WorldWideScience

Sample records for monitoring vegetation control

  1. Innovative Remote Sensing techniques for vegetation monitoring

    International Nuclear Information System (INIS)

    Borfecchia, F.; De Cecco, L.; Della Rocca, A.B.; Farneti, A.; La Porta, L.; Martini, S.; Giordano, L.; Trotta, C.; Marcoccia, S.

    2008-01-01

    This paper describes methods developed for using ASPIS (Advanced Spectroscopic Imaging System) to monitor biophysical parameters in studying the effects of climatic change, desertification and land degradation on semi-natural and agricultural vegetation in the Mediterranean region [it

  2. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  3. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  4. Weed Identification and Control in Vegetable Crops.

    Science.gov (United States)

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  5. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-07-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  6. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-01-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  7. Monitoring Plan for Pesticide Residues in Fruits and Vegetables

    International Nuclear Information System (INIS)

    2013-01-01

    The power point presentation has as objective of the study is monitoring in fruits and vegetables species, chemical submit higher risk for the consumer and for the purpose of establishing an order of priority in the products sampled

  8. Monitoring leafy vegetables through packaging films with

    OpenAIRE

    Diezma Iglesias, Belen; Lara, M.A.; Molina, Marta; Lleó García, Lourdes; Ruiz-Altisent, Margarita; Artés Hernández, Francisco; Roger, Jean-Michel

    2012-01-01

    Fresh-cut or minimally processed fruit and vegetables have been physically modified from its original form (by peeling, trimming, washing and cutting) to obtain a 100% edible product that is subsequently packaged (usually under modified atmosphere packaging –MAP) and kept in refrigerated storage. In fresh-cut products, physiological activity and microbiological spoilage, determine their deterioration and shelf-life. The major preservation techniques applied to delay spoilage are chilling s...

  9. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  10. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.

    Science.gov (United States)

    Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong

    2018-02-01

    Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.

  11. Long-term vegetation monitoring for different habitats in floodplains

    Directory of Open Access Journals (Sweden)

    LANG Petra

    2014-03-01

    Full Text Available A floodplain-restoration project along the Danube between Neuburg and Ingolstadt (Germany aims to bring back water and sediment dynamic to the floodplain. The accompanied long-term monitoring has to document the changes in biodiversity related to this new dynamics. Considerations on and results of the vegetation monitoring concept are documented in this paper. In a habitat rich ecosystem like a floodplain different habitats (alluvial forest, semi-aquatic/aquatic sites have different demands on the sampling methods. Therefore, different monitoring designs (preferential, random, systematic, stratified random and transect sampling are discussed and tested for their use in different habitat types of the floodplain. A stratified random sampling is chosen for the alluvial forest stands, as it guarantees an equal distribution of the monitoring plots along the main driving factors, i.e. influence of water. The parameters distance to barrage, ecological flooding, height above thalweg and distance to the new floodplain river are used for stratifying and the plots are placed randomly into these strata, resulting in 117 permanent plots. Due to small changes at the semi-aquatic/aquatic sites a transect sampling was chosen. Further, a rough stratification (channel bed, river bank adjacent floodplain was implemented, which was only possible after the start of the restoration project. To capture the small-scale changes due to the restoration measures on the vegetation, 99 additional plots completed the transect sampling. We conclude that hetereogenous study areas need different monitoring approaches, but, later on, a joint analysis must be possible.

  12. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  13. Vegetation description, rare plant inventory, and vegetation monitoring for Craig Mountain, Idaho

    International Nuclear Information System (INIS)

    Mancuso, M.; Moseley, R.

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals

  14. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Science.gov (United States)

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  15. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    Science.gov (United States)

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh A.; Hundy, Laura C.; McGinnis, Tommy E.

    2015-12-04

    A Vegetation Volume (VV) variable and Vegetation Volume Index (VVI) have been developed for the Coastwide Reference Monitoring System (CRMS). The VV is a measure of the amount of three-dimensional vegetative structure present at each CRMS site and is based on vegetation data collected annually. The VV uses 10 stations per CRMS site to quantify four vegetation layers: carpet, herbaceous, shrub, and tree. For each layer an overall live vegetation percent cover and height are collected to create a layer volume; the individual layer volumes are then summed to generate a site vegetation volume profile. The VV uses the two-dimensional area of live vegetative cover (in square meters) multiplied by the height (in meters) of each layer to produce a volume (in cubic meters) for each layer present in a 2-meter by 2-meter station. These layers are additive, yielding a total volume for each of the 10 herbaceous vegetation stations and an overall CRMS marsh site average.

  16. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  17. Monitor de Control Integral

    OpenAIRE

    García Corominas, Estefania

    2016-01-01

    Control Integral es un programa informático especializado en gestión de ferreterías, bricolaje, suministros industriales y centros de construcción. Este programa está formado por dos ejecutables: el primero de ellos es el de ‘Gestión' y el segundo es el llamado ‘Monitor'. El módulo de gestión se compone de diferentes características para satisfacer las necesidades de los clientes, actualización automática de precios de los artículos, terminal punto de venta (TPV) este permite la creación e im...

  18. Monitoring of nitrate content of vegetable crops in Uzhgorod district

    Directory of Open Access Journals (Sweden)

    I.I. Mykaylo

    2013-09-01

    Full Text Available The aim of our research was to conduct a monitoring study of nitrate content in plant products of Uzhgorod district and to accomplish comparative analysis of the survey results in different periods of crop ripening. Selection of vegetable samples was carried out in Uzhgorod district in the early spring and summer periods. Determination of the nitrate content was performed using an ion-selective method at the Chemical and Toxicological Department of the Regional State Veterinary Medicine Laboratory in the Transcarpathian region of Ukraine. Vegetables were tested for nitrate content using the ion-selective method with the laboratory ion meter AI-123. Core investigation samples were crushed and homogenized. A 10.0 g weight of the investigated product, which was prepared according to MIR № 5048-89, was placed in a flat-bottomed or a conical flask, which was then filled with 50 cm3 potassium alumens solution and shaken in a shaking-machine for 5 minutes and then transferred into a measuring glass. The nitrate weight fraction in milligrams per kilogram was obtained together with the weight concentration value of nitrate ions in solution. For our study we selected vegetables grown in both public and private gardens of Uzhgorod district, namely: common onions, radishes, garden parsley, cucumbers, tomatoes, bell peppers, white cabbages, carrots and table beets. 25 samples were selected for each type of vegetable. Nitrate content was determined in the early spring growing period (from February 9 to May 27, 2011 and in the summer growing period (from June 3 to September 28, 2011, because in these particular periods we recorded the most frequent cases of food poisoning from nitrates among the population of the region. A clear trend has been traced towards increasing the nitrate content in food plant production, at levels which exceed the maximum permissible concentration (MPC. The results of our research demonstrate that the nitrate content exceeded the

  19. PROBA-V, the small saellite for global vegetation monitoring

    Science.gov (United States)

    Deronde, Bart; Benhadj, Iskander; Clarijs, Dennis; Dierckx, Wouter; Dries, Jan; Sterckx, Sindy; van Roey, Tom; Wolters, erwin

    2015-04-01

    PROBA-V, the small satellite for global vegetation monitoring Bart Deronde, Iskander Benhadj, Dennis Clarijs, Wouter Dierckx, Jan Dries, Sindy Sterck, Tom Van Roey, Erwin Wolters (VITO NV) Exactly one year ago, in December 2013, VITO (Flemish Institute for Technological Research) started up the real time operations of PROBA-V. This miniaturised ESA (European Space Agency) satellite was launched by ESA's Vega rocket from Kourou, French-Guyana on May 7th, 2013. After six months of commissioning the mission was taken into operations. Since mid-December 2013 PROBA-V products are processed on an operational basis and distributed to a worldwide user community. PROVA-V is tasked with a full-scale mission: to map land cover and vegetation growth across the entire planet every two days. It is flying a lighter but fully functional redesign of the 'VEGETATION' imaging instruments previously flown on France's full-sized SPOT-4 and SPOT-5 satellites, which have been observing Earth since 1998. PROBA-V, entirely built by a Belgian consortium, continues this valuable and uninterrupted time series with daily products at 300 m and 1 km resolution. Even 100 m products will become available early 2015, delivering a global coverage every 5 days. The blue, red, near-infrared and mid-infrared wavebands allow PROBA-V to distinguish between different types of land cover/use and plant species, including crops. Vital uses of these data include day-by-day tracking of vegetation development, alerting authorities to crop failures, monitoring inland water resources and tracing the steady spread of deserts and deforestation. As such the data is also highly valuable to study climate change and the global carbon cycle. In this presentation we will discuss the in-flight results, one year after launch, from the User Segment (i.e. the processing facility) point of view. The focus will be on geometric and radiometric accuracy and stability. Furthermore, we will elaborate on the lessons learnt from the

  20. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  1. Monitoring and diagnosis of vegetable growth based on internet of things

    Science.gov (United States)

    Zhang, Qian; Yu, Feng; Fu, Rong; Li, Gang

    2017-10-01

    A new condition monitoring method of vegetable growth was proposed, which was based on internet of things. It was combined remote environmental monitoring, video surveillance, intelligently decision-making and two-way video consultation together organically.

  2. Monitoring post-fire vegetation rehabilitation projects: A common approach for non-forested ecosystems

    Science.gov (United States)

    Wirth, Troy A.; Pyke, David A.

    2007-01-01

    Emergency Stabilization and Rehabilitation (ES&R) and Burned Area Emergency Response (BAER) treatments are short-term, high-intensity treatments designed to mitigate the adverse effects of wildfire on public lands. The federal government expends significant resources implementing ES&R and BAER treatments after wildfires; however, recent reviews have found that existing data from monitoring and research are insufficient to evaluate the effects of these activities. The purpose of this report is to: (1) document what monitoring methods are generally used by personnel in the field; (2) describe approaches and methods for post-fire vegetation and soil monitoring documented in agency manuals; (3) determine the common elements of monitoring programs recommended in these manuals; and (4) describe a common monitoring approach to determine the effectiveness of future ES&R and BAER treatments in non-forested regions. Both qualitative and quantitative methods to measure effectiveness of ES&R treatments are used by federal land management agencies. Quantitative methods are used in the field depending on factors such as funding, personnel, and time constraints. There are seven vegetation monitoring manuals produced by the federal government that address monitoring methods for (primarily) vegetation and soil attributes. These methods vary in their objectivity and repeatability. The most repeatable methods are point-intercept, quadrat-based density measurements, gap intercepts, and direct measurement of soil erosion. Additionally, these manuals recommend approaches for designing monitoring programs for the state of ecosystems or the effect of management actions. The elements of a defensible monitoring program applicable to ES&R and BAER projects that most of these manuals have in common are objectives, stratification, control areas, random sampling, data quality, and statistical analysis. The effectiveness of treatments can be determined more accurately if data are gathered using

  3. Portal monitoring technology control process

    International Nuclear Information System (INIS)

    York, R.L.

    1998-01-01

    Portal monitors are an important part of the material protection, control, and accounting (MPC and A) programs in Russia and the US. Although portal monitors are only a part of an integrated MPC and A system, they are an effective means of controlling the unauthorized movement of special nuclear material (SNM). Russian technical experts have gained experience in the use of SNM portal monitors from US experts ad this has allowed them to use the monitors more effectively. Several Russian institutes and companies are designing and manufacturing SNM portal monitors in Russia. Interactions between Russian and US experts have resulted in improvements to the instruments. SNM portal monitor technology has been effectively transferred from the US to Russia and should be a permanent part of the Russian MPC and A Program. Progress in the implementation of the monitors and improvements to how they are used are discussed

  4. Control rod withdrawal monitoring device

    International Nuclear Information System (INIS)

    Ebisuya, Mitsuo.

    1984-01-01

    Purpose: To prevent the power ramp even if a plurality of control rods are subjected to withdrawal operation at a time, by reducing the reactivity applied to the reactor. Constitution: The control rod withdrawal monitoring device is adapted to monitor and control the withdrawal of the control rods depending on the reactor power and the monitoring region thereof is divided into a control rod group monitoring region a transition region and a control group monitoring not interfere region. In a case if the distance between a plurality of control rods for which the withdrawal positions are selected is less than a limiting value, the coordinate for the control rods, distance between the control rods and that the control rod distance is shorter are displayed on a display panel, and the withdrawal for the control rods are blocked. Accordingly, even if a plurality of control rods are subjected successively to the withdrawal operation contrary to the control rod withdrawal sequence upon high power operation of the reactor, the power ramp can be prevented. (Kawakami, Y.)

  5. Vegetation monitoring to detect and predict vegetation change: Connecting historical and future shrub/steppe data in Yellowstone National Park

    Science.gov (United States)

    Geneva Chong; David Barnett; Benjamin Chemel; Roy Renkin; Pamela Sikkink

    2011-01-01

    A 2002 National Research Council (NRC) evaluation of ungulate management practices in Yellowstone specifically concluded that previous (1957 to present) vegetation monitoring efforts were insufficient to determine whether climate or ungulates were more influential on shrub/steppe dynamics on the northern ungulate winter range. The NRC further recommended that the...

  6. Storm Water Control Management & Monitoring

    Science.gov (United States)

    2017-11-30

    Temple and Villanova universities collected monitoring and assessment data along the I-95 corridor to evaluate the performance of current stormwater control design and maintenance practices. An extensive inventory was developed that ranks plants in t...

  7. Institutional control and monitoring

    International Nuclear Information System (INIS)

    Bragg, K.

    2002-01-01

    This paper provides several possible principles to be used to guide future discussions and tries to place the need for institutional control into context for the various waste types. The proposed principles would allow institutional control to be used as one method to provide radiation protection in the future without presenting undue burdens to future generations. It also provides advice on how to apply the proposed principles in a practical manner. The key difference in the approach proposed is that institutional control should be viewed as a need to pass on information, knowledge and skills from one generation to the next. This would allow each successive generation to make its own decision as to whether such controls should be maintained. (author)

  8. Environmental controls on multiscale spatial patterns of salt marsh vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2010-01-01

    In coastal environments, biogeographic patterns are generally influenced by surface elevation and horizontal distance from sea water. However, it is still unclear whether these major topographic factors are significant controls of vegetation patterns across spatial scales at which different physi...

  9. Digital control rod blocking monitor

    International Nuclear Information System (INIS)

    Funayama, Yoshio.

    1996-01-01

    The present invention system is used for monitoring of a power region of a reactor, and used for monitoring of simultaneous withdrawal of a plurality of control rods without increasing the size or complicating the system. Namely, the system processes signals from a neutron flux detectors at the periphery of control rods controlled for withdrawal. As a result of the processing, the digital monitoring system generates an alarm when the reactor power at the periphery of the control rods fluctuates exceeding an allowable range. In the system, a control rod information forming means prepares frame data comprising front data, positions of the control rods to be withdrawn, frame numbers and completion data. A serial data transmitting means transmits the frame data successively as repeating frame data rows. A control rod information receiving means takes up the frame data of each of control rods to be withdrawn from the transmitted frame data rows. Since the system of the present invention can monitor the withdrawal of a plurality of control rods simultaneously without increasing the size or complicating the system, cost can be saved and the maintenance can be improved. (I.S.)

  10. Long-term monitoring of stream bank stability under different vegetation cover

    Science.gov (United States)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  11. Monitoring Control Applications at CERN

    CERN Document Server

    Bernard, F; Milcent, H; Petrova, L B; Varela, F

    2011-01-01

    The Industrial Controls and Engineering (EN-ICE) group [1] of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protection systems, power interlocks for the Large Hadron Collider and other subsystems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE group is presently developing the Monitoring Operation of cOntrols Networks (MOON) tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (WinCC OA) [2] SCADA and makes usage of the Joint COntrols Project (JCOP) [3] and the UNified INdustrial COntrol System (UNICOS) [4] Frameworks developed at CERN. The tool provides centralized monitoring and software management of the different elements integrating the control systems like Windows and L...

  12. Monitoring an outdoor smoking area by means of PM2.5 measurement and vegetal biomonitoring.

    Science.gov (United States)

    da Silveira Fleck, Alan; Carneiro, Maria Fernanda Hornos; Barbosa, Fernando; Thiesen, Flavia Valladão; Amantea, Sergio Luis; Rhoden, Claudia Ramos

    2016-11-01

    The extension of pollutant accumulation in plant leaves associated with its genotoxicity is a common approach to predict the quality of outdoor environments. However, this approach has not been used to evaluate the environmental quality of outdoor smoking areas. This study aims to evaluate the effects of environmental tobacco smoke (ETS) by assessing particulate matter 2.5 μm (PM 2.5 ) levels, the pollen abortion assay, and trace elements accumulated in plant leaves in an outdoor smoking area of a hospital. For this, PM 2.5 was measured by active monitoring with a real time aerosol monitor for 10 days. Eugenia uniflora trees were used for pollen abortion and accumulated element assays. Accumulated elements were also assessed in Tradescantia pallida leaves. The median concentration of PM 2.5 in the smoking area in all days of monitoring was 66 versus 34 μg/m 3 in the control area (P Eugenia uniflora were in higher concentration in the smoking area when compared to control area. Smoking area also showed higher rate of aborted grains (26.1 ± 10.7 %) compared with control (17.6 ± 4.5 %) (P = 0.003). Under the study conditions, vegetal biomonitoring proved to be an effective tool for assessing ETS exposure in outdoor areas. Therefore, vegetal biomonitoring of ETS could be a complement to conventional analyses and also proved to be a cheap and easy-handling tool to assess the risk of ETS exposure in outdoor areas.

  13. Status of biological control in vegetation management in forestry

    Science.gov (United States)

    George P. Markin; Donald E. Gardner

    1993-01-01

    Biological control traditionally depends upon importing the natural enemies of introduced weeds. Since vegetation management in forestry has primarily been aimed at protecting economic species of trees from competition from other native plants, biological control has been of little use in forestry. An alternative approach to controlling unwanted native plants,...

  14. An optical sensor network for vegetation phenology monitoring and satellite data calibration

    DEFF Research Database (Denmark)

    Eklundh, L.; Jin, H.; Schubert, P.

    2011-01-01

    -board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations......We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located...... and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity....

  15. Advances in monitoring vegetation and land use dynamics in the Sahel

    DEFF Research Database (Denmark)

    Mbow, Cheikh; Fensholt, Rasmus; Nielsen, Thomas Theis

    2014-01-01

    of CO2 in the atmosphere, grazing pressure, bush fires and agricultural expansion or contraction. The use of satellite data in combination with field data played a major role in the monitoring of vegetation dynamics and land use in the Sahel, since the mega drought of the 1970s and the 1980s. This paper...... briefly reviews the advance of satellite-based monitoring of vegetation dynamics over these 40 years. We discuss the promises of current and likely future data sources and analysis tools, as well as the need to strengthen in situ data collection to support and validate satellite-based vegetation and land...

  16. Monitoring And Controlling Hydroponic Flow

    Science.gov (United States)

    Dreschel, Thomas W.

    1992-01-01

    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  17. Monitoring control applications at CERN

    International Nuclear Information System (INIS)

    Bernard, F.; Gonzalez, M.; Milcent, H.; Petrova, L.B.; Varela, F.

    2012-01-01

    The Industrial Controls and Engineering (EN-ICE) group of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protection systems, power interlocks for the Large Hadron Collider and other subsystems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE group is presently developing the Monitoring Operation of controls Networks (MOON) tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (WinCC OA) SCADA and makes usage of the Joint Controls Project (JCOP) and the Unified Industrial Control System (UNICOS) Frameworks developed at CERN. The tool provides centralized monitoring and software management of the different elements integrating the control systems like Windows and Linux servers, PLCs, applications, etc. Although the primary aim of the monitoring tool is to assist the members of the EN-ICE Standby Service, the tool may offer different levels of detail, which also enables experts to diagnose and troubleshoot problems. In this paper, the scope, functionality and architecture of the tool are presented and some initial results on its performance are summarized. (authors)

  18. Toward daily monitoring of vegetation conditions at field scale through fusing data from multiple sensors

    Science.gov (United States)

    Vegetation monitoring requires remote sensing data at fine spatial and temporal resolution. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for crop and rangeland monitoring. The Landsat satellite s...

  19. Monitoring the vegetation recovery in Østerild Plantage 2013. Part 1

    DEFF Research Database (Denmark)

    Wind, Peter

    The trees in a part of Østerild Plantage have been cut down to give room for a national test center. Before the afforestation DCE has performed a baseline monitoring in the summer of 2011. DCE has in late summer 2013 re-monitored the recovery of the vegetation cover in the northernmost part...

  20. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  1. PROBLEMS IN VEGETATION MONITORING IN NATURE MANAGEMENT PRACTICE: TWO CASE STUDIES

    Directory of Open Access Journals (Sweden)

    I. DE RONDE

    2007-04-01

    Full Text Available One of the major requirements of the monitoring of vegetation is the comparability of data between years. Therefore, a proper sampling scheme is essential. However, through the years, in nature management practice lots of data collected without a primary monitoring goal. Afterwards, it often seems very valuable to include these older data in the analysis for several reasons. In two examples from military ranges in the Netherlands, two of the problems which can be met with in comparing unequivalent or biased data in monitoring are shown. In the first example, the frequency of grassland species in two sets of relevés is examined. A solution is presented for the overrepresentation of relevés from one or more vegetation types from the first year, based on the area of the vegetation types on the vegetation map of this same year. In the second example, two sequential vegetation maps are compared. A major problem is often the thematic incongruence of sequential vegetation maps. Afterwards, this can only be resolved by upscaling one or both maps. It is concluded that the use of old data for monitoring purposes can be very valuable, but that this often calls for creative data handling, in which GIS and modern computer programmes are very helpful.

  2. Integrated control rod monitoring device

    International Nuclear Information System (INIS)

    Saito, Katsuhiro

    1997-01-01

    The present invention provides a device in which an entire control rod driving time measuring device and a control rod position support device in a reactor building and a central control chamber are integrated systematically to save hardwares such as a signal input/output device and signal cables between boards. Namely, (1) functions of the entire control rod driving time measuring device for monitoring control rods which control the reactor power and a control rod position indication device are integrated into one identical system. Then, the entire devices can be made compact by the integration of the functions. (2) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated in a central operation board and a board in the site. Then, the place for the installation of them can be used in common in any of the cases. (3) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated to one identical system to save hardware to be used. Then, signal input/output devices and drift branching panel boards in the site and the central operation board can be saved, and cables for connecting both of the boards is no more necessary. (I.S.)

  3. MONITORING CONTROL APPLICATIONS AT CERN

    CERN Document Server

    Bernard, F; Milcent, H; Petrova, L B; Varlea, F

    2011-01-01

    The Industrial Controls and Engineering (EN-ICE) group [1] of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protection systems, power interlocks for the Large Hadron Collider and other sub-systems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE group is presently developing the Monitoring Operation of cOntrols Networks (MOON) tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (WinCC OA) [2] SCADA and makes usage of the Joint COntrols Project (JCOP) [3] and the UNified INdustrial COntrol System (UNICOS) [4] Frameworks developed at CERN. The tool provides centralized monitoring and software management of the different elements integrating the control systems like Windows and Linux servers, PL...

  4. MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    W. K. van Iersel

    2016-06-01

    Full Text Available River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1 evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2 to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1 the vertical accuracy of UAV normalized digital surface models (nDSMs is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2 vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm, (3 temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  5. Using MODIS NDVI products for vegetation state monitoring on the oil production territory in Western Siberia

    OpenAIRE

    Kovalev, Anton; Tokareva, Olga Sergeevna

    2016-01-01

    Article describes the results of using remote sensing data for vegetation state monitoring on the oil field territories in Western Siberia. We used MODIS data product providing the normalized difference vegetation index (NDVI) values. Average NDVI values of each studied area were calculated for the period from 2010 to 2015 with one year interval for June, July and August. Analysis was carried out via an open tool of geographic information system QGIS used for spatial analysis and calculation ...

  6. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography

    Directory of Open Access Journals (Sweden)

    Zhenwang Li

    2014-03-01

    Full Text Available On 12 May 2008, the 8.0-magnitude Wenchuan earthquake occurred in Sichuan Province, China, triggering thousands of landslides, debris flows, and barrier lakes, leading to a substantial loss of life and damage to the local environment and infrastructure. This study aimed to monitor the status of geologic hazards and vegetation recovery in a post-earthquake disaster area using high-resolution aerial photography from 2008 to 2011, acquired from the Center for Earth Observation and Digital Earth (CEODE, Chinese Academy of Sciences. The distribution and range of hazards were identified in 15 large, representative geologic hazard areas triggered by the Wenchuan earthquake. After conducting an overlay analysis, the variations of these hazards between successive years were analyzed to reflect the geologic hazard development and vegetation recovery. The results showed that in the first year after the Wenchuan earthquake, debris flows occurred frequently with high intensity. Resultantly, with the source material becoming less available and the slope structure stabilizing, the intensity and frequency of debris flows gradually decreased with time. The development rate of debris flows between 2008 and 2011 was 3% per year. The lithology played a dominant role in the formation of debris flows, and the topography and hazard size in the earthquake affected area also had an influence on the debris flow development process. Meanwhile, the overall geologic hazard area decreased at 12% per year, and the vegetation recovery on the landslide mass was 15% to 20% per year between 2008 and 2011. The outcomes of this study provide supporting data for ecological recovery as well as debris flow control and prevention projects in hazard-prone areas.

  7. Sediment and Vegetation Controls on Delta Channel Networks

    Science.gov (United States)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  8. Monitoring vegetation cover in the postfire in Tavira - São Brás de Alportel (southern Portugal)

    Science.gov (United States)

    Ramos-Simões, Nuno A.; Granja-Martins, Fernando M.; Neto-Paixão, Helena M.; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    1. INTRODUCTION Often, restoration of areas affected by fire faces lack of knowledge of how ecosystems respond to the action of fire. Depending on environmental conditions, structure and diversity of the vegetation or the severity of the fire, burnt systems can provide responses ranging from spontaneous recovery in a relatively short time to onset of severe degradation processes. For this reason, it is necessary to monitor the evolution of post-burned in the fire, in order to plan effective strategies for restoring systems and soil erosion control. In order to assess soil erosion risk, this research aims to is to analyse the evolution of vegetation cover in a Mediterranean burnt forest soil, using vegetation indexes derived from Landsat-7 (Thematic Mapper sensor-TM) and Landsat-8 (Operation Land Imager sensor, OLI). 2. METHODS This study was carried out in a forest area affected by a wildfire by 18-22 July 2012. The study area is located within the coordinates 37o 9' - 37o 21' N and 7o 40' - 7o 53' W, including part of the municipalities of Tavira and São Brás de Alportel (southern Portugal). The relief in the studied area has an irregular topography. Soils are shallow and develop mainly metamorphic rocks (as slates or quartzite) and igneous rocks, which produce acidic and nutrient-poor soils, poorly developed in depth. The wildfire was one of the most important fires in Portugal during the recent years, and affected more than 24000 ha. Vegetation is dominated by cork oak (Quercus suber) ,holm oaks (Quercus ilex), strawberry tree (Arbutus unedo) and sclerophyllous vegetation (mostly formed by Quercus coccifera and Rosmarinus officinalis). These species are adapted to acidic-poor soils and show a great capability of resprouting and germination after fire. The study area is poorly developed, with cork and timber harvesting and other forest products or tourism as main economic activities. The area shows a highly fragmented urban fabric with the sparse

  9. The use of a commercial vegetable juice as a practical means to increase vegetable intake: a randomized controlled trial.

    Science.gov (United States)

    Shenoy, Sonia F; Kazaks, Alexandra G; Holt, Roberta R; Chen, Hsin Ju; Winters, Barbara L; Khoo, Chor San; Poston, Walker S C; Haddock, C Keith; Reeves, Rebecca S; Foreyt, John P; Gershwin, M Eric; Keen, Carl L

    2010-09-17

    Recommendations for daily dietary vegetable intake were increased in the 2005 USDA Dietary Guidelines as consumption of a diet rich in vegetables has been associated with lower risk of certain chronic health disorders including cardiovascular disease. However, vegetable consumption in the United States has declined over the past decade; consequently, the gap between dietary recommendations and vegetable intake is widening. The primary aim of this study is to determine if drinking vegetable juice is a practical way to help meet daily dietary recommendations for vegetable intake consistent with the 2005 Dietary Guidelines and the Dietary Approaches to Stop Hypertension (DASH) diet. The secondary aim is to assess the effect of a vegetable juice on measures of cardiovascular health. We conducted a 12-week, randomized, controlled, parallel-arm study consisting of 3 groups of free-living, healthy volunteers who participated in study visits at the Ragle Human Nutrition Research Center at the University of California, Davis. All subjects received education on the DASH diet and 0, 8 or 16 fluid ounces of vegetable juice daily. Assessments were completed of daily vegetable servings before and after incorporation of vegetable juice and cardiovascular health parameters including blood pressure. Without the juice, vegetable intake in all groups was lower than the 2005 Dietary Guidelines and DASH diet recommendations. The consumption of the vegetable juice helped participants reach recommended intake. In general, parameters associated with cardiovascular health did not change over time. However, in the vegetable juice intervention groups, subjects who were pre-hypertensive at the start of the study showed a significant decrease in blood pressure during the 12-week intervention period. Including 1-2 cups of vegetable juice daily was an effective and acceptable way for healthy adults to close the dietary vegetable gap. Increase in daily vegetable intake was associated with a

  10. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    Science.gov (United States)

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  11. Monitoring of oil palm plantations and growth variations with a dense vegetation model

    DEFF Research Database (Denmark)

    Teng, Khar Chun; Koay, Jun Yi; Tey, Seng Heng

    2014-01-01

    The development of microwave remote sensing models for the monitoring of vegetation has received wide attention in recent years. For vegetation in the tropics, it is necessary to consider a dense medium model for the theoretical modelling of the microwave interaction with the vegetation medium....... In this paper, a multilayer model based on the radiative transfer theory for a dense vegetation medium is developed where the coherence effects and near field interaction effects of closely spaced leaves and branches are considered by incorporating the Dense Medium Phase and Amplitude Correction Theory (DM......-PACT) and Fresnel Phase Corrections. The iterative solutions of the radiative transfer model are computed with input based on ground truth measurements of physical parameters of oil palm plantations in the state of Perak, Malaysia, and compared with the SAR images obtained from RADARSAT2. Preliminary results...

  12. Effect of a mobile app intervention on vegetable consumption in overweight adults: a randomized controlled trial.

    Science.gov (United States)

    Mummah, Sarah; Robinson, Thomas N; Mathur, Maya; Farzinkhou, Sarah; Sutton, Stephen; Gardner, Christopher D

    2017-09-15

    Mobile applications (apps) have been heralded as transformative tools to deliver behavioral health interventions at scale, but few have been tested in rigorous randomized controlled trials. We tested the effect of a mobile app to increase vegetable consumption among overweight adults attempting weight loss maintenance. Overweight adults (n=135) aged 18-50 years with BMI=28-40 kg/m 2 near Stanford, CA were recruited from an ongoing 12-month weight loss trial (parent trial) and randomly assigned to either the stand-alone, theory-based Vegethon mobile app (enabling goal setting, self-monitoring, and feedback and using "process motivators" including fun, surprise, choice, control, social comparison, and competition) or a wait-listed control condition. The primary outcome was daily vegetables servings, measured by an adapted Harvard food frequency questionnaire (FFQ) 8 weeks post-randomization. Daily vegetable servings from 24-hour dietary recalls, administered by trained, certified, and blinded interviewers 5 weeks post-randomization, was included as a secondary outcome. All analyses were conducted according to principles of intention-to-treat. Daily vegetable consumption was significantly greater in the intervention versus control condition for both measures (adjusted mean difference: 2.0 servings; 95% CI: 0.1, 3.8, p=0.04 for FFQ; and 1.0 servings; 95% CI: 0.2, 1.9; p=0.02 for 24-hour recalls). Baseline vegetable consumption was a significant moderator of intervention effects (p=0.002) in which effects increased as baseline consumption increased. These results demonstrate the efficacy of a mobile app to increase vegetable consumption among overweight adults. Theory-based mobile interventions may present a low-cost, scalable, and effective approach to improving dietary behaviors and preventing associated chronic diseases. ClinicalTrials.gov NCT01826591. Registered 27 March 2013.

  13. Monitoring device for withdrawing control rods

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi.

    1985-01-01

    Purpose: To improve the sensitivity and the responsivity to an equivalent extent to those in the case where local power range monitors are densely arranged near each of the control rods, with no actual but pseudo increase of the number of local power range monitors. Constitution: The monitor arrangement is patterned by utilizing the symmetricity of the reactor core and stored in a monitor designating device. The symmetricity of control rods to be selected and withdrawn by an operator is judged by a control rod symmetry monitoring device, while the symmetricity of the withdrawn control rods is judged by a control rod withdrawal state monitoring device. Then, only when both of the devices judge the symmetricity, the control rods are subjected to gang driving by the control rod drive mechanisms. In this way, monitoring at a high sensitivity and responsivity is enabled with no increase for the number of monitors. (Yoshino, Y.)

  14. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Science.gov (United States)

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  15. Design of electric control system for automatic vegetable bundling machine

    Science.gov (United States)

    Bao, Yan

    2017-06-01

    A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.

  16. miRNA control of vegetative phase change in trees.

    Directory of Open Access Journals (Sweden)

    Jia-Wei Wang

    2011-02-01

    Full Text Available After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays, vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima, as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.

  17. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  18. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process mea...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  19. ECOLOGICAL CONTROL EQUIPMENT AND TECHNOLOGY OF UNDERWATER VEGETATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. TITINSCHNEIDER

    2008-10-01

    Full Text Available The excess of aquatic submerse vegetation development carries to the reduction of the real rearing area for the piscicultural material from the production farms and allow nestling of the ichthyophages bird species that decrease the fish production. Aquatic submerse vegetation stumble the utilization of aquatic zones for recreation and also wright function of basins utilized for the electric energy production, of micro electricity works through obstruction of the dams grid. The control of the aquatic submerse vegetation development, for Myriophyllum verticillatum, Ceratophyllum submersum, Urticularia vulgaris, Potamogeton natans, Nimphoides peltata species it is accomplish through the removing of some parts of these, preferably with all the stump system. Usually, these its accomplish with the floating equipments fit up with the thermic engines and the propulsion and governating elements who have harm over the fish and some others aquatic organisms through the noise, the displacing a large quality of water caused of propulsion systems and through the noxes elimination (flue, carburant trails, etc.. These technologies reside from the evacuation of the aquatic submerse vegetation and the stump systems of these with the help of an adjustable rake, hang up from the coast by a rope, wrapped to a drummer, who is trained by a motto-propeller group with a small installed power.

  20. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    OpenAIRE

    David Helman; Itamar M. Lensky; Naama Tessler; Yagil Osem

    2015-01-01

    We present an efficient method for monitoring woody (i.e., evergreen) and herbaceous (i.e., ephemeral) vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI) time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI ...

  1. Prevalence of Listeria monocytogenes in Retail Lightly Pickled Vegetables and Its Successful Control at Processing Plants.

    Science.gov (United States)

    Taguchi, Masumi; Kanki, Masashi; Yamaguchi, Yuko; Inamura, Hideichi; Koganei, Yosuke; Sano, Tetsuya; Nakamura, Hiromi; Asakura, Hiroshi

    2017-03-01

    Incidences of food poisoning traced to nonanimal food products have been increasingly reported. One of these was a recent large outbreak of Shiga toxin-producing Escherichia coli (STEC) O157 infection from the consumption of lightly pickled vegetables, indicating the necessity of imposing hygienic controls during manufacturing. However, little is known about the bacterial contamination levels in these minimally processed vegetables. Here we examined the prevalence of STEC, Salmonella spp., and Listeria monocytogenes in 100 lightly pickled vegetable products manufactured at 55 processing factories. Simultaneously, we also performed quantitative measurements of representative indicator bacteria (total viable counts, coliform counts, and β-glucuronidase-producing E. coli counts). STEC and Salmonella spp. were not detected in any of the samples; L. monocytogenes was detected in 12 samples manufactured at five of the factories. Microbiological surveillance at two factories (two surveys at factory A and three surveys at factory B) between June 2014 and January 2015 determined that the areas predominantly contaminated with L. monocytogenes included the refrigerators and packaging rooms. Genotyping provided further evidence that the contaminants found in these areas were linked to those found in the final products. Taken together, we demonstrated the prevalence of L. monocytogenes in lightly pickled vegetables sold at the retail level. Microbiological surveillance at the manufacturing factories further clarified the sources of the contamination in the retail products. These data indicate the necessity of implementing adequate monitoring programs to minimize health risks attributable to the consumption of these minimally processed vegetables.

  2. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  3. Seed treatments to control seedborne fungal pathogens of vegetable crops.

    Science.gov (United States)

    Mancini, Valeria; Romanazzi, Gianfranco

    2014-06-01

    Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping-off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non-target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed. © 2013 Society of Chemical Industry.

  4. The use of a commercial vegetable juice as a practical means to increase vegetable intake: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Reeves Rebecca S

    2010-09-01

    Full Text Available Abstract Background Recommendations for daily dietary vegetable intake were increased in the 2005 USDA Dietary Guidelines as consumption of a diet rich in vegetables has been associated with lower risk of certain chronic health disorders including cardiovascular disease. However, vegetable consumption in the United States has declined over the past decade; consequently, the gap between dietary recommendations and vegetable intake is widening. The primary aim of this study is to determine if drinking vegetable juice is a practical way to help meet daily dietary recommendations for vegetable intake consistent with the 2005 Dietary Guidelines and the Dietary Approaches to Stop Hypertension (DASH diet. The secondary aim is to assess the effect of a vegetable juice on measures of cardiovascular health. Methods We conducted a 12-week, randomized, controlled, parallel-arm study consisting of 3 groups of free-living, healthy volunteers who participated in study visits at the Ragle Human Nutrition Research Center at the University of California, Davis. All subjects received education on the DASH diet and 0, 8 or 16 fluid ounces of vegetable juice daily. Assessments were completed of daily vegetable servings before and after incorporation of vegetable juice and cardiovascular health parameters including blood pressure. Results Without the juice, vegetable intake in all groups was lower than the 2005 Dietary Guidelines and DASH diet recommendations. The consumption of the vegetable juice helped participants reach recommended intake. In general, parameters associated with cardiovascular health did not change over time. However, in the vegetable juice intervention groups, subjects who were pre-hypertensive at the start of the study showed a significant decrease in blood pressure during the 12-week intervention period. Conclusion Including 1-2 cups of vegetable juice daily was an effective and acceptable way for healthy adults to close the dietary vegetable

  5. Vegetation physiology controls continental water cycle responses to climate change

    Science.gov (United States)

    Lemordant, L. A.; Swann, A. L. S.; Cook, B.; Scheff, J.; Gentine, P.

    2017-12-01

    Abstract per se:Predicting how climate change will affect the hydrologic cycle is of utmost importance for ecological systems and for human life and activities. A typical perspective is that global warming will cause an intensification of the mean state, the so-called "dry gets drier, wet gets wetter" paradigm. While this result is robust over the oceans, recent works suggest it may be less appropriate for terrestrial regions. Using Earth System Models (ESMs) with decoupled surface (vegetation physiology, PHYS) and atmospheric (radiative, ATMO) CO2 responses, we show that the CO2 physiological response dominates the change in the continental hydrologic cycle compared to radiative and precipitation changes due to increased atmospheric CO2, counter to previous assumptions. Using multiple linear regression analysis, we estimate the individual contribution of each of the three main drivers, precipitation, radiation and physiological CO2 forcing (see attached figure). Our analysis reveals that physiological effects dominate changes for 3 key indicators of dryness and/or vegetation stress (namely LAI, P-ET and EF) over the largest fraction of the globe, except for soil moisture which exhibits a more complex response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response.Legend of the Figure attached:Decomposition along the three main drivers of LAI (a), P-ET (b), EF (c) in the control run. Green quantifies the effect of the vegetation physiology based on the run PHYS; red and blue quantify the contribution of, respectively, net radiation and precipitation, based on multiple linear regression in ATMO. Pie charts show for each variable the fraction (labelled in %) of land under the main influence (more than 50% of the changes is attributed to this driver) of one the three main drivers (green for grid points dominated by vegetation physiology, red for grid points dominated by net radiation, and blue for grid points dominated by the

  6. An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat

    Science.gov (United States)

    Tavernia, Brian G.; Lyons, James E.; Loges, Brian W.; Wilson, Andrew; Collazo, Jaime A.; Runge, Michael C.

    2016-01-01

    Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.

  7. Monitoring and Optimization of the Process of Drying Fruits and Vegetables Using Computer Vision: A Review

    Directory of Open Access Journals (Sweden)

    Flavio Raponi

    2017-11-01

    Full Text Available An overview is given regarding the most recent use of non-destructive techniques during drying used to monitor quality changes in fruits and vegetables. Quality changes were commonly investigated in order to improve the sensory properties (i.e., appearance, texture, flavor and aroma, nutritive values, chemical constituents and mechanical properties of drying products. The application of single-point spectroscopy coupled with drying was discussed by virtue of its potentiality to improve the overall efficiency of the process. With a similar purpose, the implementation of a machine vision (MV system used to inspect foods during drying was investigated; MV, indeed, can easily monitor physical changes (e.g., color, size, texture and shape in fruits and vegetables during the drying process. Hyperspectral imaging spectroscopy is a sophisticated technology since it is able to combine the advantages of spectroscopy and machine vision. As a consequence, its application to drying of fruits and vegetables was reviewed. Finally, attention was focused on the implementation of sensors in an on-line process based on the technologies mentioned above. This is a necessary step in order to turn the conventional dryer into a smart dryer, which is a more sustainable way to produce high quality dried fruits and vegetables.

  8. Monitoring pesticides residues and contaminants for some leafy vegetables at the market level

    International Nuclear Information System (INIS)

    Ibrahim, A. B. H.

    2004-03-01

    Pesticide residues and contaminants in selected leafy vegetables, namely (lettuce, garden rocket and salad onion) were monitored at market level in Riyadh City in Saudi Arabia, during the period june to july 2001. Fifteen samples of vegetables from the City vegetable market of Riyadh were collected and subjected to multi-pesticide residue detection and analysis by gas chromatography with mass spectrometer and electron capture detectors (GC/MS,ECD). Results of sample extracts analysis showed that the two vegetables of: garden rocket and salad onion contain pesticide residues and contaminants which have no Maximum Residue Limits (MRL) prescribed by Codex Alimentarius Commission (CAC) collaborate with World Health and Food and Agriculture Organizations (WHO/FAO). Whereas lettuce vegetable was found free of any identified pesticide residues or contaminants. Garden rocket was shown to contain dibutyl phthalate (0.04 ppm)-steryl chloride (0.02 ppm) tridecane (0.06 ppm)-hexadecane (0.07 ppm)-BIS (ethylhexyl) phthalate (0.006 ppm) and pyridinium, 1-hexyl chloride (0.01 ppm). The salad onion was found to contain 9-octadecanamide (0.13 ppm)-tridecane (0.15 ppm) and tetradecane (0.16 ppm). There are no established MRL s for these pesticides and contaminants detected in garden rocket and salad onion, although when impacts on human health were reviewed some of them were found probably hazardous. (Author)

  9. Monitoring of hazardous metals in ruderal vegetation as evidence of industrial and anthropogenic emissions

    International Nuclear Information System (INIS)

    Jurani, M.; Chmielewska, E.; Husekova, Z.; Ursinyova, M.

    2010-01-01

    The major share of environmental pollution in Bratislava loaded area is the petrochemical industry, energy and transport. Aggregated emissions of pollutants according to published data are currently declining. The aim of our research is monitoring of heavy metals (Zn, Cu, Cr, As, Pb, Cd, Ni) in selected species of ruderal vegetation (family Asteraceae and Salicaceae) in the adjacent southeast area of Bratislava (air side of Slovnaft).

  10. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.

    Science.gov (United States)

    Lausch, Angela; Pause, Marion; Merbach, Ines; Zacharias, Steffen; Doktor, Daniel; Volk, Martin; Seppelt, Ralf

    2013-02-01

    Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the "One Sensor at Different Scales" (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R (2) of 0.83, which was

  11. Engineering Process Monitoring for Control Room Operation

    OpenAIRE

    Bätz, M

    2001-01-01

    A major challenge in process operation is to reduce costs and increase system efficiency whereas the complexity of automated process engineering, control and monitoring systems increases continuously. To cope with this challenge the design, implementation and operation of process monitoring systems for control room operation have to be treated as an ensemble. This is only possible if the engineering of the monitoring information is focused on the production objective and is lead in close coll...

  12. Employee quality, monitoring environment and internal control

    OpenAIRE

    Chunli Liu; Bin Lin; Wei Shu

    2017-01-01

    We investigate the effect of internal control employees (ICEs) on internal control quality. Using special survey data from Chinese listed firms, we find that ICE quality has a significant positive influence on internal control quality. We examine the effect of monitoring on this result and find that the effect is more pronounced for firms with strict monitoring environments, especially when the firms implement the Chinese internal control regulation system (CSOX), have higher institutional ow...

  13. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013.

    Science.gov (United States)

    Yu, Yan; Hu, Senke; Yang, Yuxuan; Zhao, Xiaodan; Xue, Jianjun; Zhang, Jinghua; Gao, Song; Yang, Aimin

    2017-08-02

    A wide range of pesticides is applied for crop protection in vegetable cultivation in China. Regulation of pesticide maximum residue limits (MRLs) in vegetables is established but not fully enforced. And pesticide residues in vegetables were not well monitored. This study conducted the monitoring surveys from 2011 to 2013 to investigate the pesticides in vegetables in the northwest region of China. A multi-residue gas chromatography/mass spectrometry method (GC/MS) was used in determination of pesticides in vegetable samples. The χ 2 test was used to compare the concentration of pesticide residues. A total of 32 pesticide residues were detected in 518 samples from 20 types of vegetables in this study. 7.7% of the detected pesticide residues exceeded the MRLs. The percentages of residues that exceeded the MRLs for leafy, melon and fruit, and root vegetables were 11.2%, 5.1%, and 1.6%, respectively. There was no seasonal difference in the proportion of samples that exceeded the MRLs in different vegetables. A total of 84.3% (27/32) pesticides were detected at concentrations that exceeded MRLs. And of the 27 pesticides that exceeded the MRLs, 11 (40.7%) were banned for use in agriculture. The most frequently detected pesticides were Malathion (9.4%), Dichlorvos (8.7%), and Dimethoate (8.1%). The observed high rate of pesticides detected and high incidence of pesticide detection exceeding their MRLs in the commonly consumed vegetables indicated that the Good Agricultural Practices (GAP) may not be well followed. The management of pesticide use and control should be improved. Well-developed training programs should be initiated to improve pesticide application knowledge for farmers.

