by the threat of sea-level rise, coastal squeeze and invasive species.

  20. Flood effects on an Alaskan stream restoration project: the value of long-term monitoring

    Science.gov (United States)

    Densmore, Roseann V.; Karle, Kenneth F.

    2009-01-01

    On a nationwide basis, few stream restoration projects have long-term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long-term and event-based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long-term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross-sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25-year flood on the stream and floodplain geometry and riparian vegetation. The long-term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.

  1. Monitoring of Vegetation Impact Due to Trampling on Cadillac Mountain Summit Using High Spatial Resolution Remote Sensing Data Sets

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J.

    2012-11-01

    Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.

  2. Monitoring of hazardous metals in ruderal vegetation as evidence of industrial and anthropogenic emissions

    International Nuclear Information System (INIS)

    Jurani, M.; Chmielewska, E.; Husekova, Z.; Ursinyova, M.

    2010-01-01

    The major share of environmental pollution in Bratislava loaded area is the petrochemical industry, energy and transport. Aggregated emissions of pollutants according to published data are currently declining. The aim of our research is monitoring of heavy metals (Zn, Cu, Cr, As, Pb, Cd, Ni) in selected species of ruderal vegetation (family Asteraceae and Salicaceae) in the adjacent southeast area of Bratislava (air side of Slovnaft).

  3. Monitoring of nitrate content of vegetable crops in Uzhgorod district

    Directory of Open Access Journals (Sweden)

    I.I. Mykaylo

    2013-09-01

    Full Text Available The aim of our research was to conduct a monitoring study of nitrate content in plant products of Uzhgorod district and to accomplish comparative analysis of the survey results in different periods of crop ripening. Selection of vegetable samples was carried out in Uzhgorod district in the early spring and summer periods. Determination of the nitrate content was performed using an ion-selective method at the Chemical and Toxicological Department of the Regional State Veterinary Medicine Laboratory in the Transcarpathian region of Ukraine. Vegetables were tested for nitrate content using the ion-selective method with the laboratory ion meter AI-123. Core investigation samples were crushed and homogenized. A 10.0 g weight of the investigated product, which was prepared according to MIR № 5048-89, was placed in a flat-bottomed or a conical flask, which was then filled with 50 cm3 potassium alumens solution and shaken in a shaking-machine for 5 minutes and then transferred into a measuring glass. The nitrate weight fraction in milligrams per kilogram was obtained together with the weight concentration value of nitrate ions in solution. For our study we selected vegetables grown in both public and private gardens of Uzhgorod district, namely: common onions, radishes, garden parsley, cucumbers, tomatoes, bell peppers, white cabbages, carrots and table beets. 25 samples were selected for each type of vegetable. Nitrate content was determined in the early spring growing period (from February 9 to May 27, 2011 and in the summer growing period (from June 3 to September 28, 2011, because in these particular periods we recorded the most frequent cases of food poisoning from nitrates among the population of the region. A clear trend has been traced towards increasing the nitrate content in food plant production, at levels which exceed the maximum permissible concentration (MPC. The results of our research demonstrate that the nitrate content exceeded the

  4. The 2005 and 2012 major drought events in Iberia: monitoring vegetation dynamics and crop yields using satellite data.

    Science.gov (United States)

    Gouveia, Célia M.; Trigo, Ricardo M.

    2014-05-01

    The Iberian Peninsula is recurrently affected by drought episodes and therefore by the adverse effects associated that range from severe water shortages to economic losses and related social impacts. During the hydrological years of 2004/2005 and 2011/2012, Iberia was hit by two of the worst drought episodes ever recording in this semi-arid region (Garcia-Herrera at al., 2007; Trigo et al., 2013). These two drought episodes were extreme in both its magnitude and spatial extent. A tendency towards a drier Mediterranean for the period 1970-2010 in comparison with 1901-70 has been identified (Hoerling et al., 2012), reinforcing the need for a continuous monitoring of vegetation stress and reliable estimates of the drought impacts. The strong effect of water scarcity on vegetation dynamics is well documented in Mediterranean and other semi-arid regions. Despite the usual link established between the decrease of vegetation greenness and the lack of precipitation during a considerably long period, the impact on vegetation activity may be amplified by other climatic anomalies, such as high temperature, high wind, and low relative humidity. The recent availability of consistent satellite imagery covering large regions over long periods of time has progressively reinforced the role of remote sensing in environmental studies, in particular in those related to drought episodes (e.g. Gouveia et al., 2009). The aim of the present work is to assess and monitor the cumulative impact over time of drought conditions on vegetation over Iberian Peninsula. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2013. The entire 15-yr long period was analysed, but particular attention was devoted to the two extreme drought episodes of 2004-2005 and 2011-2012. During the hydrological years of 2004-2005 and 2011-2012 drought episodes negative anomalies of NDVI were observed over

  5. Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: A two year monitoring research.

    Science.gov (United States)

    García-Orenes, F; Arcenegui, V; Chrenková, K; Mataix-Solera, J; Moltó, J; Jara-Navarro, A B; Torres, M P

    2017-05-15

    Post-fire management can have an additional impact on the ecosystem; in some cases, even more severe than the fire. Salvage logging (SL) is a common practice in most fire-affected areas. The management of burnt wood can determine microclimatic conditions and seriously affect soil properties. In some cases, the way of doing it, using heavy machinery, and the vulnerability of soils to erosion and degradation can make this management potentially aggressive to soil. Research was done in "Sierra de Mariola Natural Park" (E Spain). A forest fire (>500ha) occurred in July 2012. In February 2013, SL treatment was applied in a part of the affected forest. Plots for monitoring this effect were installed in this area and in a similar nearby area where no treatment was done, used as control (C). Soil samplings were done immediately after treatment and every 6months during two years. Some soil properties were analysed, including organic matter (OM) content, nitrogen (N) available phosphorous (P) basal soil respiration (BSR), microbial biomass carbon (C mic ), bulk density (BD), water repellency (WR), aggregate stability (AS) and field capacity (FC). SL treatment caused an increase in BD, a decrease of AS, FC, OM and N. In the control area, in general the soil properties remained constant across the 2years of monitoring, and the microbial parameters (BSR and C mic ), initially affected by the fire, recovered faster in C than in the SL area. Plant recovery also showed some differences between treatments. No significant differences were observed in the number of plant species recorded (richness) comparing C versus SL plots, but the number of individuals of each species (evenness) was significantly higher in C plots. In conclusion, we can affirm that for the conditions of this study case, SL had a negative effect on the soil-plant system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Recovery of soil water, groundwater, and streamwater from acidification at the Swedish integrated monitoring catchments.

    Science.gov (United States)

    Löfgren, Stefan; Aastrup, Mats; Bringmark, Lage; Hultberg, Hans; Lewin-Pihlblad, Lotta; Lundin, Lars; Karlsson, Gunilla Pihl; Thunholm, Bo

    2011-12-01

    Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996-2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.

  7. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013.

    Science.gov (United States)

    Yu, Yan; Hu, Senke; Yang, Yuxuan; Zhao, Xiaodan; Xue, Jianjun; Zhang, Jinghua; Gao, Song; Yang, Aimin

    2017-08-02

    A wide range of pesticides is applied for crop protection in vegetable cultivation in China. Regulation of pesticide maximum residue limits (MRLs) in vegetables is established but not fully enforced. And pesticide residues in vegetables were not well monitored. This study conducted the monitoring surveys from 2011 to 2013 to investigate the pesticides in vegetables in the northwest region of China. A multi-residue gas chromatography/mass spectrometry method (GC/MS) was used in determination of pesticides in vegetable samples. The χ 2 test was used to compare the concentration of pesticide residues. A total of 32 pesticide residues were detected in 518 samples from 20 types of vegetables in this study. 7.7% of the detected pesticide residues exceeded the MRLs. The percentages of residues that exceeded the MRLs for leafy, melon and fruit, and root vegetables were 11.2%, 5.1%, and 1.6%, respectively. There was no seasonal difference in the proportion of samples that exceeded the MRLs in different vegetables. A total of 84.3% (27/32) pesticides were detected at concentrations that exceeded MRLs. And of the 27 pesticides that exceeded the MRLs, 11 (40.7%) were banned for use in agriculture. The most frequently detected pesticides were Malathion (9.4%), Dichlorvos (8.7%), and Dimethoate (8.1%). The observed high rate of pesticides detected and high incidence of pesticide detection exceeding their MRLs in the commonly consumed vegetables indicated that the Good Agricultural Practices (GAP) may not be well followed. The management of pesticide use and control should be improved. Well-developed training programs should be initiated to improve pesticide application knowledge for farmers.

  8. Vegetation change (1988–2010 in Camdeboo National Park (South Africa, using fixed-point photo monitoring: The role of herbivory and climate

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2013-10-01

    Conservation implications: We provided an historical assessment of the pattern of vegetation and climatic trends that can help evaluate many of South African National Parks’ biodiversity monitoring programmes, especially relating to habitat change. It will help arid parks in assessing the trajectories of vegetation in response to herbivory, climate and management interventions.

  9. A New Method to Individualize Monitoring of Muscle Recovery in Athletes.

    Science.gov (United States)

    Hecksteden, Anne; Pitsch, Werner; Julian, Ross; Pfeiffer, Mark; Kellmann, Michael; Ferrauti, Alexander; Meyer, Tim

    2017-10-01

    Assessment of muscle recovery is essential for the daily fine-tuning of training load in competitive sports, but individual differences may limit the diagnostic accuracy of group-based reference ranges. This article reports an attempt to develop individualized reference ranges using a Bayesian approach comparable to that developed for the Athlete Biological Passport. Urea and creatine kinase (CK) were selected as indicators of muscle recovery. For each parameter, prior distributions and repeated-measures SDs were characterized based on data of 883 squad athletes (1758 data points, 1-8 per athlete, years 2013-2015). Equations for the individualization procedure were adapted from previous material to allow for discrimination of 2 physiological states (recovered vs nonrecovered). Evaluation of classificatory performance was carried out using data from 5 consecutive weekly microcycles in 14 elite junior swimmers and triathletes. Blood samples were collected every Monday (recovered) and Friday according to the repetitive weekly training schedule over 5 wk. On the group level, changes in muscle recovery could be confirmed by significant differences in urea and CK and validated questionnaires. Group-based reference ranges were derived from that same data set to avoid overestimating the potential benefit of individualization. For CK, error rates were significantly lower with individualized classification (P vs group-based: test-pass error rate P = .008; test-fail error rate P < .001). For urea, numerical improvements in error rates failed to reach significance. Individualized reference ranges seem to be a promising tool to improve accuracy of monitoring muscle recovery. Investigating application to a larger panel of indicators is warranted.

  10. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  11. 40 CFR Table 31 to Subpart Uuu of... - Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units 31 Table 31 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 31 Table 31 to Subpart UUU of Part 63—Continuous Monitoring Systems for HAP Emissions...

  12. Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring

    Science.gov (United States)

    Janssens, Nikki; Wee, Lik H.; Martens, Johan A.

    2014-01-01

    The esterification reaction of salicylic acid with ethanol is performed in presence of dissolved 12-tungstophosphoric Brønsted-Lowry acid catalyst, a Keggin-type polyoxometalate (POM). The monitoring of the reaction with smell and the recovery of the catalyst with sight is presented. Formation of the sweet-scented ester is apparent from the smell.…

  13. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    Science.gov (United States)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these

  14. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    provide insights on the relation between dune vegetation, environmental filters and ecosystem processes. A combination of cost-efficient indicators from dune topography and vegetation is thus suggested as a promising approach to survey, forecast and monitor changes in coastal dune ecosystems.

  15. Repeatability of riparian vegetation sampling methods: how useful are these techniques for broad-scale, long-term monitoring?

    Science.gov (United States)

    Marc C. Coles-Ritchie; Richard C. Henderson; Eric K. Archer; Caroline Kennedy; Jeffrey L. Kershner

    2004-01-01

    Tests were conducted to evaluate variability among observers for riparian vegetation data collection methods and data reduction techniques. The methods are used as part of a largescale monitoring program designed to detect changes in riparian resource conditions on Federal lands. Methods were evaluated using agreement matrices, the Bray-Curtis dissimilarity metric, the...

  16. Wildlife and habitat damage assessment from Hurricane Charley: recommendations for recovery of the J. N. "Ding" Darling National Wildlife Refuge Complex. [Final report to U.S. Fish and Wildlife Service

    Science.gov (United States)

    Meyers, J.M.; Langtimm, C.A.; Smith, T. J.; Pednault-Willett, K.

    2005-01-01

    On 13 August 2004, the first of four hurricanes to strike Florida in 50% and sometimes 90% of their vegetation severely damaged (dead, broken tree stems, and tipped trees). Shell Mound Trail of JNDDNWR sustained catastrophic damage to its old growth mangrove forests. Direct storm mortality and injury to manatees in the area was probably slight. Because seagrass beads and manatee habitat extend beyond refuge boundaries, we recommended a regional approach with partner agencies to more thoroughly assess storm impacts and monitor recovery of seagrass and manatees. Besides intensive monitoring of waterbirds and their nesting habitat (pre- and post-storm), we recommend that the Mangrove Cuckoo be used as an indicator species for recovery of mangrove forests and also for monitoring songbirds at risk. Black-whiskered Vireo may be another potential indicator species to monitor in mangrove forests. Damaged vegetation should be monitored for recovery (permanent or long-term plots), especially where previous study plots have been established and with additional plots in mangrove forests of waterbird nesting islands and freshwater wetlands. Potential loss of wetlands may be prevented by water level monitoring, locating the positions (GPS-GIS) and maintaining existing water control structures, creating a GIS map of refuge with accurate vertical data, and monitoring and eradicating invasive plants. Invasive species, including Brazilian pepper (Schinus terebinthifolius) and air potato (Dioscorea bulbifora), were common in a very limited survey. As an important monitoring goal, we recommend that species presence-absence data analysis (with probability of detection) be used to determine changes in animal communities. This could be accomplished possibly with comparison to other storm-damaged and undamaged refuges in the Region. This information may be helpful to refuge managers when storms return in the future.

  17. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    Science.gov (United States)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  18. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait.

    Science.gov (United States)

    Jallow, Mustapha F A; Awadh, Dawood G; Albaho, Mohammed S; Devi, Vimala Y; Ahmad, Nisar

    2017-07-25

    The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS) multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC - MS / MS). Pesticide residues above the maximum residue limits (MRL) were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. Aldrin, an organochlorine pesticide, was detected in one apple sample, with residues below the MRL. The results indicate the occurrence of pesticide residues in commonly consumed fruits and vegetables in Kuwait, and pointed to an urgent need to develop comprehensive intervention measures to reduce the potential health risk to consumers. The need for the regular monitoring of pesticide residues and the sensitization of farmers to better pesticide safety practices, especially the need to adhere to recommended pre-harvest intervals is recommended.

  19. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait

    Directory of Open Access Journals (Sweden)

    Mustapha F. A. Jallow

    2017-07-01

    Full Text Available The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS or liquid chromatography-tandem mass spectrometry (LC-MS/MS. Pesticide residues above the maximum residue limits (MRL were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. Aldrin, an organochlorine pesticide, was detected in one apple sample, with residues below the MRL. The results indicate the occurrence of pesticide residues in commonly consumed fruits and vegetables in Kuwait, and pointed to an urgent need to develop comprehensive intervention measures to reduce the potential health risk to consumers. The need for the regular monitoring of pesticide residues and the sensitization of farmers to better pesticide safety practices, especially the need to adhere to recommended pre-harvest intervals is recommended.

  20. Monitoring an outdoor smoking area by means of PM2.5 measurement and vegetal biomonitoring.

    Science.gov (United States)

    da Silveira Fleck, Alan; Carneiro, Maria Fernanda Hornos; Barbosa, Fernando; Thiesen, Flavia Valladão; Amantea, Sergio Luis; Rhoden, Claudia Ramos

    2016-11-01

    The extension of pollutant accumulation in plant leaves associated with its genotoxicity is a common approach to predict the quality of outdoor environments. However, this approach has not been used to evaluate the environmental quality of outdoor smoking areas. This study aims to evaluate the effects of environmental tobacco smoke (ETS) by assessing particulate matter 2.5 μm (PM 2.5 ) levels, the pollen abortion assay, and trace elements accumulated in plant leaves in an outdoor smoking area of a hospital. For this, PM 2.5 was measured by active monitoring with a real time aerosol monitor for 10 days. Eugenia uniflora trees were used for pollen abortion and accumulated element assays. Accumulated elements were also assessed in Tradescantia pallida leaves. The median concentration of PM 2.5 in the smoking area in all days of monitoring was 66 versus 34 μg/m 3 in the control area (P Eugenia uniflora were in higher concentration in the smoking area when compared to control area. Smoking area also showed higher rate of aborted grains (26.1 ± 10.7 %) compared with control (17.6 ± 4.5 %) (P = 0.003). Under the study conditions, vegetal biomonitoring proved to be an effective tool for assessing ETS exposure in outdoor areas. Therefore, vegetal biomonitoring of ETS could be a complement to conventional analyses and also proved to be a cheap and easy-handling tool to assess the risk of ETS exposure in outdoor areas.

  1. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    Science.gov (United States)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  2. The impact of fire on sand dune stability: Surface coverage and biomass recovery after fires on Western Australian coastal dune systems from 1988 to 2016

    Science.gov (United States)

    Shumack, Samuel; Hesse, Paul; Turner, Liam

    2017-12-01

    This study aims to determine the common response of coastal sand dunes in Western Australia (WA) to fire on decadal time-scales, in terms of ecological-geomorphic-climatic interactions to test the hypothesis that fire plays a role in coastal dune destabilisation. Fires are commonly suggested to have contributed to widespread dune reactivation in Australia and globally, a hypothesis that is relatively untested. We used data from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager missions to monitor changes in surface coverage on coastal sand dunes in south-west WA after fires. We analysed 31 fire scars from 1988 to 2016 in two Landsat scenes on the west and south coast of WA. Recovery ratios derived from the Normalised Difference Vegetation Index (NDVI) were used to monitor patterns in post-fire biomass and surface cover. Recovery ratios are correlated with indices of burn severity, and meteorological data to investigate relationships. We also used Maximum Likelihood Classification to monitor changes in bare sand area. Results suggest that recovery followed a strongly consistent pattern, and is characterised by rapid vegetation cover re-establishment within six to twelve months. Prior to this, some aeolian activity may have occurred but without substantial surface changes. Initial germination and/or resprouting were followed by steady growth up to seven years, where NDVI typically neared pre-fire values. Some variation in early recovery occurred between the west and south coast, possibly owing to relative proportions of reseeding and resprouting plants. A log regression explained 75% of the recovery pattern (79% on the south coast). Precipitation had some ability to explain recovery up to nine months post-fire (r2 = 0.29 to 0.54). No relationships were observed between estimates of burn severity and recovery. After nine months, the biggest cause of spatial variation in recovery was the pre-fire community composition and related

  3. Survival of Saplings in Recovery of Riparian Vegetation of Pandeiros River (MG

    Directory of Open Access Journals (Sweden)

    Nathalle Cristine Alencar Fagundes

    2018-02-01

    Full Text Available ABSTRACT This study monitored the survival of saplings planted according to different recovery models in a riparian forest of the Pandeiros river (Januária, MG. The models consisted of planting the saplings in lines of 2 or 4 m with presence (T2S and T4S, respectively or absence of direct seeding (T2 and T4, respectively. We planted 16,259 saplings of 17 botanical families, 32 genera and 33 species. The saplings, in general, presented a survival rate after one year of 34.4% (±1.8. The species with highest survival rates were Jacaranda brasiliana, with 85.0% (±13.5 of survival, Anadenanthera colubrina, with 70.1% (±7.0, and Triplaris gardneriana, with 69.3% (±9.1. Survival did not vary between the models tested, probably due to the short evaluation period (12 months.

  4. INNOVATIVE REMEDIATION AND MONITORING SYSTEM INSIDE AN AREA USED FOR PAPER SLUDGE RECOVERY

    Directory of Open Access Journals (Sweden)

    Valerio Marroni

    2010-12-01

    Full Text Available An innovative bioremediation technology and strategy were applied to a former-quarry area in Imola (BO – Italy concerned by an incorrect environmental restoration of paper sludge, with subsequent uncontrolled biogas production and migration to the adjacent area. An Emergency Plan was implemented by the isolation of the buried sludge area and a characterization project was performed to define an appropriate permanently safe recovery. An innovative biological in situ treatment, avoiding paper sludge removal, was adopted; it was based on the use of tailored compost and enzymes to reduce methane production and concentration. This was integrated by specific monitoring piezometers for both biogas (CH4, CO2 and oxygen monthly measurements, and also the application of a respirometric technique application to buried sludge for assessing its stabilisation under aerobic and anaerobic conditions. This communication describes the strategy used, the treatment and monitoring system and the results of 3 years field pilot application. Monitoring work is still in progress.

  5. Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results

    Science.gov (United States)

    Tadesse, Tsegaye; Champagne, Catherine; Wardlow, Brian D.; Hadwen, Trevor A.; Brown, Jesslyn; Demisse, Getachew B.; Bayissa, Yared A.; Davidson, Andrew M.

    2017-01-01

    Drought is a natural climatic phenomenon that occurs throughout the world and impacts many sectors of society. To help decision-makers reduce the impacts of drought, it is important to improve monitoring tools that provide relevant and timely information in support of drought mitigation decisions. Given that drought is a complex natural hazard that manifests in different forms, monitoring can be improved by integrating various types of information (e.g., remote sensing and climate) that is timely and region specific to identify where and when droughts are occurring. The Vegetation Drought Response Index for Canada (VegDRI-Canada) is a recently developed drought monitoring tool for Canada. VegDRI-Canada extends the initial VegDRI concept developed for the conterminous United States to a broader transnational coverage across North America. VegDRI-Canada models are similar to those developed for the United States, integrating satellite observations of vegetation status, climate data, and biophysical information on land use and land cover, soil characteristics, and other environmental factors. Collectively, these different types of data are integrated into the hybrid VegDRI-Canada to isolate the effects of drought on vegetation. Twenty-three weekly VegDRI-Canada models were built for the growing season (April–September) through the weekly analysis of these data using a regression tree-based data mining approach. A 15-year time series of VegDRI-Canada results (s to 2014) was produced using these models and the output was validated by randomly selecting 20% of the historical data, as well as holdout year (15% unseen data) across the growing season that the Pearson’s correlation ranged from 0.6 to 0.77. A case study was also conducted to evaluate the VegDRI-Canada results over the prairie region of Canada for two drought years and one non-drought year for three weekly periods of the growing season (i.e., early-, mid-, and late season). The comparison of the Veg

  6. Monitoring ecosystem reclamation recovery using optical remote sensing: Comparison with field measurements and eddy covariance.

    Science.gov (United States)

    Chasmer, L; Baker, T; Carey, S K; Straker, J; Strilesky, S; Petrone, R

    2018-06-12

    Time series remote sensing vegetation indices derived from SPOT 5 data are compared with vegetation structure and eddy covariance flux data at 15 dry to wet reclamation and reference sites within the Oil Sands region of Alberta, Canada. This comprehensive analysis examines the linkages between indicators of ecosystem function and change trajectories observed both at the plot level and within pixels. Using SPOT imagery, we find that higher spatial resolution datasets (e.g. 10 m) improves the relationship between vegetation indices and structural measurements compared with interpolated (lower resolution) pixels. The simple ratio (SR) vegetation index performs best when compared with stem density-based indicators (R 2  = 0.65; p  0.02). Fluxes (net ecosystem production (NEP) and gross ecosystem production (GEP)) are most related to NDVI and SAVI when these are interpolated to larger 20 m × 20 m pixels (R 2  = 0.44-0.50; p  3 m 2  m -2 , making this index more appropriate for newly regenerating reclamation areas. For sites with LAI remote sensing in combination with field and eddy covariance data for monitoring and scaling of reclaimed and reference site productivity within and beyond the Oil Sands Region of western Canada. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaufmann, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wright, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-03-01

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  8. [Vegetation spatial and temporal dynamic characteristics based on NDVI time series trajectories in grassland opencast coal mining].

    Science.gov (United States)

    Jia, Duo; Wang, Cang Jiao; Mu, Shou Guo; Zhao, Hua

    2017-06-18

    The spatiotemporal dynamic patterns of vegetation in mining area are still unclear. This study utilized time series trajectory segmentation algorithm to fit Landsat NDVI time series which generated from fusion images at the most prosperous period of growth based on ESTARFM algorithm. Combining with the shape features of the fitted trajectory, this paper extracted five vegetation dynamic patterns including pre-disturbance type, continuous disturbance type, stabilization after disturbance type, stabilization between disturbance and recovery type, and recovery after disturbance type. The result indicated that recovery after disturbance type was the dominant vegetation change pattern among the five types of vegetation dynamic pattern, which accounted for 55.2% of the total number of pixels. The follows were stabilization after disturbance type and continuous disturbance type, accounting for 25.6% and 11.0%, respectively. The pre-disturbance type and stabilization between disturbance and recovery type accounted for 3.5% and 4.7%, respectively. Vegetation disturbance mainly occurred from 2004 to 2009 in Shengli mining area. The onset time of stable state was 2008 and the spatial locations mainlydistributed in open-pit stope and waste dump. The reco-very state mainly started since the year of 2008 and 2010, while the areas were small and mainly distributed at the periphery of open-pit stope and waste dump. Duration of disturbance was mainly 1 year. The duration of stable period usually sustained 7 years. The duration of recovery state of the type of stabilization between disturbances continued 2 to 5 years, while the type of recovery after disturbance often sustained 8 years.

  9. Evaluation and cross-comparison of vegetation indices for crop monitoring from sentinel-2 and worldview-2 images

    Science.gov (United States)

    Psomiadis, Emmanouil; Dercas, Nicholas; Dalezios, Nicolas R.; Spyropoulos, Nikolaos V.

    2017-10-01

    Farmers throughout the world are constantly searching for ways to maximize their returns. Remote Sensing applications are designed to provide farmers with timely crop monitoring and production information. Such information can be used to identify crop vigor problems. Vegetation indices (VIs) derived from satellite data have been widely used to assess variations in the physiological state and biophysical properties of vegetation. However, due to the various sensor characteristics, there are differences among VIs derived from multiple sensors for the same target. Therefore, multi-sensor VI capability and effectiveness are critical but complicated issues in the application of multi-sensor vegetation observations. Various factors such as the atmospheric conditions during acquisition, sensor and geometric characteristics, such as viewing angle, field of view, and sun elevation influence direct comparability of vegetation indicators among different sensors. In the present study, two experimental areas were used which are located near the villages Nea Lefki and Melia of Larissa Prefecture in Thessaly Plain area, containing a wheat and a cotton crop, respectively. Two satellite systems with different spatial resolution, WorldView-2 (W2) and Sentinel-2 (S2) with 2 and 10 meters pixel size, were used. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were calculated and a statistical comparison of the VIs was made to designate their correlation and dependency. Finally, several other innovative indices were calculated and compared to evaluate their effectiveness in the detection of problematic plant growth areas.

  10. Using MODIS NDVI products for vegetation state monitoring on the oil production territory in Western Siberia

    Directory of Open Access Journals (Sweden)

    Kovalev Anton

    2016-01-01

    Full Text Available Article describes the results of using remote sensing data for vegetation state monitoring on the oil field territories in Western Siberia. We used MODIS data product providing the normalized difference vegetation index (NDVI values. Average NDVI values of each studied area were calculated for the period from 2010 to 2015 with one year interval for June, July and August. Analysis was carried out via an open tool of geographic information system QGIS used for spatial analysis and calculation of statistical parameters within chosen polygons. Results are presented in graphs showing the variation of NDVI for each study area and explaining the changes in trend lines for each field. It is shown that the majority of graphs are similar in shape which is caused by similar weather conditions. To confirm these results, we have conducted data analysis including temperature conditions and information about the accidents for each area. Abnormal changes in NDVI values revealed an emergency situation on the Priobskoe oil field caused by the flood in 2015. To sum up, the research results show that vegetation of studied areas is in a sufficiently stable state.

  11. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert.

    Science.gov (United States)

    Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing

    2014-05-01

    The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed.

  12. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  13. A Hybrid Change Detection Approach for Damage Detection and Recovery Monitoring

    Science.gov (United States)

    de Alwis Pitts, Dilkushi; Wieland, Marc; Wang, Shifeng; So, Emily; Pittore, Massimiliano

    2014-05-01

    Following a disaster, change detection via pre- and post-event very high resolution remote sensing images is an essential technique for damage assessment and recovery monitoring over large areas in complex urban environments. Most assessments to date focus on detection, destruction and recovery of man-made objects that facilitate shelter and accessibility, such as buildings, roads, bridges, etc., as indicators for assessment and better decision making. Moreover, many current change-detection mechanisms do not use all the data and knowledge which are often available for the pre-disaster state. Recognizing the continuous rather than dichotomous character of the data-rich/data-poor distinction permits the incorporation of ancillary data and existing knowledge into the processing flow. Such incorporation could improve the reliability of the results and thereby enhance the usability of robust methods for disaster management. This study proposes an application-specific and robust change detection method from multi-temporal very high resolution multi-spectral satellite images. This hybrid indicator-specific method uses readily available pre-disaster GIS data and integrates existing knowledge into the processing flow to optimize the change detection while offering the possibility to target specific types of changes to man-made objects. The indicator-specific information of the GIS objects is used as a series of masks to treat the GIS objects with similar characteristics similarly for better accuracy. The proposed approach is based on a fusion of a multi-index change detection method based on gradient, texture and edge similarity filters. The change detection index is flexible for disaster cases in which the pre-disaster and post-disaster images are not of the same resolution. The proposed automated method is evaluated with QuickBird and Ikonos datasets for abrupt changes soon after disaster. The method could also be extended in a semi-automated way for monitoring

  14. Monitoring psychrotrophic lactic acid bacteria contamination in a ready-to-eat vegetable salad production environment.

    Science.gov (United States)

    Pothakos, Vasileios; Snauwaert, Cindy; De Vos, Paul; Huys, Geert; Devlieghere, Frank

    2014-08-18

    A study monitoring lactic acid bacteria contamination was conducted in a company producing fresh, minimally processed, packaged and ready-to-eat (RTE) vegetable salads (stored at 4°C) in order to investigate the reason for high psychrotrophic LAB levels in the products at the end of shelf-life. Initially, high microbial counts exceeding the established psychrotrophic thresholds (>10(7)-10(8)CFU/g) and spoilage manifestations before the end of the shelf-life (7days) occurred in products containing an assortment of sliced and diced vegetables, but within a one year period these spoilage defects became prevalent in the entire processing plant. Environmental sampling and microbiological analyses of the raw materials and final products throughout the manufacturing process highlighted the presence of high numbers of Leuconostoc spp. in halved and unseeded, fresh sweet bell peppers provided by the supplier. A combination of two DNA fingerprinting techniques facilitated the assessment of the species diversity of LAB present in the processing environment along with the critical point of their introduction in the production facility. Probably through air mediation and surface adhesion, mainly members of the strictly psychrotrophic species Leuconostoc gelidum subsp. gasicomitatum and L. gelidum subsp. gelidum were responsible for the cross-contamination of every vegetable handled within the plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effects of chlorimuron ethyl on terrestrial and wetland plants: Levels of, and time to recovery following sublethal exposure

    International Nuclear Information System (INIS)

    Carpenter, David; Boutin, Céline; Allison, Jane E.

    2013-01-01

    Current pesticide registration guidelines call for short-term testing of plants; long-term effects on vegetative parts and reproduction remain untested. The aims of our study were to determine level of recovery and recovery times for plants exposed to the sulfonylurea herbicide chlorimuron ethyl using data collected from single species, dose–response greenhouse experiments. The nine terrestrial and eight wetland species tested showed variable levels of recovery and recovery timeframes. Many species (six terrestrial and five wetland) were vegetatively stunted at sublethal doses and were reproductively impaired. Full recovery did not occur at all doses and maximum recovery times varied from 3 to 15 weeks in this controlled environment. In a complex community, affected species may be displaced by tolerant species, through interspecific competition, before they fully recover. It is plausible that individual populations could be diminished or eliminated through reduced seedbank inputs (annuals and perennials) and asexual reproduction (perennials). - Highlights: ► Native terrestrial and wetland plants were used to assess the risks of herbicide drift. ► Vegetative and reproductive health endpoints were evaluated over time. ► Recovery rates were found to be both species and dose dependant. ► Reproductive recovery does not always equal vegetative recovery. ► Susceptible species may be displaced by resilient or resistant species. - Capsule: This study serves to bridge the gap between simplified short-term greenhouse tests and effects of herbicides on recovery of non-target plant species after sublethal exposures.

  16. Compositional Changes in Selected Minimally Processed Vegetables

    OpenAIRE

    O'Reilly, Emer, (Thesis)

    2000-01-01

    Compositional, physiological and microbiological changes in selected minimally processed vegetables packaged under a modified atmosphere of 2% oxygen and 5% carbon dioxide were monitored over a ten day storage period at 40 C and 80 C. The analysis targeted specific changes in the nutritional, chemical and physiological make up of the vegetables as well as the changes in the microbial levels. In addition the changes in the gas atmospheres within the packs were monitored. It has been widely acc...

  17. Overland Transport of Rotavirus and the Effect of Soil Type and Vegetation

    Directory of Open Access Journals (Sweden)

    Paul C. Davidson

    2016-03-01

    Full Text Available Soil and vegetation are two critical factors for controlling the overland transport kinetics of pathogens in a natural environment. With livestock operations moving more towards concentrated animal operations, the need to dispose of a very large amount of manure in a localized area is becoming increasingly important. Animal manure contains a substantial amount of microbial pathogens, including rotavirus, which may pose a threat of contamination of water resources. This study examined the kinetics of rotavirus in overland transport, with an overall objective of optimizing the design of best management practices, especially vegetative filter strips. The overland transport of rotavirus was studied using three soil types (Catlin silt-loam, Darwin silty-clay, Alvin fine sandy-loam, spanning the entire spectrum of typical Illinois soil textures. A 20-min rainfall event was produced using a small-scale (1.07 m × 0.66 m laboratory rainfall simulator over a soil box measuring 0.610 m × 0.305 m. Each soil type was tested for rotavirus transport kinetics with bare surface conditions, as well as with Smooth Brome and Fescue vegetative covers. Surface runoff, near-surface runoff, soil cores, and vegetation were each analyzed for infective rotavirus particles using cell-culture infectivity assays. Results show that vegetation reduces the recovery of infective rotavirus particles in surface runoff by an average of 73%, in addition to delaying the time to peak recovery. The vegetation, in general, appeared to decrease the recovery of infective rotavirus particles in surface runoff by impeding surface flow and increasing the potential for infiltration into the soil profile.

  18. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI)

    Science.gov (United States)

    Wilson, Natalie R.; Norman, Laura

    2018-01-01

    Watershed restoration efforts seek to rejuvenate vegetation, biological diversity, and land productivity at Cienega San Bernardino, an important wetland in southeastern Arizona and northern Sonora, Mexico. Rock detention and earthen berm structures were built on the Cienega San Bernardino over the course of four decades, beginning in 1984 and continuing to the present. Previous research findings show that restoration supports and even increases vegetation health despite ongoing drought conditions in this arid watershed. However, the extent of restoration impacts is still unknown despite qualitative observations of improvement in surrounding vegetation amount and vigor. We analyzed spatial and temporal trends in vegetation greenness and soil moisture by applying the normalized difference vegetation index (NDVI) and normalized difference infrared index (NDII) to one dry summer season Landsat path/row from 1984 to 2016. The study area was divided into zones and spectral data for each zone was analyzed and compared with precipitation record using statistical measures including linear regression, Mann– Kendall test, and linear correlation. NDVI and NDII performed differently due to the presence of continued grazing and the effects of grazing on canopy cover; NDVI was better able to track changes in vegetation in areas without grazing while NDII was better at tracking changes in areas with continued grazing. Restoration impacts display higher greenness and vegetation water content levels, greater increases in greenness and water content through time, and a decoupling of vegetation greenness and water content from spring precipitation when compared to control sites in nearby tributary and upland areas. Our results confirm the potential of erosion control structures to affect areas up to 5 km downstream of restoration sites over time and to affect 1 km upstream of the sites.

  19. Enhanced change detection index for disaster response, recovery assessment and monitoring of buildings and critical facilities-A case study for Muzzaffarabad, Pakistan

    Science.gov (United States)

    de Alwis Pitts, Dilkushi A.; So, Emily

    2017-12-01

    The availability of Very High Resolution (VHR) optical sensors and a growing image archive that is frequently updated, allows the use of change detection in post-disaster recovery and monitoring for robust and rapid results. The proposed semi-automated GIS object-based method uses readily available pre-disaster GIS data and adds existing knowledge into the processing to enhance change detection. It also allows targeting specific types of changes pertaining to similar man-made objects such as buildings and critical facilities. The change detection method is based on pre/post normalized index, gradient of intensity, texture and edge similarity filters within the object and a set of training data. More emphasis is put on the building edges to capture the structural damage in quantifying change after disaster. Once the change is quantified, based on training data, the method can be used automatically to detect change in order to observe recovery over time in potentially large areas. Analysis over time can also contribute to obtaining a full picture of the recovery and development after disaster, thereby giving managers a better understanding of productive management and recovery practices. The recovery and monitoring can be analyzed using the index in zones extending from to epicentre of disaster or administrative boundaries over time.

  20. Estimation of vegetation cover resilience from satellite time series

    Directory of Open Access Journals (Sweden)

    T. Simoniello

    2008-07-01

    Full Text Available Resilience is a fundamental concept for understanding vegetation as a dynamic component of the climate system. It expresses the ability of ecosystems to tolerate disturbances and to recover their initial state. Recovery times are basic parameters of the vegetation's response to forcing and, therefore, are essential for describing realistic vegetation within dynamical models. Healthy vegetation tends to rapidly recover from shock and to persist in growth and expansion. On the contrary, climatic and anthropic stress can reduce resilience thus favouring persistent decrease in vegetation activity.

    In order to characterize resilience, we analyzed the time series 1982–2003 of 8 km GIMMS AVHRR-NDVI maps of the Italian territory. Persistence probability of negative and positive trends was estimated according to the vegetation cover class, altitude, and climate. Generally, mean recovery times from negative trends were shorter than those estimated for positive trends, as expected for vegetation of healthy status. Some signatures of inefficient resilience were found in high-level mountainous areas and in the Mediterranean sub-tropical ones. This analysis was refined by aggregating pixels according to phenology. This multitemporal clustering synthesized information on vegetation cover, climate, and orography rather well. The consequent persistence estimations confirmed and detailed hints obtained from the previous analyses. Under the same climatic regime, different vegetation resilience levels were found. In particular, within the Mediterranean sub-tropical climate, clustering was able to identify features with different persistence levels in areas that are liable to different levels of anthropic pressure. Moreover, it was capable of enhancing reduced vegetation resilience also in the southern areas under Warm Temperate sub-continental climate. The general consistency of the obtained results showed that, with the help of suited analysis

  1. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, Alissa J. [Nevada Field Office, Las Vegas, NV (United States)

    2015-01-01

    This report serves as the combined annual report for post-closure activities for several Corrective Action Units (CAUs). The locations of the sites are shown in Figure 1. This report covers fiscal year 2014 (October 2013–September 2014). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, 111, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches (in.) in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 in. in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. In addition to visual inspections, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted at CAU 110. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. The results of the vegetation surveys and an analysis of the soil moisture monitoring data at CAU 110 are presented in this report. Results of additional monitoring at CAU 111 are documented annually in the Nevada National Security Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites and in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site, which will be prepared in approximately June 2015. All required inspections, maintenance, and monitoring were conducted in accordance with the post-closure requirements of the permit. It is recommended to continue

  2. Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil.

