WorldWideScience

Sample records for monitoring vegetation control

  1. Vegetation monitoring using low-altitude, large-scale imagery from radio-controlled drones

    Science.gov (United States)

    Quilter, Mark Charles

    As both farmers and range managers are required to manage larger acreage, new methods for vegetation monitoring need to be developed. The methods need to increase information and yield, and at the same time reduce labor requirements and cost. This dissertation discusses how the use of radio controlled aircraft can collect large scale imagery that can be used to monitor vegetation. Several methods are explored which reduce the labor requirements for collecting and recording data. The work demonstrates the effectiveness of these methods and presents details of the procedures used. Many of the techniques have historically been used with aerial photographs and satellite imagery. However, the use of these procedures to collect detailed data at a scale required for vegetation monitoring is new. Image processing procedures are also demonstrated to have promise in changing the way ranges are monitored.

  2. Audubon vegetation monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is the summary and the analysis of vegetative data for the Audubon Refuge from NPWRC. The data included measurements of vegetation density, vegetation...

  3. MONITORING VEGETATION CHANGE IN THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    P: BREMER

    2007-01-01

    Full Text Available The Dutch national vegetation monitoring scheme collects sample-based surveillance data at a national scale. The objectives are (i to assess if changes in eutrophication, acidification and desiccation lead to changes in the vegetation of natural habitats and (ii to assess changes in botanical quality of natural habitats and farmland and (iii to assess botanical changes in verges of traffic highways. The first results demonstrated that the national monitoring scheme is sensitive enough to track relevant changes in the vegetation. Examples are the increasing coverage of shrubs in natural areas and the signs of recovery of the vegetation of wet dune valleys in areas with hydrological measures.

  4. Monitoring Soil Moisture Deficit Effects on Vegetation Parameters Using Radiative Transfer Models Inversion and Hyperspectral Measurements Under Controlled Conditions

    Science.gov (United States)

    Bayat, Bagher; Van der Tol, Christiaan; Verhoef, Wouter

    2016-08-01

    Plant-available soil moisture is a key element which affects plant properties in their ecosystems. This study shows Poa pratensis -a species of grass- responses to soil moisture deficit during an artificial drought episode in a greenhouse experiment. We used radiative transfer model inversion to monitor the gradual manifestation of soil moisture deficit effects on vegetation in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 40 days. In a regular weekly schedule, canopy reflectance was measured. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters (mainly; LAI, Cab, Cw, Cdm and Cs). The relationships between these retrieved parameters with soil moisture content were established in two separated groups; stress and non-stressed. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil moisture content in the drought episode. These parameters co- varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level.

  5. Monitoring vegetation growth and morphodynamic effects after stream restoration

    Science.gov (United States)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Ton; Keesstra, Saskia; Uijttewaal, Wim

    2016-04-01

    Vegetation processes are widely recognized as a key component on the ecological and morphological development of river channels. Moreover, plants reduce flow velocities and bed-shear stresses by increasing the local hydraulic roughness and thus increasing water levels. Therefore, monitoring the vegetation development is an important activity in river management not only for protecting ecological services, but also in flood risk reduction; especially in times of a changing climate. This paper presents the analysis the effects of riparian vegetation growth on the morphology of a lowland restored stream located in The Netherlands, the Lunterse beek. An Unmanned Aerial Vehicle (UAV) was used to obtain aerial imagery at different time steps which was the basis for generating land cover maps with semi-automated image classification. In addition hydrological series and multi-temporal high-resolution bathymetric data allowed analysing river bed morphology and the relevance of seasonality. The UAV campaigns were found a crucial step to ease the vegetation mapping and monitoring. The morphological change observed in this stream, represented by the channel-width adjustment and the cross sectional evolution, is slowed down once vegetation is stablished on the stream. Results of this work show that the vegetation root system assert a strong control on soil stabilization, even during the winter season when the plants biomass is highly reduced. Seasonal variations in plant development appear important only during the first stages of establishment, when vegetation has a low density and, more importantly, a root system that is not fully developed yet.