  14. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  15. Automated Cryocooler Monitor and Control System Software

    Science.gov (United States)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  16. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  17. Use of gabions and vegetation in erosion-control works

    Directory of Open Access Journals (Sweden)

    Matić Vjačeslava

    2009-01-01

    Full Text Available Heavy winter and spring rainfall during the years 2005, -06, -07, and -08 brought about numerous torrential floods and landslides throughout the world and in Serbia. They endangered people, animals, settlements, fields, and roads. This reminded us of a readily available, cheap, and efficient material: stone in wire baskets of doubly galvanized wire of various sizes and forms - gabions - which are also long-lasting, flexible, and ecological. If made according to prescribed standards, they offer a permanent solution for many erosion-control problems. In addition, they can be used in urgent interventions to protect the lives of humans, animals, and plants and prevent of immense material losses. This paper calls attention to an unjustifiably neglected but important material, easily manipulated and with significant advantages compared to other structural materials, as well as to the possibility of its successful combination with vegetation, viz., willow (Salix sp. cuttings and grasses.

  18. Employee quality, monitoring environment and internal control

    Directory of Open Access Journals (Sweden)

    Chunli Liu

    2017-03-01

    Full Text Available We investigate the effect of internal control employees (ICEs on internal control quality. Using special survey data from Chinese listed firms, we find that ICE quality has a significant positive influence on internal control quality. We examine the effect of monitoring on this result and find that the effect is more pronounced for firms with strict monitoring environments, especially when the firms implement the Chinese internal control regulation system (CSOX, have higher institutional ownership or attach greater importance to internal control. Our findings suggest that ICEs play an important role in the design and implementation of internal control systems. Our study should be of interest to both top managers who wish to improve corporate internal control quality and regulators who wish to understand the mechanisms of internal control monitoring.

  19. Moisture monitoring and control system engineering study

    International Nuclear Information System (INIS)

    Carpenter, K.E.; Fadeff, J.G.

    1995-01-01

    During the past 50 years, a wide variety of chemical compounds have been placed in the 149 single-shell tanks (SSTS) on the Hanford Site. A concern relating to chemical stability, chemical control, and safe storage of the waste is the potential for propagating reactions as a result of ferrocyanide-oxidizer and organic-oxidizer concentrations in the SSTS. Propagating reactions in fuel-nitrate mixtures are precluded if the amounts of fuel and moisture present in the waste are within specified limits. Because most credible ignition sources occur near the waste surface, the main emphasis of this study is toward monitoring and controlling moisture in the top 14 cm (5.5 in.) of waste. The purpose of this engineering study is to recommend a moisture monitoring and control system for use in SSTs containing sludge and saltcake. This study includes recommendations for: (1) monitoring and controlling moisture in SSTs; (2) the fundamental design criteria for a moisture monitoring and control system; and (3) criteria for the deployment of a moisture monitoring and control system in hanford Site SSTs. To support system recommendations, technical bases for selecting and using a moisture monitoring and control system are presented. Key functional requirements and a conceptual design are included to enhance system development and establish design criteria

  20. NSLS Control Monitor and its upgrade

    International Nuclear Information System (INIS)

    Ramamoorthy, S.; Smith, J.D.

    1993-01-01

    The NSLS Control Monitor is a real-time operating system designed for the microprocessor subsystems that control the machine hardware in the NSLS facility. Its major functions are to control the hardware in response to the commands from the host computers, monitor hardware status and report errors to the alarm handler. The software originally developed for the Multibus micros has been upgraded to run on the VME-based systems. The upgraded monitor provides ethernet communication with the new system and serial link with the old system. The dual link is the key feature for a smooth and nondisruptive transition at all levels of the control system. This paper describes the functions of the various modules of the monitor and future plans

  1. Engineering Process Monitoring for Control Room Operation

    CERN Document Server

    Bätz, M

    2001-01-01

    A major challenge in process operation is to reduce costs and increase system efficiency whereas the complexity of automated process engineering, control and monitoring systems increases continuously. To cope with this challenge the design, implementation and operation of process monitoring systems for control room operation have to be treated as an ensemble. This is only possible if the engineering of the monitoring information is focused on the production objective and is lead in close collaboration of control room teams, exploitation personnel and process specialists. In this paper some principles for the engineering of monitoring information for control room operation are developed at the example of the exploitation of a particle accelerator at the European Laboratory for Nuclear Research (CERN).

  2. Monitoring psychrotrophic lactic acid bacteria contamination in a ready-to-eat vegetable salad production environment.

    Science.gov (United States)

    Pothakos, Vasileios; Snauwaert, Cindy; De Vos, Paul; Huys, Geert; Devlieghere, Frank

    2014-08-18

    A study monitoring lactic acid bacteria contamination was conducted in a company producing fresh, minimally processed, packaged and ready-to-eat (RTE) vegetable salads (stored at 4°C) in order to investigate the reason for high psychrotrophic LAB levels in the products at the end of shelf-life. Initially, high microbial counts exceeding the established psychrotrophic thresholds (>10(7)-10(8)CFU/g) and spoilage manifestations before the end of the shelf-life (7days) occurred in products containing an assortment of sliced and diced vegetables, but within a one year period these spoilage defects became prevalent in the entire processing plant. Environmental sampling and microbiological analyses of the raw materials and final products throughout the manufacturing process highlighted the presence of high numbers of Leuconostoc spp. in halved and unseeded, fresh sweet bell peppers provided by the supplier. A combination of two DNA fingerprinting techniques facilitated the assessment of the species diversity of LAB present in the processing environment along with the critical point of their introduction in the production facility. Probably through air mediation and surface adhesion, mainly members of the strictly psychrotrophic species Leuconostoc gelidum subsp. gasicomitatum and L. gelidum subsp. gelidum were responsible for the cross-contamination of every vegetable handled within the plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Using MODIS NDVI products for vegetation state monitoring on the oil production territory in Western Siberia

    Directory of Open Access Journals (Sweden)

    Kovalev Anton

    2016-01-01

    Full Text Available Article describes the results of using remote sensing data for vegetation state monitoring on the oil field territories in Western Siberia. We used MODIS data product providing the normalized difference vegetation index (NDVI values. Average NDVI values of each studied area were calculated for the period from 2010 to 2015 with one year interval for June, July and August. Analysis was carried out via an open tool of geographic information system QGIS used for spatial analysis and calculation of statistical parameters within chosen polygons. Results are presented in graphs showing the variation of NDVI for each study area and explaining the changes in trend lines for each field. It is shown that the majority of graphs are similar in shape which is caused by similar weather conditions. To confirm these results, we have conducted data analysis including temperature conditions and information about the accidents for each area. Abnormal changes in NDVI values revealed an emergency situation on the Priobskoe oil field caused by the flood in 2015. To sum up, the research results show that vegetation of studied areas is in a sufficiently stable state.

  4. Study on the forest vegetation restoration monitoring using HJ-1A hyperspectral data

    International Nuclear Information System (INIS)

    Chuan, Zhang; Fawang, Ye; Hongcheng, Liu; Haixia, He

    2014-01-01

    In this paper, Xunke County was studied using HJ-1A hyperspectral data for monitoring vegetation restoration after forest fires. The pre-processing procedure including data format conversion, image mosaicing and atmospheric correction. Support vector machine classification was used to perform surface feature identification based on the extracted spectral end-members. On that basis, the image area was divided into seven categories and statistical analysis of classification types was performed. The results showed that HJ-1A hyperspectral data had great potential in fine classification of surface features and the accuracy of classification was 91.8%. The mild and severe fire-affected area extraction provided useful reference for disaster recovery monitoring. Furthermore, the distinction between coniferous forest and broadleaved forest can offer useful information for forest fire prevention and early warning to some extent

  5. Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence

    Science.gov (United States)

    Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.

    2017-12-01

    Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence

  6. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  7. Satellite-based hybrid drought monitoring tool for prediction of vegetation condition in Eastern Africa: A case study for Ethiopia

    Science.gov (United States)

    Tadesse, Tsegaye; Demisse, Getachew Berhan; Zaitchik, Ben; Dinku, Tufa

    2014-03-01

    An experimental drought monitoring tool has been developed that predicts the vegetation condition (Vegetation Outlook) using a regression-tree technique at a monthly time step during the growing season in Eastern Africa. This prediction tool (VegOut-Ethiopia) is demonstrated for Ethiopia as a case study. VegOut-Ethiopia predicts the standardized values of the Normalized Difference Vegetation Index (NDVI) at multiple time steps (weeks to months into the future) based on analysis of "historical patterns" of satellite, climate, and oceanic data over historical records. The model underlying VegOut-Ethiopia capitalizes on historical climate-vegetation interactions and ocean-climate teleconnections (such as El Niño and the Southern Oscillation (ENSO)) expressed over the 24 year data record and also considers several environmental characteristics (e.g., land cover and elevation) that influence vegetation's response to weather conditions to produce 8 km maps that depict future general vegetation conditions. VegOut-Ethiopia could provide vegetation monitoring capabilities at local, national, and regional levels that can complement more traditional remote sensing-based approaches that monitor "current" vegetation conditions. The preliminary results of this case study showed that the models were able to predict the vegetation stress (both spatial extent and severity) in drought years 1-3 months ahead during the growing season in Ethiopia. The correlation coefficients between the predicted and satellite-observed vegetation condition range from 0.50 to 0.90. Based on the lessons learned from past research activities and emerging experimental forecast models, future studies are recommended that could help Eastern Africa in advancing knowledge of climate, remote sensing, hydrology, and water resources.

  8. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    Directory of Open Access Journals (Sweden)

    David Helman

    2015-09-01

    Full Text Available We present an efficient method for monitoring woody (i.e., evergreen and herbaceous (i.e., ephemeral vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS. The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI in the dry season was attributed to the woody vegetation (NDVIW. A constant NDVI value was assumed for soil background during this period. In the wet season, changes in NDVI were attributed to the development of ephemeral herbaceous vegetation in the forest floor and its maximum value to the peak green cover (NDVIH. NDVIW and NDVIH agreed well with field estimates of leaf area index and fraction of vegetation cover in two differently structured Mediterranean forests. To further assess the method’s assumptions, understory NDVI was retrieved form MODIS Bidirectional Reflectance Distribution Function (BRDF data and compared with NDVIH. After calibration, leaf area index and woody and herbaceous vegetation covers were assessed for those forests. Applicability for pre- and post-fire monitoring is presented as a potential use of this method for forest management in Mediterranean-climate regions.

  9. Loblolly pine growth following operational vegetation management treatments compares favorably to that achieved in complete vegetation control research trials

    Science.gov (United States)

    Dwight K. Lauer; Harold E. Quicke

    2010-01-01

    Different combinations of chemical site prep and post-plant herbaceous weed control installed at three Upper Coastal Plain locations were compared in terms of year 3 loblolly (Pinus taeda L.) pine response to determine the better vegetation management regimes. Site prep treatments were different herbicide rates applied in either July or October. Site...

  10. Nuclear propulsion control and health monitoring

    Science.gov (United States)

    Walter, P. B.; Edwards, R. M.

    1993-11-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  11. Intelligent Control and Health Monitoring. Chapter 3

    Science.gov (United States)

    Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.

    2009-01-01

    Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.

  12. Monitoring natural vegetation in Southern Greenland using NOAA AVHRR and field measurements

    DEFF Research Database (Denmark)

    Hansen, Birger Ulf

    1991-01-01

    vegetation, sheep farming, biomass production, Remote Sensing, NOAA AVHRR, Southern Greenland, NDVI......vegetation, sheep farming, biomass production, Remote Sensing, NOAA AVHRR, Southern Greenland, NDVI...

  13. Native vegetation establishment for IDOT erosion control best management practices.

    Science.gov (United States)

    2014-05-01

    The objective of this report was to develop native roadside vegetation best management practices for : the Illinois Department of Transportation. A review of current practices was undertaken, along with a : review of those of other state departments ...

  14. Relative sensitivity of Normalized Difference Vegetation Index (NDVI) and Microwave Polarization Difference Index (MPDI) for vegetation and desertification monitoring

    Science.gov (United States)

    Becker, Francois; Choudhury, Bhaskar J.

    1988-01-01

    A simple equation relating the Microwave Polarization Difference Index (MPDI) and the Normalized Difference Vegetation Index (NDVI) is proposed which represents well data obtained from Nimbus 7/SMMR at 37 GHz and NOAA/AVHRR Channels 1 and 2. It is found that there is a limit which is characteristic of a particular type of cover for which both indices are equally sensitive to the variation of vegetation, and below which MPDI is more efficient than NDVI. The results provide insight into the relationship between water content and chlorophyll absorption at pixel size scales.

  15. Computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    Homann, S.G.

    1994-01-01

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory's Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable

  16. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    Science.gov (United States)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  17. Nuclear power plant control room operator control and monitoring tasks

    International Nuclear Information System (INIS)

    Bovell, C.R.; Beck, M.G.; Carter, R.J.

    1998-01-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today's NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  18. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait.

    Science.gov (United States)

    Jallow, Mustapha F A; Awadh, Dawood G; Albaho, Mohammed S; Devi, Vimala Y; Ahmad, Nisar

    2017-07-25

    The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS) multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC - MS / MS). Pesticide residues above the maximum residue limits (MRL) were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. Aldrin, an organochlorine pesticide, was detected in one apple sample, with residues below the MRL. The results indicate the occurrence of pesticide residues in commonly consumed fruits and vegetables in Kuwait, and pointed to an urgent need to develop comprehensive intervention measures to reduce the potential health risk to consumers. The need for the regular monitoring of pesticide residues and the sensitization of farmers to better pesticide safety practices, especially the need to adhere to recommended pre-harvest intervals is recommended.

  19. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait

    Directory of Open Access Journals (Sweden)

    Mustapha F. A. Jallow

    2017-07-01

    Full Text Available The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS or liquid chromatography-tandem mass spectrometry (LC-MS/MS. Pesticide residues above the maximum residue limits (MRL were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. Aldrin, an organochlorine pesticide, was detected in one apple sample, with residues below the MRL. The results indicate the occurrence of pesticide residues in commonly consumed fruits and vegetables in Kuwait, and pointed to an urgent need to develop comprehensive intervention measures to reduce the potential health risk to consumers. The need for the regular monitoring of pesticide residues and the sensitization of farmers to better pesticide safety practices, especially the need to adhere to recommended pre-harvest intervals is recommended.

  20. EPRI's zebra mussel monitoring and control guidelines

    International Nuclear Information System (INIS)

    Mussalli, Y.G.; Armor, A.; Edwards, R.; Mattice, J.; Miller, M.; Nott, B.; Tsou, J.L.

    1992-01-01

    The Electric Power Research Institute (EPRI) Zebra Mussel Monitoring and Control Guidelines is a comprehensive compilation of US and European practices. The zebra mussel has infested all the Great Lakes and is positioned to spread to the adjoining river basins. The impact of the zebra mussel on power plants is as a biofouler clogging water systems and heat exchangers. The EPRI guidelines discuss the distribution of the zebra mussel in the US, identification of the zebra mussel, potential threats to power plants, and methods to initiate the monitoring and control program. Both preventive and corrective measures are presented. Preventive measures include various monitoring methods to initiate control techniques. The control techniques include both chemical and nonchemical together with combining techniques. Corrective methods include operational considerations, chemical cleaning, and mechanical/physical cleaning. It may also be possible to incorporate design changes, such as open to closed-loop backfit, backflushing, or pretreatment for closed systems. Table 1 shows a matrix of the monitoring methods. Table 2 presents a control matrix related to nuclear, fossil, and hydro raw water systems. Table 3 is a summary of the applicability of treatments to the various raw water systems. Appendixes are included that contain specifications to aid utilities in implementing several of the control technologies

  1. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  2. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  3. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  4. Monitoring of Vegetation Impact Due to Trampling on Cadillac Mountain Summit Using High Spatial Resolution Remote Sensing Data Sets

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J.

    2012-11-01

    Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.

  5. Potential and Limitations of Low-Cost Unmanned Aerial Systems for Monitoring Altitudinal Vegetation Phenology in the Tropics

    Science.gov (United States)

    Silva, T. S. F.; Torres, R. S.; Morellato, P.

    2017-12-01

    Vegetation phenology is a key component of ecosystem function and biogeochemical cycling, and highly susceptible to climatic change. Phenological knowledge in the tropics is limited by lack of monitoring, traditionally done by laborious direct observation. Ground-based digital cameras can automate daily observations, but also offer limited spatial coverage. Imaging by low-cost Unmanned Aerial Systems (UAS) combines the fine resolution of ground-based methods with and unprecedented capability for spatial coverage, but challenges remain in producing color-consistent multitemporal images. We evaluated the applicability of multitemporal UAS imaging to monitor phenology in tropical altitudinal grasslands and forests, answering: 1) Can very-high resolution aerial photography from conventional digital cameras be used to reliably monitor vegetative and reproductive phenology? 2) How is UAS monitoring affected by changes in illumination and by sensor physical limitations? We flew imaging missions monthly from Feb-16 to Feb-17, using a UAS equipped with an RGB Canon SX260 camera. Flights were carried between 10am and 4pm, at 120-150m a.g.l., yielding 5-10cm spatial resolution. To compensate illumination changes caused by time of day, season and cloud cover, calibration was attempted using reference targets and empirical models, as well as color space transformations. For vegetative phenological monitoring, multitemporal response was severely affected by changes in illumination conditions, strongly confounding the phenological signal. These variations could not be adequately corrected through calibration due to sensor limitations. For reproductive phenology, the very-high resolution of the acquired imagery allowed discrimination of individual reproductive structures for some species, and its stark colorimetric differences to vegetative structures allowed detection of the reproductive timing on the HSV color space, despite illumination effects. We conclude that reliable

  6. Biomarker monitoring in sports doping control.

    Science.gov (United States)

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  7. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  8. Wireless battery management control and monitoring system

    Science.gov (United States)

    Zumstein, James M.; Chang, John T.; Farmer, Joseph C.; Kovotsky, Jack; Lavietes, Anthony; Trebes, James Edward

    2018-01-16

    A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.

  9. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  10. Topographic, edaphic, and vegetative controls on plant-available water

    Science.gov (United States)

    Salli F. Dymond; John B. Bradford; Paul V. Bolstad; Randall K. Kolka; Stephen D. Sebestyen; Thomas M. DeSutter

    2017-01-01

    Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary...

  11. Non- chemical methods of seed treatment for control of seed- borne pathogens on vegetables

    NARCIS (Netherlands)

    Amein, T.; Wright, S.A.I.; Wickstrom, M.; Schmitt, A.; Koch, E.; Wolf, van der J.M.; Groot, S.P.C.; Werner, S.; Jahn, M.

    2006-01-01

    The aim of EU-project "Seed Treatments for Organic Vegetable Production" (STOVE) was to evaluate non-chemical methods for control of seed-borne pathogens in organic vegetable production. Physical (hot air, hot water and electron) and biologi-cal (microorganisms and different agents of natural

  12. Monitoring and controlling the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B K; Angelidaki, I [The Technical Univ. of Denmark, Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1997-08-01

    Many modern large-scale biogas plants have been constructed recently, increasing the demand for proper monitoring and control of these large reactor systems. For monitoring the biogas process, an easy to measure and reliable indicator is required, which reflects the metabolic state and the activity of the bacterial populations in the reactor. In this paper, we discuss existing indicators as well as indicators under development which can potentially be used to monitor the state of the biogas process in a reactor. Furthermore, data are presented from two large scale thermophilic biogas plants, subjected to temperature changes and where the concentration of volatile fatty acids was monitored. The results clearly demonstrated that significant changes in the concentration of the individual VFA occurred although the biogas production was not significantly changed. Especially the concentrations of butyrate, isobutyrate and isovalerate showed significant changes. Future improvements of process control could therefore be based on monitoring of the concentration of specific VFA`s together with information about the bacterial populations in the reactor. The last information could be supplied by the use of modern molecular techniques. (au) 51 refs.

  13. High-resolution stable isotope monitoring reveals differential vegetation-soil water feedbacks among plant functional types

    Science.gov (United States)

    Volkmann, T. H. M.; Haberer, K.; Troch, P. A. A.; Gessler, A.; Weiler, M.

    2016-12-01

    Understanding the linked dynamics of rain water recharge to soils and its utilization by plants is critical for predicting the impact of climate and land use changes on the productivity of ecosystems and the hydrologic cycle. While plants require vast quantities of water from the soil to sustain growth and function, they exert important direct and indirect controls on the movement of water through the rooted soil horizons, thereby potentially affecting their own resource availability. However, the specific ecohydrological belowground processes associated with different plant types and their rooting systems have been difficult to quantify with traditional methods. Here, we report on the use of techniques for monitoring stable isotopes in soil and plant water pools that allow us to track water infiltration and root uptake dynamics non-destructively and in high resolution. The techniques were applied in controlled rain pulse experiments with distinct plant types (grass, deciduous trees, grapevine) that we let develop on an initially uniform soil for two years. Our results show that plant species and types differed widely in their plasticity and pattern of root uptake under variable water availability. Thereby, and through notably co-acting indirect effects related to differential root system traits and co-evolution of soil properties, the different plants induced contrasting hydrological dynamics in the soil they had inhabited for only a short period of time. Taken together, our data suggest that the studied soil-vegetation systems evolved a positive infiltration-uptake feedback in which hydrological flow pathways underlying different species diverged in a way that complemented their specific water utilization strategy. Such a feedback could present an indirect competitive mechanism by which plants improve their own water supply and modulate hydrological cycling at the land surface. The ability to directly measure this feedback using in situ isotope methodology

  14. Repeatability of riparian vegetation sampling methods: how useful are these techniques for broad-scale, long-term monitoring?

    Science.gov (United States)

    Marc C. Coles-Ritchie; Richard C. Henderson; Eric K. Archer; Caroline Kennedy; Jeffrey L. Kershner

    2004-01-01

    Tests were conducted to evaluate variability among observers for riparian vegetation data collection methods and data reduction techniques. The methods are used as part of a largescale monitoring program designed to detect changes in riparian resource conditions on Federal lands. Methods were evaluated using agreement matrices, the Bray-Curtis dissimilarity metric, the...

  15. PASTIS 57: Autonomous light sensors for PAI continuous monitoring. Principles, calibration and application to vegetation phenology

    Science.gov (United States)

    Lecerf, R.; Baret, F.; Hanocq, J.; Marloie, O.; Rautiainen, M.; Mottus, M.; Heiskanen, J.; Stenberg, P.

    2010-12-01

    The LAI (Leaf Area Index) is a key variable to analyze and model vegetation and its interactions with atmosphere and soils. The LAI maps derived from remote sensing images are often validated with non-destructive LAI measures obtained from digital hemispherical photography, LAI-2000 or ceptometer instruments. These methods are expensive and time consuming particularly when human intervention is needed. Consequently it is difficult to acquire overlapping field data and remotely sensed LAI. There is a need of a cheap, autonomous, easy to use ground system to measure foliage development and senescence at least with a daily frequency in order to increase the number of validation sites where vegetation phenology is continuously monitored. A system called PASTIS-57 (PAI Autonomous System from Transmittance Instantaneous Sensors oriented at 57°) devoted to PAI (Plant Area Index) ground measurements was developed to answer this need. PASTIS-57 consists in 6 sensors plugged on one logger that record data with a sampling rate of 1 to few minutes (tunable) with up to 3 months autonomy (energy and data storage). The sensors are plugged to the logger with 2x10m wires, 2x6m wires and 2x2m wires. The distance between each sensor was determined to obtain a representative spatial sampling over a 20m pixel corresponding to an Elementary Sampling Unit (ESU). The PASTIS-57 sensors are made of photodiodes that measure the incoming light in the blue wavelength to maximize the contrast between vegetation and sky and limit multiple scattering effects in the canopy. The diodes are oriented to the north to avoid direct sun light and point to a zenithal angle of 57° to minimize leaf angle distribution and plant clumping effects. The field of view of the diodes was set to ± 20° to take into consideration vegetation cover heterogeneity and to minimize environmental effects. The sensors were calibrated after recording data on a clear view site during a week. After calibration, the sensors

  16. Improved hydrogen monitoring helps control corrosion

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1985-01-01

    Hydrogen analyzers have long been used for corrosion monitoring in both fossil-fired boilers and nuclear steam generators. The most recent stimulus for hydrogen monitoring has been provided by cracking of recirculation piping in water reactors. This paper examines the Hydran 202N, which represents an adaption of one instrument that has been used to monitor the degradation of transformer oils and fiberoptic cables. The sensing probe consists of a flow-through cell, an isolating membrane, and a miniature hydrogen/air fuel cell. The use of Hydran 202N at several fossil-fired and nuclear plants is described and the fossilplant application related to the effectiveness of water-chemistry control for a 400 psig oil-fired boiler is examined at a refinery

  17. Drought monitoring over the Horn of Africa using remotely sensed evapotranspiration, soil moisture and vegetation parameters

    Science.gov (United States)

    Timmermans, J.; Gokmen, M.; Eden, U.; Abou Ali, M.; Vekerdy, Z.; Su, Z.

    2012-04-01

    The need to good drought monitoring and management for the Horn of Africa has never been greater. This ongoing drought is the largest in the past sixty years and is effecting the life of around 10 million people, according to the United Nations. The impact of drought is most apparent in food security and health. In addition secondary problems arise related to the drought such as large migration; more than 15000 Somalia have fled to neighboring countries to escape the problems caused by the drought. These problems will only grow in the future to larger areas due to increase in extreme weather patterns due to global climate change. Monitoring drought impact and managing the drought effects are therefore of critical importance. The impact of a drought is hard to characterize as drought depends on several parameters, like precipitation, land use, irrigation. Consequently the effects of the drought vary spatially and range from short-term to long-term. For this reason a drought event can be characterized into four categories: meteorological, agricultural, hydrological and socio-economical. In terms of food production the agricultural drought, or short term dryness near the surface layer, is most important. This drought is usually characterized by low soil moisture content in the root zone, decreased evapotranspiration, and changes in vegetation vigor. All of these parameters can be detected with good accuracy from space. The advantage of remote sensing in Drought monitoring is evident. Drought monitoring is usually performed using drought indices, like the Palmer Index (PDSI), Crop Moisture Index (CMI), Standard Precipitation Index (SPI). With the introduction of remote sensing several indices of these have shown great potential for large scale application. These indices however all incorporate precipitation as the main surface parameter neglecting the response of the surface to the dryness. More recently two agricultural drought indices, the EvapoTranspiration Deficit

  18. Master Console System Monitoring and Control Development

    Science.gov (United States)

    Brooks, Russell A.

    2013-01-01

    The Master Console internship during the spring of 2013 involved the development of firing room displays at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I developed a system health and status display for use by Master Console Operators (MCO) to monitor and verify the integrity of the servers, gateways, network switches, and firewalls used in the firing room.

  19. Master Console System Monitoring and Control Development

    Science.gov (United States)

    Brooks, Russell A.

    2013-01-01

    The Master Console internship during the summer of 2013 involved the development of firing room displays and support applications at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I created control scripts using the Application Control Language (ACL) to analyze the health and status of Kennedy Ground Control System (KGCS) programmable logic controllers (PLCs). This application provides a system health and status display I created with summarized data for use by Master Console Operators (MCO) to monitor and verify the integrity of KGCS subsystems.

  20. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-Mediterranean Climate: Preliminary Results.

    Science.gov (United States)

    Piro, Patrizia; Porti, Michele; Veltri, Simone; Lupo, Emanuela; Moroni, Monica

    2017-03-23

    In urban and industrial environments, the constant increase of impermeable surfaces has produced drastic changes in the natural hydrological cycle. Decreasing green areas not only produce negative effects from a hydrological-hydraulic perspective, but also from an energy point of view, modifying the urban microclimate and generating, as shown in the literature, heat islands in our cities. In this context, green infrastructures may represent an environmental compensation action that can be used to re-equilibrate the hydrological and energy balance and reduce the impact of pollutant load on receiving water bodies. To ensure that a green infrastructure will work properly, vegetated areas have to be continuously monitored to verify their health state. This paper presents a ground spectroscopy monitoring survey of a green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. This study is part of a larger research project financed by European Structural funds aimed at understanding the influence of green roofs on rainwater management and energy consumption for air conditioning in the Mediterranean area. Reflectance values were acquired with a field-portable spectroradiometer that operates in the range of wavelengths 350-2500 nm. The survey was carried out during the time period November 2014-June 2015 and data were acquired weekly. Climatic, thermo-physical, hydrological and hydraulic quantities were acquired as well and related to spectral data. Broadband and narrowband spectral indices, related to chlorophyll content and to chlorophyll-carotenoid ratio, were computed. The two narrowband indices NDVI 705 and SIPI turned out to be the most representative indices to detect the plant health status.

  1. Monitoring of vegetation response to elk population and habitat management in Rocky Mountain National Park, 2008–14

    Science.gov (United States)

    Zeigenfuss, Linda C.; Johnson, Therese L.

    2015-12-17

    Since 2008, Rocky Mountain National Park in Colorado has been implementing an elk and vegetation management plan with the goal of managing elk populations and their habitats to improve the condition of key vegetation communities on elk winter range. Management actions that have been taken thus far include small reductions in the elk herd through culling of animals and temporary fencing of large areas of willow and aspen habitat to protect them from elk browsing. As part of the park’s elk and vegetation management plan (EVMP), a monitoring program was established to assess effectiveness of management actions in achieving vegetation goals. We collected data to monitor offtake (consumption) of upland herbaceous plants and willow annually from 2008 to 2014 and to assess aspen stand structure and regeneration and willow cover and height in 2013, 5 years after plan implementation. Loss of many willow and a few aspen monitoring sites to a fire in late 2012 complicated data collection and interpretation of results but will provide opportunities to observe habitat recovery following fire and in the presence and absence of elk herbivory, which will offer important insights into the use of prescribed fire as an additional management tool in these habitats.

  2. Fermilab accelerator control system: Analog monitoring facilities

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system

  3. Review of Methods for the Monitoring of Biomass and Vegetal Carbon in Tropical Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    William Fonseca

    2017-06-01

    Full Text Available The quantification of vegetal biomass is the key to know the carbon that forest ecosystems store, and therefore, its capacity to mitigate climatic change. There is a variety of methods to estimate biomass, many with small variations, such as size and shape of sampling units, inclusion or not of any reservoir component (leaves, branches, roots, necromasses, minimum diameter inventoried, among others. The objective of the paper is to explain the most important aspects to be considered in the inventory of removals, based on the inventory design (statistical design, size and shape of the sampling units, components of the biomass to be evaluated. A second point deals with the determination of aerial biomass and roots, referring to the direct or destructive method, and indirect methods, especially to the use of mathematical models for their easy application and low cost; besides, some models for natural forest and plantations are noted. Reference is also made to the study of carbon in soils, biomass expansion factors, and how to determine carbon in biomass. We hope that these notes will facilitate the understanding of the topic and be a reference for the establishment of monitoring, reporting and verification schemes.

  4. Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables.

    Science.gov (United States)

    Ono, Hiroshi; Nishio, Shoko; Tsurii, Jun; Kawamoto, Tetsuhiro; Sonomoto, Kenji; Nakayama, Jiro

    2014-11-01

    Nukadoko is a fermented rice bran mash traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko depends on natural fermentation without using starter cultures. Here, we monitored chemical and microbiological changes in the initial batch fermentation of nukadoko. Nukadoko samples were prepared by spontaneous fermentation of four different brands of rice bran, and microbiome dynamics were analyzed for 2 months. In the first week, non-Lactobacillales lactic acid bacteria (LAB) species, which differed among the samples, grew proportionally to pH decrease and lactate increase. Thereafter, Lactobacillus plantarum started growing and consumed residual sugars, causing further lactate increase in nukadoko. Finally, microbial communities in all tested nukadoko samples were dominated by L. plantarum. Taken together, our results suggest that the mixture of the fast-growing LAB species and slow-growing L. plantarum may be used as a suitable starter culture to promote the initial fermentation of nukadoko. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Remote Controlling and Monitoring of Microscopic Slides

    International Nuclear Information System (INIS)

    Mustafa, G.; Qadri, M.T.; Daraz, U.

    2016-01-01

    Remotely controlled microscopic slide was designed using especial Graphical User Interface (GUI) which interfaces the user at remote location with the real microscope using site and the user can easily view and control the slide present on the microscope's stage. Precise motors have been used to allow the movement in all the three dimensions required by a pathologist. The pathologist can easily access these slides from any remote location and so the physical presence of the pathologist is now made easy. This invention would increase the health care efficiency by reducing the time and cost of diagnosis, making it very easy to get the expert's opinion and supporting the pathologist to relocate himself for his work. The microscope is controlled with computer with an attractive Graphical User Interface (GUI), through which a pathologist can easily monitor, control and record the image of the slide. The pathologist can now do his work regardless of his location, time, cost and physically presence of lab equipment. The technology will help the specialist in viewing the patients slide from any location in the world. He would be able to monitor and control the stage. This will also help the pathological laboratories in getting opinion from senior pathologist who are present at any far location in the world. This system also reduces the life risks of the patients. (author)

  6. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    approval. The levels in selected monitoring wells are recorded continuously, by using downhole pressure sensors equipped with automatic data loggers, and periodically are also measured manually. Groundwater level data were recovered during the current review period on September 19, 2008, and on March 25, April 25-27, and October 20, 2009. (3) Argonne experience has demonstrated that the sampling and analysis (for VOCs) of native vegetation, and particularly tree tissues, often provides a sensitive indicator of possible carbon tetrachloride contamination in the surface water or shallow groundwater within the plant rooting zone. With the approval of the CCC/USDA, on August 28, 2009, samples of tree branch tissues were therefore collected for analyses at 18 locations along the intermittent creek west (downgradient) of the former CCC/USDA facility and the Nigh property.

  7. MPS Vax monitor and control software architecture

    International Nuclear Information System (INIS)

    Allison, S.; Spencer, N.; Underwood, K.; VanOlst, D.; Zelanzy, M.

    1993-04-01

    The new Machine Protection System (MPS) now being tested at the SLAC Linear Collider (SLC) includes monitoring and controlling facilities integrated into the existing VAX control system. The actual machine protection is performed by VME micros which control the beam repetition rate on a pulse-by-pulse basis based on measurements from fault detectors. The VAX is used to control and configure the VME micros, configure custom CAMAC modules providing the fault detector inputs, monitor and report faults and system errors, update the SLC database, and interface with the user. The design goals of the VAX software include a database-driven system to allow configuration changes without code changes, use of a standard TCP/IP-based message service for communication, use of existing SLCNET micros for CAMAC configuration, security and verification features to prevent unauthorized access, error and alarm logging and display updates as quickly as possible, and use of touch panels and X-windows displays for the user interface

  8. Microcomputer-based monitoring and control system

    International Nuclear Information System (INIS)

    Talaska, D.

    1979-03-01

    This report describes a microcomputer-based monitoring and control system devised within, and used by, the Cryogenic Operations group at SLAC. Presently, a version of it is operating at the one meter liquid hydrogen bubble chamber augmenting the conventional pneumatic and human feedback system. Its use has greatly improved the controlled tolerances of temperature and pulse shape, and it has nearly eliminated the need for operating personnel to adjust the conventional pneumatic control system. The latter is most important since the rapid cycling machine can demand attentions beyond the operator's skill. Similar microcomputer systems are being prepared to monitor and control cryogenic devices situated in regions of radiation which preclude human entry and at diverse locations which defy the dexterity of the few operators assigned to maintain them. An IMSAI 8080 microcomputer is basic to the system. The key to the use of the IMSAI 8080 in this system was in the development of unique interface circuitry, and the report is mostly concerned with this

  9. Statistical process control for electron beam monitoring.

    Science.gov (United States)

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. The reinforcing value of vegetables does not increase with repeated exposure during a randomized controlled provided vegetable intervention among overweight and obese adults

    Science.gov (United States)

    Objective: The primary aim of this randomized controlled trial is to determine whether the relative reinforcing value (RRV) of vegetables compared to a snack food can be increased through repeated exposure (incentive sensitization) to amounts of vegetables recommended by the Dietary Guidelines for A...

  11. The use of high altitude remote sensing in determining existing vegetation and monitoring ecological stress

    Science.gov (United States)

    Foster, K.; Garcia, A.

    1972-01-01

    High altitude color and multispectral black and white photography was used to survey existing vegetation and soil conditions on the Empire Ranch where large scale development will soon begin. Utilizing stereo pairs of the high altitude color photography, four vegetation classifications were discernable as a function of topography and foliage characteristics. In contrast to the undeveloped Ranch, the same photography was used to detect environmental changes in the Tucson metropolitan area as a result of rapid urbanization. The most prevalent change related to development is the removal of vegetation in high density areas to allow for housing starts. Erosion then occurs where vegetation has been removed.

  12. Faunal and vegetation monitoring in response to harbor dredging in the Port of Miami

    Science.gov (United States)

    Daniels, Andre; Stevenson, Rachael; Smith, Erin; Robblee, Michael

    2018-04-11

    Seagrasses are highly productive ecosystems. A before-after-control-impact (BACI) design was used to examine effects of dredging on seagrasses and the animals that inhabit them. The control site North Biscayne Bay and the affected site Port of Miami had seagrass densities decrease during both the before, Fish and Invertebrate Assessment Network 2006-2011, and after, Faunal Monitoring in Response to Harbor Dredging 2014-2016, studies. Turbidity levels increased at North Biscayne Bay and Port of Miami basins during the Faunal Monitoring in Response to Harbor Dredging study, especially in 2016. Animal populations decreased significantly in North Biscayne Bay and Port of Miami in the Faunal Monitoring in Response to Harbor Dredging study compared to the Fish and Invertebrate Assessment Network study. Predictive modeling shows that numbers of animal populations will likely continue to decrease if the negative trends in seagrass densities continue unabated. There could be effects on several fisheries vital to the south Florida economy. Additional research could determine if animal populations and seagrass densities have rebounded or continued to decrease.

  13. Analysis of personnel monitoring control card data

    International Nuclear Information System (INIS)

    Ande, C.D.; Sneha, C.; Madhumita, B.; Bakshi, A.K.; Datta, D.

    2018-01-01

    In India, personnel monitoring of radiation workers for X-, beta- and gamma- radiation is carried out using a thermoluminescence dosemeter (TLD) system based on CaSO 4 :Dy Teflon TLD disc. A large number of radiation workers get very low occupational doses and their doses are reported as zero since it is not above detectable limits. Therefore, the detection of low levels of occupational dose over and above the natural background assumes great importance. In the present system, the estimation of the background dose is achieved by use of control dosemeters. An analysis of the readings of the control dosimeters sent to various institutions was carried out to arrive at conclusions regarding the validity of the use of control dosimeter

  14. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa

    Science.gov (United States)

    Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen

    2015-06-01

    Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.

  15. The Automator: Intelligent control system monitoring

    International Nuclear Information System (INIS)

    M. Bickley; D.A. Bryan; K.S. White

    1999-01-01

    A large-scale control system may contain several hundred thousand control points which must be monitored to ensure smooth operation. Knowledge of the current state of such a system is often implicit in the values of these points and operators must be cognizant of the state while making decisions. Repetitive operators requiring human intervention lead to fatigue, which can in turn lead to mistakes. The authors propose a tool called the Automator based on a middleware software server. This tool would provide a user-configurable engine for monitoring control points. Based on the status of these control points, a specified action could be taken. The action could range from setting another control point, to triggering an alarm, to running an executable. Often the data presented by a system is meaningless without context information from other channels. Such a tool could be configured to present interpreted information based on values of other channels. Additionally, this tool could translate numerous values in a non-friendly form (such as numbers, bits, or return codes) into meaningful strings of information. Multiple instances of this server could be run, allowing individuals or groups to configure their own Automators. The configuration of the tool will be file-based. In the future, these files could be generated by graphical design tools, allowing for rapid development of new configurations. In addition, the server will be able to explicitly maintain information about the state of the control system. This state information can be used in decision-making processes and shared with other applications. A conceptual framework and software design for the tool are presented

  16. Ovarian control and monitoring in amphibians.

    Science.gov (United States)

    Calatayud, N E; Stoops, M; Durrant, B S

    2018-03-15

    Amphibian evolution spans over 350 million years, consequently this taxonomic group displays a wide, complex array of physiological adaptations and their diverse modes of reproduction are a prime example. Reproduction can be affected by taxonomy, geographic and altitudinal distribution, and environmental factors. With some exceptions, amphibians can be categorized into discontinuous (strictly seasonal) and continuous breeders. Temperature and its close association with other proximate and genetic factors control reproduction via a tight relationship with circadian rhythms which drive genetic and hormonal responses to the environment. In recent times, the relationship of proximate factors and reproduction has directly or indirectly lead to the decline of this taxonomic group. Conservationists are tackling the rapid loss of species through a wide range of approaches including captive rescue. However, there is still much to be learned about the mechanisms of reproductive control and its requirements in order to fabricate species-appropriate captive environments that address a variety of reproductive strategies. As with other taxonomic groups, assisted reproductive technologies and other reproductive monitoring tools such as ultrasound, hormone analysis and body condition indices can assist conservationists in optimizing captive husbandry and breeding. In this review we discuss some of the mechanisms of ovarian control and the different tools being used to monitor female reproduction. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Evaluation and cross-comparison of vegetation indices for crop monitoring from sentinel-2 and worldview-2 images

    Science.gov (United States)

    Psomiadis, Emmanouil; Dercas, Nicholas; Dalezios, Nicolas R.; Spyropoulos, Nikolaos V.

    2017-10-01

    Farmers throughout the world are constantly searching for ways to maximize their returns. Remote Sensing applications are designed to provide farmers with timely crop monitoring and production information. Such information can be used to identify crop vigor problems. Vegetation indices (VIs) derived from satellite data have been widely used to assess variations in the physiological state and biophysical properties of vegetation. However, due to the various sensor characteristics, there are differences among VIs derived from multiple sensors for the same target. Therefore, multi-sensor VI capability and effectiveness are critical but complicated issues in the application of multi-sensor vegetation observations. Various factors such as the atmospheric conditions during acquisition, sensor and geometric characteristics, such as viewing angle, field of view, and sun elevation influence direct comparability of vegetation indicators among different sensors. In the present study, two experimental areas were used which are located near the villages Nea Lefki and Melia of Larissa Prefecture in Thessaly Plain area, containing a wheat and a cotton crop, respectively. Two satellite systems with different spatial resolution, WorldView-2 (W2) and Sentinel-2 (S2) with 2 and 10 meters pixel size, were used. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were calculated and a statistical comparison of the VIs was made to designate their correlation and dependency. Finally, several other innovative indices were calculated and compared to evaluate their effectiveness in the detection of problematic plant growth areas.

  18. Minicomputer controlled test system for process control and monitoring systems

    International Nuclear Information System (INIS)

    Worster, L.D.

    A minicomputer controlled test system for testing process control and monitoring systems is described. This system, in service for over one year, has demonstrated that computerized control of such testing has a real potential for expanding the scope of the testing, improving accuracy of testing, and significantly reducing the time required to do the testing. The test system is built around a 16-bit minicomputer with 12K of memory. The system programming language is BASIC with the addition of assembly level routines for communication with the peripheral devices. The peripheral devices include a 100 channel scanner, analog-to-digital converter, visual display, and strip printer. (auth)

  19. Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis

    Science.gov (United States)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.

    2013-08-01

    During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.

  20. Substitution or addition? How overweight and obese adults incorporate vegetables into their diet during a randomized controlled vegetable feeding trial

    Science.gov (United States)

    Objective: When attempting to eat healthier, individuals may add vegetables to their diet (addition) without changing other eating behaviors. Alternatively, individuals adding vegetables may decrease consumption of other foods (substitution). Distinguishing between the two means of incorporation of ...

  1. Automated Cryocooler Monitor and Control System

    Science.gov (United States)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and

  2. Optimizing cloud removal from satellite remotely sensed data for monitoring vegetation dynamics in humid tropical climate

    International Nuclear Information System (INIS)

    Hashim, M; Pour, A B; Onn, C H

    2014-01-01

    Remote sensing technology is an important tool to analyze vegetation dynamics, quantifying vegetation fraction of Earth's agricultural and natural vegetation. In optical remote sensing analysis removing atmospheric interferences, particularly distribution of cloud contaminations, are always a critical task in the tropical climate. This paper suggests a fast and alternative approach to remove cloud and shadow contaminations for Landsat Enhanced Thematic Mapper + (ETM + ) multi temporal datasets. Band 3 and Band 4 from all the Landsat ETM + dataset are two main spectral bands that are very crucial in this study for cloud removal technique. The Normalise difference vegetation index (NDVI) and the normalised difference soil index (NDSI) are two main derivatives derived from the datasets. Change vector analysis is used in this study to seek the vegetation dynamics. The approach developed in this study for cloud optimizing can be broadly applicable for optical remote sensing satellite data, which are seriously obscured with heavy cloud contamination in the tropical climate

  3. Process control monitoring systems, industrial plants, and process control monitoring methods

    Science.gov (United States)

    Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA

    2010-09-07

    A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.

  4. Noise control of radiological monitoring equipment

    International Nuclear Information System (INIS)

    Rubick, R.D.; Stevens, W.W.; Burke, L.L.