    Science.gov (United States)

    Torres, Ednildo Andrade; Cerqueira, Gilberto S; Tiago, M Ferrer; Quintella, Cristina M; Raboni, Massimo; Torretta, Vincenzo; Urbini, Giordano

    2013-12-01

    In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Vegetation responses to sagebrush-reduction treatments measured by satellites

    Science.gov (United States)

    Johnston, Aaron; Beever, Erik; Merkle, Jerod A.; Chong, Geneva W.

    2018-01-01

    Time series of vegetative indices derived from satellite imagery constitute tools to measure ecological effects of natural and management-induced disturbances to ecosystems. Over the past century, sagebrush-reduction treatments have been applied widely throughout western North America to increase herbaceous vegetation for livestock and wildlife. We used indices from satellite imagery to 1) quantify effects of prescribed-fire, herbicide, and mechanical treatments on vegetative cover, productivity, and phenology, and 2) describe how vegetation changed over time following these treatments. We hypothesized that treatments would increase herbaceous cover and accordingly shift phenologies towards those typical of grass-dominated systems. We expected prescribed burns would lead to the greatest and most-prolonged effects on vegetative cover and phenology, followed by herbicide and mechanical treatments. Treatments appeared to increase herbaceous cover and productivity, which coincided with signs of earlier senescence − signals expected of grass-dominated systems, relative to sagebrush-dominated systems. Spatial heterogeneity for most phenometrics was lower in treated areas relative to controls, which suggested treatment-induced homogenization of vegetative communities. Phenometrics that explain spring migrations of ungulates mostly were unaffected by sagebrush treatments. Fire had the strongest effect on vegetative cover, and yielded the least evidence for sagebrush recovery. Overall, treatment effects were small relative to those reported from field-based studies for reasons most likely related to sagebrush recovery, treatment specification, and untreated patches within mosaicked treatment applications. Treatment effects were also small relative to inter-annual variation in phenology and productivity that was explained by temperature, snowpack, and growing-season precipitation. Our results indicated that cumulative NDVI, late-season phenometrics, and spatial

  4. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  5. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  6. An examination of stress, coping, and adaptation in nurses in a recovery and monitoring program.

    Science.gov (United States)

    Bowen, Marie Katherine; Taylor, Kathleen P; Marcus-Aiyeku, Ulanda; Krause-Parello, Cheryl A

    2012-10-01

    Addiction rates in nurses are higher than in the general population. The relationship between stress, coping, and adaptation in nurses (N = 82) enrolled in a recovery and monitoring program in the state of New Jersey was examined. Social support, a variable tested as a mediator of this relationship, was also examined. Participants completed the Perceived Stress Scale, Multidimensional Scale of Perceived Social Support, and Psychological General Well-Being Index. Negative relationships were found between stress and social support and stress and well-being, and a positive relationship was found between social support and well-being (all ps prevent potential untoward consequences. Ultimately, methods to strengthen social support and social networks will enhance the probability of sustained recovery, relapse prevention, and safe reentry into nursing practice. Implications for behavioral health providers and health care practitioners are discussed.

  7. Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China.

    Science.gov (United States)

    Lou, Tiantian; Huang, Weisu; Wu, Xiaodan; Wang, Mengmeng; Zhou, Liying; Lu, Baiyi; Zheng, Lufei; Hu, Yinzhou

    2017-06-01

    Sulfur dioxide residues in 20 kinds of products collected from 23 provinces of China (Jilin, Beijing, Shanxi, Shandong, Henan, Hebei, Jiangsu, Anhui, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Chongqing, Sichuan, Gansu, Neimenggu, Xinjiang and Hainan) were analysed, and a health risk assessment was performed. The detection rates of sulfur dioxide residues in fresh vegetables, fresh fruits, dried vegetables and dried fruits were 11.1-95.9%, 12.6-92.3%, 70.3-80.0% and 26.0-100.0%, respectively; the mean concentrations of residues were 2.7-120.8, 3.8-35.7, 26.9-99.1 and 12.0-1120.4 mg kg -1 , respectively. The results indicated that fresh vegetables and dried products are critical products; the daily intakes (EDIs) for children were higher than others; the hazard indexes (HI) for four groups were 0.019-0.033, 0.001-0.005, 0.007-0.016 and 0.002-0.005 at P50, respectively. But the HI was more than 1 at P99 by intake dried fruits and vegetables. Although the risk for consumers was acceptable on the whole, children were the most vulnerable group. Uncertainty and sensitivity analyses indicated that the level of sulfur dioxide residues was the most influential variable in this model. Thus, continuous monitoring and stricter regulation of sulfites using are recommended in China.

  8. Wildlife and habitat damage assessment from Hurricane Charley: recommendations for recovery of the J. N. "Ding" Darling National Wildlife Refuge Complex

    Science.gov (United States)

    Meyers, J. Michael; Langtimm, Catherine A.; Smith, Thomas J.; Pednault-Willett, Kendra

    2006-01-01

    • On 13 August 2004, the first of four hurricanes to strike Florida in Key waterbird nesting areas had >50% and sometimes 90% of their vegetation severely damaged (dead, broken tree stems, and tipped trees). The Shell Mound Trail area of JNDDNWR sustained catastrophic damage to its old growth mangrove forests. Direct storm mortality and injury to manatees in the area of the JNDDNWR Complex was probably slight as manatees may have several strategies to reduce storm mortality. Damage to seagrass beds, an important habitat for manatees, fishes and invertebrates, is believed to be limited to the breach at North Captiva Island. At this breach, refuge staff documented inundation of beds by sand and scarring by trees dragged by winds. • Because seagrass beads and manatee habitat extend beyond refuge boundaries (see p. 28), a regional approach with partner agencies to more thoroughly assess storm impacts and monitor recovery of seagrass and manatees is recommended. • Besides intensive monitoring of waterbirds and their nesting habitat (pre- and post-storm), the survey team recommends that the Mangrove Cuckoo be used as an indicator species for recovery of mangrove forests and also for monitoring songbirds at risk (this songbird is habitat-area sensitive). Black-whiskered Vireo may be another potential indicator species to monitor in mangrove forests. Monitoring for these species can be done by distance sampling on transects or by species presenceabsence from point counts. • Damaged vegetation should be monitored for recovery (permanent or long-term plots), especially where previous study plots have been established and with additional plots in mangrove forests of waterbird nesting islands and freshwater wetlands. • Potential loss of wetlands (and information for management) may be prevented by water level monitoring (3 permanent stations), locating the positions (GPS-GIS) and maintaining existing water control structures, creating a GIS map of the refuge with

  9. Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography-triple quadrupole mass spectrometry.

    Science.gov (United States)

    Qian, Mingrong; Zhang, Hu; Wu, Liqin; Jin, Nuo; Wang, Jianmei; Jiang, Kezhi

    2015-01-01

    A sensitive gas chromatographic-triple quadrupole mass spectrometric (GC-QqQ MS) analytical method, for the determination of zearalenone and its five derivatives in edible vegetable oil, was developed. After the vegetable oil samples were prepared using gel permeation chromatography, the eluent was collected, evaporated and dried with nitrogen gas. The residue was silylated with N,O-bis-trimethylsilyltrifluoroacetamide, containing 1% trimethylchlorosilane. GC-QqQ MS was performed in the reaction-monitoring mode to confirm and quantify mycotoxins in vegetable oil. The limits of quantitation were 0.03-0.2 μg kg(-1) for the six mycotoxins. The average recoveries, measured at 2, 20 and 200 μg kg(-1), were in the range 80.3-96.5%. Zearalenone was detected in the range 5.2-184.6 μg kg(-1) in nine maize oils and at 40.7 μg kg(-1) in a rapeseed oil from the local market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Vegetation and moisture performance on a Resource Conservation and Recovery Act-equivalent landfill cap at the Hanford site

    International Nuclear Information System (INIS)

    Kemp, C.J.; Sackschewsky, M.R.

    1997-03-01

    Landfills, as defined under the Resource Conservation and Recovery Act of 1976 (RCRA) can receive waste materials from commercial and industrial operations, residences, and other sources. Sanitary landfills that are used to dispose of solid waste require a landfill cover that meets RCRA requirements to prevent leaching of water through buried wastes and to isolate the waste for a period of 30 years. The purpose of a RCRA landfill cover is to 'protect public health, to prevent land, air, and water pollution, and conserve the state's natural, economic, and energy resources' (Washington Administrative Code [WAC] 173-304). The hypothesis of this study were as follows: (1) amending soil nitrogen would enhance perennial grass biomass; (2) the amount of biomass produced by commercially-available wheatgrass species would be similar to bluebunch wheatgrass; and (3) the vegetative biomass, as required by WAC-173-304, would not be produced in a semiarid climate

  11. Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis

    Science.gov (United States)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.

    2013-08-01

    During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.

  12. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    Science.gov (United States)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  13. Use of UAVs for Remote Measurement of Vegetation Canopy Variables

    Science.gov (United States)

    Rango, A.; Laliberte, A.; Herrick, J.; Steele, C.; Bestelmeyer, B.; Chopping, M. J.

    2006-12-01

    Remote sensing with different sensors has proven useful for measuring vegetation canopy variables at scales ranging from landscapes down to individual plants. For use at landscape scales, such as desert grasslands invaded by shrubs, it is possible to use multi-angle imagery from satellite sensors, such as MISR and CHRIS/Proba, with geometric optical models to retrieve fractional woody plant cover. Vegetation community states can be mapped using visible and near infrared ASTER imagery at 15 m resolution. At finer scales, QuickBird satellite imagery with approximately 60 cm resolution and piloted aircraft photography with 25-80 cm resolution can be used to measure shrubs above a critical size. Tests conducted with the QuickBird data in the Jornada basin of southern New Mexico have shown that 87% of all shrubs greater than 2 m2 were detected whereas only about 29% of all shrubs less than 2 m2 were detected, even at these high resolutions. Because there is an observational gap between satellite/aircraft measurements and ground observations, we have experimented with Unmanned Aerial Vehicles (UAVs) producing digital photography with approximately 5 cm resolution. We were able to detect all shrubs greater than 2 m2, and we were able to map small subshrubs indicative of rangeland deterioration, as well as remnant grass patches, for the first time. None of these could be identified on the 60 cm resolution data. Additionally, we were able to measure canopy gaps, shrub patterns, percent bare soil, and vegetation cover over mixed rangeland vegetation. This approach is directly applicable to rangeland health monitoring, and it provides a quantitative way to assess shrub invasion over time and to detect the depletion or recovery of grass patches. Further, if the UAV images have sufficient overlap, it may be possible to exploit the stereo viewing capabilities to develop a digital elevation model from the orthophotos, with a potential for extracting canopy height. We envision two

  14. Impact of water-level changes to aquatic vegetation in small oligotrophic lakes

    Directory of Open Access Journals (Sweden)

    Egert VANDEL

    2016-06-01

    Full Text Available This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network. The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

  15. Using the web tool GIS SPIDER for monitoring the state of forest cover in the pre- and post-fire periods

    Directory of Open Access Journals (Sweden)

    J. Villodre

    2013-09-01

    Full Text Available Pre- and post-wildland fire management will be improved by the knowledge of the stand conditions. Different types of quantitative and qualitative data, such as water stress, cover temperature or the Normalized Difference Vegetation Index (NDVI are critical for understanding fire risk, fire severity or vegetation recovering after the fire. Even though, there is a lack of easy accessible measurements about these topics. In this vein, remote sensing provides suitable information and in a global view about the canopy state: water balance, fire risk or the primary productivity estimation. It allows the monitoring of large areas in different temporal and spatial resolutions and with low cost. The output information can be disseminated using tools such as web-GIS based systems. In this paper the SPIDER (System of Participatory Information, Decision support, and Expert knowledge for irrigation and River basin water Management tool is presented, which allows monitoring canopy conditions before and after fires in a simple way and friendly environment. SPIDER is also able to analyse environmental conditions in almost the entire Iberian Peninsula, with a temporal resolution that ranges among 1 to 16 days. Images of NDVI, surface temperatures and water stress are based on MODIS aqua satellite images.Results show the potential of the system to the analysis of vegetation anomalies, monitoring of water stress, fire severity or the vegetation recovery after fire, in a dynamic way. The database allows multitemporal analysis of different parameters related to the state of the vegetation, growing, water deficit and fire severity degree. Further analysis of these data provides relevant information such as drought effects or catastrophic events in the vegetation.

  16. Monitoring the Change in Urban Vegetation in 13 Chilean Cities Located in a Rainfall Gradient. What is the Contribution of the Widespread Creation of New Urban Parks?

    Science.gov (United States)

    de la Barrera, Francisco; Henríquez, Cristian

    2017-10-01

    The well-being of people living in cities is strongly dependent on the existence of urban vegetation because of the ecosystem services or benefits it provides. This is why governments develop plans to create green spaces, plant trees, promote the maintenance of vegetation in private spaces and also monitor their status over time. In Latin America, and particularly in Chile, the increase of urban vegetation has been stimulated through different initiatives and regulations. However, development of monitoring programs at the national level is scarce, so it is yet unknown if these initiatives and regulations have had positive effects. In this article, we monitor the change in urban vegetation in 13 Chilean cities located in a latitudinal gradient of practically zero to almost 1800 mm of annual rainfall. We calculated the trends in NDVI (2000-2016) as an indicator of change in urban greenery using data from the MODIS Subsets platform. Likewise, to assess whether the initiatives have had an effect we quantified the number of urban parks existing at the beginning of the period and how many were created during the study period. For this, we analysed official databases and high spatial resolution satellite images. Armed with said data, we assessed whether these new parks had impacted the tendency toward change in urban greenery. The results indicate that, in general, Chilean cities vary greatly inter-annually in urban greenery and have lost urban vegetation in the last 16 years, with significant losses in four of those cities. Two cities located in desert ecosystems represent an exception and showed positive trends in their urban vegetation. The rainfall in cities has an impact on the amount of vegetation, but not on their tendency to change, i.e. there are cities with loss of vegetation at all levels of precipitation. The creation of parks has not been able to reverse negative trends, which indicates the prevalence of other drivers of change that are not sufficiently

  17. Recovery of Forest Canopy Parameters by Inversion of Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    Andrew Wallace

    2012-02-01

    Full Text Available We describe the use of Bayesian inference techniques, notably Markov chain Monte Carlo (MCMC and reversible jump MCMC (RJMCMC methods, to recover forest structural and biochemical parameters from multispectral LiDAR (Light Detection and Ranging data. We use a variable dimension, multi-layered model to represent a forest canopy or tree, and discuss the recovery of structure and depth profiles that relate to photochemical properties. We first demonstrate how simple vegetation indices such as the Normalized Differential Vegetation Index (NDVI, which relates to canopy biomass and light absorption, and Photochemical Reflectance Index (PRI which is a measure of vegetation light use efficiency, can be measured from multispectral data. We further describe and demonstrate our layered approach on single wavelength real data, and on simulated multispectral data derived from real, rather than simulated, data sets. This evaluation shows successful recovery of a subset of parameters, as the complete recovery problem is ill-posed with the available data. We conclude that the approach has promise, and suggest future developments to address the current difficulties in parameter inversion.

  18. [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].

    Science.gov (United States)

    Wang, Li-Wen; Wei, Ya-Xing

    2013-10-01

    Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.

  19. Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    Hunter, S.W.; Gallegos, G.M.; Surano, K.A.; Lamson, K.C.; Tate, P.J.; Balke, B.K.; Biermann, A.H.; Hoppes, W.G.; Fields, B.C.; Gouveia, F.J.; Berger, R.L.; Miller, F.S.; Rueppel, D.W.; Sims, J.M.

    1992-04-01

    The primary tasks of the environmental monitoring section (EMS) Livermore National Laboratory (LLNL) are: effluent monitoring of air, sewer, and NPDES water. Surveillance monitoring of soil, vegetation and foodstuff, water, air particulate, and air tritium. Radiation monitoring, dose assessment, emergency response, quality assurance, and reporting. This report describes LLNL and the monitoring plan

  20. Environmental monitoring program for the Ormen Lange Onshore Processing Plant and the Reserve Power Plant at Nyhamna, Gossa. Monitoring of vegetation and soil: re-analyses and establishment of new monitoring plots in 2010.; Miljoeovervaakingsprogram for Ormen Lange landanlegg og Reservegasskraftverk paa Nyhamna, Gossa. Overvaaking av vegetasjon og jord: gjenanalyser og nyetablering av overvaakingsfelter i 2010

    Energy Technology Data Exchange (ETDEWEB)

    Aarrestad, P.A.; Bakkestuen, V.; Stabbetorp, O.E.; Myklebost, Heidi

    2011-07-01

    The Ormen Lange Onshore Processing Plant in Aukra municipality (Moere og Romsdal county) receives unprocessed gas and condensate from the Ormen Lange field in the Norwegian Sea. During processing of sales gas and condensate, the plant emits CO, Co2, Nox, CH4, NMVOC (including BTEX), SO2 and small amounts of heavy metals, as specified in the discharge permit issued by the Climate and Pollution Directorate. The plant started production in 2007, with A/S Norske Shell as operator. In general, emissions of nitrogen and sulphur-containing gasses may affect terrestrial ecosystems through acidification and fertilization of soil and vegetation. The emissions from the onshore plant are calculated to be below the current critical loads for the terrestrial nature types. However, the nitrogen background level in the area of influence is close to the critical loads for oligotrophic habitats. To be able to document any effects of emissions to air on terrestrial ecosystems, a monitoring program for vegetation and soil was established in 2008 in the area of influence from the Ormen Lange Onshore Plant. The monitoring is planned at regular intervals according to the same methods employed in 2008, with the first reanalysis in 2010. The benefits of the monitoring parameters will be continuously evaluated. Statnett has established a Reserve Power Plant with discharge permits of similar substances in the same area as the Ormen Lange Onshore Processing plant, and participates in an extended monitor program from 2010. In 2008 two monitoring sites were established, one with rather high deposition of nitrogen north of the plant within Gule-Stavmyran nature reserve in Fraena municipality (site Gulmyran) and one south of the plant on the island Gossa (site Aukra). Deposition values have been estimated by the Norwegian Institute for Air Research (NILU). Within each site integrated monitoring of the species composition of the vegetation, plant growth, and chemical content of plants and soil is

  1. Monitoring natural vegetation in Southern Greenland using NOAA AVHRR and field measurements

    DEFF Research Database (Denmark)

    Hansen, Birger Ulf

    1991-01-01

    vegetation, sheep farming, biomass production, Remote Sensing, NOAA AVHRR, Southern Greenland, NDVI......vegetation, sheep farming, biomass production, Remote Sensing, NOAA AVHRR, Southern Greenland, NDVI...

  2. Monitoring leafy vegetables through packaging films with

    OpenAIRE

    Diezma Iglesias, Belen; Lara, M.A.; Molina, Marta; Lleó García, Lourdes; Ruiz-Altisent, Margarita; Artés Hernández, Francisco; Roger, Jean-Michel

    2012-01-01

    Fresh-cut or minimally processed fruit and vegetables have been physically modified from its original form (by peeling, trimming, washing and cutting) to obtain a 100% edible product that is subsequently packaged (usually under modified atmosphere packaging –MAP) and kept in refrigerated storage. In fresh-cut products, physiological activity and microbiological spoilage, determine their deterioration and shelf-life. The major preservation techniques applied to delay spoilage are chilling s...

  3. Partitioning,Automation and Error Recovery in the Control and Monitoring System of an LHC Experiment

    Institute of Scientific and Technical Information of China (English)

    C.Gaspar

    2001-01-01

    The Joint Controls Project(JCOP)is a collaboration between CERN and the four LHC experiments to find and implement common solutions for their control and monitoring systems.As part of this project and Architecture Working Group was set up in order to study the requirements and devise an architectural model that would suit the four experiments.Many issues were studied by this working group:Alarm handling,Access Control,Hierarchical Control,etc.This paper will report on the specific issue of hierarchical control and in particular partitioning,automation and error recovery.

  4. Simple saponification method for the quantitative determination of carotenoids in green vegetables.

    Science.gov (United States)

    Larsen, Erik; Christensen, Lars P

    2005-08-24

    A simple, reliable, and gentle saponification method for the quantitative determination of carotenoids in green vegetables was developed. The method involves an extraction procedure with acetone and the selective removal of the chlorophylls and esterified fatty acids from the organic phase using a strongly basic resin (Ambersep 900 OH). Extracts from common green vegetables (beans, broccoli, green bell pepper, chive, lettuce, parsley, peas, and spinach) were analyzed by high-performance liquid chromatography (HPLC) for their content of major carotenoids before and after action of Ambersep 900 OH. The mean recovery percentages for most carotenoids [(all-E)-violaxanthin, (all-E)-lutein epoxide, (all-E)-lutein, neolutein A, and (all-E)-beta-carotene] after saponification of the vegetable extracts with Ambersep 900 OH were close to 100% (99-104%), while the mean recovery percentages of (9'Z)-neoxanthin increased to 119% and that of (all-E)-neoxanthin and neolutein B decreased to 90% and 72%, respectively.

  5. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    Science.gov (United States)

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  7. Using the ratio of optical channels in satellite image decoding in monitoring biodiversity of boreal forests

    Science.gov (United States)

    Rozhkov, Yurj P.; Kondakova, Maria Y.

    2013-10-01

    The study contains the results of forest monitoring at three levels: the forests condition assessment at the time of recording or mapping for this indicator, the seasonal changes assessment in the forests condition, mainly during the vegetation period and the evaluation of long-term changes in the values of the studied parameters on the example of the forests recovery after a fire. The use of two indices - NDVI and Image Difference in the boreal forests monitoring is treated. NDVI assesses the state of plant biomass and its productivity. The rate of Image Difference characterizes the optical density and allows estimate the density of the forest stand. In addition, by identifying Image Difference on summer and autumn pictures it can makes a distinction of different wood species, to divide forest areas, which consist of deciduous and coniferous species and larch which shedded needles at the end of the vegetation period. Therefore, it is possible to differentiate the pine, cedar, spruce forests on the one side and birch, larch, alder on the other side. The optical density of the forest decreases after the needles- and the leaf sheddings. Using the index Image Difference in estimates of long-term changes of the forest stand shows the trend of changes of the forest density and the tree species composition. The results of the analysis of the recovery process of the forest after a fire in the period from 1995 to 2009 showed how shoots of birch, larch and pine recover wastelands.

  8. Vegetation recovery in slash-pile scars following conifer removal in a grassland-restoration experiment

    Science.gov (United States)

    Charles B. Halpern; Joseph A. Antos; Liam M. Beckman

    2014-01-01

    A principal challenge to restoring tree-invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer-invaded...

  9. Individual variability in heart rate recovery after standardized submaximal exercise

    NARCIS (Netherlands)

    van der Does, Hendrike; Brink, Michel; Visscher, Chris; Lemmink, Koen

    2012-01-01

    To optimize performance, coaches and athletes are always looking for the right balance between training load and recovery. Therefore, closely monitoring of athletes is important. Heart rate recovery (HRR) after standardized sub maximal exercise has been proposed as a useful variable to monitor

  10. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.

    Science.gov (United States)

    Lausch, Angela; Pause, Marion; Merbach, Ines; Zacharias, Steffen; Doktor, Daniel; Volk, Martin; Seppelt, Ralf

    2013-02-01

    Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the "One Sensor at Different Scales" (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R (2) of 0.83, which was

  11. PASTIS 57: Autonomous light sensors for PAI continuous monitoring. Principles, calibration and application to vegetation phenology

    Science.gov (United States)

    Lecerf, R.; Baret, F.; Hanocq, J.; Marloie, O.; Rautiainen, M.; Mottus, M.; Heiskanen, J.; Stenberg, P.

    2010-12-01

    The LAI (Leaf Area Index) is a key variable to analyze and model vegetation and its interactions with atmosphere and soils. The LAI maps derived from remote sensing images are often validated with non-destructive LAI measures obtained from digital hemispherical photography, LAI-2000 or ceptometer instruments. These methods are expensive and time consuming particularly when human intervention is needed. Consequently it is difficult to acquire overlapping field data and remotely sensed LAI. There is a need of a cheap, autonomous, easy to use ground system to measure foliage development and senescence at least with a daily frequency in order to increase the number of validation sites where vegetation phenology is continuously monitored. A system called PASTIS-57 (PAI Autonomous System from Transmittance Instantaneous Sensors oriented at 57°) devoted to PAI (Plant Area Index) ground measurements was developed to answer this need. PASTIS-57 consists in 6 sensors plugged on one logger that record data with a sampling rate of 1 to few minutes (tunable) with up to 3 months autonomy (energy and data storage). The sensors are plugged to the logger with 2x10m wires, 2x6m wires and 2x2m wires. The distance between each sensor was determined to obtain a representative spatial sampling over a 20m pixel corresponding to an Elementary Sampling Unit (ESU). The PASTIS-57 sensors are made of photodiodes that measure the incoming light in the blue wavelength to maximize the contrast between vegetation and sky and limit multiple scattering effects in the canopy. The diodes are oriented to the north to avoid direct sun light and point to a zenithal angle of 57° to minimize leaf angle distribution and plant clumping effects. The field of view of the diodes was set to ± 20° to take into consideration vegetation cover heterogeneity and to minimize environmental effects. The sensors were calibrated after recording data on a clear view site during a week. After calibration, the sensors

  12. New Approaches to Irrigation Scheduling of Vegetables

    Directory of Open Access Journals (Sweden)

    Michael D. Cahn

    2017-04-01

    Full Text Available Using evapotranspiration (ET data for scheduling irrigations on vegetable farms is challenging due to imprecise crop coefficients, time consuming computations, and the need to simultaneously manage many fields. Meanwhile, the adoption of soil moisture monitoring in vegetables has historically been limited by sensor accuracy and cost, as well as labor required for installation, removal, and collection of readings. With recent improvements in sensor technology, public weather-station networks, satellite and aerial imaging, wireless communications, and cloud computing, many of the difficulties in using ET data and soil moisture sensors for irrigation scheduling of vegetables can now be addressed. Web and smartphone applications have been developed that automate many of the calculations involved in ET-based irrigation scheduling. Soil moisture sensor data can be collected through wireless networks and accessed using web browser or smartphone apps. Energy balance methods of crop ET estimation, such as eddy covariance and Bowen ratio, provide research options for further developing and evaluating crop coefficient guidelines of vegetables, while recent advancements in surface renewal instrumentation have led to a relatively low-cost tool for monitoring crop water requirement in commercial farms. Remote sensing of crops using satellite, manned aircraft, and UAV platforms may also provide useful tools for vegetable growers to evaluate crop development, plant stress, water consumption, and irrigation system performance.

  13. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.

    Science.gov (United States)

    Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G

    2016-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2015 John Wiley & Sons Ltd.

  14. Heart Rate Monitoring in Team Sports—A Conceptual Framework for Contextualizing Heart Rate Measures for Training and Recovery Prescription

    Directory of Open Access Journals (Sweden)

    Christoph Schneider

    2018-05-01

    Full Text Available A comprehensive monitoring of fitness, fatigue, and performance is crucial for understanding an athlete's individual responses to training to optimize the scheduling of training and recovery strategies. Resting and exercise-related heart rate measures have received growing interest in recent decades and are considered potentially useful within multivariate response monitoring, as they provide non-invasive and time-efficient insights into the status of the autonomic nervous system (ANS and aerobic fitness. In team sports, the practical implementation of athlete monitoring systems poses a particular challenge due to the complex and multidimensional structure of game demands and player and team performance, as well as logistic reasons, such as the typically large number of players and busy training and competition schedules. In this regard, exercise-related heart rate measures are likely the most applicable markers, as they can be routinely assessed during warm-ups using short (3–5 min submaximal exercise protocols for an entire squad with common chest strap-based team monitoring devices. However, a comprehensive and meaningful monitoring of the training process requires the accurate separation of various types of responses, such as strain, recovery, and adaptation, which may all affect heart rate measures. Therefore, additional information on the training context (such as the training phase, training load, and intensity distribution combined with multivariate analysis, which includes markers of (perceived wellness and fatigue, should be considered when interpreting changes in heart rate indices. The aim of this article is to outline current limitations of heart rate monitoring, discuss methodological considerations of univariate and multivariate approaches, illustrate the influence of different analytical concepts on assessing meaningful changes in heart rate responses, and provide case examples for contextualizing heart rate measures using

  15. Heart Rate Monitoring in Team Sports-A Conceptual Framework for Contextualizing Heart Rate Measures for Training and Recovery Prescription.

    Science.gov (United States)

    Schneider, Christoph; Hanakam, Florian; Wiewelhove, Thimo; Döweling, Alexander; Kellmann, Michael; Meyer, Tim; Pfeiffer, Mark; Ferrauti, Alexander

    2018-01-01

    A comprehensive monitoring of fitness, fatigue, and performance is crucial for understanding an athlete's individual responses to training to optimize the scheduling of training and recovery strategies. Resting and exercise-related heart rate measures have received growing interest in recent decades and are considered potentially useful within multivariate response monitoring, as they provide non-invasive and time-efficient insights into the status of the autonomic nervous system (ANS) and aerobic fitness. In team sports, the practical implementation of athlete monitoring systems poses a particular challenge due to the complex and multidimensional structure of game demands and player and team performance, as well as logistic reasons, such as the typically large number of players and busy training and competition schedules. In this regard, exercise-related heart rate measures are likely the most applicable markers, as they can be routinely assessed during warm-ups using short (3-5 min) submaximal exercise protocols for an entire squad with common chest strap-based team monitoring devices. However, a comprehensive and meaningful monitoring of the training process requires the accurate separation of various types of responses, such as strain, recovery, and adaptation, which may all affect heart rate measures. Therefore, additional information on the training context (such as the training phase, training load, and intensity distribution) combined with multivariate analysis, which includes markers of (perceived) wellness and fatigue, should be considered when interpreting changes in heart rate indices. The aim of this article is to outline current limitations of heart rate monitoring, discuss methodological considerations of univariate and multivariate approaches, illustrate the influence of different analytical concepts on assessing meaningful changes in heart rate responses, and provide case examples for contextualizing heart rate measures using simple heuristics. To

  16. Flavonoids as fruit and vegetable intake biomarkers

    DEFF Research Database (Denmark)

    Krogholm, Kirstine Suszkiewicz

    calculation of the bivariate correlation coefficients is the common approach when using only one reference method. Back in 2002, a strictly controlled dietary intervention study indicated that the sum of 7 different flavonoid aglycones excreted in 24h urine samples potentially could be used as a biomarker...... and cohort studies. The Ph.D. thesis contains four scientific papers. Paper I provides evidence that the sum of 7 flavonoids in 24h urine respond in a linear and sensitive manner to moderate increases in the intake of fruits and vegetables, and thus consolidates that the flavonoids are a valid biomarker...... of fruit and vegetable intakes. In Paper I, the urinary recovery of the 7 flavonoids in morning spot urine (i.e. all urine voids from midnight including the first morning void) was also found to respond to moderate increases in the intake of fruits and vegetables. However, the association was somewhat...

  17. Coastal marsh degradation: modeling the influence of vegetation die-off patterns on flow and sedimentation

    Science.gov (United States)

    Schepers, Lennert; Wang, Chen; Kirwan, Matthew; Belluco, Enrica; D'Alpaos, Andrea; Temmerman, Stijn

    2014-05-01

    Coastal marshes are vulnerable ecosystems that provide ecosystem functions such as storm protection and carbon sequestration. However, degradation of vegetated marshes into bare tidal flats or open water has been reported as a worldwide phenomenon, threatening their valuable wetland functions. Moreover, tidal marshes and bare flats are considered as alternative stable ecosystem states, which implies that, once vegetated marshes have degraded to bare flats, the (re)conversion from bare flats to marsh vegetation may be very difficult. Recent aerial photo analysis has demonstrated that the degradation or die-off of a marsh area is a spatial process, whereby vegetation is typically replaced by non-vegetated areas in the form of interior marsh pools, also known as ponds or marsh basins. On a small scale, these pools have similar characteristics among different marshes worldwide: pools that are located further away from tidal channels and with broad channel connections to the tidal channel system appear to have low surface elevations and a low probability for marsh recovery (this is re-establishment of vegetation on the surface). Interior pools located closer to, but that are not connected to channels on the other hand, are positioned on higher elevations and are more likely to recover. These findings may have important implications for the restoration potential of degraded marshes and their functions. We hypothesize that bio-geomorphologic interactions are the main mechanisms causing these differences in elevation and recovery potential of interior marsh pools: pools that are not connected to the channel system, are separated from the channel by vegetation, which reduces the flow velocity, increases sedimentation and may explain our observation of higher surface elevation of this type of pools. In contrast, pools that are connected with the channel system are not protected by vegetation and will experience higher flow velocities and lower sedimentation rates or even

  18. Ecological restoration of groundwater-dependent vegetation in the arid Ejina Delta: evidences from satellite evapotranspiration

    Science.gov (United States)

    Kai, Lu; Garcia, Monica; Yu, Jingjie; Zhang, Yichi; Wang, Ping; Wang, Sheng; Liu, Xiao

    2017-04-01

    The ecological water conveyance project (EWCP) in the Ejina delta, a typical hyper-arid area of China, aimed to restore degraded phreatophytic ecosystems. We assessed the degree of ecosystem recovery using as an ecohydrological indicator a ratio between actual and potential evapotranspiration derived from MODIS since the beginning of the project in 2001. The selected indicator was the Temperature Vegetation Dryness Index (TVDI) which was validated with Eddy covariance (EC) data confirming its applicability to monitor groundwater dependent vegetation. The spatial analyses of the evapotranspiration ratio show drying trends (2000-2015) which are stronger and also cover larger extensions than the wetting trends. Thus, the condition of key riparian areas relying mostly on surface water improved since the project began. However, groundwater dependent ecosystems located in lower river Xihe reaches present drying trends. It seems that despite of the runoff supplemented by the EWCP project, there is nowadays more inequality in the access to water by groundwater dependent ecosystems in the Ejina Delta. The study shows that energy-evaporation indices, relying on radiometric satellite temperature like the TVDI, can detect degradation signals that otherwise might go undetected by NDVI analyses especially in arid regions, where vegetation indices are greatly affected by the soil background signals. Additionally, they can provide timely information to water managers on how much water to allocate for a sustainable restoration program.

  19. Ilmenite Mineral's Recovery from Beach Sand Tailings

    International Nuclear Information System (INIS)

    Mulaba-Bafubiandi, Antoine F.; Mukendi-Ngalula, David; Waanders, Frans B.

    2002-01-01

    The mineral ilmenite is the major source of rutile for industrial use and is of interest to paint and fertiliser industries. Enormous unutilised tailing dams lie on the eastern coast of the South Africa. Although covered by a simulation of the original indigenous vegetation, these tailings are still ilmenite bearing and of economic value. Tailings emanating from beach sand mineral slimes dams of the Kwazulu-Natal area (South Africa) have been processed. Screening, flotation, spiral concentration and magnetic separation methods were used either separately or successively. The present work sheds light on alternative routes for the extraction of the ilmenite, from these tailings. It moreover points out the usefulness of the Moessbauer spectroscopy in the mineral processing product monitoring. Tailings from the beach sands were used in the present study after the economic industrial minerals zirconia, ilmenite and rutile had been extracted in previous mining operations. About 61% natural ilmenite recovery was observed in the flotation concentrate of a Humphrey Spiral concentrate while a 62% recovery of hematite was found in the flotation tailings. The combination of screening, spiral concentration and magnetic separation, and flotation yielded a product with the highest ilmenite and hematite concentration being 71% and 19%, respectively. A natural ilmenite mineral, containing 87% ilmenite and 13% hematite, could be produced and extracted from the tailings of the flotation process, collected subsequently to the spiral concentration and the initial screening.

  20. Business case Roteb: recovery strategies for monitors

    NARCIS (Netherlands)

    Krikke, H.R.; van Harten, Aart; Schuur, Peter

    1999-01-01

    Due to the introduction of extended producer responsibility, European Original Equipment Manufacturers (OEMs) are forced to set up a reverse logistic system for their discarded products. As part of this set-up, OEMs or their service providers have to determine strategies for the recovery of these

  1. Global patterns of drought recovery

    Energy Technology Data Exchange (ETDEWEB)

    Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; Fisher, Joshua B.; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D.; Wolf, Adam; Huntzinger, Deborah N.; Schaefer, Kevin; Cook, Robert; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel; Huang, Maoyi; Jain, Atul; Tian, Hanqin

    2017-08-09

    Drought is a recurring multi-factor phenomenon with major impacts on natural and human systems1-3. Drought is especially important for land carbon sink variability, influencing climate regulation of the terrestrial biosphere4. While 20th Century trends in drought regime are ambiguous, “more extreme extremes” as well as more frequent and severe droughts3,7 are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the spatiotemporal patterning and controls of drought recovery are largely unknown. Here we use three distinct global datasets of gross primary productivity to show that across diverse terrestrial ecosystems drought recovery times are driven by biological productivity and biodiversity, with drought length and severity of secondary importance. Recovery time, especially for extreme droughts, and the areal extent of ecosystems in recovery from drought generally increase over the 20th Century, supporting an increase globally in drought impact8. Our results indicate that if future Anthropocene droughts become more widespread as expected, that droughts will become more frequent relative to recovery time. This increases the risk of entering a new regime where vegetation never recovers to its original state and widespread degradation of the land carbon sink ensues.

  2. Rapid analysis of U isotopes in vegetables using ICP-MS. Application to the emergency U monitoring after the nuclear accident at TEPCO's Fukushima Dai-ichi power station

    International Nuclear Information System (INIS)

    Jian Zheng; Keiko Tagami; Shigeo Uchida

    2012-01-01

    After the nuclear accident at TEPCO's Fukushima Dai-ichi power station in March, hydrogen explosions and reactor building explosion resulted in releases of radionuclides in the environment. Severe radioactive cesium and iodine contaminations have been observed in fallout deposition samples and soils in the East Japan. Radioactive cesium, iodine, uranium, and transuranic radionuclides were set as the monitoring targets in food safety tests. However, so far, only radioactive cesium and iodine were daily measured and reported by the Ministry of Health, Labour, and Welfare. The tedious and time consuming conventional alpha spectrometric method hampered the emergency monitoring U contamination in foods. In this work, we propose a simple and rapid analytical method for 238 U and 235 U/ 238 U isotope ratio analysis in fresh vegetables. This method was applied to the emergency monitoring of radioactive contamination after the nuclear accident at TEPCO's Fukushima Dai-ichi power station. The results showed no U contamination in fresh vegetables collected in Chiba and Ibaraki prefectures in April and May, 2011. (author)

  3. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    Science.gov (United States)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  4. Monitoring the training intensity and recovery with a psychometrics approach: a gender comparison with young athletes

    Directory of Open Access Journals (Sweden)

    Ramon Cruz

    2017-12-01

    Full Text Available Abstract AIMS The purpose of present study was verify if the RPE-training session differs between females and males during the track and field training and if biological maturity (BM has interference on this response. METHODS Seventy-five athletes (13-15 years old have participated of study, with 38 male 37 female. Five training sessions of track and field were prescribe and monitoring by RPE-training session (intensity and Total Quality Recovery (TQR (recovery. RESULTS There was no statistical difference between males and females on 75-meters run, long jump and shot put. Otherwise, for training of 250 and 1000-meters females related higher RPE-values than males 3.68 ± 0.79, 3.26 ± 0.56, p < 0.01 and 4.14 ± 0.94, 3.72 ± 0.89, p < 0.05; respectively. Even when controlling the effect of biological maturity the same results were observed to 250-meters F1,73 = 2.060; p = 0.002 and 1000-meters F1,73 = 0.997; p = 0.036. There was no difference for TQR between genders. CONCLUSION The comparison the RPE-training session of females and males indicated there were difference to 250 and 1000-m training sessions, females have more RPE-training sessions than males. Additionally, there were no differences between genders for recovery parameters, even controlling BM.

  5. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    Science.gov (United States)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane s destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  6. Air quality monitoring of the post-operative recovery room and locations surrounding operating theaters in a medical center in Taiwan.