  6. Toward a comprehensive landscape vegetation monitoring framework

    Science.gov (United States)

    Kennedy, Robert; Hughes, Joseph; Neeti, Neeti; Larrue, Tara; Gregory, Matthew; Roberts, Heather; Ohmann, Janet; Kane, Van; Kane, Jonathan; Hooper, Sam; Nelson, Peder; Cohen, Warren; Yang, Zhiqiang

    2016-04-01

    Blossoming Earth observation resources provide great opportunity to better understand land vegetation dynamics, but also require new techniques and frameworks to exploit their potential. Here, I describe several parallel projects that leverage time-series Landsat imagery to describe vegetation dynamics at regional and continental scales. At the core of these projects are the LandTrendr algorithms, which distill time-series earth observation data into periods of consistent long or short-duration dynamics. In one approach, we built an integrated, empirical framework to blend these algorithmically-processed time-series data with field data and lidar data to ascribe yearly change in forest biomass across the US states of Washington, Oregon, and California. In a separate project, we expanded from forest-only monitoring to full landscape land cover monitoring over the same regional scale, including both categorical class labels and continuous-field estimates. In these and other projects, we apply machine-learning approaches to ascribe all changes in vegetation to driving processes such as harvest, fire, urbanization, etc., allowing full description of both disturbance and recovery processes and drivers. Finally, we are moving toward extension of these same techniques to continental and eventually global scales using Google Earth Engine. Taken together, these approaches provide one framework for describing and understanding processes of change in vegetation communities at broad scales.

  7. Spot-4 vegetation instrument: Vegetation monitoring on a global scale

    Science.gov (United States)

    Durpaire, J.-P.; Gentet, T.; Phulpin, T.; Arnaud, M.

    1995-04-01

    Vegetation plays a major role in global climatic change. It is a major contributor to the hydrological cycle and carbon exchanges between the Earth's surface and the atmosphere. A new space-based system dedicated to vegetation would be a boom to climatic and environmental studies. The additional possibilities of evaluating agricultural, pasture and forest production would be major contributions to improved natural resources management and a special benefit to agriculture and the general economy in developing countries. A space mission for monitoring terrestrial vegetation at global and local levels is proposed for inclusion in the Spot-4 payload, scheduled for launch around 1997. The "vegetation" concept is more than just an on-board package; it is a complete system with its own space and ground segments. The vegetation instrument (VI) on-board package is designed as an add-on payload that is quite independent of the host satellite. In addition to the basic imaging instrument, the add-on payload includes a solid-state recorder, an image telemetry subsystem and a computer to manage the work plan. To accommodate future long-term missions and achieve a lifetime in excess of 5 years, no moving parts are included in either the imaging instrument proper or the recorder subsystem. The innovative, large field-of-view (101∘) imaging instrument features telecentric lenses and focal-plane illumination compensation. Despite the large FOV, pixel size varies extremely little across the swath. Overall, the instrument offers an excellent revisit capability at the highest resolution. The inclusion of the VI package alongside Spot-4's prime payload of two HRVIR (high resolution visible and i.r.) imaging instruments will open the way to studies requiring both high accuracy satellite imagery and short revisit intervals. The combination of HRVIR and VI imagery will pave the way to powerful new multi-scale interpretation models, particularly as the instruments will share the same

  8. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  9. Monitoring of vegetation coverage based on high-resolution images

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Li Li-juan; Liang Li-qiao; Li Jiu-yi

    2007-01-01

    Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software,Definiens Professional 5,a new method for calculating vegetation coverage based on high-resolution images(aerial photographs or near-surface photography)is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediatc scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.

  10. Weed Identification and Control in Vegetable Crops.

    Science.gov (United States)

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  11. Weed Identification and Control in Vegetable Crops.

    Science.gov (United States)

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  12. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-07-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  13. [Vegetative analysis, 1000 acre monitoring and more

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Audubon Complex has been doing a monitoring study since 1990 on the different land management techniques used, and how they affect wildlife. This project proposal is...