    1998-01-01

    Although vacuum pumps on continuous air monitors (CAMs) do not produce noise levels above regulatory limits, engineering controls were used to establish a safer work environment. Operations performed in areas where CAMs are located are highly specialized and require precision work when handling nuclear materials, heavy metals, and inert gases. Traditional methods for controlling noise such as enclosing or isolating the source and the use of personal protection equipment were evaluated. An innovative solution was found by retrofitting CAMs with air powered multistage ejectors pumps. By allowing the air to expand in several chambers to create a vacuum, one can eliminate the noise hazard altogether. In facilities with adequate pressurized air, use of these improved ejector pumps may be a cost-effective replacement for noisy vacuum pumps. A workplace designed or engineered with noise levels as low as possible or as close to background adds to increased concentration, attention to detail, and increased production

  5. Monitoring and controlling ovarian activity in elephants.

    Science.gov (United States)

    Thitaram, Chatchote; Brown, Janine L

    2018-03-15

    Both Asian (Elephas maximus) and African (Loxodonta africana) elephants are important keystone, umbrella and flagship species. Paradoxically, world population numbers of both species are declining in many of their natural ranges due mainly to poaching, while over population of elephants in some areas is resulting in serious human-elephant conflict, and modifications of natural habitats that impact biodiversity. Understanding mechanisms of reproductive control is vital to effective population management, and for that reason significant advances have been made in endocrine and ultrasonographic monitoring techniques, particularly in studies of elephants ex situ. However, there remains a need to develop new methods to control ovarian activity, both for enhancing and inhibiting reproduction, to maintain population numbers at levels that ensure species survival and their ability to safely cohabitate with humans and other species. We present an overview of reproductive monitoring methods and how they have contributed to our knowledge of elephant reproductive biology, as well as their application for in situ and ex situ conservation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    Science.gov (United States)

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  7. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons... internal corrosion. Each coupon or other means of monitoring internal corrosion must be checked two times...

  8. Propose Reactor Control and Monitoring System for RTP

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha

    2011-01-01

    Reactor control and monitoring system is a one of the important features used in reactor. The control and monitoring must come together to provide safety, excellent performance and reliable in nuclear reactor technology application. Objectives of this technical paper are to design and propose reactor control system and reactor monitoring system in Research Reactor (RTP) for Reactor Upgrading Project. (author)

  9. Monitoring and Controlling an Underwater Robotic Arm

    Science.gov (United States)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  10. INFN-CNAF Monitor and Control System

    International Nuclear Information System (INIS)

    Antonelli, Stefano; De Girolamo, Donato; Dell'Agnello, Luca; Gregori, Daniele; Guizzunti, Guido; Ricci, Pier Paolo; Rosso, Felice; Sapunenko, Vladimir; Veraldi, Riccardo; Veronesi, Paolo; Vistoli, Cristina; Finzi, Giulia Vita; Zani, Stefano

    2011-01-01

    CNAF is the national center of National Institute of Nuclear Physics (INFN) for R and D in the field of Information Technologies applied to High Energy Physics (HEP) experiments. It is involved in the management and development of the most important information and data handling services in behalf of the INFN. In 2005, the Italian Tier-1 for Large Hadron Collider (LHC) experiments has been inaugurated at INFN-CNAF. Due to the huge complexity of Tier-1 center, the use of control systems is fundamental for management and operation of the center. At INFN-CNAF, several solutions have been adopted, from commercial to open source products up to entirely home-made systems. Adopted open source solutions have been strongly adapted to specific needs; a wide set of customized sensors has been developed for various divisions like Network, Storage, Farming, Grid operation and National Services. Finally, a dashboard has been developed, to which described control systems send critical alarms (sent via sms to an operator as well). The dashboard can be exploited to get an historical view of the Tier-1 and national services' state and to allow a quick web control. In this article, the whole system, adopted customizations in monitoring and control as well as their integrations with the dashboard will be described.

  11. Topographically-controlled site conditions drive vegetation pattern on inland dunes in Poland

    Science.gov (United States)

    Sewerniak, Piotr; Jankowski, Michał

    2017-07-01

    The inland dunes of Central Europe are commonly overplanted by Scots pine (Pinus sylvestris) monocultures in which the primary occurrence of the natural vegetation pattern is obliterated. We hypothesize that on naturally revegetated inland dunes the pattern is clear and driven by topographically-controlled site conditions. To test this hypothesis, we addressed the following research questions: (1) Does topography drive vegetation patterns on inland dunes and if so, what are main differences between vegetation in varying relief positions? (2) To what extent does topography involve the variability of microclimates and of soil properties, and how does the topographically-induced differentiation of these site conditions control vegetation patterns? We conducted interdisciplinary studies (applying floristic, pedological and microclimatic research techniques) on a naturally revegetated inland dune area situated on a military artillery training ground near Toruń, northern Poland. We investigated vegetation patterns with reference to three topographical position variants (north-facing slopes, south-facing slopes, and intra-dune depressions). We found distinct differences in vegetation characteristics covering the aforementioned topographical positions. This primarily concerned species composition of ground vegetation: Calluna vulgaris was dominant species on north-facing slopes, Corynephorus canescens on south-facing slopes, while Calamagrostis epigejos in intra-dune depressions. In comparison to dune slopes, the depressions were characterized by much higher biodiversity of vascular plant species. This followed the most favorable soil conditions for the existence of plants (higher moisture and nutrient pools) occurring in low topographical positions. However, tree succession was most advanced not in depressions, where the competitive impact of tall grasses on seedlings was recognized, but on north-facing slopes. Based on our results, we formulated some suggestions, which

  12. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    Science.gov (United States)

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  13. VEGETATION COVERAGE AND IMPERVIOUS SURFACE AREA ESTIMATED BASED ON THE ESTARFM MODEL AND REMOTE SENSING MONITORING

    Directory of Open Access Journals (Sweden)

    R. Hu

    2018-04-01

    Full Text Available Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC and impervious layer with high spatiotemporal resolution (30 m, 8 day were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1 ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2 The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  14. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    Science.gov (United States)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  15. Project W-058 monitor and control system logic

    International Nuclear Information System (INIS)

    ROBERTS, J.B.

    1999-01-01

    This supporting document contains the printout of the control logic for the Project W-058 Monitor and Control System, as developed by Programmable Control Services, Inc. The logic is arranged in five appendices, one for each programmable logic controller console

  16. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data

    Directory of Open Access Journals (Sweden)

    Willem J. D. van Leeuwen

    2008-03-01

    Full Text Available This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR and examine burn severity at the selected sites. The phenological metrics (pheno-metrics included the timing and greenness (i.e. NDVI for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation

  17. Vegetation change (1988–2010 in Camdeboo National Park (South Africa, using fixed-point photo monitoring: The role of herbivory and climate

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2013-10-01

    Conservation implications: We provided an historical assessment of the pattern of vegetation and climatic trends that can help evaluate many of South African National Parks’ biodiversity monitoring programmes, especially relating to habitat change. It will help arid parks in assessing the trajectories of vegetation in response to herbivory, climate and management interventions.

  18. Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China.

    Science.gov (United States)

    Lou, Tiantian; Huang, Weisu; Wu, Xiaodan; Wang, Mengmeng; Zhou, Liying; Lu, Baiyi; Zheng, Lufei; Hu, Yinzhou

    2017-06-01

    Sulfur dioxide residues in 20 kinds of products collected from 23 provinces of China (Jilin, Beijing, Shanxi, Shandong, Henan, Hebei, Jiangsu, Anhui, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Chongqing, Sichuan, Gansu, Neimenggu, Xinjiang and Hainan) were analysed, and a health risk assessment was performed. The detection rates of sulfur dioxide residues in fresh vegetables, fresh fruits, dried vegetables and dried fruits were 11.1-95.9%, 12.6-92.3%, 70.3-80.0% and 26.0-100.0%, respectively; the mean concentrations of residues were 2.7-120.8, 3.8-35.7, 26.9-99.1 and 12.0-1120.4 mg kg -1 , respectively. The results indicated that fresh vegetables and dried products are critical products; the daily intakes (EDIs) for children were higher than others; the hazard indexes (HI) for four groups were 0.019-0.033, 0.001-0.005, 0.007-0.016 and 0.002-0.005 at P50, respectively. But the HI was more than 1 at P99 by intake dried fruits and vegetables. Although the risk for consumers was acceptable on the whole, children were the most vulnerable group. Uncertainty and sensitivity analyses indicated that the level of sulfur dioxide residues was the most influential variable in this model. Thus, continuous monitoring and stricter regulation of sulfites using are recommended in China.

  19. The monitoring and control of TRUEX processes

    International Nuclear Information System (INIS)

    Regalbuto, M.C.; Misra, B.; Chamberlain, D.B.; Leonard, R.A.; Vandegrift, G.F.

    1992-04-01

    The Generic TRUEX Model (GTM) was used to design a flowsheet for the TRUEX solvent extraction process that would be used to determine its instrumentation and control requirements. Sensitivity analyses of the key process variables, namely, the aqueous and organic flow rates, feed compositions, and the number of contactor stages, were carried out to assess their impact on the operation of the TRUEX process. Results of these analyses provide a basis for the selection of an instrument and control system and the eventual implementation of a control algorithm. Volume Two of this report is an evaluation of the instruments available for measuring many of the physical parameters. Equations that model the dynamic behavior of the TRUEX process have been generated. These equations can be used to describe the transient or dynamic behavior of the process for a given flowsheet in accordance with the TRUEX model. Further work will be done with the dynamic model to determine how and how quickly the system responds to various perturbations. The use of perturbation analysis early in the design stage will lead to a robust flowsheet, namely, one that will meet all process goals and allow for wide control bounds. The process time delay, that is, the speed with which the system reaches a new steady state, is an important parameter in monitoring and controlling a process. In the future, instrument selection and point-of-variable measurement, now done using the steady-state results reported here, will be reviewed and modified as necessary based on this dynamic method of analysis

  20. Monitoring control program as a tool for regulatory control

    International Nuclear Information System (INIS)

    Silva Peres, Sueli da; Lauria, Dejanaira C.; Martins, Nadia S.F.; Rio, Monica A.P.

    2008-01-01

    Full text: The Institute of Radiation Protection and Dosimetry (IRD) of the Brazilian Commission of Nuclear Energy (CNEN) is responsible for developing, establishing and carrying out an independent assessment to verify the adequacy, effectiveness and accuracy of environmental radiological control carried out by licensed and controlled facilities. This independent assessment is performed by Environmental Monitoring Control Program (MCP). The MCP is a regulatory control and its main goal is to provide public and environment with an appropriate protection level against harmful effects of ionising radiation. The main purpose of the MCP is to verify whether applicable requirements prescribed by legislation are met, the environmental radiological control of the facilities are adequate and effective and the facilities are able to generate valid measuring results. The MCP is carried out in order to evaluate the quality of environmental radiation monitoring programs (EMP) and the effectiveness of their implementation, sampling conditions in the field, changes of environmental aspects in the impact area, adequacy of and adherence to procedures established and other applicable documents, technical competence of the staff and the necessary resources to ensure the required quality of the EMP. The MCP has been performed by activities should include inspecting and auditing of several types of nuclear and radioactive facilities. The inspection programme include the joint sampling program (CCP). The aim of the CCP is to check data of environmental monitoring of operator. The MCP was implemented in 1994. Ever since several problems related to the environmental control performed by operator was identified. The most important of them include problems related to the preparation and analysis of environmental samples, training of personnel, necessary resources, adherence of procedures to the purpose of the monitoring, fulfillment of procedures established, adequacy of the EMP and EMP

  1. Testing ZigBee Motes for Monitoring Refrigerated Vegetable Transportation under Real Conditions

    Directory of Open Access Journals (Sweden)

    Luis Ruiz-Garcia

    2010-05-01

    Full Text Available Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous ‘cold chain’ from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments.

  2. Methodology for bioremediation monitoring of oil wastes contaminated soils by using vegetal bio indicators; Metodologia para monitoramento de biorremediacao de solos contaminados com residuos oleosos com bioindicadores vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento Neto, Durval; Carvalho, Francisco Jose Pereira de Campos [Parana Univ., Curitiba, PR (Brazil). Curso de Pos-Graduacao em Ciencia do Solo]. E-mail: fjcampos@cce.ufpr.br

    1998-07-01

    This work studies the development of a methodology for the evaluation of the bioremediation status of oil waste contaminated soils, by using vegetal bioindicators for the bioremediation process monitoring, and evaluation of the environmental impacts on the contaminated areas.

  3. Monitoring riparian-vegetation composition and cover along the Colorado River downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.; Johnson, Taylor C.

    2018-06-05

    Vegetation in the riparian zone (the area immediately adjacent to streams, such as stream banks) along the Colorado River downstream of Glen Canyon Dam, Arizona, supports many ecosystem and societal functions. In both Glen Canyon and Grand Canyon, this ecosystem has changed over time in response to flow alterations, invasive species, and recreational use. Riparian-vegetation cover and composition are likely to continue to change as these pressures persist and new ones emerge. Because this system is a valuable resource that is known to change in response to flow regime and other disturbances, a long-term monitoring protocol has been designed with three primary objectives:Annually measure and summarize the status (composition and cover) of native and non-native vascular-plant species within the riparian zone of the Colorado River between Glen Canyon Dam and Lake Mead.At 5-year intervals, assess change in vegetation composition and cover in the riparian zone, as related to geomorphic setting and dam operations, particularly flow regime.Collect data in a manner that can be used by multiple stakeholders, particularly the basinwide monitoring program overseen by the National Park Service’s Northern Colorado Plateau Network Inventory and Monitoring program.A protocol for the long-term monitoring of riparian vegetation is described in detail and standard operating procedures are included herein for all tasks. Visual estimates of foliar and ground covers are collected in conjunction with environmental measurements to assess correlations of foliar cover with abiotic and flow variables. Sample quadrats are stratified by frequency of inundation, geomorphic feature, and by river segment to account for differences in vegetation type. Photographs of sites are also taken to illustrate qualitative characteristics of the site at the time of sampling. Procedures for field preparation, generating random samples, data collection, data management, collecting and managing unknown

  4. Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites.

    Science.gov (United States)

    González, Eduardo; Sher, Anna A; Anderson, Robert M; Bay, Robin F; Bean, Daniel W; Bissonnete, Gabriel J; Bourgeois, Bérenger; Cooper, David J; Dohrenwend, Kara; Eichhorst, Kim D; El Waer, Hisham; Kennard, Deborah K; Harms-Weissinger, Rebecca; Henry, Annie L; Makarick, Lori J; Ostoja, Steven M; Reynolds, Lindsay V; Robinson, W Wright; Shafroth, Patrick B

    2017-09-01

    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species. © 2017 by the

  5. Elevation Control on Vegetation Organization in a Semiarid Ecosystem in Central New Mexico

    Science.gov (United States)

    Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.

    2015-12-01

    Many semiarid and desert ecosystems are characterized by patchy and dynamic vegetation. Topography plays a commanding role on vegetation patterns. It is observed that plant biomes and biodiversity vary systematically with slope and aspect, from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations. In this study, we investigate the role of elevation dependent climatology on vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. An ecohydrologic cellular automaton model developed within Landlab (component based modeling framework) is used. The model couples local vegetation dynamics (that simulate biomass production based on local soil moisture and potential evapotranspiration) and plant establishment and mortality based on competition for resources and space. This model is driven by elevation dependent rainfall pulses and solar radiation. The domain is initialized with randomly assigned plant types and the model parameters that couple plant response with soil moisture are systematically changed. Climate perturbation experiments are conducted to examine spatial vegetation organization and associated timescales. Model results reproduce elevation and aspect controls on observed vegetation patterns indicating that this model captures necessary and sufficient conditions that explain these observed ecohydrological patterns.

  6. Efficacy of household washing treatments for the control of Listeria monocytogenes on salad vegetables.

    Science.gov (United States)

    Nastou, Aikaterini; Rhoades, Jonathan; Smirniotis, Petros; Makri, Ioanna; Kontominas, Michael; Likotrafiti, Eleni

    2012-10-15

    The efficacy of household decontamination methods at reducing Listeria monocytogenes on fresh lettuce (Lactuca sativa), cucumber (Cucumis sativus) and parsley (Petroselinum sativum) was studied. Inoculated vegetable pieces were immersed in washing solutions and surviving L. monocytogenes enumerated. Parameters investigated were storage temperature prior to washing, dipping water temperature, agitation, acetic acid concentration and immersion time. The results indicated that the storage temperature significantly affects the efficacy of dipping vegetables in water for the control of L. monocytogenes, as the reduction in count was greatest when products had been stored at cooler temperatures. Decontamination with acetic acid (up to 2.0% v/v) was shown to have some effect in most cases, but the highest observed decrease in count was 2.6 log cfu/g. Experiments investigating the effect of exposure time to acetic acid (0.5% and 1.0% v/v, up to 30 min immersion) indicated that immersing the vegetables for more than 10 min is of minimal benefit. The most significant factor affecting washing and decontamination efficacy was the vegetable itself: L. monocytogenes colonizing cucumber epidermis was far more resistant to removal by washing and to acid treatment than that on the leafy vegetables, and L. monocytogenes on parsley was the most susceptible. This shows that published decontamination experiments (often performed with lettuce) cannot necessarily be extrapolated to other vegetables. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Satellite Monitoring of Vegetation Response to Precipitation and Dust Storm Outbreaks in Gobi Desert Regions

    Directory of Open Access Journals (Sweden)

    Yuki Sofue

    2018-02-01

    Full Text Available Recently, droughts have become widespread in the Northern Hemisphere, including in Mongolia. The ground surface condition, particularly vegetation coverage, affects the occurrence of dust storms. The main sources of dust storms in the Asian region are the Taklimakan and Mongolian Gobi desert regions. In these regions, precipitation is one of the most important factors for growth of plants especially in arid and semi-arid land. The purpose of this study is to clarify the relationship between precipitation and vegetation cover dynamics over 29 years in the Gobi region. We compared the patterns between precipitation and Normalized Difference Vegetation Index (NDVI for a period of 29 years. The precipitation and vegetation datasets were examined to investigate the trends during 1985–2013. Cross correlation analysis between the precipitation and the NDVI anomalies was performed. Data analysis showed that the variations of NDVI anomalies in the east region correspond well with the precipitation anomalies during this period. However, in the southwest region of the Gobi region, the NDVI had decreased regardless of the precipitation amount, especially since 2010. This result showed that vegetation in this region was more degraded than in the other areas.

  8. Quality control of thermoluminesce personal dose monitoring

    International Nuclear Information System (INIS)

    Shang Aiguo; He Wenchang; Zhao Fengtao

    2006-01-01

    In order to evaluate the influence factor to thermoluminesce personal dose monitoring result, the every question that can appear based on the fact was analyzed. The results show that the detector, annealing, measuring process can influence the monitoring result. It gives some measures to enhance monitoring quality. (authors)

  9. Fruit and vegetable intake and pre-diabetes: a case-control study.

    Science.gov (United States)

    Safabakhsh, Maryam; Koohdani, Fariba; Bagheri, Fariba; Siassi, Fereydoun; Khajehnasiri, Farahnaz; Sotoudeh, Gity

    2017-12-04

    Few studies have evaluated the association of fruit and vegetable (FV) intake and pre-diabetes. However, these studies are very limited and incomplete. Therefore, the aim of our study was to compare FV consumption and their subgroups between pre-diabetic and control subjects. This case-control study included 300 individuals, 150 subjects with normal fasting blood glucose (FBG), and 150 pre-diabetic subjects who were matched for sex and age. We collected the participants' anthropometric and physical activity data and measured their blood glucose level. A 168 items semi-quantitative food frequency questionnaire (FFQ) was used for estimating the FV intake. After adjustment for confounding variables, participants in the lower quartiles of FV and total fruit intake were more likely to experience pre-diabetes compared with those in the higher quartiles (p trend < 0.007). In addition, cruciferous vegetables, other vegetables, and berries were inversely associated with pre-diabetes (p < 0.05), although a distinct dose-response relationship was not found. Unexpectedly, higher intake of dark yellow vegetables was significantly associated with a higher chance of pre-diabetes (p trend = 0.006). Other vegetable and fruit subgroups did not show any significant relationship with this disorder. Our findings suggest that higher intake of total FV and total fruits might be associated with lower odds ratio of pre-diabetes.

  10. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    Science.gov (United States)

    Hess, Laura Lorraine

    The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the

  11. Monitoring Corals and Submerged Aquatic Vegetation in Western Pacific Using Satellite Remote Sensing Integrated with Field Data

    Science.gov (United States)

    Roelfsema, C. M.; Phinn, S. R.; Lyons, M. B.; Kovacs, E.; Saunders, M. I.; Leon, J. X.

    2013-12-01

    Corals and Submerged Aquatic Vegetation (SAV) are typically found in highly dynamic environments where the magnitude and types of physical and biological processes controlling their distribution, diversity and function changes dramatically. Recent advances in the types of satellite image data and the length of their archives that are available globally, coupled with new techniques for extracting environmental information from these data sets has enabled significant advances to be made in our ability to map and monitor coral and SAV environments. Object Based Image Analysis techniques are one of the most significant advances in information extraction techniques for processing images to deliver environmental information at multiple spatial scales. This poster demonstrates OBIA applied to high spatial resolution satellite image data to map and monitor coral and SAV communities across a variety of environments in the Western Pacific that vary in their extent, biological composition, forcing physical factors and location. High spatial resolution satellite imagery (Quickbird, Ikonos and Worldview2) were acquired coincident with field surveys on each reef to collect georeferenced benthic photo transects, over various areas in the Western Pacific. Base line maps were created, from Roviana Lagoon Solomon island (600 km2), Bikini Atoll Marshall Island (800 Km2), Lizard Island, Australia (30 km2) and time series maps for geomorphic and benthic communities were collected for Heron Reef, Australia (24 km2) and Eastern Banks area of Moreton Bay, Australia (200 km2). The satellite image data were corrected for radiometric and atmospheric distortions to at-surface reflectance. Georeferenced benthic photos were acquired by divers or Autonomous Underwater Vehicles, analysed for benthic cover composition, and used for calibration and validation purposes. Hierarchical mapping from: reef/non-reef (1000's - 10000's m); reef type (100's - 1000's m); 'geomorphic zone' (10's - 100's m); to

  12. Vegetation monitoring on semi-arid grasslands unglazed by domestic livestock

    Science.gov (United States)

    Linda Kennedy; Dan Robinett

    2013-01-01

    The Research Ranch is an 8000-acre sanctuary and research facility in the semi-arid grasslands of southeastern Arizona, USA. Cattle were removed from the property in 1968 to provide a reference area by which various land uses, such as grazing and exurbanization, could be evaluated. Vegetation transects were established in 2000 and 2003 on several ecological sites in...

  13. Preparing Landsat Image Time Series (LITS for Monitoring Changes in Vegetation Phenology in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Santosh Bhandari

    2012-06-01

    Full Text Available Time series of images are required to extract and separate information on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term trends. While images from the Landsat Thematic Mapper (TM sensor have the spatial and spectral characteristics suited for mapping a range of vegetation structural and compositional properties, its 16-day revisit period combined with cloud cover problems and seasonally limited latitudinal range, limit the availability of images at intervals and durations suitable for time series analysis of vegetation in many parts of the world. Landsat Image Time Series (LITS is defined here as a sequence of Landsat TM images with observations from every 16 days for a five-year period, commencing on July 2003, for a Eucalyptus woodland area in Queensland, Australia. Synthetic Landsat TM images were created using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM algorithm for all dates when images were either unavailable or too cloudy. This was done using cloud-free scenes and a MODIS Nadir BRDF Adjusted Reflectance (NBAR product. The ability of the LITS to measure attributes of vegetation phenology was examined by: (1 assessing the accuracy of predicted image-derived Foliage Projective Cover (FPC estimates using ground-measured values; and (2 comparing the LITS-generated normalized difference vegetation index (NDVI and MODIS NDVI (MOD13Q1 time series. The predicted image-derived FPC products (value ranges from 0 to 100% had an RMSE of 5.6. Comparison between vegetation phenology parameters estimated from LITS-generated NDVI and MODIS NDVI showed no significant difference in trend and less than 16 days (equal to the composite period of the MODIS data used difference in key seasonal parameters, including start and end of season in most of the cases. In comparison to similar published work, this paper tested the STARFM algorithm in a new (broadleaf forest environment and also

  14. Chemical control of vegetation on urban sites: agronomic and ecotoxicological aspects

    International Nuclear Information System (INIS)

    Zanin, G.; Otto, S.

    1996-01-01

    The problem of the chemical control of spontaneous vegetation on urban sites is tackled. A method is presented to identify the best herbicides under both the agronomic and ecotoxicological aspects. Selection of the herbicides from the agronomic point of view is on the basis of the qualitative characteristics of the vegetation (life-form types periodicity types botanical composition), surveyed at 5 different times on the year while selection from the environmental viewpoint is based on an evaluation integrated with a series of ecotoxicological indices. The best solution was tested in a pilot area and the contamination of the water compartment evaluated both on entering and leaving the water treatment works

  15. The 2005 and 2012 major drought events in Iberia: monitoring vegetation dynamics and crop yields using satellite data.

    Science.gov (United States)

    Gouveia, Célia M.; Trigo, Ricardo M.

    2014-05-01

    The Iberian Peninsula is recurrently affected by drought episodes and therefore by the adverse effects associated that range from severe water shortages to economic losses and related social impacts. During the hydrological years of 2004/2005 and 2011/2012, Iberia was hit by two of the worst drought episodes ever recording in this semi-arid region (Garcia-Herrera at al., 2007; Trigo et al., 2013). These two drought episodes were extreme in both its magnitude and spatial extent. A tendency towards a drier Mediterranean for the period 1970-2010 in comparison with 1901-70 has been identified (Hoerling et al., 2012), reinforcing the need for a continuous monitoring of vegetation stress and reliable estimates of the drought impacts. The strong effect of water scarcity on vegetation dynamics is well documented in Mediterranean and other semi-arid regions. Despite the usual link established between the decrease of vegetation greenness and the lack of precipitation during a considerably long period, the impact on vegetation activity may be amplified by other climatic anomalies, such as high temperature, high wind, and low relative humidity. The recent availability of consistent satellite imagery covering large regions over long periods of time has progressively reinforced the role of remote sensing in environmental studies, in particular in those related to drought episodes (e.g. Gouveia et al., 2009). The aim of the present work is to assess and monitor the cumulative impact over time of drought conditions on vegetation over Iberian Peninsula. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2013. The entire 15-yr long period was analysed, but particular attention was devoted to the two extreme drought episodes of 2004-2005 and 2011-2012. During the hydrological years of 2004-2005 and 2011-2012 drought episodes negative anomalies of NDVI were observed over

  16. The role of vegetation dynamics in the control of atmospheric CO{sub 2} content

    Energy Technology Data Exchange (ETDEWEB)

    Sitch, Stephen

    2000-04-01

    This thesis contains a description of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) and its application to infer the role of vegetation dynamics on atmospheric CO{sub 2} content at different time-scales. The model combines vegetation dynamics and biogeochemistry in a modular framework. Individual modules describe ecosystems processes, including vegetation resource competition and production, tissue turnover, growth, fire and mortality, soil and litter biogeochemistry, including the effects of CO{sub 2} on these processes. The model simulates realistic post-disturbance succession in different environments. Seasonal exchange of H{sub 2}O and CO{sub 2} between the terrestrial biosphere and the atmosphere is modelled in reasonable agreement with observation. Global estimates of carbon stocks in soil, litter and vegetation are within their acceptable ranges and the model captures the present-day patterns in vegetation. Fire return intervals are simulated correctly in most regions. Results emphasise the important role of the terrestrial biosphere in both the seasonal cycle and in the inter-annual variability in the growth rate of atmospheric CO{sub 2}. LPJ successfully reproduced both the amplitude and phase of the seasonal cycle of atmospheric CO{sub 2} content as measured at a global network of monitoring stations. The model predicted a small net terrestrial biosphere uptake of CO{sub 2} during the 1980s with a strong CO{sub 2} fertilisation effect, which enhances plant production, reduced by the effects of climate and land use change. Historical land use change and CO{sub 2} fertilisation have been the dominant, albeit opposing factors governing the response of the terrestrial biosphere with respect to carbon storage during the 20th century. LPJ is run using one future climate and atmospheric CO{sub 2} scenario until 2200. Enhanced production due to the CO{sub 2} fertilisation effect eventually reaches an asymptote, and consequently the ability of

  17. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  18. Final environmental assessment for vegetation control at VHF stations, microwave stations, electrical substations, and pole yards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-13

    Southwestern Power Adm. operates very high frequency (VHF) and microwave radio stations, electrical substations, and pole yards for electric power transmission throughout AR, MO, and OK. Vegetation growth at the stations must be suppressed for safety of operation and personnel. Southwestern has been using a combination of mechanical/manual and herbicide control for this purpose; Federally- mandated reductions in staff and budgetary resources require Southwestern to evaluate all potentially efficient methods for vegetation control. Three alternatives were examined: no action, mechanical/manual control, and (proposed) a combination of mechanical/manual and herbicide control. Environmental impacts on air and water quality, wetlands, wildlife, endangered species, archaeological and other resources, farmland, human health, transportation, etc. were evaluated.

  19. Sequential probability ratio controllers for safeguards radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.L.; Nixon, K.V.

    1984-01-01

    Sequential hypothesis tests applied to nuclear safeguards accounting methods make the methods more sensitive to detecting diversion. The sequential tests also improve transient signal detection in safeguards radiation monitors. This paper describes three microprocessor control units with sequential probability-ratio tests for detecting transient increases in radiation intensity. The control units are designed for three specific applications: low-intensity monitoring with Poisson probability ratios, higher intensity gamma-ray monitoring where fixed counting intervals are shortened by sequential testing, and monitoring moving traffic where the sequential technique responds to variable-duration signals. The fixed-interval controller shortens a customary 50-s monitoring time to an average of 18 s, making the monitoring delay less bothersome. The controller for monitoring moving vehicles benefits from the sequential technique by maintaining more than half its sensitivity when the normal passage speed doubles

  20. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  1. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  2. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    Science.gov (United States)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  3. A monitoring protocol for vegetation change on Irish peatland and heath

    Science.gov (United States)

    O'Connell, J.; Connolly, J.; Holden, N. M.

    2014-09-01

    Amendments to Articles 3.3 and 3.4 of the Kyoto Protocol have meant that detection of vegetation change may now form an interracial part of national soil carbon stocks. In this study multispectral multi-platform satellite data was processed to detect change to the surface vegetation of four peatland sites and one heath in Ireland. Spectral and spatial thresholds were used on difference images between master and slave data in the extraction of temporally invariant targets for multi-platform cross calibration. The Kolmogorov-Smirnov test was used to evaluate any difference in the cumulative probability distributions of the master, slave and calibrated slave data as expressed by the D statistic, with values reduced by an average of 89.7% due to the cross calibration procedure. A change detection model was created which incorporated a spatial threshold of 9 pixels and a standard deviation (SD) spectral threshold. Kappa accuracy values for the five sites ranged from 80 to 97%, showing that 1.5 SD was the optimum spectral threshold for detecting vegetation change. Change detection results showed mean percentage change ranging from 2.11 to 3.28% of total area and cumulative change over the observed time period of between 15.24 and 49.27% of total area.

  4. Electronic Performance Monitoring: An Organizational Justice and Concertive Control Perspective.

    Science.gov (United States)

    Alder, G. Stoney; Tompkins, Phillip K.

    1997-01-01

    Applies theories of organizational justice/concertive control to account for contradictions inherent in electronic monitoring of workers by organizations. Argues that results are usually positive when workers are involved in the design and implementation of monitoring systems, and monitoring is restricted to performance-related activities with…

  5. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp.

    Science.gov (United States)

    Federico, Baruzzi; Pinto, Loris; Quintieri, Laura; Carito, Antonia; Calabrese, Nicola; Caputo, Leonardo

    2015-12-23

    The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.

  6. Controls of vegetation structure and net primary production in restored grasslands

    Science.gov (United States)

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  7. Radiological monitoring. Controlling surface water pollution

    International Nuclear Information System (INIS)

    Morin, Maxime

    2018-01-01

    Throughout France, surface waters (from rivers to brooks) located at the vicinity of nuclear or industrial sites, are subject to regular radiological monitoring. An example is given with the radiological monitoring of a small river near La Hague Areva's plant, where contaminations have been detected with the help of the French IRSN nuclear safety research organization. The sampling method and various measurement types are described

  8. Timing and control monitor system upgrade design document. Version 4

    International Nuclear Information System (INIS)

    Brandt, J.J.

    1984-01-01

    This is a design document for the Timing and Control Monitor System Upgrade Project. This project is intended to provide a replacement system for the existing user Encoder Monitor Systems and Varian 72 Control Room computer systems. All of these systems reside at the Nevada Test Site. The function of the T and C Monitor System is to gather real-time statistics and data on user defined key variables from control, communication, data acquistion systems, and from the monitoring system itself. The control, communication, and data acquisition systems each operate separately from the monitor system. The T and C Monitor System gathers this data in order to verify the readiness of an event to begin countdown. This includes setup, verification, calibration, and peripheral services, report any failures that may occur during the countdown, verify detonation and containment, and assist reentry activities after the event

  9. Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results

    Science.gov (United States)

    Tadesse, Tsegaye; Champagne, Catherine; Wardlow, Brian D.; Hadwen, Trevor A.; Brown, Jesslyn; Demisse, Getachew B.; Bayissa, Yared A.; Davidson, Andrew M.

    2017-01-01

    Drought is a natural climatic phenomenon that occurs throughout the world and impacts many sectors of society. To help decision-makers reduce the impacts of drought, it is important to improve monitoring tools that provide relevant and timely information in support of drought mitigation decisions. Given that drought is a complex natural hazard that manifests in different forms, monitoring can be improved by integrating various types of information (e.g., remote sensing and climate) that is timely and region specific to identify where and when droughts are occurring. The Vegetation Drought Response Index for Canada (VegDRI-Canada) is a recently developed drought monitoring tool for Canada. VegDRI-Canada extends the initial VegDRI concept developed for the conterminous United States to a broader transnational coverage across North America. VegDRI-Canada models are similar to those developed for the United States, integrating satellite observations of vegetation status, climate data, and biophysical information on land use and land cover, soil characteristics, and other environmental factors. Collectively, these different types of data are integrated into the hybrid VegDRI-Canada to isolate the effects of drought on vegetation. Twenty-three weekly VegDRI-Canada models were built for the growing season (April–September) through the weekly analysis of these data using a regression tree-based data mining approach. A 15-year time series of VegDRI-Canada results (s to 2014) was produced using these models and the output was validated by randomly selecting 20% of the historical data, as well as holdout year (15% unseen data) across the growing season that the Pearson’s correlation ranged from 0.6 to 0.77. A case study was also conducted to evaluate the VegDRI-Canada results over the prairie region of Canada for two drought years and one non-drought year for three weekly periods of the growing season (i.e., early-, mid-, and late season). The comparison of the Veg

  10. Effluent controls and environmental monitoring programs for uranium milling operations

    International Nuclear Information System (INIS)

    Maixner, R.D.

    1979-01-01

    Controls will reduce gaseous, particulate, and liquid discharges. Monitoring programs are used to determine effectiveness. The controls and programs discussed are used at Cotter Corporation's Canon City Mill in Colorado. 3 refs

  11. Monitoring, control and protection of interconnected power systems

    CERN Document Server

    Häger, Ulf; Voropai, Nikolai

    2014-01-01

    This book presents new tools and methods for monitoring, control and protection of large scale power systems, adapting Smart Grid technologies based on wide area data exchange in combination with modern measurement devices and advanced network controllers.

  12. Double Shell Tank (DST) Monitor and Control Subsystem Definition Report

    International Nuclear Information System (INIS)

    BAFUS, R.R.

    2000-01-01

    The system description of the Double-Shell Tank (DST) Monitor and Control Subsystem establishes the system boundaries and describes the interface of the DST Monitor and Control Subsystem with new and existing systems that are required to accomplish the Waste Feed Delivery (WFD) mission

  13. Blood glucose control and monitoring in the critically ill

    NARCIS (Netherlands)

    van Hooijdonk, R.T.M.

    2015-01-01

    This thesis deals with blood glucose control and blood glucose monitoring in intensive care unit (ICU) patients: two important aspects of care for and monitoring of critically ill patients. While the precise targets of blood glucose control in ICU patients remain a matter of debate, currently many,

  14. Internal control in the company in order to financial monitoring

    Directory of Open Access Journals (Sweden)

    Osipov A.V.

    2017-04-01

    Full Text Available the article explores the definition of financial monitoring, financial analysis and internal control in aspect to their correlation to fight money laundering and terrorism financing. Internal control is analyzed from the point of view of law, economics and management. The author pays much attention in the article to the work of systems of financial monitoring in organizations.

  15. Native Roadside Vegetation that Enhances Soil Erosion Control in Boreal Scandinavia

    Directory of Open Access Journals (Sweden)

    Annika K. Jägerbrand

    2014-07-01

    Full Text Available This study focused on identifying vegetation characteristics associated with erosion control at nine roadside sites in mid-West Sweden. A number of vegetation characteristics such as cover, diversity, plant functional type, biomass and plant community structure were included. Significant difference in cover between eroded and non-eroded sub-sites was found in evergreen shrubs, total cover, and total above ground biomass. Thus, our results support the use of shrubs in order to stabilize vegetation and minimize erosion along roadsides. However, shrubs are disfavored by several natural and human imposed factors. This could have several impacts on the long-term management of roadsides in boreal regions. By both choosing and applying active management that supports native evergreen shrubs in boreal regions, several positive effects could be achieved along roadsides, such as lower erosion rate and secured long-term vegetation cover. This could also lead to lower costs for roadside maintenance as lower erosion rates would require less frequent stabilizing treatments and mowing could be kept to a minimum in order not to disfavor shrubs.

  16. Monitoring responses of Mason Pine to acid rain in China based on remote sensing vegetation index

    International Nuclear Information System (INIS)

    Jin, Jiaxin; Jiang, Hong; Zhang, Xiuying; Wang, Ying; Hou, Chunliang

    2014-01-01

    Since the 1970s, acid rain has remained in the public spotlight in both Europe and the United States and recently has emerged as an important problem in other regions such as Southeast Asia. To reveal responses of Masson Pine to acid rain during a long time series in central China, we used the interpolation dataset of acid rain and the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data to derive the monthly pH and NDVI trajectories based on acidity gradients from 1992 to 2006. Then we analyzed inter-annual and seasonal variation of vegetation growth by improved sinusoidal fitting and regression analysis. In the environment of strong acidity and moderate acidity, the growth of Masson Pine was inhibited during the study period, while the slight acidity promoted growth of Masson Pine to some extent. For the multi-year monthly changing trend of NDVI, late spring to mid autumn, the NDVI showed a decreasing trend, especially in June, while from late autumn to the following spring, the NDVI showed a rising tendency, specifically in December and March

  17. CDF run II run control and online monitor

    International Nuclear Information System (INIS)

    Arisawa, T.; Ikado, K.; Badgett, W.; Chlebana, F.; Maeshima, K.; McCrory, E.; Meyer, A.; Patrick, J.; Wenzel, H.; Stadie, H.; Wagner, W.; Veramendi, G.

    2001-01-01

    The authors discuss the CDF Run II Run Control and online event monitoring system. Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes. Run Control is a real-time multi-threaded application implemented in Java with flexible state machines, using JDBC database connections to configure clients, and including a user friendly and powerful graphical user interface. The CDF online event monitoring system consists of several parts: the event monitoring programs, the display to browse their results, the server program which communicates with the display via socket connections, the error receiver which displays error messages and communicates with Run Control, and the state manager which monitors the state of the monitor programs

  18. Safety monitoring in process and control

    International Nuclear Information System (INIS)

    Esparza, V. Jr.; Sebo, D.E.

    1984-01-01

    Safety Functions provide a method of ensuring the safe operation of any large-scale processing plant. Successful implementation of safety functions requires continuous monitoring of safety function values and trends. Because the volume of information handled by a plant operator occassionally can become overwhelming, attention may be diverted from the primary concern of maintaining plant safety. With this in mind EG and G, Idaho developed various methods and techniques for use in a computerized Safety Function Monitoring System and tested the application of these techniques using a simulated nuclear power plant, the Loss-of-Fluid Test Facility (LOFT) at the Idaho National Engineering Laboratory (INEL). This paper presents the methods used in the development of a Safety Function Monitoring System

  19. A randomised controlled trial of a theory of planned behaviour to increase fruit and vegetable consumption. Fresh Facts.

    Science.gov (United States)

    Kothe, Emily J; Mullan, Barbara A

    2014-07-01

    Young adults are less likely than other adults to consume fruit and vegetables. Fresh Facts is a theory of planned behaviour based intervention designed to promote fruit and vegetable consumption. The present study sought to evaluate Fresh Facts using a randomised controlled trial. Australian young adults (n = 162) were allocated to the Fresh Facts intervention or to the control group in 2011. Intervention participants received automated email messages promoting fruit and vegetable consumption every 3 days over the course of the 1 month intervention. Messages targeted attitude, subjective norm, and perceived behavioural control. Theory of planned behaviour variables and fruit and vegetable intake were measured at baseline and post-intervention (Day 30). Significant increases in attitude and subjective norm relative to control were found among Fresh Facts participants. However, intention, perceived behavioural control and fruit and vegetable consumption did not change as a result of the intervention. Changes in intention reported by each participant between baseline and follow-up were not correlated with corresponding changes in fruit and vegetable consumption. Fresh Facts was not successful in increasing fruit and vegetable consumption. Current evidence does not support the use of the theory of planned behaviour in the design of interventions to increase fruit and vegetable intake in this population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The shifting nature of vegetation controls on peak snowpack with varying slope and aspect

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.

    2012-12-01

    The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.

  1. Monitoring with new microprocessor cuts cost of control system

    Energy Technology Data Exchange (ETDEWEB)

    Maehling, K L

    1985-08-01

    Programmable logic controllers (PLC) were originally developed as an alternative to relays, counters and timers for sequential and interlock control systems. They are now also used as part of distributive control systems which include diagnostic monitoring functions. The paper describes how a wiring scheme can be simplified and installation costs reduced by incorporating a newly-developed microprocessor-based monitoring device as an interface between remote devices and a PLC. An industrial application, the 400 tph coal handling facility at Bowater Southern Paper Co's mill in Calhoun, Tennessee, is considered. The control system design is outlined, the micro-monitor is described and the benefits of simplicity are stated in the paper.

  2. Intelligent Belt Conveyor Monitoring and Control

    NARCIS (Netherlands)

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack

  3. Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study

    Directory of Open Access Journals (Sweden)

    Zhang Yuesheng

    2010-04-01

    Full Text Available Abstract Background Inverse associations between cruciferous vegetable intake and lung cancer risk have been consistently reported. However, associations within smoking status subgroups have not been consistently addressed. Methods We conducted a hospital-based case-control study with lung cancer cases and controls matched on smoking status, and further adjusted for smoking status, duration, and intensity in the multivariate models. A total of 948 cases and 1743 controls were included in the analysis. Results Inverse linear trends were observed between intake of fruits, total vegetables, and cruciferous vegetables and risk of lung cancer (ORs ranged from 0.53-0.70, with P for trend Conclusions Our findings are consistent with the smoking-related carcinogen-modulating effect of isothiocyanates, a group of phytochemicals uniquely present in cruciferous vegetables. Our data support consumption of a diet rich in cruciferous vegetables may reduce the risk of lung cancer among smokers.

  4. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    Science.gov (United States)

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when

  5. Prediction of fruit and vegetable intake from biomarkers using individual participant data of diet-controlled intervention studies

    DEFF Research Database (Denmark)

    Souverein, Olga W; de Vries, Jeanne H M; Freese, Riitta

    2015-01-01

    concentrations. Furthermore, a prediction model of fruit and vegetable intake based on these biomarkers and subject characteristics (i.e. age, sex, BMI and smoking status) was established. Data from twelve diet-controlled intervention studies were obtained to develop a prediction model for fruit and vegetable...

  6. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation

    NARCIS (Netherlands)

    Barth, Ruud; Hemming, Jochen; Henten, van E.J.

    2016-01-01

    A modular software framework design that allows flexible implementation of eye-in-hand sensing and motion control for agricultural robotics in dense vegetation is reported. Harvesting robots in cultivars with dense vegetation require multiple viewpoints and on-line trajectory adjustments in order

  7. Mathematical models and lymphatic filariasis control: monitoring and evaluating interventions.

    Science.gov (United States)

    Michael, Edwin; Malecela-Lazaro, Mwele N; Maegga, Bertha T A; Fischer, Peter; Kazura, James W

    2006-11-01

    Monitoring and evaluation are crucially important to the scientific management of any mass parasite control programme. Monitoring enables the effectiveness of implemented actions to be assessed and necessary adaptations to be identified; it also determines when management objectives are achieved. Parasite transmission models can provide a scientific template for informing the optimal design of such monitoring programmes. Here, we illustrate the usefulness of using a model-based approach for monitoring and evaluating anti-parasite interventions and discuss issues that need addressing. We focus on the use of such an approach for the control and/or elimination of the vector-borne parasitic disease, lymphatic filariasis.

  8. Monitoring drought impact on Mediterranean oak savanna vegetation using remote sensing

    Science.gov (United States)

    González-Dugo, Maria P.; Carpintero, Elisabet; Andreu, Ana

    2015-04-01

    A holm oak savanna, known as dehesa in Spain and montado in Portugal, is the largest agroforest ecosystem in Europe, covering about 3 million hectares in the Iberian Peninsula and Greece (Papanastasis et al., 2004). It is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural development and economy (Plieninger et al., 2001). It is a combination between an agricultural and a naturally vegetated ecosystem, consisting of widely-spaced oak trees (mostly Quercus Ilex and Quercus suber) combined with a sub-canopy composed by crops, annual grassland and/or shrubs. It has a Mediterranean climate with severe periodic droughts. In the last decades, this system is being exposed to multiple threats derived from socio-economic changes and intensive agricultural use, which have caused environmental degradation, including tree decline, changes in soil properties and hydrological processes, and an increase of soil erosion (Coelho et al., 2004). Soil water dynamics plays a central role in the current decline and reduction of forested areas that jeopardizes the preservation of the system. In this work, a series of remotely sensed images since 1990 to present was used to evaluate the effect of several drought events occurred in the study area (1995, 2009, 2010/2011) on the tree density and water status. Data from satellites Landsat and field measurements have been combined in a spectral mixture model to assess separately the evolution of tree, dry grass and bare soil ground coverage. Only summer images have been used to avoid the influence of the green herbaceous layer on the analysis. Thermal data from the same sensors and meteorological information are integrated in a two source surface energy balance model to compute the Evaporative Stress Index (ESI) and evaluate the vegetation water status. The results have provided insights about the severity of each event and the spatial distribution of

  9. Monitoring of nitrites and nitrates levels in leafy vegetables (spinach and lettuce): a contribution to risk assessment.