    Directory of Open Access Journals (Sweden)

    Chin-Sheng Tang

    Full Text Available To prevent surgical site infection (SSI, the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH, and carbon dioxide (CO2, suspended particulate matter (PM, and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18% and traumatic surgery room (8%. The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers.

  7. Air quality monitoring of the post-operative recovery room and locations surrounding operating theaters in a medical center in Taiwan.

    Science.gov (United States)

    Tang, Chin-Sheng; Wan, Gwo-Hwa

    2013-01-01

    To prevent surgical site infection (SSI), the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH), and carbon dioxide (CO2), suspended particulate matter (PM), and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18%) and traumatic surgery room (8%). The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers.

  8. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    Energy Technology Data Exchange (ETDEWEB)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This

  9. Phenology of Succession: Tracking the Recovery of Dryland Forests after Wildfire Events

    Science.gov (United States)

    Walker, J.; Brown, J. F.; Sankey, J. B.; Wallace, C.; Weltzin, J. F.

    2016-12-01

    The frequency, size, and intensity of forest wildfires in the U.S. Southwest have increased over the past 30 years. In the coming decades, burn effects and altered climatic conditions may increasingly divert vegetation recovery trajectories from pre-disturbance forested ecosystems toward grassland or shrub woodlands. Dryland herbaceous and woody vegetation species exhibit different phenological responses to precipitation, resulting in temporal and spatial shifts in landscape phenology patterns as the proportions of plant functional groups change over time. We have developed time series of Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) greenness measures derived from satellite imagery from 1984 - 2015 to record the phenological signatures that characterize recovery trajectories towards predominantly grassland, shrubland, or forest land cover types. We leveraged the data and computational resources available through the Google Earth Engine cloud-based platform to analyze time series of Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery collected over maturing (40 years or more post-fire) dryland forests in Arizona and New Mexico, USA. These time series provided the basis for long-term comparisons of phenology behavior in different successional trajectories and enabled the assessment of climatic influence on the eventual outcomes.

  10. Spectral Discrimination of Vegetation Classes in Ice-Free Areas of Antarctica

    Directory of Open Access Journals (Sweden)

    María Calviño-Cancela

    2016-10-01

    Full Text Available Detailed monitoring of vegetation changes in ice-free areas of Antarctica is crucial to determine the effects of climate warming and increasing human presence in this vulnerable ecosystem. Remote sensing techniques are especially suitable in this distant and rough environment, with high spectral and spatial resolutions needed owing to the patchiness and similarity between vegetation elements. We analyze the reflectance spectra of the most representative vegetation elements in ice-free areas of Antarctica to assess the potential for discrimination. This research is aimed as a basis for future aircraft/satellite research for long-term vegetation monitoring. The study was conducted in the Barton Peninsula, King George Island. The reflectance of ground patches of different types of vegetation or bare ground (c. 0.25 m 2 , n = 30 patches per class was recorded with a spectrophotometer measuring between 340 nm to 1025 nm at a resolution of 0.38 n m . We used Linear Discriminant Analysis (LDA to classify the cover classes according to reflectance spectra, after reduction of the number of bands using Principal Component Analysis (PCA. The first five principal components explained an accumulated 99.4% of the total variance and were added to the discriminant function. The LDA classification resulted in c. 92% of cases correctly classified (a hit ratio 11.9 times greater than chance. The most important region for discrimination was the visible and near ultraviolet (UV, with the relative importance of spectral bands steeply decreasing in the Near Infra-Red (NIR region. Our study shows the feasibility of discriminating among representative taxa of Antarctic vegetation using their spectral patterns in the near UV, visible and NIR. The results are encouraging for hyperspectral vegetation mapping in Antarctica, which could greatly facilitate monitoring vegetation changes in response to a changing environment, reducing the costs and environmental impacts of

  11. Laser Sensing of Vegetation Based on Dual Spectrum Measurements of Reflection Coefficients

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2017-01-01

    Full Text Available Currently, a promising trend in remote sensing of environment is to monitor the vegetative cover: evaluate the productivity of agricultural crops; evaluate the moisture content of soils and the state of ecosystems; provide mapping the sites of bogging, desertification, drought, etc.; control the phases of vegetation of crops, etc.Development of monitoring systems for remote detection of vegetation sites being under unfavorable conditions (low or high temperature, excess or lack of water, soil salinity, disease, etc. is of relevance. Optical methods are the most effective for this task. These methods are based on the physical features of reflection spectra in the visible and near infrared spectral range for vegetation under unfavorable conditions and vegetation under normal conditions.One of the options of optoelectronic equipment for monitoring vegetation condition is laser equipment that allows remote sensing of vegetation from the aircraft and mapping of vegetation sites with abnormal (inactive periods of vegetation reflection spectra with a high degree of spatial resolution.The paper deals with development of a promising dual-spectrum method for laser remote sensing of vegetation. Using the experimentally measured reflection spectra of different vegetation types, mathematical modeling of probability for appropriate detection and false alarms to solve a problem of detecting the vegetation under unfavorable conditions (with abnormal reflection spectra is performed based on the results of dual-spectrum measurements of the reflection coefficient.In mathematical modeling, the lidar system was supposed to provide sensing at wavelengths of 0.532 μm and 0.85 μm. The noise of the measurement was supposed to be normal with zero mean value and mean-square value of 1% -10%.It is shown that the method of laser sensing of vegetation condition based on the results of dual-spectrum measurement of the reflection coefficient at wavelengths of 0.532 μm and 0

  12. Response and Resiliency of Wildlife and Vegetation to Large-Scale Wildfires and Climate Change in the North Cascades

    Science.gov (United States)

    Bartowitz, K.; Morrison, P.; Romain-Bondi, K.; Smith, C. W.; Warne, L.; McGill, D.

    2016-12-01

    Changing climatic patterns have affected the western US in a variety of ways: decreases in precipitation and snowpack, earlier spring snowmelt, and increased lightning strikes have created a drier, more fire-prone system, despite variability in these characteristics. Wildfires are a natural phenomenon, but have been suppressed for much of the past century. Effects of this evolving fire regime on native vegetation and wildlife are not well understood. Increased frequency and intensity of fires coupled with subsequent drought and extreme heat may inhibit or alter recovery of native ecosystems. We are currently investigating how a mega-fire has affected presence of western gray squirrels (Sciurus griseus, WGS) in the North Cascades, and the mortality, survival, and recovery of vegetation following these fires and extreme drought. The Methow Valley in WA experienced a record-breaking wildfire in 2014, which disturbed nearly 50% of priority habitat of the North Cascades population of WGS. WGS were studied at the same pre and post-fire plots. WGS were present at over half of the post-burn plots (58%). There was a significant difference in the number of WGS hair samples collected in different levels of remaining vegetation: the most in moderate, few in low, and none in high. Vegetation recovery was assessed through field data, and a chronosequence of satellite images and aerial photography. 75% of the 2014 fire burned non-forested vegetation. Ponderosa pine forests comprised the rest. The forests experienced about 70% initial mortality. Recovery of the forest appears slower than in the shrub-steppe. First year seedling survival was poor due to an extremely hot, dry summer, while second year survival appears higher due to a cool, moist spring and summer. One year after a large, multi-severity fire we found WGS may be more resilient to disturbance such as fires than previously thought. Future studies of WGS will help elucidate long-term response to large-scale fires, and

  13. The use of autecological and environmental parameters for establishing the status of lichen vegetation in a baseline study for a long-term monitoring survey

    International Nuclear Information System (INIS)

    Gombert, S.; Asta, J.; Seaward, M.R.D.

    2005-01-01

    In 1997 the ecological characteristics of the epiphytic species (83 lichens and two algae) of an urban area (Grenoble, France) were determined. Seven autecological indices were used to characterize the lichen ecology: illumination index, humidity index, pH of bark, nutrient status of substratum, ecological index of IAP and frequency. Six clusters (A1-A6) were defined using cluster analysis and principal component analysis. Seven environmental parameters characterizing the stations and the lichen releves were also used: elevation, parameters of artificiality (urbanization, traffic and local land use), IAP, and the percentage of nitrophytic and acidophytic species. Six clusters (B1-B6) were defined using cluster analysis and canonical correspondence analysis. Four clusters (C1-C4) were finally defined using an empirical integrated method combining the autecological and environmental parameters. This final clustering which established the status of the lichen vegetation in 1997 can be reliably used as a baseline study to effectively monitor environmental changes in this urban area. - Ecological clustering which establishes the status of lichen vegetation can be reliably used as a baseline study to monitor environmental changes

  14. Comparison of Modeling Grassland Degradation with and without Considering Localized Spatial Associations in Vegetation Changing Patterns

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2018-01-01

    Full Text Available Grassland ecosystems worldwide are confronted with degradation. It is of great importance to understand long-term trajectory patterns of grassland vegetation by advanced analytical models. This study proposes a new approach called a binary logistic regression model with neighborhood interactions, or BLR-NIs, which is based on binary logistic regression (BLR, but fully considers the spatio-temporally localized spatial associations or characterization of neighborhood interactions (NIs in the patterns of grassland vegetation. The BLR-NIs model was applied to a modeled vegetation degradation of grasslands in the Xilin river basin, Inner Mongolia, China. Residual trend analysis on the normalized difference vegetation index (RESTREND-NDVI, which excluded the climatic impact on vegetation dynamics, was adopted as a preprocessing step to derive three human-induced trajectory patterns (vegetation degradation, vegetation recovery, and no significant change in vegetation during two consecutive periods, T1 (2000–2008 and T2 (2007–2015. Human activities, including livestock grazing intensity and transportation accessibility measured by road network density, were included as explanatory variables for vegetation degradation, which was defined for locations if vegetation recovery or no significant change in vegetation in T1 and vegetation degradation in T2 were observed. Our work compared the results of BLR-NIs and the traditional BLR model that did not consider NIs. The study showed that: (1 both grazing intensity and road density had a positive correlation to vegetation degradation based on the traditional BLR model; (2 only road density was found to positively correlate to vegetation degradation by the BLR-NIs model; NIs appeared to be critical factors to predict vegetation degradation; and (3 including NIs in the BLR model improved the model performance substantially. The study provided evidence for the importance of including localized spatial

  15. The Effect of Prescribed Burns and Wildfire on Vegetation in Bastrop State Park, TX

    Science.gov (United States)

    Justice, C. J.

    2014-12-01

    In 2011, central Texas had its worst drought since the 1950's. This, in conjunction with the strong winds produced by Tropical Storm Lee created conditions that made possible the Bastrop County Complex Fire in September 2011. These record-breaking wildfires burned over 95% of the 6,565-acre Bastrop State Park (BSP). Since 2003, BSP had been using prescribed burns as a management practice to reduce fuel load and prevent high severity wildfires. Although these prescribed fires did not prevent the 2011 wildfires they may have mitigated their effects. This study considered the effect of prescribed burn history and wildfire burn severity on vegetation recovery in BSP since the 2011 wildfire. The hypotheses of this study are that prescribed burn history and wildfire burn severity separately and jointly have affected post wildfire vegetation. To test these hypotheses, data were collected in 2013 from 46 plots across BSP using the Fire Effects Monitoring and Inventory (FIREMON) protocol to determine herbaceous plant density, shrub density, overstory density, and midstory tree density. Data were analyzed using analyses of variance (ANOVA) to determine the effects of prescribed fire and wildfire severity on these vegetation measurements. It was found that more severely burned plots had more herbaceous plants, fewer midstory trees, and lower shrub densities than less severely burned plots. Contrary to an initial hypotheses, there were few relationships between prescribed burn history and wildfire effects. The only significant effect detected for prescribed burning was the positive effect of prescribed fire on midstory tree density, but only for plots that were not severely burned in the wildfire. In this system, burn severity had a greater effect on post-wildfire vegetation than prescribed burns.

  16. Novel diffuse optics system for continuous tissue viability monitoring: extended recovery in vivo testing in a porcine flap model

    Science.gov (United States)

    Lee, Seung Yup; Pakela, Julia M.; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-02-01

    In reconstructive surgery, tissue perfusion/vessel patency is critical to the success of microvascular free tissue flaps. Early detection of flap failure secondary to compromise of vascular perfusion would significantly increase the chances of flap salvage. We have developed a compact, clinically-compatible monitoring system to enable automated, minimally-invasive, continuous, and quantitative assessment of flap viability/perfusion. We tested the system's continuous monitoring capability during extended non-recovery surgery using an in vivo porcine free flap model. Initial results indicated that the system could assess flap viability/perfusion in a quantitative and continuous manner. With proven performance, the compact form constructed with cost-effective components would make this system suitable for clinical translation.

  17. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    OpenAIRE

    Casady, Grant M.; Marsh, Stuart E.

    2010-01-01

    Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI) derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fi...

  18. Validation of a GC-MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables.

    Science.gov (United States)

    Mujawar, Sumaiyya; Utture, Sagar C; Fonseca, Eddie; Matarrita, Jessie; Banerjee, Kaushik

    2014-05-01

    A sensitive and rugged residue analysis method was validated for the estimation of dithiocarbamate fungicides in a variety of fruit and vegetable matrices. The sample preparation method involved reaction of dithiocarbamates with Tin(II) chloride in aqueous HCl. The CS2 produced was absorbed into an isooctane layer and estimated by GC-MS selected ion monitoring. Limit of quantification (LOQ) was ⩽40μgkg(-1) for grape, green chilli, tomato, potato, brinjal, pineapple and chayote and the recoveries were within 75-104% (RSD<15% at LOQ). The method could be satisfactorily applied for analysis of real world samples. Dissipation of mancozeb, the most-used dithiocarbamate fungicide, in field followed first+first order kinetics with pre-harvest intervals of 2 and 4days in brinjal, 7 and 10days in grapes and 0day in chilli at single and double dose of agricultural applications. Cooking practices were effective for removal of mancozeb residues from vegetables. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Drought monitoring over the Horn of Africa using remotely sensed evapotranspiration, soil moisture and vegetation parameters

    Science.gov (United States)

    Timmermans, J.; Gokmen, M.; Eden, U.; Abou Ali, M.; Vekerdy, Z.; Su, Z.

    2012-04-01

    The need to good drought monitoring and management for the Horn of Africa has never been greater. This ongoing drought is the largest in the past sixty years and is effecting the life of around 10 million people, according to the United Nations. The impact of drought is most apparent in food security and health. In addition secondary problems arise related to the drought such as large migration; more than 15000 Somalia have fled to neighboring countries to escape the problems caused by the drought. These problems will only grow in the future to larger areas due to increase in extreme weather patterns due to global climate change. Monitoring drought impact and managing the drought effects are therefore of critical importance. The impact of a drought is hard to characterize as drought depends on several parameters, like precipitation, land use, irrigation. Consequently the effects of the drought vary spatially and range from short-term to long-term. For this reason a drought event can be characterized into four categories: meteorological, agricultural, hydrological and socio-economical. In terms of food production the agricultural drought, or short term dryness near the surface layer, is most important. This drought is usually characterized by low soil moisture content in the root zone, decreased evapotranspiration, and changes in vegetation vigor. All of these parameters can be detected with good accuracy from space. The advantage of remote sensing in Drought monitoring is evident. Drought monitoring is usually performed using drought indices, like the Palmer Index (PDSI), Crop Moisture Index (CMI), Standard Precipitation Index (SPI). With the introduction of remote sensing several indices of these have shown great potential for large scale application. These indices however all incorporate precipitation as the main surface parameter neglecting the response of the surface to the dryness. More recently two agricultural drought indices, the EvapoTranspiration Deficit

  20. UNE-EN ISO/IEC 17025:2005-accredited method for the determination of pesticide residues in fruit and vegetable samples by LC-MS/MS.

    Science.gov (United States)

    Camino-Sánchez, F J; Zafra-Gómez, A; Oliver-Rodríguez, B; Ballesteros, O; Navalón, A; Crovetto, G; Vílchez, J L

    2010-11-01

    A rapid, simple and sensitive multi-residue method was developed and validated for the simultaneous quantification and confirmation of 69 pesticides in fruit and vegetables using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted following the quick, easy, cheap, effective, rugged and safe method known as QuEChERS. Mass spectrometric conditions were individually optimised for each analyte in order to achieve maximum sensitivity in multiple reaction monitoring (MRM) mode. Using the developed chromatographic conditions, 69 pesticides can be separated in less than 17 min. Two selected reaction monitoring (SRM) assays were used for each pesticide to obtain simultaneous quantification and identification in one run. With this method in SRM mode, more than 150 pesticides can be analysed and quantified, but their confirmation is not possible in all cases according to the European regulations on pesticide residues. Nine common representative matrices (zucchini, melon, cucumber, watermelon, tomato, garlic, eggplant, lettuce and pepper) were selected to investigate the effect of different matrices on recovery and precision. Mean recoveries ranged from 70% to 120%, with relative standard deviations (RSDs) lower than 20% for all the pesticides. The proposed method was applied to the analysis of more than 2000 vegetable samples from the extensive greenhouse cultivation in the province of Almeria, Spain, during one year. The methodology combines the advantages of both QuEChERS and LC-MS/MS producing a very rapid, sensitive, accurate and reliable procedure that can be applied in routine analytical laboratories. The method was validated and accredited according to UNE-EN-ISO/IEC 17025:2005 international standard (accreditation number 278/LE1027).

  1. The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation

    International Nuclear Information System (INIS)

    Marshak, Alexander; Knyazikhin, Yuri

    2017-01-01

    EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the ‘red’ (680 nm) channels, EPIC also has the O2 A-band (764±0.2 nm) and B-band (687.75±0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined as the difference between NIR and ‘red’ channels normalized to their sum. However, the use of the O2 B-band instead of the ‘red’ channel mitigates the effect of atmosphere on remote sensing of surface reflectance because O2 reduces contribution from the radiation scattered by the atmosphere. Applying the radiative transfer theory and the spectral invariant approximation to EPIC observations, the paper provides supportive arguments for using the O2 band instead of the red channel for monitoring vegetation dynamics. Our results suggest that the use of the O2 B-band enhances the sensitivity of the top-of-atmosphere NDVI to the presence of vegetation. - Highlights: • The use of the O2 B-band channel (688 nm) instead of the red channel (680 nm) mitigates the effect of atmosphere on remote sensing of surface reflectance. • The spectral invariant approach confirms that the synergy of the green, O2 B-band and near IR channels mimics spectral properties of vegetation. • The structural parameter of vegetation retrieved remotely is weakly sensitive to the uncertainty in the atmospheric optical depth.

  2. Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    Science.gov (United States)

    Osunmadewa, Babatunde Adeniyi; Gebrehiwot, Worku Zewdie; Csaplovics, Elmar; Adeofun, Olabinjo Clement

    2018-03-01

    Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA) approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS) and end of season (EOS) was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0) and a significant decrease in other greenness trend maps (amplitude 1 and phase 1) was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0) was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1) was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities.

  3. Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    Directory of Open Access Journals (Sweden)

    Osunmadewa Babatunde Adeniyi

    2018-03-01

    Full Text Available Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS and end of season (EOS was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0 and a significant decrease in other greenness trend maps (amplitude 1 and phase 1 was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0 was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1 was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities.

  4. Noncanonical Adult Human Neurogenesis and Axonal Growth as Possible Structural Basis of Recovery From Traumatic Vegetative State

    Directory of Open Access Journals (Sweden)

    Yulia Vainshenker

    2017-09-01

    Full Text Available Patient recovering from traumatic vegetative state has suddenly died from cardiac arrest. In-life improvement of consciousness appeared after reduction of generalized spasticity due to botulinum toxin administration. Neuropathologic examination revealed Musashi1+, Nestin+, PCNA+, and Ki67+ cells in the hippocampus, frontal, parietal and occipital cortex, caudate, thalamus, mammillary bodies, brainstem, cerebellum, and near the posterior horn of the lateral ventricle. New neurons with neurite growth (TUC4+ appeared in corpus callosum. At the same time, axonal growth was detected in all areas of interest. New cells whose functional state was continuously improving, as revealed by in-life neurologic and positron emission tomography monitoring, have mainly been found in brain areas without neuropathologic signs of damage. We suggest that the possible role of neurogenesis consists in improvement of the microenvironment and interneuron interactions, whereas the activation of neurogenesis and the induction of neurite growth may be associated with reduction of spasticity.

  5. Post-fire burn severity and vegetation response following eight large wildfires across the Western United States

    Science.gov (United States)

    Leigh B. Lentile; Penelope Morgan; Andrew T. Hudak; Michael J. Bobbitt; Sarah A. Lewis; Alistair M. S. Smith; Peter R. Robichaud

    2007-01-01

    Vegetation response and burn severity were examined following eight large wildfires that burned in 2003 and 2004: two wildfires in California chaparral, two each in dry and moist mixed-conifer forests in Montana, and two in boreal forests in interior Alaska. Our research objectives were: 1) to characterize one year post-fire vegetation recovery relative to initial fire...

  6. Methodology for bioremediation monitoring of oil wastes contaminated soils by using vegetal bio indicators; Metodologia para monitoramento de biorremediacao de solos contaminados com residuos oleosos com bioindicadores vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento Neto, Durval; Carvalho, Francisco Jose Pereira de Campos [Parana Univ., Curitiba, PR (Brazil). Curso de Pos-Graduacao em Ciencia do Solo]. E-mail: fjcampos@cce.ufpr.br

    1998-07-01

    This work studies the development of a methodology for the evaluation of the bioremediation status of oil waste contaminated soils, by using vegetal bioindicators for the bioremediation process monitoring, and evaluation of the environmental impacts on the contaminated areas.

  7. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Amundsen, C.C.

    1976-01-01

    A study, begun in 1971, continues to document the environmental factors which affect the recovery of damaged tundra landscapes. A measurement technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Samples across all examples of aspect, slope steepness and exposure are taken. Studies now include Adak Island and the Point Barrow area. We have concluded that there was no directional secondary succession on the Aleutian tundra, although there was vigorous recovery on organic soils. Our study led to recommendations which resulted in less intensive reclamation management at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscapes, for energy extraction, transportation or production, military or other reasons, we have expanded our sampling to other tundra areas where landscape disruption is occurring or is predicted.

  8. Resilience of soils and vegetation subjected to different grazing ...

    African Journals Online (AJOL)

    The resilience of rangeland soils and vegetation to different levels of grazing is still poorly understood. A study was conducted to determine the recovery of a rangeland grazed at different intensities and allowed a two-year rest period. The following treatments were applied to 0.5 hectare plots: 0, 4, 8 and 16 heifers per ...

  9. Changes in hydrological connectivity due to vegetation recovery and wall collapse in abandoned terraced fields

    Science.gov (United States)

    Lana-Renault, Noemí; López-Vicente, Manuel; Oranjuren, Rafael; Ángel Llorente, José; Ruiz-Flaño, Purificación; Arnáez, José

    2017-04-01

    Agricultural terraces have been built in mountain regions worldwide in order to provide a larger surface for cultivation, improve water availability and reduce soil erosion, as they favour infiltration and reduce runoff and sediment connectivity from hillslopes to streams. In many Mediterranean countries, farmland abandonment has led to progressive natural revegetation and, in terraced slopes, due to a lack of maintenance, to a collapse of the water conservation structures, often followed by small mass movements and gullying. Little is known about the effect of such failures on the hydrological system, especially at catchment scale. The aim of this study is to contributing to fill in this gap by exploring the effect of vegetation recovery and terrace failure on hydrological connectivity in a small catchment (192 ha) in northern Spain mostly occupied by abandoned terraced fields. For this purpose, we applied a modified version of the Borselli's index of runoff and sediment connectivity (IC). Besides using the C-RUSLE factor, as used by many authors, we tested the inclusion of an infiltration component (Kf) to assess the landscape-weighting factor. The Kf factor accounted for the high infiltration rates observed in the terraced soils and was estimated using the permeability classes of the K-RUSLE factor. A 2x2 m resolution DEM was used to capture the terraced fields and run the IC model. Following the recommendation of Cavalli et al. (2015), we used the D-infinity flow accumulation algorithm (Tarboton, 1997) to represent the real flow paths, especially on hillslopes, where divergent flow predominates, and on stream channels. To ensure the continuity of the flow path lines, local sinks were filled in with the algorithm of Planchon & Darboux (2001) that preserved a minimum slope gradient of 0.01 degrees. Finally, linear landscape elements such as stonewalls, rock outcrops, and trails and forest roads were also considered. The IC was calculated for the current scenario

  10. Recovery of macrobenthic assemblages following experimental sand burial

    Directory of Open Access Journals (Sweden)

    José J. Barrón

    2008-09-01

    Full Text Available This research was supported by a fund provided by the Instituto de Ciencias del Mar y Limnología (UNAM and a fund provided to Celia Olabarria in 2004 and 2005 by the University of Vigo for overseas short stays.AbstractPeriodic inundation by sand is a very common feature of rocky coasts throughout the world. Even so, there have been few direct observations or experiments to investigate the role of sediments on intertidal rocky shores. We designed a field experiment in Mazatlán Bay, Mexico, to test the initial impact and subsequent recovery of intertidal macrobenthic assemblages exposed to sand burial at two sites of varying wave exposure. Both sites supported different natural assemblages. Treatment plots for the addition of sediment and control plots (50 × 50 cm, separated by at least 1.5 m, were randomly placed across the mid-water tidal level. The initial response of the resident macrobenthos and the subsequent recolonization was monitored over a period of 95 days. The main effect of sediment deposition at both sites was mortality and removal of biota due to smothering. The recovery process was rapid and may in part have been the result of the mechanism by which the small, disturbed patches were recolonized. Most of the invertebrates colonized the patches as adults; several seaweeds exhibited vegetative growth as the major mechanism of colonization (e.g., Ulva lactuca Linnaeus, 1753, Amphiroa valonioides Yendo, 1902 and Chaetomorpha antennina (Borgensen Kutzing, 1849. The rate of recovery varied between the sites, however. Recovery of species numbers proceeded quickly at the sheltered site (day 7, but took 95 days at the exposed site. In contrast, biomass reached control levels by day 45 at the sheltered site, but already by day 15 at the exposed site. By day 95, the assemblages recovered to 83.5% and 81% similarity with the controls at the sheltered and exposed sites respectively. Although differences in wave exposure could be very

  11. THEORETICAL MODELLING STUDY ON THE RELATIONSHIP BETWEEN MULTI-FREQUENCY MICROWAVE VEGETATION INDEX AND VEGETATION PROPERTIES (OPTICAL DEPTH AND SINGLE SCATTERING ALBEDO

    Directory of Open Access Journals (Sweden)

    S. Talebi

    2018-04-01

    Full Text Available This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs in different pairs of frequencies using two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account multi scattering effects has been done and analyzed in various soil properties. The second method was based on MVI theoretical basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties (single scattering albedo and optical depth indicated partial correlation between MVI from first method and optical depth, and full correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in global microwave vegetation monitoring.

  12. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    Science.gov (United States)

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  13. The effect of bi-directional reflectance distribution function on the estimation of vegetation indices and leaf area index (LAI): A case study of the vegetation in succession stages after forest fire in northwestern Canada

    International Nuclear Information System (INIS)

    Hasegawa, K.; Matsuyama, H.; Tsuzuki, H.; Sweda, T.

    2006-01-01

    The effect of the dependence of the satellite data on sun/sensor geometry must be considered in the case of monitoring vegetation from satellites. Vegetation structure causes uneven scattering of sunlight, which is expressed by bi-directional reflectance distribution function (BRDF). The purpose of this study is to estimate the effect of BRDF of monitoring vegetation using the reflectance of visible and near-infrared bands. We investigated the vegetation in succession stages after forest fire (main species: spruce) in the northwestern Canada. BRF (Bidirectional Reflectance Factor) was measured in the seven sites of some succession stages, along with the measurements of leaf area index (LAI) and biomass. The main results obtained in this study are summarized as follows. (1) In each site, the difference of Normalized Difference Vegetation Index (NDVI) value around 0.1-0.2 was caused by BRDF when the sensor angle was changed from -15deg to 15 deg, being equivalent to the standard image of IKONOS. Also, LAI estimated by NDVI varied from 22% to 65% of the average. (2) The robustness of other vegetation indices to BRDF was compared. The reflectance of the near-infrared band normalized by the sum of other bands (nNIR), and Global Environmental Monitoring Index (GEMI) were investigated along with NDVI. It is clarified that nNIR was most robust in the site where vegetation existed. GEMI was most robust in the sites of scarce vegetation, while NDVI was strongly affected by BRDF in such sites

  14. Pacific Coastal Salmon Recovery Fund

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Congress established the Pacific Coastal Salmon Recovery Fund (PCSRF) to monitor the restoration and conservation of Pacific salmon and steelhead populations and...

  15. A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight

    International Nuclear Information System (INIS)

    Williamson, Jill P.; Emmert, Gary L.

    2013-01-01

    Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag + or I 2 residuals in recycled drinking water. •Method detection limits of Ag + of 52 μg L −1 and I 2 of 2 μg L −1 . •Mean % recoveries for Ag + of 104 ± 1% and for I 2 of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag + of 1.4% and for I 2 of 5.7%. •Bias measurements agreed to 11.3 μg L −1 for Ag + and to 27.3 μg L −1 for I 2 . -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag + and I 2 are 52 μg L −1 Ag + and 2 μg L −1 I 2 ; the mean percent recoveries were 104% and 96.2% for Ag + and I 2 respectfully; and percent relative standard deviations were estimated at 1.4% for Ag + and 5.7% for I 2 . The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates

  16. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  17. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  18. Relative sensitivity of Normalized Difference Vegetation Index (NDVI) and Microwave Polarization Difference Index (MPDI) for vegetation and desertification monitoring

    Science.gov (United States)

    Becker, Francois; Choudhury, Bhaskar J.

    1988-01-01

    A simple equation relating the Microwave Polarization Difference Index (MPDI) and the Normalized Difference Vegetation Index (NDVI) is proposed which represents well data obtained from Nimbus 7/SMMR at 37 GHz and NOAA/AVHRR Channels 1 and 2. It is found that there is a limit which is characteristic of a particular type of cover for which both indices are equally sensitive to the variation of vegetation, and below which MPDI is more efficient than NDVI. The results provide insight into the relationship between water content and chlorophyll absorption at pixel size scales.

  19. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    approval. The levels in selected monitoring wells are recorded continuously, by using downhole pressure sensors equipped with automatic data loggers, and periodically are also measured manually. Groundwater level data were recovered during the current review period on September 19, 2008, and on March 25, April 25-27, and October 20, 2009. (3) Argonne experience has demonstrated that the sampling and analysis (for VOCs) of native vegetation, and particularly tree tissues, often provides a sensitive indicator of possible carbon tetrachloride contamination in the surface water or shallow groundwater within the plant rooting zone. With the approval of the CCC/USDA, on August 28, 2009, samples of tree branch tissues were therefore collected for analyses at 18 locations along the intermittent creek west (downgradient) of the former CCC/USDA facility and the Nigh property.

  20. Microseismic Monitoring of CO2 Injection at the Penn West Enhanced Oil Recovery Pilot Project, Canada: Implications for Detection of Wellbore Leakage

    Directory of Open Access Journals (Sweden)

    Gonzalo Zambrano-Narváez

    2013-09-01

    Full Text Available A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection.

  1. Microseismic monitoring of CO2 injection at the Penn West Enhanced Oil Recovery pilot project, Canada: implications for detection of wellbore leakage.

    Science.gov (United States)

    Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick

    2013-09-02

    A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection.

  2. Enhanced Monitored Natural Recovery (EMNR) Case Studies Review

    Science.gov (United States)

    2009-05-01

    trends in sediment toxicity in thin layer capped and natural recovery areas. • Evaluation of temporal trends in macroinvertebrate benthic community...Pacific biotreatment lagoon . The WW Area is contaminated with mercury originating from a chlor- alkali facility operated by Georgia-Pacific, phenolic

  3. Revealing livestock effects on bunchgrass vegetation with Landsat ETM+ data across a grazing season

    Science.gov (United States)

    Jansen, Vincent S.

    Remote sensing provides monitoring solutions for more informed grazing management. To investigate the ability to detect the effects of cattle grazing on bunchgrass vegetation with Landsat Enhanced Thematic Mapper Plus (ETM+) data, we conducted a study on the Zumwalt Prairie in northeastern Oregon across a gradient of grazing intensities. Biophysical vegetation data was collected on vertical structure, biomass, and cover at three different time periods during the grazing season: June, August, and October 2012. To relate these measures to the remotely sensed Landsat ETM+ data, Pearson's correlations and multiple regression models were computed. Using the best models, predicted vegetation metrics were then mapped across the study area. Results indicated that models using common vegetation indices had the ability to discern different levels of grazing across the study area. Results can be distributed to land managers to help guide grassland conservation by improving monitoring of bunchgrass vegetation for sustainable livestock management.

  4. Determination of iodine 129 in vegetables using neutron activation analysis

    International Nuclear Information System (INIS)

    Quintana, Eduardo E.; Thyssen, Sandra M.; Bruno, Hector A.

    1999-01-01

    The developed methodology allows the determination of iodine 129 in vegetables, using neutron activation analysis. The chemical treatment removes the interferences present in these matrixes, as well as the bromine 82 originated in the activation process. The experimental method for the determination of iodine 129 by neutron activation analysis involves five steps: 1- digestion by alkaline fusion; 2- pre-irradiation purification of iodine 129 by distillation followed by solvent extraction, and adsorption on activated charcoal by distillation; 3- neutron irradiation; 4- post-irradiation purification of iodine 130 by distillation followed by solvent extraction; 5- gamma spectrometry. A chemical recovery of 95 % is obtained in the distillations, measured using iodine 131 as tracer. The whole process recovery is within 70 % and 85 %. The detection limit is 2 mBq/kg of sample, but several factors affect this value, such as type of vegetable, natural iodine concentration, irradiation time and neutron flux. The methodology developed is applied at environmental surveillance with safeguards proposes, in the detection of undeclared reprocessing of irradiated fuel. (authors)

  5. OPTIMIZATION OF VEGETABLE WASTES FOR LACTIC ACID PRODUCTION: A LABORATORY SCALE APPROACH

    Directory of Open Access Journals (Sweden)

    Sailaja Daharbha

    2015-04-01

    Full Text Available Vegetables wastes are organic materials which are not utilized as vegetables and are discarded at all stages of production, processing and marketing. These wastes form a major part of municipal solid wastes and are cause of foul smell and growth of microorganisms due to their high organic contents. The vegetable wastes can be utilized in many different ways to produces different products. We have shown that they can be utilized for production of lactic acid using anaerobic digestion. The 2nd day was the optimum day for recovery of lactic acid while 1:1 ratio of slurry and water was found to the best ratio for production of lactic acid from vegetable wastes. Effect of salts on lactic acid was also studied and it was found that the production decreased in all the concentrations of salts.

  6. Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights

    Science.gov (United States)

    Tango, Peter J.; Batiuk, Richard A.

    2016-01-01

    Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.

  7. Feasibility of real-time location systems in monitoring recovery after major abdominal surgery.

    Science.gov (United States)

    Dorrell, Robert D; Vermillion, Sarah A; Clark, Clancy J

    2017-12-01

    Early mobilization after major abdominal surgery decreases postoperative complications and length of stay, and has become a key component of enhanced recovery pathways. However, objective measures of patient movement after surgery are limited. Real-time location systems (RTLS), typically used for asset tracking, provide a novel approach to monitoring in-hospital patient activity. The current study investigates the feasibility of using RTLS to objectively track postoperative patient mobilization. The real-time location system employs a meshed network of infrared and RFID sensors and detectors that sample device locations every 3 s resulting in over 1 million data points per day. RTLS tracking was evaluated systematically in three phases: (1) sensitivity and specificity of the tracking device using simulated patient scenarios, (2) retrospective passive movement analysis of patient-linked equipment, and (3) prospective observational analysis of a patient-attached tracking device. RTLS tracking detected a simulated movement out of a room with sensitivity of 91% and specificity 100%. Specificity decreased to 75% if time out of room was less than 3 min. All RTLS-tagged patient-linked equipment was identified for 18 patients, but measurable patient movement associated with equipment was detected for only 2 patients (11%) with 1-8 out-of-room walks per day. Ten patients were prospectively monitored using RTLS badges following major abdominal surgery. Patient movement was recorded using patient diaries, direct observation, and an accelerometer. Sensitivity and specificity of RTLS patient tracking were both 100% in detecting out-of-room ambulation and correlated well with direct observation and patient-reported ambulation. Real-time location systems are a novel technology capable of objectively and accurately monitoring patient movement and provide an innovative approach to promoting early mobilization after surgery.

  8. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  9. Quantitative analysis of aldehydes in canned vegetables using static headspace-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2017-11-17

    Volatile aldehydes appear in canned vegetables as constituents and some of them can also be present as disinfection by-products (DBPs) because of the contact between vegetables and treated water. This paper describes two static headspace-gas chromatography-mass spectrometry (SHS-GC-MS) methods to determine 15 aldehydes in both the solid and the liquid phases of canned vegetables. The treatment for both phases of samples was carried out simultaneously into an SHS unit, including the leaching of the aldehydes (from the vegetable), their derivatization and volatilization of the oximes formed. Detection limits were obtained within the range of 15-400μg/kg and 3-40μg/L for aldehydes in the solid and the liquid phases of the food, respectively. The relative standard deviation was lower than 7% -for the whole array of the target analytes-, the trueness evaluated by recovery experiments provided %recoveries between 89 and 99% and short- and long-term stability studies indicated there was no significant variation in relative peak areas of all aldehydes in both phases of canned vegetables after their storing at 4°C for two weeks. The study of the origin of the 15 aldehydes detected between both phases of canned vegetables showed that: i) the presence of 13 aldehydes -at average concentrations of 2.2-39μg/kg and 0.25-71μg/L for the solid and the liquid phases, respectively- is because they are natural constituents of vegetables; and ii) the presence of glyoxal and methylglyoxal -which are mainly found in the liquid phase (average values, 1.4-4.1μg/L)- is ascribed to the use of treated water, thereby being DBPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. River floodplain vegetation classification using multi-temporal high-resolution colour infrared UAV imagery.

    NARCIS (Netherlands)

    van Iersel, W.K.; Straatsma, M.W.; Addink, E.A.; Middelkoop, H.

    2016-01-01

    To evaluate floodplain functioning, monitoring of its vegetation is essential. Although airborne imagery is widely applied for this purpose, classification accuracy (CA) remains low for grassland (< 88%) and herbaceous vegetation (<57%) due to the spectral and structural similarity of these

  11. Remote sensing of vegetation dynamics in drylands

    DEFF Research Database (Denmark)

    Tian, Feng; Brandt, Martin Stefan; Liu, Yi Y.

    2016-01-01

    Monitoring long-term biomass dynamics in drylands is of great importance for many environmental applications including land degradation and global carbon cycle modeling. Biomass has extensively been estimated based on the normalized difference vegetation index (NDVI) as a measure of the vegetatio...

  12. Assessment of Land Use-Cover Changes and Successional Stages of Vegetation in the Natural Protected Area Altas Cumbres, Northeastern Mexico, Using Landsat Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Uriel Jeshua Sánchez-Reyes

    2017-07-01

    Full Text Available Loss of vegetation cover is a major factor that endangers biodiversity. Therefore, the use of geographic information systems and the analysis of satellite images are important for monitoring these changes in Natural Protected Areas (NPAs. In northeastern Mexico, the Natural Protected Area Altas Cumbres (NPAAC represents a relevant floristic and faunistic patch on which the impact of loss of vegetation cover has not been assessed. This work aimed to analyze changes of land use and coverage (LULCC over the last 42 years on the interior and around the exterior of the area, and also to propose the time of succession for the most important types of vegetation. For the analysis, LANDSAT satellite images from 1973, 1986, 2000, 2005 and 2015 were used, they were classified in seven categories through a segmentation and maximum likelihood analysis. A cross-tabulation analysis was performed to determine the succession gradient. Towards the interior of the area, a significant reduction of tropical vegetation and, to a lesser extent, temperate forests was found, as well as an increase in scrub cover from 1973 to 2015. In addition, urban and vegetation-free areas, as well as modified vegetation, increased to the exterior. Towards the interior of the NPA, the processes of perturbation and recovery were mostly not linear, while in the exterior adjacent area, the presence of secondary vegetation with distinct definite time of succession was evident. The analysis carried out is the first contribution that evaluates LULCC in this important NPA of northeastern Mexico. Results suggest the need to evaluate the effects of these modifications on species.