  14. 1976 Commercial Vegetable Pest Control Guide.

    Science.gov (United States)

    MacNab, A. A.; And Others

    This guide contains pest control information for commercial vegetable production. It was prepared for agricultural supply dealers, extension agents, fieldmen, and growers. It gives general precautions, information on seed treatment, growing disease-free seedlings and transplants, general soil insect control, general weed control, and spraying…

  15. Suprasegmental control of vegetative nervous system.

    Science.gov (United States)

    Albanese, A; Macchi, G

    1987-01-01

    It is now well established that a rich mutual exchange of information occurs between some brain regions and vegetative centres located in the brain stem and medulla. Anatomico-clinical data on suprasegmental control of the vegetative nervous system are dealt with here, by briefly reviewing information relevant to the following territories: the frontal lobe and limbic centres, which are located in the forebrain, the hypothalamus, the respiratory, cardiovascular, and micturition centres of the brain stem.

  16. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation

    Science.gov (United States)

    Huete, Alfredo R.; Didan, Kamel; van Leeuwen, Willem J. D.; Vermote, Eric F.

    1999-12-01

    Vegetation indices have emerged as important tools in the seasonal and inter-annual monitoring of the Earth's vegetation. They are radiometric measures of the amount and condition of vegetation. In this study, the Sea-viewing Wide Field-of-View sensor (SeaWiFS) is used to investigate coarse resolution monitoring of vegetation with multiple indices. A 30-day series of SeaWiFS data, corrected for molecular scattering and absorption, was composited to cloud-free, single channel reflectance images. The normalized difference vegetation index (NDVI) and an optimized index, the enhanced vegetation index (EVI), were computed over various 'continental' regions. The EVI had a normal distribution of values over the continental set of biomes while the NDVI was skewed toward higher values and saturated over forested regions. The NDVI resembled the skewed distributions found in the red band while the EVI resembled the normal distributions found in the NIR band. The EVI minimized smoke contamination over extensive portions of the tropics. As a result, major biome types with continental regions were discriminable in both the EVI imagery and histograms, whereas smoke and saturation considerably degraded the NDVI histogram structure preventing reliable discrimination of biome types.

  17. The Pacific Northwest region vegetation and monitoring system.

    Science.gov (United States)

    Timothy A. Max; Hans T. Schreuder; John W. Hazard; Daniel D. Oswald; John Teply; Jim. Alegria

    1996-01-01

    A grid sampling strategy was adopted for broad-scale inventory and monitoring of forest and range vegetation on National Forest System lands in the Pacific North-west Region, USDA Forest Service. This paper documents the technical details of the adopted design and discusses alternative sampling designs that were considered. A less technical description of the selected...

  18. Drought and vegetation stress monitoring in Portugal using satellite data

    Directory of Open Access Journals (Sweden)

    C. Gouveia

    2009-02-01

    Full Text Available Remote sensed information on vegetation and soil moisture, namely the Normalised Difference Vegetation Index (NDVI and the Soil Water Index (SWI, is employed to monitor the spatial extent, severity and persistence of drought episodes over Continental Portugal, from 1999 to 2006. The severity of a given drought episode is assessed by evaluating the cumulative impact over time of drought conditions on vegetation. Special attention is given to the drought episodes that have occurred in the last decade, i.e., 1999, 2002 and particularly the major event of 2005. During both the 1999 and 2005 drought episodes negative anomalies of NDVI are observed over large sectors of Southern Portugal for up to nine months (out of eleven of the vegetative cycle. On the contrary, the 2002 event was characterized by negative anomalies in the northern half of Portugal and for a shorter period (eight out of eleven months. The impact of soil moisture on vegetation dynamics is evaluated by analyzing monthly anomalies of SWI and by studying the annual cycle of SWI vs. NDVI. While in the case of the drought episode of 1999 the scarcity of water in the soil persisted until spring, in the recent episode of 2005 the deficit in greenness was already apparent at the end of summer. The impact of dry periods on vegetation is clearly observed in both arable land and forest, and it is found that arable land presents a higher sensitivity. From an operational point of view, obtained results reveal the possibility of using the developed methodology to monitor, in quasi real-time, vegetation stress and droughts in Mediterranean ecosystems.