    Science.gov (United States)

    Iammarino, Marco; Di Taranto, Aurelia; Cristino, Marianna

    2014-03-15

    Nitrites and nitrates are compounds considered harmful to humans and the major part of the daily intake of nitrates in foodstuffs is related to vegetable consumption. In this work, 150 leafy vegetables samples (75 spinach and 75 lettuce) were analysed in order to assess the levels of nitrites and nitrates. The analyses were carried out by a validated ion chromatography method and the samples with nitrate concentrations higher than legal limits and/or with quantifiable concentrations of nitrites were confirmed by an alternative ion chromatography method. Nitrate levels higher than legal limits were detected both in spinach (four samples) and in lettuce (five samples). Nitrite residues were registered both at low concentrations--lower than 28.5 mg kg⁻¹ (12 spinach samples)--and at high concentrations, up to 197.5 mg kg⁻¹ (three spinach and one lettuce sample). Considering the non-negligible percentage of 'not-compliant' samples for nitrates (6.0%), control is needed. Moreover, it is possible to suggest the introduction in the Communities Regulations of a 'maximum admissible level' for nitrites in leafy vegetables. © 2013 Society of Chemical Industry.

  10. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2014-01-01

    Full Text Available The main purpose of this paper is to investigate multitemporal land surface temperature (LST changes by using satellite remote sensing data. The study included a real-time field work performed during the overpass of Landsat-5 satellite on 21/08/2011 over Salt Lake, Turkey. Normalized vegetation index (NDVI, vegetation condition index (VCI, and temperature vegetation index (TVX were used for evaluating drought impact over the region between 1984 and 2011. In the image processing step, geometric and radiometric correction procedures were conducted to make satellite remote sensing data comparable with in situ measurements carried out using thermal infrared thermometer supported by hand-held GPS. The results showed that real-time ground and satellite remote sensing data were in good agreement with correlation coefficient (R2 values of 0.90. The remotely sensed and treated satellite images and resulting thematic indices maps showed that dramatic land surface temperature changes occurred (about 2∘C in the Salt Lake Basin area during the 28-year period (1984–2011. Analysis of air temperature data also showed increases at a rate of 1.5–2∘C during the same period. Intensification of irrigated agriculture particularly in the southern basin was also detected. The use of water supplies, especially groundwater, should be controlled considering particularly summer drought impacts on the basin.

  11. Memory-type control charts for monitoring the process dispersion

    NARCIS (Netherlands)

    Abbas, N.; Riaz, M.; Does, R.J.M.M.

    2014-01-01

    Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past information in setting up the control structure. This makes CUSUM and

  12. Promoting fruit and vegetable consumption among students: a randomized controlled trial based on social cognitive theory.

    Science.gov (United States)

    Najimi, Arash; Ghaffari, Mohtasham

    2013-10-01

    To assess the effectiveness of an educational intervention based on social cognitive theory on increasing consumption of fruit and vegetable among Grade 4 students. The randomised study was conducted in Isfahan, Iran, during 2011 and comprised 138 students, who were randomly divided into intervention and control groups. Data was collected at the beginning and three months after the intervention. A self-administered questionnaire based on constructs of social cognitive theory and food consumption was used. Theory-based nutrition education was imparted on the intervention group. Data was analysed using SPSS 15 and appropriate statistical tests. The intervention group had 68 (49.27%) subjects, while there were 70 (50.72%) controls. After the intervention, mean scores of behavioural capability (p social support (p = 0.03), and observational learning (p = 0.002) had significantly improved in the intervention group. Nutritional behaviour also showed significant improvement on mean daily intake of fruits and vegetables in the intervention group (p social cognitive theory led to increase in the consumption of fruits and vegetables among students, which confirmed the efficiency of social cognitive theory for such interventions.

  13. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    Science.gov (United States)

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  14. Treatment of chronic portal--systemic encephalopathy with vegetable and animal protein diets. A controlled crossover study.

    Science.gov (United States)

    Uribe, M; Márquez, M A; Garcia Ramos, G; Ramos-Uribe, M H; Vargas, F; Villalobos, A; Ramos, C

    1982-12-01

    A controlled crossover clinical comparison of 40-g/day and 80-g/day vegetable protein diets vs a 40-g/day meat protein diet plus neomycin-milk of magnesia (as control therapy) was performed on 10 cirrhotic patients with mild chronic portal-systemic encephalopathy. The 40-g vegetable protein diet had a high fiber volume and contained low methionine and low aromatic amino acids. The 80-g vegetable protein diet was rich in branched-chain amino acids and fiber, with a similar content of sulfur-containing amino acids as compared to the 40-g meat protein diet. Serial semiquantitative assessments were done, including mental state, asterixis, number connection tests, electroencephalograms and blood ammonia levels. No patient developed deep coma while ingesting either vegetable protein diet or neomycin-milk of magnesia plus 40-g meat protein diet. A significant improvement in the number connection test times was observed during the 40-g vegetable protein diet (P less than 0.05) and during the 80-g vegetable protein diet (P less than 0.05) as compared to their previous 40-g meat protein--neomycin periods. In addition, during the period of 80-g vegetable protein diet, the patients showed a significant improvement in their electroencephalograms (P less than 0.05). The frequency of bowel movements significantly increased (P less than 0.05) during the 80-g vegetable protein diet period. During the 40-g vegetable protein diet, two cirrhotic--diabetic patients experienced hypoglycemia. Three patients complained of the voluminous 80-g vegetable protein diet. Patients with mild portal--systemic encephalopathy may be adequately controlled with vegetable protein diets as a single therapy.

  15. [Monitoring of contamination of foodstuffs with elements noxious to human health. Part I. Wheat cereal products, vegetable products, confectionery and products for infants and children (2004 year)].

    Science.gov (United States)

    Wojciechowska-Mazurek, Maria; Starska, Krystyna; Brulińska-Ostrowska, Elzbieta; Plewa, Monika; Biernat, Urszula; Karłowski, Kazimierz

    2008-01-01

    The testing of products of wheat cereal (310 samples), vegetable (418 samples), confectionery (439 samples) and 952 samples of products for infants and children has initiated the 5-years cycle of monitoring investigations on food contamination with elements noxious to human health planned to perform in 2004-2008. The parties involved in testing were: laboratories of State Sanitary Inspection collecting samples on all over the territory of Poland, both from retail market (of domestic origin as well as imported) and directly from producers; the national reference laboratory of the Department of Food and Consumer Articles Research of National Institute of Public Health - National Institute of Hygiene responsible for elaboration of official food control and monitoring plans to be approved by Chief Sanitary Inspectorate and for the substantive supervising of tests performance. The reported metals contents were not of health concern and generally below the levels set forth in food legislation. The health hazard assessment was performed taking into account the mean contamination obtained and average domestic consumption of these food products groups in Poland. The highest intake expressed as the percentage of provisional tolerable weekly intake (PTWI) was obtained for cadmium, which has reached 9.4% PTWI for cereal based products and 4.7% PTWI for vegetables. The cadmium content in chocolate and derived products due to contamination of cocoa beans and the levels of this element in products for infants and children originated from contamination of cereal and soybeans row materials should not be ignored. The decrease of lead contamination comparing to those reported in 1990 studies was observed.

  16. Lessons from five years of vegetation monitoring on the Nevada Test Site

    International Nuclear Information System (INIS)

    Hunter, R.B.

    1992-01-01

    In 1987 the US Department of Energy funded a formal, extensive monitoring program for the flora and fauna on the Nevada Test Site. The goal was to understand and record changes with time In the distribution and abundance of the plants and animals. The need to detect changes, rather than do a one-time characterization, required careful selection of parameters and the use of permanent plots to distinguish spatial from temporal variability. Repeated measurements of the same plots revealed errors and imprecision which required changes in training and data collection techniques. Interpretation of trends after several years suggested it will be important to monitor not only changes, but causes of change, such as soil moisture and herbivory. Finally, the requirement for records to be available over long periods of time poses problems of archiving and publication. This report consists of viewgraphs presenting the findings of the study

  17. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  18. MONITORING CANOPY AND AIR TEMPERATURE OF DOMINANT VEGETATION IN TROPICAL SEMI-ARID USING BIOCLIMATIC MODEL

    Directory of Open Access Journals (Sweden)

    Josiclêda Domiciano Galvíncio

    2016-10-01

    Full Text Available Typical vegetation of arid environments consist of few dominant species highly threatened by climate change. Jurema preta (Mimosa tenuiflora (Willd. Poiret is one of these successful species that now is dominant in extensive semiarid areas in the world. The development of a simple bioclimatic model using climate change scenarios based on optimistic and pessimistic predictions of the Intergovernmental Panel on Climate Change (IPCC shown as a simple tool to predict possible responses of dominant species under dry land conditions and low functional biodiversity. The simple bioclimatic model proved satisfactory in creating climate change scenarios and impacts on the canopy temperature of Jurema preta in semiarid Brazil. The bioclimatic model was efficient to obtain spatially relevant estimations of air temperature from determinations of the surface temperature using satellite images. The model determined that the average difference of 5oC between the air temperature and the leaf temperature for Jurema preta, and an increase of 3oC in air temperature, promote an increase of 2oC in leaf temperature. It lead to disturbances in vital physiological mechanisms in the leaf, mainly the photosynthesis and efficient use of water.

  19. Forest Vegetation Monitoring Protocol for National Parks in the North Coast and Cascades Network

    Science.gov (United States)

    Woodward, Andrea; Hutten, Karen M.; Boetsch, John R.; Acker, Steven A.; Rochefort, Regina M.; Bivin, Mignonne M.; Kurth, Laurie L.

    2009-01-01

    Plant communities are the foundation for terrestrial trophic webs and animal habitat, and their structure and species composition are an integrated result of biological and physical drivers (Gates, 1993). Additionally, they have a major role in geologic, geomorphologic and soil development processes (Jenny, 1941; Stevens and Walker, 1970). Throughout most of the Pacific Northwest, environmental conditions support coniferous forests as the dominant vegetation type. In the face of anthropogenic climate change, forests have a global role as potential sinks for atmospheric carbon (Goodale and others, 2002). Consequently, knowledge of the status of forests in the three large parks of the NCCN [that is, Mount Rainier (MORA), North Cascades (NOCA), and Olympic (OLYM) National Parks] is fundamental to understanding the condition of Pacific Northwest ecosystems. Diverse climate and soil properties across the Pacific Northwest result in a variety of forest types (Franklin and Dyrness, 1973; Franklin and others, 1988; Henderson and others, 1989, 1992). The mountainous terrain of Mount Rainier, North Cascades, and Olympic National Parks create steep elevational and precipitation gradients within and among the parks: collectively, these parks span from sea level to more than 4,200 m; and include areas with precipitation from 90 to more than 500 cm. The resulting forests range from coastal rainforests with dense understories and massive trees draped with epiphytes; to areas with drought-adapted Ponderosa pines; to high-elevation subalpine fir forests interspersed with meadows just below treeline (table 1). These forests, in turn, are the foundation for other biotic communities constituting Pacific Northwest ecosystems.

  20. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015.

    Science.gov (United States)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yan, Fengqin; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-11-07

    Global warming has contributed to the extension of the growing season in North Hemisphere. In this paper, we investigated the spatial characteristics of the date of the start of the season (SOS), the date of the end of the season (EOS) and the length of the season (LOS) and their change trends from 1982 to 2015 in Northeast China. Our results showed that there was a significant advance of SOS and a significant delay of EOS, especially in the north part of Northeast China. For the average change slope of EOS in the study area, the delay trend was 0.25 d/y, which was more obvious than the advance trend of -0.13 d/y from the SOS. In particular, the LOS of deciduous needleleaf forest (DNF) and grassland increased with a trend of 0.63 d/y and 0.66 d/y from 1982 to 2015, indicating the growth season increased 21.42 and 22.44 days in a 34-year period, respectively. However, few negative signals were detected nearby Hulun Lake, suggesting that the continuous climate warming in the future may bring no longer growing periods for the grass in the semiarid areas as the drought caused by climate warming may limit the vegetation growth.

  1. Land-use: landslide monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, B; Blasi, L; Brandimarte, U; Bucci, M [ENEA, Rome (Italy). Lab. di Geologia Ambientale

    1990-10-01

    A terrain characterization study was conducted in the coastal Monte Argentario region of central Italy (western coast). The geological and geophysical surveys placed emphasis on the identification of zones subject to landside activity. In order to assist local community officials in land-use planning and civil protection a real time monitoring system was set up to oversee high risk areas. Guidelines were established for the reclamation of zones strongly influenced by slides. An attempt was made to identify the parameters influencing local soil-rock stability.

  2. The Role of Monitoring in Controlling Water Pollution

    Science.gov (United States)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  3. Structural monitoring and smart control of a wind turbine

    DEFF Research Database (Denmark)

    Caterino, Nicola; Trinchillo, Francesco; Georgakis, Christos T.

    2014-01-01

    The remarkable growth in height of wind turbines in the last years - for a higher production of electricity - makes the issues of monitoring and control of such challenging engineering works pressing than ever. The research herein proposed is addressed to monitor the structural demand imposed to ...

  4. Electronic Monitoring and Family Control in Probation and Parole.

    Science.gov (United States)

    Quinn, James F.; Holman, John E.

    1992-01-01

    Examined effects of electronic monitoring on family's contribution to external constraint of felony offenders under community supervision. Data from probationers and parolees (n=121) indicated that reported levels of family control did not change significantly during three months of electronic monitoring. Demographic variables, offense type, and…

  5. The role of water availability in controlling coupled vegetation-atmosphere dynamics

    Science.gov (United States)

    Scanlon, Todd Michael

    This work examines how water availability affects vegetation structure and vegetation-atmosphere exchange of water, carbon, and energy for a savanna ecosystem. The study site is the Kalahari Transect (KT), in southern Africa, which follows a north-south decline in mean annual rainfall from ˜1600 mm/yr to ˜250 mm/yr between the latitudes 12°--26°S. Eddy covariance (EC) flux measurements taken over a time frame of 1--9 days at four sites along the transect during the wet (growing) season revealed that the ecosystem water use efficiency for the sites, defined as the ratio of net carbon flux to evapotranspiration, decreased with increasing mean annual rainfall. EC data were used to parameterize a large eddy simulation model, which was applied over a heterogeneous remotely-sensed surface. Water availability for the vegetation was found to affect the relative controls (structural vs. meteorological) on the spatial distribution of vegetation fluxes. When the spatial distribution of vapor pressure deficit, D, was most predictable (i.e. non water-limiting conditions) it was unimportant in shaping the distribution of the vegetation fluxes, while at times when D was least predictable (i.e. water-limiting conditions) it was most important. This observation is explained by the relative degree of vegetation-atmosphere coupling and the complexity of the non-local effects on D , both of which are dependent upon water availability. Based upon the differing ways in which trees and grass respond to interannual variability in rainfall, a new method was developed to estimate fractional tree, grass, and bare soil cover from a synthesis of satellite and ground-based data. This method was applied to the KT where it was found that tree fractional cover declines with mean annual rainfall, while grass fractional cover peaks near the middle of the gradient. A soil moisture model applied to this data indicated a shift from nutrient- to water-limitation from the mesic to arid portions of

  6. Automatic control and monitoring of the MIT fission converter beam

    International Nuclear Information System (INIS)

    Wilson, B.A.; Riley, K.J.; Harling, O.K.

    2000-01-01

    An automated control and monitoring system for the new MIT high intensity epithermal neutron irradiation facility has been designed and constructed. The neutron beam is monitored with fission counters located at the periphery of the beam near the patient position. Control of the beam is accomplished with redundant Programmable Logic Controllers (PLCs). These industrial controllers open and close the three shutters of the Fission Converter Beam. The control system uses a series of robust components to assure that the prescribed fluence is delivered. This paper discusses the design and implementation of this system. (author)

  7. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    Science.gov (United States)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  8. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we

  9. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... to make informed decision and timely respond to corrosion threat before failures. Keywords: cathodic protection, corrosion mechanism, control and monitoring, ...

  10. Project Design Concept for Monitoring and Control System

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations

  11. Metacognitive Monitoring of Executive Control Engagement during Childhood

    Science.gov (United States)

    Chevalier, Nicolas; Blaye, Agnès

    2016-01-01

    Emerging executive control supports greater autonomy and increasingly adaptive behavior during childhood. The present study addressed whether children's greater monitoring of how they engage control drives executive control development. Gaze position was recorded while twenty-five 6-year-olds and twenty-eight 10-year-olds performed a self-paced…

  12. Implementation of quality control systematics for personnel monitoring services

    International Nuclear Information System (INIS)

    Franco, J.O.A.

    1984-01-01

    The implementation of statistical quality control techniques used in industrial practise is proposed to dosimetric services. 'Control charts' and 'sampling inspection' are adapted respectively for control of measuring process and of dose results produced in routine. A chapter on Radiation Protection and Personnel Monitoring was included. (M.A.C.) [pt

  13. Systems approach for design control at Monitored Retrievable Storage Project

    International Nuclear Information System (INIS)

    Kumar, P.N.; Williams, J.R.

    1994-01-01

    This paper describes the systems approach in establishing design control for the Monitored Retrievable Storage Project design development. Key elements in design control are enumerated and systems engineering aspects are detailed. Application of lessons learned from the Yucca Mountain Project experience is addressed. An integrated approach combining quality assurance and systems engineering requirements is suggested to practice effective design control

  14. Monitoring and Modeling the Fate and Transport of Nitrate in the Vadose Zone beneath a Suwannee River Basin Vegetable Farm

    Science.gov (United States)

    Albert, M. A.; Graham, W. D.; Graetz, D.

    2002-05-01

    The Suwannee River basin has received much attention in recent years due to increased nitrogen levels in the groundwater-fed rivers of the basin that could seriously affect the welfare of this ecosystem. Nitrogen levels have increased from 0.1mg/l NO3-N to more than 5 mg/L NO3-N in many springs in the Suwannee Basin over the past 40 years. Nitrate concentrations in the Suwannee River itself have been increasing at the rate of .02 mg/L per year over the past 20 years. Suwannee River nitrate loads increase from 2300 kg/day to 6000 kg/day over a 33 mile stretch of the river between Dowling Park and Branford, Florida. Within this stretch of river, 89% of the nitrate loading appeared to come from the lower two-thirds, where agriculture is the dominant land use. The objective of this research is to monitor and model the impacts of alternative nutrient and water management practices on soil water quality, groundwater quality and crop yield at a commercial vegetable farm in the Suwannee River Basin. Groundwater monitoring wells, suction lysimeters, soil cores and TDR probes are used to monitor water and nitrogen transport at the site. Periodic plant biomass sampling is conducted to determine nitrogen uptake by the plants and to estimate crop yield. Field data show that two-thirds of the nitrogen applied to the spring 2001 potato crop leached to groundwater due to excessive irrigation and poor nitrogen uptake efficiency by the potatoes. The DSSAT35-Potato Crop model and the LEACHM vadose-zone model were calibrated for the spring 2001 potato crop and used to predict nitrogen leaching and crop yield for alternative management practices. Simulation results show that by reducing the duration of irrigation, reducing the fertilizer application rate, and improving the timing of fertilizer applications, nitrogen leaching can be reduced by approximately 50% while maintaining acceptable crop yields. Results of this project will ultimately be used to develop best management practices

  15. Transfer Function Control for Biometric Monitoring System

    Science.gov (United States)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodinsky, Carlos M. (Inventor)

    2015-01-01

    A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data.

  16. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa

    Science.gov (United States)

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie

    2015-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (~18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact

  17. Butterfly Assemblages Associated with Invasive Tamarisk (Tamarix spp.) Sites: Comparisons with Tamarisk Control and Native Vegetation Reference Sites

    OpenAIRE

    S. Mark Nelson; Rick Wydoski

    2013-01-01

    We studied butterfly assemblages at six types of riparian landscapes in five different watersheds in the southwestern United States (n=34 sites). Sites included exotic-invasive Tamarix ramosissima (tamarisk) dominated sites; sites where tamarisk was controlled, but not actively revegetated; sites revegetated with upland plants; sites where control was followed with riparian plant revegetation; native riparian vegetation sites; and sites that were a mixture of native and tamarisk vegetations. ...

  18. On-line process control monitoring system

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Van Hare, D.R.; Prather, W.S.

    1992-01-01

    This patent describes apparatus for monitoring at a plurality of locations within a system the concentration of at least one chemical substance involved in a chemical process. It comprises plurality of process cells; first means for carrying the light; second means for carrying the light; means for producing a spectrum from the light received by the second carrying means; multiplexing means for selecting one process cell of the plurality of process cells at a time so that the producing means can produce a process spectrum from the one cell of the process cells; a reference cell for producing a reference spectrum for comparison to the process spectrum; a standard cell for producing a standard spectrum for comparison to the process spectrum; and means for comparing the reference spectrum, the standard spectrum and the process spectrum and determining the concentration of the chemical substance in the process cell

  19. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  20. Can't control yourself? Monitor those bad habits.

    Science.gov (United States)

    Quinn, Jeffrey M; Pascoe, Anthony; Wood, Wendy; Neal, David T

    2010-04-01

    What strategies can people use to control unwanted habits? Past work has focused on controlling other kinds of automatic impulses, especially temptations. The nature of habit cuing calls for certain self-control strategies. Because the slow-to-change memory trace of habits is not amenable to change or reinterpretation, successful habit control involves inhibiting the unwanted response when activated in memory. In support, two episode-sampling diary studies demonstrated that bad habits, unlike responses to temptations, were controlled most effectively through spontaneous use of vigilant monitoring (thinking "don't do it," watching carefully for slipups). No other strategy was useful in controlling strong habits, despite that stimulus control was effective at inhibiting responses to temptations. A subsequent experiment showed that vigilant monitoring aids habit control, not by changing the strength of the habit memory trace but by heightening inhibitory, cognitive control processes. The implications of these findings for behavior change interventions are discussed.

  1. Monitoring programme on nitrates in vegetables and vegetable-based baby foods marketed in the Region of Valencia, Spain: levels and estimated daily intake.

    Science.gov (United States)

    Pardo-Marín, O; Yusà-Pelechà, V; Villalba-Martín, P; Perez-Dasí, J A

    2010-04-01

    This study was carried out to determine the current levels of nitrates in vegetables and vegetable-based baby foods (a total of 1150 samples) marketed in the Region of Valencia, Spain, over the period 2000-2008, and to estimate the toxicological risk associated with their intake. Average (median) levels of nitrate in lettuce, iceberg-type lettuce and spinach (1156, 798 and 1410 mg kg(-1) w/w, respectively) were lower than the maximum limits established by European Union legislation. Thirteen fresh spinach samples exceeded the regulatory limits. Median nitrate values in other vegetables for which a maximum limit has not been fixed by the European Commission were 196, 203, 1597, 96, 4474 and 2572 mg kg(-1) w/w (for potato, carrot, chard, artichoke, rucola and lamb's lettuce, respectively). The estimated nitrate daily intakes through vegetables consumption for adult, extreme consumers and children were found to be about 29%, 79.8% and 15.1%, respectively, of the acceptable daily intake (3.7 mg kg(-1)). The levels (median = 60.4 mg kg(-1) w/w) found in vegetable-based baby foods were, in all cases, lower the maximum level proposed by European Union legislation. The estimated nitrate daily intake through baby foods for infants between 0-1 and 1-2 years of age were 13% and 18%, respectively, of the acceptable daily intake.

  2. Use of biorational for the vegetable pest control in the north of Sinaloa

    Directory of Open Access Journals (Sweden)

    María Berenice González Maldonado

    2012-09-01

    Full Text Available In Sinaloa the vegetable and cucurbits production are important agricultural activities, so each year a high volume of chemicalinsecticides are applied to pest control that attack these crops. This paper present the main pests insects in the region, as wellas an analysis about effects of biorational insecticides on these pests. Was found that for control of Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae is used Neem oil 0.2%., for kill nymphs of Bactericera cockerelli Sulc. (Homoptera: Psyllidae soursop Annona muricata L. (Annonales: Annonaceae at doses of 2500-5000 mg/L., for Liriomyza trifolii Burgess (Diptera: Agromyzidae neem seeds 2%., to Myzus persicae Sulzer (Hemiptera: Aphididae rapeseed oil at doses 920 g/L (2% v/v., to Frankliniella occidentalis Pergande (Thysanoptera: Thripidae spinosad (Conserve® 48-60 mg/L., and for Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae granular viruses (105 OBs/mL combined with neem (DalNeem TM emulsifiable oil and NeemAzal TM -T/S at doses of 8 mg/L, everyone. The use of these products and the dose depends on the type of pest and crop. In general these products cause insect mortality greater than 95%, besides having low toxicity on natural enemies, so that these can be used individually or in combination in integrated pest control schemes against vegetable pests, and also for disease vectors insects in the northern of Sinaloa.

  3. Seasonal Differences in Climatic Controls of Vegetation Growth in the Beijing-Tianjin Sand Source Region of China.

    Science.gov (United States)

    Wang, H.

    2017-12-01

    Seasonal differences in climatic controls of vegetation growth in the Beijing-Tianjin Sand Source Region of China Bin He1 , Haiyan Wan11 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Corresponding author: Bin He, email addresses: hebin@bnu.edu.cnPhone:+861058806506, Address: Beijing Normal University, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China. Email addresses of co-authors: wanghaiyan@mail.bnu.edu.cnABSTRACTLaunched in 2000, the Beiing-Tainjin Sand Source Controlling Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of the project. Precipitation and related soil moisture conditions typically are considered to be the main drivers of vegetation growth in this arid region. However, by investigating the relationships between vegetation growth and corresponding climatic factors, we identified seasonal variation in the climatic constraints of vegetation growth. In spring, vegetation growth is stimulated mainly by elevated temperature, whereas precipitation is the lead driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. Furthermore, strong biosphere-atmosphere interactions were observed in this region. Spring warming promotes vegetation growth, but also reduces soil moisture. Summer greening has a strong cooling effect on land surface temperature. These results indicate that 1) precipitation-based projections of vegetation growth may be misleading; and 2) the ecological and environment consequences of ecological projects should be comprehensively evaluated. KEYWORDS: vegetation growth, climatic drivers, seasonal variation, BTSSCP

  4. Overview of the LHD central control room data monitoring environment

    International Nuclear Information System (INIS)

    Emoto, M.; Yoshinuma, M.; Yoshida, M.; Nakanishi, H.; Iwata, C.; Ohsuna, M.; Nonomura, M.; Imazu, S.; Yokota, M.; Aoyagi, M.; Ogawa, H.; Ida, K.; Watanabe, K.; Kaneko, O.

    2016-01-01

    Highlights: • In this paper, the data monitoring environments in the LHD central control room, for example, summary data graph and video monitoring tools are introduced. Also, the environments for the remote participants are introduced. - Abstract: During the Large Helical Device (LHD) experiments, many scientists and technical staff are working in the central control room to operate the experiment. They must manage the diagnostics and controlling devices referring to the results of the last plasma shot. Also, the experiment coordinator must decide the conditions for the subsequent experiments using the results. Furthermore, many scientists are participating in the experiment from remote sites. Therefore, it is important to share the information in the control room quickly, such as the results of the last plasma discharge, with the remote user as well as with the staff in the room. In this paper, the data monitoring environment in the LHD central control room is introduced.

  5. Overview of the LHD central control room data monitoring environment

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, M., E-mail: emoto.masahiko@nifs.ac.jp; Yoshinuma, M.; Yoshida, M.; Nakanishi, H.; Iwata, C.; Ohsuna, M.; Nonomura, M.; Imazu, S.; Yokota, M.; Aoyagi, M.; Ogawa, H.; Ida, K.; Watanabe, K.; Kaneko, O.

    2016-11-15

    Highlights: • In this paper, the data monitoring environments in the LHD central control room, for example, summary data graph and video monitoring tools are introduced. Also, the environments for the remote participants are introduced. - Abstract: During the Large Helical Device (LHD) experiments, many scientists and technical staff are working in the central control room to operate the experiment. They must manage the diagnostics and controlling devices referring to the results of the last plasma shot. Also, the experiment coordinator must decide the conditions for the subsequent experiments using the results. Furthermore, many scientists are participating in the experiment from remote sites. Therefore, it is important to share the information in the control room quickly, such as the results of the last plasma discharge, with the remote user as well as with the staff in the room. In this paper, the data monitoring environment in the LHD central control room is introduced.

  6. Monitor system for stored-program control

    International Nuclear Information System (INIS)

    Fassbender, A.

    1988-06-01

    A brief description of the COSY control system shows that the control functions in COSY are realised by a distributed system. The marginal conditions of the operating system components are explained using the COSY waterworks as an example. From this example and some subsequent considerations, important parameters for the COSY operating system are derived and are used for the system realisation. The result with regard to process communication and process synchronisation is the channel, for which data formats and functionalities are defined. The main functions and the four basic calls are also defined. Implementation of the channel is explained, showing that the required functions are well achieved. Adjustments to the distributed MOSI standard are feasible and appropriate. (orig./DG) [de

  7. TFTR control and monitoring system (CICADA)

    International Nuclear Information System (INIS)

    Daniels, R.E.

    1981-01-01

    The TFTR Central Instrumentation, Control and Data Acquisition System (CICADA) is described. This is a computer based system, supporting three types of user interfaces and supporting real time, terminal, and batch operations. Over one hundred graphic display generators will be supported by the system, four array processors will greatly increase the analysis capabilities, and closed circuit television will distribute performance data throughout the facility. Approximately twenty thousand points wll be interfaced to the system

  8. Monitoring the Change in Urban Vegetation in 13 Chilean Cities Located in a Rainfall Gradient. What is the Contribution of the Widespread Creation of New Urban Parks?

    Science.gov (United States)

    de la Barrera, Francisco; Henríquez, Cristian

    2017-10-01

    The well-being of people living in cities is strongly dependent on the existence of urban vegetation because of the ecosystem services or benefits it provides. This is why governments develop plans to create green spaces, plant trees, promote the maintenance of vegetation in private spaces and also monitor their status over time. In Latin America, and particularly in Chile, the increase of urban vegetation has been stimulated through different initiatives and regulations. However, development of monitoring programs at the national level is scarce, so it is yet unknown if these initiatives and regulations have had positive effects. In this article, we monitor the change in urban vegetation in 13 Chilean cities located in a latitudinal gradient of practically zero to almost 1800 mm of annual rainfall. We calculated the trends in NDVI (2000-2016) as an indicator of change in urban greenery using data from the MODIS Subsets platform. Likewise, to assess whether the initiatives have had an effect we quantified the number of urban parks existing at the beginning of the period and how many were created during the study period. For this, we analysed official databases and high spatial resolution satellite images. Armed with said data, we assessed whether these new parks had impacted the tendency toward change in urban greenery. The results indicate that, in general, Chilean cities vary greatly inter-annually in urban greenery and have lost urban vegetation in the last 16 years, with significant losses in four of those cities. Two cities located in desert ecosystems represent an exception and showed positive trends in their urban vegetation. The rainfall in cities has an impact on the amount of vegetation, but not on their tendency to change, i.e. there are cities with loss of vegetation at all levels of precipitation. The creation of parks has not been able to reverse negative trends, which indicates the prevalence of other drivers of change that are not sufficiently

  9. Monitor and control device in a nuclear power plant

    International Nuclear Information System (INIS)

    Neda, Toshikatsu.

    1980-01-01

    Purpose: To facilitate and ensure monitor and control, as well as improve the operation efficiency and save man power, by render the operation automatic utilizing a process computer and centralizing the monitor and control functions. Constitution: All of the operations from the start up to stop in a nuclear power plant are conducted by way of a monitor and control board. The process data for the nuclear power plant are read into the process computer and displayed on a CRT display. Controls are carried out respectively for the control rod on a control rod panel, for the feedwater rate on a feedwater control panel, for the recycling flow rate on a recycling control panel and for the turbine generator on a turbine control panel. When the operation is conducted by an automatic console, operation signals from the console are imputted into the process computer and the state of the power plant is monitored and automatic operation is carried out based on the operation signals and from signals from each of the panels. (Moriyama, K.)

  10. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    Science.gov (United States)

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes

  11. Contamination control by laundry monitor at NPP

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Rana, P.K.; Lokeshwar Rao, S.; Managanvi, S.S.

    2010-01-01

    The operation of nuclear power reactor produces electricity as well as small quantity of radioactive waste as gaseous, liquid and solid. The waste contains radionuclides produced by fission and activation in reactor systems with wide spectrum of energy and half life. The long-lived nuclides Sr, Cs, Ba, Iodine and Co etc compared to short-lived are important in view of radiation protection. The radioactive contamination on the materials, human body or other places where it is undesirable is enormously harmful to workers at Nuclear Power Plant (NPP). The spread of radioactive from controlled areas is very complex problem for power reactor plant management

  12. The evolution of industrial power monitoring and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, K. E.

    1998-04-01

    The evolution of power monitoring and control systems in industrial situations are described. Computer-based PMC (power monitoring and control) systems are discussed in two sections. Section 1 covers the PC/DOS based systems in use up to the 1990s. These systems had multitasking capability, sufficient for scanning a serial line running a multi-drop protocol to field instruments, which in turn were running either proprietary or PLC subsets, maintaining a level of operator display, data logging and query support. Since the mid-1990s the second generation of industrial power monitoring and control systems based on the PC/NT system came into use, driven to market by three factors: (1) availability of low cost PCs, (2) widespread availability of computer networking technologies, and (3) the appearance of the robust, industrially viable NT operating system. Second generation systems are characterized by division into two tiers; a monitoring system focused on remote metering, and a second tier of a modular system capable of fully implementing both power monitoring and supervisory control. Looking toward the future, the requirements for systems is expected to become more unique, driven by the need for information for energy procurement decision making, automatic control for integrating power acquisition from multiple suppliers, power capacity and integrated power and production control planning needs, and power quality and reliability issues. A review of the functionality of PMC systems, and system architectures was also provided. Results of a survey of PMC systems applications were also discussed. 2 refs., 4 tabs., 8 figs.

  13. Dealing with distributed intelligence in monitoring and control systems

    International Nuclear Information System (INIS)

    McLaren, R.A.

    1981-01-01

    The Euorpean Hybrid Spectrometer is built up of many individual detectors, each having widely varying monitoring and control requirements. With the advent of cheap microprocessor systems a shift from the concept of a single monitoring and control computer of that of distributed intelligent controllers has been economically feasible. A detector designer can now thoroughly test and debug a complete monitoring and control system on a local, dedicated micro-computer, while during operation, the central computer can be relieved of many simple repetitive tasks. Rapidly, however, it has become obvious that the designers of these systems have to take into account the final operational environment and build into both the hardware and software, features allowing easy integration into a central monitoring and control chain. In addition, the problems of maintenance and enventual modification have to be taken into consideration early in the development. Examples of currently operational systems will be briefly described to demonstrate how a set of basic guidelines plus standardisation of hardware/software can minimise the problems of integration and maintenance. Based on practical experience gained in the European Hybrid Spectrometer, investigations are proceeding on various possible alternatives for future micro-computer based monitoring and control systems. (orig.)

  14. Panels Manufactured from Vegetable Fibers: An Alternative Approach for Controlling Noises in Indoor Environments

    Directory of Open Access Journals (Sweden)

    Leopoldo Pacheco Bastos

    2012-01-01

    Full Text Available Noise control devices such as panels and barriers, when of high efficiency, generally are of difficult acquisition due to high costs turning in many cases their use impracticable, mainly for limited budget small-sized companies. There is a huge requirement for new acoustic materials that have satisfactory performance, not only under acoustic aspect but also other relevant ones and are of low cost. Vegetable fibers are an alternative solution when used as panels since they promise satisfactory acoustic absorption, according to previous researches, exist in abundance, and derive from renewable sources. This paper, therefore, reports on the development of panels made from vegetable fibers (coconut, palm, sisal, and açaí, assesses their applicability by various experimental (flammability, odor, fungal growth, and ageing tests, and characterize them acoustically in terms of their sound absorption coefficients on a scale model reverberant chamber. Acoustic results point out that the aforementioned fiber panels play pretty well the role of a noise control device since they have compatible, and in some cases, higher performance when compared to commercially available conventional materials.

  15. Computerized reactor monitor and control for research reactors

    International Nuclear Information System (INIS)

    Buerger, L.; Vegh, E.

    1981-09-01

    The computerized process control system developed in the Central Research Institute for Physics, Budapest, Hungary, is described together with its special applications at research reactors. The nuclear power of the Hungarian research reactor is controlled by this computerized system, too, while in Lybia many interesting reactor-hpysical calculations are built into the computerized monitor system. (author)

  16. Hydrological Controls on Floodplain Forest Phenology Assessed using Remotely Sensed Vegetation Indices

    Science.gov (United States)

    Lemon, M. G.; Keim, R.

    2017-12-01

    Although specific controls are not well understood, the phenology of temperate forests is generally thought to be controlled by photoperiod and temperature, although recent research suggests that soil moisture may also be important. The phenological controls of forested wetlands have not been thoroughly studied, and may be more controlled by site hydrology than other forests. For this study, remotely sensed vegetation indices were used to investigate hydrological controls on start-of-season timing, growing season length, and end-of-season timing at five floodplains in Louisiana, Arkansas, and Texas. A simple spring green-up model was used to determine the null spring start of season time for each site as a function of land surface temperature and photoperiod, or two remotely sensed indices: MODIS phenology data product and the MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) product. Preliminary results indicate that topographically lower areas within the floodplain with higher flood frequency experience later start-of-season timing. In addition, start-of-season is delayed in wet years relative to predicted timing based solely on temperature and photoperiod. The consequences for these controls unclear, but results suggest hydrological controls on floodplain ecosystem structure and carbon budgets are likely at least partially expressed by variations in growing season length.

  17. Quality control of the interpretation monitors of digital radiological images

    International Nuclear Information System (INIS)

    Favero, Mariana S.; Goulart, Adriano Oliveira S.

    2016-01-01

    The performance monitors has great importance in image quality of digital radiographic systems. In environments without films, it became necessary to implement acceptance testing and quality control monitors used for interpretation of medical images. The monitors dedicated to radiodiagnostic should provide information that represent slight differences in x-ray attenuation or minor differences in some anatomical region of interest. This should also result in small differences in luminance of an image represented. Factors affecting the quality of medical imaging are contrast, noise, resolution, artifacts and distortions. Therefore, a monitor must have specific characteristics, making it possible for the observer to carry out an assessment that leads to better diagnosis. Based on the need to evaluate diagnostic monitors in various radiological applications, this paper presents a summary for implementation and standardization of tests that are recommended by the publication AAPM Report 03. (author)

  18. PLS-based memory control scheme for enhanced process monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-01-20

    Fault detection is important for safe operation of various modern engineering systems. Partial least square (PLS) has been widely used in monitoring highly correlated process variables. Conventional PLS-based methods, nevertheless, often fail to detect incipient faults. In this paper, we develop new PLS-based monitoring chart, combining PLS with multivariate memory control chart, the multivariate exponentially weighted moving average (MEWMA) monitoring chart. The MEWMA are sensitive to incipient faults in the process mean, which significantly improves the performance of PLS methods and widen their applicability in practice. Using simulated distillation column data, we demonstrate that the proposed PLS-based MEWMA control chart is more effective in detecting incipient fault in the mean of the multivariate process variables, and outperform the conventional PLS-based monitoring charts.

  19. International Symposium on Monitoring Behavior and Supervisory Control

    CERN Document Server

    Johannsen, Gunnar

    1976-01-01

    This book includes all papers presented at the International Symposium on Monitoring Behavior and Supervisory Control held at Berchtesgaden, Federal Republic of Germany, March 8-12, 1976. The Symposium was sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization, Brussels, and the government of the Federal Republic of Germany, Bonn. We believe the book constitutes an important and timely status report on monitoring behavior and supervisory control by human operators of complex man-machine systems in which the computer is sharing key functions with the man. These systems include aircraft and other vehicles, nuclear and more conventional power plants, and processes for the manu­ facture of chemicals, petroleum, and discrete parts. By "monitoring" we mean the systematic observation by a human operator of mul tiple sources of information, e. g. , ranging from integrated display consoles to disparate "live situations". The monitor's purpose is to determine whether operations are norm...

  20. CLASSIFICATION OF THE MGR OPERATIONS MONITORING AND CONTROL SYSTEM

    International Nuclear Information System (INIS)

    R.J. Garrett

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) Operations Monitoring and Control System structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  1. Web based remote monitoring and controlling system for vulnerable environments

    Science.gov (United States)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  2. Spatiotemporal Variability in Topographic and Vegetative Controls on Basin-Wide Snow Distribution in the Tuolumne River Basin

    Science.gov (United States)

    Bolliger, I. W.; Molotch, N. P.

    2017-12-01

    An accurate empirical characterization of topographic and vegetative controls on snow distribution can lead to a greater understanding of the underlying physical processes and an increased ability to downscale lower-resolution observations. As improved water resource forecast methods are sought to address climate-driven nonstationarity in snow distributions, constraining our uncertainty in topographic and vegetative controls on these distributions becomes imperative. The Airborne Snow Observatory (ASO) LiDAR-based observation campaign provides a novel dataset with the necessary spatiotemporal extent and resolution for rigorous assessment of spatiotemporal variance in topographic and vegetative controls. In this study, we examine ASO measurements from 2013-2016 in the Tuolumne River Basin, exploring relationships to topographic and vegetation features derived from analogous snow-free LiDAR flights. To address nonlinearities in these relationships, we use single and ensemble regression tree approaches and assess metrics of feature importance, while for greater interpretability, we assess parameter values from multiple linear regression. These complementary analyses are performed for each flight date in 2013-2016 at resolutions between 3 and 500m. They are performed globally and for each of the 13 HUC12-level watersheds within the study area. Feature importance and parameter values are compared across features and across intra-seasonal, inter-seasonal, spatial, and model scale dimensions. Initial results demonstrate a consistent pattern to the changing influence of topographic and vegetative features over intra-annual timescales. They support previous findings that elevational gradients dominate local topographic and vegetative features in controlling both depth and SWE yet suggest a declining importance of elevation in the ablation period. Together, topographic and vegetative features explain more of the spatial distribution of depth and SWE observed during

  3. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    Science.gov (United States)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with

  4. Monitoring system and methods for a distributed and recoverable digital control system

    Science.gov (United States)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.

  5. Control of spoiler Pseudomonas spp. on fresh cut vegetables by neutral electrolyzed water.

    Science.gov (United States)

    Pinto, Loris; Ippolito, Antonio; Baruzzi, Federico

    2015-09-01

    In the present study, we evaluated the antimicrobial activity of neutral electrolyzed water (NEW) against 14 strains of spoilage Pseudomonas of fresh cut vegetables under cold storage. The NEW, produced from solutions of potassium and sodium chloride, and sodium bicarbonate developed up to 4000 mg/L of free chlorine, depending on the salt and relative concentration used. The antimicrobial effect of the NEW was evaluated against different bacterial strains at 10(5) cells/ml, with different combinations of free chlorine concentration/contact time; all concentrations above 100 mg/L, regardless of the salt used, were found to be bactericidal already after 2 min. When catalogna chicory and lettuce leaves were dipped for 5 min in diluted NEW, microbial loads of mesophilic bacteria and Enterobacteriaceae were reduced on average of 1.7 log cfu/g. In addition, when lettuce leaves were dipped in a cellular suspension of the spoiler Pseudomonas chicorii I3C strain, diluted NEW was able to reduce Pseudomonas population of about 1.0 log cfu/g. Thanks to its high antimicrobial activity against spoilage microorganisms, and low cost of operation, the application of cycles of electrolysis to the washing water looks as an effective tool in controlling fresh cut vegetable microbial spoilage contamination occurring during washing steps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effectiveness of vegetable extracts for the control of Praticolella griseola (Pfeiffer (Gastropoda: Polygyridae

    Directory of Open Access Journals (Sweden)

    Carmen Verónica Martín Vasallo

    2017-07-01

    Full Text Available Molluscs have become a serious problem for vegetable crops, especially the species Praticolella griseola (Pfeiffer. Therefore, the objective was to evaluate the percentage of mortality of the plant extracts on P. griseola in both laboratory and field conditions. An "in vitro" assay was performed with vegetable extracts of maguey (Furcraea hexapetala (Jacq. Family: Agavaceae, spiny güirito (Solanum globiferum L., Family: Solanaceae, chili pepper (Capsicum frutescens L., Solanaceae, cardon (Euphorbia lactea Haw., Family: Euphorbiaceae. When evaluating three concentrations of the extract of each botanical species, a completely randomized design was used in "in vitro" conditions and random blocks on the field. The extraction of the chili pepper extract was carried out using the fruit baking method, the S. globiferum was obtained from the milling of the dried fruits and the F. hexapetala and E. lactea were obtained through the fragmentation of stalks. Extracts of F. hexapetala, S. globiferum, C. frutescens, E. lactea, are alternatives to be used by producers in the control of P. griseola. The highest percentages of mortality are reached with the extracts of C. frutescens and S. globiferum at 72 hours of application.