  13. Optical Cloud Pixel Recovery via Machine Learning

    Directory of Open Access Journals (Sweden)

    Subrina Tahsin

    2017-05-01

    Full Text Available Remote sensing derived Normalized Difference Vegetation Index (NDVI is a widely used index to monitor vegetation and land use change. NDVI can be retrieved from publicly available data repositories of optical sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS and several commercial satellites. Studies that are heavily dependent on optical sensors are subject to data loss due to cloud coverage. Specifically, cloud contamination is a hindrance to long-term environmental assessment when using information from satellite imagery retrieved from visible and infrared spectral ranges. Landsat has an ongoing high-resolution NDVI record starting from 1984. Unfortunately, this long time series NDVI data suffers from the cloud contamination issue. Though both simple and complex computational methods for data interpolation have been applied to recover cloudy data, all the techniques have limitations. In this paper, a novel Optical Cloud Pixel Recovery (OCPR method is proposed to repair cloudy pixels from the time-space-spectrum continuum using a Random Forest (RF trained and tested with multi-parameter hydrologic data. The RF-based OCPR model is compared with a linear regression model to demonstrate the capability of OCPR. A case study in Apalachicola Bay is presented to evaluate the performance of OCPR to repair cloudy NDVI reflectance. The RF-based OCPR method achieves a root mean squared error of 0.016 between predicted and observed NDVI reflectance values. The linear regression model achieves a root mean squared error of 0.126. Our findings suggest that the RF-based OCPR method is effective to repair cloudy pixels and provides continuous and quantitatively reliable imagery for long-term environmental analysis.

  14. UAV MONITORING FOR ENVIROMENTAL MANAGEMENT IN GALAPAGOS ISLANDS

    Directory of Open Access Journals (Sweden)

    D. Ballaria

    2016-06-01

    Full Text Available In the Galapagos Islands, where 97% of the territory is protected and ecosystem dynamics are highly vulnerable, timely and accurate information is key for decision making. An appropriate monitoring system must meet two key features: on one hand, being able to capture information in a systematic and regular basis, and on the other hand, to quickly gather information on demand for specific purposes. The lack of such a system for geographic information limits the ability of Galapagos Islands’ institutions to evaluate and act upon environmental threats such as invasive species spread and vegetation degradation. In this context, the use of UAVs (unmanned aerial vehicles for capturing georeferenced images is a promising technology for environmental monitoring and management. This paper explores the potential of UAV images for monitoring degradation of littoral vegetation in Puerto Villamil (Isabela Island, Galapagos, Ecuador. Imagery was captured using two camera types: Red Green Blue (RGB and Infrarred Red Green (NIR. First, vegetation presence was identified through NDVI. Second, object-based classification was carried out for characterization of vegetation vigor. Results demonstrates the feasibility of UAV technology for base-line studies and monitoring on the amount and vigorousness of littoral vegetation in the Galapagos Islands. It is also showed that UAV images are not only useful for visual interpretation and object delineation, but also to timely produce useful thematic information for environmental management.

  15. UAV Monitoring for Enviromental Management in Galapagos Islands

    Science.gov (United States)

    Ballari, D.; Orellana, D.; Acosta, E.; Espinoza, A.; Morocho, V.

    2016-06-01

    In the Galapagos Islands, where 97% of the territory is protected and ecosystem dynamics are highly vulnerable, timely and accurate information is key for decision making. An appropriate monitoring system must meet two key features: on one hand, being able to capture information in a systematic and regular basis, and on the other hand, to quickly gather information on demand for specific purposes. The lack of such a system for geographic information limits the ability of Galapagos Islands' institutions to evaluate and act upon environmental threats such as invasive species spread and vegetation degradation. In this context, the use of UAVs (unmanned aerial vehicles) for capturing georeferenced images is a promising technology for environmental monitoring and management. This paper explores the potential of UAV images for monitoring degradation of littoral vegetation in Puerto Villamil (Isabela Island, Galapagos, Ecuador). Imagery was captured using two camera types: Red Green Blue (RGB) and Infrarred Red Green (NIR). First, vegetation presence was identified through NDVI. Second, object-based classification was carried out for characterization of vegetation vigor. Results demonstrates the feasibility of UAV technology for base-line studies and monitoring on the amount and vigorousness of littoral vegetation in the Galapagos Islands. It is also showed that UAV images are not only useful for visual interpretation and object delineation, but also to timely produce useful thematic information for environmental management.

  16. Monitoring system and methods for a distributed and recoverable digital control system

    Science.gov (United States)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.

  17. A monitoring protocol for vegetation change on Irish peatland and heath

    Science.gov (United States)

    O'Connell, J.; Connolly, J.; Holden, N. M.

    2014-09-01

    Amendments to Articles 3.3 and 3.4 of the Kyoto Protocol have meant that detection of vegetation change may now form an interracial part of national soil carbon stocks. In this study multispectral multi-platform satellite data was processed to detect change to the surface vegetation of four peatland sites and one heath in Ireland. Spectral and spatial thresholds were used on difference images between master and slave data in the extraction of temporally invariant targets for multi-platform cross calibration. The Kolmogorov-Smirnov test was used to evaluate any difference in the cumulative probability distributions of the master, slave and calibrated slave data as expressed by the D statistic, with values reduced by an average of 89.7% due to the cross calibration procedure. A change detection model was created which incorporated a spatial threshold of 9 pixels and a standard deviation (SD) spectral threshold. Kappa accuracy values for the five sites ranged from 80 to 97%, showing that 1.5 SD was the optimum spectral threshold for detecting vegetation change. Change detection results showed mean percentage change ranging from 2.11 to 3.28% of total area and cumulative change over the observed time period of between 15.24 and 49.27% of total area.

  18. Terrestrial Water Storage and Vegetation Resilience to Drought

    Science.gov (United States)

    Meyer, V.; Reager, J. T., II; Konings, A. G.

    2017-12-01

    The expected increased occurrences of hydrologic extreme events such as droughts in the coming decades motivates studies to better understand and predict the response of vegetation to such extreme conditions. Previous studies have addressed vegetation resilience to drought, defined as its ability to recover from a perturbation (Hirota et al., 2011; Vicente-Serrano et al., 2012), but appear to only focus on precipitation and a couple of vegetation indices, hence lacking a key element: terrestrial water storage (TWS). In this study, we combine and compare multiple remotely-sensed hydro-ecological datasets providing information on climatic and hydrological conditions (Tropical Rainfall Measuring Mission (TRMM), Gravity Recovery and Climate Experiment (GRACE)) and indices characterizing the state of the vegetation (vegetation water content using Vegetation Optical Depth (VOD) from SMAP (Soil Moisture Active and Passive), Gross Primary Production (GPP) from FluxCom and Specific Fluorescence Intensity (SFI, from GOSat)) to assess the ability of vegetation to face and recover from droughts across the globe. Our results suggest that GRACE hydrological data bridge the knowledge gap between precipitation deficit and vegetation response. All products are aggregated at a 0.5º spatial resolution and a monthly temporal resolution to match the GRACE Mascon product. Despite these coarse spatiotemporal resolutions, we find that the relationship between existing remotely-sensed eco-hydrologic data varies spatially, both in terms of strength of relationship and time lag, showing the response time of vegetation characteristics to hydrological changes and highlighting the role of water storage. A special attention is given to the Amazon river basin, where two well documented droughts occurred in 2005 and 2010, and where a more recent drought occurred in 2015/2016. References : Hirota, Marina, et al. "Global resilience of tropical forest and savanna to critical transitions." Science

  19. Ten Years of Vegetation Change in Northern California Marshlands Detected using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in perennial vegetation cover at marshland sites in Northern California reported to have undergone restoration between 1999 and 2009. Results showed extensive contiguous areas of restored marshland plant cover at 10 of the 14 sites selected. Gains in either woody shrub cover and/or from recovery of herbaceous cover that remains productive and evergreen on a year-round basis could be mapped out from the image results. However, LEDAPS may not be highly sensitive changes in wetlands that have been restored mainly with seasonal herbaceous cover (e.g., vernal pools), due to the ephemeral nature of the plant greenness signal. Based on this evaluation, the LEDAPS methodology would be capable of fulfilling a pressing need for consistent, continual, low-cost monitoring of changes in marshland ecosystems of the Pacific Flyway.

  20. The use of high altitude remote sensing in determining existing vegetation and monitoring ecological stress

    Science.gov (United States)

    Foster, K.; Garcia, A.

    1972-01-01

    High altitude color and multispectral black and white photography was used to survey existing vegetation and soil conditions on the Empire Ranch where large scale development will soon begin. Utilizing stereo pairs of the high altitude color photography, four vegetation classifications were discernable as a function of topography and foliage characteristics. In contrast to the undeveloped Ranch, the same photography was used to detect environmental changes in the Tucson metropolitan area as a result of rapid urbanization. The most prevalent change related to development is the removal of vegetation in high density areas to allow for housing starts. Erosion then occurs where vegetation has been removed.

  1. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state

    Science.gov (United States)

    Gosseries, Olivia; Schnakers, Caroline; Ledoux, Didier; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Demertzi, Athéna; Noirhomme, Quentin; Lehembre, Rémy; Damas, Pierre; Goldman, Serge; Peeters, Erika; Moonen, Gustave; Laureys, Steven

    Summary Monitoring the level of consciousness in brain-injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients. Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury; n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral assessments (Coma Recovery Scale-Revised) and outcome. EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome. User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic – albeit not prognostic – tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG quantification paradigms in order to reduce the remaining false

  2. Exxon Valdez Oil Spill Restoration Project final report: Monitoring for evaluation of recovery and restoration of injured nearshore resources

    Science.gov (United States)

    Ballachey, Brenda E.; Bodkin, James L.; Kloecker, Kim; Dean, Tom; Colettie, Heather A

    2015-01-01

    In 2012, we completed three consecutive years of full field sampling in WPWS for EVOS Restoration Project 10100750. Nearshore monitoring was conducted in collaboration with the NPS SWAN I&M program and, beginning in 2012, as part of the EVOSTC GWA program. Data collection was done in accordance with standard operating procedures set forth to monitor marine water chemistry and quality, marine intertidal invertebrates, kelps and seagrasses, marine birds, black oystercatchers, and sea otters. Summer sampling in 2012 represented the fourth year of sampling in WPWS (an initial year of sampling was done in WPWS in 2007; EVOS Restoration Project 070750). Based on our monitoring of nearshore species in WPWS, and comparisons of data from WPWS and other areas within the Gulf of Alaska, we have no evidence of continued injury to biological resources at the spatial scales we are monitoring. A key finding is that recovery of the sea otter population is no longer constrained by exposure to lingering oil; this is consistent with related EVOSTC studies on harlequin ducks (Restoration Project 12120114-Q). We anticipate continued annual nearshore monitoring in WPWS and at KATM and KEFJ under GWA, with data summaries and analyses including all three areas to provide a larger spatial and temporal context to the understanding of processes and patterns in nearshore ecosystems of the GOA which were impacted by the EVOS of 1989.

  3. Environmental conditions and vegetation recovery at abandoned drilling mud sumps in the Mackenzie Delta region, Northwest Territories, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J.F. [Saskatchewan Univ., Regina, SK (Canada). Dept. of Biology

    2008-06-15

    Decadal scale impacts of exploratory oil and gas drilling activities on native plant communities in the lower Arctic tundra were investigated. The study used historical data from oil and gas exploration activities in the Mackenzie River Delta to assess changes in vegetation composition and environmental gradients at 7 drilling mud sumps located in the Kendall Island Bird Sanctuary. Over a period of 3 decades, the sumps had developed vegetation coverage equivalent in mass to vegetation in undisturbed areas. However, bare soil was observed at ponded sites where salt crusts had formed. The vegetation was composed of forbs, grasses, and tall shrubs that were distinct from surrounding low shrub communities. The area of vegetation around the sump was larger in upland and saline environments. Water around the sumps was associated with thaw subsidence that occurred after construction activities. Changes in drainage, surface salt concentrations, and active-layer depths were seen as the most significant factors in the resulting plant communities. 31 refs., 4 tabs., 7 figs.

  4. Remote Sensing of Sonoran Desert Vegetation Structure and Phenology with Ground-Based LiDAR

    Directory of Open Access Journals (Sweden)

    Joel B. Sankey

    2014-12-01

    Full Text Available Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  5. Incorporation of GRACE Data into a Bayesian Model for Groundwater Drought Monitoring

    Science.gov (United States)

    Slinski, K.; Hogue, T. S.; McCray, J. E.; Porter, A.

    2015-12-01

    Groundwater drought, defined as the sustained occurrence of below average availability of groundwater, is marked by below average water levels in aquifers and reduced flows to groundwater-fed rivers and wetlands. The impact of groundwater drought on ecosystems, agriculture, municipal water supply, and the energy sector is an increasingly important global issue. However, current drought monitors heavily rely on precipitation and vegetative stress indices to characterize the timing, duration, and severity of drought events. The paucity of in situ observations of aquifer levels is a substantial obstacle to the development of systems to monitor groundwater drought in drought-prone areas, particularly in developing countries. Observations from the NASA/German Space Agency's Gravity Recovery and Climate Experiment (GRACE) have been used to estimate changes in groundwater storage over areas with sparse point measurements. This study incorporates GRACE total water storage observations into a Bayesian framework to assess the performance of a probabilistic model for monitoring groundwater drought based on remote sensing data. Overall, it is hoped that these methods will improve global drought preparedness and risk reduction by providing information on groundwater drought necessary to manage its impacts on ecosystems, as well as on the agricultural, municipal, and energy sectors.

  6. A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Jill P.; Emmert, Gary L., E-mail: gemmert@memphis.edu

    2013-08-20

    Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag{sup +} or I{sub 2} residuals in recycled drinking water. •Method detection limits of Ag{sup +} of 52 μg L{sup −1} and I{sub 2} of 2 μg L{sup −1}. •Mean % recoveries for Ag{sup +} of 104 ± 1% and for I{sub 2} of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag{sup +} of 1.4% and for I{sub 2} of 5.7%. •Bias measurements agreed to 11.3 μg L{sup −1} for Ag{sup +} and to 27.3 μg L{sup −1} for I{sub 2}. -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag{sup +} and I{sub 2} are 52 μg L{sup −1} Ag{sup +} and 2 μg L{sup −1} I{sub 2}; the mean percent recoveries were 104% and 96.2% for Ag{sup +} and I{sub 2} respectfully; and percent relative standard deviations were estimated at 1.4% for Ag{sup +} and 5.7% for I{sub 2}. The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates.

  7. MARKET BASKET SURVEY FOR SOME PESTICIDES RESIDUES IN FRUITS AND VEGETABLES FROM GHANA

    Directory of Open Access Journals (Sweden)

    Crentsil Kofi Bempah

    2012-12-01

    Full Text Available A study was conducted to investigate the organochlorine, organophosphorus and synthetic pyrethroid pesticide residues in fruits and vegetables from markets in Ghana. For this purpose, a total of 309 fruits and vegetable samples, were collected and analyzed by gas chromatography with electron capture detector. The obtained results showed that the predominance of organochlorine followed by organophosphorus and synthetic pyrethroid pesticides in most of the analyzed samples. The detected concentrations of them were most significant in vegetable samples. The results obtained showed that 39.2 % of the fruits and vegetable samples analyzed contained no detectable level of the monitored pesticides, 51.0 % of the samples gave results with trace levels of pesticide residues below the maximum residue limit (MRL, while 9.8 % of the samples were above the MRL. The findings point to the urgent need to establish reliable monitoring programs for pesticides, so that any exceedance in concentration over environmental quality standards can be detected and appropriate actions taken.

  8. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  9. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  10. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    Science.gov (United States)

    Hess, Laura Lorraine

    The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the

  11. Exploiting differential vegetation phenology for satellite-based mapping of semiarid grass vegetation in the southwestern United States and northern Mexico

    Science.gov (United States)

    Dye, Dennis G.; Middleton, Barry R.; Vogel, John M.; Wu, Zhuoting; Velasco, Miguel G.

    2016-01-01

    We developed and evaluated a methodology for subpixel discrimination and large-area mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition landscapes of the southwestern United States and northern Mexico. We describe the methodology within a general, conceptual framework that we identify as the differential vegetation phenology (DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI) that provides vegetation type-specific information at the subpixel scale by exploiting differential patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2), and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2). The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover as estimated from landscape photographs at 92 sites (R2 = 0.76, p landscapes of the Southwest, and potentially for monitoring of its response to drought, climate change, grazing and other factors, including land management. With appropriate adjustments, the method could potentially be used for subpixel discrimination and mapping of grass or other vegetation types in other regions where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

  12. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-Mediterranean Climate: Preliminary Results.

    Science.gov (United States)

    Piro, Patrizia; Porti, Michele; Veltri, Simone; Lupo, Emanuela; Moroni, Monica

    2017-03-23

    In urban and industrial environments, the constant increase of impermeable surfaces has produced drastic changes in the natural hydrological cycle. Decreasing green areas not only produce negative effects from a hydrological-hydraulic perspective, but also from an energy point of view, modifying the urban microclimate and generating, as shown in the literature, heat islands in our cities. In this context, green infrastructures may represent an environmental compensation action that can be used to re-equilibrate the hydrological and energy balance and reduce the impact of pollutant load on receiving water bodies. To ensure that a green infrastructure will work properly, vegetated areas have to be continuously monitored to verify their health state. This paper presents a ground spectroscopy monitoring survey of a green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. This study is part of a larger research project financed by European Structural funds aimed at understanding the influence of green roofs on rainwater management and energy consumption for air conditioning in the Mediterranean area. Reflectance values were acquired with a field-portable spectroradiometer that operates in the range of wavelengths 350-2500 nm. The survey was carried out during the time period November 2014-June 2015 and data were acquired weekly. Climatic, thermo-physical, hydrological and hydraulic quantities were acquired as well and related to spectral data. Broadband and narrowband spectral indices, related to chlorophyll content and to chlorophyll-carotenoid ratio, were computed. The two narrowband indices NDVI 705 and SIPI turned out to be the most representative indices to detect the plant health status.

  13. Monitoring programme on nitrates in vegetables and vegetable-based baby foods marketed in the Region of Valencia, Spain: levels and estimated daily intake.

    Science.gov (United States)

    Pardo-Marín, O; Yusà-Pelechà, V; Villalba-Martín, P; Perez-Dasí, J A

    2010-04-01

    This study was carried out to determine the current levels of nitrates in vegetables and vegetable-based baby foods (a total of 1150 samples) marketed in the Region of Valencia, Spain, over the period 2000-2008, and to estimate the toxicological risk associated with their intake. Average (median) levels of nitrate in lettuce, iceberg-type lettuce and spinach (1156, 798 and 1410 mg kg(-1) w/w, respectively) were lower than the maximum limits established by European Union legislation. Thirteen fresh spinach samples exceeded the regulatory limits. Median nitrate values in other vegetables for which a maximum limit has not been fixed by the European Commission were 196, 203, 1597, 96, 4474 and 2572 mg kg(-1) w/w (for potato, carrot, chard, artichoke, rucola and lamb's lettuce, respectively). The estimated nitrate daily intakes through vegetables consumption for adult, extreme consumers and children were found to be about 29%, 79.8% and 15.1%, respectively, of the acceptable daily intake (3.7 mg kg(-1)). The levels (median = 60.4 mg kg(-1) w/w) found in vegetable-based baby foods were, in all cases, lower the maximum level proposed by European Union legislation. The estimated nitrate daily intake through baby foods for infants between 0-1 and 1-2 years of age were 13% and 18%, respectively, of the acceptable daily intake.

  14. Fast determination of alkylphenol ethoxylates in leafy vegetables using a modified quick, easy, cheap, effective, rugged, and safe method and ultra-high performance supercritical fluid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Jiang, Ze-Jun; Cao, Xiao-Lin; Li, Hui; Zhang, Chan; Abd El-Aty, A M; Jin, Fen; Shao, Hua; Jin, Mao-Jun; Wang, Shan-Shan; She, Yong-Xin; Wang, Jing

    2017-11-24

    In the present study, a quick and sensitive method was developed for simultaneous determination of nonylphenol ethoxylates (NPxEOs) and octylphenol ethoxylates (OPxEOs) (x=2-20) in three leafy vegetables, including cabbage, lettuce, and spinach using a modified "QuEChERS" method and ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) with scheduled multiple reaction monitoring (MRM). Under optimized conditions, the 38 target analytes were analyzed within a short period of time (5 min). The linearities of the matrix-matched standard calibrations were satisfactory with coefficients of determination (R 2 )>0.99 and the limits of detection (LOD) and quantification (LOQ) were in between 0.02-0.27 and 0.18-1.75μgkg -1 , respectively. The recovery of all target analytes spiked at three (low, medium, and high) fortification levels in various leafy vegetables were ranged from 72.8-122.6% with relative standard deviation (RSD) ≤18.3%. The method was successfully applied to market samples and the target analytes were found in all monitored samples, with total concentrations of 0-8.67μgkg -1 and 15.75-95.75μgkg -1 for OPxEOs and NPxEOs (x=2-20), respectively. In conclusion, the newly developed UHPSFC-ESI-MS/MS method is rapid and versatile and could be extrapolated for qualitative and quantitative analysis of APxEOs in other leafy vegetables. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The impact of spices on vegetable consumption

    DEFF Research Database (Denmark)

    Li, Zhaoping; Krak, Michael; Zerlin, Alona

    2015-01-01

    This pilot study was conducted to evaluate the impact of spices added to broccoli, cauliflower, and spinach on amount and rate of vegetable consumption. Twenty overweight subjects who routinely ate less than three daily servings of vegetables were recruited. On six occasions, subjects were assigned...... in random order to eat broccoli, cauliflower, or spinach with or without added spices. Dishes were placed on a modified Universal Eating Monitor (UEM) that recorded rate of eating (g/sec), duration of eating (min) and total amount consumed (g). Total intake and duration of eating were increased...... significantly for broccoli with spices compared to plain broccoli, but there was no significant difference for cauliflower or spinach. No significant differences were noted in any of the visual analog scale (VAS) responses. This study suggests that adding spices may increase vegetable intake, but more studies...

  16. Automated monitoring of recovered water quality

    Science.gov (United States)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  17. The use of UAVs for monitoring land degradation

    Science.gov (United States)

    Themistocleous, Kyriacos

    2017-10-01

    Land degradation is one of the causes of desertification of drylands in the Mediterranean. UAVs can be used to monitor and document the various variables that cause desertification in drylands, including overgrazing, aridity, vegetation loss, etc. This paper examines the use of UAVs and accompanying sensors to monitor overgrazing, vegetation stress and aridity in the study area. UAV images can be used to generate digital elevation models (DEMs) to examine the changes in microtopography as well as ortho-photos were used to detect changes in vegetation patterns. The combined data of the digital elevation models and the orthophotos can be used to identify the mechanisms for desertification in the study area.

  18. Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery

    Directory of Open Access Journals (Sweden)

    Samuel Hislop

    2018-03-01

    Full Text Available Satellite earth observation is being increasingly used to monitor forests across the world. Freely available Landsat data stretching back four decades, coupled with advances in computer processing capabilities, has enabled new time-series techniques for analyzing forest change. Typically, these methods track individual pixel values over time, through the use of various spectral indices. This study examines the utility of eight spectral indices for characterizing fire disturbance and recovery in sclerophyll forests, in order to determine their relative merits in the context of Landsat time-series. Although existing research into Landsat indices is comprehensive, this study presents a new approach, by comparing the distributions of pre and post-fire pixels using Glass’s delta, for evaluating indices without the need of detailed field information. Our results show that in the sclerophyll forests of southeast Australia, common indices, such as the Normalized Difference Vegetation Index (NDVI and the Normalized Burn Ratio (NBR, both accurately capture wildfire disturbance in a pixel-based time-series approach, especially if images from soon after the disturbance are available. However, for tracking forest regrowth and recovery, indices, such as NDVI, which typically capture chlorophyll concentration or canopy ‘greenness’, are not as reliable, with values returning to pre-fire levels in 3–5 years. In comparison, indices that are more sensitive to forest moisture and structure, such as NBR, indicate much longer (8–10 years recovery timeframes. This finding is consistent with studies that were conducted in other forest types. We also demonstrate that additional information regarding forest condition, particularly in relation to recovery, can be extracted from less well known indices, such as NBR2, as well as textural indices incorporating spatial variance. With Landsat time-series gaining in popularity in recent years, it is critical to

  19. Vegetation monitoring on semi-arid grasslands unglazed by domestic livestock

    Science.gov (United States)

    Linda Kennedy; Dan Robinett

    2013-01-01

    The Research Ranch is an 8000-acre sanctuary and research facility in the semi-arid grasslands of southeastern Arizona, USA. Cattle were removed from the property in 1968 to provide a reference area by which various land uses, such as grazing and exurbanization, could be evaluated. Vegetation transects were established in 2000 and 2003 on several ecological sites in...

  20. Monitoring recovery following syndesmosis sprain: a case report.

    Science.gov (United States)

    Spaulding, S J

    1995-10-01

    A sprain to the tibial-fibular syndesmosis often results in prolonged rehabilitation or surgical intervention before recovery occurs. This paper documents gait recovery both before and after surgery for a syndesmosis sprain. Ground reaction force (GRF) data were available before injury and before surgery. Data were also collected every 3 days from 4 days to 4 months after syndesmosis screw removal (8 weeks after surgery). Weightbearing during the stance phase of gait did not approach normal values until approximately 4 months after syndesmosis screw removal. The push-off phase of gait also was slow to recover. When it was possible for the subject to use one or two crutches, differences in GRF were evident, such that walking with one crutch demonstrated increased force production at the ground. Bracing the ankle with a semirigid brace increased GRF, whereas a boot-type lace-up brace resulted in decreased GRF. In this case report of a combined ankle and syndesmosis sprain, results suggest the weightbearing and push-off force were seriously compromised. Decreasing the number of walking assistive devices and wearing a semirigid ankle brace increased the amount of weightbearing through the affected leg and may have merit in encouraging muscle function.

  1. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  2. Environmental monitoring at the Lawrence Livermore National Laboratory. 1982 annual report

    International Nuclear Information System (INIS)

    Griggs, K.S.; Gonzalez, M.A.; Buddemeier, R.W.

    1983-01-01

    Environmental monitoring efforts spanned air, water, vegetation and foodstuffs, and radiation doses. Monitoring data collection, analysis, and evaluation are presented for air, soils, sewage, water, vegetation and foodstuffs, milk, and general environmental radioactivity. Non-radioactive monitoring addresses beryllium, chemical effluents in sewage, noise pollution, and storm runoff and liquid discharge site pollutants. Quality assurance efforts are addressed. Five appendices present tabulated data; environmental activity concentration; dose calculation method; discharge limits to sanitary sewer systems of Livermore; and sampling and analytical procedures for environmental monitoring

  3. Water quality function of an extensive vegetated roof.

    Science.gov (United States)

    Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario

    2018-06-01

    In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    Science.gov (United States)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  5. Satellite Monitoring of Vegetation Response to Precipitation and Dust Storm Outbreaks in Gobi Desert Regions

    Directory of Open Access Journals (Sweden)

    Yuki Sofue

    2018-02-01

    Full Text Available Recently, droughts have become widespread in the Northern Hemisphere, including in Mongolia. The ground surface condition, particularly vegetation coverage, affects the occurrence of dust storms. The main sources of dust storms in the Asian region are the Taklimakan and Mongolian Gobi desert regions. In these regions, precipitation is one of the most important factors for growth of plants especially in arid and semi-arid land. The purpose of this study is to clarify the relationship between precipitation and vegetation cover dynamics over 29 years in the Gobi region. We compared the patterns between precipitation and Normalized Difference Vegetation Index (NDVI for a period of 29 years. The precipitation and vegetation datasets were examined to investigate the trends during 1985–2013. Cross correlation analysis between the precipitation and the NDVI anomalies was performed. Data analysis showed that the variations of NDVI anomalies in the east region correspond well with the precipitation anomalies during this period. However, in the southwest region of the Gobi region, the NDVI had decreased regardless of the precipitation amount, especially since 2010. This result showed that vegetation in this region was more degraded than in the other areas.

  6. A preliminary study of effects of feral pig density on native Hawaiian montane rainforest vegetation

    Science.gov (United States)

    Scheffler, Pamela Y.; Pratt, Linda; Foote, David; Magnacca, Karl

    2012-01-01

    This study aimed to examine the effects of different levels of pig density on native Hawaiian forest vegetation. Pig sign was measured across four pig management units in the 'Öla'a Forest from 1998 through 2004 and pig density estimated based upon pig activity. Six paired vegetation monitoring plots were established in the units, each pair straddling a pig fence. Percent cover and species richness of understory vegetation, ground cover, alien species, and preferred pig forage plants were measured in 1997 and 2003 and compared with pig density estimates. Rainfall and hunting effort and success by management personnel were also tracked over the study period. Vegetation monitoring found a higher percentage of native plants in pig-free or low-pig areas compared to those with medium or high pig densities, with no significant change in the percent native plant species between the first and second monitoring periods. Differences between plots were strongly affected by location, with a higher percentage of native plants in western plots, where pig damage has historically been lower. Expansion of this survey with more plots would help improve the statistical power to detect differences in vegetation caused by pigs. Because of the limited vegetation sampling in this study, the results must be viewed as descriptive. We compare the vegetation within 30 x 30 m plots across three thresholds of historical pig density and show how pig densities can change in unanticipated directions within management units. While these results cannot be extrapolated to area-wide effects of pig activity, these data do contribute to a growing body of information on the impacts of feral pigs on Hawaiian plant communities.

  7. Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions

    Directory of Open Access Journals (Sweden)

    M.-N. Woillez

    2013-03-01

    Full Text Available The last glacial period has been punctuated by two types of abrupt climatic events, the Dansgaard–Oeschger (DO and Heinrich (HE events. These events, recorded in Greenland ice and in marine sediments, involved changes in the Atlantic Meridional Overturning Circulation (AMOC and led to major changes in the terrestrial biosphere. Here we use the dynamical global vegetation model ORCHIDEE to simulate the response of vegetation to abrupt changes in the AMOC strength. We force ORCHIDEE offline with outputs from the IPSL_CM4 general circulation model, in which the AMOC is forced to change by adding freshwater fluxes in the North Atlantic. We investigate the impact of a collapse and recovery of the AMOC, at different rates, and focus on Western Europe, where many pollen records are available for comparison. The impact of an AMOC collapse on the European mean temperatures and precipitations simulated by the GCM is relatively small but sufficient to drive an important regression of forests and expansion of grasses in ORCHIDEE, in qualitative agreement with pollen data for an HE event. On the contrary, a run with a rapid shift of the AMOC to a hyperactive state of 30 Sv, mimicking the warming phase of a DO event, does not exhibit a strong impact on the European vegetation compared to the glacial control state. For our model, simulating the impact of an HE event thus appears easier than simulating the abrupt transition towards the interstadial phase of a DO. For both a collapse or a recovery of the AMOC, the vegetation starts to respond to climatic changes immediately but reaches equilibrium about 200 yr after the climate equilibrates, suggesting a possible bias in the climatic reconstructions based on pollen records, which assume equilibrium between climate and vegetation. However, our study does not take into account vegetation feedbacks on the atmosphere.

  8. Monitoring, modelling and forecasting of the pollen season

    DEFF Research Database (Denmark)

    Scheifinger, Helfried; Belmonte, Jordina; Buters, Jeroen

    2013-01-01

    The section about monitoring covers the development of phenological networks, remote sensing of the season cycle of the vegetation, the emergence of the science of aerobiology and, more specifically, aeropalynology, pollen sampling instruments, pollen counting techniques, applications of aeropaly......The section about monitoring covers the development of phenological networks, remote sensing of the season cycle of the vegetation, the emergence of the science of aerobiology and, more specifically, aeropalynology, pollen sampling instruments, pollen counting techniques, applications...... of aeropalynology in agriculture and the European Pollen Information System. Three data sources are directly related with aeropalynology: phenological observations, pollen counts and remote sensing of the vegetation activity. The main future challenge is the assimilation of these data streams into numerical pollen...

  9. Monitoring and Modeling the Fate and Transport of Nitrate in the Vadose Zone beneath a Suwannee River Basin Vegetable Farm

    Science.gov (United States)

    Albert, M. A.; Graham, W. D.; Graetz, D.

    2002-05-01

    The Suwannee River basin has received much attention in recent years due to increased nitrogen levels in the groundwater-fed rivers of the basin that could seriously affect the welfare of this ecosystem. Nitrogen levels have increased from 0.1mg/l NO3-N to more than 5 mg/L NO3-N in many springs in the Suwannee Basin over the past 40 years. Nitrate concentrations in the Suwannee River itself have been increasing at the rate of .02 mg/L per year over the past 20 years. Suwannee River nitrate loads increase from 2300 kg/day to 6000 kg/day over a 33 mile stretch of the river between Dowling Park and Branford, Florida. Within this stretch of river, 89% of the nitrate loading appeared to come from the lower two-thirds, where agriculture is the dominant land use. The objective of this research is to monitor and model the impacts of alternative nutrient and water management practices on soil water quality, groundwater quality and crop yield at a commercial vegetable farm in the Suwannee River Basin. Groundwater monitoring wells, suction lysimeters, soil cores and TDR probes are used to monitor water and nitrogen transport at the site. Periodic plant biomass sampling is conducted to determine nitrogen uptake by the plants and to estimate crop yield. Field data show that two-thirds of the nitrogen applied to the spring 2001 potato crop leached to groundwater due to excessive irrigation and poor nitrogen uptake efficiency by the potatoes. The DSSAT35-Potato Crop model and the LEACHM vadose-zone model were calibrated for the spring 2001 potato crop and used to predict nitrogen leaching and crop yield for alternative management practices. Simulation results show that by reducing the duration of irrigation, reducing the fertilizer application rate, and improving the timing of fertilizer applications, nitrogen leaching can be reduced by approximately 50% while maintaining acceptable crop yields. Results of this project will ultimately be used to develop best management practices

  10. Validity of Two New Brief Instruments to Estimate Vegetable Intake in Adults

    Directory of Open Access Journals (Sweden)

    Janine Wright

    2015-08-01

    Full Text Available Cost effective population-based monitoring tools are needed for nutritional surveillance and interventions. The aim was to evaluate the relative validity of two new brief instruments (three item: VEG3 and five item: VEG5 for estimating usual total vegetable intake in comparison to a 7-day dietary record (7DDR. Sixty-four Australian adult volunteers aged 30 to 69 years (30 males, mean age ± SD 56.3 ± 9.2 years and 34 female mean age ± SD 55.3 ± 10.0 years. Pearson correlations between 7DDR and VEG3 and VEG5 were modest, at 0.50 and 0.56, respectively. VEG3 significantly (p < 0.001 underestimated mean vegetable intake compared to 7DDR measures (2.9 ± 1.3 vs. 3.6 ± 1.6 serves/day, respectively, whereas mean vegetable intake assessed by VEG5 did not differ from 7DDR measures (3.3 ± 1.5 vs. 3.6 ± 1.6 serves/day. VEG5 was also able to correctly identify 95%, 88% and 75% of those subjects not consuming five, four and three serves/day of vegetables according to their 7DDR classification. VEG5, but not VEG3, can estimate usual total vegetable intake of population groups and had superior performance to VEG3 in identifying those not meeting different levels of vegetable intake. VEG5, a brief instrument, shows measurement characteristics useful for population-based monitoring and intervention targeting.

  11. Monitoring and toxicity evaluation of phytoplankton on lithium manganese oxide adsorbents at lithium recovery pilot plant field.

    Science.gov (United States)

    Yoon, H. O.; Kim, J. A.; Kim, J. C.; Chung, K. S.; Ryu, J. H.

    2015-12-01

    For recovery of rare mineral resources such as lithium or boron from seawater, the lithium adsorbent material have been made by Korea Institute of Geoscience and Mineral Resources (KIGAM) and pilot plant was conducted in Okgye Harbor, Gangneung, Korea. The application of lithium adsorbent in pilot plant, it is important to consider the impact on the marine environment. Especially phytoplankton communities are important marine microorganism to represent marine primary product. At the same time, phytoplankton is possible to induce the decrease of lithium recovery rate due to cause of biofouling to surfaces of lithium adsorbents. Therefore long-term and periodic monitoring of phytoplankton is necessary to understand the environmental impact and biofouling problems near the lithium pilot plant. The abundance and biomass of phytoplankton have been evaluated through monthly interval sampling from February 2013 to May 2015. Abundance and species diversity of phytoplankton went up to summer from winter. When lithium adsorbents were immersing to seawater, eco-toxicities of released substances were determined using Microtox with bioluminescence bacteria Vibrio fischeri. The adsorbents were soaked in sterilized seawater and aeration for 1, 3, 5, 7, 10 and 14 days intervals under controlled temperature. Maximum EC50 concentration was 61.4% and this toxicity was showed in more than 10 days exposure.

  12. Monitoring vegetation change in Abu Dhabi Emirate from 1996 to 2000 and 2004 using Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Starbuck, M.J.; Tamayo, J.

    2007-01-01

    In the fall of 2001, a study was initiated to investigate vegetation changes in the Abu Dhabi Emirates. The vast majority of vegetation present in the region is irrigated and analysis of vegetation change will support groundwater investigations in the region by indicating areas of increased water use. Satellite-based imaging systems provide a good source of data for such an analysis. The recent analysis was completed between February and November 2002 using Landsat 5 Thematic Mapper satellite imagery acquired in 1996 and Landsat 7 Enhanced Thematic Mapper Plus imagery acquired in 2000. These assessments were augmented in 2004with the study of Landsat 7 imagery acquired in early 2004. The total area of vegetation for each of seven study areas was calculated using the Normalized Difference Vegetation Index (NDVI) technique. Multiband image classification was used to differentiate general vegetation types. Change analysis consisted of simple NDVI image differencing and post-classification change matrices. Measurements of total vegetation are for the Abu Dhabi Emirate indicate an increase from 77,200 hectares in 1996 to 162,700 hectares in 2000 (110% increase). Based on comparison with manual interpretation of satellite imagery, the amount of under-reporting of irrigated land is estimated at about 15% of the actual area. From the assessment of 2004 Landset imagery, it was found that the growth of irrigated vegetation in most areas of Emirate had stabilized and had actually slightly decreased in some cases. The decreases are probably due to variability in the measurement technique and not due to actual decreases in area of vegetation. (author)

  13. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  14. Optimizing cloud removal from satellite remotely sensed data for monitoring vegetation dynamics in humid tropical climate

    International Nuclear Information System (INIS)

    Hashim, M; Pour, A B; Onn, C H

    2014-01-01

    Remote sensing technology is an important tool to analyze vegetation dynamics, quantifying vegetation fraction of Earth's agricultural and natural vegetation. In optical remote sensing analysis removing atmospheric interferences, particularly distribution of cloud contaminations, are always a critical task in the tropical climate. This paper suggests a fast and alternative approach to remove cloud and shadow contaminations for Landsat Enhanced Thematic Mapper + (ETM + ) multi temporal datasets. Band 3 and Band 4 from all the Landsat ETM + dataset are two main spectral bands that are very crucial in this study for cloud removal technique. The Normalise difference vegetation index (NDVI) and the normalised difference soil index (NDSI) are two main derivatives derived from the datasets. Change vector analysis is used in this study to seek the vegetation dynamics. The approach developed in this study for cloud optimizing can be broadly applicable for optical remote sensing satellite data, which are seriously obscured with heavy cloud contamination in the tropical climate

  15. Monitoring of reforestation on burnt areas in Western Russia using Landsat time series

    Science.gov (United States)

    Vorobev, Oleg; Kurbanov, Eldar

    2017-04-01

    Forest fires are main disturbance factor for the natural ecosystems, especially in boreal forests. Monitoring for the dynamic of forest cover regeneration in the post-fire period of ecosystem recovery is crucial to both estimation of forest stands and forest management. In this study, on the example of burnt areas of 2010 wildfires in Republic Mari El of Russian Federation we estimated post-fire dynamic of different classes of vegetation cover between 2011-2016 years with the use of time series Landsat satellite images. To validate the newly obtained thematic maps we used 80 test sites with independent field data, as well Canopus-B images of high spatial resolution. For the analysis of the satellite images we referred to Normalized Differenced Vegetation Index (NDVI) and Tasseled Cap transformation. The research revealed that at the post-fire period the area of thematic classes "Reforestation of the middle and low density" has maximum cover (44%) on the investigated burnt area. On the burnt areas of 2010 there is ongoing active process of grass overgrowing (up to 20%), also there are thematic classes of deadwood (15%) and open spaces (10%). The results indicate that there is mostly natural regeneration of tree species pattern corresponding to the pre-fire condition. Forest plantations cover only 2% of the overall burnt area. By the 2016 year the NDVI parameters of young vegetation cover were recovered to the pre-fire level as well. The overall unsupervised classification accuracy of more than 70% shows high degree of agreement between the thematic map and the ground truth data. The research results can be applied for the long term succession monitoring and management plan development for the reforestation activities on the lands disturbed by fire.