  19. Drought and vegetation stress monitoring in Portugal using satellite data

    Science.gov (United States)

    Gouveia, C.; Trigo, R. M.; Dacamara, C. C.

    2009-02-01

    Remote sensed information on vegetation and soil moisture, namely the Normalised Difference Vegetation Index (NDVI) and the Soil Water Index (SWI), is employed to monitor the spatial extent, severity and persistence of drought episodes over Continental Portugal, from 1999 to 2006. The severity of a given drought episode is assessed by evaluating the cumulative impact over time of drought conditions on vegetation. Special attention is given to the drought episodes that have occurred in the last decade, i.e., 1999, 2002 and particularly the major event of 2005. During both the 1999 and 2005 drought episodes negative anomalies of NDVI are observed over large sectors of Southern Portugal for up to nine months (out of eleven) of the vegetative cycle. On the contrary, the 2002 event was characterized by negative anomalies in the northern half of Portugal and for a shorter period (eight out of eleven months). The impact of soil moisture on vegetation dynamics is evaluated by analyzing monthly anomalies of SWI and by studying the annual cycle of SWI vs. NDVI. While in the case of the drought episode of 1999 the scarcity of water in the soil persisted until spring, in the recent episode of 2005 the deficit in greenness was already apparent at the end of summer. The impact of dry periods on vegetation is clearly observed in both arable land and forest, and it is found that arable land presents a higher sensitivity. From an operational point of view, obtained results reveal the possibility of using the developed methodology to monitor, in quasi real-time, vegetation stress and droughts in Mediterranean ecosystems.

  20. Monitoring the dynamics of coastal vegetation in southwestern Taiwan.

    Science.gov (United States)

    Lee, Tsai-Ming

    2005-12-01

    This study analyzes the results of the first 5 years of long-term environmental monitoring of the dynamics of coastal vegetation communities in southwestern Taiwan. Seven permanent plots were established in major vegetation communities, including grassland, windbreak forest, and secondary succession forest. Results showed that species richness decreased yearly in grasslands but fluctuated moderately in the forest plots. A Jaccard similarity coefficient was used to evaluate the similarities of species composition between different monitoring years. Species composition changed rapidly in grassland sites, with the similarity coefficient dropping from 82 to 29% in 5 years. The similarity coefficient of vegetation in the composite hardwood forest dropped from 80 to 50%, indicating that at least half the species were the same as those in the beginning and that the composition of forest communities was more stable than that of grassland communities. Dominant species in the forest community changed gradually during the monitoring period. The original planting of Casuarina equisetifolia in windbreak forests decreased year by year in most of the plots, while Cerbera manghas and Ficus microcarpa became the dominant species. The trend of replacement of dominant species indicates that most of the vegetation communities are still in successional stages.

  1. Vegetated landslide monitoring: target tracking with terrestrial laser scanner

    Science.gov (United States)

    Franz, Martin; Carrea, Dario; Abellan, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel

    2013-04-01

    Monitoring landslides with terrestrial LiDAR is currently a well-known technique. One problem often encountered is the vegetation that produces shadow areas on the scans. Indeed, the points behind the obstacle are hidden and are absent from the point cloud. Thereby, locations monitored with terrestrial laser scanner are mostly rock instabilities and few vegetated landslides, being difficult or even impossible to survey vegetated slopes using this method. The Peney landslide (Geneva, Switzerland) is partially vegetated by bushes and trees, and in order to monitor its displacements during the drawdown of the Verbois reservoir located at its base, which activates the movement, an alternative solution has to be found. The Goal of this study are: (1) to illustrate a technique to monitor vegetated landslides with a terrestrial laser scanner and (2) to compare the both manual and automatic methods for displacement vectors extraction. We installed 14 targets, four of which are in stable areas which are considered as references. Targets are made of expanded polystyrene, two are spherical and 12 are cubic. They were installed on metallic poles ranging between 2 to 4 meters high. The LiDAR device was located on a fixed point on a pontoon on the reservoir opposite bank. The whole area, including the targets, needed three scans to be entirely covered and was scanned 10 times along on two weeks (duration of drawdown - filling). The acquired point clouds were cleaned and georeferenced. In order to determine the displacements for every target, two methods (manual and automatic) were used. The manual method consists on manual selection of, for example, the apex of the cubes, and so to have its 3D coordinates for a comparison in time. The automatic method uses an algorithm that recognises shapes trough time series. The obtained displacements were compared with classical measurement methods (theodolite and extensometer) showing good resemblance of results, indicating the validity of

  2. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  3. Monitoring plan for vegetation responses to elk management in Rocky Mountain National Park

    Science.gov (United States)

    Zeigenfuss, Linda C.; Johnson, Therese L.; Wiebe, Zachary

    2011-01-01

    Rocky Mountain National Park (RMNP) in north-central Colorado supports numerous species of wildlife, including several large ungulate species among which Rocky Mountain elk (Cervus elaphus) are the most abundant. Elk are native to RMNP but were extirpated from the area by the late 1800s. They were reintroduced to the area in 1913-1914, and the elk herd grew to the point that it was actively managed from 1944 until 1968. In 1969, the active control of elk was discontinued and since then the herd has increased to a high point ranging from 2,800 to 3,500 between 1997 and 2001. In recent years, there has been growing concern over the condition of vegetation in the park and conflicts between elk and humans, both inside and outside the park. In response to these concerns, RMNP implemented an Elk and Vegetation Management Plan (EVMP) in 2009 to guide management actions in the park over a 20-year time period with the goal of reducing the impacts of elk on vegetation and restoring the natural range of variability in the elk population and affected plant and animal communities. The EVMP outlines the desired future condition for three vegetation communities where the majority of elk herbivory impacts are being observed: aspen, montane riparian willow, and upland herbaceous communities. The EVMP incorporates the principle of adaptive management whereby the effectiveness of management actions is assessed and adjusted as needed to successfully achieve objectives. Determination of whether vegetation objectives are being achieved requires monitoring and evaluation of target vegetation communities. The current report describes the design and implementation of a vegetation-monitoring program to help RMNP managers assess the effectiveness of their management actions and determine when and where to alter actions to achieve the EVMP's vegetation objectives. This monitoring plan details the process of selecting variables to be monitored, overall sampling design and structure, site

  4. Monitoring Rangeland Health With MODIS Vegetation Index Data

    Science.gov (United States)

    Brown, J. F.

    2004-12-01

    Rangelands cover approximately one third of the land area of the conterminous U.S. These lands supply much of the forage for the U.S. cattle industry. Large area monitoring of these vast expanses of range has proved challenging since most of these lands are in the western U.S., are relatively sparsely populated, and are not well covered by meteorological weather stations. Improvements in the spatial and temporal precision of rangeland health information would be useful both for the cattle industry and for scientific studies of soil erosion, water runoff, ecosystem health, and carbon cycling. Optical multispectral remote sensing data from satellites are an objective source of synoptic, timely information for monitoring rangeland health. The objective of this study is to develop and evaluate a method for measuring and monitoring rangeland health over large areas. In the past, data collected by the Advanced Very High Resolution Radiometer has proved useful for this purpose, however the basic 1 km spatial resolution is not ideal when scaling up from ground observations. This study assesses MODIS 250 meter resolution vegetation index data for this purpose. MODIS data not only have finer spatial resolution and improved geolocation, but they also exhibit enhanced vegetation sensitivity and minimized variations associated with external atmospheric and non-atmospheric effects. Ground data collected over 51 sites in western South Dakota over four years are used as training for regression tree models of range health. Range health maps for the growing season derived from the models are presented and evaluated.