  7. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  8. Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shujuan [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Wei [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); Wang, Kelin, E-mail: kelin@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); Pan, Fujing [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Shan [Changsha university, Changsha 410003 (China); Shu, Shiyan [Changjiang Project Supervision & Consultancy Co. Ltd, Wuhan 430010 (China); Changjiang Ecology (Hubei) Technology Development LLC, Wuhan 430010 (China)

    2015-07-15

    Vegetation succession enhances the accumulation of carbon in the soil. However, little is known about the mechanisms underlying soil organic carbon (SOC) accumulation in different vegetation types in the karst region of Southwest China. The goal of this study was to identify and prioritize the effects of environmental parameters, including soil physico-chemical properties, microbial biomass, enzyme activities, and litter characteristics, on SOC accumulation along a vegetation succession sere (grassland, shrubland, secondary forest, and primary forest) in the karst landscape of Southwest China. Relationships between these parameters and SOC were evaluated by redundancy analysis. The results showed that SOC accumulation was significantly different among vegetation types (P < 0.01) and increased with vegetation succession (from 29.10 g·kg{sup −1} in grassland to 73.92 g·kg{sup −1} in primary forest). Soil biochemistry and physical characteristics significantly affected the accumulation of SOC. Soil microbial biomass showed a predominant effect on SOC in each of the four vegetation types. In addition, the soil physical property (especially the silt content) was another controlling factor in the early stages (grassland), and urease activity and saccharase activity were important controlling factors in the early-middle and middle-late stages, respectively. Litter characteristics only showed mild effects on SOC accumulation. Variation partitioning analysis showed that the contribution of sole main factors to SOC variation decreased, while the interaction effect among parameters increased along the succession gradient. - Highlights: • Vegetation restoration is conducive to soil carbon sequestration in karst areas. • The factors controlling SOC accumulation differed along vegetation succession. • The interaction effect among significant factors became more and more prominent along succession.

  9. Double-Shell Tank (DST) Monitor and Control Subsystem Specification

    International Nuclear Information System (INIS)

    BAFUS, R.R.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Monitor and Control Subsystem that supports the first phase of Waste Feed Delivery. This subsystem specification establishes the interface and performance requirements and provides references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Monitor and Control Subsystem. The DST Monitor and Control Subsystem consists of the new and existing equipment that will be used to provide tank farm operators with integrated local monitoring and control of the DST systems to support Waste Feed Delivery (WFD). New equipment will provide automatic control and safety interlocks where required and provide operators with visibility into the status of DST subsystem operations (e.g., DST mixer pump operation and DST waste transfers) and the ability to manually control specified DST functions as necessary. This specification is intended to be the basis for new project/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  10. Dynamic goal states: adjusting cognitive control without conflict monitoring.

    Science.gov (United States)

    Scherbaum, Stefan; Dshemuchadse, Maja; Ruge, Hannes; Goschke, Thomas

    2012-10-15

    A central topic in the cognitive sciences is how cognitive control is adjusted flexibly to changing environmental demands at different time scales to produce goal-oriented behavior. According to an influential account, the context-sensitive recruitment of cognitive control is mediated by a specialized conflict monitoring process that registers current conflict and signals the demand for enhanced control in subsequent trials. This view has been immensely successful not least due to supporting evidence from neuroimaging studies suggesting that the conflict monitoring function is localized within the anterior cingulate cortex (ACC) which, in turn, signals the demand for enhanced control to the prefrontal cortex (PFC). In this article, we propose an alternative model of the adaptive regulation of cognitive control based on multistable goal attractor network dynamics and adjustments of cognitive control within a conflict trial. Without incorporation of an explicit conflict monitoring module, the model mirrors behavior in conflict tasks accounting for effects of response congruency, sequential conflict adaptation, and proportion of incongruent trials. Importantly, the model also mirrors frequency tagged EEG data indicating continuous conflict adaptation and suggests a reinterpretation of the correlation between ACC and the PFC BOLD data reported in previous imaging studies. Together, our simulation data propose an alternative interpretation of both behavioral data as well as imaging data that have previously been interpreted in favor of a specialized conflict monitoring process in the ACC. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Operational test procedure for pumping and instrumentation control skid SALW-6001B monitor and control system

    International Nuclear Information System (INIS)

    Garcia, M.F.

    1995-11-01

    This OTP shall verify and document that the monitor and control system comprised of PICS SALW-6001B PLC, 242S PLC, Operator Control Station, and communication network is functioning per operational requirements

  12. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    Science.gov (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  13. Tank monitor and control system (TMACS) software configuration management plan

    International Nuclear Information System (INIS)

    GLASSCOCK, J.A.

    1999-01-01

    This Software Configuration Management Plan (SCMP) describes the methodology for control of computer software developed and supported by the Systems Development and Integration (SD and I) organization of Lockheed Martin Services, Inc. (LMSI) for the Tank Monitor and Control System (TMACS). This plan controls changes to the software and configuration files used by TMACS. The controlled software includes the Gensym software package, Gensym knowledge base files developed for TMACS, C-language programs used by TMACS, the operating system on the production machine, language compilers, and all Windows NT commands and functions which affect the operating environment. The configuration files controlled include the files downloaded to the Acromag and Westronic field instruments

  14. The Tara control, monitoring, data acquisition, and analysis system

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Gaudreau, M.P.J.; Blanter, B.

    1987-01-01

    Experiments at the MIT Tara Tandem Mirror utilize an integrated system for control, monitoring, data acquisition, physics analysis, and archiving. This system consists of two distinct parts with narrowly defined information interchange; one to provide automated control and real time monitoring of engineering functions and one to acquire, analyze, and display data for physics in near real time. Typical machine operation achieves a total cycle time of 3 to 8 minutes with 5 to 7 Mbytes of data stored and with --160 individual signals displayed in hardcopy on --10 pages

  15. The Tara control, monitoring, data acquisition and analysis system

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Gaudreau, M.P.J.; Blanter, B.

    1986-09-01

    Experiments at the MIT Tara Tandem Mirror utilize an integrated system for control, monitoring, data acquisition, physics analysis, and archiving. This system consists of two distinct parts with narrowly defined information interchange; one to provide automated control and real time monitoring of engineering functions and one to acquire, analyze, and display data for physics in near real time. Typical machine operation achieves a total cycle time of 3 to 8 minutes with 5 to 7 Mbytes of data stored and with ∼160 individual signals displayed in hardcopy on ∼10 pages

  16. Design of MPPT Controller Monitoring Software Based on QT Framework

    Science.gov (United States)

    Meng, X. Z.; Lu, P. G.

    2017-10-01

    The MPPT controller was a hardware device for tracking the maximum power point of solar photovoltaic array. Multiple controllers could be working as networking mode by specific communicating protocol. In this article, based on C++ GUI programming with Qt frame, we designed one sort of desktop application for monitoring and analyzing operational parameter of MPPT controller. The type of communicating protocol for building network was Modbus protocol which using Remote Terminal Unit mode and The desktop application of host computer was connected with all the controllers in the network through RS485 communication or ZigBee wireless communication. Using this application, user could monitor the parameter of controller wherever they were by internet.

  17. Environmental Radiological Impact of Nuclear Power. Monitoring and Control Programs

    International Nuclear Information System (INIS)

    Ramos, L. M.

    2000-01-01

    Radioactive contamination of the environment and public exposure to ionizing radiation may result from releases from programmed or accidental operations in regulated activities, or they may be due to preexisting situations such as contamination caused by past accidents, radioactive rain caused by nuclear tests, or increased natural radioactivity resulting from human activities. In many cases, both the emission sources and the environment should be monitored to determine the risk to the population and verify to what extent the limits and conditions established by competent authorities are being observed. Monitoring can be divided into three categories: monitoring of the emission source, of the receiving medium and of members of the public; individual monitoring of the population is extremely rare and would only be considered when estimated doses substantially exceed the annual public dose limit. In practices likely to produce significant radioactive releases, as is the case of nuclear fuel cycle facilities, the limits and conditions for monitoring and controlling them and the requirements for environmental radiological monitoring are established in the licensing process. Programs implemented during normal operation of the facilities form the basis for monitoring in the event of accidents. in addition to environmental radiological monitoring associated with facilities, different countries have monitoring programs outside the facilities zones of influence, in order to ascertain the nationwide radiological fund and determine possible increases in this fund. In Spain, the facilities that generate radioactive waste have effluent storage, treatment and removal systems and radiological monitoring programs based on site and discharge characteristics. The environmental radiological monitoring system is composed of the network implemented by the owners in the nuclear fuel cycle facilities zones of influence, and by nationwide monitoring networks managed by the Consejo de

  18. Endogenous levels of nitrites and nitrates in wide consumption foodstuffs: Results of five years of official controls and monitoring.

    Science.gov (United States)

    Iammarino, Marco; Di Taranto, Aurelia; Cristino, Marianna

    2013-10-15

    The massive introduction of nitrogen fertilisers, necessary to maximise the global food production, has brought about an increase of the residual amounts of nitrites and nitrates in the products. Notoriously, these compounds may exercise toxic effects. In this work the results obtained from 5years of official controls and monitoring focused on tracing quantifiable amounts of nitrites and nitrates in 1785 samples of meat, dairy, fish products and leafy vegetables are reported. A widespread presence of nitrates at low concentrations in foodstuffs was verified. High concentrations of nitrates were registered in some leafy vegetables and mussels samples, while high nitrites concentrations were registered in some spinach samples. The results confirmed the necessity to develop most controls and suggest the introduction of new legal limits related to some combinations contaminant/matrix. Such new limits may fill legislative gaps that may cause wrong interpretations of the results obtained during official controls. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Multi-controller based 29 channel whole body portal monitor

    International Nuclear Information System (INIS)

    Dheeraj Reddy, J.; Narender Reddy, J.

    2004-01-01

    Portal Monitors are an essential part of personnel monitoring programme in any Nuclear Power Plant or Radiochemical/Reprocessing Plant. Compared to conventional Portal Monitors, whole-body Portals are preferred, for effective monitoring of entire body of the person being monitored for radioactive contamination. This is achieved by effectively distributing a large number of detectors on front/back of the person being monitored. The entry and exit for such Portals is usually side ways. The electronic system, designed essentially consists of powerful compact electronic circuits, comprising of three micro-controllers, a host of (32) 12C serial counters, other serial ADCs, DACs etc., apart from pulse processing, HV and LV circuits. Built-in embedded code has powerful fault diagnostics routines to show up failures in detector / detector electronics, HV, LV and other circuits apart from indicating contamination status, through visual and aural indications such as MIMIC, visual LCD display and individual channel counts etc. The Portal structural design consists of four individual SS members integrated, lead shielding assemblies (inside), on hinged support frames facilitate ease of assembling and dismantling of the structure. The detector arrangement is so arranged to have optimal uniform spread out, so as to record contamination of the whole body of the person being monitored. (author)

  20. Effects of social approval bias on self-reported fruit and vegetable consumption: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Marcus Al C

    2008-06-01

    Full Text Available Abstract Background Self-reports of dietary intake in the context of nutrition intervention research can be biased by the tendency of respondents to answer consistent with expected norms (social approval bias. The objective of this study was to assess the potential influence of social approval bias on self-reports of fruit and vegetable intake obtained using both food frequency questionnaire (FFQ and 24-hour recall methods. Methods A randomized blinded trial compared reported fruit and vegetable intake among subjects exposed to a potentially biasing prompt to that from control subjects. Subjects included 163 women residing in Colorado between 35 and 65 years of age who were randomly selected and recruited by telephone to complete what they were told would be a future telephone survey about health. Randomly half of the subjects then received a letter prior to the interview describing this as a study of fruit and vegetable intake. The letter included a brief statement of the benefits of fruits and vegetables, a 5-A-Day sticker, and a 5-a-Day refrigerator magnet. The remainder received the same letter, but describing the study purpose only as a more general nutrition survey, with neither the fruit and vegetable message nor the 5-A-Day materials. Subjects were then interviewed on the telephone within 10 days following the letters using an eight-item FFQ and a limited 24-hour recall to estimate fruit and vegetable intake. All interviewers were blinded to the treatment condition. Results By the FFQ method, subjects who viewed the potentially biasing prompts reported consuming more fruits and vegetables than did control subjects (5.2 vs. 3.7 servings per day, p Conclusion Self-reports of fruit and vegetable intake using either a food frequency questionnaire or a limited 24-hour recall are both susceptible to substantial social approval bias. Valid assessments of intervention effects in nutritional intervention trials may require objective measures of

  1. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    Science.gov (United States)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these

  2. Monitoring commercial conventional facilities control with the APS control system: The Metasys-to-EPICS interface

    International Nuclear Information System (INIS)

    Nawrocki, G.J.; Seaver, C.L.; Kowalkowski, J.B.

    1995-01-01

    As controls needs at the Advanced Photon Source matured from an installation phase to an operational phase, the need to monitor the existing conventional facilities control system with the EPICS-based accelerator control system was realized. This existing conventional facilities control network is based on a proprietary system from Johnson Controls called Metasys. Initially read-only monitoring of the Metasys parameters will be provided; however, the ability for possible future expansion to full control is available. This paper describes a method of using commercially available hardware and existing EPICS software as a bridge between the Metasys and EPICS control systems

  3. OpenLMD, multimodal monitoring and control of LMD processing

    Science.gov (United States)

    Rodríguez-Araújo, Jorge; García-Díaz, Antón

    2017-02-01

    This paper presents OpenLMD, a novel open-source solution for on-line multimodal monitoring of Laser Metal Deposition (LMD). The solution is also applicable to a wider range of laser-based applications that require on-line control (e.g. laser welding). OpenLMD is a middleware that enables the orchestration and virtualization of a LMD robot cell, using several open-source frameworks (e.g. ROS, OpenCV, PCL). The solution also allows reconfiguration by easy integration of multiple sensors and processing equipment. As a result, OpenLMD delivers significant advantages over existing monitoring and control approaches, such as improved scalability, and multimodal monitoring and data sharing capabilities.

  4. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  5. Effect of lifestyle on asthma control in Japanese patients: importance of periodical exercise and raw vegetable diet.

    Science.gov (United States)

    Iikura, Motoyasu; Yi, Siyan; Ichimura, Yasunori; Hori, Ai; Izumi, Shinyu; Sugiyama, Haruhito; Kudo, Koichiro; Mizoue, Tetsuya; Kobayashi, Nobuyuki

    2013-01-01

    The avoidance of inhaled allergens or tobacco smoke has been known to have favorable effects on asthma control. However, it remains unclear whether other lifestyle-related factors are also related to asthma control. Therefore, a comprehensive study to examine the associations between various lifestyle factors and asthma control was conducted in Japanese asthmatic patients. The study subjects included 437 stable asthmatic patients recruited from our outpatient clinic over a one-year period. A written, informed consent was obtained from each participant. Asthma control was assessed using the asthma control test (ACT), and a structured questionnaire was administered to obtain information regarding lifestyle factors, including tobacco smoking, alcohol drinking, physical exercise, and diet. Both bivariate and multivariate analyses were conducted. The proportions of total control (ACT = 25), well controlled (ACT = 20-24), and poorly controlled (ACT smoking status and alcohol drinking were not associated with asthma control. On the other hand, younger age (smoking, periodical exercise (> 3 metabolic equivalents-h/week), and raw vegetable intake (> 5 units/week) were significantly associated with good asthma control by bivariate analysis. Younger age, periodical exercise, and raw vegetable intake were significantly associated with good asthma control by multiple linear regression analysis. Periodical exercise and raw vegetable intake are associated with good asthma control in Japanese patients.

  6. ICAM: the ISABELLE control and monitoring system, global overview

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1975-01-01

    A first draft on the definition of the ISABELLE Control and Monitoring System is presented. Emphasis is given on the design strategies and on the proposed architectural concepts. A triangular network has been selected and defined. Some structural consideration of processor and bus structure hardware are given. (U.S.)

  7. Air contamination control as an element of state environmental monitoring

    International Nuclear Information System (INIS)

    Grabowski, D.

    1993-01-01

    The results of air contamination control on the base of gamma and beta radioactivity of aerosols collected on filters and in precipitation samples have been shown. The data have been gathered from 12 monitoring stations in Poland during 1993. No significant differences between actual results and those obtained in previous years have been noticed. 4 figs, 1 tab

  8. Satisfaction monitoring for quality control in campground management

    Science.gov (United States)

    Wilbur F. LaPage; Malcolm I. Bevins

    1981-01-01

    A 4-year study of camper satisfaction indicates that satisfaction monitoring is a useful tool for campground managers to assess their performance and achieve a high level of quality control in their service to the public. An indication of camper satisfaction with campground management is gained from a report card on which a small sample of visitors rates 14 elements of...

  9. 25 CFR 141.55 - Price monitoring and control.

    Science.gov (United States)

    2010-04-01

    ... be made a survey of the prices of flour, sugar, fresh eggs, lard, coffee, ground beef, bread, cheese... 25 Indians 1 2010-04-01 2010-04-01 false Price monitoring and control. 141.55 Section 141.55... THE NAVAJO, HOPI AND ZUNI RESERVATIONS Enforcement Powers, Procedures and Remedies § 141.55 Price...

  10. Challenges for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: traskd@aecl.ca [Atomic Energy of Canada Limited, Fredericton, New Brunswick (Canada)

    2013-07-01

    This paper considers a model for small, unmanned, remotely located reactors and discusses the ensuing cyber security and operational challenges for monitoring and control and how these challenges might be overcome through some of AECL's research initiatives and experience. (author)

  11. Development of micro controller-based monitoring system for a ...

    African Journals Online (AJOL)

    Development of micro controller-based monitoring system for a stand-alone ... which are then processed by a microcontroller with Arduino Board and the ... used in meteorological stations and laboratory for measurements of the same parameters. ... 0.0412%,-0.297% and 0.024% for solar radiation intensity, temperature, ...

  12. Power distribution monitoring and control in 500 MWe PHWR

    International Nuclear Information System (INIS)

    Kumar, A.

    1996-01-01

    The 500 MWe Indian Pressurized Heavy Water Reactor (PHWR) is expected to be commissioned in a few years. It has a relatively large sized core with complex material distribution in comparison to the currently operating 220 MWe PHWRs. The resulting neutronically loosely coupled system demands continuous control of the core power distribution. This paper gives a brief description and analysis of the reactor monitoring and control system proposed for this reactor. (author). 11 refs, 8 figs, 3 tabs

  13. Study protocol: a cluster randomised controlled trial of a school based fruit and vegetable intervention - Project Tomato.

    Science.gov (United States)

    Kitchen, Meaghan S; Ransley, Joan K; Greenwood, Darren C; Clarke, Graham P; Conner, Mark T; Jupp, Jennifer; Cade, Janet E

    2009-06-16

    The School Fruit and Vegetable Scheme (SFVS) is an important public health intervention. The aim of this scheme is to provide a free piece of fruit and/or vegetable every day for children in Reception to Year 2. When children are no longer eligible for the scheme (from Year 3) their overall fruit and vegetable consumption decreases back to baseline levels. This proposed study aims to design a flexible multi-component intervention for schools to support the maintenance of fruit and vegetable consumption for Year 3 children who are no longer eligible for the scheme. This study is a cluster randomised controlled trial of Year 2 classes from 54 primary schools across England. The schools will be randomly allocated into two groups to receive either an active intervention called Project Tomato, to support maintenance of fruit intake in Year 3 children, or a less active intervention (control group), consisting of a 5 A DAY booklet. Children's diets will be analysed using the Child And Diet Evaluation Tool (CADET), and height and weight measurements collected, at baseline (Year 2) and 18 month follow-up (Year 4). The primary outcome will be the ability of the intervention (Project Tomato) to maintain consumption of fruit and vegetable portions compared to the control group. A positive result will identify how fruit and vegetable consumption can be maintained in young children, and will be useful for policies supporting the SFVS. A negative result would be used to inform the research agenda and contribute to redefining future strategies for increasing children's fruit and vegetable consumption. Medical Research Council Registry code G0501297.

  14. Study protocol: a cluster randomised controlled trial of a school based fruit and vegetable intervention – Project Tomato

    Science.gov (United States)

    Kitchen, Meaghan S; Ransley, Joan K; Greenwood, Darren C; Clarke, Graham P; Conner, Mark T; Jupp, Jennifer; Cade, Janet E

    2009-01-01

    Background The School Fruit and Vegetable Scheme (SFVS) is an important public health intervention. The aim of this scheme is to provide a free piece of fruit and/or vegetable every day for children in Reception to Year 2. When children are no longer eligible for the scheme (from Year 3) their overall fruit and vegetable consumption decreases back to baseline levels. This proposed study aims to design a flexible multi-component intervention for schools to support the maintenance of fruit and vegetable consumption for Year 3 children who are no longer eligible for the scheme. Method This study is a cluster randomised controlled trial of Year 2 classes from 54 primary schools across England. The schools will be randomly allocated into two groups to receive either an active intervention called Project Tomato, to support maintenance of fruit intake in Year 3 children, or a less active intervention (control group), consisting of a 5 A DAY booklet. Children's diets will be analysed using the Child And Diet Evaluation Tool (CADET), and height and weight measurements collected, at baseline (Year 2) and 18 month follow-up (Year 4). The primary outcome will be the ability of the intervention (Project Tomato) to maintain consumption of fruit and vegetable portions compared to the control group. Discussion A positive result will identify how fruit and vegetable consumption can be maintained in young children, and will be useful for policies supporting the SFVS. A negative result would be used to inform the research agenda and contribute to redefining future strategies for increasing children's fruit and vegetable consumption. Trial registration Medical Research Council Registry code G0501297 PMID:19531246

  15. Study protocol: a cluster randomised controlled trial of a school based fruit and vegetable intervention – Project Tomato

    Directory of Open Access Journals (Sweden)

    Conner Mark T

    2009-06-01

    Full Text Available Abstract Background The School Fruit and Vegetable Scheme (SFVS is an important public health intervention. The aim of this scheme is to provide a free piece of fruit and/or vegetable every day for children in Reception to Year 2. When children are no longer eligible for the scheme (from Year 3 their overall fruit and vegetable consumption decreases back to baseline levels. This proposed study aims to design a flexible multi-component intervention for schools to support the maintenance of fruit and vegetable consumption for Year 3 children who are no longer eligible for the scheme. Method This study is a cluster randomised controlled trial of Year 2 classes from 54 primary schools across England. The schools will be randomly allocated into two groups to receive either an active intervention called Project Tomato, to support maintenance of fruit intake in Year 3 children, or a less active intervention (control group, consisting of a 5 A DAY booklet. Children's diets will be analysed using the Child And Diet Evaluation Tool (CADET, and height and weight measurements collected, at baseline (Year 2 and 18 month follow-up (Year 4. The primary outcome will be the ability of the intervention (Project Tomato to maintain consumption of fruit and vegetable portions compared to the control group. Discussion A positive result will identify how fruit and vegetable consumption can be maintained in young children, and will be useful for policies supporting the SFVS. A negative result would be used to inform the research agenda and contribute to redefining future strategies for increasing children's fruit and vegetable consumption. Trial registration Medical Research Council Registry code G0501297

  16. Irradiation to control insects in fruits and vegetables for export from Hawaii

    International Nuclear Information System (INIS)

    Follett, P.A.

    2004-01-01

    Phytosanitary or quarantine treatments are often required to disinfest host commodities of economically important arthropod pests before they are moved through market channels to areas where the pest does not occur. Irradiation is an accepted treatment to control quarantine pests in 10 fruits and five vegetables for export from Hawaii to the US mainland. Irradiation is the ideal technology for developing generic quarantine treatments because it is effective against most insect and mite pests at dose levels that do not affect the quality of most commodities. A generic dose of 150 Gy has been proposed for tephritid fruit flies. Contrary to the 150 Gy dose, approved irradiation quarantine treatment doses for Mediterranean fruit fly, melon fly, and oriental fruit fly in Hawaii are 210-250 Gy. Irradiation studies were conducted to determine if the approved doses were unnecessarily high and could be reduced. Irradiation is also a viable alternative to methyl bromide fumigation to disinfest Hawaii sweetpotatoes, and studies are in progress to identify an effective dose for two key sweetpotato insect pests. Results indicate that irradiation doses <150 Gy will control Hawaii's fruit flies, which supports the proposed generic dose. The idea of generic doses is appealing because it would greatly accelerate the process of approving irradiation quarantine treatments for specific crops, and thereby rapidly expand exports. Preliminary results show that 250-300 Gy will control Hawaii's sweetpotato pests

  17. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    Science.gov (United States)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  18. Effect of lifestyle on asthma control in Japanese patients: importance of periodical exercise and raw vegetable diet.

    Directory of Open Access Journals (Sweden)

    Motoyasu Iikura

    Full Text Available BACKGROUND: The avoidance of inhaled allergens or tobacco smoke has been known to have favorable effects on asthma control. However, it remains unclear whether other lifestyle-related factors are also related to asthma control. Therefore, a comprehensive study to examine the associations between various lifestyle factors and asthma control was conducted in Japanese asthmatic patients. METHODS: The study subjects included 437 stable asthmatic patients recruited from our outpatient clinic over a one-year period. A written, informed consent was obtained from each participant. Asthma control was assessed using the asthma control test (ACT, and a structured questionnaire was administered to obtain information regarding lifestyle factors, including tobacco smoking, alcohol drinking, physical exercise, and diet. Both bivariate and multivariate analyses were conducted. RESULTS: The proportions of total control (ACT = 25, well controlled (ACT = 20-24, and poorly controlled (ACT 3 metabolic equivalents-h/week, and raw vegetable intake (> 5 units/week were significantly associated with good asthma control by bivariate analysis. Younger age, periodical exercise, and raw vegetable intake were significantly associated with good asthma control by multiple linear regression analysis. CONCLUSIONS: Periodical exercise and raw vegetable intake are associated with good asthma control in Japanese patients.

  19. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  20. Internal quality control program for individual monitoring service

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, Claudia L.P.; Moura Junior, Jose; Patrao, Karla C.S. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: claudia@ird.gov.br; moura@ird.gov.br; karla@ird.gov.br

    2007-07-01

    With a focus on continuous improvement, since 2002, a special internal procedure for following and checking the performance of our individual monitoring services has been implemented. A fictitious installation, named 'Fantasma' has been created, initially, with 4 film badges and 7 thermoluminescent dosimetric ring users. Since 2005, this quality control program includes also the albedo neutron individual monitoring service. Monthly, the 'Fantasma' test monitors are irradiated by traceable Cs-137 and Am-Be sources. The calibration quantities are: the photon dose equivalent (H{sub x}) for the photographic individual monitor, the maximum dose equivalent (MADE) for the albedo neutron individual monitor and the personal dose equivalent at 0.07 mm depth (H{sub p}(0.07)) for ring monitor. Up to now, all results show compliance with the specific trumpet curves acceptance limits. Once, a small sub-evaluation tendency has been noted and this information was used to improve the film system. For the photographic film system, the evaluated value to reference dose ratios range from 0.71 to 1.12, with a mean value of 0.91 {+-} 0.12. For the ring system, the ratio ranges from 0.69 to 1.40, with a mean value of 1.02 {+-} 0.07. For the neutron system, which presents intrinsic larger uncertainties, the ratio ranged from 0.67 to 1.88, with mean value of 1.16 {+-} 0.27. (author)

  1. Testing of portal monitors for personnel contamination control

    International Nuclear Information System (INIS)

    Johnson, L.O.; Gupta, V.P.; Stevenson, R.L.; Stalker, A.C.; Baker, K.R.; Littleton, M.L.; Rich, B.L.

    1983-04-01

    This is a report of an INPO-funded evaluation of state-of-the-art portal monitors used to detect personnel contamination. The project developed techniques and procedures to evaluate the performance and sensitivity of the portal monitors which provided data for intercomparison. An additional accomplishment was development of a methodology to assist manufacturers and users to optimize the monitor settings, and to provide technical basis for the eventual use of fixed monitors to replace frisking for contamination control. The monitors tested utilize thin-window gas-flow proportional counters sensitive to beta and gamma radiation. Various tests were performed: (1) background count rate and the statistical variability, (2) detector efficiency at different distances, (3) moving source sensitivity for various size sources and speeds, and (4) false alarm rates at different background levels. A model has been developed for the moving source measurements to compare the experimental data, and to test whether it is possible to adequately model the behavior of a portal monitor response to a moving source. The model results with the actual test results are compared

  2. Power distribution monitoring and control in the RBMK type reactors

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Postnikov, V.V.; Volod'ko, Yu.I.

    1980-01-01

    Considered are the structures of monitoring and control systems for the RBMK-1000 reactor including three main systems with high independence: the control and safety system (CSS); the system for physical control of energy distribution (SPCED) as well as the Scala system for centralized control (SCC). Main functions and peculiarities of each system are discussed. Main attention is paid to new structural solutions and new equipment components used in these systems. Described are the RBMK operation software and routine of energy distribution control in it. It is noted that the set of reactor control and monitoring systems has a hierarchical structure, the first level of which includes analog systems (CSS and SPCED) normalizing and transmitting detector signals to the systems of the second level based on computers and realizing computer data processing, data representation to the operator, automatic (through CSS) control for energy distribution, diagnostics of equipment condition and local safety with provision for existing reserves with respect to crisis and thermal loading of fuel assemblies. The third level includes a power computer carrying out complex physical and optimization calculations and providing interconnections with the external computer of power system. A typical feature of the complex is the provision of local automatic safety of the reactor from erroneous withdrawal of any control rod. The complex is designed for complete automatization of energy distribution control in reactor in steady and transient operation conditions

  3. Mobile monitoring and embedded control system for factory environment.

    Science.gov (United States)

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  4. Mobile Monitoring and Embedded Control System for Factory Environment

    Science.gov (United States)

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  5. Mobile Monitoring and Embedded Control System for Factory Environment

    Directory of Open Access Journals (Sweden)

    Kuang-Yow Lian

    2013-12-01

    Full Text Available This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC technology is used to carry out the actual electricity load experiments using smart phones.

  6. Monitoring vegetation change in Abu Dhabi Emirate from 1996 to 2000 and 2004 using Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Starbuck, M.J.; Tamayo, J.

    2007-01-01

    In the fall of 2001, a study was initiated to investigate vegetation changes in the Abu Dhabi Emirates. The vast majority of vegetation present in the region is irrigated and analysis of vegetation change will support groundwater investigations in the region by indicating areas of increased water use. Satellite-based imaging systems provide a good source of data for such an analysis. The recent analysis was completed between February and November 2002 using Landsat 5 Thematic Mapper satellite imagery acquired in 1996 and Landsat 7 Enhanced Thematic Mapper Plus imagery acquired in 2000. These assessments were augmented in 2004with the study of Landsat 7 imagery acquired in early 2004. The total area of vegetation for each of seven study areas was calculated using the Normalized Difference Vegetation Index (NDVI) technique. Multiband image classification was used to differentiate general vegetation types. Change analysis consisted of simple NDVI image differencing and post-classification change matrices. Measurements of total vegetation are for the Abu Dhabi Emirate indicate an increase from 77,200 hectares in 1996 to 162,700 hectares in 2000 (110% increase). Based on comparison with manual interpretation of satellite imagery, the amount of under-reporting of irrigated land is estimated at about 15% of the actual area. From the assessment of 2004 Landset imagery, it was found that the growth of irrigated vegetation in most areas of Emirate had stabilized and had actually slightly decreased in some cases. The decreases are probably due to variability in the measurement technique and not due to actual decreases in area of vegetation. (author)

  7. An integrated monitoring and control system for THOR

    International Nuclear Information System (INIS)

    Chou, H.P.; Chou, T.H.; Chen, T.L.

    1992-01-01

    The paper presents a computerized monitoring and control system for the THOR. The system is used to assist reactor operation and to facilitate data acquisition and teaching for reactor experimental laboratory courses. The design applies digital data processing for neutron detector and area monitor measurements. Signal validation is used to improve signal reliability. Color pictures in the forms of analog meters, strip charts, and bar graphs are displayed for the control room and for off-site as well. Power control is based on the 'reactivity constraint' approach for wide range adjustment and on-off logics for narrow range regulation. Algorithms are coded in C language and implemented into a 32-bit microcomputer. Evaluations have shown satisfactory results for operation and teaching needs. (author)

  8. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    Science.gov (United States)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found

  9. Enhanced methodology of focus control and monitoring on scanner tool

    Science.gov (United States)

    Chen, Yen-Jen; Kim, Young Ki; Hao, Xueli; Gomez, Juan-Manuel; Tian, Ye; Kamalizadeh, Ferhad; Hanson, Justin K.

    2017-03-01

    As the demand of the technology node shrinks from 14nm to 7nm, the reliability of tool monitoring techniques in advanced semiconductor fabs to achieve high yield and quality becomes more critical. Tool health monitoring methods involve periodic sampling of moderately processed test wafers to detect for particles, defects, and tool stability in order to ensure proper tool health. For lithography TWINSCAN scanner tools, the requirements for overlay stability and focus control are very strict. Current scanner tool health monitoring methods include running BaseLiner to ensure proper tool stability on a periodic basis. The focus measurement on YIELDSTAR by real-time or library-based reconstruction of critical dimensions (CD) and side wall angle (SWA) has been demonstrated as an accurate metrology input to the control loop. The high accuracy and repeatability of the YIELDSTAR focus measurement provides a common reference of scanner setup and user process. In order to further improve the metrology and matching performance, Diffraction Based Focus (DBF) metrology enabling accurate, fast, and non-destructive focus acquisition, has been successfully utilized for focus monitoring/control of TWINSCAN NXT immersion scanners. The optimal DBF target was determined to have minimized dose crosstalk, dynamic precision, set-get residual, and lens aberration sensitivity. By exploiting this new measurement target design, 80% improvement in tool-to-tool matching, >16% improvement in run-to-run mean focus stability, and >32% improvement in focus uniformity have been demonstrated compared to the previous BaseLiner methodology. Matching control and monitoring on multiple illumination conditions, opens an avenue to significantly reduce Focus-Exposure Matrix (FEM) wafer exposure for new product/layer best focus (BF) setup.

  10. Eleventh-year response of loblolly pine and competing vegetation to woody and herbaceous plant control on a Georgia flatwoods site

    Science.gov (United States)

    Bruce R. Zutter; James H. Miller

    1998-01-01

    Through 11 growing seasons, growth of loblolly pine (Pinus taeda L.) increased after control of herbaceous, woody, or both herbaceous and woody vegetation (total control) for the first 3 years after planting on a bedded site in the Georgia coastal flatwoods. Gains in stand volume index from controlling either herbaceous or woody vegetation alone were approximately two-...

  11. Efficacy of protein bait sprays in controlling melon fruit fly [Bactrocera cucurbitae (Coquillett)] in vegetable agro-ecosystems

    International Nuclear Information System (INIS)

    Abro, Z.U.A.; Baloch, N.

    2017-01-01

    Melon fruit fly [Bactrocera cucurbitae (Coquillett)] is an injurious pest of vegetables and fruits throughout the cosmos. Vegetables are key source of proteins, minerals and vitamins for human nutrition. However, a number of factors, such as Tephritid flies, confine production of vegetables. Among them , B. cucurbitae is most deleterious pests of the vegetables. In the present investigation, conducted at two field locations of district, Hyderabad during 2016, efficacy of various bait sprays was evaluated in controlling Bactrocera cucurbitae (Coquillett) infestation. The field locations were Jeay Shah and Dehli farm and the cucurbit vegetable crops were bottle gourd (Lagenaria siceraria) and bitter gourd ( Momordica charantia). For this purpose, three food attractants such as Nu-lure, Protein hydrolysate and Prima were sprayed on onemeter square per field area, as spot treatment. Significantly higher reductions in B. cucurbitae infestations (24.80+-2.63, 21.20+-2.75) were recorded with Protein hydrolysate followed by Nu-lure (27.80+-3.26, 24.20+-3.57), as compared with untreated plots, at both field locations (P<0.05). Moreover, higher number of pupae were recovered (121.40+-13.81, 115.00+-14.17) and higher number of flies and trap catches were observed in control (P<0.05). This study established that Protein hydrolysate is an effective food attractant for reducing B. cucurbitae in all the tested cucurbits. Results of the present investigation would be useful in developing a sustainable pest management strategy in the cucurbit agro-ecosystem. (author)

  12. Monitoring of the vegetable garden open air spinach and soil radioactivity in Beijing during the Japan Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Zhou Qiang; Xu Cuihua; Tuo Fei; Zhang Jing; Li Wenhong; Zhang Qing; Zhang Weijun; Zhang Jianfeng; Su Xu

    2012-01-01

    Objective: To detect artificial radionuclide content in the spinach and soil in open air vegetable garden in Beijing during Fukushima nuclear accident and to study the radioactive contamination characteristics of the samples. Methods: 6 spinach samples and 3 soil samples in open air vegetable garden were obtained through continuously sampling. High-purity germanium (HPGe) γ spectrometry was used to analyze activity concentrations of artificial radionuclide 131 I etc in these samples. Results: Artificial radionuclide 131 I was detected in the 6 open air spinach samples. Artificial radionuclide 137 Cs was detected in 3 vegetable garden soil samples, trace amount of 131 I was detected in 1 open-air surface soil sample alone. Conclusions: Following the Fukushima nuclear accident, spinach in Beijing's open-air vegetable garden was slightly polluted by artificial radionuclide 131 I, with the highest values of pollution appeared around April 4, 2011, but it could not cause harm to human health. (authors)

  13. Altitude control performance improvement via preview controller for unmanned airplane for radiation monitoring system

    International Nuclear Information System (INIS)

    Sato, Masayuki; Muraoka, Koji; Hozumi, Koki; Sanada, Yukihisa; Yamada, Tsutomu; Torii, Tatsuo

    2017-01-01

    This paper is concerned with the design problem of preview altitude controller for Unmanned Airplane for Radiation Monitoring System (UARMS) to improve its control performance. UARMS has been developed for radiation monitoring around Fukushima Dai-ichi nuclear power plant which spread radiation contaminant due to the huge tsunamis caused by the Great East Japan Earthquake. The monitoring area contains flat as well as mountain areas. The basic flight controller has been confirmed to have satisfactory performance with respect to altitude holding; however, the control performance for variable altitude commands is not sufficient for practical use in mountain areas. We therefore design preview altitude controller with only proportional gains by considering the practicality and the strong requirement of safety for UARMS. Control performance of the designed preview controller was evaluated by flight tests conducted around Fukushima Sky Park. (author)

  14. Suitability of vegetation for erosion control on uranium mill tailings: a regional analysis

    International Nuclear Information System (INIS)

    Beedlow, P.A.; McShane, M.C.

    1983-11-01

    Inactive uranium mill tailings (UMTRAP sites) in the West were grouped into three major climatic regions to evaluate the adequacy of vegetation for long-term stabilization: the Colorado Plateau, the West Slope of the Rocky Mountains, and the Northern Great Plains. Four general vegetation types were found at western sites: grasslands, shrub-steppe, and saltshrub and woodland. Soil-loss rates, calculated using the Universal Soil Loss Equation, were variable within regions and vegetation types, but trends were apparent. Calculations indicated that vegetation or vegetation plus a layer of surface rock provided adequate stabilization against long-term average soil loss for slopes less than 10% at the UMTRAP sites evaluated. However, detailed analyses of erosion due to severe storm events, gully formation and channel cutting is necessary for designing protective covers at each site. 11 references, 3 figures, 3 tables

  15. The suitability of vegetation for erosion control on uranium mill tailings: A regional analysis

    International Nuclear Information System (INIS)

    Beedlow, P.A.; McShane, M.C.

    1984-01-01

    Inactive uranium mill tailings (UMTRAP sites) in the West were grouped into three major climatic regions to evaluate the suitability of vegetation for long-term stabilization: the Colorado Plateau, the West Slope of the Rocky Mountains, and the Northern Great Plains. Four general vegetation types were found at western sites: grassland, shrub, salt shrub and woodland. Soil-loss rates, calculated using the Universal Soil Loss Equation, were variable within regions and vegetation types, but trends were apparent. Calculations indicated that vegetation or vegetation plus a layer of surface rock provided adequate stabilization against long-term average soil loss on slopes of less than 10%. However, at each site, detailed analyses of erosion caused by severe storm events, gully formation and channel cutting is necessary for designing protective covers

  16. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control

    Science.gov (United States)

    Qingchao Li; H. Lee Allen; Arthur G. Wollum

    2004-01-01

    The effects of organic matter removal, soil compaction, and vegetation control on soil microbial biomass carbon, nitrogen, C-to-N ratio, and functional diversity were examined in a 6-year loblolly pine plantation on a Coastal Plain site in eastern North Carolina, USA. This experimental plantation was established as part of the US Forest Service's Long Term Soil...

  17. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  18. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  19. Evaluating water controls on vegetation growth in the semi-arid sahel using field and earth observation data

    DEFF Research Database (Denmark)

    Abdi, Abdulhakim M.; Boke-Olen, Niklas; Tenenbaum, David E.

    2017-01-01

    Water loss is a crucial factor for vegetation in the semi-arid Sahel region of Africa. Global satellite-driven estimates of plant CO2 uptake (gross primary productivity, GPP) have been found to not accurately account for Sahelian conditions, particularly the impact of canopy water stress. Here, we...... identify the main biophysical limitations that induce canopy water stress in Sahelian vegetation and evaluate the relationships between field data and Earth observation-derived spectral products for up-scaling GPP. We find that plant-available water and vapor pressure deficit together control the GPP...

  20. Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    Directory of Open Access Journals (Sweden)

    Osunmadewa Babatunde Adeniyi

    2018-03-01

    Full Text Available Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS and end of season (EOS was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0 and a significant decrease in other greenness trend maps (amplitude 1 and phase 1 was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0 was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1 was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities.

  1. Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    Science.gov (United States)

    Osunmadewa, Babatunde Adeniyi; Gebrehiwot, Worku Zewdie; Csaplovics, Elmar; Adeofun, Olabinjo Clement

    2018-03-01

    Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA) approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS) and end of season (EOS) was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0) and a significant decrease in other greenness trend maps (amplitude 1 and phase 1) was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0) was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1) was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities.

  2. Monitoring and control of a hybrid energy system

    International Nuclear Information System (INIS)

    Raceanu, M.; Culcer, M.; Patularu, L.; Enache, A.; Balan, M.; Varlam, M.

    2010-01-01

    Full text: This article presents monitoring and control of a Hybrid Energy System (HES). The HES is composed of six main components: solar panels, electrolyzer, fuel cells stack, charge controller, DC-AC inverter and lead acid batteries. Solar panels function as the primary source of energy, converting the energy from the sun into electricity that is given to a DC bus. Electrolyzer is a device that produces hydrogen and oxygen from the water following a process electrochemical. When there is excess energy from solar panels, electrolyzer is switched to produce hydrogen which is stored in hydrogen tank. Hydrogen produced is used by an assembly of fuel cell; this produces electricity that is transmitted on the DC bus, using hydrogen produced by electrolysis. Can be measured and displayed in real time data including, voltage, current, flow of hydrogen from the fuel cell, voltage, current, temperature of the photovoltaic panels, pressure hydrogen from electrolysis, pressure hydrogen tank and battery voltage. The control system is designed according to state of charge (SoC) of the battery. Are presented control strategy which ensures the On/Off control of the electrolyzer, to consume electricity from the battery and to generate electricity from fuel cells. The system hardware consists of an acquisition board, communication system of type CAN, sensors and interface devices. Monitoring and control software was developed in LabView 9.0. (authors)

  3. D0 Cryo Ventilation Fan Controls and Monitoring

    International Nuclear Information System (INIS)

    Markley, D.

    1990-01-01

    This engineering note describes how exhaust fan 6 (EF-6) and exhaust fan 7 (EF-7) are controlled and monitored. Since these two fans are a vital link in the ODH safety system, they will be monitored, controlled and periodically operated by the programmable logic controller (PLC). If there should be a fault in the ventilation system, the PLC will print a warning message to the cryo control room printer and flash a descriptive warning on the ODH/ventilation graphics page. This fault is also logged to the Xpresslink graphics alarm page and to an alarm history hard disk file. The ventilation failure is also an input to the auto dialer which will continue it's automatic sequence until acknowledged. EF-6 delivers 13000 C.F.M. and is considered emergency ventilation. EF-7 delivers 4500 C.F.M. and will run 24 hrs a day. Both ventilation fans are located in an enclosed closet in the TRD gas room. Their ductwork, both inlets and outlets run along side the pipe chase, but are separated by an airtight wall. Their combination motor control starter cabinets are located in the TRD room in plain visible sight of the fans with the closet door open. The fans have signs that state they are automatically controlled and can energize at any time.

  4. Anions environmental monitoring control at CNEN-IPEN/SP-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Sabrina M.; Marques, Joyce R.; Monteiro, Lucilena R.; Cotrim, Marycel E.B.; Pires, Maria Aparecida F., E-mail: lrmonteiro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The Nuclear and Energy Research Institute IPEN-CNEN/SP, to comply with guidelines and basic procedures to be observed by its installation regarding environmental control actions, related with conventional effluent release started in 2007 the Environmental Monitoring Program for stable chemical compounds (PMA-Q). This program includes, besides others parameters, ionic species such as Fluoride, Chloride, Nitrite-N, Nitrate-N and Sulfate, measured by Ion Chromatography. Among these compounds, Fluoride and Chloride are regulated in effluent discharges by CONAMA's Resolution 430/2011 and the Sao Paulo State Decree 8468/76. Fluoride, Chloride, Nitrite-N, Nitrate-N in groundwater are regulated by CONAMA's Resolution 396/2008. Considering the legal requirements, every year this program is revised and improvement actions are planned and implemented. The present paper will discuss these improvements to determine the individual performance of the laboratory related to those tests performed by ion chromatography. The adequacy actions performed were the construction of control charts (internal quality control) and the interlaboratory proficiency tests regular participation (external quality control). With these quality control actions it was possible to monitor continuously the laboratory performance, to identify and resolve analytical problems and also interlaboratory differences, to add value to the essay quality control and to provide additional confidence to the institutional program PMA-Q. The recent change in legislation by CONAMA Resolution 430/2011 and the requirements of Resolution CONAMA 396/2008 improvement requirements are also discussed in this work. (author)

  5. Anions environmental monitoring control at CNEN-IPEN/SP-Brazil

    International Nuclear Information System (INIS)

    Villa, Sabrina M.; Marques, Joyce R.; Monteiro, Lucilena R.; Cotrim, Marycel E.B.; Pires, Maria Aparecida F.