  16. Determination of total alpha and beta activities on vegetable samples by LSC

    International Nuclear Information System (INIS)

    Nogueira, Regina Apolinaria; Santos, Eliane Eugenia dos; Bakker, Alexandre Pereira; Vavassori, Giullia

    2011-01-01

    Gross alpha and beta analyses are screening techniques used for environmental radioactivity monitoring. The present study proposes to determine the gross alpha and beta activities in vegetable samples by using LSC - liquid scintillation spectrometry. The procedure was applied to vegetable foods. After ashing vegetable samples in a muffle furnace, 100 mg of ash were added to gel mixture of scintillation cocktails, Water - Instagel - Ultima Gold AB (6:10:4) ml, in polyethylene vial. Am-241 standard solution and a KCl (K-40) solution were used to determine the counting configuration, alpha/beta efficiencies and spillover

  17. Heavy metal content of selected African leafy vegetables planted in ...

    African Journals Online (AJOL)

    Heavy metal content of selected African leafy vegetables planted in urban and peri-urban Nairobi, Kenya. ... African Journal of Environmental Science and Technology ... Government clean-up activities and monitoring of waste disposal is ...

  18. Preparing Landsat Image Time Series (LITS for Monitoring Changes in Vegetation Phenology in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Santosh Bhandari

    2012-06-01

    Full Text Available Time series of images are required to extract and separate information on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term trends. While images from the Landsat Thematic Mapper (TM sensor have the spatial and spectral characteristics suited for mapping a range of vegetation structural and compositional properties, its 16-day revisit period combined with cloud cover problems and seasonally limited latitudinal range, limit the availability of images at intervals and durations suitable for time series analysis of vegetation in many parts of the world. Landsat Image Time Series (LITS is defined here as a sequence of Landsat TM images with observations from every 16 days for a five-year period, commencing on July 2003, for a Eucalyptus woodland area in Queensland, Australia. Synthetic Landsat TM images were created using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM algorithm for all dates when images were either unavailable or too cloudy. This was done using cloud-free scenes and a MODIS Nadir BRDF Adjusted Reflectance (NBAR product. The ability of the LITS to measure attributes of vegetation phenology was examined by: (1 assessing the accuracy of predicted image-derived Foliage Projective Cover (FPC estimates using ground-measured values; and (2 comparing the LITS-generated normalized difference vegetation index (NDVI and MODIS NDVI (MOD13Q1 time series. The predicted image-derived FPC products (value ranges from 0 to 100% had an RMSE of 5.6. Comparison between vegetation phenology parameters estimated from LITS-generated NDVI and MODIS NDVI showed no significant difference in trend and less than 16 days (equal to the composite period of the MODIS data used difference in key seasonal parameters, including start and end of season in most of the cases. In comparison to similar published work, this paper tested the STARFM algorithm in a new (broadleaf forest environment and also

  19. Heavy metals in vegetables sampled from farm and market sites in Accra metropolis, Ghana

    International Nuclear Information System (INIS)

    Fordjour, Linda Addae

    2015-07-01

    This study reports for the first time in Ghana long-term monitoring of heavy metal contamination of vegetables. As reliable residue data analysis resulting from monitoring programs in foods is of great value to the general populace; this could address the possible risk of heavy metal exposure to human health. In this study, monitoring of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in consumable vegetables was assessed for a period of 2 years, 2013-2014. In all, a total of 479 vegetables (cabbage (Brassica oleracea), carrot (Daucus carota), cucumber (Cucumis sativus), green pepper (Capsicum annuum) and lettuce (Lactuca sativa)) were purchased from farm (production) and market sites within Accra Metropolis, Ghana. Samples were subjected to acid digestion and analyzed with atomic absorption spectrometer (AAS). All the vegetables studied contained at least two (2) or more metals; 18.99% of the samples had metal detections below the European Union (EU) guideline values, whereas 81% were above limits. Vegetables from Mallam Attah market and the Ghana Broadcasting Corporation (GBC) sites registered the highest percentage exceedances (100%) with the largest violation occurring in lettuce (97.41%). Elevated concentrations of these metals were also observed in vegetables from markets compared to the farms except As, Cd, Co and Fe. Ni and Cr were undetected in vegetables from farms, however their maximum concentrations (1.236 and 2.459 mg/kg) were recorded in lettuce at market sites. Additionally, the significant metal increases in vegetables from the markets could be due to atmospheric depositions and mode of handling by both farmers and buyers. On the other hand, studies of the soils from the various farm sites had varying mean concentrations of heavy metals, Fe (189.703), Mn (142.246) and As (9.145 mg/kg). However, all the metal levels in the soil were below EU limits, except As (24.2 mg/kg) found at Dzorwulu site, which exceeded the 20.0 mg/kg limit for As in

  20. An overview of passive remote sensing for post-fire monitoring

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available Monitoring of forest burnt areas has several aims: to locate and estimate the extent of such areas; to assess the damages suffered by the forest stands; to check the ability of the ecosystem to naturally recover after the fire; to support the planning of reclamation interventions; to assess the dynamics (pattern and speed of the natural recovery; to check the outcome of any eventual restoration intervention. Remote sensing is an important source of information to support all such tasks. In the last decades, the effectiveness of remotely sensed imagery is increasing due to the advancement of tools and techniques, and to the lowering of the costs, in relative terms. For an effective support to post-fire management (burnt scar perimeter mapping, damage severity assessment, post-fire vegetation monitoring, a mapping scale of at least 1:10000-1:20000 is required: hence, the selection of remotely sensed data is restricted to aerial imagery and to satellite imagery characterized by high (HR and, above all, very high (VHR spatial resolution. In the last decade, HR and VHR passive remote sensing has widespread, providing affordable multitemporal and multispectral pictures of the considered phenomena, at different scales (spatial, temporal and spectral resolutions with reference to the monitoring needs. In the light of such a potential, the integration of GPS field survey and HR (Landsat 7, Spot HVR and VHR satellite imagery (Ikonos, Quickbird, Spot 5 is currently sought as a highly viable option for the post-fire monitoring.

  1. Industrial related contamination of peri-urban fresh vegetables. Highlights and achievements

    International Nuclear Information System (INIS)

    Bansa, D.

    2003-01-01

    Major industries as pollution sources include aluminium smelting and processing, petroleum refining and processing, steel works, manufacturing of dry cell batteries, cement. Vegetables considered are cabbage, carrot, lettuce, onion and Sweet pepper . Areas used for cultivation are backyard gardens, along drains, walkways, and streets. Urban markets Vegetables are liable to contamination from pollutants emitted into the environment. MAIN OBJECTIVES: Determine the extent to which toxic element levels in foods are affected by surrounding industrial activities, Assess the human exposure to such contaminated foodstuffs. SPECIFIC OBJECTIVES: Monitor As, Cd, Cr, Hg, Ni, Pb, Co, Mn, Se, Sn and Mo in vegetables grown in the Tema Municipal District, due to pollution from industrial activity, Assess human exposure to such contaminated foods through monitoring of the distribution and marketing channels. METHODS: Identify sampling areas within the Tema municipality including (a) Identification of the growers and their marketing outlets and (b) Identifying the sources of water used for cultivation by means of a questionnaire; Quantify the level of toxic elements in the soil and water bodies used for the cultivation of vegetables, using nuclear and related analytical techniques; Analyse foods from the farms at the selected sampling areas using neutron activation analysis and X-ray fluorescence analysis

  2. 100 years of vegetation decline and recovery in Lake Fure, Denmark

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Pedersen, Niels Lagergaard; Thorsgaard, Inge

    2008-01-01

    because deeper growth generates more niches. Reduction of species distribution and richness has been reversible following nutrient reduction of the long eutrophied lake, whereas species composition and abundance have not. The historical legacy of community composition is strong, as reflected by closer...... of eutrophication, but four reappeared. Mesotrophic macroalgae were replaced by hypertrophic species whose dominance has persisted. Species richness decreased from 37 to 13 species at the peak of eutrophication, before returning to 25 species during the recent recovery. Species richness increased with transparency...

  3. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-11-01

    Full Text Available Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fire rates of vegetation regeneration between ecoregions. We then related precipitation, temperature, and elevation records at four temporal scales to rates of post-fire vegetation regeneration to ascertain the influence of climate on post-fire vegetation dynamics. We found that broad-scale climate factors are an important influence on post-fire vegetation regeneration. Most notably, higher rates of post-fire regeneration occurred with warmer minimum temperatures. Increases in precipitation also resulted in higher rates of post-fire vegetation growth. While explanatory power was slight, multiple statistical approaches provided evidence for real ecological drivers of post-fire regeneration that should be investigated further at finer scales. The sensitivity of post-disturbance vegetation dynamics to climatic drivers has important ramifications for the management of ecosystems under changing climatic conditions. Shifts in temperature and precipitation regimes are likely to result in changes in post-disturbance dynamics, which could represent important feedbacks into the global climate system.

  4. DETERMINATION OF THE PRESENT VEGETATION STATE OF A WETLAND WITH UAV RGB IMAGERY

    Directory of Open Access Journals (Sweden)

    M. A. Boon

    2017-11-01

    Full Text Available The compositional and structural characteristics of wetland vegetation play a vital role in the services that a wetland supplies. Apart from being important habitats, wetland vegetation also provide services such as flood attenuation and nutrient retention. South Africa is known to be a water scarce country. The protection and continuous monitoring of wetland ecosystems is therefore important. Factors such as site transformation and disturbance may completely change the vegetation of a wetland and the use of Unmanned Aerial Vehicle (UAV imagery can play a valuable role in high-resolution monitoring and mapping. This study assessed if the use of UAV RGB imagery can enhance the determination of the present vegetation state of a wetland. The WET-Health level two (detailed on-site evaluation methodology was followed for the vegetation assessment, where wetland health is a measure of the deviation of a wetland’s structure and function from its natural reference condition. The mapping of the disturbances classes was then undertaken using ultra-high resolution orthophotos, point clouds and digital surface models (DSM. The WET-Health vegetation module completed with the aid of the UAV products still indicates that the vegetation of the wetland is largely modified (“D” PES Category and that the vegetation of the wetland will further deteriorate (change score. These results are the same as determined in the baseline study. However a higher impact (activities taking place within the wetland score were determined. The assessment of various WET-Health vegetation indicators were significantly enhanced using the UAV imagery and derived products. The UAV products provided an accurate vantage point over the wetland and surroundings, and assisted to easily refine the assessment of the disturbance classes and disturbance units.

  5. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Bien, Stephanie; Decker, Ashlee; Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States); Wulker, Brian [Intern, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  6. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    International Nuclear Information System (INIS)

    Powell, Jane; Bien, Stephanie; Decker, Ashlee; Homer, John; Wulker, Brian

    2013-01-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  7. Evaluation of a dietary targets monitor.

    Science.gov (United States)

    Lean, M E J; Anderson, A S; Morrison, C; Currall, J

    2003-05-01

    To evaluate a two-page food frequency list for use as a Dietary Targets Monitor in large scale surveys to quantify consumptions of the key foods groups targeted in health promotion. Intakes of fruit and vegetables, starchy foods and fish estimated from a validated food frequency questionnaire (FFQ) were compared with a short food frequency list (the Dietary Targets Monitor) specifically designed to assess habitual frequency of consumption of foods in relation to dietary targets which form the basis of a National (Scottish) Food and Health Policy. A total of 1085 adults aged 25-64 y from the Glasgow MONICA Study. : The two questionnaires both collected data on frequencies of food consumption for fruit and vegetables, starchy foods and fish. Comparing the two questionnaires, there were consistent biases, best expressed as ratios (FFQ:Dietary Targets Monitor) between the methods for fruit and vegetables (1.33, 95% CI 1.29, 1.38) and 'starchy foods' (1.08, 95% CI 1.05, 1.12), the DTM showing systematic under-reporting by men. For fish consumption, there was essentially no bias between the methods (0.99, 95% CI 0.94, 1.03). Using calibration factors to adjust for biases, the Dietary Targets Monitor indicated that 16% of the subjects were achieving the Scottish Diet food target (400 g/day) for fruit and vegetable consumption. Nearly one-third (32%) of the subjects were eating the recommended intakes of fish (three portions per week). The Dietary Targets Monitor measure of starchy foods consumption was calibrated using FFQ data to be able to make quantitative estimates: 20% of subjects were eating six or more portions of starchy food daily. A similar estimation of total fat intake and saturated fat intake (g/day) allowed the categorization of subjects as low, moderate or high fat consumers, with broad agreement between the methods. The levels of agreement demonstrated by Bland-Altman analysis, were insufficient to permit use of the adjusted DTM to estimate quantitative

  8. [Determination of 51 carbamate pesticide residues in vegetables by liquid chromatography-tandem mass spectrometry based on optimization of QuEChERS sample preparation method].

    Science.gov (United States)

    Wang, Lianzhu; Zhou, Yu; Huang, Xiaoyan; Wang, Ruilong; Lin, Zixu; Chen, Yong; Wang, Dengfei; Lin, Dejuan; Xu, Dunming

    2013-12-01

    The raw extracts of six vegetables (tomato, green bean, shallot, broccoli, ginger and carrot) were analyzed using gas chromatography-mass spectrometry (GC-MS) in full scan mode combined with NIST library search to confirm main matrix compounds. The effects of cleanup and adsorption mechanisms of primary secondary amine (PSA) , octadecylsilane (C18) and PSA + C18 on co-extractives were studied by the weight of evaporation residue for extracts before and after cleanup. The suitability of the two versions of QuEChERS method for sample preparation was evaluated for the extraction of 51 carbamate pesticides in the six vegetables. One of the QuEChERS methods was the original un-buffered method published in 2003, and the other was AOAC Official Method 2007.01 using acetate buffer. As a result, the best effects were obtained from using the combination of C18 and PSA for extract cleanup in vegetables. The acetate-buffered version was suitable for the determination of all pesticides except dioxacarb. Un-buffered QuEChERS method gave satisfactory results for determining dioxacarb. Based on these results, the suitable QuEChERS sample preparation method and liquid chromatography-positive electrospray ionization-tandem mass spectrometry under the optimized conditions were applied to determine the 51 carbamate pesticide residues in six vegetables. The analytes were quantified by matrix-matched standard solution. The recoveries at three levels of 10, 20 and 100 microg/kg spiked in six vegetables ranged from 58.4% to 126% with the relative standard deviations of 3.3%-26%. The limits of quantification (LOQ, S/N > or = 10) were 0.2-10 microg/kg except that the LOQs of cartap and thiofanox were 50 microg/kg. The method is highly efficient, sensitive and suitable for monitoring the 51 carbamate pesticide residues in vegetables.

  9. Conservation genetics in the recovery of endangered animal species: a review of US endangered species recovery plans (1977-1998

    Directory of Open Access Journals (Sweden)

    Moyle, L. C.

    2003-12-01

    Full Text Available The utility of genetic data in conservation efforts, particularly in comparison to demographic information, is the subject of ongoing debate. Using a database of information surveyed from 181 US endangered and threatened species recovery plans, we addressed the following questions concerning the use of genetic information in animal recovery plans: I. What is the relative prominence of genetic vs. demographic data in recovery plan development? and, II. When are genetic factors viewed as a threat, and how do plans respond to genetic threats? In general, genetics appear to play a minor and relatively ill-defined part in the recovery planning process; demographic data are both more abundant and more requested in recovery plans, and tasks are more frequently assigned to the collection / monitoring of demographic rather than genetic information. Nonetheless, genetic threats to species persistence and recovery are identified in a substantial minority (22% of recovery plans, although there is little uniform response to these perceived threats in the form of specific proposed recovery or management tasks. Results indicate that better guidelines are needed to identify how and when genetic information is most useful for species recovery; we highlight specific contexts in which genetics may provide unique management information, beyond that provided by other kinds of data.

  10. Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2016-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.

  11. Evaluating post-wildfire hydrologic recovery using ParFlow in southern California

    Science.gov (United States)

    Lopez, S. R.; Kinoshita, A. M.; Atchley, A. L.

    2016-12-01

    Wildfires are naturally occurring hazards that can have catastrophic impacts. They can alter the natural processes within a watershed, such as surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This research demonstrates how ParFlow, a three-dimensional, distributed hydrologic model can simulate post-fire hydrologic processes by representing soil burn severity (via hydrophobicity) and vegetation recovery as they vary both spatially and temporally. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This model is initially developed for a hillslope in Devil Canyon, burned in 2003 by the Old Fire in southern California (USA). The domain uses a 2m-cell size resolution over a 25 m by 25 m lateral extent. The subsurface reaches 2 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is incorporated represented by satellite-based Enhanced Vegetation Index (EVI) products. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated and will be used as a basis for developing a watershed-scale model. Long-term continuous simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management.

  12. Extraction of urban vegetation with Pleiades multiangular images

    Science.gov (United States)

    Lefebvre, Antoine; Nabucet, Jean; Corpetti, Thomas; Courty, Nicolas; Hubert-Moy, Laurence

    2016-10-01

    Vegetation is essential in urban environments since it provides significant services in terms of health, heat, property value, ecology ... As part of the European Union Biodiversity Strategy Plan for 2020, the protection and development of green-infrastructures is strengthened in urban areas. In order to evaluate and monitor the quality of the green infra-structures, this article investigates contributions of Pléiades multi-angular images to extract and characterize low and high urban vegetation. From such images one can extract both spectral and elevation information from optical images. Our method is composed of 3 main steps : (1) the computation of a normalized Digital Surface Model from the multi-angular images ; (2) Extraction of spectral and contextual features ; (3) a classification of vegetation classes (tree and grass) performed with a random forest classifier. Results performed in the city of Rennes in France show the ability of multi-angular images to extract DEM in urban area despite building height. It also highlights its importance and its complementarity with contextual information to extract urban vegetation.

  13. Screening of 439 Pesticide Residues in Fruits and Vegetables by Gas Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and Q-TOF Spectrum Library.

    Science.gov (United States)

    Li, Jian-Xun; Li, Xiao-Ying; Chang, Qiao-Ying; Li, Yan; Jin, Ling-He; Pang, Guo-Fang; Fan, Chun-Lin

    2018-05-03

    Because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, and fast acquisition rates, GC-quadrupole-time-of-flight MS (GC-Q-TOF/MS) has become a powerful tool for pesticide residue analysis. In this study, a TOF accurate mass database and Q-TOF spectrum library of 439 pesticides were established, and the parameters of the TOF database were optimized. Through solid-phase extraction (SPE), whereby pesticides are extracted from fruit and vegetable substrates by using 40 mL 1% acetic acid in acetonitrile (v/v), purified by the Carbon/NH₂ SPE cartridge, and finally detected by GC-Q-TOF/MS, the rapid analysis of 439 pesticides in fruits and vegetables can be achieved. The methodology verification results show that more than 70 and 91% of pesticides, spiked in fruits and vegetables with concentrations of 10 and 100 μg/kg, respectively, saw recoveries that conform to the European Commission's criterion of between 70 and 120% with RSD ≤20%. Eighty-one percent of pesticides have screening detection limits lower than 10 μg/kg, which makes this a reliable analysis technology for the monitoring of pesticide residues in fruits and vegetables. This technology was further validated for its characteristics of high precision, high speed, and high throughput through successful detection of 9817 samples during 2013-2015.

  14. Pattern Decomposition Method and a New Vegetation Index for Hyper-Multispectral Satellite Data Analysis

    Science.gov (United States)

    Muramatsu, K.; Furumi, S.; Hayashi, A.; Shiono, Y.; Ono, A.; Fujiwara, N.; Daigo, M.; Ochiai, F.

    We have developed the ``pattern decomposition method'' based on linear spectral mixing of ground objects for n-dimensional satellite data. In this method, spectral response patterns for each pixel in an image are decomposed into three components using three standard spectral shape patterns determined from the image data. Applying this method to AMSS (Airborne Multi-Spectral Scanner) data, eighteen-dimensional data are successfully transformed into three-dimensional data. Using the three components, we have developed a new vegetation index in which all the multispectral data are reflected. We consider that the index should be linear to the amount of vegetation and vegetation vigor. To validate the index, its relations to vegetation types, vegetation cover ratio, and chlorophyll contents of a leaf were studied using spectral reflectance data measured in the field with a spectrometer. The index was sensitive to vegetation types and vegetation vigor. This method and index are very useful for assessment of vegetation vigor, classifying land cover types and monitoring vegetation changes

  15. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program.

    Science.gov (United States)

    Nunes, João A; Moreira, Alexandre; Crewther, Blair T; Nosaka, Ken; Viveiros, Luis; Aoki, Marcelo S

    2014-10-01

    This study investigated the effect of a periodized training program on internal training load (ITL), recovery-stress state, immune-endocrine responses, and physical performance in 19 elite female basketball players. The participants were monitored across a 12-week period before an international championship, which included 2 overloading and tapering phases. The first overloading phase (fourth to sixth week) was followed by a 1-week tapering, and the second overloading phase (eighth to 10th week) was followed by a 2-week tapering. ITL (session rating of perceived exertion method) and recovery-stress state (RESTQ-76 Sport questionnaire) were assessed weekly and bi-weekly, respectively. Pretraining and posttraining assessments included measures of salivary IgA, testosterone and cortisol concentrations, strength, jumping power, running endurance, and agility. Internal training load increased across all weeks from 2 to 11 (p ≤ 0.05). After the first tapering period (week 7), a further increase in ITL was observed during the second overloading phase (p ≤ 0.05). After the second tapering period, a decrease in ITL was detected (p ≤ 0.05). A disturbance in athlete stress-recovery state was noted during the second overloading period (p ≤ 0.05), before returning to baseline level in end of the second tapering period. The training program led to significant improvements in the physical performance parameters evaluated. The salivary measures did not change despite the fluctuations in ITL. In conclusion, a periodized training program evoked changes in ITL in elite female basketball players, which appeared to influence their recovery-stress state. The training plan was effective in preparing participants for competition, as indicated by improvements in recovery-stress state and physical performance after tapering.

  16. Investigations on vegetation of Grikinishkes landscape standard in the Ignalina Nuclear Power Plant region

    International Nuclear Information System (INIS)

    Balevichiene, J.; Lazdauskaite, Z.; Matulevichiute, D.; Stankevichiute, J.

    1995-01-01

    The vegetation of Grikinishkes landscape standard was investigated in 1994 according to the methodics of the European integrated monitoring. After a common prospect of the territory the representative geobotanical profile of 2 km length and 200 m width was found out. There were described 10 associations (classified according to Zurich-Montpellier school principles) including 134 plant species. The site of an intensive monitoring was selected and background investigations carried out. The investigation data indicated, that the state of vegetation is only satisfactory. Anthropogenic changes coursed by sinantropisation, defoliation and pyrogenesis of flora were observed. (author). 7 refs., 3 tabs., 1 fig

  17. Review of Methods for the Monitoring of Biomass and Vegetal Carbon in Tropical Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    William Fonseca

    2017-06-01

    Full Text Available The quantification of vegetal biomass is the key to know the carbon that forest ecosystems store, and therefore, its capacity to mitigate climatic change. There is a variety of methods to estimate biomass, many with small variations, such as size and shape of sampling units, inclusion or not of any reservoir component (leaves, branches, roots, necromasses, minimum diameter inventoried, among others. The objective of the paper is to explain the most important aspects to be considered in the inventory of removals, based on the inventory design (statistical design, size and shape of the sampling units, components of the biomass to be evaluated. A second point deals with the determination of aerial biomass and roots, referring to the direct or destructive method, and indirect methods, especially to the use of mathematical models for their easy application and low cost; besides, some models for natural forest and plantations are noted. Reference is also made to the study of carbon in soils, biomass expansion factors, and how to determine carbon in biomass. We hope that these notes will facilitate the understanding of the topic and be a reference for the establishment of monitoring, reporting and verification schemes.

  18. Monitoring of need for recovery and prolonged fatigue within the working population: Evaluation of reliability and agreement over time.

    Science.gov (United States)

    Hoofs, H; Jansen, N W H; Jansen, M W J; Kant, I J

    2017-01-01

    Need for recovery (NFR) and prolonged fatigue are two important concepts for monitoring short- and long-term outcomes of psychological job demands within employees. For effective monitoring it is, however, important to gain insight in the reproducibility of the instruments that are used. The objective was to assess reproducibility of the NFR scale and Checklist Individual Strength (CIS), measuring NFR and prolonged fatigue respectively, in the working population. Longitudinal data from the Maastricht Cohort Study (MCS) study was used, capturing 12,140 employees from 45 different companies at baseline. A 'working' and 'returning to work' sample was conceived for different intervals; 4-month, 1-year, and 2-year. Reliability, assessed with the interclass correlation, was high within employees with a stable work environment for the NFR scale (0.78) and CIS (0.75). The smallest detectable change, assessing the agreement, was 41.20 for the NFR scale and 31.10 for the CIS. Reliability was satisfactory for both the NFR scale and CIS. The agreement of both scales to detect a changes within employees was, however, less optimal. It is, therefore, suggested that, ideally, both instruments are placed within a broader range of instruments to effectively monitor the outcomes of psychological job demands.

  19. Vegetation management with fire modifies peatland soil thermal regime.

    Science.gov (United States)

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (management effects. Temperatures measured in soil plots burned vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula

    Science.gov (United States)

    Francos, Marcos; Úbeda, Xavier; Tort, Joan; Panareda, Josep María; Cerdà, Artemio

    2016-10-01

    Wildfires are a widespread phenomenon in Mediterranean environments. Wildfires result in different fire severities, and then in contrasting plant cover and floristic composition. This paper analyses the recovery of the vegetation eighteen years after a wildfire in Catalonia. The Pinus pinaster ssp. forest was affected by three different severities in July 1994, and studied the spring of 1995 and again in 2008. After eighteen years (2012), our research found that burnt sites constitute a dense forest with a broad variety of species, including many young pines, shrubs and herbaceous plants, but that the risk of fire remains very high, due to the large quantity of fuel and the flammability of the species. The management of the post-fire is critical when high severity fires take places, and it is recommended that high-severity fires must be avoided for a sustainable forest management. We recommend that once the timber (Pinus plantations) production is not profitable, Quercus suber L. and Pinus pinaster ssp. forest should be promoted, and pine plantations avoided.

  1. Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables.

    Science.gov (United States)

    Ono, Hiroshi; Nishio, Shoko; Tsurii, Jun; Kawamoto, Tetsuhiro; Sonomoto, Kenji; Nakayama, Jiro

    2014-11-01

    Nukadoko is a fermented rice bran mash traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko depends on natural fermentation without using starter cultures. Here, we monitored chemical and microbiological changes in the initial batch fermentation of nukadoko. Nukadoko samples were prepared by spontaneous fermentation of four different brands of rice bran, and microbiome dynamics were analyzed for 2 months. In the first week, non-Lactobacillales lactic acid bacteria (LAB) species, which differed among the samples, grew proportionally to pH decrease and lactate increase. Thereafter, Lactobacillus plantarum started growing and consumed residual sugars, causing further lactate increase in nukadoko. Finally, microbial communities in all tested nukadoko samples were dominated by L. plantarum. Taken together, our results suggest that the mixture of the fast-growing LAB species and slow-growing L. plantarum may be used as a suitable starter culture to promote the initial fermentation of nukadoko. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  3. Vegetation dielectric characterization using an open-ended coaxial probe

    Science.gov (United States)

    Mavrovic, A.; Roy, A.; Royer, A.; Boone, F.; Pappas, C.; Filali, B.

    2017-12-01

    The detection of freeze/thaw (F/T) physical state of soil is one of the main objectives of the SMAP mission as well as one of the secondary objectives of the SMOS mission. Annual F/T cycles have substantial impacts on surface energy budgets, permafrost conditions, as well as forest water and carbon dynamics. It has been shown that spaceborne L-band passive radiometry is a promising tool to monitor F/T due to the substantial differences between the permittivity of water and ice at these frequencies. However, the decoupling of the signal between soil and vegetation components remains challenging for all microwave remote sensing applications at various spatial scales. Radiative transfer models in the microwave domain are generally poorly parameterized to consider the non-negligible contribution of vegetation. The main objective of this research is to assess the skill of a recently developed Open-Ended Coaxial Probe (OECP) to measure the complex microwave permittivity of vegetation and soils and to derive a relation between the impact of vegetation on the microwave signal and the vegetation permittivity that could serve as a validation tool for soil models especially in frozen state. Results show that the OECP is a suitable tool to infer the radial profile of the complex permittivity in L-band of trees. A clear distinction can be made between the dielectric characterization of the sapwood where the permittivity is high because of the high permittivity of water but decrease with depth, and the heartwood where the permittivity is low and relatively constant. The seasonal cycle of the F/T state of the vegetation can also be observed since it is strongly correlated with the permittivity of the wood. The permittivity of a tree over the winter season is very low and homogenous since the permittivity of ice is significantly lower than water and the sap flow is negligible. The fluctuation of the frozen and thawed permittivity for different tree species was evaluated, focusing

  4. Detecting inter-annual variations in the phenology of evergreen conifers using long-term MODIS vegetation index time series.

    OpenAIRE

    Ulsig, Laura

    2016-01-01

    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalised Difference Vegetation Index (NDVI). This study investigates the potential of the Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of ...

  5. Recovery and Performance in Sport: Consensus Statement.

    Science.gov (United States)

    Kellmann, Michael; Bertollo, Maurizio; Bosquet, Laurent; Brink, Michel; Coutts, Aaron J; Duffield, Rob; Erlacher, Daniel; Halson, Shona L; Hecksteden, Anne; Heidari, Jahan; Kallus, K Wolfgang; Meeusen, Romain; Mujika, Iñigo; Robazza, Claudio; Skorski, Sabrina; Venter, Ranel; Beckmann, Jürgen

    2018-02-01

    The relationship between recovery and fatigue and its impact on performance has attracted the interest of sport science for many years. An adequate balance between stress (training and competition load, other life demands) and recovery is essential for athletes to achieve continuous high-level performance. Research has focused on the examination of physiological and psychological recovery strategies to compensate external and internal training and competition loads. A systematic monitoring of recovery and the subsequent implementation of recovery routines aims at maximizing performance and preventing negative developments such as underrecovery, nonfunctional overreaching, the overtraining syndrome, injuries, or illnesses. Due to the inter- and intraindividual variability of responses to training, competition, and recovery strategies, a diverse set of expertise is required to address the multifaceted phenomena of recovery, performance, and their interactions to transfer knowledge from sport science to sport practice. For this purpose, a symposium on Recovery and Performance was organized at the Technical University Munich Science and Study Center Raitenhaslach (Germany) in September 2016. Various international experts from many disciplines and research areas gathered to discuss and share their knowledge of recovery for performance enhancement in a variety of settings. The results of this meeting are outlined in this consensus statement that provides central definitions, theoretical frameworks, and practical implications as a synopsis of the current knowledge of recovery and performance. While our understanding of the complex relationship between recovery and performance has significantly increased through research, some important issues for future investigations are also elaborated.

  6. Remote Sensing Applied to the Study of Fire Regime Attributes and Their Influence on Post-Fire Greenness Recovery in Pine Ecosystems

    Directory of Open Access Journals (Sweden)

    Víctor Fernández-García

    2018-05-01

    Full Text Available We aimed to analyze the relationship between fire regime attributes and the post-fire greenness recovery of fire-prone pine ecosystems over the short (2-year and medium (5-year term after a large wildfire, using both a single and a combined fire regime attribute approach. We characterized the spatial (fire size, temporal (number of fires, fire recurrence, and return interval, and magnitude (burn severity of the last fire fire regime attributes throughout a 40-year period with a long-time series of Landsat imagery and ancillary data. The burn severity of the last fire was measured by the dNBR (difference of the Normalized Burn Ratio spectral index, and classified according to the ground reference values of the CBI (Composite Burn Index. Post-fire greenness recovery was obtained through the difference of the NDVI (Normalized Difference Vegetation Index between pre- and post-fire Landsat scenes. The relationship between fire regime attributes (single attributes: fire recurrence, fire return interval, and burn severity; combined attributes: fire recurrence-burn severity and fire return interval-burn severity and post-fire greenness recovery was evaluated using linear models. The results indicated that all the single and combined attributes significantly affected greenness recovery. The single attribute approach showed that high recurrence, short return interval and low severity situations had the highest vegetation greenness recovery. The combined attribute approach allowed us to identify a wider variety of post-fire greenness recovery situations than the single attribute one. Over the short term, high recurrence as well as short return interval scenarios showed the best post-fire greenness recovery independently of burn severity, while over the medium term, high recurrence combined with low severity was the most recovered scenario. This novel combined attribute approach (temporal plus magnitude could be of great value to forest managers in the

  7. The Development of the Recovery Assessments by Phone Points (RAPP): A Mobile Phone App for Postoperative Recovery Monitoring and Assessment.

    Science.gov (United States)

    Jaensson, Maria; Dahlberg, Karuna; Eriksson, Mats; Grönlund, Åke; Nilsson, Ulrica

    2015-09-11

    In Sweden, day surgery is performed in almost 2 million patients per year. Patient satisfaction is closely related to potential adverse events during the recovery process. A way to empower patients and give them the opportunity to affect care delivery is to let them evaluate their recovery process. The most common evaluation method is a follow-up telephone call by a nurse one or two days after surgery. In recent years, mHealth apps have been used to evaluate the nurse-patient relationship for self-management in chronic diseases or to evaluate pain after surgery. To the best of our knowledge, no previous research has explored the recovery process after day surgery via mobile phone in a Swedish cohort. The objective of the study is to describe the process of developing a mobile phone app using a Swedish Web-based Quality of Recovery (SwQoR) questionnaire to evaluate postoperative recovery after day surgery. The development process included five steps: (1) setting up an interdisciplinary task force, (2) evaluating the potential needs of app users, (3) developing the Swedish Web version of a QoR questionnaire, (4) constructing a mobile phone app, and (5) evaluating the interface and design by staff working in a day-surgery department and patients undergoing day surgery. A task force including specialists in information and communication technology, eHealth, and nursing care worked closely together to develop a Web-based app. Modifications to the QoR questionnaire were inspired by instruments used in the field of recovery for both children and adults. The Web-based app, Recovery Assessment by Phone Points (RAPP) consists of two parts: (1) a mobile app installed on the patient's private mobile phone, and (2) an administrator interface for the researchers. The final version of the SwQoR questionnaire, which includes 31 items, was successfully installed in RAPP. The interface and the design were evaluated by asking for user opinions about the design and usefulness of the

  8. Vegetation impoverishment despite greening: a case study from central Senegal

    Science.gov (United States)

    Herrmann, Stefanie M.; Tappan, G. Gray

    2013-01-01

    Recent remote sensing studies have documented a greening trend in the semi-arid Sahel and Sudan zones of West Africa since the early 1980s, which challenges the mainstream paradigm of irreversible land degradation in this region. What the greening trend means on the ground, however, has not yet been explored. This research focuses on a region in central Senegal to examine changes in woody vegetation abundance and composition in selected sites by means of a botanical inventory of woody vegetation species, repeat photography, and perceptions of local land users. Despite the greening, an impoverishment of the woody vegetation cover was observed in the studied sites, indicated by an overall reduction in woody species richness, a loss of large trees, an increasing dominance of shrubs, and a shift towards more arid-tolerant, Sahelian species since 1983. Thus, interpretation of the satellite-derived greening trend as an improvement or recovery is not always justified. The case of central Senegal represents only one of several possible pathways of greening throughout the region, all of which result in similar satellite-derived greening signals.

  9. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    Science.gov (United States)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  10. VEGETATION COVERAGE AND IMPERVIOUS SURFACE AREA ESTIMATED BASED ON THE ESTARFM MODEL AND REMOTE SENSING MONITORING

    Directory of Open Access Journals (Sweden)

    R. Hu

    2018-04-01

    Full Text Available Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC and impervious layer with high spatiotemporal resolution (30 m, 8 day were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1 ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2 The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  11. Effects of culinary preparation on radionuclide levels in vegetable foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, B.T.; Bradley, E.J.; Dodd, N.J.

    1987-01-01

    Vegetables contaminated by fall-out from the Chernobyl nuclear reactor accident have been used to investigate how simple culinary methods can affect the levels of various radionuclides in the portion consumed by man. Only ..gamma.. ray emitting radionuclides were investigated. Those parts of vegetables normally considered inedible, for example coarse outer leaves, foliage or roots, can account for between 50% and 97% of the total radionuclide content. Washing of the edible parts of vegetables can reduce the levels still further, although the efficacy is dependent on both the radionuclide and the vegetable type. These normal domestic procedures can reduce intakes of recently deposited radionuclides on vegetables by about an order of magnitude. The results have implications for the scope of monitoring programmes that might follow any future accidental release. They also reinforce very strongly the requirement for measurements on edible parts rather than whole samples as a direct input to dose evaluation. These results further suggest that there is no need to revise the general assumptions made in accident consequence models regarding losses of activity between harvest and consumption. However, more rigorous assessments of dose should take account of vegetable type and probable means of preparation.

  12. Trends in soil-vegetation dynamics in burned Mediterranean pine forests: the effects of soil properties

    Science.gov (United States)

    Wittenberg, L.; Malkinson, D.