  5. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Science.gov (United States)

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  6. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    Science.gov (United States)

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh A.; Hundy, Laura C.; McGinnis, Tommy E.

    2015-12-04

    A Vegetation Volume (VV) variable and Vegetation Volume Index (VVI) have been developed for the Coastwide Reference Monitoring System (CRMS). The VV is a measure of the amount of three-dimensional vegetative structure present at each CRMS site and is based on vegetation data collected annually. The VV uses 10 stations per CRMS site to quantify four vegetation layers: carpet, herbaceous, shrub, and tree. For each layer an overall live vegetation percent cover and height are collected to create a layer volume; the individual layer volumes are then summed to generate a site vegetation volume profile. The VV uses the two-dimensional area of live vegetative cover (in square meters) multiplied by the height (in meters) of each layer to produce a volume (in cubic meters) for each layer present in a 2-meter by 2-meter station. These layers are additive, yielding a total volume for each of the 10 herbaceous vegetation stations and an overall CRMS marsh site average.

  7. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  8. PROBA-V, the small saellite for global vegetation monitoring

    Science.gov (United States)

    Deronde, Bart; Benhadj, Iskander; Clarijs, Dennis; Dierckx, Wouter; Dries, Jan; Sterckx, Sindy; van Roey, Tom; Wolters, erwin

    2015-04-01

    PROBA-V, the small satellite for global vegetation monitoring Bart Deronde, Iskander Benhadj, Dennis Clarijs, Wouter Dierckx, Jan Dries, Sindy Sterck, Tom Van Roey, Erwin Wolters (VITO NV) Exactly one year ago, in December 2013, VITO (Flemish Institute for Technological Research) started up the real time operations of PROBA-V. This miniaturised ESA (European Space Agency) satellite was launched by ESA's Vega rocket from Kourou, French-Guyana on May 7th, 2013. After six months of commissioning the mission was taken into operations. Since mid-December 2013 PROBA-V products are processed on an operational basis and distributed to a worldwide user community. PROVA-V is tasked with a full-scale mission: to map land cover and vegetation growth across the entire planet every two days. It is flying a lighter but fully functional redesign of the 'VEGETATION' imaging instruments previously flown on France's full-sized SPOT-4 and SPOT-5 satellites, which have been observing Earth since 1998. PROBA-V, entirely built by a Belgian consortium, continues this valuable and uninterrupted time series with daily products at 300 m and 1 km resolution. Even 100 m products will become available early 2015, delivering a global coverage every 5 days. The blue, red, near-infrared and mid-infrared wavebands allow PROBA-V to distinguish between different types of land cover/use and plant species, including crops. Vital uses of these data include day-by-day tracking of vegetation development, alerting authorities to crop failures, monitoring inland water resources and tracing the steady spread of deserts and deforestation. As such the data is also highly valuable to study climate change and the global carbon cycle. In this presentation we will discuss the in-flight results, one year after launch, from the User Segment (i.e. the processing facility) point of view. The focus will be on geometric and radiometric accuracy and stability. Furthermore, we will elaborate on the lessons learnt from the

  9. Monitoring of nitrate content of vegetable crops in Uzhgorod district

    Directory of Open Access Journals (Sweden)