    2013-01-01

    The Nuclear and Energy Research Institute IPEN-CNEN/SP, to comply with guidelines and basic procedures to be observed by its installation regarding environmental control actions, related with conventional effluent release started in 2007 the Environmental Monitoring Program for stable chemical compounds (PMA-Q). This program includes, besides others parameters, ionic species such as Fluoride, Chloride, Nitrite-N, Nitrate-N and Sulfate, measured by Ion Chromatography. Among these compounds, Fluoride and Chloride are regulated in effluent discharges by CONAMA's Resolution 430/2011 and the Sao Paulo State Decree 8468/76. Fluoride, Chloride, Nitrite-N, Nitrate-N in groundwater are regulated by CONAMA's Resolution 396/2008. Considering the legal requirements, every year this program is revised and improvement actions are planned and implemented. The present paper will discuss these improvements to determine the individual performance of the laboratory related to those tests performed by ion chromatography. The adequacy actions performed were the construction of control charts (internal quality control) and the interlaboratory proficiency tests regular participation (external quality control). With these quality control actions it was possible to monitor continuously the laboratory performance, to identify and resolve analytical problems and also interlaboratory differences, to add value to the essay quality control and to provide additional confidence to the institutional program PMA-Q. The recent change in legislation by CONAMA Resolution 430/2011 and the requirements of Resolution CONAMA 396/2008 improvement requirements are also discussed in this work. (author)

  6. Monitoring and control system of the Saclay electron linear accelerator

    International Nuclear Information System (INIS)

    Lafontaine, Antoine

    1974-01-01

    A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr

  7. Device for remote control of monitoring of a conveyor line

    Energy Technology Data Exchange (ETDEWEB)

    Shubin, N F; Rybak, Yu I

    1981-01-01

    The known device under mine conditions because of the decrease of resistance of the insulation of the current-carrying lines of the transfer line does not guarantee reliable protection from false triggering. The purpose of the invention is to improve the reliability of monitoring and control by improving interference-resistance of the device. This goal is achieved because the compensation block is equipped with a transistor, seven diodes, three stabilitrons and resistors united into two compensation circuits which are connected in parallel. The first of them is formed by two stabilitrons connected in series, where the cathode of one of them through a resistor and the counter-connected first diode is connected to a common lead and to the first pole of the block of monitoring and control. The anode of the other through the second counter-connected diode is connected to the second pole of the block of monitoring and control. The second compensation circuit is formed of a transistor, whose collector is connected to the common lead. The emitter is connected through the resistor to the cathode of the third diode whose anode is connected to the lead of the communications line and to the anodes of the fourth diode directly, and the fifth through the resistor, and with the cathode of the third stabilitron whose anode is connected to the transistor base and through the resistor to the common lead. The cathode of the fourth diode is connected to the common point of the first and second stabilitrons through the resistor, connected through the sixth diode, connected by cathode to the cathode of the fourth diode, parallel to the information block. The cathode of the fifth diode is connected to the anode of the second diode, and the second pole of the block of monitoring and control is connected to the communications lead through the seventh diode, connected counter to the fourth and fifth diodes.

  8. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  9. Monitor and Control for PEFP System using EPICS

    International Nuclear Information System (INIS)

    Choi, Hyun Mi; Hong, I. S.; Song, Y. G.; Cho, Y. S.

    2005-01-01

    The construction of PEFP project whose final objective is to build 100 Mev proton accelerator started in 2002 and expected to finish in 2012. In 2005, we have performed 20mA proton beam of 20Mev. For developing the control systems of the 20Mev accelerator as well as 100 Mev accelerator, we chose EPICS(Experimental Physics and Industrial Control System) as the most suitable tool. We have studied EPICS applications for various situation and as the application we developed vacuum control system using EPICS base3.14.4 as the core software and EPICS extensions (e.g., EDM(Extensible Display Manager), MEDM(Motif Editor and Display Manager) etc.) as the user interface. There are a number of projects using EPICS for a broad spectrum of applications. EPICS began as a collaboration between Argonne National Laboratory and Los Alamos National Laboratory in 1991, building on work that was initially done at the ground test Accelerator. It is now running on accelerators that have as many as 180 distributed front-end controllers and control rooms with 20 consoles and a gateway to make system parameters available to offices, web site, and other remote control stations. It is also used at single controller and one workstation systems. We use the EPICS tool kit as a foundation of the control system. We developed a vacuum monitor, RFQ, DTL Turbo pump control system for use Ethernet Multi Serial Deice Severs on PEFP control system. The control system now shows stable and reliable characteristics enough to meet our control requirement. However, the control system is continuously being upgraded to accommodate additional control requirements such as vacuum device control

  10. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions...

  11. Allelopathic Effects of Four Chickpea Cultivars on Vegetative Growth of Sunflower and Corn under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    k Hajmohammadnia Ghalibaf

    2011-02-01

    Full Text Available Abstract In order to study the effects of four chickpea cultivar (Cicer arietinum L. on vegetative growth of sunflower (Helianthus annus and corn (Zea mays, two separate experiments was conducted at Research Greenhouse of Ferdowsi University of Mashhad in 2005. Experiments were done in a factorial arrangement of treatments with two factors based on completely randomized design with 4 replications. Factors included chickpea cultivars (Karag12-60-31, Filip 84-482, Gam, ILC 482, and no residue control and planting date of corn and sunflowers within root residues of chick pea (seeds planted simultaneously, 2 weeks, and 4 weeks after harvesting of chickpea shoots. Seeds of corn and sunflower were planted within root residues of chickpea. Results showed that root residues of chickpea cultivars influenced height and shoot weight of sunflower significantly. The lowest sunflower height was obtained when they were planted within root residues of Flip and ILC cultivars, which decreased 13.7 and 11.1% relative to control, respectively. Planting date of sunflower within root residues of chick pea cultivars had a significant effect on sunflower leaf area, shoot weight, and its root/shoot ratio. So that, lowest leaf area, shoot weight, and also highest root/shoot ratio was obtained in third planting date. Results showed that lowest plant height, leaf area, root weight, shoot weight, and also highest root/shoot ratio of corn (6 weeks after planting was obtained after planting within chickpea cultivars, Gam and ILC. Also the effect of corn planting date was significant. The lowest root and shoot weight, and root/shoot ratio of corn was obtained in the earliest corn planting date. Therefore, corn plants showed more sensitive than sunflower after planting within chickpea cultivars, and the highest inhibitory effects resulted in the earliest corn planting date. Keywords: Pea cultivars, Integrated management, Crop rotation

  12. An Efficient Wireless Sensor Network for Industrial Monitoring and Control.

    Science.gov (United States)

    Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-10

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  13. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    Science.gov (United States)

    Aponte-Luis, Juan; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-01

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management. PMID:29320466

  14. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Juan Aponte-Luis

    2018-01-01

    Full Text Available This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  15. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun [Complex Systems Monitoring, Modeling and Analysis Laboratory, University of South Florida, Tampa, Florida 33620 (United States)

    2014-03-15

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., values and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.

  16. Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region

    DEFF Research Database (Denmark)

    Moeslund, Jesper Erenskjold; Arge, Lars; Bøcher, Peder Klith

    2013-01-01

    , potential solar radiation, wind exposure, wetness index) and 10 vegetation measures representing species composition, richness and functional composition (average plant preferences along key environmental niche axes). We also investigated how overall site-level environmental characteristics affect...

  17. Nitrogen and Warming Control the Vegetation in Inner Mongolia Tourist Area

    OpenAIRE

    Sun, Qiong; Hu, Xiaobing; Zhang, Chi

    2016-01-01

    The global warming and atmospheric nitrogen deposition problem has become more and more serious under the influence of human activities, and it has become one of the hot issues in this field, which will have far-reaching impact on all kinds of vegetation, thus the functioning of the ecosystem will be changed, which will be reflected in climate warming process. Inner Mongolia Autonomous Region is mainly composed of desert grasslands, so the development and protection of vegetation has consider...

  18. The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation

    International Nuclear Information System (INIS)

    Marshak, Alexander; Knyazikhin, Yuri

    2017-01-01

    EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the ‘red’ (680 nm) channels, EPIC also has the O2 A-band (764±0.2 nm) and B-band (687.75±0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined as the difference between NIR and ‘red’ channels normalized to their sum. However, the use of the O2 B-band instead of the ‘red’ channel mitigates the effect of atmosphere on remote sensing of surface reflectance because O2 reduces contribution from the radiation scattered by the atmosphere. Applying the radiative transfer theory and the spectral invariant approximation to EPIC observations, the paper provides supportive arguments for using the O2 band instead of the red channel for monitoring vegetation dynamics. Our results suggest that the use of the O2 B-band enhances the sensitivity of the top-of-atmosphere NDVI to the presence of vegetation. - Highlights: • The use of the O2 B-band channel (688 nm) instead of the red channel (680 nm) mitigates the effect of atmosphere on remote sensing of surface reflectance. • The spectral invariant approach confirms that the synergy of the green, O2 B-band and near IR channels mimics spectral properties of vegetation. • The structural parameter of vegetation retrieved remotely is weakly sensitive to the uncertainty in the atmospheric optical depth.

  19. Cooperative Remote Monitoring, Arms control and nonproliferation technologies: Fourth quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, G M [ed.

    1995-01-01

    The DOE`s Cooperative Remote Monitoring programs integrate elements from research and development and implementation to achieve DOE`s objectives in arms control and nonproliferation. The contents of this issue are: cooperative remote monitoring--trends in arms control and nonproliferation; Modular Integrated Monitoring System (MIMS); Authenticated Tracking and Monitoring Systems (ATMS); Tracking and Nuclear Materials by Wide-Area Nuclear Detection (WAND); Cooperative Monitoring Center; the International Remote Monitoring Project; international US and IAEA remote monitoring field trials; Project Dustcloud: monitoring the test stands in Iraq; bilateral remote monitoring: Kurchatov-Argonne-West Demonstration; INSENS Sensor System Project.

  20. Automatic Energy Control And Monitoring System For Building

    Directory of Open Access Journals (Sweden)

    Hnin Nu Thaung

    2015-08-01

    Full Text Available The use of smart home technology in the home or building offers significant potential for energy savings. In this paper an energy management system based on wireless sensor networks. The proposed system is composed of two main components a wireless sensor network and monitoring terminal. Wireless sensors are used for sensing and transmitting electricity data and remote monitoring and control of appliances are provided to users through computer. The system enables users to save energy by monitoring and controlling appliances through terminal. This paper gives an overview of sensor technology and wireless networks in the development of an intelligent energy management system for buildings. This technology has ample potential to change the way live and work. ZigBee is used as a communication medium in building intelligent energy management system in this paper. From the prototype setup it is shown that ZigBee is a suitable technology to be adopted as the communication infrastructure in energy management system for buildings .The proposed system can be installed and maintained in residential environments with ease.

  1. A Self-Calibrating Remote Control Chemical Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  2. Remote Monitoring of the Polarized Target's Control for E1039

    Science.gov (United States)

    Fox, David; SeaQuest Collaboration

    2017-09-01

    The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.

  3. Statistical process control charts for monitoring military injuries.

    Science.gov (United States)

    Schuh, Anna; Canham-Chervak, Michelle; Jones, Bruce H

    2017-12-01

    An essential aspect of an injury prevention process is surveillance, which quantifies and documents injury rates in populations of interest and enables monitoring of injury frequencies, rates and trends. To drive progress towards injury reduction goals, additional tools are needed. Statistical process control charts, a methodology that has not been previously applied to Army injury monitoring, capitalise on existing medical surveillance data to provide information to leadership about injury trends necessary for prevention planning and evaluation. Statistical process control Shewhart u-charts were created for 49 US Army installations using quarterly injury medical encounter rates, 2007-2015, for active duty soldiers obtained from the Defense Medical Surveillance System. Injuries were defined according to established military injury surveillance recommendations. Charts display control limits three standard deviations (SDs) above and below an installation-specific historical average rate determined using 28 data points, 2007-2013. Charts are available in Army strategic management dashboards. From 2007 to 2015, Army injury rates ranged from 1254 to 1494 unique injuries per 1000 person-years. Installation injury rates ranged from 610 to 2312 injuries per 1000 person-years. Control charts identified four installations with injury rates exceeding the upper control limits at least once during 2014-2015, rates at three installations exceeded the lower control limit at least once and 42 installations had rates that fluctuated around the historical mean. Control charts can be used to drive progress towards injury reduction goals by indicating statistically significant increases and decreases in injury rates. Future applications to military subpopulations, other health outcome metrics and chart enhancements are suggested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Calibration, monitoring, and control of complex detector systems

    International Nuclear Information System (INIS)

    Breidenbach, M.

    1981-01-01

    LEP detectors will probably be complex devices having tens of subsystems; some subsystems having perhaps tens of thousands of channels. Reasonable design goals for such a detector will include economic use of money and people, rapid and reliable calibration and monitoring of the detector, and simple control and operation of the device. The synchronous operation of an e + e - storage ring, coupled with its relatively low interaction rate, allow the design of simple circuits for time and charge measurements. These circuits, and more importantly, the basic detector channels, can usually be tested and calibrated by signal injection into the detector. Present detectors utilize semi-autonomous controllers which collect such calibration data and calculate statistics as well as control sparse data scans. Straightforward improvements in programming technology should move the entire calibration into these local controllers, so that calibration and testing time will be a constant independent of the number of channels in a system. Considerable programming effort may be saved by emphasizing the similarities of the subsystems, so that the subsystems can be described by a reasonable database and general purpose calibration and test routines can be used. Monitoring of the apparatus will probably continue to be of two classes: 'passive' histogramming of channel occupancies and other more complex combinations of the data; and 'active' injection of test patterns and calibration signals during a run. The relative importance of active monitoring will increase for the low data rates expected off resonances at high s. Experience at SPEAR and PEP is used to illustrate these approaches. (Auth.)

  5. Calibration, Monitoring, and Control of Complex Detector Systems

    Science.gov (United States)

    Breidenbach, M.

    1981-04-01

    LEP Detectors will probably be complex devices having tens of subsystems; some subsystems having perhaps tens of thousands of channels. Reasonable design goals for such a detector will include economic use of money and people, rapid and reliable calibration and monitoring of the detector, and simple control and operation of the device. The synchronous operation of an e+e- storage ring, coupled with its relatively low interaction rate, allow the design of simple circuits for time and charge measurements. These circuits, and more importantly, the basic detector channels, can usually be tested and calibrated by signal injection into the detector. Present detectors utilize semi-autonomous controllers which collect such calibration data and calculate statistics as well as control sparse data scans. Straightforward improvements in programming technology should move the entire calibration into these local controllers, so that calibration and testing time will be a constant independent of the number of channels in a system. Considerable programming effort may be saved by emphasizing the similarities of the subsystems, so that the subsystems can be described by a reasonable database and general purpose calibration and test routines can be used. Monitoring of the apparatus will probably continue to be of two classes: "passive" histogramming of channel occupancies and other more complex combinations of the data; and "active" injection of test patterns and calibration signals during a run. The relative importance of active monitoring will increase for the low data rates expected off resonances at high s. Experience at SPEAR and PEP is used to illustrate these approaches.

  6. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  7. Landslide Geohazard Monitoring, Early Warning and Stabilization Control Methods

    Science.gov (United States)

    Bednarczyk, Zbigniew

    2014-03-01

    This paper is a presentation of landslide monitoring, early warning and remediation methods recommended for the Polish Carpathians. Instrumentation included standard and automatic on-line measurements with the real-time transfer of data to an Internet web server. The research was funded through EU Innovative Economy Programme and also by the SOPO Landslide Counteraction Project. The landslides investigated were characterized by relatively low rates of the displacements. These ranged from a few millimetres to several centimetres per year. Colluviums of clayey flysch deposits were of a soil-rock type with a very high plasticity and moisture content. The instrumentation consisted of 23 standard inclinometers set to depths of 5-21 m. The starting point of monitoring measurements was in January 2006. These were performed every 1-2 months over the period of 8 years. The measurements taken detected displacements from several millimetres to 40 cm set at a depth of 1-17 m. The modern, on-line monitoring and early warning system was installed in May 2010. The system is the first of its kind in Poland and only one of several such real-time systems in the world. The installation was working with the Local Road Authority in Gorlice. It contained three automatic field stations for investigation of landslide parameters to depths of 12-16 m and weather station. In-place tilt transducers and innovative 3D continuous inclinometer systems with sensors located every 0.5 m were used. It has the possibility of measuring a much greater range of movements compared to standard systems. The conventional and real-time data obtained provided a better recognition of the triggering parameters and the control of geohazard stabilizations. The monitoring methods chosen supplemented by numerical modelling could lead to more reliable forecasting of such landslides and could thus provide better control and landslide remediation possibilities also to stabilization works which prevent landslides.

  8. Landslide Geohazard Monitoring, Early Warning and Stabilization Control Methods

    Directory of Open Access Journals (Sweden)

    Bednarczyk Zbigniew

    2014-03-01

    Full Text Available This paper is a presentation of landslide monitoring, early warning and remediation methods recommended for the Polish Carpathians. Instrumentation included standard and automatic on-line measurements with the real-time transfer of data to an Internet web server. The research was funded through EU Innovative Economy Programme and also by the SOPO Landslide Counteraction Project. The landslides investigated were characterized by relatively low rates of the displacements. These ranged from a few millimetres to several centimetres per year. Colluviums of clayey flysch deposits were of a soil-rock type with a very high plasticity and moisture content. The instrumentation consisted of 23 standard inclinometers set to depths of 5-21 m. The starting point of monitoring measurements was in January 2006. These were performed every 1-2 months over the period of 8 years. The measurements taken detected displacements from several millimetres to 40 cm set at a depth of 1-17 m. The modern, on-line monitoring and early warning system was installed in May 2010. The system is the first of its kind in Poland and only one of several such real-time systems in the world. The installation was working with the Local Road Authority in Gorlice. It contained three automatic field stations for investigation of landslide parameters to depths of 12-16 m and weather station. In-place tilt transducers and innovative 3D continuous inclinometer systems with sensors located every 0.5 m were used. It has the possibility of measuring a much greater range of movements compared to standard systems. The conventional and real-time data obtained provided a better recognition of the triggering parameters and the control of geohazard stabilizations. The monitoring methods chosen supplemented by numerical modelling could lead to more reliable forecasting of such landslides and could thus provide better control and landslide remediation possibilities also to stabilization works which

  9. Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel

    Science.gov (United States)

    Willem J.D. van Leeuwen; Grant M. Casady; Daniel G. Neary; Susana Bautista; Jose Antonio Alloza; Yohay Carmel; Lea Wittenberg; Dan Malkinson; Barron J. Orr

    2010-01-01

    Due to the challenges faced by resource managers in maintaining post-fire ecosystem health, there is a need for methods to assess the ecological consequences of disturbances. This research examines an approach for assessing changes in post-fire vegetation dynamics for sites in Spain, Israel and the USA that burned in 1998, 1999 and 2002 respectively. Moderate...

  10. TFTR neutral beam control and monitoring for DT operations

    International Nuclear Information System (INIS)

    O'Connor, T.; Kamperschroer, J.; Chu, J.

    1995-01-01

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were also added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions

  11. BWR control rod drive scram pilot valve monitoring system

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1984-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechancial works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the ''insert'' side of the control rod piston and vents the ''withdraw'' side of the piston causing the rods to insert during a scam. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a ''half scram'', a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  12. BWR control rod drive scram pilot valve monitoring program

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1986-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechanical works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the insert side of the control rod piston and vents the withdraw side of the piston causing the rods to insert during a scram. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a half scram, a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  13. Cyber security for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: dave.trask@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Jung, C. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); MacDonald, M., E-mail: marienna.macdonald@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  14. Cyber security for remote monitoring and control of small reactors

    International Nuclear Information System (INIS)

    Trask, D.; Jung, C.; MacDonald, M.

    2014-01-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  15. SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands

    Directory of Open Access Journals (Sweden)

    Olena Dubovyk

    2015-05-01

    Full Text Available Acquiring multi-temporal spatial information on vegetation condition at scales appropriate for site-specific agricultural management is often complicated by the need for meticulous field measurements. Understanding spatial/temporal crop cover heterogeneity within irrigated croplands may support sustainable land use, specifically in areas affected by land degradation due to secondary soil salinization. This study demonstrates the use of multi-temporal, high spatial resolution (10 m SPOT-4/5 image data in an integrated change vector analysis and spectral mixture analysis (CVA-SMA procedure. This procedure was implemented with the principal objective of mapping sub-field vegetation cover dynamics in irrigated lowland areas within the lowerlands of the Amu Darya River. CVA intensity and direction were calculated separately for the periods of 1998–2006 and 2006–2010. Cumulative change intensity and the overall directional trend were also derived for the entire observation period of 1998–2010. Results show that most of the vector changes were observed between 1998 and 2006; persistent conditions were seen within the study region during the 2006–2010 period. A decreasing vegetation cover trend was identified within 38% of arable land. Areas of decreasing vegetation cover were located principally in the irrigation system periphery where deficient water supply and low soil quality lead to substandard crop development. During the 2006–2010 timeframe, degraded crop cover conditions persisted in 37% of arable land. Vegetation cover increased in 25% of the arable land where irrigation water supply was adequate. This high sub-field crop performance spatial heterogeneity clearly indicates that current land management practices are inefficient. Such information can provide the basis for implementing and adapting irrigation applications and salt leaching techniques to site-specific conditions and thereby make a significant contribution to sustainable

  16. Selection of candidate salad vegetables for controlled ecological life support system

    Science.gov (United States)

    Qin, L.; Guo, S.; Ai, W.; Tang, Y.

    Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol-1) and another which used various light intensities (100, 300, 500 and 700 μmol m-2 s-1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.

  17. MODERN INSTRUMENTAL METHODS TO CONTROL THE SEED QUALITY IN ROOT VEGETABLES

    Directory of Open Access Journals (Sweden)

    F. B. Musaev

    2017-01-01

    Full Text Available The standard methods of analysis don’t meet all modern requirements to determine the seed a quality. These methods can’t unveil inner deficiencies that are very important to control seed viability. The capabilities of new instrumental method to analyze the seed quality of root vegetables were regarded in the article. The method of micro-focus radiography is distinguished from other existing methods by more sensitivity, rapidity and easiness to be performed. Based on practical importance the visualization of inner seed structure, it allows determining far before seed germination the degree of endosperm development and embryo; the presence of inner damages and infections, occupation and damage caused by pests. The use of micro-focus radiography enables to detect the degree of seed quality difference for some traits such as monogermity and self-fertilization that are economically valuable for breeding program in red beet. With the aid of the method the level of seed development, damage and inner deficiencies in carrot and parsnip can be revealed. In X-ray projection seeds of inbred lines of radish significantly differed from variety population ones for their underdevelopment in the inner structure. The advantage of the method is that seeds rest undamaged after quality analyzing and both can be used for further examination with the use of other methods or be sown; that is quite important for breeders, when handling with small quantity or collectable plant breeding material. The results radiography analyses can be saved and archived that enables to watch for seed qualities in dynamic; this data can be also used at possible arbitration cases. 

  18. The CMS ECAL database services for detector control and monitoring

    International Nuclear Information System (INIS)

    Arcidiacono, Roberta; Marone, Matteo; Badgett, William

    2010-01-01

    In this paper we give a description of the database services for the control and monitoring of the electromagnetic calorimeter of the CMS experiment at LHC. After a general description of the software infrastructure, we present the organization of the tables in the database, that has been designed in order to simplify the development of software interfaces. This feature is achieved including in the database the description of each relevant table. We also give some estimation about the final size and performance of the system.

  19. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    BARNES, D.A.

    2000-06-01

    The purpose of this document is to describe tests performed to validate Revision 12.0 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be communicating to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

  20. Scanner baseliner monitoring and control in high volume manufacturing

    Science.gov (United States)

    Samudrala, Pavan; Chung, Woong Jae; Aung, Nyan; Subramany, Lokesh; Gao, Haiyong; Gomez, Juan-Manuel

    2016-03-01

    We analyze performance of different customized models on baseliner overlay data and demonstrate the reduction in overlay residuals by ~10%. Smart Sampling sets were assessed and compared with the full wafer measurements. We found that performance of the grid can still be maintained by going to one-third of total sampling points, while reducing metrology time by 60%. We also demonstrate the feasibility of achieving time to time matching using scanner fleet manager and thus identify the tool drifts even when the tool monitoring controls are within spec limits. We also explore the scanner feedback constant variation with illumination sources.

  1. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    BARNES, D.A.

    2000-01-01

    The purpose of this document is to describe tests performed to validate Revision 12.0 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be communicating to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  2. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    WANDLING, R.R.

    1999-01-01

    The purpose of this document is to describe tests performed to validate Revision 11.2 of the TMACS Monitor and Control System (TMCACS) and verify that the software functions as intended by design. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  3. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    Science.gov (United States)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an

  4. Predicting, monitoring and controlling geomechanical effects of CO2 injection

    International Nuclear Information System (INIS)

    Streit, J.E.; Siggins, A.F.

    2005-01-01

    A key objective of geological carbon dioxide (CO 2 ) storage in porous rock is long-term subsurface containment of CO 2 . Fault stability and maximum sustainable pore-fluid pressures should be estimated in geomechanical studies in order to avoid damage to reservoir seals and fault seals of storage sites during CO 2 injection. Such analyses rely on predicting the evolution of effective stresses in rocks and faults during CO 2 injection. However, geomechanical analyses frequently do not incorporate poroelastic behaviour of reservoir rock, as relevant poroelastic properties are rarely known. The knowledge of rock poroelastic properties would allow the use of seismic methods for the accurate measurement of the effective stress evolution during CO 2 injection. This paper discussed key geomechanical effects of CO 2 injection into porous rock, and in particular, focused on the effects that the poroelasticity of reservoir rocks and pore pressure/stress coupling have on effective stresses. Relevant geophysical monitoring techniques were also suggested. The paper also outlined how these techniques could be applied to measure stress changes related to poroelastic rock behaviour during CO 2 injection and to test the predictions of sustainable changes in effective stress in CO 2 storage sites. It was concluded that a combination of predictive geomechanical techniques and application of geophysical monitoring techniques is a valid new concept for controlling and monitoring the geomechanical effects of CO 2 storage. 36 refs., 5 figs

  5. [Stages of change related to fruit and vegetables consumption, physical activity, and weight control in Chilean university students].

    Science.gov (United States)

    Mardones H, María Angélica; Olivares C, Sonia; Araneda F, Jacqueline; Gómez F, Nelly

    2009-09-01

    In order to design effective health promotion interventions, nutritional status and the stages of change related to the consumption of fruit and vegetables, physical activity, and weight control were determined in 955 students of both genders at the University of Bio-Bio, Chile. The sample was randomly selected by campus, faculty, and career, with a level of confidence of 95% and a maximum error of 3%. Beside the descriptive analysis, to evaluate the association among nutritional status, fruit and vegetables consumption, physical activity and weight control, Chi2 test was applied. Nutritional status was determined by Body Mass Index and WHO reference standards for adults. A questionnaire previously validated by INTA was applied to evaluate the stages of change. The prevalence of overweight and obesity reached 48.2% in men and 25.5% in women (pphysical activity regularly (pphysical activity.

  6. Evaluation of the impact of a school gardening intervention on children's fruit and vegetable intake: a randomised controlled trial.

    Science.gov (United States)

    Christian, Meaghan S; Evans, Charlotte El; Nykjaer, Camilla; Hancock, Neil; Cade, Janet E

    2014-08-16

    Current academic literature suggests that school gardening programmes can provide an interactive environment with the potential to change children's fruit and vegetable intake. This is the first cluster randomised controlled trial (RCT) designed to evaluate whether a school gardening programme can have an effect on children's fruit and vegetable intake. The trial included children from 23 schools; these schools were randomised into two groups, one to receive the Royal Horticultural Society (RHS)-led intervention and the other to receive the less involved Teacher-led intervention. A 24-hour food diary (CADET) was used to collect baseline and follow-up dietary intake 18 months apart. Questionnaires were also administered to evaluate the intervention implementation. A total of 641 children completed the trial with a mean age of 8.1 years (95% CI: 8.0, 8.4). The unadjusted results from multilevel regression analysis revealed that for combined daily fruit and vegetable intake the Teacher-led group had a higher daily mean change of 8 g (95% CI: -19, 36) compared to the RHS-led group -32 g (95% CI: -60, -3). However, after adjusting for possible confounders this difference was not significant (intervention effect: -40 g, 95% CI: -88, 1; p = 0.06). The adjusted analysis of process measures identified that if schools improved their gardening score by 3 levels (a measure of school gardening involvement - the scale has 6 levels from 0 'no garden' to 5 'community involvement'), irrespective of group allocation, children had, on average, a daily increase of 81 g of fruit and vegetable intake (95% CI: 0, 163; p = 0.05) compared to schools that had no change in gardening score. This study is the first cluster randomised controlled trial designed to evaluate a school gardening intervention. The results have found very little evidence to support the claims that school gardening alone can improve children's daily fruit and vegetable intake. However, when a gardening

  7. Technology evaluation of control/monitoring systems for MIUS application. [utility services management

    Science.gov (United States)

    Pringle, L. M., Jr.

    1974-01-01

    Potential ways of providing control and monitoring for the Modular Integrated Utility System (MIUS) program are elaborated. Control and monitoring hardware and operational systems are described. The requirements for the MIUS program and the development requirements are discussed.

  8. Toxoplasma gondii infection in workers occupationally exposed to unwashed raw fruits and vegetables: a case control seroprevalence study

    Directory of Open Access Journals (Sweden)

    Alvarado-Esquivel Cosme

    2011-12-01

    Full Text Available Abstract Background Through a case control seroprevalence study, we sought to determine the association of Toxoplasma gondii infection with occupational exposure to unwashed raw fruits and vegetables. Methods Subjects, numbering 200, who worked growing or selling fruits and vegetables, and 400 control subjects matched by age, gender, and residence were examined by enzyme immunoassays for the presence of anti-Toxoplasma IgG and IgM antibodies. Socio-demographic, clinical, and behavioral characteristics from the study subjects were obtained. Results Of the 200 fruit and vegetable workers, 15 (7.5% of whom, and 31 (7.8% of the 400 controls were positive for anti-Toxoplasma IgG antibodies (P = 0.96. Anti-Toxoplasma IgM antibodies were found in 2 (1% of the fruit workers and in 11 (2.8% of the control subjects (P = 0.23. Seroprevalence of Toxoplasma antibodies increased with age (P = 0.0004. In addition, seropositivity to Toxoplasma was associated with ill status (P = 0.04, chronic tonsillitis (P = 0.03, and reflex impairment (P = 0.03. Multivariate analysis showed that Toxoplasma infection was associated with consumption of raw meat (OR = 5.77; 95% CI: 1.15-28.79; P = 0.03, unwashed raw fruits (OR = 2.50; 95% CI: 1.11-5.63; P = 0.02, and living in a house with soil floors (OR = 3.10; 95% CI: 1.22-7.88; P = 0.01, whereas Toxoplasma infection was negatively associated with traveling abroad (OR = 0.28; 95% CI: 0.12-0.67; P = 0.005. Conclusions This is the first report of seroprevalence and contributing factors for Toxoplasma infection in workers occupationally exposed to unwashed raw fruits and vegetables, and the results may help in the design of optimal preventive measures against Toxoplasma infection especially in female workers at reproductive age.

  9. Power, leadership and control of the distribution companies in the export of fresh vegetables from Sinaloa, México

    Directory of Open Access Journals (Sweden)

    Ezequiel Avilés Ochoa

    2012-05-01

    Full Text Available A key concept in the construction of the paradigm of global value chains is governance, for its constitution the variables of power, leadership and control are essential. The research focuses on Sinaloa vegetable distributors in the U.S.A. market, which reveals the interaction between regions of different countries for the formation of a horticultural value chain. The result is an index that defines which of the actors, involved in the fresh produce trade, practices more governance.

  10. Biowaste home composting: experimental process monitoring and quality control.

    Science.gov (United States)

    Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo

    2015-04-01

    Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental

  11. Greater intake of fruit and vegetables is associated with a lower risk of osteoporotic hip fractures in elderly Chinese: a 1:1 matched case-control study.

    Science.gov (United States)

    Xie, H-L; Wu, B-H; Xue, W-Q; He, M-G; Fan, F; Ouyang, W-F; Tu, S-L; Zhu, H-L; Chen, Y-M

    2013-11-01

    In this case-control study, we examined the relationship between the consumption of fruit and vegetables and risk of hip fractures in 646 pairs of incident cases and controls in elderly Chinese. We found that greater consumption of both fruit and vegetables in men and vegetables in women was associated with a lower risk of osteoporotic hip fractures in elderly Chinese. The association between fruit and vegetable consumption and the risk of osteoporotic fractures remains controversial due to limited published evidence. The purpose of this study was to determine whether consuming fruits and vegetables has a protective effect against hip fractures. Between January 2008 and December 2012, 646 (162 males, 484 females) incident cases (70.9 ± 6.8 years) of hip fractures were enrolled from five hospitals, with 646 sex- and age-matched (±3 years) controls (70.7 ± 6.8 years) from hospitals or the community. Face-to-face interviews were conducted to assess habitual dietary intakes using a 79-item food frequency questionnaire and various covariates by structured questionnaires. Multivariate conditional logistic regression analyses showed dose-dependent inverse correlations between the intake of total fruit (p-trend = 0.014), total vegetables (p-trend fruits and vegetables combined (p-trend fruits, vegetables and the combination of fruits and vegetables were 0.53 (0.32-0.87), 0.37 (0.23-0.60) and 0.25 (0.15-0.41), respectively. Stratified analyses showed that the benefits remained significant in males (p = 0.001) but not in females (p = 0.210) (p-interaction 0.045). Among the subcategories of fruits and vegetables, similar associations were observed for all subgroups except light-coloured fruits. Our findings suggest that greater consumption of both fruits and vegetables in men and vegetables in women may decrease the risk of osteoporotic hip fractures in elderly Chinese.

  12. AVL and Monitoring for Massive Traffic Control System over DDS

    Directory of Open Access Journals (Sweden)

    Basem Almadani

    2015-01-01

    Full Text Available This paper proposes a real-time Automatic Vehicle Location (AVL and monitoring system for traffic control of pilgrims coming towards the city of Makkah in Saudi Arabia based on Data Distribution Service (DDS specified by the Object Management Group (OMG. DDS based middleware employs Real-Time Publish/Subscribe (RTPS protocol that implements many-to-many communication paradigm suitable in massive traffic control applications. Using this middleware approach, we are able to locate and track huge number of mobile vehicles and identify all passengers in real-time who are coming to perform annual Hajj. For validation of our proposed framework, various performance matrices are examined over WLAN using DDS. Results show that DDS based middleware can meet real-time requirements in large-scale AVL environment.

  13. Application of Risk Management for Control and Monitoring Systems

    CERN Document Server

    Grau, S; Balda, F; Chouvelon, A

    2001-01-01

    This paper presents an application of the state of the art and new trends for risk management of safety-related control and monitoring systems, currently applied in the industry. These techniques not only enable to manage safety and reliability issues but they also help in the control of quality and economic factors affected by the availability and maintenance of the system. The method includes an unambiguous definition of the system in terms of functions and a systematic analysis of hazardous situations, undesired events and possible malfunctions. It also includes the identification and quantification of the risk associated to the system. The required risk reduction is specified in terms of safety integrity levels. The safety integrity level results in requirements, preventive measures, possible improvements and recommendations to assure the satisfactory management of the risk.

  14. Using RapidEye and MODIS Data Fusion to Monitor Vegetation Dynamics in Semi-Arid Rangelands in South Africa

    Directory of Open Access Journals (Sweden)

    Andreas Tewes

    2015-05-01

    Full Text Available Image time series of high temporal and spatial resolution capture land surface dynamics of heterogeneous landscapes. We applied the ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model algorithm to multi-spectral images covering two semi-arid heterogeneous rangeland study sites located in South Africa. MODIS 250 m resolution and RapidEye 5 m resolution images were fused to produce synthetic RapidEye images, from June 2011 to July 2012. We evaluated the performance of the algorithm by comparing predicted surface reflectance values to real RapidEye images. Our results show that ESTARFM predictions are accurate, with a coefficient of determination for the red band 0.80 < R2 < 0.92, and for the near-infrared band 0.83 < R2 < 0.93, a mean relative bias between 6% and 12% for the red band and 4% to 9% in the near-infrared band. Heterogeneous vegetation at sub-MODIS resolution is captured adequately: A comparison of NDVI time series derived from RapidEye and ESTARFM data shows that the characteristic phenological dynamics of different vegetation types are reproduced well. We conclude that the ESTARFM algorithm allows us to produce synthetic remote sensing images at high spatial combined with high temporal resolution and so provides valuable information on vegetation dynamics in semi-arid, heterogeneous rangeland landscapes.

  15. Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas

    Directory of Open Access Journals (Sweden)

    Luyi Sun

    2016-08-01

    Full Text Available Sub-Pixel Offset Tracking (sPOT is applied to derive high-resolution centimetre-level landslide rates in the Three Gorges Region of China using TerraSAR-X Hi-resolution Spotlight (TSX HS space-borne SAR images. These results contrast sharply with previous use of conventional differential Interferometric Synthetic Aperture Radar (DInSAR techniques in areas with steep slopes, dense vegetation and large variability in water vapour which indicated around 12% phase coherent coverage. By contrast, sPOT is capable of measuring two dimensional deformation of large gradient over steeply sloped areas covered in dense vegetation. Previous applications of sPOT in this region relies on corner reflectors (CRs, (high coherence features to obtain reliable measurements. However, CRs are expensive and difficult to install, especially in remote areas; and other potential high coherence features comparable with CRs are very few and outside the landslide boundary. The resultant sub-pixel level deformation field can be statistically analysed to yield multi-modal maps of deformation regions. This approach is shown to have a significant impact when compared with previous offset tracking measurements of landslide deformation, as it is demonstrated that sPOT can be applied even in densely vegetated terrain without relying on high-contrast surface features or requiring any de-noising process.

  16. Smart Rack Monitor for the Linac control system

    International Nuclear Information System (INIS)

    Shtirbu, S.; Goodwin, R.W.; McCrory, E.S.; Shea, M.F.

    1991-01-01

    The Smart Rack Monitor (SRM) is a low-cost, one board, data-acquisition module for the upgraded Linac control system at Fermilab. The SRM is based on the Motorola MC68332 microcontroller in the Business Card Computer (BCC) configuration. It is connected to the Linac local control station (to be referred to as Local Station) by an Arcnet LAN, and can be located close to the controlled hardware. Each Local Station is connected to several SRMs. The SRM has 64 A-D channels, sixteen D-A channels, and eight bytes of digital I/O on the mother board. Software Components Group's pSOS is the SRM's kernel. The SRM's software is cross-developed on VAX/VMS in C. The SRM does not have an attached console and is fully controlled by the Local Station. It performs data acquisition and settings, as directed by the Local Station. Its existence is transparent to the rest of the control system. The SRM supports code updates downloading from the VAX, through the Local Station

  17. A Low Cost Sensor Controller for Health Monitoring

    Science.gov (United States)

    Birbas, M.; Petrellis, N.; Gioulekas, F.

    2015-09-01

    Aging population can benefit from health care systems that allow their health and daily life to be monitored by expert medical staff. Blood pressure, temperature measurements or more advanced tests like Electrocardiograms (ECG) can be ordered through such a healthcare system while urgent situations can be detected and alleviated on time. The results of these tests can be stored with security in a remote cloud or database. Such systems are often used to monitor non-life threatening patient health problems and their advantage in lowering the cost of the healthcare services is obvious. A low cost commercial medical sensor kit has been used in the present work, trying to improve the accuracy and stability of the sensor measurements, the power consumption, etc. This Sensor Controller communicates with a Gateway installed in the patient's residence and a tablet or smart phone used for giving instructions to the patient through a comprehensive user interface. A flexible communication protocol has been defined supporting any short or long term sensor sampling scenario. The experimental results show that it is possible to achieve low power consumption by applying apropriate sleep intervals to the Sensor Controller and by deactivating periodically some of its functionality.

  18. Intermittent Small Baseline Subset (ISBAS) InSAR of rural and vegetated terrain: a new method to monitor land motion applied to peatlands in Wales, UK

    Science.gov (United States)

    Cigna, Francesca; Rawlins, Barry G.; Jordan, Colm J.; Sowter, Andrew; Evans, Christopher D.

    2014-05-01

    It is renowned that the success of multi-interferometric Synthetic Aperture Radar (SAR) methods such as Persistent Scatterer Interferometry (PSI) and Small BASeline Subset (SBAS) is controlled by not only the availability of data, but also local topography and land cover. Locations with sufficient temporal phase stability and coherence are typically limited to either built-up, urban areas or areas of exposed bedrock. Whilst conventional PSI and SBAS approaches have limited potential to monitor surface motions in areas where few (or zero) scatterers or coherent targets exist, the newly developed Intermittent SBAS (ISBAS) technique (Sowter et al. 2013) can fill the gap by providing a more complete picture of ground movement in rural and vegetated regions. ISBAS is a small baseline, multi-look, coherent target method, which considers the intermittent coherence of rural areas and can work over a wide range of land cover classes including agriculture and grassland. Building upon a nationwide study that the British Geological Survey (BGS) undertook to assess the feasibility of InSAR techniques to monitor the landmass of Great Britain (Cigna et al. 2013), we identified a rural region in North Wales as an appropriate target area to evaluate the efficacy of ISBAS, where conventional SBAS and PSI approaches are unlikely to succeed. According to the UK Land Cover Map 2007 (LCM2007) from the Centre for Ecology & Hydrology (CEH), this area is dominated by improved and acid grassland, heather, bog and coniferous woodland, which are likely to result into extremely low PSI or SBAS point densities and sparse coverage of monitoring results. We employed 53 ERS-1/2 C-band (5.3GHz frequency) SAR data acquired in descending mode between 1993 and 2000, which were made available to BGS via the ESA Category 1 project id.13543. In the framework of the Glastir Monitoring & Evaluation Programme (Emmett et al. 2013), funded by the Welsh Government, we processed these using ISBAS covering a 4

  19. The use of autecological and environmental parameters for establishing the status of lichen vegetation in a baseline study for a long-term monitoring survey

    International Nuclear Information System (INIS)

    Gombert, S.; Asta, J.; Seaward, M.R.D.

    2005-01-01

    In 1997 the ecological characteristics of the epiphytic species (83 lichens and two algae) of an urban area (Grenoble, France) were determined. Seven autecological indices were used to characterize the lichen ecology: illumination index, humidity index, pH of bark, nutrient status of substratum, ecological index of IAP and frequency. Six clusters (A1-A6) were defined using cluster analysis and principal component analysis. Seven environmental parameters characterizing the stations and the lichen releves were also used: elevation, parameters of artificiality (urbanization, traffic and local land use), IAP, and the percentage of nitrophytic and acidophytic species. Six clusters (B1-B6) were defined using cluster analysis and canonical correspondence analysis. Four clusters (C1-C4) were finally defined using an empirical integrated method combining the autecological and environmental parameters. This final clustering which established the status of the lichen vegetation in 1997 can be reliably used as a baseline study to effectively monitor environmental changes in this urban area. - Ecological clustering which establishes the status of lichen vegetation can be reliably used as a baseline study to monitor environmental changes

  20. Phosphorus Characteristics with Controlled Nitrogen in Fertile Soils in Protected Vegetable Field

    Directory of Open Access Journals (Sweden)

    WANG Heng

    2014-06-01

    Full Text Available There is an unreasonable phenomenon of fertilization in vegetable facility cultivation, with the serious imbalance of soil nutrient. In purpose of understanding the absorption characteristics of phosphorus from nitrogen-rich soil, a long-term nitrogen-controlled experiment was carried from the year 2004 to 2007, and a split plot experiment of leaching was carried in winter-spring season of 2007. The results showed that the content of phosphorus varied with different nitrogen control. The TP was decreased with nitrogen supply of none(NN 、organic manure(MN 、organic manure and straw(MN+S, and the decreased range was NN>MN>MN+S, meanwhile the increase range of TP was traditional-nitrogen(CN >traditional-nitrogen+straw(CN+S >optimized-nitrogen+straw(SN+S >optimized-nitrogen(SN. The available P with CN and CN+S reached to 213.7 mg· kg -1 、225.4 mg·kg -1, which increased by 17.1 percent and 23.5 percent, which declared the phosphorus was accumulated; The available P with other nitrogen controlled decreased with the range of NN>MN>MN+S>SN+S>SN跃CN>CN+S, which showed that the supply reduction of nitrogen could slowdown the phosphorus accumulated and promote the utilization ratio of phosphorus. The organophosphorus was increased except NN, with obvious increase with CN、CN+S(308.4 mg·kg -1 、331.4 mg·kg -1 by 28.5 percent and 38.2 percent. The absorption coefficient of phosphorus with SN+S(P 2 O 5,mg· 100 g -1 reached to 1 571, increased by 143.6 percent; Otherwise the absorption coefficient of phosphorus with CN、CN+S showed negative growth, the CN dipped to 416(P 2 O 5,mg·100 g -1 by 35.5 percent. Adding wheat straw could greatly improved the capacity of absorption of phosphorus and slow down the accumulation of available phosphorus to some extent. The concentrations of total phosphorus in the filtrate with SN+S were less than SN, contrary to the concentration of organophosphorus, thus the straw returning had a certain effect on

  1. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    Directory of Open Access Journals (Sweden)

    Nicholas R Vaughn

    Full Text Available Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  2. Vegetation role in controlling the ecoenvironmental conditions for sustainable urban environments: a comparison of Beijing and Islamabad

    Science.gov (United States)

    Naeem, Shahid; Cao, Chunxiang; Waqar, Mirza Muhammad; Wei, Chen; Acharya, Bipin Kumar

    2018-01-01

    The rapid increase in urbanization due to population growth leads to the degradation of vegetation in major cities. This study investigated the spatial patterns of the ecoenvironmental conditions of inhabitants of two distinct Asian capital cities, Beijing of China and Islamabad of Pakistan, by utilizing Earth observation data products. The significance of urban vegetation for the cooling effect was studied in local climate zones, i.e., urban, suburban, and rural areas within 1-km2 quantiles. Landsat-8 (OLI) and Gaofen-1 satellite imagery were used to assess vegetation cover and land surface temperature, while population datasets were used to evaluate environmental impact. Comparatively, a higher cooling effect of vegetation presence was observed in rural and suburban zones of Beijing as compared to Islamabad, while the urban zone of Islamabad was found comparatively cooler than Beijing's urban zone. The urban thermal field variance index calculated from satellite imagery was ranked into the ecological evaluation index. The worst ecoenvironmental conditions were found in urban zones of both cities where the fraction of vegetation is very low. Meanwhile, this condition is more serious in Beijing, as more than 90% of the total population is living under the worst ecoenvironment conditions, while only 7% of the population is enjoying comfortable conditions. Ecoenvironmental conditions of Islamabad are comparatively better than Beijing where ˜61% of the total population live under the worst ecoenvironmental conditions, and ˜24% are living under good conditions. Thus, Islamabad at this early growth stage can learn from Beijing's ecoenvironmental conditions to improve the quality of living by controlling the associated factors in the future.