    2009-04-01

    Fire can impact a variety of soil physical and chemical properties. These changes may result, given the fire severity and the local conditions, in decreased infiltration and increased runoff and erosion rates. Most of these changes are caused by complex interactions among eco-geomorphic processes which affect, in turn, the rehabilitation dynamics of the soil and the regeneration of the burnt vegetation. Following wildfire events in two forests growing on different soil types, we investigated runoff, erosion, nutrient export (specifically nitrogen and phosphorous) and vegetation recovery dynamics. The Biriya forest site, burned during the 2006 summer, is composed of two dominant lithological types: soft chalk and marl which are relatively impermeable. The rocks are usually overlain by relatively thick, up of to 80 cm, grayish-white Rendzina soil, which contains large amounts of dissolved carbonate. These carbonates serve as a limiting factor for vegetation growth. The planted forest in Biriya is comprised of monospecific stands of Pinus spp. and Cupressus spp. The Mt. Carmel area, which was last burned in the 2005 spring, represents a system of varied Mediterranean landscapes, differentiated by lithology, soils and vegetation. Lithology is mainly composed of limestone, dolomite, and chalk. The dominant soil is Brown Rendzina whilst in some locations Grey Rendzina and Terra Rossa can be found. The local vegetation is composed mainly of a complex of pine (Pinus halepensis), oak (Quercus calliprinos), Pistacia lentiscus and associations At each site several 3X3 m monitoring plots were established to collect runoff and sediment. In-plot vegetation changes were monitored by a sequence of aerial photographs captured using a 6 m pole-mounted camera. At the terra-rosa sites (Mt. Carmel) mean runoff coefficients were 2.18% during the first year after the fire and 1.6% in the second. Mean erosion rates also decreased, from 42 gr/m2 to 4 gr/m2. The recovering vegetation was

  13. Development of two short measures for recovery and stress in sport.

    Science.gov (United States)

    Nässi, Anu; Ferrauti, Alexander; Meyer, Tim; Pfeiffer, Mark; Kellmann, Michael

    2017-08-01

    The Acute Recovery and Stress Scale (ARSS) and the Short Recovery and Stress Scale were first established in German for the purposes of monitoring athletes' current recovery-stress states in an economical and multidimensional manner. The aim of this paper is to document the development and initial validation of the English versions of these two psychometric monitoring tools. A total of 267 English-speaking athletes from a variety of team and individual sports participated in the study. The English versions demonstrated satisfactory internal consistency for both instruments (Cronbach α of .74-.89). Furthermore, good model fit was found for the eight scales of the ARSS, matching the structure and results of the German counterparts. Correlations among and between the scales reciprocate the theoretical constructs of stress and recovery, supporting the construct validity of the scales. Correlation coefficients within stress and recovery ranged between r s  = .29 and .68. The correlations between stress and recovery varied between r s  = -.29 and -.64. These constructs were further supported by correlations with the scores of the Recovery-Stress Questionnaire for Athletes, thereby showing convergent validity. The findings demonstrate initial validity and reliability of the two measures and reflect the results of the German versions. However, further research is needed before applying these scales in practical settings.

  14. Nucleation Techniques as a Strategy for Recovery and Environmental Valuation of Degraded Areas Located in Alto Rio São Lourenço, Campo Verde-MT

    Directory of Open Access Journals (Sweden)

    Renata Freitag Daltro

    2013-12-01

    Full Text Available Our aim was to assess the effectiveness of different techniques that comprise the recovery plan of degraded area (RPDA in one of the headwaters of São Lourenço River, Campo Verde-MT, by monitoring the early stage of plant regeneration of permanent preservation degraded areas, according to the Federal Law 4.771/65 and its updates. The experimental area was divided into five treatments, for the planting of native plants, fruit, legumes, green manure and muvuca seed, based on the precepts of nucleation. For each treatment there was a random selection of three installments, measuring 81m2, totaling 12 plots. The planting, the identification and the characterization of indicators of vegetation regeneration site were monitored in these plots. The indicators found at the site were: flowers, fruits and seeds of revegetated species; traces and presence of wildlife; litter production and soil cover, and formation of microclimates, with increasing relative humidity and decreased atmospheric temperature.

  15. High-resolution stable isotope monitoring reveals differential vegetation-soil water feedbacks among plant functional types

    Science.gov (United States)

    Volkmann, T. H. M.; Haberer, K.; Troch, P. A. A.; Gessler, A.; Weiler, M.

    2016-12-01

    Understanding the linked dynamics of rain water recharge to soils and its utilization by plants is critical for predicting the impact of climate and land use changes on the productivity of ecosystems and the hydrologic cycle. While plants require vast quantities of water from the soil to sustain growth and function, they exert important direct and indirect controls on the movement of water through the rooted soil horizons, thereby potentially affecting their own resource availability. However, the specific ecohydrological belowground processes associated with different plant types and their rooting systems have been difficult to quantify with traditional methods. Here, we report on the use of techniques for monitoring stable isotopes in soil and plant water pools that allow us to track water infiltration and root uptake dynamics non-destructively and in high resolution. The techniques were applied in controlled rain pulse experiments with distinct plant types (grass, deciduous trees, grapevine) that we let develop on an initially uniform soil for two years. Our results show that plant species and types differed widely in their plasticity and pattern of root uptake under variable water availability. Thereby, and through notably co-acting indirect effects related to differential root system traits and co-evolution of soil properties, the different plants induced contrasting hydrological dynamics in the soil they had inhabited for only a short period of time. Taken together, our data suggest that the studied soil-vegetation systems evolved a positive infiltration-uptake feedback in which hydrological flow pathways underlying different species diverged in a way that complemented their specific water utilization strategy. Such a feedback could present an indirect competitive mechanism by which plants improve their own water supply and modulate hydrological cycling at the land surface. The ability to directly measure this feedback using in situ isotope methodology

  16. Changes in perceived stress and recovery in overreached young elite soccer players

    NARCIS (Netherlands)

    C. Visscher; Koen A.P.M. Lemmink; M.S. Brink; A.J. Coutts

    2012-01-01

    Abstract: The aim of this study was to prospectively monitor sport-specific performance and assess the stress-recovery balance in overreached (OR) soccer players and controls. During two competitive seasons, 94 players participated in the study. The stress-recovery balance (RESTQ-Sport) and

  17. Cost competitive “soft sensor” for determining product recovery in industrial methanol

    DEFF Research Database (Denmark)

    S.B.A. Udugama, Isuru; Mansouri, Seyed Soheil; Huusom, Jakob Kjøbsted

    2017-01-01

    The measurement of ratio of product recovery in industrial methanol distillation is of high economic importance and represent a key performance index (KPI) of the distillation unit. In current operations, the product recovery of many industrial distillation units are not actively monitored, instead...

  18. Using smartphones to decrease substance use via self-monitoring and recovery support: study protocol for a randomized control trial.

    Science.gov (United States)

    Scott, Christy K; Dennis, Michael L; Gustafson, David H

    2017-08-10

    Alcohol abuse, other substance use disorders, and risk behaviors associated with the human immunodeficiency virus (HIV) represent three of the top 10 modifiable causes of mortality in the US. Despite evidence that continuing care is effective in sustaining recovery from substance use disorders and associated behaviors, patients rarely receive it. Smartphone applications (apps) have been effective in delivering continuing care to patients almost anywhere and anytime. This study tests the effectiveness of two components of such apps: ongoing self-monitoring through Ecological Momentary Assessments (EMAs) and immediate recovery support through Ecological Momentary Interventions (EMIs). The target population, adults enrolled in substance use disorder treatment (n = 400), are being recruited from treatment centers in Chicago and randomly assigned to one of four conditions upon discharge in a 2 × 2 factorial design. Participants receive (1) EMAs only, (2) EMIs only, (3) combined EMAs + EMIs, or (4) a control condition without EMA or EMI for 6 months. People in the experimental conditions receive smartphones with the apps (EMA and/or EMI) specific to their condition. Phones alert participants in the EMA and EMA + EMI conditions at five random times per day and present participants with questions about people, places, activities, and feelings that they experienced in the past 30 min and whether these factors make them want to use substances, support their recovery, or have no impact. Those in the EMI and EMA + EMI conditions have continual access to a suite of support services. In the EMA + EMI condition, participants are prompted to use the EMI(s) when responses to the EMA(s) indicate risk. All groups have access to recovery support as usual. The primary outcome is days of abstinence from alcohol and other drugs. Secondary outcomes are number of HIV risk behaviors and whether abstinence mediates the effects of EMA, EMI, or EMA + EMI on HIV

  19. Floodplain-wide coupling of flooding and vegetation patterns in the Tonle Sap of the Mekong River

    Science.gov (United States)

    Arias, M. E.; Haberstroh, C.

    2017-12-01

    Floodplain vegetation is one of the prime drivers of ecosystem productivity, thus floodplain-wide monitoring is critical to ensure the well-being of these ecosystems and the important services they provide to riparian societies. Therefore, the objective of this presentation is to introduce a novel methodology to monitor long-term and large-scale patterns of rooted vegetation in seasonally inundated floodplains. We applied this methodology to an floodplain area of ac. 18,000 km2 in the Tonle Sap (Cambodia), a complex hydro-ecological system directly connected to the Mekong River. The overall hypothesis of this study is that floodplain vegetation condition is dictated by gradients of disturbance from the uplands and from the flood-pulse itself. We first demonstrate that spatial vegetation patterns represented by the normalized difference vegetation index (NDVI) during the dry season -when interference from cloud cover and partial inundation is minimal- correspond well to meaningful land use/land cover groups as well as canopy cover data collected in the field. Annual trends (2000-2016) in NDVI spatial distribution showed that the modality of dry season NDVI is largely governed by the magnitude of flooding in the antecedent hydrological year. Indeed, we found a significant relationship between flood duration -defined as the number of months annually a floodplain pixel remains flooded- and floodplain-wide NDVI. We also determined that ac. 115 km2 yr-1 of the highest quality vegetation, were replaced by fallow land during the period of study. This research has important insights on the main drivers of floodplain vegetation in the Tonle Sap, and the proposed methodology, using data from freely available worldwide satellite imagery (MODIS), promises to be an effective method to monitor ecosystem change in large floodplains across the world.

  20. Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Amar Madoui

    2015-11-01

    Full Text Available In the managed boreal forest, harvesting has become a disturbance as important as fire. To assess whether forest recovery following both types of disturbance is similar, we compared post-disturbance revegetation rates of forests in 22 fire events and 14 harvested agglomerations (harvested areas over 5–10 years in the same vicinity in the western boreal forest of Quebec. Pre-disturbance conditions were first compared in terms of vegetation cover types and surficial deposit types using an ordination technique. Post-disturbance changes over 30 years in land cover types were characterized by vectors of succession in an ordination. Four post-disturbance stages were identified from the 48 land thematic classes in the Landsat images: “S0” stand initiation phase; “S1” early regeneration phase; “S2” stem exclusion phase; and “S3” the coniferous forest. Analyses suggest that fire occurs in both productive and unproductive forests, which is not the case for harvesting. Revegetation rates (i.e., rapidity with which forest cover is re-established appeared to be more advanced in harvested agglomerations when compared with entire fire events. However, when considering only the productive forest fraction of each fire, the revegetation rates are comparable between the fire events and the harvested agglomerations. The S0 is practically absent from harvested agglomerations, which is not the case in the fire events. The difference in revegetation rates between the two disturbance types could therefore be attributed mostly to the fact that fire also occurs in unproductive forest, a factor that has to be taken into account in such comparisons.

  1. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    OpenAIRE

    Ulsig, Laura; Nichol, Caroline J.; Huemmrich, Karl F.; Landis, David R.; Middleton, Elizabeth M.; Lyapustin, Alexei I.; Mammarella, Ivan; Levula, Janne; Porcar-Castell, Albert

    2017-01-01

    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MO...

  2. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

    Science.gov (United States)

    El-Vilaly, Mohamed Abd Salam; Didan, Kamel; Marsh, Stuart E.; van Leeuwen, Willem J. D.; Crimmins, Michael A.; Munoz, Armando Barreto

    2018-03-01

    For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountainWestern United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multisensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness ( pchallenges to the region's already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

  3. Applying monitoring, verification, and accounting techniques to a real-world, enhanced oil recovery operational CO2 leak

    Science.gov (United States)

    Wimmer, B.T.; Krapac, I.G.; Locke, R.; Iranmanesh, A.

    2011-01-01

    The use of carbon dioxide (CO2) for enhanced oil recovery (EOR) is being tested for oil fields in the Illinois Basin, USA. While this technology has shown promise for improving oil production, it has raised some issues about the safety of CO2 injection and storage. The Midwest Geological Sequestration Consortium (MGSC) organized a Monitoring, Verification, and Accounting (MVA) team to develop and deploy monitoring programs at three EOR sites in Illinois, Indiana, and Kentucky, USA. MVA goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. This paper focuses on the use of MVA techniques in monitoring a small CO2 leak from a supply line at an EOR facility under real-world conditions. The ability of shallow monitoring techniques to detect and quantify a CO2 leak under real-world conditions has been largely unproven. In July of 2009, a leak in the pipe supplying pressurized CO2 to an injection well was observed at an MGSC EOR site located in west-central Kentucky. Carbon dioxide was escaping from the supply pipe located approximately 1 m underground. The leak was discovered visually by site personnel and injection was halted immediately. At its largest extent, the hole created by the leak was approximately 1.9 m long by 1.7 m wide and 0.7 m deep in the land surface. This circumstance provided an excellent opportunity to evaluate the performance of several monitoring techniques including soil CO2 flux measurements, portable infrared gas analysis, thermal infrared imagery, and aerial hyperspectral imagery. Valuable experience was gained during this effort. Lessons learned included determining 1) hyperspectral imagery was not effective in detecting this relatively small, short-term CO2 leak, 2) even though injection was halted, the leak remained dynamic and presented a safety risk concern

  4. Changes in perceived stress and recovery in overreached young elite soccer players

    NARCIS (Netherlands)

    Brink, Michel; Visscher, Chris; Coutts, A.J.; Lemmink, Koen

    2012-01-01

    The aim of this study was to prospectively monitor sport-specific performance and assess the stress-recovery balance in overreached (OR) soccer players and controls. During two competitive seasons, 94 players participated in the study. The stress-recovery balance (RESTQ-Sport) and sport-specific

  5. Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).

    Science.gov (United States)

    Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen

    2009-03-01

    Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.

  6. Mapping coastal vegetation using an expert system and hyperspectral imagery

    NARCIS (Netherlands)

    Schmidt, K.S.; Skidmore, A.K.; Kloosterman, E.H.; Oosten, van H.; Kumar, L.; Janssen, J.A.M.

    2004-01-01

    Mapping and monitoring salt marshes in the Netherlands are important activities of the Ministry of Public Works (Rijkswaterstaat). The Survey Department (Meetkundige Dienst) produces vegetation maps using aerial photographs. However, it is a time-consuming and expensive activity. The accuracy of the

  7. 77 FR 28855 - Endangered and Threatened Species; Recovery Plans

    Science.gov (United States)

    2012-05-16

    .../DPS-level portion of the Proposed Plan contains background and contextual information that includes... describes recovery strategies and actions for each ESU/DPS, critical uncertainties, and research, monitoring...

  8. Current status of vegetation of six PETROBRAS refineries; Status dos fragmentos de vegetacao em seis refinarias da PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Basbaum, Marcos Andre; Bonafini, Fabio Loureiro; Porciano, Patricia Pereira [SEEBLA, Servicos de Engenharia Emilio Baumgart Ltda., Rio de Janeiro, RJ (Brazil); Torggler, Bianca Felippe; Fernandes, Renato [PETROBRAS, Rio de Janeiro, RJ (Brazil). Engenharia; Vieira, Elisa Diniz Reis [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Most of refineries from PETROBRAS have significant vegetation areas within their limits. The purpose of this study was to develop a preliminary assessment study of the vegetation fragments on six refineries, including the quantification of permanent preservation areas (Brazilian environmental law requirement). Besides that, the authors propose potential recovery areas and some reforestation techniques. The methodology was based on Rapid Ecological Assessment, that consists on the selection of target areas by image analysis (satellite or aerial photos) and expedite fieldwork - three days on each refinery. The main features of vegetation, like phytophysiognomy and successional stage were obtained, and registered on a specific form developed to be used at fieldwork. The results achieved show that 44,7% of the areas from these six refineries were occupied by vegetation. The most representative categories of vegetation were Atlantic forest fragments and mangroves, as well as to permanent preservation areas. (author)

  9. Shoreline recovery from storms on the east coast of Southern Africa

    Science.gov (United States)

    Corbella, S.; Stretch, D. D.

    2012-01-01

    Episodic extreme waves due to sea storms can cause severe coastal erosion. The recovery times of such events are important for the analysis of risk and coastal vulnerability. The recovery period of a storm damaged coastline represents a time when the coastline is most vulnerable and nearby infrastructure is at the greatest risk. We propose that identification of the beach recovery period can be used as a coastal management tool when determining beach usage. As a case study, we analyse 37 yr of beach profile data on the east coast of South Africa. Considering beach length and cross-sectional area, we establish a global recovery period and rate and identify the physical characteristics of the coastlines that either accelerate or retard recovery. The beaches in the case study were found to take an average of two years to recover at a rate of approximately 90 m3 m-1 yr-1. Beach profiles with vegetated dunes recovered faster than urbanized beaches. Perpendicular beach structures have both positive and negative effects on beach recovery. Coastlines with rock outcrops in the surf zone tend to recover slowly and long-term sediment loss was identified in cases where storm damaged beaches have not recovered to pre-erosion levels.

  10. Monitoring Urbanization-Related Land Cover Change on the U.S. Great Plains and Impacts on Remotely Sensed Vegetation Dynamics

    Science.gov (United States)

    Krehbiel, C. P.; Jackson, T.; Henebry, G. M.

    2014-12-01

    Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.

  11. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  12. 15 CFR 971.424 - Monitoring requirements.

    Science.gov (United States)

    2010-01-01

    ... information as necessary to permit evaluation of environmental effects. The environmental monitoring plan and... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Issuance/Transfer... TCRs; (b) To cooperate with Federal officers and employees in the performance of monitoring functions...

  13. The role of vegetation in shaping dune morphology

    Science.gov (United States)

    Duran Vinent, O.; Moore, L. J.; Young, D.

    2012-12-01

    Aeolian dunes naturally emerge under strong winds and sufficient sand supply. They represent the most dynamical feature of the arid and/or coastal landscape and their evolution has the potential to either increase desertification or reduce coastal vulnerability to storms. Although large-scale dune morphology mainly depends on the wind regime and sand availability, vegetation plays an important role in semiarid and/or coastal areas. It is well known that under certain conditions vegetation is able to stabilize dunes, driving a morphological transformation from un-vegetated mobile crescent dunes to static vegetated "parabolic" dunes, de facto paralyzing desertification and initiating land recovery. Furthermore, vegetation is also the primary ingredient in the formation of coastal foredunes, which determine vulnerability to storms, as low dunes are prone to storm-induced erosion and overwash. In both cases, the coupling of biological and geomorphic (physical) processes, in particular vegetation growth and sand transport, governs the evolution of morphology. These processes were implemented in a computational model as part of a previous effort. It was shown that, for a migrating dune, this coupling leads to a negative feedback for dune motion, where an ever denser vegetation implies ever lesser sand transport. The model also predicted the existence of a "mobility index", defined by the vegetation growth rate to sand erosion rate ratio, that fully characterizes the morphological outcome: for indices above a certain threshold biological processes are dominant and dune motion slows after being covered by plants; for lower indices, the physical processes are the dominant ones and the dune remains mobile while vegetation is buried or rooted out. Here, we extend this model to better understand the formation of coastal dunes. We include new physical elements such as the shoreline and water table, as well as different grass species and potential competition among them

  14. THEORY DEVELOPMENT OF ENZYMATIC AROMA RECOVERY

    Directory of Open Access Journals (Sweden)

    G. E. Dubova

    2014-01-01

    Full Text Available Summary. The fruit and vegetable pretreatment conditions and subsequent environment in which enzymatic reactions take place can be considered as potential factors in the formation of fresh flavors. The synthesis of aromatic components of fresh grass and green leaves occurs involving vegetable lipoxygenases. The molecules of a precursor-compound can withstand the processing modes, while enzymes and aromatic compounds break down frequently. Vegetable homogenates are potential sources of enzymes which produce natural aromatic substances. Formation of fresh favors is the most perceptible when it occurs as the result of the reaction between poliunsaturated fatty acids of cytoplasmic membranes and lipoxygenases and hydroperoxide lyase of plant material. Pre-treatment of samples positively influences binding energy in the complex of enzyme-substrate. The change of iodine number in treated homogenates, as compared to fresh ones, shows isomerization of flavor precursors. The minimal quantity of homogenates introduced (up to 20 g and the duration of aroma-restoring reaction (from 5 to 7 minutes were defined. Pre-cooling of homogenates activates enzymes, strengthens oxidability of the PUFA, and results in recovery of fresh aroma of plant material. Under conditions of enzyme inactivation, the synthesis of aromas is not possible. Conversely, production of aroma in food glazes and foams is possible in case of interphase activation between a substrate and enzymes.

  15. Hygienic-sanitary conditions of vegetables and irrigation water from kitchen gardens in the municipality of Campinas, SP

    Directory of Open Access Journals (Sweden)

    Simões Marise

    2001-01-01

    Full Text Available We examined samples of irrigation water and vegetables from kitchen gardens in Campinas, Brazil. The bacterial analysis condemned 22.3% of the vegetable samples, and the parasitological examination condemned 14.5%. The criteria established by the Brazilian legislation condemned 11.8% of the irrigation water samples. Parasites were significantly more frequent in vegetables in the rainy season, while excessive fecal coliforms were more frequent in the dry season. A proper monitoring of the irrigation water supply is important to avoid the contamination of vegetables.

  16. Different techniques of multispectral data analysis for vegetation fraction retrieval

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi

    2012-07-01

    Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.

  17. Analysis of Trends in Vegetation Avhrr-Ndvi Data Across Sokoto ...

    African Journals Online (AJOL)

    The current situation in vegetation productivity across Nigeria and indeed in Sokoto State is being affected by climatic change and other unfavourable environmental conditions. Time-series Remotely Sensed data within Geographic Information System (GIS) environment can be utilized to timely monitor the trajectory in ...

  18. To what extent can vegetation change and plant stress be surveyed by remote sensing?

    Energy Technology Data Exchange (ETDEWEB)

    Toemmervik, Hans

    1998-12-31

    Air pollution from the nickel processing industry in the Kola region of Russia accounts for a large part of the environmental problems in the north-eastern parts of Norway and Finland. The objectives of this thesis were to examine if vegetation damage and plant stress can be surveyed by remote sensing and to assess the use of chlorophyll fluorescence measurements to detect plant stress in the field. The study was carried out in the border area between Norway and Russia. Two spaceborne and one airborne sensors were used. Changes in vegetation cover could be monitored with a degree of accuracy varying from 75 to 83%. A hybrid classification method monitored changes in both lichen dominated vegetation and in vegetation cover types dominated by dwarf shrubs and green plants, which were significantly associated with the differences in SO{sub 2} emission during the period from 1973 to 1994. Vegetation indices, change detection maps and prediction maps provided information on biomass and coverage of green vegetation. This was associated with the differences in the SO{sub 2} emissions during the same period. The vegetation and land cover types with the greatest stress and damage had the largest modelled SO{sub 2} concentration levels in the ground air layer while the vegetation cover types with the lowest degree of stress had the lowest. Comparison of the airborne casi map with the previously processed Landsat TM map from the same area showed that the casi map separated the complete vegetation cover into more detail than the Landsat TM map. The casi images indicated a red-edge shift for the medium to heavily damaged vegetation cover types. Problems with using airborne remote sensing by casi include variable clouds, lack of synoptic view, and cost. The variation in chlorophyll fluorescence of 11 plant species at 16 sites was most influenced by precipitation, temperature and continentality. 373 refs., 49 figs., 37 tabs.

  19. High-performance liquid chromatography for determination of α-tocopherol in vegetables

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2013-12-01

    Full Text Available A simple method for the determination of α-tocopherol in vegetables is described. The procedure consists of the following steps: saponification, extraction, silica-column clean-up, and high-performance liquid chromatography. Elution time for D, L-α-tocopherol was 9.0 min using a Zorbax Sil (250 x 4.6 mm column and an isocratic mobile phase of hexane-methanol (99.3 + 0.7, with a flow rate of 1 ml/min, and detection at 292 nm using a variable UV detector. The average recovery of α-tocopherol was 91.2%, and the minimum detectable amount was 0.1 mg/100 g of fresh vegetable tissue. This method is comparable to gas-chromatographic determination of α-tocopherol, but has fewer analytical steps and gives more reproducible results.

  20. Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis.

    Directory of Open Access Journals (Sweden)

    Muye Gan

    Full Text Available Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents' quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development.

  1. [Analysis of spectral features based on water content of desert vegetation].

    Science.gov (United States)

    Zhao, Zhao; Li, Xia; Yin, Ye-biao; Tang, Jin; Zhou, Sheng-bin

    2010-09-01

    By using HR-768 field-portable spectroradiometer made by the Spectra Vista Corporation (SVC) of America, the hyper-spectral data of nine types of desert plants were measured, and the water content of corresponding vegetation was determined by roasting in lab. The continuum of measured hyperspectral data was removed by using ENVI, and the relationship between the water content of vegetation and the reflectance spectrum was analyzed by using correlation coefficient method. The result shows that the correlation between the bands from 978 to 1030 nm and water content of vegetation is weak while it is better for the bands from 1133 to 1266 nm. The bands from 1374 to 1534 nm are the characteristic bands because of the correlation between them and water content is the best. By using cluster analysis and according to the water content, the vegetation could be marked off into three grades: high (>70%), medium (50%-70%) and low (<50%). The research reveals the relationship between water content of desert vegetation and hyperspectral data, and provides basis for the analysis of area in desert and the monitoring of desert vegetation by using remote sensing data.

  2. The effects of culinary preparation on radionuclide levels in vegetable foodstuffs

    International Nuclear Information System (INIS)

    Wilkins, B.T.; Bradley, E.J.; Dodd, N.J.

    1987-01-01

    Vegetables contaminated by fall-out from the Chernobyl nuclear reactor accident have been used to investigate how simple culinary methods can affect the levels of various radionuclides in the portion consumed by man. Only γ ray emitting radionuclides were investigated. Those parts of vegetables normally considered inedible, for example coarse outer leaves, foliage or roots, can account for between 50% and 97% of the total radionuclide content. Washing of the edible parts of vegetables can reduce the levels still further, although the efficacy is dependent on both the radionuclide and the vegetable type. These normal domestic procedures can reduce intakes of recently deposited radionuclides on vegetables by about an order of magnitude. The results have implications for the scope of monitoring programmes that might follow any future accidental release. They also reinforce very strongly the requirement for measurements on edible parts rather than whole samples as a direct input to dose evaluation. These results further suggest that there is no need to revise the general assumptions made in accident consequence models regarding losses of activity between harvest and consumption. However, more rigorous assessments of dose should take account of vegetable type and probable means of preparation. (author)

  3. Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage

    NARCIS (Netherlands)

    Esselink, Peter; Fresco, LFM; Dijkema, KS

    In order to restore natural salt marsh in a 460-ha nature reserve established in man-made salt marsh in the Dollard estuary, The Netherlands, the artificial drainage system was neglected and cattle grazing reduced. Vegetation changes were traced through two vegetation surveys and monitoring of

  4. Estimation of free-hydrocarbon recovery from dual-pump systems

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1995-01-01

    Free-product hydrocarbon which floats on the water table may be recovered using single-pump and dual-pump systems. The factors that affect the long-term free-product recovery using dual-pump systems include the free-product thickness as measured in monitoring wells, the ground-water pumping rate, hydrocarbon density and viscosity, and the soil permeability. This paper presents a simple model for prediction of free-product recovery using dual-pump systems. The model predicts the long-term rather than short-term recovery rates, and lends itself to spreadsheet calculations on microcomputers. A particularly simple form arises for cases where the drawdown is small. An application for estimating recovery from a dual-pump system is presented, and limitations of the model are summarized

  5. A method for determination of 90Sr in vegetation

    International Nuclear Information System (INIS)

    Nygren, U.

    1998-12-01

    This report describes a method for determination of 90 Sr in vegetation. The method consists of wet-ashing the samples and separating Sr from the sample matrix by oxalate precipitation and extraction chromatography. 90 Y ingrowth is awaited after which Y is separated from Sr and 90 Y measured in a proportional counter. The method has been applied on two reference materials and the 90 Sr results agree well with the recommended values. The method has also been used on 20 samples of blueberry twigs and the mean recovery of Sr was 74%

  6. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  7. 78 FR 41911 - Endangered and Threatened Species; Recovery Plans

    Science.gov (United States)

    2013-07-12

    .... Contents of Plan The ESU/DPS-level portion of the Plan contains background and contextual information that... recovery strategies and actions for each ESU/DPS, critical uncertainties, and research, monitoring, and...

  8. Using NASA Earth Observing Satellites and Statistical Model Analysis to Monitor Vegetation and Habitat Rehabilitation in Southwest Virginia's Reclaimed Mine Lands

    Science.gov (United States)

    Tate, Z.; Dusenge, D.; Elliot, T. S.; Hafashimana, P.; Medley, S.; Porter, R. P.; Rajappan, R.; Rodriguez, P.; Spangler, J.; Swaminathan, R. S.; VanGundy, R. D.

    2014-12-01

    The majority of the population in southwest Virginia depends economically on coal mining. In 2011, coal mining generated $2,000,000 in tax revenue to Wise County alone. However, surface mining completely removes land cover and leaves the land exposed to erosion. The destruction of the forest cover directly impacts local species, as some are displaced and others perish in the mining process. Even though surface mining has a negative impact on the environment, land reclamation efforts are in place to either restore mined areas to their natural vegetated state or to transform these areas for economic purposes. This project aimed to monitor the progress of land reclamation and the effect on the return of local species. By incorporating NASA Earth observations, such as Landsat 8 Operational Land Imager (OLI) and Landsat 5 Thematic Mapper (TM), re-vegetation process in reclamation sites was estimated through a Time series analysis using the Normalized Difference Vegetation Index (NDVI). A continuous source of cloud free images was accomplished by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM). This model developed synthetic Landsat imagery by integrating the high-frequency temporal information from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution spatial information from Landsat sensors In addition, the Maximum Entropy Modeling (MaxENT), an eco-niche model was used to estimate the adaptation of animal species to the newly formed habitats. By combining factors such as land type, precipitation from Tropical Rainfall Measuring Mission (TRMM), and slope from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the MaxENT model produced a statistical analysis on the probability of species habitat. Altogether, the project compiled the ecological information which can be used to identify suitable habitats for local species in reclaimed mined areas.

  9. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5

  10. Rapid forest recovery of carbon and water fluxes after a tropical firestorm

    Science.gov (United States)

    Brando, P. M.; Silverio, D. V.; Migliavacca, M.; Santos, C.; Kolle, O.; Balch, J.; Maracahipes, L.; Bustamante, M.; Coe, M. T.; Trumbore, S.

    2017-12-01

    Forest disturbances interact synergistically and drive potentially large and persistent degradation of ecosystem services in the tropics. Here we analyze multi-year measurements of carbon (C) and water (evapotranspiration; ET) fluxes in forests recovering from 7 years of prescribed fires. Located in southeast Amazonia, the experimental forest consisted of three 50-ha plots burned annually, triennially, or not at all between 2004-2010. During the subsequent seven-year recovery period from 2011 to present, tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70-94% along forest edges. While vegetation regrowth in the forest understory triggered partial canopy closure, light-demanding grasses covered roughly the same area in 2015 that they did in 2012. However, the spatial distribution of grasses drastically changed, while C4 grass species replaced C3 ones. Surprisingly, the observed alterations in forest structure and dynamics rendered minor or no changes in total C fluxes and ET, probably because plants in the burned forest increased light- and reduced ecosystem water-use efficiency. Hence, delayed post-fire mortality of large trees can reduce forest C stocks and create opportunities for the establishment of invasive grasses, Yet, post-fire vegetation growth can rapidly restore C uptake and ET by optimizing resources use. These results show that tropical forests can rapidly recover the capacity to cycle water and carbon following disturbances, but also that a full recovery of biomass and vegetation dominance may take many years or decades.

  11. Space-Derived Phenology, Retrieval and Use for Drought and Food Security Monitoring

    Science.gov (United States)

    Meroni, M.; Kayitakire, F.; Rembold, F.; Urbano, F.; Schucknecht, A.; LEO, O.

    2014-12-01

    Monitoring vegetation conditions is a critical activity for assessing food security in Africa. Rural populations relying on rain-fed agriculture and livestock grazing are highly exposed to large seasonal and inter-annual fluctuations in water availability. Monitoring the state, evolution, and productivity of vegetation, crops and pastures in particular, is important to conduct food emergency responses and plan for a long-term, resilient, development strategy in this area. The timing of onset, the duration, and the intensity of vegetation growth can be retrieved from space observations and used for food security monitoring to assess seasonal vegetation development and forecast the likely seasonal outcome when the season is ongoing. In this contribution we present a set of phenology-based remote sensing studies in support to food security analysis. Key phenological indicators are retrieved using a model-fit approach applied to SOPT-VEGETATION FAPAR time series. Remote-sensing phenology is first used to estimate i) the impact of the drought in the Horn of Africa, ii) crop yield in Tunisia and, iii) rangeland biomass production in Niger. Then the impact of the start and length of vegetation growing period on the total biomass production is assessed over the Sahel. Finally, a probabilistic approach using phenological information to forecast the occurrence of an end-of-season biomass production deficit is applied over the Sahel to map hot-spots of drought-related risk.

  12. The Impact of Hurricane Maria on the Vegetation of Dominica and Puerto Rico Using Multispectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Tangao Hu

    2018-05-01

    Full Text Available As the worst natural disaster on record in Dominica and Puerto Rico, Hurricane Maria in September 2017 had a large impact on the vegetation of these islands. In this paper, multitemporal Landsat 8 OLI and Sentinel-2 data are used to investigate vegetation damage on Dominica and Puerto Rico by Hurricane Maria, and related influencing factors are analyzed. Moreover, the changes in the normalized difference vegetation index (NDVI in the year 2017 are compared to reference years (2015 and 2016. The results show that (1 there is a sudden drop in NDVI values after Hurricane Maria’s landfall (decreased about 0.2 which returns to near normal vegetation after 1.5 months; (2 different land cover types have different sensitivities to Hurricane Maria, whereby forest is the most sensitive type, then followed by wetland, built-up, and natural grassland; and (3 for Puerto Rico, the vegetation damage is highly correlated with distance from the storm center and elevation. For Dominica, where the whole island is within Hurricane Maria’s radius of maximum wind, the vegetation damage has no obvious relationship to elevation or distance. The study provides insight into the sensitivity and recovery of vegetation after a major land-falling hurricane, and may lead to improved vegetation protection strategies.

  13. Monitoring the recovery of a previously exploited surf-zone fish ...

    African Journals Online (AJOL)

    Limiting accessibility to a fishing area can reduce fishing effort effectively and may therefore promote local recovery of depleted stocks. In January 2002, beach driving was banned in South Africa, thereby reducing angler access to large areas of the coastline, particularly in less-developed areas. In November 2001 a project ...

  14. Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation.

    Science.gov (United States)

    García-Gómez, Héctor; Aguillaume, Laura; Izquieta-Rojano, Sheila; Valiño, Fernando; Àvila, Anna; Elustondo, David; Santamaría, Jesús M; Alastuey, Andrés; Calvete-Sogo, Héctor; González-Fernández, Ignacio; Alonso, Rocío

    2016-04-01

    Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.

  15. Geomorphology and reflectance patterns of vegetation-covered dunes at the Tsodilo Hills, north-west Botswana

    Science.gov (United States)

    Jacobberger, P. A.; Hooper, D. M.

    1991-01-01

    Seasonal reflectance variations in semigrid environments provide a means of assessing vegetation health and density as well as monitoring landform processes. Multitemporal Landsat Thematic Mapper scenes with field measurements are used to map geomorphology and vegetation density in a stabilized dune environment and to measure seasonal reflectance changes for a series of ten geomorphological and vegetation units on the Kalahari-age linear dunes. Units were chosen based on differences in landform and proportion of trees, forbs and bare soil. Reflectance curves and normalized-difference vegetation indices (NDVI) show that dune crests have the strongest seasonal variability in color and brightness. The geomorphological link with reflectance and NDVI values are linked to biomass production and zoning of vegetation with slope, drainage and subtle soil differences.

  16. Borehole radar for oil production monitoring

    NARCIS (Netherlands)

    Miorali, M.

    2012-01-01

    The area of smart well technology, or closed-loop reservoir management, aims at enhancing oil recovery through a combination of monitoring and control. Monitoring is performed with a wide range of sensors deployed downhole or at the surface. These sensors allow for capturing changes in the reservoir

  17. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data.

    Science.gov (United States)

    Patel, N R; Parida, B R; Venus, V; Saha, S K; Dadhwal, V K

    2012-12-01

    The most commonly used normalized difference vegetation index (NDVI) from remote sensing often fall short in real-time drought monitoring due to a lagged vegetation response to drought. Therefore, research recently emphasized on the use of combination of surface temperature and NDVI which provides vegetation and moisture conditions simultaneously. Since drought stress effects on agriculture are closely linked to actual evapotranspiration, we used a vegetation temperature condition index (VTCI) which is more closely related to crop water status and holds a key place in real-time drought monitoring and assessment. In this study, NDVI and land surface temperature (T (s)) from MODIS 8-day composite data during cloud-free period (September-October) were adopted to construct an NDVI-T (s) space, from which the VTCI was computed. The crop moisture index (based on estimates of potential evapotranspiration and soil moisture depletion) was calculated to represent soil moisture stress on weekly basis for 20 weather monitoring stations. Correlation and regression analysis were attempted to relate VTCI with crop moisture status and crop performance. VTCI was found to accurately access the degree and spatial extent of drought stress in all years (2000, 2002, and 2004). The temporal variation of VTCI also provides drought pattern changes over space and time. Results showed significant and positive relations between CMI (crop moisture index) and VTCI observed particularly during prominent drought periods which proved VTCI as an ideal index to monitor terminal drought at regional scale. VTCI had significant positive relationship with yield but weakly related to crop anomalies. Duration of terminal drought stress derived from VTCI has a significant negative relationship with yields of major grain and oilseeds crops, particularly, groundnut.

  18. SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands

    Directory of Open Access Journals (Sweden)

    Olena Dubovyk

    2015-05-01

    Full Text Available Acquiring multi-temporal spatial information on vegetation condition at scales appropriate for site-specific agricultural management is often complicated by the need for meticulous field measurements. Understanding spatial/temporal crop cover heterogeneity within irrigated croplands may support sustainable land use, specifically in areas affected by land degradation due to secondary soil salinization. This study demonstrates the use of multi-temporal, high spatial resolution (10 m SPOT-4/5 image data in an integrated change vector analysis and spectral mixture analysis (CVA-SMA procedure. This procedure was implemented with the principal objective of mapping sub-field vegetation cover dynamics in irrigated lowland areas within the lowerlands of the Amu Darya River. CVA intensity and direction were calculated separately for the periods of 1998–2006 and 2006–2010. Cumulative change intensity and the overall directional trend were also derived for the entire observation period of 1998–2010. Results show that most of the vector changes were observed between 1998 and 2006; persistent conditions were seen within the study region during the 2006–2010 period. A decreasing vegetation cover trend was identified within 38% of arable land. Areas of decreasing vegetation cover were located principally in the irrigation system periphery where deficient water supply and low soil quality lead to substandard crop development. During the 2006–2010 timeframe, degraded crop cover conditions persisted in 37% of arable land. Vegetation cover increased in 25% of the arable land where irrigation water supply was adequate. This high sub-field crop performance spatial heterogeneity clearly indicates that current land management practices are inefficient. Such information can provide the basis for implementing and adapting irrigation applications and salt leaching techniques to site-specific conditions and thereby make a significant contribution to sustainable

  19. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Rango, A.; Laliberte, A.; Winters, C.; Maxwell, C.; Steele, C.

    2008-12-01

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial photographic, multispectral and hyperspectral radiometric, LIDAR, and radar data. The characteristics of several small UAVs less than 55lbs (25kg)) along with some payload instruments will be reviewed. Common types of remote sensing coverage available from a small, limited-payload UAV are video and hyperspatial, digital photography. From evaluation of these simple types of remote sensing data, we conclude that UAVs can play an important role in measuring and monitoring vegetation health and structure of the vegetation/soil complex in rangelands. If we fly our MLB Bat-3 at an altitude of 700ft (213m), we can obtain a digital photographic resolution of 6cm. The digital images acquired cover an area of approximately 29,350sq m. Video imaging is usually only useful for monitoring the flight path of the UAV in real time. In our experiments with the 6cm resolution data, we have been able to measure vegetation patch size, crown width, gap sizes between vegetation, percent vegetation and bare soil cover, and type of vegetation. The UAV system is also being tested to acquire height of the vegetation canopy using shadow measurements and a digital elevation model obtained with stereo images. Evaluation of combining the UAV digital photography with LIDAR data of the Jornada Experimental Range in south central New Mexico is ongoing. The use of UAVs is increasing and is becoming a very promising tool for vegetation assessment and change, but there are several operational components to flying UAVs that users need to consider. These include cost, a whole set of, as yet, undefined regulations regarding flying in the National Air Space(NAS), procedures to gain approval for flying in the NAS

  20. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    Science.gov (United States)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the

  1. Unsupervised classification of lidar-based vegetation structure metrics at Jean Lafitte National Historical Park and Preserve

    Science.gov (United States)

    Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Nayegandhi, Amar; Brock, John; Woodman, Robert

    2012-01-01

    Traditional vegetation maps capture the horizontal distribution of various vegetation properties, for example, type, species and age/senescence, across a landscape. Ecologists have long known, however, that many important forest properties, for example, interior microclimate, carbon capacity, biomass and habitat suitability, are also dependent on the vertical arrangement of branches and leaves within tree canopies. The objective of this study was to use a digital elevation model (DEM) along with tree canopy-structure metrics derived from a lidar survey conducted using the Experimental Advanced Airborne Research Lidar (EAARL) to capture a three-dimensional view of vegetation communities in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve, Louisiana. The EAARL instrument is a raster-scanning, full waveform-resolving, small-footprint, green-wavelength (532-nanometer) lidar system designed to map coastal bathymetry, topography and vegetation structure simultaneously. An unsupervised clustering procedure was then applied to the 3-dimensional-based metrics and DEM to produce a vegetation map based on the vertical structure of the park's vegetation, which includes a flotant marsh, scrub-shrub wetland, bottomland hardwood forest, and baldcypress-tupelo swamp forest. This study was completed in collaboration with the National Park Service Inventory and Monitoring Program's Gulf Coast Network. The methods presented herein are intended to be used as part of a cost-effective monitoring tool to capture change in park resources.

  2. The transgenosis main directions in vegetable and melon production: theory and practice

    Directory of Open Access Journals (Sweden)

    Н. В. Лещук

    2013-08-01

    Full Text Available The article deals with priority directions of vegetable and melon plants selection. The wide varieties of alien genetic information transferring methods during the transgenic plants creation of vegetable and melon species are grounded. The essence of the new hybrids identification method as genetic engineering products: kind of cabbage, tomatoes, carrots, zucchini, lettuce seed, pea Pisum sativum, common bean, eggplant and capsicum is revealed. The transgenosis main directions of botanical taxa varieties of vegetable and melon plants on condition of the international and national practice holding are proved. The international practice of the state approbation and registration of genetically engineered structures in biological objects (plant varieties and in their processed products are studied. A monitoring about food and pharmaceutical substances based on genetically modified varieties and hybrids structures of vegetable and melon plants have been held.

  3. Hygienic-sanitary conditions of vegetables and irrigation water from kitchen gardens in the municipality of Campinas, SP

    OpenAIRE

    Simões,Marise; Pisani,Beatriz; Marques,Eneida Gonçalves Lemes; Prandi,Maria Angela Garnica; Martini,Maria Helena; Chiarini,Paulo Flávio Teixeira; Antunes,José Leopoldo Ferreira; Nogueira,Ana Paula

    2001-01-01

    We examined samples of irrigation water and vegetables from kitchen gardens in Campinas, Brazil. The bacterial analysis condemned 22.3% of the vegetable samples, and the parasitological examination condemned 14.5%. The criteria established by the Brazilian legislation condemned 11.8% of the irrigation water samples. Parasites were significantly more frequent in vegetables in the rainy season, while excessive fecal coliforms were more frequent in the dry season. A proper monitoring of the irri...

  4. Assessment of Pen Branch delta and corridor vegetation changes using multispectral scanner data 1992--1994

    International Nuclear Information System (INIS)

    1996-01-01

    Airborne multispectral scanner data were used to monitor natural succession of wetland vegetation species over a three-year period from 1992 through 1994 for Pen Branch on the Savannah River Site in South Carolina. Image processing techniques were used to identify and measure wetland vegetation communities in the lower portion of the Pen Branch corridor and delta. The study provided a reliable means for monitoring medium- and large-scale changes in a diverse environment. Findings from the study will be used to support decisions regarding remediation efforts following the cessation of cooling water discharge from K reactor at the Department of Energy's Savannah River Site in South Carolina

  5. Prevalence and causes of abnormal PSA recovery.

    Science.gov (United States)

    Lautenbach, Noémie; Müntener, Michael; Zanoni, Paolo; Saleh, Lanja; Saba, Karim; Umbehr, Martin; Velagapudi, Srividya; Hof, Danielle; Sulser, Tullio; Wild, Peter J; von Eckardstein, Arnold; Poyet, Cédric

    2018-01-26

    Prostate-specific antigen (PSA) test is of paramount importance as a diagnostic tool for the detection and monitoring of patients with prostate cancer. In the presence of interfering factors such as heterophilic antibodies or anti-PSA antibodies the PSA test can yield significantly falsified results. The prevalence of these factors is unknown. We determined the recovery of PSA concentrations diluting patient samples with a standard serum of known PSA concentration. Based on the frequency distribution of recoveries in a pre-study on 268 samples, samples with recoveries 120% were defined as suspect, re-tested and further characterized to identify the cause of interference. A total of 1158 consecutive serum samples were analyzed. Four samples (0.3%) showed reproducibly disturbed recoveries of 10%, 68%, 166% and 4441%. In three samples heterophilic antibodies were identified as the probable cause, in the fourth anti-PSA-autoantibodies. The very low recovery caused by the latter interference was confirmed in serum, as well as heparin- and EDTA plasma of blood samples obtained 6 months later. Analysis by eight different immunoassays showed recoveries ranging between PSA which however did not show any disturbed PSA recovery. About 0.3% of PSA determinations by the electrochemiluminescence assay (ECLIA) of Roche diagnostics are disturbed by heterophilic or anti-PSA autoantibodies. Although they are rare, these interferences can cause relevant misinterpretations of a PSA test result.

  6. Vegetation assessment in a pipeline influence area: the case study of PETROBRAS ammonia pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Basbaum, Marcos A.; Porciano, Patricia P.; Bonafini, Fabio L. [SEEBLA - Servicos de Engenharia Emilio Baumgart Ltda., Rio de Janeiro, RJ (Brazil)], e-mail: mbasbaum.seebla@petrobras.com.br, e-mail: patriciapp.seebla@petrobras.com.br, e-mail: bonafini.seebla@petrobras.com.br; Guimaraes, Ricardo Z.P.; Torggler, Bianca F.; Fernandes, Renato; Vieira, Elisa D.R. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)], e-mail: rzaluar@petrobras.com.br, e-mail: torggler@petrobras.com.br, e-mail: renatofer@petrobras.com.br, e-mail: elisav@petrobras.com.br

    2009-12-19

    This ammonia pipeline is about 30 km long and links the Fertilizer Plant (FAFEN-BA) to the Urea Marine Terminal (TMU) at the Port of Aratu in Candeias (Bahia State, Brazil). In this study, we characterize the remnants of vegetation and quantify the Permanent Preservation Areas. Furthermore, we propose areas and techniques for their recovery and / or management. The methodology was based on the Rapid Ecological Assessment, which combines selection of areas through remote sensing image analysis, with rapid field campaigns in the selected points. This methodology, successfully applied in PETROBRAS refineries, is first applied in a pipeline influence area. During these campaigns, the main aspects of vegetation, such as phyto physiognomy and ecological succession stages, were registered in field data sheets prepared for this purpose. The most representative remnants of vegetation that could be quantified were Atlantic Forest fragments, as well as those in the Permanent Preservation Areas. (author)

  7. Change in Vegetation Growth and Its Feedback to Climate in the Tibet Plateau

    Science.gov (United States)

    Piao, S.

    2015-12-01

    Vegetation growth is strongly influenced by climate and climate change and can affect the climate system through a number of bio-physical processes. As a result, monitoring, understanding and predicting the response of vegetation growth to global change has been a central activity in Earth system science during the past two decades. The Tibetan Plateau (TP) has experienced a pronounced warming over recent decades. The warming rate of the TP over the period 1960-2009 was about twice the global average warming rate, yet with heterogeneous patterns. In this study, we use satellite derived NDVI data to investigate spatio-temporal change in vegetation growth over the last three decades.

  8. Shoreline recovery from storms on the east coast of Southern Africa

    Directory of Open Access Journals (Sweden)

    S. Corbella

    2012-01-01

    Full Text Available Episodic extreme waves due to sea storms can cause severe coastal erosion. The recovery times of such events are important for the analysis of risk and coastal vulnerability. The recovery period of a storm damaged coastline represents a time when the coastline is most vulnerable and nearby infrastructure is at the greatest risk. We propose that identification of the beach recovery period can be used as a coastal management tool when determining beach usage. As a case study, we analyse 37 yr of beach profile data on the east coast of South Africa. Considering beach length and cross-sectional area, we establish a global recovery period and rate and identify the physical characteristics of the coastlines that either accelerate or retard recovery. The beaches in the case study were found to take an average of two years to recover at a rate of approximately 90 m3 m−1 yr−1. Beach profiles with vegetated dunes recovered faster than urbanized beaches. Perpendicular beach structures have both positive and negative effects on beach recovery. Coastlines with rock outcrops in the surf zone tend to recover slowly and long-term sediment loss was identified in cases where storm damaged beaches have not recovered to pre-erosion levels.

  9. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    Science.gov (United States)

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  10. Phenolation of vegetable oils

    Directory of Open Access Journals (Sweden)

    ZORAN S. PETROVIĆ

    2011-04-01

    Full Text Available Novel bio-based compounds containing phenols suitable for the syn­thesis of polyurethanes were prepared. The direct alkylation of phenols with different vegetable oils in the presence of superacids (HBF4, triflic acid as ca­talysts was studied. The reaction kinetics was followed by monitoring the de­crease of the double bond content (iodine value with time. In order to under­stand the mechanism of the reaction, phenol was alkylated with model com­pounds. The model compounds containing one internal double bond were 9-oc­tadecene and methyl oleate and those with three double bonds were triolein and high oleic safflower oil (82 % oleic acid. It was shown that the best structures for phenol alkylation are fatty acids with only one double bond (oleic acid. Fatty acids with two double bonds (linoleic acid and three double bonds (lino­lenic acid lead to polymerized oils by a Diels–Alder reaction, and to a lesser extent to phenol alkylated products. The reaction product of direct alkylation of phenol with vegetable oils is a complex mixture of phenol alkylated with poly­merized oil (30–60 %, phenyl esters formed by transesterification of phenol with triglyceride ester bonds (<10 % and unreacted oil (30 %. The phenolated vegetable oils are new aromatic–aliphatic bio-based raw materials suitable for the preparation of polyols (by propoxylation, ethoxylation, Mannich reactions for the preparation of polyurethanes, as intermediates for phenolic resins or as bio-based antioxidants.

  11. Inhalation anesthesia in dumeril´s monitor with isofluane, sevofluane, and nitrus oxide

    DEFF Research Database (Denmark)

    Bertelsen, Mads Frost; Mosley, Craig; Crawshaw, Graham J.

    2005-01-01

    Induction and recovery from inhalation anesthesia of Dumeril´s monitors using isoflurane, sevoflurane and nitrus oxide were characterized using a randomized crossover design.......Induction and recovery from inhalation anesthesia of Dumeril´s monitors using isoflurane, sevoflurane and nitrus oxide were characterized using a randomized crossover design....

  12. Effects of a large wildfire on vegetation structure in a variable fire mosaic.

    Science.gov (United States)

    Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B

    2017-12-01

    Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even

  13. Environmental monitoring report, Sandia Laboratories 1975

    International Nuclear Information System (INIS)

    Holley, W.L.; Simmons, T.N.

    1976-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the population is calculated

  14. Advances in remote sensing of vegetation function and traits

    KAUST Repository

    Houborg, Rasmus

    2015-07-09

    Remote sensing of vegetation function and traits has advanced significantly over the past half-century in the capacity to retrieve useful plant biochemical, physiological and structural quantities across a range of spatial and temporal scales. However, the translation of remote sensing signals into meaningful descriptors of vegetation function and traits is still associated with large uncertainties due to complex interactions between leaf, canopy, and atmospheric mediums, and significant challenges in the treatment of confounding factors in spectrum-trait relations. This editorial provides (1) a background on major advances in the remote sensing of vegetation, (2) a detailed timeline and description of relevant historical and planned satellite missions, and (3) an outline of remaining challenges, upcoming opportunities and key research objectives to be tackled. The introduction sets the stage for thirteen Special Issue papers here that focus on novel approaches for exploiting current and future advancements in remote sensor technologies. The described enhancements in spectral, spatial and temporal resolution and radiometric performance provide exciting opportunities to significantly advance the ability to accurately monitor and model the state and function of vegetation canopies at multiple scales on a timely basis.

  15. Cytosolic streaming in vegetative mycelium and aerial structures of Aspergillus niger.

    Science.gov (United States)

    Bleichrodt, R; Vinck, A; Krijgsheld, P; van Leeuwen, M R; Dijksterhuis, J; Wösten, H A B

    2013-03-15

    Aspergillus niger forms aerial hyphae and conidiophores after a period of vegetative growth. The hyphae within the mycelium of A. niger are divided by septa. The central pore in these septa allows for cytoplasmic streaming. Here, we studied inter- and intra-compartmental streaming of the reporter protein GFP in A. niger. Expression of the gene encoding nuclear targeted GFP from the gpdA or glaA promoter resulted in strong fluorescence of nuclei within the vegetative hyphae and weak fluorescence in nuclei within the aerial structures. These data and nuclear run on experiments showed that gpdA and glaA are higher expressed in the vegetative mycelium when compared to aerial hyphae, conidiophores and conidia. Notably, gpdA or glaA driven expression of the gene encoding cytosolic GFP resulted in strongly fluorescent vegetative hyphae and aerial structures. Apparently, GFP streams from vegetative hyphae into aerial structures. This was confirmed by monitoring fluorescence of photo-activatable GFP (PA-GFP). In contrast, PA-GFP did not stream from aerial structures to vegetative hyphae. Streaming of PA-GFP within vegetative hyphae or within aerial structures of A. niger occurred at a rate of 10-15 μm s(-1). Taken together, these results not only show that GFP streams from the vegetative mycelium to aerial structures but it also indicates that its encoding RNA is not streaming. Absence of RNA streaming would explain why distinct RNA profiles were found in aerial structures and the vegetative mycelium by nuclear run on analysis and micro-array analysis.

  16. Analysis of the state of vegetation in the municipality of Jagodina (Serbia through remote sensing and suggestions for protection

    Directory of Open Access Journals (Sweden)

    Milanović Miško M.

    2016-01-01

    Full Text Available Both environmental control and appropriate measurement results present basis for the quality protection of geospatial elements. Providing environmental monitoring activities and creating control network is the obligation of each state, whereas local communities provide observation and control of air quality, water quality, waste quality, soil quality, vegetation and land cover control, etc. This has been the reason for the analysis of vegetation of the municipality of Jagodina in Serbia. By processing satellite images, data on the sources of pollution and polluting materials of the vegetation have been discovered. These include spot (stationary, linear (mobile and stationary and surface (stationary and mobile sources. While processing satellite images by the Idrisi software, we have acquired results that indicate certain vegetation modifications (images obtained through infrared spectral imaging. Results obtained through remote sensing indicate the necessity to define adequate vegetation monitoring, to complete a register of pollutants, to set up information system and define ways of data presentation in order to manage a single, complete register of environmental pollutants in the municipality of Jagodina.

  17. Growth and physiological response of tomato plants to different periods of nitrogen starvation and recovery

    NARCIS (Netherlands)

    Martinez, V.; Amor, del F.M.; Marcelis, L.F.M.

    2005-01-01

    Young, vegetative-state tomato plants, starved of N for 1, 3 or 7 d, followed, in each case, by a 7-d recovery period with nutrient solution containing N, were examined. Relative growth rate (RGR), leaf photosynthesis and leaf expansion were reduced after only 1 d of N starvation.Tissue N

  18. Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology

    Science.gov (United States)

    Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.

    1991-01-01

    Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.

  19. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems

    Science.gov (United States)

    Alistair M. S. Smith; Crystal A. Kolden; Wade T. Tinkham; Alan F. Talhelm; John D. Marshall; Andrew T. Hudak; Luigi Boschetti; Michael J. Falkowski; Jonathan A. Greenberg; John W. Anderson; Andrew Kliskey; Lilian Alessa; Robert F. Keefe; James R. Gosz

    2014-01-01

    Climate change is altering the species composition, structure, and function of vegetation in natural terrestrial ecosystems. These changes can also impact the essential ecosystem goods and services derived from these ecosystems. Following disturbances, remote-sensing datasets have been used to monitor the disturbance and describe antecedent conditions as a means of...

  20. Inherently safe in situ uranium recovery

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-01-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  1. Rate of initial recovery and subsequent radar monitoring performance following a simulated emergency involving startle.

    Science.gov (United States)

    1983-09-01

    The present study employed auditory startle to simulate the principal components (unexpectedness, fear, and physiological arousal) that are common to many types of sudden emergencies and compared performance recovery following startle with recovery f...

  2. Drought Dynamics and Vegetation Productivity in Different Land Management Systems of Eastern Cape, South Africa—A Remote Sensing Perspective

    Directory of Open Access Journals (Sweden)

    Valerie Graw

    2017-09-01

    Full Text Available Eastern Cape Province in South Africa has experienced extreme drought events during the last decade. In South Africa, different land management systems exist belonging to two different land tenure classes: commercial large scale farming and communal small-scale subsistence farming. Communal lands are often reported to be affected by land degradation and drought events among others considered as trigger for this process. Against this background, we analyzed vegetation response to drought in different land management and land tenure systems through assessing vegetation productivity trends and monitoring the intensity, frequency and distribution of the drought hazard in grasslands and communal and commercial croplands during drought and non-drought conditions. For the observation period 2000–2016, we used time series of 250 m Vegetation Condition Index (VCI based on the Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI and Climate Hazard Group InfraRed Precipitation with Station data (CHIRPS precipitation data with 5 km resolution. For the assessment of vegetation dynamics, we: (1 analyzed vegetation productivity in Eastern Cape over the last 16 years with EVI; (2 analyzed the impact of drought events on vegetation productivity in grasslands as well as commercial and communal croplands; and (3 compared precipitation-vegetation dynamics between the drought season 2015/2016 and the non-drought season 2011/2012. Change in total annual vegetation productivity could detect drought years while drought dynamics during the season could be rather monitored by the VCI. Correlation of vegetation condition and precipitation indicated areas experiencing significant vegetation productivity trends showing low and even negative correlation coefficients indicating other drivers for productivity change and drought impact besides rainfall.

  3. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    Science.gov (United States)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  4. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund

    2017-01-01

    Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast...... days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity....

  5. Vegetation recovery after fire in the Klamath-Siskiyou region, southern Oregon

    Science.gov (United States)

    Hibbs, David; Jacobs, Ruth

    2011-01-01

    In July 2002, lightning strikes started five forest fires that merged into one massive wildfire in the Klamath-Siskiyou Ecoregion of southern Oregon. Aided by drought, severe weather conditions, dry fuels, and steep topography, the fire grew to more than 200,000 hectares of mostly public forest land. Known as the Biscuit Fire, it was Oregon's largest forest fire in more than 130 years and one of the largest wildfires on record in the United States. Discussions centered around why such a massive fire was happening, how large would it become, who was keeping communities and homes safe, and what would be the final economic and ecological outcome. Weeks later when the fire was out, conversations turned to other questions, including what, if anything, should happen for forest recovery.

  6. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  7. Post-eruption legacy effects and their implications for long-term recovery of the vegetation on Kasatochi Island, Alaska

    Science.gov (United States)

    Talbot, S. S.; Talbot, S.L.; Walker, L.R.

    2010-01-01

    We studied the vegetation of Kasatochi Island, central Aleutian Islands, to provide a general field assessment regarding the survival of plants, lichens, and fungi following a destructive volcanic eruption that occurred in 2008. Plant community data were analyzed using multivariate methods to explore the relationship between pre- and post-eruption plant cover; 5 major vegetation types were identified: Honckenya peploides beach, Festuca rubra cliff shelf, Lupinus nootkatensisFestuca rubra meadow, Leymus mollis bluff ridge (and beach), and Aleuria aurantia lower slope barrens. Our study provided a very unusual glimpse into the early stages of plant primary succession on a remote island where most of the vegetation was destroyed. Plants that apparently survived the eruption dominated early plant communities. Not surprisingly, the most diverse post-eruption community most closely resembled a widespread pre-eruption type. Microhabitats where early plant communities were found were distinct and apparently crucial in determining plant survival. Comparison with volcanic events in related boreal regions indicated some post-eruption pattern similarities. ?? 2010 Regents of the University of Colorado.

  8. Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2017-10-01

    Full Text Available In recent years, sequential tests for detecting structural changes in time series have been adapted for deforestation monitoring using satellite data. The input time series of such sequential tests is typically a vegetation index (e.g., NDVI, which uses two or three bands and ignores all other bands. Being limited to a vegetation index will not benefit from the richer spectral information provided by newly launched satellites and will bring two bottle-necks for deforestation monitoring. Firstly, it is hard to select a suitable vegetation index a priori. Secondly, a single vegetation index is typically affected by seasonal signals, noise and other natural dynamics, which decrease its power for deforestation detection. A novel multispectral time series change monitoring method that combines dimension reduction methods with a sequential hypothesis test is proposed to address these limitations. For each location, the proposed method automatically chooses a “suitable” index for deforestation monitoring. To demonstrate our approach, we implemented it in two study areas: a dry tropical forest in Bolivia (time series length: 444 with strong seasonality and a moist tropical forest in Brazil (time series length: 225 with almost no seasonality. Our method significantly improves accuracy in the presence of strong seasonality, in particular the temporal lag between disturbance and its detection.

  9. Timing of 15N fertiliser application, partitioning to reproductive and vegetative tissue, and nutrient removal by field-grown low-chill peaches in the subtropics

    International Nuclear Information System (INIS)

    Huett, D.O.; Stewart, G. R.

    1990-01-01

    The effect of timing of nitrogen (N) application as 15 N-enriched ammonium sulfate (50 kg N/ha) on the growth response and N uptake by vegetative and reproductive tissues was investigated in the low-chill peach cv. Flordagem growing on a krasnozem soil at Alstonville. Nitrogen was applied in late August, late September, late October, mid February, and early May. Tree parts were sampled for 15 N at 4 and 8 weeks after application and after fruit harvest in December the following season. After fruit yield was measured, trees were excavated and divided into parts for dry weight and nutrient concentration determinations, and fertiliser N recovery and to estimate tree nutrient removal. Nitrogen enrichment was detected in all plant parts within 4 weeks of N application, irrespective of timing, and was greatest in rapidly growing tissues such as laterals, leaves, and fruit. The most rapid (P 15 N enrichment in vegetative tissues resulted from September, October, and February N applications and for fruit from a September application. The level of enrichment 4 weeks after fertiliser N application was similar for vegetative and reproductive tissues. The timing of N application in the first season had no effect on fruit yield and vegetative growth the following season. At tree removal, the recovery of fertiliser N in most tree parts increased (P < 0.05) as fertiliser N application was delayed from October to May the previous season. Maximum contribution of absorbed N to whole tree N was 10-11% for laterals, leaf, and fruit. Data from this study indicate that vegetative and reproductive growth have similar demand for absorbed N, and that uptake of fertiliser N is most rapid when an application precedes a period of rapid growth. Over 2 seasons, recovery of applied fertiliser N was 14.9-18.0% in the tree, confirming that stored N and the soil N pool are the dominant sources of tree N. The recovery of fertiliser N from the May application was 18% even though uptake in all tree

  10. Crop Type Classification Using Vegetation Indices of RapidEye Imagery

    Science.gov (United States)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.; Esetlili, M. T.; Kurucu, Y.

    2014-09-01

    Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.

  11. Vegetation of the eastern communal conservancies in Namibia: I. Phytosociological descriptions

    Directory of Open Access Journals (Sweden)

    Ben J. Strohbach

    2014-11-01

    Conservation implications: This article described 13 plant associations of the central Kalahari in eastern Namibia, an area hitherto virtually unknown to science. The information presented in this article forms a baseline description, which can be used for future monitoring of the vegetation under communal land use.

  12. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  13. Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments

    Science.gov (United States)

    Zhu, Yuhua; Zhu, Dan; Wang, Jianing

    2012-09-01

    As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.

  14. Comparative study on cleanup procedures for the determination of organophosphorus pesticides in vegetables

    International Nuclear Information System (INIS)

    Alvin, Chai Lian Kuet; Lau, Seng

    2008-01-01

    A study was carried out to compare the cleanup procedures for the determination of organophosphorus pesticides in vegetables. Eleven organophosphorus pesticides were extracted with acetone and methylene chloride. Extracts were cleanup by solid-phase extraction (SPE) mixed-mode column using quaternary amine and aminopropyl (SAX/ NH 2 ) or octadecyl (C 18 ) sorbents. The pesticides were determined by gas chromatography with flame photometric detector. The recovery results obtained from the SPE SAX/ NH 2 and C 18 cleanups in carrot, cucumber and green mustard samples were in the range of 71.0 % to 115 %. Lower recoveries were obtained for polar pesticides, methamidophos and dimethoate. These results were compared to the method currently used in the laboratory which does not include any cleanup. (author)

  15. Ranch business planning and resource monitoring for rangeland sustainability

    Science.gov (United States)

    Kristie A. Maczko; John A. Tanaka; Michael Smith; Cindy Garretson-Weibel; Stanley F. Hamilton; John E. Mitchell; Gene Fults; Charles Stanley; Dick Loper; Larry D. Bryant; J. K. (Rooter) Brite

    2012-01-01

    Aligning a rancher's business plan goals with the capability of the ranch's rangeland resources improves the viability and sustainability of family ranches. Strategically monitoring the condition of soil, water, vegetation, wildlife, livestock production, and economics helps inform business plan goals. Business planning and resource monitoring help keep...

  16. Environmental Monitoring Plan: Environmental Monitoring Section. Appendix A, Procedures

    International Nuclear Information System (INIS)

    1995-02-01

    This document presents information about the environmental monitoring program at Lawrence Livermore National Laboratory. Topics discussed include: air sampling; air tritium calibrations; storm water discharge; non-storm water discharge; sampling locations; ground water sampling; noise and blast forecasting; analytical laboratory auditing; document retention; procedure writing; quality assurance programs for sampling; soil and sediment sampling; sewage sampling; diversion facility tank sampling; vegetation and foodstuff sampling; and radiological dose assessments

  17. Environmental Monitoring Plan: Environmental Monitoring Section. Appendix A, Procedures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This document presents information about the environmental monitoring program at Lawrence Livermore National Laboratory. Topics discussed include: air sampling; air tritium calibrations; storm water discharge; non-storm water discharge; sampling locations; ground water sampling; noise and blast forecasting; analytical laboratory auditing; document retention; procedure writing; quality assurance programs for sampling; soil and sediment sampling; sewage sampling; diversion facility tank sampling; vegetation and foodstuff sampling; and radiological dose assessments.

  18. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana

  19. Vegetation dynamics and dynamic vegetation science

    NARCIS (Netherlands)

    Van der Maarel, E

    1996-01-01

    his contribution presents a review of the development of the study of vegetation dynamics since 1979, in the framework of a jubilee meeting on progress in the study of vegetation. However, an exhaustive review is both impossible and unnecessary. It is impossible within the few pages available

  20. A method for an accurate in-flight calibration of AVHRR data for vegetation index calculation

    OpenAIRE

    Asmami , Mbarek; Wald , Lucien

    1992-01-01

    International audience; A significant degradation in the Advanced Very High Resolution Radiometer (AVHRR) responsitivity, on the NOAA satellite series, has occurred since the prelaunch calibration and with time since launch. This affects the index vegetation (NDVI), which is an important source of information for monitoring vegetation conditions on regional and global scales. Many studies have been carried out which use the Viewing Earth calibration approach in order to provide accurate calib...

  1. Environmental monitoring at the Lawrence Livermore National Laboratory: 1980 annual report

    International Nuclear Information System (INIS)

    Toy, A.J.; Lindeken, C.L.; Griggs, K.S.; Buddemeier, R.W.

    1981-01-01

    The results of environmental monitoring for 1980 at the Livermore National Laboratory are presented. Radioactivity in air, soil, sewage, water, vegetation and food, and milk was measured. Noise pollution, beryllium, heavy metals, and pesticides were monitored

  2. Topographic Controls on Southern California Ecosystem Function and Post-fire Recovery: a Satellite and Near-surface Remote Sensing Approach

    Science.gov (United States)

    Azzari, George

    Southern Californian wildfires can influence climate in a variety of ways, including changes in surface albedo, emission of greenhouse gases and aerosols, and the production of tropospheric ozone. Ecosystem post-fire recovery plays a key role in determining the strength, duration, and relative importance of these climate forcing agents. Southern California's ecosystems vary markedly with topography, creating sharp transitions with elevation, aspect, and slope. Little is known about the ways topography influences ecosystem properties and function, particularly in the context of post-fire recovery. We combined images from the USGS satellite Landsat 5 with flux tower measurements to analyze pre- and post-fire albedo and carbon exchanged by Southern California's ecosystems in the Santa Ana Mountains. We reduced the sources of external variability in Landsat images using several correction methods for topographic and bidirectional effects. We used time series of corrected images to infer the Net Ecosystem Exchange and surface albedo, and calculated the radiative forcing due to CO2 emissions and albedo changes. We analyzed the patterns of recovery and radiative forcing on north- and south-facing slopes, stratified by vegetation classes including grassland, coastal sage scrub, chaparral, and evergreen oak forest. We found that topography strongly influenced post-fire recovery and radiative forcing. Field observations are often limited by the difficulty of collecting ground validation data. Current instrumentation networks do not provide adequate spatial resolution for landscape-level analysis. The deployment of consumer-market technology could reduce the cost of near-surface measurements, allowing the installation of finer-scale instrument networks. We tested the performance of the Microsoft Kinect sensor for measuring vegetation structure. We used Kinect to acquire 3D vegetation point clouds in the field, and used these data to compute plant height, crown diameter, and

  3. Environmental monitoring of molecular tritium

    Energy Technology Data Exchange (ETDEWEB)

    Ichimasa, M.; Ichimasa, Y.; Akita, Y. (Ibaraki Univ., Mito (Japan). Faculty of Science); Suzuki, M.; Obayashi, H.; Sakuma, Y.

    1992-01-01

    The oxidation of atmospheric molecular tritium (HT) in vegetation was determined by in vitro experiments for various kinds of woody and herbaceous plant leaves, mosses and lichens taken from a forest and a garden in Ibaraki prefecture and a forest in Gifu prefecture, and comparison of the HT oxidation activity in vegetation was made with those in its neighboring surface soil (0-5cm in depth). The oxidation of HT in woody plant leaves was extremely low, only about 1/10000-1/1000 that in the surface soil as well as herbaceous plant leaves with some exception, whereas HT oxidation in mosses and lichens was 50-500 times that in pine needles. These results suggest the usefulness of mosses and lichens as monitor vegetation for accidental release of HT into the environment. (author).

  4. Groundwater monitoring plan for the 300 Area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.W.; Chou, C.J.; Johnson, V.G.

    1995-05-23

    This document describes the groundwater monitoring program for the Hanford Site 300 Area Process Trenches (300 APT). The 300 APT are a Resource Conservation and Recovery Act of 1976 (RCRA) regulated unit. The 300 APT are included in the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit No. WA890008967, and are subject to final-status requirements for groundwater monitoring. This document describes a compliance monitoring program for groundwater in the uppermost aquifer system at the 300 APT. This plan describes the 300 APT monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the 300 APT. This plan will be used to meet groundwater monitoring requirements from the time the 300 APT becomes part of the Permit and through the postclosure care period until certification of final closure.

  5. Remote Monitoring of Forest Insect Defoliation -A Review-

    Directory of Open Access Journals (Sweden)

    C.D. Rullan-Silva

    2013-12-01

    Full Text Available Aim of study: This paper reviews the global research during the last 6 years (2007-2012 on the state, trends and potential of remote sensing for detecting, mapping and monitoring forest defoliation caused by insects.Area of study: The review covers research carried out within different countries in Europe and America.Main results: A nation or region wide monitoring system should be scaled in two levels, one using time-series with moderate to coarse resolutions, and the other with fine or high resolution. Thus, MODIS data is increasingly used for early warning detection, whereas Landsat data is predominant in defoliation damage research. Furthermore, ALS data currently stands as the more promising option for operative detection of defoliation.Vegetation indices based on infrared-medium/near-infrared ratios and on moisture content indicators are of great potential for mapping insect pest defoliation, although NDVI is the most widely used and tested.Research highlights: Among most promising methods for insect defoliation monitoring are Spectral Mixture Analysis, best suited for detection due to its sub-pixel recognition enhancing multispectral data, and use of logistic models as function of vegetation index change between two dates, recommended for predicting defoliation.Key words: vegetation damage; pest outbreak; spectral change detection.

  6. Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 3. Optical dynamics and vegetation index sensitivity to biomass and plant cover

    International Nuclear Information System (INIS)

    Leeuwen, W.J.D. van; Huete, A.R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (VI) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large VI dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone. (author)

  7. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  8. Permafrost warming and vegetation changes in continental Antarctica

    International Nuclear Information System (INIS)

    Guglielmin, Mauro; Dalle Fratte, Michele; Cannone, Nicoletta

    2014-01-01

    Continental Antarctica represents the last pristine environment on Earth and is one of the most suitable contexts to analyze the relations between climate, active layer and vegetation. In 2000 we started long-term monitoring of the climate, permafrost, active layer and vegetation in Victoria Land, continental Antarctica. Our data confirm the stability of mean annual and summer air temperature, of snow cover, and an increasing trend of summer incoming short wave radiation. The active layer thickness is increasing at a rate of 0.3 cm y −1 . The active layer is characterized by large annual and spatial differences. The latter are due to scarce vegetation, a patchy and very thin organic layer and large spatial differences in snow accumulation. The active layer thickening, probably due to the increase of incoming short wave radiation, produced a general decrease of the ground water content due to the better drainage of the ground. The resultant drying may be responsible for the decline of mosses in xeric sites, while it provided better conditions for mosses in hydric sites, following the species-specific water requirements. An increase of lichen vegetation was observed where the climate drying occurred. This evidence emphasizes that the Antarctic continent is experiencing changes that are in total contrast to the changes reported from maritime Antarctica. (paper)

  9. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    Science.gov (United States)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2007-01-01

    Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 9:45 a.m. CDT as a category 3 storm with surges up to approx. 9 m and sustained winds of approx. 120 mph. The hurricane's wind, rain, and flooding devastated several coastal towns, from New Orleans through Mobile. The storm also caused significant damage to infrastructure and vegetation of NASA's SSC (Stennis Space Center). Storm recovery at SSC involved not only repairs of critical infrastructure but also forest damage mitigation (via timber harvests and control burns to reduce fire risk). This presentation discusses an effort to use commercially available high spatial resolution multispectral IKONOS data for vegetation damage assessment, based on data collected over SSC on September 2, 2005.

  10. Near-facility environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the routine near-facility environmental monitoring programs which are presently being conducted at the Hanford Site. Several types of environmental media are sampled near nuclear facilities to monitor the effectiveness of waste management and restoration activities, and effluent treatment and control practices. These media include air, surface water and springs, surface contamination, soil and vegetation, investigative sampling (which can include wildlife), and external radiation. Sampling and analysis information and analytical results for 1994 for each of these media are summarized in this section. Additional data and more detailed information may be found in Westinghouse Hanford Company Operational Environmental Monitoring Annual Report, Calendar Year 1994.

  11. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  12. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    Science.gov (United States)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  13. Protocols for collection of streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data to describe stream quality for the Hydrobiological Monitoring Program, Equus Beds Aquifer Storage and Recovery Program, city of Wichita, Kansas

    Science.gov (United States)

    Stone, Mandy L.; Rasmussen, Teresa J.; Bennett, Trudy J.; Poulton, Barry C.; Ziegler, Andrew C.

    2012-01-01

    The city of Wichita, Kansas uses the Equus Beds aquifer, one of two sources, for municipal water supply. To meet future water needs, plans for artificial recharge of the aquifer have been implemented in several phases. Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) Program began with injection of water from the Little Arkansas River into the aquifer for storage and subsequent recovery in 2006. Construction of a river intake structure and surface-water treatment plant began as implementation of Phase II of the Equus Beds ASR Program in 2010. An important aspect of the ASR Program is the monitoring of water quality and the effects of recharge activities on stream conditions. Physical, chemical, and biological data provide the basis for an integrated assessment of stream quality. This report describes protocols for collecting streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data as part of the city of Wichita's hydrobiological monitoring program (HBMP). Following consistent and reliable methods for data collection and processing is imperative for the long-term success of the monitoring program.

  14. Exploring the focus and experiences of smartphone applications for addiction recovery.

    Science.gov (United States)

    Savic, Michael; Best, David; Rodda, Simone; Lubman, Dan I

    2013-01-01

    Addiction recovery Smartphone applications (apps) (n = 87) identified on the Google Play store in 2012 were coded, along with app user reviews, to explore functions, foci, and user experiences. Content analysis revealed that apps typically provided information on recovery, as well as content to enhance motivation, promote social support and tools to monitor progress. App users commented that the apps helped to inform them, keep them focussed, inspire them, and connect them with other people and groups. Because few addiction recovery apps appear to have been formally evaluated, further research is needed to ascertain their effectiveness as stand-alone or adjunctive interventions.

  15. Evaluation of sample preparation methods and optimization of nickel determination in vegetable tissues

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernando dos Santos Salazar

    2011-02-01

    Full Text Available Nickel, although essential to plants, may be toxic to plants and animals. It is mainly assimilated by food ingestion. However, information about the average levels of elements (including Ni in edible vegetables from different regions is still scarce in Brazil. The objectives of this study were to: (a evaluate and optimize a method for preparation of vegetable tissue samples for Ni determination; (b optimize the analytical procedures for determination by Flame Atomic Absorption Spectrometry (FAAS and by Electrothermal Atomic Absorption (ETAAS in vegetable samples and (c determine the Ni concentration in vegetables consumed in the cities of Lorena and Taubaté in the Vale do Paraíba, State of São Paulo, Brazil. By means of the analytical technique for determination by ETAAS or FAAS, the results were validated by the test of analyte addition and recovery. The most viable method tested for quantification of this element was HClO4-HNO3 wet digestion. All samples but carrot tissue collected in Lorena contained Ni levels above the permitted by the Brazilian Ministry of Health. The most disturbing results, requiring more detailed studies, were the Ni concentrations measured in carrot samples from Taubaté, where levels were five times higher than permitted by Brazilian regulations.

  16. Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices

    Science.gov (United States)

    The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...

  17. Characterizing meadow vegetation with multitemporal Landsat thematic mapper remote sensing.

    Science.gov (United States)

    Alan A. Ager; Karen E. Owens

    2004-01-01

    Wet meadows are important biological components in the Blue Mountains of eastern Oregon. Many meadows in the Blue Mountains and elsewhere in the Western United States are in a state of change owing to grazing, mining, logging, road development, and other factors. This project evaluated the utility of remotely sensed data to characterize and monitor meadow vegetation...

  18. Persistence of aquatic insects across managed landscapes: effects of landscape permeability on re-colonization and population recovery.