  3. Controlling the frying stability of vegetable oils with tocopherols and phytosterols

    Science.gov (United States)

    Polyunsaturated vegetable oils are usually oxidatively stable for salad oils; however, in high stability applications such as frying, these oils are not resistant to the deteriorative processes of oxidation, hydrolysis and polymerization. To solve this problem in the past, oils were hydrogenated an...

  4. Different methods for control and comparison of the antioxidant properties of vegetables

    Czech Academy of Sciences Publication Activity Database

    Číž, Milan; Čížová, Hana; Denev, P.; Kratchanova, M.; Slavov, A.; Lojek, Antonín

    2010-01-01

    Roč. 21, č. 4 (2010), s. 518-523 ISSN 0956-7135 R&D Projects: GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : antioxidant activity * polyphenols * vegetables Subject RIV: BO - Biophysics Impact factor: 2.812, year: 2010

  5. Soil amendments promote vegetation establishment and control acidity in coal combustion waste

    Science.gov (United States)

    R.M. Danker; D.C. Adriano; Bon-Jun Koo; C.D. Barton

    2003-01-01

    The effects of adding various soil amendments and a pyrite oxidation inhibitor to aid in the establishment of vegetation and to reduce acid drainage (AD) from coal fly ash and coal reject (FA + CR*) were assessed in an outdoor mesocosm study. Preliminary greenhouse experiments and field observations at the U.S. Department of Energy's Savannah River Site (SRS)...

  6. Dissipation of solar energy in landscape - controlled by management of water and vegetation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jan

    2001-01-01

    Roč. 24, - (2001), s. 641-645 ISSN 0960-1481 R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : Solar energy dissipation * vegetation * production -evapotranspiration Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.224, year: 2001

  7. A vegetation control on seasonal variations in global atmospheric mercury concentrations

    Science.gov (United States)

    Jiskra, Martin; Sonke, Jeroen E.; Obrist, Daniel; Bieser, Johannes; Ebinghaus, Ralf; Myhre, Cathrine Lund; Pfaffhuber, Katrine Aspmo; Wängberg, Ingvar; Kyllönen, Katriina; Worthy, Doug; Martin, Lynwill G.; Labuschagne, Casper; Mkololo, Thumeka; Ramonet, Michel; Magand, Olivier; Dommergue, Aurélien

    2018-04-01

    Anthropogenic mercury emissions are transported through the atmosphere as gaseous elemental mercury (Hg(0)) before they are deposited to Earth's surface. Strong seasonality in atmospheric Hg(0) concentrations in the Northern Hemisphere has been explained by two factors: anthropogenic Hg(0) emissions are thought to peak in winter due to higher energy consumption, and atmospheric oxidation rates of Hg(0) are faster in summer. Oxidation-driven Hg(0) seasonality should be equally pronounced in the Southern Hemisphere, which is inconsistent with observations of constant year-round Hg(0) levels. Here, we assess the role of Hg(0) uptake by vegetation as an alternative mechanism for driving Hg(0) seasonality. We find that at terrestrial sites in the Northern Hemisphere, Hg(0) co-varies with CO2, which is known to exhibit a minimum in summer when CO2 is assimilated by vegetation. The amplitude of seasonal oscillations in the atmospheric Hg(0) concentration increases with latitude and is larger at inland terrestrial sites than coastal sites. Using satellite data, we find that the photosynthetic activity of vegetation correlates with Hg(0) levels at individual sites and across continents. We suggest that terrestrial vegetation acts as a global Hg(0) pump, which can contribute to seasonal variations of atmospheric Hg(0), and that decreasing Hg(0) levels in the Northern Hemisphere over the past 20 years can be partly attributed to increased terrestrial net primary production.

  8. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhang, Li; Guo, Huadong; Ji, Lei; Lei, Liping; Wang, Cuizhen; Yan, Dongmei; Li, Bin; Li, Jing

    2013-01-01

    The Qinghai-Tibetan Plateau has been experiencing a distinct warming trend, and climate warming has a direct and quick impact on the alpine grassland ecosystem. We detected the greenness trend of the grasslands in the plateau using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2009. Weather station data were used to explore the climatic drivers for vegetation greenness variations. The results demonstrated that the region-wide averaged normalized difference vegetation index (NDVI) increased at a rate of 0.036  yr−1. Approximately 20% of the vegetation areas, which were primarily located in the northeastern plateau, exhibited significant NDVI increase trend (p-value plateau. A strong positive relationship between NDVI and precipitation, especially in the northeastern plateau, suggested that precipitation was a favorable factor for the grassland NDVI. Negative correlations between NDVI and temperature, especially in the southern plateau, indicated that higher temperature adversely affected the grassland growth. Although a warming climate was expected to be beneficial to the vegetation growth in cold regions, the grasslands in the central and southwestern plateau showed a decrease in trends influenced by increased temperature coupled with decreased precipitation.

  9. Fire as a method of controlling macchia (Fynos) vegetation on the ...

    African Journals Online (AJOL)

    Earlier research on eradicating macchia (fynbos) vegetation on the Amatole Mountains showed that both the lowland and highland macchia communities were re-established from coppice growth and seedlings. Follow-up burning treatments were, therefore, applied following eradication. In the lowland macchia, burning two ...

  10. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuß, E.; Schouten, S.; Jansen, J.H.F.

    2003-01-01

    The dominant forcing factors for past large-scale changes in vegetation are widely debated. Changes in the distribution of C4 plants adapted to warm, dry conditions and low atmospheric CO2 concentrations have been attributed to marked changes in environmental conditions, but the relative impacts of

  11. Guidelines to validate control of cross-contamination during washing of fresh-cut leafy vegetables

    Science.gov (United States)

    The U.S. Food and Drug Administration requires food processors to implement and validate processes that will result in significantly minimizing or preventing the occurrence of hazards that are likely to occur in food production. During production of fresh-cut leafy vegetables, microbial contaminati...

  12. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

    DEFF Research Database (Denmark)

    Law, B.E.; Falge, E.; Gu, L.

    2002-01-01

    The objective of this research was to compare seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and to investigating the responses of vegetation to environmental variables....

  13. Topographic and geomorphologic controls on the distribution of vegetation formations in Elephant Point (Livingston Island, Maritime Antarctica).

    Science.gov (United States)

    Ruiz-Fernández, Jesús; Oliva, Marc; García-Hernández, Cristina

    2017-06-01

    This article focuses on the spatial distribution of vegetation formations in Elephant Point, an ice-free area of 1.16km 2 located in Livingston Island (South Shetland Islands, Antarctica). Fieldwork carried out in January 2014 consisted of floristic surveys and designation of a vegetation map. We have examined these data in a GIS environment together with topographical and geomorphological features existing in the peninsula in order to infer the factors controlling vegetation distribution. This has allowed quantifying the total area covered by the four different vegetation formations distributed across the peninsula, proliferating mainly on bedrock plateaus and Holocene raised beaches. Grass formation is essentially composed of Deschampsia antarctica, distributed almost exclusively on raised beaches, and covering 4.1% of the ice-free surface. The remaining three formations are fundamentally composed of cryptogam species. The first of which is fruticose lichen and moss formation, present on high bedrock plateaus and principally formed by lichens such as Usnea aurantiaco-atra. The next is the crustose lichen formation, spreading on bedrock plateaus near the coast populated by bird colonies. In this case, ornitocoprophilous lichens such as Caloplaca regalis, Xanthoria elegans and Haematomma erythromma are predominant. Together, both formations have colonised 5.1% of the peninsula. The last variety, moss carpet and moss cushion formation, occupies 1.4% of the deglaciated surface, spreading primarily in flooded areas, stabilised talus slopes, and bedrock plateaus as well. Therefore, the total surface colonised by vegetation is 12.2ha, which comprises 10.5% of the peninsula. Due to the retreat of the Rotch Dome glacier, 20.1ha remain ice-free since 1956 (17.3% of the deglaciated area). Ever since, even though the Antarctic Peninsula has registered one of the most significant temperature rises on Earth, vegetation has only colonised 0.04ha of this new space, which merely

  14. [Influence of three types of riparian vegetation on fluvial erosion control in Pantanos de Centla, Mexico].

    Science.gov (United States)

    Sepúlveda-Lozada, Alejandra; Geissen, Violette; Ochoa-Gaona, Susana; Jarquín-Sánchez, Aarón; de la Cruz, Simón Hernández; Capetillo, Edward; Zamora-Cornelio, Luis Felipe

    2009-12-01

    Wetlands constitute very important ecological areas. The aim of this study was to quantify the soil losses due to fluvial erosion from 2006 to 2008 in two riverbanks under three types of vegetal coverage dominated by Haematoxylum campechianum, Dalbergia brownei and Brachiaria mutica, in the Pantanos de Centla Biosphere Reserve, SE Mexico. The relationship between the texture, organic matter and pH of soils and soil losses was evaluated. We used erosion sticks to estimate soil losses in 18 plots (three plots per type, three vegetation types, two riverbanks). Soil loss decreased in this order: H. campechianum>B. mutica>D. brownei indicating that D. brownei scrubland has the most potential to retain soil. The higher erosive impact within H. campechianum sites can be related with the low density of these trees in the study areas, as well as the lack of association with other types of vegetation that could reinforce the rooting of the soil profile. Furthermore, soil losses in H. campechianum sites were dependent on soil texture. The soils under this type of vegetal coverage were mainly sandy, which are more vulnerable to the erosive action in comparison with fine textured soils or soils with higher clay content, like the ones found in D. brownei and B. mutica sites. Soil losses of 100 % in the second year (B. mutica plots) can be attributed to the distribution of roots in the upper soil layer and also to livestock management along riverbanks. This study recognizes the importance of D. brownei scrublands in riverbank soil retention. Nevertheless it is necessary to consider the role of an entire vegetal community in future research.

  15. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control

    International Nuclear Information System (INIS)

    Létourneau, Daniel; McNiven, Andrea; Keller, Harald; Wang, An; Amin, Md Nurul; Pearce, Jim; Norrlinger, Bernhard; Jaffray, David A.

    2014-01-01

    Purpose: High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. Methods: The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3–4 times/week over a period of 10–11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ±0.5 and ±1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. Results: The precision of the MLC performance monitoring QC test and the MLC itself was within ±0.22 mm for most MLC leaves

  16. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control.

    Science.gov (United States)

    Létourneau, Daniel; Wang, An; Amin, Md Nurul; Pearce, Jim; McNiven, Andrea; Keller, Harald; Norrlinger, Bernhard; Jaffray, David A

    2014-12-01

    High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3-4 times/week over a period of 10-11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ± 0.5 and ± 1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. The precision of the MLC performance monitoring QC test and the MLC itself was within ± 0.22 mm for most MLC leaves and the majority of the

  17. Remote system for monitoring and control of controlled area of nuclear installation

    International Nuclear Information System (INIS)

    Assuncao, Daniel Gomes de; Minhoni, Danilo Carlos Rossetto; Farias, Marcos Sant'anna de; Santos, Isaac J.A. Luquetti dos

    2011-01-01

    The maintenance activities in controlled areas of nuclear facilities require adequate planning and control so that these activities do not cause to the worker an undue exposure to radioactivity. For maximum safety of workers from these places, there are standards that determine the maximum radiation dose that a worker can receive. From this context, the objective of this research is to develop a remote system that shows remotely the maintenance tasks being carried out in this work environment; monitors information provided by radiation monitoring devices installed at workplace; tracks the time to carry out scheduled maintenance, reporting alarm if this time is exceeded or not. The system has video camera, radiation monitoring device, interface card to transmit data via ethernet and graphical user interface, developed using the LABVIEW application. The principal objective is to improve the safety and to preserve the worker's health. (author)

  18. Remote system for monitoring and control of controlled area of nuclear installation

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Daniel Gomes de; Minhoni, Danilo Carlos Rossetto [Departamento de Ciencias da Administracao e Tecnologia. Centro Universitario de Araraquara (UNIARA) Araraquara, SP (Brazil); Farias, Marcos Sant' anna de; Santos, Isaac J.A. Luquetti dos, E-mail: luquetti@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio Janeiro, RJ (Brazil). Divisao de Instrumentacao e Confiabilidade Humana

    2011-07-01

    The maintenance activities in controlled areas of nuclear facilities require adequate planning and control so that these activities do not cause to the worker an undue exposure to radioactivity. For maximum safety of workers from these places, there are standards that determine the maximum radiation dose that a worker can receive. From this context, the objective of this research is to develop a remote system that shows remotely the maintenance tasks being carried out in this work environment; monitors information provided by radiation monitoring devices installed at workplace; tracks the time to carry out scheduled maintenance, reporting alarm if this time is exceeded or not. The system has video camera, radiation monitoring device, interface card to transmit data via ethernet and graphical user interface, developed using the LABVIEW application. The principal objective is to improve the safety and to preserve the worker's health. (author)

  19. Offering choice and its effect on Dutch children’s liking and consumption of vegetables: a randomized controlled trial

    NARCIS (Netherlands)

    Zeinstra, G.G.; Renes, R.J.; Koelen, M.A.; Kok, F.J.; Graaf, de C.

    2010-01-01

    Background: Children's vegetable consumption is below recommended amounts. According to self-determination theory, stimulating children's feelings of autonomy by offering a choice of vegetables may be a valuable strategy to increase their vegetable liking and consumption. The effect of

  20. Control of occupational exposure using remote monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Lunn, M. P. [British Energy Generation Ltd. Sizewell B Power Station, Leiston, Suffolk (United Kingdom)

    2004-07-01

    Advances in electronic dosimetry, portable radio technology and digital video have enabled the development of Remote Monitoring Systems (RMS) that provide a powerful dose control tool for the Operational Health Physicist. North American utilities have led the implementation of these systems, often with coverage of the entire plant, feeding back to a centralized control room. These large-scale systems typically cost around EURO 500,000. In Europe, and especially the UK, implementation of RMS technology has been slower and on a smaller scale. US utilities have justified the high capital cost of their systems by significantly reducing the number of contract RP technicians required during refuelling outages, saving up to EURO 1,000,000. In the UK, the number of contract RP technicians employed during outages is already minimal, and with the generally low dose rates found on Gas-Cooled Reactors, RP engineers have traditionally considered RMS to be an extravagance. However, the commissioning of the UK's first PWR and a significant increase in the number of AGR Vessel entries, have increased the radiological protection challenges facing the British Health Physicist, thus prompting a re-evaluation of this view. The benefit derived from a system that combines telemetry, video and voice communications is synergistic. We found that the system can be used in a variety of ways to significantly enhance radiological protection control in high radiation areas and to significantly reduce the dose received by RP staff covering such jobs. Indeed, it is estimated that the use of RMS saved at least 10 man.mSv of Radiological Protection dose during RF06 However, it is important to note that RMS is a monitoring tool to support existing monitoring techniques and arrangements. Suitably qualified and experienced staff are required to interpret the data and provide suitable advice to the work party. In addition, detailed training on the limitations of RMS, explicit procedures for

  1. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, R.E., E-mail: ralf.erik.rossel@cern.ch [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Hochschule RheinMain, Fachbereich Design Informatik Medien, Wiesbaden (Germany); Fedosseev, V.N.; Marsh, B.A. [CERN, Geneva (Switzerland); Richter, D. [Hochschule RheinMain, Fachbereich Design Informatik Medien, Wiesbaden (Germany); Rothe, S. [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Wendt, K.D.A. [Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)

    2013-12-15

    Highlights: • The requirements for continuous and automated RILIS operation are outlined. • Laser wavelength, power, beam position and pulse timing are continuously monitored. • A network-extended LabVIEW-based equipment operation framework was developed. • The system serves as a foundation for collaborative laser spectroscopy data acquisition. • Example applications have been successfully tested with ISOLDE experiment setups. -- Abstract: With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  2. Effect of Vegetable Oils on the Surface Tension, Diffusion and Efficiency of Sethoxydim to Control Wild oat (Avena ludoviciana Durieu.

    Directory of Open Access Journals (Sweden)

    H. Hammami

    2017-08-01

    Full Text Available Introduction: During last century, population explosion has been pressing man to produce more supplies of food by consuming more energy in agroecosystems like applying chemical management strategies. herbicides have increasingly become a key component of weed management programs. In Iran, using herbicides led to increasing wheat yield about 20% and 22% in rainfed and irrigated farms respectively (20. Nonetheless, herbicides have also a negative impact on environment. A tool for reducing the herbicide usage which allows to decreasing their cost and side effects is the use of adjuvants. They increase the effectiveness of the post-emergence herbicides. Some adjuvants have toxic effects on living organisms such as Polyethoxylated tallowamine adjuvants that they are very toxic in fairy shrimp (Thamnocephalus platyurus (6. Vegetable oils are not phytotoxic and likely are degraded and metabolized quickly in the environment (8. Sethoxydim is an acetyl coenzyme A carboxylase (ACCase inhibitor that is considered to be a key enzyme in lipid biosynthesis. Similar to other foliar applied herbicides, it need to be associated with an adjuvant for more effective control. Vegetable oils can be developed characteristics of sethoxydim solution such as surface tension and spry drop diffusion. Therefore, the objective of this research is to determine the effect of vegetable oils on the surface tension, diffusion and efficiency of sethoxydim to control wild oat (Avena ludoviciana Durieu.. Materials and Metods: To evaluate the effect of vegetable oils on properties of sethoxydim solution, a series of experiments were separately conducted at Ferdowsi University of Mashhad and Khorasan Science and Technology Park in 2012. For evaluating the effect of vegetable oils on surface tension of distilled water and sethoxydim solution and the sethoxydim efficiency on wild oat control, three experiments were conducted as factorial based on completely randomized design. In other

  3. Control charts for health care monitoring under intermittent out-of-control behavior

    NARCIS (Netherlands)

    Albers, Willem/Wim

    Health care monitoring typically concerns attribute data with very low failure rates. Efficient control charts then signal if the waiting time till r (e.g. r≤5) failures is too small. An interesting alternative is the MAX-chart, which signals if all the associated r waiting times for a single

  4. Control charts for health care monitoring under intermittent out-of-control behavior

    NARCIS (Netherlands)

    Albers, Willem/Wim

    2011-01-01

    Health care monitoring typically concerns attribute data with very low failure rates. Efficient control charts then signal if the waiting time till r (e.g. r≤5) failures is too small. An interesting alternative is the MAX-chart, which signals if all the associated r waiting times for a single

  5. A micro-controller based palm-size radiation monitor

    International Nuclear Information System (INIS)

    Bhingare, R.R.; Bajaj, K.C.; Kannan, S.

    2001-01-01

    A micro-controller based, palm-size radiation monitor, PALMRAD, using a silicon P-N junction diode as a detector has been developed. It is useful for radiation protection monitoring during radiation emergency as well as radioactive source loading operations. Some of the features of PALMRAD developed are the use of a semiconductor diode as the detector, simultaneous display of integrated dose and dose rate on a 16-digit alpha numeric LCD display, measurable integrated dose range from 1 μSv to 5000 μSv and dose rate range from 1 mSv/h to 1,000 mSv/h, RS 232C serial interface for connection to a Personal Computer,-storage of integrated dose and dose rate readings, recall of stored readings on LCD display, presentable integrated dose alarm from 1 μSv to 5000 μSv and dose rate from 1 mSv/h to 1,000 mSv/h, battery status and memory status check during measurement, LCD display with LED back-lighting, etc. (author)

  6. Monitoring and control of fine abrasive finishing processes

    DEFF Research Database (Denmark)

    Lazarev, Ruslan

    In engineering, surfaces with specified functional properties are of high demand in various applications. Desired surface finish can be obtained using several methods. Abrasive finishing is one of the most important processes in the manufacturing of mould and dies tools. It is a principal method ...... was segmented using discretization methods. The applied methodology was proposed for implementation as an on-line system and is considered to be a part of the next generation of STRECON NanoRAP machine....... to remove unwanted material, obtain desired geometry, surface quality and surface functional properties. The automation and computerization of finishing processes involves utilisation of robots, specialized machines with several degrees of freedom, sensors and data acquisition systems. The focus...... of this work was to investigate foundations for process monitoring and control methods in application to semi-automated polishing machine based on the industrial robot. The monitoring system was built on NI data acquisition system with two sensors, acoustic emission sensor and accelerometer. Acquired sensory...

  7. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  8. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    Science.gov (United States)

    Rossel, R. E.; Fedosseev, V. N.; Marsh, B. A.; Richter, D.; Rothe, S.; Wendt, K. D. A.

    2013-12-01

    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  9. Automated Intelligent Monitoring and the Controlling Software System for Solar Panels

    OpenAIRE

    Nalamvar, Hitesh Sanzhay; Ivanov, Maksim Anatoljevich; Baydali, Sergey Anatolievich

    2017-01-01

    The inspection of the solar panels on a periodic basis is important to improve longevity and ensure performance of the solar system. To get the most solar potential of the photovoltaic (PV) system is possible through an intelligent monitoring & controlling system. The monitoring & controlling system has rapidly increased its popularity because of its user-friendly graphical interface for data acquisition, monitoring, controlling and measurements. In order to monitor the performance of the sys...

  10. MINED GEOLOGIC DISPOSAL SYSTEM (MGDS) MONITORING AND CONTROL SYSTEMS CENTRALIZATION TECHNICAL REPORT

    International Nuclear Information System (INIS)

    M.J. McGrath

    1998-01-01

    The objective of this report is to identify and document Mined Geologic Disposal System (MGDS) requirements for centralized command and control. Additionally, to further develop the MGDS monitoring and control functions. This monitoring and control report provides the following information: (1) Determines the applicable requirements for a monitoring and control system for repository operations and construction (excluding Performance Confirmation). (2) Makes a determination as to whether or not centralized command and control is required

  11. Review: computer vision applied to the inspection and quality control of fruits and vegetables

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2013-12-01

    Full Text Available This is a review of the current existing literature concerning the inspection of fruits and vegetables with the application of computer vision, where the techniques most used to estimate various properties related to quality are analyzed. The objectives of the typical applications of such systems include the classification, quality estimation according to the internal and external characteristics, supervision of fruit processes during storage or the evaluation of experimental treatments. In general, computer vision systems do not only replace manual inspection, but can also improve their skills. In conclusion, computer vision systems are powerful tools for the automatic inspection of fruits and vegetables. In addition, the development of such systems adapted to the food industry is fundamental to achieve competitive advantages.

  12. Mechanistic Fermentation Models for Process Design, Monitoring, and Control

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads Orla

    2017-01-01

    Mechanistic models require a significant investment of time and resources, but their application to multiple stages of fermentation process development and operation can make this investment highly valuable. This Opinion article discusses how an established fermentation model may be adapted...... for application to different stages of fermentation process development: planning, process design, monitoring, and control. Although a longer development time is required for such modeling methods in comparison to purely data-based model techniques, the wide range of applications makes them a highly valuable tool...... for fermentation research and development. In addition, in a research environment, where collaboration is important, developing mechanistic models provides a platform for knowledge sharing and consolidation of existing process understanding....

  13. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation

    Science.gov (United States)

    Maddah, Hisham; Chogle, Aman

    2017-10-01

    This paper is a comprehensive review of biofouling in reverse osmosis modules where we have discussed the mechanism of biofouling. Water crisis is an issue of pandemic concern because of the steady rise in demand of drinking water. Overcoming biofouling is vital since we need to optimize expenses and quality of potable water production. Various kinds of microorganisms responsible for biofouling have been identified to develop better understanding of their attacking behavior enabling us to encounter the problem. Both primitive and advanced detection techniques have been studied for the monitoring of biofilm development on reverse osmosis membranes. Biofouling has a negative impact on membrane life as well as permeate flux and quality. Thus, a mathematical model has been presented for the calculation of normalized permeate flux for evaluating the extent of biofouling. It is concluded that biofouling can be controlled by the application of several physical and chemical remediation techniques.

  14. Microcomputer network for technological equipment monitoring and control

    International Nuclear Information System (INIS)

    Segec, O.

    1990-01-01

    The properties and purpose are characterized of a microcomputer network developed for monitoring and controlling the nuclear power plant chemistry. In the development, emphasis was put on simplicity of the components, reliability, ease of operation and availability of the components on the domestic market. So far, these criteria are only met by the DIAMO L(S) system equipped with an MH 8080 (Z80) processor. Its assets include simplicity and ruggedness, owing to which it is well suited to heavy-duty performance, whereas its drawbacks comprise a narrow extent of addressable memory and absence of any supporting software. Until now, 5 types of automated stations have been developed and submitted for test operation at the Bohunice V-2 nuclear power plant. Virtually any personal computer can be attached to the network. The system can also be installed in conventional power plants as well as beyond the power generation field. (Z.M.)

  15. Online monitoring and control of the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Boe, K.

    2006-07-01

    The demand for online monitoring and control of biogas process is increasing, since better monitoring and control system can improve process stability and enhance process performance for better economy of the biogas plants. A number of parameters in both the liquid and the gas phase have been suggested as process indicators. These include gas production, pH, alkalinity, volatile fatty acids (VFA) and hydrogen. Of these, VFA is the most widely recognised as a direct, relevant measure of stability. The individual, rather than collective VFA concentrations are recognised as providing significantly more information for diagnosis. However, classic on-line measurement is based on filtration, which suffers from fouling, especially in particulate or slurry wastes. In this project, a new online VFA monitoring system has been developed using gas-phase VFA extraction to avoid sample filtration. The liquid sample is pumped into a sampling chamber, acidified, added with salt and heated to extract VFA into the gas phase before analysis by GC-FID. This allows easy application to manure. Sample and analysis time of the system varies from 25-40 min. depending on the washing duration. The sampling frequency is fast enough for the dynamic of a manure digester, which is in the range of several hours. This system has been validated over more than 6 months and had shown good agreement with offline VFA measurement. Response from this sensor was compared with other process parameters such as biogas production, pH and dissolved hydrogen during overload situations in a laboratory-scale digester, to investigate the suitability of each measure as a process indicator. VFA was most reliable for indicating process imbalance, and propionate was most persistent. However, when coupling the online VFA monitoring with a simple control for automatic controlling propionate level in a digester, it was found that propionate decreased so slow that the biogas production fluctuated. Therefore, it is more

  16. Remote Control and Monitoring of VLBI Experiments by Smartphones

    Science.gov (United States)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  17. Test, Control and Monitor System (TCMS) operations plan

    Science.gov (United States)

    Macfarlane, C. K.; Conroy, M. P.

    1993-01-01

    The purpose is to provide a clear understanding of the Test, Control and Monitor System (TCMS) operating environment and to describe the method of operations for TCMS. TCMS is a complex and sophisticated checkout system focused on support of the Space Station Freedom Program (SSFP) and related activities. An understanding of the TCMS operating environment is provided and operational responsibilities are defined. NASA and the Payload Ground Operations Contractor (PGOC) will use it as a guide to manage the operation of the TCMS computer systems and associated networks and workstations. All TCMS operational functions are examined. Other plans and detailed operating procedures relating to an individual operational function are referenced within this plan. This plan augments existing Technical Support Management Directives (TSMD's), Standard Practices, and other management documentation which will be followed where applicable.

  18. [Variability of vegetation growth season in different latitudinal zones of North China: a monitoring by NOAA NDVI and MSAVI].

    Science.gov (United States)

    Wang, Hong; Li, Xiaobing; Han, Ruibo; Ge, Yongqin

    2006-12-01

    In this study, North China was latitudinally divided into five zones, i.e., 32 degrees - 36 degrees N (Zone I), 36 degrees - 40 degrees N (Zone II), 40 degrees - 44 degrees N (Zone III), 44 degrees - 48 degrees N (Zone IV) and 48 degrees - 52 degrees N (Zone V), and the NOAA/ AVHRR NDVI and MSAVI time-series images from 1982 to 1999 were smoothed with Savitzky-Golay filter algorithm. Based on the EOF analysis, the principal components of NDVI and MSAVI for the vegetations in different latitudinal zones of North China were extracted, the annual beginning and ending dates and the length of growth season in 1982 - 1999 were estimated, and the related parameters were linearly fitted, aimed to analyze the variability of vegetation growth season. The results showed that the beginning date of the growth season in different zones tended to be advanced, while the ending date tended to be postponed with increasing latitude. The length of the growth season was also prolonged, with the prolonging time exceeded 10 days.

  19. Home blood pressure monitoring, secure electronic messaging and medication intensification for improving hypertension control: a mediation analysis.

    Science.gov (United States)

    Ralston, J D; Cook, A J; Anderson, M L; Catz, S L; Fishman, P A; Carlson, J; Johnson, R; Green, B B

    2014-01-01

    We evaluated the role of home monitoring, communication with pharmacists, medication intensification, medication adherence and lifestyle factors in contributing to the effectiveness of an intervention to improve blood pressure control in patients with uncontrolled essential hypertension. We performed a mediation analysis of a published randomized trial based on the Chronic Care Model delivered over a secure patient website from June 2005 to December 2007. Study arms analyzed included usual care with a home blood pressure monitor and usual care with home blood pressure monitor and web-based pharmacist care. Mediator measures included secure messaging and telephone encounters; home blood pressure monitoring; medications intensification and adherence and lifestyle factors. Overall fidelity to the Chronic Care Model was assessed with the Patient Assessment of Chronic Care (PACIC) instrument. The primary outcome was percent of participants with blood pressure (BP) <140/90 mm Hg. At 12 months follow-up, patients in the web-based pharmacist care group were more likely to have BP <140/90 mm Hg (55%) compared to patients in the group with home blood pressure monitors only (37%) (p = 0.001). Home blood pressure monitoring accounted for 30.3% of the intervention effect, secure electronic messaging accounted for 96%, and medication intensification for 29.3%. Medication adherence and self-report of fruit and vegetable intake and weight change were not different between the two study groups. The PACIC score accounted for 22.0 % of the main intervention effect. The effect of web-based pharmacist care on improved blood pressure control was explained in part through a combination of home blood pressure monitoring, secure messaging, and antihypertensive medication intensification.

  20. Formulation of a strategy for monitoring control integrity in critical digital control systems

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  1. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    Science.gov (United States)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  2. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  3. [Soil respiration dynamics and its controlling factors of typical vegetation communities on meadow steppes in the western Songnen Plain].

    Science.gov (United States)

    Wang, Ming; Liu, Xing-Tu; Li, Xiu-Jun; Zhang, Ji-Tao; Wang, Guo-Dong; Lu, Xin-Rui; Li, Xiao-Yu

    2014-01-01

    In order to accurately explore the soil respiration dynamics and its controlling factors of typical vegetation types in the western Songnen Plain, soil respiration rates of Chloris virgata, Puccinellia distans, Phragmites australis and Leymus chinensis communities were measured. The results showed that the diurnal curves of soil respiration rates of the four vegetation communities had simple peak values, which appeared at 11:00-15:00, and the valley values occurred at 21:00-1:00 or 3:00-5:00. The seasonal dynamic patterns of their soil respiration rates were similar, with the maximum (3.21-4.84 micromol CO2 x m(-2) x s(-1)) occurring in July and August and the minimum (0.46-1.51 micromol CO2 x m(-2) x s(-1)) in October. The soil respiration rates of the four vegetation communities had significant exponential correlations with ambient air temperature and soil temperature. Soil moisture, however, only played an important role in affecting the soil respiration rate of C. virgata community while air humidity near the soil surface was significantly correlated with the soil respiration rates of P. australis and L. chinensis communities. The soil salt contents seriously constrained the CO2 dioxide emission, and the soil pH, electrical conductivity (EC), exchangeable sodium percentage (ESP) could explain 87%-91% spatial variations of the soil respiration rate.

  4. Irradiation of spices, herbs and other vegetable seasonings: A compilation of technical data for its authorization and control

    International Nuclear Information System (INIS)

    1992-02-01

    This publication contains a compilation of all available scientific and technical data on the irradiation of spices, herbs and other vegetable seasonings. It is intended to assist governments in considering the authorization of this particular application of radiation processing of food and in ensuring its control in the facility and the control of irradiated food products moving in trade. The Compilation was prepared in response to the requirement of the Codex General Standard for Irradiated Foods and associated Code that radiation treatment of food be justified on the basis of a technological need or of a need to improve the hygienic quality of the food. It was prepared also in response to the recommendations of the FAO/IAEA/WHO/ITC-UNCTAD/GATT International Conference on the Acceptance, Control of and Trade in Irradiated Food (Geneva, 1989) concerning the need for regulatory control of radiation processing of food. It is hoped that the information contained in this publication will assist governments in considering requests for the approval of radiation treatment of spices, herbs and other vegetable seasonings, or requests for authorization to import such irradiated products. Refs and tabs

  5. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  6. Monitoring `Renewable resources`. Vegetable oils and other fuels from plants. Third status report; Monitoring `Nachwachsende Rohstoffe`. Pflanzliche Oele und andere Kraftstoffe aus Pflanzen. Dritter Sachstandsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, C.

    1997-11-01

    The present status report `vegetable oils and other fuels from plants` deals with important developments on the utilization of biofuels in spark ignition engines and diesel engines since presentation of the report `growing raw materials` of the Enquete comission `Technikfolgenabschaetzung und -bewertung`. The report deals mainly with rapeseed oil and rape seed oil fatty acid methyl ester produced from this (mentioned short of biodiesel) as well as with bioethanol made from sugar beet and grain. (orig./SR) [Deutsch] Der vorliegende Sachstandsbericht `Pflanzliche Oele und andere Kraftstoffe aus Pflanzen` beschaeftigt sich mit den wichtigsten Entwicklungen beim Einsatz von Biokraftstoffen in Otto- und Dieselmotoren seit Vorlage des Berichts `Nachwachsende Rohstoffe` der Enquete-Kommission `Technikfolgenabschaetzung und -bewertung`. Der Bericht befasst sich schwerpunktmaessig mit Rapsoel und daraus hergestelltem Rapsoelfettsaeuremethylester (kurz Biodiesel genannt) sowie mit aus Zuckerrueben und Getreide erzeugtem Bioethanol. (orig./SR)

  7. Advanced Very High Resolution Radiometer (AVHRR) data evaluation for use in monitoring vegetation. Volume 1: Channels 1 and 2

    Science.gov (United States)

    Horvath, N. C.; Gray, T. I.; Mccrary, D. G. (Principal Investigator)

    1982-01-01

    Data from the National Oceanic and Atmospheric Administration satellite system (NOAA-6 satellite) were analyzed to study their nonmeteorological uses. A file of charts, graphs, and tables was created form the products generated. It was found that the most useful data lie between pixel numbers 400 and 2000 on a given scan line. The analysis of the generated products indicates that the Gray-McCrary Index can discern vegetation and associated daily and seasonal changes. The solar zenith-angle correction used in previous studies was found to be a useful adjustment to the index. The METSAT system seems best suited for providing large-area analyses of surface features on a daily basis.

  8. Monitoring Urbanization-Related Land Cover Change on the U.S. Great Plains and Impacts on Remotely Sensed Vegetation Dynamics

    Science.gov (United States)

    Krehbiel, C. P.; Jackson, T.; Henebry, G. M.

    2014-12-01

    Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.

  9. Using NASA Earth Observing Satellites and Statistical Model Analysis to Monitor Vegetation and Habitat Rehabilitation in Southwest Virginia's Reclaimed Mine Lands

    Science.gov (United States)

    Tate, Z.; Dusenge, D.; Elliot, T. S.; Hafashimana, P.; Medley, S.; Porter, R. P.; Rajappan, R.; Rodriguez, P.; Spangler, J.; Swaminathan, R. S.; VanGundy, R. D.

    2014-12-01

    The majority of the population in southwest Virginia depends economically on coal mining. In 2011, coal mining generated $2,000,000 in tax revenue to Wise County alone. However, surface mining completely removes land cover and leaves the land exposed to erosion. The destruction of the forest cover directly impacts local species, as some are displaced and others perish in the mining process. Even though surface mining has a negative impact on the environment, land reclamation efforts are in place to either restore mined areas to their natural vegetated state or to transform these areas for economic purposes. This project aimed to monitor the progress of land reclamation and the effect on the return of local species. By incorporating NASA Earth observations, such as Landsat 8 Operational Land Imager (OLI) and Landsat 5 Thematic Mapper (TM), re-vegetation process in reclamation sites was estimated through a Time series analysis using the Normalized Difference Vegetation Index (NDVI). A continuous source of cloud free images was accomplished by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM). This model developed synthetic Landsat imagery by integrating the high-frequency temporal information from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution spatial information from Landsat sensors In addition, the Maximum Entropy Modeling (MaxENT), an eco-niche model was used to estimate the adaptation of animal species to the newly formed habitats. By combining factors such as land type, precipitation from Tropical Rainfall Measuring Mission (TRMM), and slope from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the MaxENT model produced a statistical analysis on the probability of species habitat. Altogether, the project compiled the ecological information which can be used to identify suitable habitats for local species in reclaimed mined areas.

  10. Distributed process control system for remote control and monitoring of the TFTR tritium systems

    International Nuclear Information System (INIS)

    Schobert, G.; Arnold, N.; Bashore, D.; Mika, R.; Oliaro, G.

    1989-01-01

    This paper reviews the progress made in the application of a commercially available distributed process control system to support the requirements established for the Tritium REmote Control And Monitoring System (TRECAMS) of the Tokamak Fusion Test REactor (TFTR). The system that will discussed was purchased from Texas (TI) Instruments Automation Controls Division), previously marketed by Rexnord Automation. It consists of three, fully redundant, distributed process controllers interfaced to over 1800 analog and digital I/O points. The operator consoles located throughout the facility are supported by four Digital Equipment Corporation (DEC) PDP-11/73 computers. The PDP-11/73's and the three process controllers communicate over a fully redundant one megabaud fiber optic network. All system functionality is based on a set of completely integrated databases loaded to the process controllers and the PDP-11/73's. (author). 2 refs.; 2 figs

  11. Better almond water stress monitoring using fractional-order moments of non-normalized difference vegetation index

    Science.gov (United States)

    Stem water potential (SWP) has become a very popular tool for farmers to monitor the water status of almond trees. However, it is labor intensive and time consuming to scale up the measurements in the large field. With the development of unmanned aerial vehicles (UAVs) and sensing payload, it become...

  12. Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis

    NARCIS (Netherlands)

    Hutchinson, J.M.S.; Jacquin, A.; Hutchinson, S.L.; Verbesselt, J.

    2015-01-01

    Given the significant land holdings of the U.S. Department of Defense, and the importance of those lands to support a variety of inherently damaging activities, application of sound natural resource conservation principles and proactive monitoring practices are necessary to manage military training

  13. Live video monitoring robot controlled by web over internet

    Science.gov (United States)

    Lokanath, M.; Akhil Sai, Guruju

    2017-11-01

    Future is all about robots, robot can perform tasks where humans cannot, Robots have huge applications in military and industrial area for lifting heavy weights, for accurate placements, for repeating the same task number of times, where human are not efficient. Generally robot is a mix of electronic, electrical and mechanical engineering and can do the tasks automatically on its own or under the supervision of humans. The camera is the eye for robot, call as robovision helps in monitoring security system and also can reach into the places where the human eye cannot reach. This paper presents about developing a live video streaming robot controlled from the website. We designed the web, controlling for the robot to move left, right, front and back while streaming video. As we move to the smart environment or IoT (Internet of Things) by smart devices the system we developed here connects over the internet and can be operated with smart mobile phone using a web browser. The Raspberry Pi model B chip acts as heart for this system robot, the sufficient motors, surveillance camera R pi 2 are connected to Raspberry pi.

  14. Cooperative wireless network control based health and activity monitoring system.

    Science.gov (United States)

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  15. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010.

    Science.gov (United States)

    Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei

    2015-02-01

    Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.

  16. Irradiation effect for the control of coliform bacteria in spices and dehydrated vegetables

    International Nuclear Information System (INIS)

    Lin Yin; Li Xiangling

    2001-01-01

    lrradiation of 6 kGy could make the MPN of coliform bacteria in irradated spices and dehydrated vegetables meet the demands of the national microbiological examination of food hygiene. No new irradiation-resistance organism in coliform bacteria was found in 188 spices samples treated. The mistake in the MPN of coliform bacteria detection was caused mainly by operation. The main cause was that the detected bacteria for lactose refermentation and Gram-stain tests were not picked from the same colony. (authors)

  17. Development and Evaluation of a Wide-Bed Former for Vegetable Cultivation in Controlled Tractor Traffic

    Science.gov (United States)

    Dixit, Anoop; Khurana, Rohinish; Verma, Aseem; Singh, Arshdeep; Manes, G. S.

    2018-05-01

    India is the second largest producer of vegetables in the world. For vegetable cultivation, a good seed bed preparation is an important task which involves 6-10 different operations. To tackle the issue of multiple operations, a prototype of tractor operated wide bed former was developed and evaluated. The machine comprises of a rotary tiller and a bed forming setup. It forms bed of 1000 mm top width which is suitable as per the track width of an average sized tractor in India. The height of the beds formed is 130 mm whereas the top and bottom width of channel formed on both sides of the bed is 330 and 40 mm respectively at soil moisture content of 12.5-16% (db). The forward speed of 2.75 km/h was observed to be suitable for proper bed formation. The average fuel consumption of the machine was 5.9 l/h. The average bulk density of soil before and after the bed formation was 1.46 and 1.63 g/cc respectively. Field capacity of the machine was found to be 0.31 ha/h. The machine resulted in 93.8% labour saving and 80.4% saving in cost of bed preparation as compared to conventional farmer practice. Overall performance of wide-bed former was found to be satisfactory.

  18. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    Science.gov (United States)

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  19. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    Directory of Open Access Journals (Sweden)

    Sumalika Biswas

    Full Text Available Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas and woody savannas (non-protected areas. The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  20. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    Science.gov (United States)

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  1. Vegetative filter strips efficiency controlling soil loss and trapping herbicides in two olive orchards at the short-term

    Science.gov (United States)

    de Luna, Elena; Guzmán, Gema; Gómez, José A.

    2014-05-01

    The optimization of water use in a semi-arid climate is based on an optimal use of rainwater adopting management practices that prevent and/or control runoff. This is a key point for increasing the economic and environmental sustainability of agriculture due to the minimization of diffuse pollution associated to runoff and to sediment and chemical transport. One strategy is the establishment of vegetative filters strips that prevent pesticides (Stehle et al. 2011), herbicides (Vianello et al. 2005), fertilizers (Withers et al. 2009) and runoff-sediment (Campo-Bescós et al. 2013) from entering streams or surface water reservoirs. To evaluate the short-term risks associated with the use of herbicides a trial was designed in two olive groves located in Benacazón (Sevilla) and Cabra (Córdoba) both with an average steepness of 11%. Two different management systems were evaluated, bare soil and bare soil with vegetative filter strips. Pre-emergence herbicides were applied and analysed at the beginning of the trial by chromatography GC-MS and after each rainfall event both in soil and sediment. Runoff and soil losses were measured, as well. The results obtained from this study show that soil management practices such as, the use of vegetative filter strips results in a reduction of soil losses and runoff. This it is translated in the improvement of soil quality and a reduction of water pollution caused by the use of herbicides. This information will improve the understanding of insufficiently known aspects and it will help to increase the knowledge for a better implementation of sustainable management practices at a farm scale and at larger temporal scale. References: Campo-Bescós, M. A., Muñoz-Carpena, R., & Kiker, G. (2013) Influencia del suelo en la eficiencia de la implantación de filtros verdes en un distrito de riego por superficie en medio árido. En Estudios de la Zona no Saturada del Suelo, Vol. XI: 183-187. Stehle, S., Elsaesser, D., Gregoire, C., Imfeld

  2. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  3. Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring

    Science.gov (United States)

    Peng, D.; Hu, Y.; Li, Z.

    2016-05-01

    It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.

  4. National infrastructure for detecting, controlling and monitoring radioactive materials

    International Nuclear Information System (INIS)

    Othman, I.

    2001-01-01

    shipments to prevent theft, diversion or misuse. A high technique for radiation monitoring was established in four boarder centers. Each of these centers has a Radiological Control for Vehicle loads (multi channel system) RCVL. This system allows radiological control for vehicle loads at each access of the Syrian boarders: Syrian-Lebanon, Syrian-Turkey, Syrian-Jordan and Syrian-Iraq borders. At the time being, our new updating regulations enforce medical practices, their quality and operational characteristics and the patient protection provisions - to have and implement a proper Medical Exposure Control for radiological patients. Syria has a national Secondary Standards Dosimetry Laboratory (SSDL) at AECS which is managed by a well qualified and trained team. (author)

  5. Mechanical Harvesting Effectively Controls Young Typha spp. Invasion and Unmanned Aerial Vehicle Data Enhances Post-treatment Monitoring

    Directory of Open Access Journals (Sweden)

    Shane C. Lishawa

    2017-04-01

    Full Text Available The ecological impacts of invasive plants increase dramatically with time since invasion. Targeting young populations for treatment is therefore an economically and ecologically effective management approach, especially when linked to post-treatment monitoring to evaluate the efficacy of management. However, collecting detailed field-based post-treatment data is prohibitively expensive, typically resulting in inadequate documentation of the ecological effects of invasive plant management. Alternative approaches, such as remote detection with unmanned aerial vehicles (UAV, provide an opportunity to advance the science and practice of restoration ecology. In this study, we sought to determine the plant community response to different mechanical removal treatments to a dominant invasive wetland macrophyte (Typha spp. along an age-gradient within a Great Lakes coastal wetland. We assessed the post-treatment responses with both intensive field vegetation and UAV data. Prior to treatment, the oldest Typha stands had the lowest plant diversity, lowest native sedge (Carex spp. cover, and the greatest Typha cover. Following treatment, plots that were mechanically harvested below the surface of the water differed from unharvested control and above-water harvested plots for several plant community measures, including lower Typha dominance, lower native plant cover, and greater floating and submerged aquatic species cover. Repeated-measures analysis revealed that above-water cutting increased plant diversity and aquatic species cover across all ages, and maintained native Carex spp. cover in the youngest portions of Typha stands. UAV data revealed significant post-treatment differences in normalized difference vegetation index (NDVI scores, blue band reflectance, and vegetation height, and these remotely collected measures corresponded to field observations. Our findings suggest that both mechanically harvesting the above-water biomass of young Typha stands

  6. An artificial reality environment for remote factory control and monitoring

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  7. Applying Online Monitoring for Nuclear Power Plant Instrumentation and Control

    Science.gov (United States)

    Hashemian, H. M.