    Directory of Open Access Journals (Sweden)

    Nika Galic

    Full Text Available Human practices in managed landscapes may often adversely affect aquatic biota, such as aquatic insects. Dispersal is often the limiting factor for successful re-colonization and recovery of stressed habitats. Therefore, in this study, we evaluated the effects of landscape permeability, assuming a combination of riparian vegetation (edge permeability and other vegetation (landscape matrix permeability, and distance between waterbodies on the colonization and recovery potential of weakly flying insects. For this purpose, we developed two models, a movement and a population model of the non-biting midge, Chironomus riparius, an aquatic insect with weak flying abilities. With the movement model we predicted the outcome of dispersal in a landscape with several linear water bodies (ditches under different assumptions regarding landscape-dependent movement. Output from the movement model constituted the probabilities of encountering another ditch and of staying in the natal ditch or perishing in the landscape matrix, and was used in the second model. With this individual-based model of midge populations, we assessed the implications for population persistence and for recovery potential after an extreme stress event. We showed that a combination of landscape attributes from the movement model determines the fate of dispersing individuals and, once extrapolated to the population level, has a big impact on the persistence and recovery of populations. Population persistence benefited from low edge permeability as it reduced the dispersal mortality which was the main factor determining population persistence and viability. However, population recovery benefited from higher edge permeability, but this was conditional on the low effective distance that ensured fewer losses in the landscape matrix. We discuss these findings with respect to possible landscape management scenarios.

  19. Studying the Post-Fire Response of Vegetation in California Protected Areas with NDVI-based Pheno-Metrics

    Science.gov (United States)

    Jia, S.; Gillespie, T. W.

    2016-12-01

    Post-fire response from vegetation is determined by the intensity and timing of fires as well as the nature of local biomes. Though the field-based studies focusing on selected study sites helped to understand the mechanisms of post-fire response, there is a need to extend the analysis to a broader spatial extent with the assistance of remotely sensed imagery of fires and vegetation. Pheno-metrics, a series of variables on the growing cycle extracted from basic satellite measurements of vegetation coverage, translate the basic remote sensing measurements such as NDVI to the language of phenology and fire ecology in a quantitative form. In this study, we analyzed the rate of biomass removal after ignition and the speed of post-fire recovery in California protected areas from 2000 to 2014 with USGS MTBS fire data and USGS eMODIS pheno-metrics. NDVI drop caused by fire showed the aboveground biomass of evergreen forest was removed much slower than shrubland because of higher moisture level and greater density of fuel. In addition, the above two major land cover types experienced a greatly weakened immediate post-fire growing season, featuring a later start and peak of season, a shorter length of season, and a lower start and peak of NDVI. Such weakening was highly correlated with burn severity, and also influenced by the season of fire and the land cover type, according to our modeling between the anomalies of pheno-metrics and the difference of normalized burn ratio (dNBR). The influence generally decayed over time, but can remain high within the first 5 years after fire, mostly because of the introduction of exotic species when the native species were missing. Local-specific variables are necessary to better address the variance within the same fire and improve the outcomes of models. This study can help ecologists in validating the theories of post-fire vegetation response mechanisms and assist local fire managers in post-fire vegetation recovery.

  20. Serving vegetables first: A strategy to increase vegetable consumption in elementary school cafeterias.

    Science.gov (United States)

    Elsbernd, S L; Reicks, M M; Mann, T L; Redden, J P; Mykerezi, E; Vickers, Z M

    2016-01-01

    Vegetable consumption in the United States is low despite the wealth of evidence that vegetables play an important role in reducing risk of various chronic diseases. Because eating patterns developed in childhood continue through adulthood, we need to form healthy eating habits in children. The objective of this study was to determine if offering vegetables before other meal components would increase the overall consumption of vegetables at school lunch. We served kindergarten through fifth-grade students a small portion (26-33 g) of a raw vegetable (red and yellow bell peppers) while they waited in line to receive the rest of their lunch meal. They then had the options to take more of the bell peppers, a different vegetable, or no vegetable from the lunch line. We measured the amount of each vegetable consumed by each child. Serving vegetables first greatly increased the number of students eating vegetables. On intervention days most of the vegetables consumed came from the vegetables-first portions. Total vegetable intake per student eating lunch was low because most students chose to not eat vegetables, but the intervention significantly increased this value. Serving vegetables first is a viable strategy to increase vegetable consumption in elementary schools. Long-term implementation of this strategy may have an important impact on healthy eating habits, vegetable consumption, and the health consequences of vegetable intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 78 FR 38011 - Endangered and Threatened Species; Notice of Intent To Prepare a Recovery Plan for Oregon Coast...

    Science.gov (United States)

    2013-06-25

    ... Recovery Coordinator. Business hours are 8 a.m. to 4:30 p.m. Monday through Friday, except Federal holidays... to implement recovery actions; 6. Critical knowledge gaps and/or uncertainties that need to be resolved to better inform recovery efforts; and 7. Research, monitoring and evaluation needs to address...

  2. 40 CFR 60.703 - Monitoring of emissions and operations.

    Science.gov (United States)

    2010-07-01

    ... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel... thermal conductivity, each equipped with a continuous recorder. (2) Where a condenser is the final recovery device in the recovery system: (i) A condenser exit (product side) temperature monitoring device...

  3. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    International Nuclear Information System (INIS)

    Skeel, V.A.; Nawrot, J.R.

    1998-01-01

    Since the Cooperative Wildlife Research Laboratory's (CWRL) Mined Land Reclamation Program's first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surface (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow (≤12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled

  4. Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state

    Science.gov (United States)

    de Tommaso, Marina; Navarro, Jorge; Lanzillotti, Crocifissa; Ricci, Katia; Buonocunto, Francesca; Livrea, Paolo; Lancioni, Giulio E.

    2015-01-01

    Aims: Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient visual, acoustic, somatosensory electric non-nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation. Methods: Five Vegetative State (VS), 4 Minimally Conscious State (MCS) patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 s. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2) vertex complex in the 500 ms post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R) and Coma Recovery Scale (CRS-R) for clinical evaluation of pain perception and consciousness impairment. Results: The laser evoked potentials (LEPs) were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the degree of cognitive and motor

  5. Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry.

    Science.gov (United States)

    Li, Yan-Fei; Qiao, Lu-Qin; Li, Fang-Wei; Ding, Yi; Yang, Zi-Jun; Wang, Ming-Lin

    2014-09-26

    Based on a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation method with Fe3O4 magnetic nanoparticles (MNPs) as the adsorbing material and gas chromatography-tandem mass spectrometry (GC-MS/MS) determination in multiple reaction monitoring (MRM) mode, we established a new method for the determination of multiple pesticides in vegetables and fruits. It was determined that bare MNPs have excellent function as adsorbent when purified, and it is better to be separated from the extract. The amount of MNPs influenced the clean-up performance and recoveries. To achieve the optimum performance of modified QuEChERS towards the target analytes, several parameters including the amount of the adsorbents and purification time were investigated. Under the optimum conditions, recoveries were evaluated in four representative matrices (tomato, cucumber, orange and apple) with the spiked concentrations of 10 μg kg(-1), 50 μg kg(-1)and 200 μg kg(-1) in all cases. The results showed that the recovery of 101 pesticides ranged between 71.5 and 111.7%, and the relative standard deviation was less than 10.5%. The optimum clean-up system improved the purification efficiency and simultaneously obtained satisfactory recoveries of multiple pesticides, including planar-ring pesticides. In short, the modified QuEChERS method in addition to MNPs used for removing impurities improved the speed of sample pre-treatment and exhibited an enhanced performance and purifying effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Ecohydrological drought monitoring and prediction using a land data assimilation system

    Science.gov (United States)

    Sawada, Y.; Koike, T.

    2017-12-01

    Despite the importance of the ecological and agricultural aspects of severe droughts, few drought monitor and prediction systems can forecast the deficit of vegetation growth. To address this issue, we have developed a land data assimilation system (LDAS) which can simultaneously simulate soil moisture and vegetation dynamics. By assimilating satellite-observed passive microwave brightness temperature, which is sensitive to both surface soil moisture and vegetation water content, we can significantly improve the skill of a land surface model to simulate surface soil moisture, root zone soil moisture, and leaf area index (LAI). We run this LDAS to generate a global ecohydrological land surface reanalysis product. In this presentation, we will demonstrate how useful this new reanalysis product is to monitor and analyze the historical mega-droughts. In addition, using the analyses of soil moistures and LAI as initial conditions, we can forecast the ecological and hydrological conditions in the middle of droughts. We will present our recent effort to develop a near real time ecohydrological drought monitoring and prediction system in Africa by combining the LDAS and the atmospheric seasonal prediction.

  7. Response of Vegetation on Gravel Bars to Management Measures and Floods: Case Study From the Czech Republic

    Directory of Open Access Journals (Sweden)

    Eremiášová Renata

    2014-08-01

    Full Text Available This article investigates response of vegetation on gravel bars to management measures and floods. The management measures consisted of the partial removal of gravel and vegetation cover, and were applied to six gravel bars on the Ostravice River, Czech Republic. Unexpected floods occu-rred in 2010, with the amplitude of 5- to 50-year repetition. Research of vegetation on the gravel bars consisted of vegetation survey before the management works; the monitoring of vegetation development over the following year and the verification of the relationships of species diversity, successional stages and the biotope conditions with the help of multivariate analysis (detrended correspondence analysis. Vegetation on the gravel bars was at different successional stages, and had higher diversity and vegetation cover before the management measures and floods. The mul-tivariate analysis revealed a shift toward initial successional stages with high demand on moisture, temperature and light after both management measures and floods.

  8. Increasing fruit and vegetable consumption: success of the Western Australian Go for 2&5 campaign.

    Science.gov (United States)

    Pollard, Christina M; Miller, Margaret R; Daly, Alison M; Crouchley, Kathy E; O'Donoghue, Kathy J; Lang, Anthea J; Binns, Colin W

    2008-03-01

    The Western Australian Health Department's Go for 2&5 campaign aimed to increase adults' awareness of the need to eat more fruit and vegetables and encourage increased consumption of one serving over five years. The multi-strategy fruit and vegetable social marketing campaign, conducted from 2002 to 2005, included mass media advertising (television, radio, press and point-of-sale), public relations events, publications, a website (www.gofor2and5.com), and school and community activities. Campaign development and the evaluation framework were designed using health promotion theory, and assessed values, beliefs, knowledge and behaviour. Two independent telephone surveys evaluated the campaign: the Campaign Tracking Survey interviewed 5032 adults monitoring fruit and vegetable attitudes, beliefs and consumption prior to, during and 12 months after the campaign; and the Health & Wellbeing Surveillance System surveyed 17,993 adults between 2001 and 2006, continuously monitoring consumption. Population public health intervention-social marketing campaign in Western Australia, population of 2,010,113 in 2005. Adults in the Perth metropolitan area. The campaign reached the target audience, increasing awareness of the recommended servings of fruit and vegetables. There was a population net increase of 0.8 in the mean number of servings of fruit and vegetables per day over three years (0.2 for fruit (1.6 in 2002 to 1.8 in 2005) and 0.6 for vegetables (2.6 in 2002 to 3.2 in 2005), significant at P < 0.05). Sustained, well-executed social marketing is effective in improving nutrition knowledge, attitudes and consumption behaviour. The Go for 2&5 campaign provides guidance to future nutrition promotion through social marketing.

  9. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  10. Resilience of riverbed vegetation to uprooting by flow

    Science.gov (United States)

    Perona, P.; Crouzy, B.

    2018-03-01

    Riverine ecosystem biodiversity is largely maintained by ecogeomorphic processes including vegetation renewal via uprooting and recovery times to flow disturbances. Plant roots thus heavily contribute to engineering resilience to perturbation of such ecosystems. We show that vegetation uprooting by flow occurs as a fatigue-like mechanism, which statistically requires a given exposure time to imposed riverbed flow erosion rates before the plant collapses. We formulate a physically based stochastic model for the actual plant rooting depth and the time-to-uprooting, which allows us to define plant resilience to uprooting for generic time-dependent flow erosion dynamics. This theory shows that plant resilience to uprooting depends on the time-to-uprooting and that root mechanical anchoring acts as a process memory stored within the plant-soil system. The model is validated against measured data of time-to-uprooting of Avena sativa seedlings with various root lengths under different flow conditions. This allows for assessing the natural variance of the uprooting-by-flow process and to compute the prediction entropy, which quantifies the relative importance of the deterministic and the random components affecting the process.

  11. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  12. Evaluation of the data of vegetable covering using fraction images and multitemporal vegetation index, derived of orbital data of moderate resolution of the sensor MODIS

    International Nuclear Information System (INIS)

    Murillo Mejia, Mario Humberto

    2006-01-01

    The objective was to evaluate the data obtained by sensor MODIS onboard the EOS terra satellite land cover units. The study area is the republic of Colombia in South America. The methodology consisted of analyzing the multitemporal (vegetation, soil and shade-water) fraction images and vegetation indices (NDVI) apply the lineal spectral mixture model to products derived from derived images by sensor MODIS data obtained in years 2001 and 2003. The mosaics of the original and the transformed vegetation (soil and shade-water) bands were generated for the whole study area using SPRING 4. 0 software, developed by INPE then these mosaics were segmented, classified, mapped, and edited to obtain a moderate resolution land cover map. The results derived from MODIS analysis were compared with Landsat ETM+ data acquire for a single test site. The results of the project showed the usefulness of MODIS images for large-scale land cover mapping and monitoring studies

  13. Development and Performance Evaluation of a Re-Circulatory Vegetable Moisturizer

    Directory of Open Access Journals (Sweden)

    M. O. Sunmonu

    2016-08-01

    Full Text Available A re-circulatory vegetable moisturizer for preventing wilting in vegetables was developed and its performance evaluation carried out. Freshly harvested Amaranthus vegetables were used for the experiments. The temperature and relative humidity were monitored daily. The vitamin A of this produce was determined at intervals of two days for 9 days. The effects of the storage parameters (temperature and relative humidity on the nutritional value of the produce were determined using statistical analysis of variance (ANOVA. Further analysis by Duncan’s New Multiple Range Test (DNMRT was carried out to compare the means. The vegetable moisturizer was evaluated by comparing the change in nutritional (vitamin A of Amaranthus vegetable with hand wetting system and no wetting condition. The results showed that the moisturizer had higher mean vitamin A content (4.93mg/100gcompared to the mean vitamin A content of the manual wetting (4.88mg/100g and no wetting condition (4.57mg/100g. The sensory characteristics showed that the Moisturizer was more desirable when compared to the manual wetting and no wetting condition after nine days. It was concluded that the Moisturizer preserved the nutritional and sensory characteristics (texture and colour better than the manual and no wetting condition as a result of lower temperature, higher relative humidity and better water draining of the Moisturizer.

  14. Analyzing the vegetation response under different treatments after wildfires in NE Spain

    Science.gov (United States)

    León, Javier; Cerdà, Artemi; Badía, David; Echeverría, Maite; Martí, Clara

    2014-05-01

    Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The socio-economic changes that occurred in the last decades have contributed to an increase in forest fires (Shakesby, 2011). There was found a change in the fire regimes in terms of frequency, size, seasonality, recurrence as well as fire intensity and severity (Keeley, 2009), which resulted in severe effects on soils, water and vegetation (Guénon et al., 2013). Fire affects soil properties directly by the heat impact (Aznar et al., 2013), and the ash cover (Cerdà and Doerr, 2008) and the reduction of the plant cover (Neary et al., 1999). The lack of vegetation and the heating promotes changes in the soil organic matter content (González-Pérez et al., 2004), on the structural stability (Mataix-Solera et al., 2011), on the hydrophobic response (Bodí et al., 2012), and on the infiltration capacity (Cerdà, 1998a). This is why the vegetation cover and the litter are key factors on soil erosion after forest fires (Prats et al., 2013). Besides, the ash plays an important paper in the soil protection after the forest fire and after the first storms and winds (León et al., 2013; Pereira et al., 2013). The objective of this experiment is to asses the vegetation response after a forest fire and the impact of vegetation recovery on soil erosion. The experiment consisted in a sampling of a linear transect of 10 m with samples each 2 m, under different slope position and aspect. To measure the soil erosion rates we used rainfall simulation experiments (León et al., 2013). The experiments were carried in Castejón (UTM 30T, X671106, Y4644584) in a forest burned in 2008, in the Zuera Mountains, both located in the north of Zaragoza province (NE Spain). The soils on limestone parent material are Rendzic Phaeozem (IUSS, 2007) and the texture of Ah horizons of soils developed on limestone is sandy-loam (Badía et al., 2013). The result shows fast and successful vegetation regeneration in the north

  15. FAST GC-FID METHOD FOR MONITORING ACIDIC AND BASIC CATALYTIC TRANSESTERIFICATION REACTIONS IN VEGETABLE OILS TO METHYL ESTER BIODIESEL PREPARATION

    Directory of Open Access Journals (Sweden)

    Renata Takabayashi Sato

    2016-04-01

    Full Text Available A fast gas chromatography with a flame ionisation detector (GC-FID method for the simultaneous analysis of methyl palmitate (C16:0, stearate (C18:0, oleate (C18:1, linoleate (C18:2 and linolenate (C18:3 in biodiesel samples was proposed. The analysis was conducted in a customised ionic-liquid stationary-phase capillary, SLB-IL 111, with a length of 14 m, an internal diameter of 0.10 mm, a film thickness of 0.08 µm and operated isothermally at 160 °C using hydrogen as the carrier gas at a rate of 50 cm s-1 in run time about 3 min. Once methyl myristate (C14:0 is present lower than 0.5% m/m in real samples it was used as an internal standard. The method was successful applied to monitoring basic and acidic catalysis transesterification reactions of vegetable oils such as soybean, canola, corn, sunflower and those used in frying process.

  16. Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

    International Nuclear Information System (INIS)

    Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly

    2004-01-01

    An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system

  17. Phenological Characterization of Desert Sky Island Vegetation Communities with Remotely Sensed and Climate Time Series Data

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-01-01

    Full Text Available Climate change and variability are expected to impact the synchronicity and interactions between the Sonoran Desert and the forested sky islands which represent steep biological and environmental gradients. The main objectives were to examine how well satellite greenness time series data and derived phenological metrics (e.g., season start, peak greenness can characterize specific vegetation communities across an elevation gradient, and to examine the interactions between climate and phenological metrics for each vegetation community. We found that representative vegetation types (11, varying between desert scrub, mesquite, grassland, mixed oak, juniper and pine, often had unique seasonal and interannual phenological trajectories and spatial patterns. Satellite derived land surface phenometrics (11 for each of the vegetation communities along the cline showed numerous distinct significant relationships in response to temperature (4 and precipitation (7 metrics. Satellite-derived sky island vegetation phenology can help assess and monitor vegetation dynamics and provide unique indicators of climate variability and patterns of change.

  18. Digital innovations and emerging technologies for enhanced recovery programmes.

    Science.gov (United States)

    Michard, F; Gan, T J; Kehlet, H

    2017-07-01

    Enhanced recovery programmes (ERPs) are increasingly used to improve post-surgical recovery. However, compliance to various components of ERPs-a key determinant of success-remains sub-optimal. Emerging technologies have the potential to help patients and caregivers to improve compliance with ERPs.Preoperative physical condition, a major determinant of postoperative outcome, could be optimized with the use of text messages (SMS) or digital applications (Apps) designed to facilitate smoking cessation, modify physical activity, and better manage hypertension and diabetes. Several non-invasive haemodynamic monitoring techniques and decision support tools are now available to individualize perioperative fluid management, a key component of ERPs. Objective nociceptive assessment may help to rationalize the use of pain medications, including opioids. Wearable sensors designed to monitor cardio-respiratory function may help in the early detection of clinical deterioration during the postoperative recovery and to address 'failure to rescue'. Activity trackers may be useful to monitor early mobilization, another major element of ERPs. Finally, electronic checklists have been developed to ensure that none of the above-mentioned ERP elements is omitted during the surgical journey.By optimizing compliance to the multiple components of ERPs, digital innovations, non-invasive techniques and wearable sensors have the potential to magnify the clinical and economic benefits of ERPs. Among the growing number of technical innovations, studies are needed to clarify which tools and solutions have real clinical value and are cost-effective. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Vegetation Function and Physiology: Photosynthesis, Fluorescence and Non-photochemical Quenching (NPQ)

    Science.gov (United States)

    Zhang, Q.; Yao, T.

    2017-12-01

    Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible

  20. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    Science.gov (United States)

    Lasaponara, R.

    2009-04-01

    Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining

  1. Analysis of Behavior of Vegetation in the Year of 2016 for the Municipality of Remanso- BA

    OpenAIRE

    Ismael Farias de Freitas; Laurizio E. R. Alves; Heliofábio B. Gomes; Jeová R. S. Júnior; Dimas B. Santiago; Rafael A. Silva

    2017-01-01

    Droughts are a natural problem in the Northeastern Brazilian region, in addition the rainfall distribution poorly distributed spatially and temporally results in seasonal changes in the surface vegetation. Consequently, the monitoring and evaluation of vegetation in the northeast region of Brazil has become increasingly constant. For this evaluation several techniques are used, but the use of environmental satellites is increasingly applied, such as the Landsat 8 satellite, where the products...

  2. Assessment of recovery and recrystallisation behaviours of cold rolled IF steel through non-destructive electromagnetic characterisation

    Science.gov (United States)

    Roy, Rajat K.; Dutta, Siuli; Panda, Ashis K.; Rajinikanth, V.; Das, Swapan K.; Mitra, Amitava; Strangwood, M.; Davis, Claire L.

    2018-07-01

    The recovery and recrystallisation behaviours of cold rolled IF steel have been investigated by destructive (optical microscopy and hardness) and non-destructive electromagnetic sensor, (which allows direct measurement of strip samples with no surface preparation) techniques. The onset and completion of recrystallisation are clearly monitored through destructive techniques of optical microscopy and hardness measurements. The nucleation of new recrystallised grains is observed in the sample annealed at 600 °C/15 min, while completion of recrystallisation takes place at 700 °C/15 min. The destructive techniques are not very accurate in monitoring recovery, for example, changes in hardness of accounting for ≈60% change in the coercivity value. Therefore, the measurement of magnetic softening through an electromagnetic sensor acts a crucial role for understanding recovery and recrystallisation behaviours of steels during industrial processing. The present investigation is aimed not only for controlling product quality but also saving characterisation time through off line monitoring during steel processing at industry.

  3. Utilizing Remote Sensing Information to Improve Post-fire Rainfall-runoff Predictions after the 2010 Bull Fire in the Sequoia National Forest, CA

    Science.gov (United States)

    Kinoshita, A. M.; Hale, B.; Hogue, T. S.

    2012-12-01

    Post-fire management decisions are guided by rainfall-runoff predictions, which ultimately influence downstream treatment and mitigation costs. The current study investigates evolving rainfall-runoff partitioning at the watershed scale over a two-year period after the 2010 Bull Fire which occurred in the southern Sequoia National Forest in California. Stage height was measured at five-minute intervals using pressure transducers, tipping buckets were installed for rainfall duration and intensity, and channel cross-sections were measured approximately every two months to detail sediment deposition or scour. We also utilize remotely sensed vegetation data to evaluate vegetation recovery in the studied watersheds and the corresponding relationship to storm runoff. Normalized Difference Vegetation Index (NDVI), a measure of vegetation greenness, is evaluated for its potential use as a key recovery indicator. Preliminary results focus on alterations in annual and seasonal precipitation and discharge relationships using in-situ data and Landsat NDVI values for the period of study. NDVI values are consistent with a comprehensive burn, with an acute decrease observed in the initial post-fire period. However, vegetation recovery is highly variable in the studied systems and influenced by shorter-term biomass pulses (grasses) while longer-term recovery of other species (chaparral and pine) is ongoing. Runoff ratios are elevated during early storms and show some recovery in the later part of the study period. The ability to accurately and confidently predict post-fire runoff and longer-term recovery is critical for monitoring values-at-risk, reducing mitigation costs, and improving warnings to downstream public communities.

  4. [Monitoring of contamination of foodstuffs with elements noxious to human health. Part I. Wheat cereal products, vegetable products, confectionery and products for infants and children (2004 year)].

    Science.gov (United States)

    Wojciechowska-Mazurek, Maria; Starska, Krystyna; Brulińska-Ostrowska, Elzbieta; Plewa, Monika; Biernat, Urszula; Karłowski, Kazimierz

    2008-01-01

    The testing of products of wheat cereal (310 samples), vegetable (418 samples), confectionery (439 samples) and 952 samples of products for infants and children has initiated the 5-years cycle of monitoring investigations on food contamination with elements noxious to human health planned to perform in 2004-2008. The parties involved in testing were: laboratories of State Sanitary Inspection collecting samples on all over the territory of Poland, both from retail market (of domestic origin as well as imported) and directly from producers; the national reference laboratory of the Department of Food and Consumer Articles Research of National Institute of Public Health - National Institute of Hygiene responsible for elaboration of official food control and monitoring plans to be approved by Chief Sanitary Inspectorate and for the substantive supervising of tests performance. The reported metals contents were not of health concern and generally below the levels set forth in food legislation. The health hazard assessment was performed taking into account the mean contamination obtained and average domestic consumption of these food products groups in Poland. The highest intake expressed as the percentage of provisional tolerable weekly intake (PTWI) was obtained for cadmium, which has reached 9.4% PTWI for cereal based products and 4.7% PTWI for vegetables. The cadmium content in chocolate and derived products due to contamination of cocoa beans and the levels of this element in products for infants and children originated from contamination of cereal and soybeans row materials should not be ignored. The decrease of lead contamination comparing to those reported in 1990 studies was observed.

  5. Remotely sensed vegetation moisture as explanatory variable of Lyme borreliosis incidence

    Science.gov (United States)

    Barrios, J. M.; Verstraeten, W. W.; Maes, P.; Clement, J.; Aerts, J. M.; Farifteh, J.; Lagrou, K.; Van Ranst, M.; Coppin, P.

    2012-08-01

    The strong correlation between environmental conditions and abundance and spatial spread of the tick Ixodes ricinus is widely documented. I. ricinus is in Europe the main vector of the bacterium Borrelia burgdorferi, the pathogen causing Lyme borreliosis (LB). Humidity in vegetated systems is a major factor in tick ecology and its effects might translate into disease incidence in humans. Time series of two remotely sensed indices with sensitivity to vegetation greenness and moisture were tested as explanatory variables of LB incidence. Wavelet-based multiresolution analysis allowed the examination of these signals at different temporal scales in study sites in Belgium, where increases in LB incidence were reported in recent years. The analysis showed the potential of the tested indices for disease monitoring, the usefulness of analyzing the signal in different time frames and the importance of local characteristics of the study area for the selection of the vegetation index.

  6. Final vegetative cover for closed waste sites

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1993-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as an interim vegetative cover for most sites. This coverage allows for required monitoring of the closure cap for settlement and maintenance activities. The purpose of this five year study was to evaluate plant materials for use on wastes sites after the post-closure care period that are quickly and easily established and economically maintained, retard water infiltration, provide maximum year-round evapotranspiration, are ecologically acceptable and do not harm the closure cap. The results of the study suggest that two species of bamboo (Phyllostachys (P.) bissetii and P. rubromarginata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites after surveillance and maintenance requirements have ceased

  7. Using endmembers in AVIRIS images to estimate changes in vegetative biomass

    Science.gov (United States)

    Smith, Milton O.; Adams, John B.; Ustin, Susan L.; Roberts, Dar A.

    1992-01-01

    Field techniques for estimating vegetative biomass are labor intensive, and rarely are used to monitor changes in biomass over time. Remote-sensing offers an attractive alternative to field measurements; however, because there is no simple correspondence between encoded radiance in multispectral images and biomass, it is not possible to measure vegetative biomass directly from AVIRIS images. Ways to estimate vegetative biomass by identifying community types and then applying biomass scalars derived from field measurements are investigated. Field measurements of community-scale vegetative biomass can be made, at least for local areas, but it is not always possible to identify vegetation communities unambiguously using remote measurements and conventional image-processing techniques. Furthermore, even when communities are well characterized in a single image, it typically is difficult to assess the extent and nature of changes in a time series of images, owing to uncertainties introduced by variations in illumination geometry, atmospheric attenuation, and instrumental responses. Our objective is to develop an improved method based on spectral mixture analysis to characterize and identify vegetative communities, that can be applied to multi-temporal AVIRIS and other types of images. In previous studies, multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA were analyzed and vegetation communities were defined in terms of fractions of reference (laboratory and field) endmember spectra. An advantage of converting an image to fractions of reference endmembers is that, although fractions in a given pixel may vary from image to image in a time series, the endmembers themselves typically are constant, thus providing a consistent frame of reference.

  8. Radionuclide content of vegetation and soil on an integrated nuclear complex

    International Nuclear Information System (INIS)

    Schneider, P.

    1974-01-01

    Samples of soil and vegetation collected at the Savannah River Plant in July 1974 were analyzed for plutonium, using different procedures. The method of choice for soil analysis involved a leach procedure followed by separation using an ion exchange column. The elute was finally adjusted to the proper pH and electroplated to platinum. Counting was done on a solid state alpha spectrometer to resolve 236 Pu, 238 Pu, and 239-240 Pu. An internal spike of 236 Pu is used to calculate percent recovery. The method of plutonium analysis for vegetation involved dissolution of the ashed plant material and then double separation. The first separation was with TIOA-xylene, and the second used HCl. The organic residue was then destroyed using nitric acid and hydrogen peroxide. Finally, the solution was mounted on a planchet and counted in an alpha spectrometer. Data are included on the content of 137 Cs and 90 Sr in the samples. (U.S.)

  9. Prevalence of Parasitic Contamination of Raw Vegetables in Sanandaj, Iran, in 2013

    Directory of Open Access Journals (Sweden)

    ghasem zamini

    2017-03-01

    Full Text Available Introduction and purpose: Parasitic diseases have led to economic and health problems around the world. One of the most common ways for the transmission of these diseases is the consumption of raw vegetables contaminated with parasite. These diseases can be prevented through obtaining knowledge about the parasitic contamination of the vegetables. Regarding this, the aim of the present study was to evaluate the prevalence and type of raw vegetables  contamination in Sanandaj, Iran, in 2013.Methods: This cross-sectional study was conducted on 360 vegetable samples distributed in 60 greengroceries in Sanandaj in 2017. The data were analyzed using the SPSS version 16.Results: In total, 16.3% of the vegetable samples were contaminated with various types of parasites, including free-living nematode (12.2%, Entamoeba coli (1.7%, Giardia (0.8%, Blastocystis hominis (0.8%, and Dicrocoelium (0.8%. However, most of the contaminations (81.6% were found in the vegetables, which were imported from regions other than Kurdistan province. Basil had the highest level of contamination, whereas coriander and lettuce had the lowest contamination level (P=0<05. Additionally, the vegetables had the highest and lowest contamination levels in the winter and spring, respectively.Conclusion: Regarding the findings of the present study, it is recommend to thoroughly perform parasite decontamination before the consumption of vegetables. Furthermore, the officials can prevent the parasitic diseases by  careful monitoring of public food distribution centers and controlling the source of vegetables in the winter.

  10. Long-term trends in vegetation phenology and productivity over Namaqualand using the GIMMS AVHRR NDVI3g data from 1982 to 2011

    CSIR Research Space (South Africa)

    Davis, CL

    2017-07-01

    Full Text Available Vegetation monitoring of arid and semi-arid environments using remotely sensed vegetation indices over long periods of time is essential to improve the understanding of the processes related to change. In this paper, 30 years of biweekly AVHRR NDVI3...

  11. Quality of Organic Vegetables Grown in Two Certified Sites on the Outskirts of Bucharest Municipality

    OpenAIRE

    Lungu Mihaela; Ștefănescu Sorin Liviu; Dumitrașcu Monica

    2017-01-01

    Soil fertility properties, irrigation water quality, mineral nutrition, and some vegetables mineral composition were studied in the frame of a project regarding yield quality monitoring in certified organic vegetable farms, in two farms placed on the outskirts of Bucharest Municipality which provide products for the town’s organic market. Chemical analysis of the soil samples collected from the two farms reflects a good fertility, close to the natural one of this region soils, with well-balan...

  12. New views on changing Arctic vegetation

    Science.gov (United States)

    Kennedy, Robert E.

    2012-03-01

    means of tracking retrospective changes in Arctic and boreal vegetation. These images are attractive because they are consistent over time, are good at mapping vegetation, are available for areas difficult to reach on the ground, and are of broad geographic extent. In a now-classic study, Myneni et al (1998) used historical reanalysis of AVHRR image data to document changes in vegetation phenology at continental scales in the northern hemisphere, finding patterns of change consistent with impacts of increased growing season in boreal and near-polar regions. The year 2000 launch of the MODIS sensors has allowed even more robust assessment of vegetation change in the Arctic (de Beurs and Henebry 2010) and at global scales (Zhao and Running 2010). Despite opening a window into vegetation change in the Arctic, these studies provide a relatively coarsely filtered view of change. To track trends occurring before the year 2000, researchers are constrained to the large pixel sizes of the AVHRR instrument (nominally 1 km, but typically 4-8 km for derived datasets). Even the finer grain of MODIS (250 m to 1 km resolution) obscures many important natural and anthropogenically derived spatial patterns. The effects of climate change may exacerbate contrasts in competitive status of different vegetative groups (Klady et al 2011, Pieper et al 2011, Seastedt et al 2004). Resolving mechanisms of response requires empirical observation at the scale of individual vegetative communities. Thus, the new work of Fraser et al (2011) represents a critical milestone in climate change related monitoring of Arctic vegetation. Their work is important in three ways. First, the authors provide the first spatially explicit, continuous record of long-term trends in Arctic vegetation condition at a pixel resolution of 30 m. Based on Landsat Thematic Mapper (TM) data reaching back to the mid 1980s, the work required the overcoming of several key methodological challenges to build a dataset from which

  13. Comparison of Vegetation Indices from Rpas and SENTINEL-2 Imagery for Detecting Permanent Pastures

    Science.gov (United States)

    Piragnolo, M.; Lusiani, G.; Pirotti, F.

    2018-04-01

    Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing.

  14. COMPARISON OF VEGETATION INDICES FROM RPAS AND SENTINEL-2 IMAGERY FOR DETECTING PERMANENT PASTURES

    Directory of Open Access Journals (Sweden)

    M. Piragnolo

    2018-04-01

    Full Text Available Permanent pastures (PP are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016. Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI, the Soil-adjusted Vegetation Index (SAVI, the Normalized Difference Water Index (NDWI, and the Normalized Difference Built Index (NDBI. The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing.

  15. Safety-net concept - an extra step in environmental monitoring

    International Nuclear Information System (INIS)

    Sage, L.E.; Kachur, M.; Shank, K.E.; Palms, J.

    1990-01-01

    In 1979, a monitoring program, designed by the Academy of Natural Sciences, was implemented at the Pennsylvania Power and Light Company nuclear station in rural Pennsylvania. The program had three objectives: (1) provide an independent level of public confidence concerning the ecological significance of radionuclides released to the environment; (2) understand the transport and fate of radionuclides in the environment; (3) develop monitoring methods that are responsive to cumulative radiation in the environment. This program focuses on biological receptors that concentrate radionuclides and increase detection sensitivity in all segments of the environment. The aquatic environment is monitored in the conventional manner by sampling fish tissues and in a less traditional manner by sampling the finer river sediments and periphytic diatoms. The terrestrial environment is monitored by sampling home vegetable gardens, forest vegetation, lichens, and game mammals. A primary goal is to establish ecological linkages, for example, between radionuclides, tree leaves, leaf litter, humus, and fungi. These linkages extend, through food, to game mammals, thence to humans. Eight years of experimental results are presented

  16. [Determination of 250 pesticide residues in vegetables using QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Aizhi; Wang, Quanlin; Cao, Lili; Li, Yu; Shen, Hao; Shen, Jian; Zhang, Shufen; Man, Zhengyin

    2016-02-01

    A multiresidue analytical method for the determination of 250 pesticide residues in vegetables was developed by using QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The target compounds were extracted with acetonitrile containing 1% (v/v) acetic acid, purified by a mixed sorbent of MgSO4, primary secondary amine (PSA), graphitized carbon black (GCB) and C18, separated on a Waters ACQUITY™ UPLC BEH C18 column (100 mm x 2. 1 mm, 1.7 µm) and detected by UPLC-MS/MS. Anhydrous magnesium sulfate was used as a dewatering agent. The effects of the amounts of MgSO4, PSA, GCB and C18 added on the recoveries of 250 pesticides were investigated. The results showed that the purification effect was best when 300 mg MgSO4, 200 mg PSA, 10 mg GCB and 100 mg C18 in 2 mL of the extract were added. For the 250 pesticide residues, the limits of detection (LODs) of the method were from 0. 01 to 50. 00 g/kg. The recoveries obtained ranged from 60. 1% to 120% at three spiked levels in Chinese chives with the relative standard deviations between 3. 5% and 19. 5% using matrix matched external standard method. The results showed that the method is able to meet requirements of the multiresidue detection of the 250 pesticides in vegetable. The method has the advantages of rapidity, simplicity, high sensitivity and better purification effect. It is suitable for the rapid determination of the common pesticides in vegetables, and it provides a strong guarantee for the risk assessments of the quality and safety of vegetables.

  17. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Directory of Open Access Journals (Sweden)

    Gabriel J Bellante

    Full Text Available Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa to one of four possible treatment groups: 1 a CO2 injection group; 2 a water stress group; 3 an interaction group that was subjected to both water stress and CO2 injection; or 4 a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87 for the classification tree analysis and 83% (Kappa of 0.77 for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  18. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Science.gov (United States)

    Bellante, Gabriel J; Powell, Scott L; Lawrence, Rick L; Repasky, Kevin S; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  19. A change detection strategy for monitoring vegetative and land-use cover types using remotely-sensed, satellite-based data

    International Nuclear Information System (INIS)

    Hallum, C.

    1993-01-01

    Changes to the environment are of critical concern in the world today; consequently, monitoring such changes and assessing their impacts are tasks demanding considerably higher priority. The ecological impacts of the natural global cycles of gases and particulates in the earth's atmosphere are highly influenced by the extent of changes to vegetative canopy characteristics which dictates the need for capability to detect and assess the magnitude of such changes. The primary emphasis of this paper is on the determination of the size and configuration of the sampling unit that maximizes the probability of its intersection with a 'change' area. Assessment of the significance of the 'change' in a given locality is also addressed and relies on a statistical approach that compares the number of elemental units exceeding a reflectance threshold when compared to a previous point in time. Consideration is also given to a technical framework that supports quantifying the magnitude of the 'change' over large areas (i.e., the estimated area changing from forest to agricultural land-use). The latter entails a multistage approach which utilizes satellite-based and other related data sources

  20. Heavy metal contamination of vegetables from green markets in Novi Sad

    Directory of Open Access Journals (Sweden)

    Arsenov Danijela D.

    2016-01-01

    Full Text Available are valuable source of vitamins, minerals and fibers important for healthy human nutrition. However, an increased level of heavy metals in vegetables has been noticed in recent years. This study was conducted with an aim to analyze content of heavy metals, cadmium (Cd, lead (Pb, and chromium (Cr in 11 vegetable species which are the most common in human diet. Vegetables were collected from three green markets (Limanska, Futoška and Riblja pijaca in Novi Sad, during September and October, from 2009 to 2011. Heavy metal contents were analyzed in edible parts of tomato, potato, spinach, onion, beetroot, parsley, parsnip, carrot, cauliflower, pepper and broccoli using atomic absorption spectrophotometer (Varian, AAS 240FS. The results showed statistically significant differences in element concentrations among analyzed vegetables. In general, the highest metal pollution was observed in the year of 2011. Spinach was found to contain the highest metals content - 0.89 μg/g for Cd, 5.81 μg/g for Pb, and 3.67 μg/g for Cr. According to Serbian official regulations, 18.18% of all analyzed species exceeded maximum permissible level for Cd, 9.09% for Pb, while for Cr these limits are not defined. Elevated content of heavy metals in vegetables might be related to soil contamination, atmospheric depositions during transportation and marketing. Thus, a continuous monitoring of vegetables on markets should be performed in order to prevent potential health risks to consumers.