    2010-10-01

    This paper presents a practical review of the state-of-the-art means for applying OLM data acquisition in nuclear power plant instrumentation and control, qualifying or validating the OLM data, and then analyzing it for static and dynamic performance monitoring applications. Whereas data acquisition for static or steady-state OLM applications can require sample rates of anywhere from 1 to 10 seconds to 1 minutes per sample, for dynamic data acquisition, higher sampling frequencies are required (e.g., 100 to 1000 Hz) using a dedicated data acquisition system capable of providing isolation, anti-aliasing and removal of extraneous noise, and analog-to-digital (A/D) conversion. Qualifying the data for use with OLM algorithms can involve removing data `dead' spots (for static data) and calculating, examining, and trending amplitude probability density, variance, skewness, and kurtosis. For static OLM applications with redundant signals, trending and averaging qualification techniques are used, and for single or non-redundant signals physical and empirical modeling are used. Dynamic OLM analysis is performed in the frequency domain and/or time domain, and is based on the assumption that sensors' or transmitters' dynamic characteristics are linear and that the input noise signal (i.e., the process fluctuations) has proper spectral characteristics.

  8. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    CERN Document Server

    Rossel, R E; Richter, D; Wendt, K D A; Rothe, S; Marsh, B A

    2013-01-01

    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The syst...

  9. Real time speckle monitoring to control retinal photocoagulation

    Science.gov (United States)

    Bliedtner, Katharina; Seifert, Eric; Brinkmann, Ralf

    2017-07-01

    Photocoagulation is a treatment modality for several retinal diseases. Intra- and inter-individual variations of the retinal absorption as well as ocular transmission and light scattering makes it impossible to achieve a uniform effective exposure with one set of laser parameters. To guarantee a uniform damage throughout the therapy a real-time control is highly requested. Here, an approach to realize a real-time optical feedback using dynamic speckle analysis in-vivo is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633 nm diode laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. An algorithm is presented that can discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes and that seems to be robust to noise in-vivo. Tissue changes in rabbits during retinal coagulation could be observed for different lesion strengths. This algorithm can run on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage.

  10. Legionella in industrial cooling towers: monitoring and control strategies.

    Science.gov (United States)

    Carducci, A; Verani, M; Battistini, R

    2010-01-01

    Legionella contamination of industrial cooling towers has been identified as the cause of sporadic cases and outbreaks of legionellosis among people living nearby. To evaluate and control Legionella contamination in industrial cooling tower water, microbiological monitoring was carried out to determine the effectiveness of the following different disinfection treatments: (i) continuous chlorine concentration of 0.01 ppm and monthly chlorine shock dosing (5 ppm) on a single cooling tower; (ii) continuous chlorine concentration of 0.4 ppm and monthly shock of biocide P3 FERROCID 8580 (BKG Water Solution) on seven towers. Legionella spp. and total bacterial count (TBC) were determined 3 days before and after each shock dose. Both strategies demonstrated that when chlorine was maintained at low levels, the Legionella count grew to levels above 10(4) CFU l(-1) while TBC still remained above 10(8 )CFU l(-1). Chlorine shock dosing was able to eliminate bacterial contamination, but only for 10-15 days. Biocide shock dosing was also insufficient to control the problem when the disinfectant concentration was administered at only one point in the plant and at the concentration of 30 ppm. On the other hand, when at a biocide concentration of 30 or 50 ppm was distributed throughout a number of points, depending on the plant hydrodynamics, Legionella counts decreased significantly and often remained below the warning limit. Moreover, the contamination of water entering the plant and the presence of sediment were also important factors for Legionella growth. For effective decontamination of outdoor industrial cooling towers, disinfectants should be distributed in a targeted way, taking into account the possible sources of contamination. The data of the research permitted to modify the procedure of disinfection for better reduce the water and aerosol contamination and consequently the exposure risk.

  11. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  12. Use of Bacteriophages to Control Escherichia coli O157:H7 in Domestic Ruminants, Meat Products, and Fruits and Vegetables.

    Science.gov (United States)

    Wang, Lili; Qu, Kunli; Li, Xiaoyu; Cao, Zhenhui; Wang, Xitao; Li, Zhen; Song, Yaxiong; Xu, Yongping

    2017-09-01

    Escherichia coli O157:H7 is an important foodborne pathogen that causes severe bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Ruminant manure is a primary source of E. coli O157:H7 contaminating the environment and food sources. Therefore, effective interventions targeted at reducing the prevalence of fecal excretion of E. coli O157:H7 by cattle and sheep and the elimination of E. coli O157:H7 contamination of meat products as well as fruits and vegetables are required. Bacteriophages offer the prospect of sustainable alternative approaches against bacterial pathogens with the flexibility of being applied therapeutically or for biological control purposes. This article reviews the use of phages administered orally or rectally to ruminants and by spraying or immersion of fruits and vegetables as an antimicrobial strategy for controlling E. coli O157:H7. The few reports available demonstrate the potential of phage therapy to reduce E. coli O157:H7 carriage in cattle and sheep, and preparation of commercial phage products was recently launched into commercial markets. However, a better ecological understanding of the phage E. coli O157:H7 will improve antimicrobial effectiveness of phages for elimination of E. coli O157:H7 in vivo.

  13. Development of a Long-term Sampling Network to Monitor Restoration Success in the Southwest Coastal Everglades: Vegetation, Hydrology, and Sediments

    Science.gov (United States)

    Smith, Thomas J.

    2004-01-01

    Introduction and History Hurricane Andrew, a Category 5 storm, crossed the southern Florida peninsula on the morning of August 24, 1992 (Fig. 1). Following the storm, the National Park Service conducted an environmental damage assessment to gauge the storm's impacts on the natural resources of south Florida Park Service holdings (Pimm et al., 1994). Although hurricanes have impacted Park Service lands such as the Everglades in the past (Houston and Powell, 2003), no systematic, permanent sampling scheme has been established to monitor long-term recovery (or lack thereof) following disturbance. In October 1992, vegetation monitoring plots were established in heavily damaged areas of mangrove forest on the southwest coast of the Everlgades, along the Lostmans and Broad Rivers (Smith et al., 1994, see Fig. 2). As the permanent plot network was being established, funding was awarded for the South Florida Global Climate Change project (SOFL-GCC). This led to the establishment of a network of hydrological monitoring stations (Anderson and Smith, 2004). Finally, sediment elevation tables (SETs) were installed at many locations. SETs provide the means to measure very small changes (2 mm) in the sediment surface elevation accurately over time (Cahoon et al., 2002). We also set up marker horizons to measure accretion of sediment at each site (Smith and Cahoon, 2003). Sampling sites were located along three transects extending from upstream freshwater wetlands to downstream saltwater wetlands along the Shark, Lostmans and Chatham Rivers in Everglades National Park (Fig. 2). While we were developing our sampling network for basic scientific research needs, concern mounted over the health of the Greater Everglades Ecosystem and in particular over the influence of decreased freshwater flows (Smith et al., 1989). Ecosystem restoration planning was begun, resulting in the multi-agency, $8 billion Comprehensive Everglades Restoration Plan (CERP). Our co-located sampling networks

  14. Handling of vegetable biodiversity and the biological control of insect-plague: Case of an organic vineyard

    International Nuclear Information System (INIS)

    Nicholls, Clara I

    2000-01-01

    In the handling of plagues it is feasible to increase natural enemies, populations diversifying the habitat. In the agro ecosystems the importance of the marginal vegetation is recognized for the parasitoids survival and predators. In commercial cultivations of vineyards, managed organically, was ahead this work, corridors of 65 different species from plants with flowers were settled down. The covering cultivations were sowed in array for half every year. The vineyards received 2 tons of compost on average for hectare. For the control of illnesses it was used sulfur preventively. It sought to be necessary if the corridor 200 meters long could increase the biological control of insect's plague in the vineyard. It was evaluated the contribution of the corridor like supplier of alternative nutritious resources, consistent, abundant and well distributed of natural enemies. It was proven the utility of the corridor to increase the populational levels of beneficent insects

  15. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Ripp, S.; Nivens, D.E.; Ahn, Y.; Werner, C.; Jarrell, J. IV; Easter, J.P.; Cox, C.D.; Burlage, R.S.; Sayler, G.S.

    2000-03-01

    Pseudomonas fluorescens HK44 represents the first genetically engineered microorganism approved for field testing in the United States for bioremediation purposes. Strain HK44 harbors an introduced lux gene fused within a naphthalene degradative pathway, thereby allowing this recombinant microbe to bioluminescent as it degrades specific polyaromatic hydrocarbons such as naphthalene. The bioremediation process can therefore be monitored by the detection of light. P. fluorescens HK44 was inoculated into the vadose zone of intermediate-scale, semicontained soil lysimeters contaminated with naphthalene, anthracene, and phenanthrene, and the population dynamics were followed over an approximate 2-year period in order to assess the long-term efficacy of using strain HK44 for monitoring and controlling bioremediation processes. Results showed that P. fluorescens HK44 was capable of surviving initial inoculation into both hydrocarbon contaminated and uncontaminated soils and was recoverable from these soils 660 days post inoculation. It was also demonstrated that strain HK44 was capable of generating bioluminescence in response to soil hydrocarbon bioavailability. Bioluminescence approaching 166,000 counts/s was detected in fiber optic-based biosensor devices responding to volatile polyaromatic hydrocarbons, while a portable photomultiplier module detected bioluminescence at an average of 4300 counts/s directly from soil-borne HK44 cells within localized treatment areas. The utilization of lux-based bioreporter microorganisms therefore promises to be a viable option for in situ determination of environmental contaminant bioavailability and biodegradation process monitoring and control.

  16. Development of monitoring and control system for a mine main fan based on frequency converter

    Science.gov (United States)

    Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.

    2013-12-01

    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.

  17. Development of monitoring and control system for a mine main fan based on frequency converter

    International Nuclear Information System (INIS)

    Zhang, Y C; Kong, X Z; Chen, Q G; Zhang, R W; Gong, J Y

    2013-01-01

    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production

  18. Environmental monitoring program for the Ormen Lange Onshore Processing Plant and the Reserve Power Plant at Nyhamna, Gossa. Monitoring of vegetation and soil: re-analyses and establishment of new monitoring plots in 2010.; Miljoeovervaakingsprogram for Ormen Lange landanlegg og Reservegasskraftverk paa Nyhamna, Gossa. Overvaaking av vegetasjon og jord: gjenanalyser og nyetablering av overvaakingsfelter i 2010

    Energy Technology Data Exchange (ETDEWEB)

    Aarrestad, P.A.; Bakkestuen, V.; Stabbetorp, O.E.; Myklebost, Heidi

    2011-07-01

    The Ormen Lange Onshore Processing Plant in Aukra municipality (Moere og Romsdal county) receives unprocessed gas and condensate from the Ormen Lange field in the Norwegian Sea. During processing of sales gas and condensate, the plant emits CO, Co2, Nox, CH4, NMVOC (including BTEX), SO2 and small amounts of heavy metals, as specified in the discharge permit issued by the Climate and Pollution Directorate. The plant started production in 2007, with A/S Norske Shell as operator. In general, emissions of nitrogen and sulphur-containing gasses may affect terrestrial ecosystems through acidification and fertilization of soil and vegetation. The emissions from the onshore plant are calculated to be below the current critical loads for the terrestrial nature types. However, the nitrogen background level in the area of influence is close to the critical loads for oligotrophic habitats. To be able to document any effects of emissions to air on terrestrial ecosystems, a monitoring program for vegetation and soil was established in 2008 in the area of influence from the Ormen Lange Onshore Plant. The monitoring is planned at regular intervals according to the same methods employed in 2008, with the first reanalysis in 2010. The benefits of the monitoring parameters will be continuously evaluated. Statnett has established a Reserve Power Plant with discharge permits of similar substances in the same area as the Ormen Lange Onshore Processing plant, and participates in an extended monitor program from 2010. In 2008 two monitoring sites were established, one with rather high deposition of nitrogen north of the plant within Gule-Stavmyran nature reserve in Fraena municipality (site Gulmyran) and one south of the plant on the island Gossa (site Aukra). Deposition values have been estimated by the Norwegian Institute for Air Research (NILU). Within each site integrated monitoring of the species composition of the vegetation, plant growth, and chemical content of plants and soil is

  19. TEMPORAL VEGETATION DYNAMICS IN PEAT SWAMP AREA USING MODIS TIME-SERIES IMAGERY: A MONITORING APPROACH OF HIGH-SENSITIVE ECOSYSTEM IN REGIONAL SCALE

    Directory of Open Access Journals (Sweden)

    Yudi Setiawan

    2016-10-01

    Full Text Available Peat swamp area is an essential ecosystem due to high vulnerability of functions and services. As the change of forest cover in peat swamp area has increased considerably, many studies on peat swamp have focused on forest conversion or forest degradation. Meanwhile, in the context of changes in the forestlands are the sum of several processes such as deforestation, reforestation/afforestation, regeneration of previously deforested areas, and the changing spatial location of the forest boundary. Remote sensing technology seems to be a powerful tool to provide information required following that concerns. A comparison imagery taken at the different dates over the same locations for assessing those changes tends to be limited by the vegetation phenology and land-management practices. Consequently, the simultaneous analysis seems to be a way to deal with the issues above, as a means for better understanding of the dynamics changes in peat swamp area. In this study, we examined the feasibility of using MODIS images during the last 14 years for detecting and monitoring the changes in peat swamp area. We identified several significant patterns that have been assigned as the specific peat swamp ecosystem. The results indicate that a different type of ecosystem and its response to the environmental changes can be portrayed well by the significant patterns. In understanding the complex situations of each pattern, several vegetation dynamics patterns were characterized by physical land characteristics, such as peat depth, land use, concessions and others. Characterizing the pathways of dynamics change in peat swamp area will allow further identification for the range of proximate and underlying factors of the forest cover change that can help to develop useful policy interventions in peatland management.

  20. Integrating Remote Sensing and Field Data to Monitor Changes in Vegetative Cover on a Multipurpose Range Complex and Adjacent Training Lands at Camp Grayling, Michigan

    National Research Council Canada - National Science Library

    Tweddale, Scott

    2001-01-01

    .... Remote sensing and field surveys were used to determine vegetative cover. In the field, vegetative cover data were collected on systematically allocated plots during the peak of the growing season in 1997...

  1. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Directory of Open Access Journals (Sweden)

    Andrzej Pawlowski

    2009-01-01

    Full Text Available Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results.

  2. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Science.gov (United States)

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results. PMID:22389597

  3. Geochemical and mineralogical controls on mine tailings rehabilitation and vegetation, Otago Schist, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Rufaut, C.

    2017-01-01

    Large areas (square kilometre scale) of mine tailings have been deposited from placer gold mines in Central Otago, and are being deposited at Macraes orogenic gold mine in east Otago. Establishment of vegetation on these tailings involves at least some provision of plant nutrients from the rock. Phosphorus is the principal limiting nutrient, as the c. 1000 mg/kg P in accessory apatite, most abundant in micaceous schist, is only sparingly bioavailable on timescales of weeks to months. Nitrogen is an important limiting nutrient but schist, especially micaceous schist, typically contains 500-1000 mg/kg N, and this nitrogen is readily leachable with water on timescales of weeks to months. Arsenic uptake from tailings by pasture species is significant (< 90 mg/kg dry weight), but elevated As in tailings substrates (c. 1500 mg/kg) does not adversely affect plant health. Capping of tailings with variably oxidised schist is the most effective way of facilitating revegetation, and some addition of phosphatic fertiliser is desirable but other nutrients, including nitrogen, are adequately bioavailable in a schist cap and underlying tailings. (author).

  4. Harvesting more than vegetables: the potential weight control benefits of community gardening.

    Science.gov (United States)

    Zick, Cathleen D; Smith, Ken R; Kowaleski-Jones, Lori; Uno, Claire; Merrill, Brittany J

    2013-06-01

    We examined the association of participation in community gardening with healthy body weight. We examined body mass index (BMI) data from 198 community gardening participants in Salt Lake City, Utah, in relationship to BMI data for 3 comparison groups: neighbors, siblings, and spouses. In comparisons, we adjusted for gender, age, and the year of the BMI measurement. Both women and men community gardeners had significantly lower BMIs than did their neighbors who were not in the community gardening program. The estimated BMI reductions in the multivariate analyses were -1.84 for women and -2.36 for men. We also observed significantly lower BMIs for women community gardeners compared with their sisters (-1.88) and men community gardeners compared with their brothers (-1.33). Community gardeners also had lower odds of being overweight or obese than did their otherwise similar neighbors. The health benefits of community gardening may go beyond enhancing the gardeners' intake of fruits and vegetables. Community gardens may be a valuable element of land use diversity that merits consideration by public health officials who want to identify neighborhood features that promote health.

  5. Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions

    International Nuclear Information System (INIS)

    Barrett, Sophie E.; Watmough, Shaun A.

    2015-01-01

    The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. - Highlights: • Surface peat in wetlands in Sudbury is contaminated with Cu and Ni. • The pH of peat is positively related to species richness and diversity. • Metal levels in peat is negatively related to vascular vegetation and Sphagnum cover. • Loss of Sphagnum at contaminated peatlands may impede recovery. - Sudbury peatlands remain impacted by industrial activities as indicated by elevated copper and nickel concentrations and diminished vascular plant cover and Sphagnum frequency.

  6. Short-term vegetation response following mechanical control of saltcedar (Tamarix spp.) on the Virgin River, Nevada, USA

    Science.gov (United States)

    Ostoja, Steven M.; Brooks, Matthew L.; Dudley, Tom; Lee, Steven R.

    2014-01-01

    Tamarisk (a.k.a. saltcedar, Tamarix spp.) is an invasive plant species that occurs throughout western riparian and wetland ecosystems. It is implicated in alterations of ecosystem structure and function and is the subject of many local control projects, including removal using heavy equipment. We evaluated short-term vegetation responses to mechanical Tamarix spp. removal at sites ranging from 2 to 5 yr post-treatment along the Virgin River in Nevada, USA. Treatments resulted in lower density and cover (but not eradication) of Tamarix spp., increased cover of the native shrub Pluchea sericia (arrow weed), decreased density and cover of all woody species combined, increased density of both native annual forbs and the nonnative annual Salsola tragus (prickly Russian-thistle), and lower density of nonnative annual grasses. The treated plots had lower mean woody species richness, but greater herbaceous species richness and diversity. Among herbaceous species, native taxa increased in richness whereas nonnative species increased in both species richness and diversity. Thus, efforts to remove Tamarix,/i> spp. at the Virgin River reduced vegetative cover contributing to fuel loads and probability of fire, and resulted in positive effects for native plant diversity, with mixed effects on other nonnative species. However, absolute abundances of native species

  7. Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Hameed Ullah

    2017-01-01

    Full Text Available Chemical syntheses involve either hazardous reactants or byproducts which adversely affect the environment. It is, therefore, desirable to develop synthesis processes which either do not involve hazardous reactants or consume all the reactants giving no byproducts. We have synthesized CuO nanoparticles (NPs adhering to some of the principles of green chemistry. The CuO NPs have been synthesized exploiting extracts of vegetable wastes, that is, Cauliflower waste and Potatoes and Peas peels. The extracts were aimed to work as capping agents to get control over the microstructure and morphology of the resulting CuO NPs. The green synthesized CuO NPs were characterized to explore the microstructure, morphology, optical bandgaps, and photocatalytic performances. XRD revealed that the CuO NPs of all the samples crystallized in a single crystal system, that is, monoclinic. However, the morphologies and the optical bandgaps energies varied as a function of the extract of vegetable waste. Similarly, the CuO NPs obtained through different extracts have shown different photocatalytic activities. The CuO NPs produced with extract of Cauliflower have shown high degradation of MB (96.28% compared to obtained with Potatoes peels (87.37% and Peas peels (79.11%.

  8. PLS-based memory control scheme for enhanced process monitoring

    KAUST Repository

    Harrou, Fouzi; Sun, Ying

    2017-01-01

    Fault detection is important for safe operation of various modern engineering systems. Partial least square (PLS) has been widely used in monitoring highly correlated process variables. Conventional PLS-based methods, nevertheless, often fail

  9. sampling plans for monitoring quality control process at a plastic

    African Journals Online (AJOL)

    Dr Obe

    AT A PLASTIC MANUFACTURING FIRM IN NIGERIA: A CASE STUDY. By. E.A. Onyeagoro ... manufacture similar products, so that each company ... monitoring of production to maintain process ... concept of designing quality into product, with.

  10. Metacognitive monitoring and control in visual change detection: Implications for situation awareness and cognitive control

    Science.gov (United States)

    McAnally, Ken I.; Morris, Adam P.; Best, Christopher

    2017-01-01

    Metacognitive monitoring and control of situation awareness (SA) are important for a range of safety-critical roles (e.g., air traffic control, military command and control). We examined the factors affecting these processes using a visual change detection task that included representative tactical displays. SA was assessed by asking novice observers to detect changes to a tactical display. Metacognitive monitoring was assessed by asking observers to estimate the probability that they would correctly detect a change, either after study of the display and before the change (judgement of learning; JOL) or after the change and detection response (judgement of performance; JOP). In Experiment 1, observers failed to detect some changes to the display, indicating imperfect SA, but JOPs were reasonably well calibrated to objective performance. Experiment 2 examined JOLs and JOPs in two task contexts: with study-time limits imposed by the task or with self-pacing to meet specified performance targets. JOPs were well calibrated in both conditions as were JOLs for high performance targets. In summary, observers had limited SA, but good insight about their performance and learning for high performance targets and allocated study time appropriately. PMID:28915244

  11. On the matter of the reliability of the chemical monitoring system based on the modern control and monitoring devices

    Science.gov (United States)

    Andriushin, A. V.; Dolbikova, N. S.; Kiet, S. V.; Merzlikina, E. I.; Nikitina, I. S.

    2017-11-01

    The reliability of the main equipment of any power station depends on the correct water chemistry. In order to provide it, it is necessary to monitor the heat carrier quality, which, in its turn, is provided by the chemical monitoring system. Thus, the monitoring system reliability plays an important part in providing reliability of the main equipment. The monitoring system reliability is determined by the reliability and structure of its hardware and software consisting of sensors, controllers, HMI and so on [1,2]. Workers of a power plant dealing with the measuring equipment must be informed promptly about any breakdowns in the monitoring system, in this case they are able to remove the fault quickly. A computer consultant system for personnel maintaining the sensors and other chemical monitoring equipment can help to notice faults quickly and identify their possible causes. Some technical solutions for such a system are considered in the present paper. The experimental results were obtained on the laboratory and experimental workbench representing a physical model of a part of the chemical monitoring system.

  12. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    Science.gov (United States)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  13. Cruciferous Vegetables and Cancer Prevention

    Science.gov (United States)

    ... case-control studies have found that people who ate greater amounts of cruciferous vegetables had a lower ... Professionals’ Follow-up Study—showed that women who ate more than 5 servings of cruciferous vegetables per ...

  14. Characteristics of the home food environment that mediate immediate and sustained increases in child fruit and vegetable consumption: mediation analysis from the Healthy Habits cluster randomised controlled trial.

    Science.gov (United States)

    Wyse, Rebecca; Wolfenden, Luke; Bisquera, Alessandra

    2015-09-17

    The home food environment can influence the development of dietary behaviours in children, and interventions that modify characteristics of the home food environment have been shown to increase children's fruit and vegetable consumption. However to date, interventions to increase children's fruit and vegetable consumption have generally produced only modest effects. Mediation analysis can help in the design of more efficient and effective interventions by identifying the mechanisms through which interventions have an effect. This study aimed to identify characteristics of the home food environment that mediated immediate and sustained increases in children's fruit and vegetable consumption following the 4-week Healthy Habits telephone-based parent intervention. Analysis was conducted using 2-month (immediate) and 12-month (sustained) follow-up data from a cluster randomised control trial of a home food environment intervention to increase the fruit and vegetable consumption of preschool children. Using recursive path analysis, a series of mediation models were created to investigate the direct and indirect effects of immediate and sustained changes to characteristics of the home food environment (fruit and vegetable availability, accessibility, parent intake, parent providing behaviour, role-modelling, mealtime eating practices, child feeding strategies, and pressure to eat), on the change in children's fruit and vegetable consumption. Of the 394 participants in the randomised trial, 357 and 329 completed the 2- and 12-month follow-up respectively. The final mediation model suggests that the effect of the intervention on the children's fruit and vegetable consumption was mediated by parent fruit and vegetable intake and parent provision of these foods at both 2- and 12-month follow-up. Analysis of data from the Healthy Habits trial suggests that two environmental variables (parental intake and parent providing) mediate the immediate and sustained effect of the

  15. Influence of Insulation Monitoring Devices on the Operation of DC Control Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Olszowiec, Piotr, E-mail: olpio@o2.pl [Erea Polaniec (Poland)

    2017-03-15

    The insulation level of DC control circuits is an important safety-critical factor and, thus, should be subject to continuous and periodic monitoring. The methods used for monitoring the insulation in live circuits may, however, disturb the reliable operation of control relays. The risks of misoperation and failure to reset of relays posed by the operation of various insulation monitoring and fault location systems are evaluated.

  16. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  17. Monitoring-control of the 900 MWe and 1300 MWe nuclear reactors

    International Nuclear Information System (INIS)

    Meyer, J.

    1982-01-01

    After a short definition of the monitoring-control of the 900 MWe and 1300 MWe nuclear reactors, and a recall of requirements of nuclear energy, this paper presents the following points concerning the whole system of monitoring-control: the organization, the systems (instrumentation, automation), the technologies, the imperfections and the improvements brought to the system [fr

  18. Antecedents and Behavior-Problem Outcomes of Parental Monitoring and Psychological Control in Early Adolescence.

    Science.gov (United States)

    Pettit, Gregory S.; Laird, Robert D.; Dodge, Kenneth A.; Bates, John E.; Criss, Michael M.

    2001-01-01

    Examined early childhood antecedents and behavior-problem correlates of monitoring and psychological control during early adolescence. Found that monitoring was anteceded by proactive parenting style and advantageous family-ecological characteristics. Psychological control was anteceded by harsh parenting and mothers' report of earlier child…

  19. Control of framed structures using intelligent monitoring networks

    Directory of Open Access Journals (Sweden)

    Foti Dora

    2017-01-01

    Full Text Available The paper proposes the integration of structural monitoring with Building Management Systems for electricity and gas distributions. To assess the state of damage of existing buildings the technics of Structural Health Monitoring (SHM is adopted. SHM as well as to record the occurrence of sudden structural damage resulting from exceptional events (earthquakes, explosions, shocks and collisions with vehicles, etc., allows the monitoring of the progressive damage and structural performance under operating conditions through the extraction of the modal parameters of the structure. This approach requires time to process acquired data that, depending on the size of the building and the number of monitored points, varies from minutes to hours. In this paper, an intelligent system is proposed to immediately communicate during an earthquake the overrun of a certain ground shaking threshold so that gas delivery and selected power loads are interrupted, as suggested by current national regulations on structures. The use of low-cost and reduced size accelerometric sensors integrated with Energy Monitoring Systems is proposed in both highrisk earthquake centers and in all “strategic” buildings that must ensure their operation use immediately after the earthquake. The procedure for calibrating the horizontal and vertical acceleration threshold is also sketched.

  20. High consumption of vegetable and fruit colour groups is inversely associated with the risk of colorectal cancer: a case-control study.

    Science.gov (United States)

    Luo, Wei-Ping; Fang, Yu-Jing; Lu, Min-Shan; Zhong, Xiao; Chen, Yu-Ming; Zhang, Cai-Xia

    2015-04-14

    The colour of the edible portion of vegetables and fruit reflects the presence of specific micronutrients and phytochemicals. No existing studies have examined the relationship between the intake of vegetable and fruit colour groups and the risk of colorectal cancer. The present study, therefore, aimed to investigate these associations in a Chinese population. A case-control study was conducted between July 2010 and July 2014 in Guangzhou, China, in which 1057 consecutively recruited cases of colorectal cancer were frequency-matched to 1057 controls by age (5-year interval), sex and residence (rural/urban). A validated FFQ was used to collect dietary information during face-to-face interviews. Vegetables and fruit were classified into four groups according to the colour of their primarily edible parts: green; orange/yellow; red/purple; white. Unconditional logistic regression models were used to estimate the OR and 95 % CI. A higher consumption of orange/yellow, red/purple and white vegetables and fruit was inversely associated with the risk of colorectal cancer, with adjusted OR of 0·16 (95 % CI 0·12, 0·22) for orange/yellow, 0·23 (95 % CI 0·17, 0·31) for red/purple and 0·53 (95 % CI 0·40, 0·70) for white vegetables and fruit when the highest and lowest quartiles were compared. Total vegetable intake and total fruit intake have also been found to be inversely associated with colorectal cancer risk. However, the intake of green vegetable and fruit was not associated with colorectal cancer risk. The results of the present study, therefore, suggest that a greater intake of orange/yellow, red/purple and white vegetables and fruit is inversely associated with the risk of colorectal cancer.

  1. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    Science.gov (United States)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  2. Permafrost in vegetated scree slopes below the timberline - characterization of thermal properties and permafrost conditions by temperature measurements and geoelectrical monitoring

    Science.gov (United States)

    Schwindt, Daniel; Kneisel, Christof

    2010-05-01

    Discontinuous alpine permafrost is expected to exist at altitudes above 2400m a.s.l. at mean annual air temperatures (MAAT) of less than -1°C. Below timberline only a few sites are known, where sporadic permafrost exists in vegetated talus slopes with positive MAAT. Aim of the study is to characterize permafrost-humus interaction, the thermal regime and its influence on temporal and spatial permafrost variability. Results of geophysical and thermal measurements from three talus slopes, located in the Swiss Alps (Engadin, Appenzell) at elevations between 1200 and 1800m a.s.l. with MAAT between 2.8°C and 5.5°C are presented. Parent rock-material of the slopes are granite (Bever Valley, Engadin) and dolomite (Susauna Valley, Engadin; Brüeltobel, Appenzell). Joint application of electrical resistivity tomography (ERT) and refraction seismic tomography (RST) is used to detect and characterize permafrost. To observe temporal and spatial variability in ice content and characteristics year-around geoelectrical monitoring and quasi-3D ERT are used. A forward modeling approach has been applied to validate the results of geoelectrical monitoring. A number of temperature data loggers were installed in different depth of the humus layer and in different positions of the slope to monitor the ground thermal regime. Isolated permafrost has been detected by the combination of ERT and RST in the lower parts of the investigated talus slopes. Results from geophysical measurements and monitoring indicate a high spatial and temporal variability in ice content and ice characteristics (temperature, density, content of unfrozen water) for all sites. A distinct rise of resistivities between November and December indicates a decrease of unfrozen water content, caused by a pronounced cooling in the lower parts of the slope. Decreasing ice content and extent of the permafrost lenses can be observed in decreasing seismic velocities from 2600m/sec in spring to only 1500m/sec in October. Ice

  3. Vibration control and monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Theodor, P.

    1989-01-01

    Nuclear Power Plants are operated with a computer system support. The computer system for a nuclear power plant is designed to reliably monitor plant parameters and perform a series of operations and calculations designed to allow increased plant operation efficiency. Rotating machinery surveillance methods for the recognition of damage are particularly important in Nuclear Power Plants. Deviation of the vibration behavior from normal conditions is an indicator of the development of incipient faults and can be reliably recognized by the use of vibration monitoring systems. Machinery Condition Monitoring is defined as a method or methods of surveillance designed to recognize changes from a norm and is also a warning or it initiates an automatic shutdown when the changes exceed limiting values or safety limits. This paper reports that it is important to distinguish between surveillance and diagnostics. Whereas the former is necessary for protection, the latter is not generally required until it becomes necessary to identify the source of a known anomaly

  4. Quality control of the interpretation monitors of digital radiological images; Controle de qualidade dos monitores de interpretacao de imagens radiologicas digitais: uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Favero, Mariana S.; Goulart, Adriano Oliveira S., E-mail: mariana@phymed.com.br [PhyMED - Consultores em Fisica Medica e Radioprotecao Ltda, Porto Alegre, RS (Brazil)

    2016-07-01

    The performance monitors has great importance in image quality of digital radiographic systems. In environments without films, it became necessary to implement acceptance testing and quality control monitors used for interpretation of medical images. The monitors dedicated to radiodiagnostic should provide information that represent slight differences in x-ray attenuation or minor differences in some anatomical region of interest. This should also result in small differences in luminance of an image represented. Factors affecting the quality of medical imaging are contrast, noise, resolution, artifacts and distortions. Therefore, a monitor must have specific characteristics, making it possible for the observer to carry out an assessment that leads to better diagnosis. Based on the need to evaluate diagnostic monitors in various radiological applications, this paper presents a summary for implementation and standardization of tests that are recommended by the publication AAPM Report 03. (author)

  5. Vegetation Structure Controls Carbon Sequestration Potential in a Savannah Ecosystem of Mt. Kilimanjaro Region

    Science.gov (United States)

    Becker, J. N.; Gutlein, A.; Sierra Cornejo, N.; Ralf, K.; Hertel, D.; Kuzyakov, Y.

    2016-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon (C) sequestration. Savanna ecosystems are increasingly pressured by climate and land-use changes, especially around populous areas such as the Mt. Kilimanjaro region. Savanna vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation and patchiness of canopy cover and aboveground biomass. Both are major regulators for soil ecological properties and soil-atmospheric trace gas exchange (CO2, N2O, CH4), especially in water-limited environments. Our objectives were to determine spatial trends in soil properties and trace-gas fluxes during the dry season and to relate above- and belowground processes and attributes. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At each sampling point (0-10 & 10-30 cm depth) we measured soil C and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. The tree species had no effect on soil parameters and gas fluxes under the crown. CEC, C and N fractions decreased up to 50% outside the crown-covered area. Tree leaf litter had a far lower C:N ratio than leaf litter of the C4-grass species. δ13C in soil under the crowns shifted about 15% in the direction of tree leaf litter δ13C compared to soil in open area reflecting the tree litter contribution to soil organic matter. The microbial C:N ratio and CO2 efflux were about 30% higher in the open area and strongly dependent on mineral N availability. This indicates N limitation and low C-use efficiency in soil under open grassland. We conclude that the spatial

  6. Environmental monitoring of carbaryl applied in urban areas to control the glassy-winged sharpshooter in California.

    Science.gov (United States)

    Walters, Johanna; Goh, Kean S; Li, Linying; Feng, Hsiao; Hernandez, Jorge; White, Jane

    2003-03-01

    Carbaryl insecticide was applied by ground spray to plants in urban areas to control a serious insect pest the glassy-winged sharpshooter, Homalodisca coagulata (Say), newly introduced in California. To assure there are no adverse impacts to human health and the environment from the carbaryl applications, carbaryl was monitored in tank mixtures, air, surface water, foliage and backyard fruits and vegetables. Results from the five urban areas - Porterville, Fresno, Rancho Cordova, Brentwood and Chico - showed there were no significant human exposures or impacts on the environment. Spray tank concentrations ranged from 0.1-0.32%. Carbaryl concentrations in air ranged from none detected to 1.12 microg m(-3), well below the interim health screening level in air of 51.7 microg m(-3). There were three detections of carbaryl in surface water near application sites: 0.125 ppb (parts per billion) from a water treatment basin; 6.94 ppb from a gold fish pond; and 1737 ppb in a rain runoff sample collected from a drain adjacent to a sprayed site. The foliar dislodgeable residues ranged from 1.54-7.12 microg cm(-2), comparable to levels reported for safe reentry of 2.4 to 5.6 microg cm(-2) for citrus. Carbaryl concentrations in fruits and vegetables ranged from no detectable amounts to 7.56 ppm, which were below the U.S. EPA tolerance, allowable residue of 10 ppm.

  7. A change detection strategy for monitoring vegetative and land-use cover types using remotely-sensed, satellite-based data

    International Nuclear Information System (INIS)

    Hallum, C.

    1993-01-01

    Changes to the environment are of critical concern in the world today; consequently, monitoring such changes and assessing their impacts are tasks demanding considerably higher priority. The ecological impacts of the natural global cycles of gases and particulates in the earth's atmosphere are highly influenced by the extent of changes to vegetative canopy characteristics which dictates the need for capability to detect and assess the magnitude of such changes. The primary emphasis of this paper is on the determination of the size and configuration of the sampling unit that maximizes the probability of its intersection with a 'change' area. Assessment of the significance of the 'change' in a given locality is also addressed and relies on a statistical approach that compares the number of elemental units exceeding a reflectance threshold when compared to a previous point in time. Consideration is also given to a technical framework that supports quantifying the magnitude of the 'change' over large areas (i.e., the estimated area changing from forest to agricultural land-use). The latter entails a multistage approach which utilizes satellite-based and other related data sources

  8. FAST GC-FID METHOD FOR MONITORING ACIDIC AND BASIC CATALYTIC TRANSESTERIFICATION REACTIONS IN VEGETABLE OILS TO METHYL ESTER BIODIESEL PREPARATION

    Directory of Open Access Journals (Sweden)

    Renata Takabayashi Sato

    2016-04-01

    Full Text Available A fast gas chromatography with a flame ionisation detector (GC-FID method for the simultaneous analysis of methyl palmitate (C16:0, stearate (C18:0, oleate (C18:1, linoleate (C18:2 and linolenate (C18:3 in biodiesel samples was proposed. The analysis was conducted in a customised ionic-liquid stationary-phase capillary, SLB-IL 111, with a length of 14 m, an internal diameter of 0.10 mm, a film thickness of 0.08 µm and operated isothermally at 160 °C using hydrogen as the carrier gas at a rate of 50 cm s-1 in run time about 3 min. Once methyl myristate (C14:0 is present lower than 0.5% m/m in real samples it was used as an internal standard. The method was successful applied to monitoring basic and acidic catalysis transesterification reactions of vegetable oils such as soybean, canola, corn, sunflower and those used in frying process.

  9. Access Control for Monitoring System-Spanning Business Processes

    NARCIS (Netherlands)

    Bassil, S.; Reichert, M.U.; Bobrik, R.; Bauer, Th.

    2007-01-01

    Integrated process support is highly desirable in environ- ments where data related to a particular (business) process are scattered over distributed and heterogeneous information systems (IS). A process monitoring component is a much-needed module in order to provide an integrated view on all these

  10. Biomass performance : monitoring and control in bio-pharmaceutical production

    NARCIS (Netherlands)

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this

  11. Pilot Randomized Controlled Trial of a Home Vegetable Gardening Intervention among Older Cancer Survivors Shows Feasibility, Satisfaction, and Promise in Improving Vegetable and Fruit Consumption, Reassurance of Worth, and the Trajectory of Central Adiposity.

    Science.gov (United States)

    Demark-Wahnefried, Wendy; Cases, Mallory G; Cantor, Alan B; Frugé, Andrew D; Smith, Kerry P; Locher, Julie; Cohen, Harvey J; Tsuruta, Yuko; Daniel, Michael; Kala, Rishabh; De Los Santos, Jennifer F

    2018-04-01

    Holistic approaches are sought to improve lifestyle behaviors and health of cancer survivors long term. Our aim was to explore whether a home-based vegetable gardening intervention is feasible and whether it improves diet and other health-related outcomes among older cancer survivors. We conducted a feasibility trial in which cancer survivors were randomized to receive a year-long gardening intervention immediately or to a wait-list control arm. Home visits at baseline and 1 year assessed physical performance, anthropometric indices, behavioral and psychosocial outcomes, and biomarkers. Participants included 46 older (aged 60+ years) survivors of locoregionally staged cancers across Alabama from 2014 to 2016. Forty-two completed 1-year follow-up. Cooperative extension master gardeners delivered guidance to establish three seasonal vegetable gardens at survivors' homes. Plants, seeds, and gardening supplies were provided. Primary outcomes were feasibility targets of 80% accrual and retention, and an absence of serious adverse events; other outcomes were secondary and explored potential benefits. Baseline to follow-up changes were assessed within and between arms using paired t, McNemar's, and χ 2 tests. This trial proved to be safe and demonstrated 91.3% retention; 70% of intervention participants rated their experience as "excellent," and 85% would "do it again." Data suggest significantly increased reassurance of worth (+0.49 vs -0.45) and attenuated increases in waist circumference (+2.30 cm vs +7.96 cm) in the gardening vs control arms (P=0.02). Vegetable and fruit consumption increased by approximately 1 serving/day within the gardening arm from baseline to follow-up (mean [standard error]=1.34 [1.2] to 2.25 [1.9] servings/day; P=0.02)] compared to controls (1.22 [1.1] to 1.12 [0.7]; P=0.77; between-arm P=0.06). The home vegetable gardening intervention among older cancer survivors was feasible and suggested improvements in vegetable and fruit consumption

  12. Wind erosion control with scattered vegetation in the Sahelian zone of Burkina Faso

    NARCIS (Netherlands)

    Leenders, J.K.

    2006-01-01

    The Sahelian zone ofAfricais the region that is globally most subjected to land degradation, with wind erosion being the most important soil degradation process. By using control measures, the negative effects of wind erosion can be reduced. At present, adoption of

  13. Effects of an Encapsulated Fruit and Vegetable Juice Concentrate on Obesity-Induced Systemic Inflammation: A Randomised Controlled Trial

    Directory of Open Access Journals (Sweden)

    Evan J. Williams

    2017-02-01

    Full Text Available Phytochemicals from fruit and vegetables reduce systemic inflammation. This study examined the effects of an encapsulated fruit and vegetable (F&V juice concentrate on systemic inflammation and other risk factors for chronic disease in overweight and obese adults. A double-blinded, parallel, randomized placebo-controlled trial was conducted in 56 adults aged ≥40 years with a body mass index (BMI ≥28 kg/m2. Before and after eight weeks daily treatment with six capsules of F&V juice concentrate or placebo, peripheral blood gene expression (microarray, quantitative polymerase chain reaction (qPCR, plasma tumour necrosis factor (TNFα (enzyme-linked immunosorbent assay (ELISA, body composition (Dual-energy X-ray absorptiometry (DEXA and lipid profiles were assessed. Following consumption of juice concentrate, total cholesterol, low-density lipoprotein (LDL cholesterol and plasma TNFα decreased and total lean mass increased, while there was no change in the placebo group. In subjects with high systemic inflammation at baseline (serum C-reactive protein (CRP ≥3.0 mg/mL who were supplemented with the F&V juice concentrate (n = 16, these effects were greater, with decreased total cholesterol, LDL cholesterol and plasma TNFα and increased total lean mass; plasma CRP was unchanged by the F&V juice concentrate following both analyses. The expression of several genes involved in lipogenesis, the nuclear factor-κB (NF-κB and 5′ adenosine monophosphate-activated protein kinase (AMPK signalling pathways was altered, including phosphomevalonate kinase (PMVK, zinc finger AN1-type containing 5 (ZFAND5 and calcium binding protein 39 (CAB39, respectively. Therefore, F&V juice concentrate improves the metabolic profile, by reducing systemic inflammation and blood lipid profiles and, thus, may be useful in reducing the risk of obesity-induced chronic disease.

  14. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  15. Control system and environmental parameters monitoring of the Tandetron Accelerator clean room

    International Nuclear Information System (INIS)

    Mejia V, M.E.; Garcia H, J.M.; Flores M, J.

    2007-01-01

    A control system and monitoring of humidity and temperature implemented by means of a system based on a microcontroller, an intelligent sensor and a stage of power for the actuators handling is described. The change of the levels of reference of the control system and the monitoring of the physical controlled variables can be carried out from any connected computer to a local net or Internet. (Author)

  16. The Design of Temperature and Humidity Chamber Monitor and Controller

    OpenAIRE

    Tibebu, Simachew

    2016-01-01

    The temperature and humidity chamber, (climate chamber) is a device located at the Technobothnia Education and Research Center that simulates different climate conditions. The simulated environment is used to test the capabilities of electrical equipment in different temperature and humidity conditions. The climate chamber, among other things houses a dedicated computer, the control PC, and a control software running in it which together are responsible for running and control-ling these simu...

  17. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    under different control strategies of the heating system (Pseudo Random Binary Sequence signal controlling all the heaters (PRBS) or thermostatic control of the heaters (THERM)). A comparison of the measured temperatures within the room, for the five series of experiments, shows a better correlation...

  18. Meta-Reasoning: Monitoring and Control of Thinking and Reasoning.

    Science.gov (United States)

    Ackerman, Rakefet; Thompson, Valerie A

    2017-08-01

    Meta-Reasoning refers to the processes that monitor the progress of our reasoning and problem-solving activities and regulate the time and effort devoted to them. Monitoring processes are usually experienced as feelings of certainty or uncertainty about how well a process has, or will, unfold. These feelings are based on heuristic cues, which are not necessarily reliable. Nevertheless, we rely on these feelings of (un)certainty to regulate our mental effort. Most metacognitive research has focused on memorization and knowledge retrieval, with little attention paid to more complex processes, such as reasoning and problem solving. In that context, we recently developed a Meta-Reasoning framework, used here to review existing findings, consider their consequences, and frame questions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Breakdowns in the deformation monitoring and their control

    Directory of Open Access Journals (Sweden)

    Gabriel Weiss

    2007-04-01

    Full Text Available The deformation analysis from the point of view of its subject and methodology is an extensive part of geodetic and other methods for watching objects´ stabilities and for the determination of their changes using suitable quantities from deformation measurements performed in more epochs. In the monitoring of the object deformations, their characteristic points – object points (OB are measured and their stabilities or movements are registered relating to a convenient number of robust reference points (RB in the surroundings. It often happens in the monitoring that some RBs are lost (damage, destruction, etc., resulting in datum changes of the deformation net and making a reliable stability evaluation of the OBs impossible.In this contribution to the problems of right datum determination for