    I.I. Mykaylo

    2013-09-01

    Full Text Available The aim of our research was to conduct a monitoring study of nitrate content in plant products of Uzhgorod district and to accomplish comparative analysis of the survey results in different periods of crop ripening. Selection of vegetable samples was carried out in Uzhgorod district in the early spring and summer periods. Determination of the nitrate content was performed using an ion-selective method at the Chemical and Toxicological Department of the Regional State Veterinary Medicine Laboratory in the Transcarpathian region of Ukraine. Vegetables were tested for nitrate content using the ion-selective method with the laboratory ion meter AI-123. Core investigation samples were crushed and homogenized. A 10.0 g weight of the investigated product, which was prepared according to MIR № 5048-89, was placed in a flat-bottomed or a conical flask, which was then filled with 50 cm3 potassium alumens solution and shaken in a shaking-machine for 5 minutes and then transferred into a measuring glass. The nitrate weight fraction in milligrams per kilogram was obtained together with the weight concentration value of nitrate ions in solution. For our study we selected vegetables grown in both public and private gardens of Uzhgorod district, namely: common onions, radishes, garden parsley, cucumbers, tomatoes, bell peppers, white cabbages, carrots and table beets. 25 samples were selected for each type of vegetable. Nitrate content was determined in the early spring growing period (from February 9 to May 27, 2011 and in the summer growing period (from June 3 to September 28, 2011, because in these particular periods we recorded the most frequent cases of food poisoning from nitrates among the population of the region. A clear trend has been traced towards increasing the nitrate content in food plant production, at levels which exceed the maximum permissible concentration (MPC. The results of our research demonstrate that the nitrate content exceeded the

  10. Monitoring vegetation dynamics in the Amazon with RapidScat

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron C.; van de Giesen, Nick

    2017-04-01

    Several studies affiliated diurnal variations in radar backscatter over the Amazon [1,2] with vegetation water stress. Recent studies on tree and corn canopies [3,4] have demonstrated that during periods of low soil moisture availability, the total radar backscatter is primarily sensitive to changes in leaf water content, highlighting the potential of radar for water stress detection. The RapidScat mission (Ku-band, 13.4GHz), mounted on the International Space Station, observes the Earth in a non-sun-synchronous orbit [5]. This unique orbit allows for reconstructing diurnal cycles of radar backscatter. We hypothesize that the state of the canopy is a significant portion of the diurnal variations observed in the radar backscatter. Recent, yet inconclusive, analyses support the theory of the impact of vegetation water content on diurnal variation in RapidScat radar backscatter over the Amazon and Congo. Linking ground measurements of canopy dynamics to radar backscatter will allow further exploration of the possibilities for monitoring vegetation dynamics. Our presentation focuses of two parts. First, we reconstruct diurnal cycles of RapidScat backscatter over the Amazon, and study its variation over time. Second, we analyze the pre-dawn backscatter over time. The water content at this time of day is a measure of water stress, and might therefore be visible in the backscatter time series. References [1] Frolking, S., et al.: "Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia", Remote Sensing of Environment, 2011. [2] Jaruwatanadilok, S., and B. Stiles: "Trends and variation in Ku-band backscatter of natural targets on land observed in QuikSCAT data", IEEE Transactions on Geoscience and Remote Sensing , 2014. [3] Steele-Dunne, S., et al.: "Using diurnal variation in backscatter to detect vegetation water stress", IEEE Transactions on Geoscience and Remote Sensing, 2012. [4] van Emmerik, T., et

  11. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  12. A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS

    Directory of Open Access Journals (Sweden)

    Cécile Renier

    2015-06-01

    both time and space and is affected by several factors, such as vegetation density, the north-south climatic gradient and the relief. Smoothing the vegetation time series resulted in an increase of the overall accuracy of about 5% at the expense of a loss in timeliness of ten days. To simulate near-real-time monitoring conditions, the decision tree was applied to the decade of 2010. Overall, the seasonal vegetation cycle appeared clear and consistent. The results obtained pave the way for an operational implementation of the senescence dynamic mapping and, consequently, to further strengthen the capacity of the locust control management.

  13. Vegetation Monitoring with Gaussian Processes and Latent Force Models

    Science.gov (United States)

    Camps-Valls, Gustau; Svendsen, Daniel; Martino, Luca; Campos, Manuel; Luengo, David

    2017-04-01

    Monitoring vegetation by biophysical parameter retrieval from Earth observation data is a challenging problem, where machine learning is currently a key player. Neural networks, kernel methods, and Gaussian Process (GP) regression have excelled in parameter retrieval tasks at both local and global scales. GP regression is based on solid Bayesian statistics, yield efficient and accurate parameter estimates, and provides interesting advantages over competing machine learning approaches such as confidence intervals. However, GP models are hampered by lack of interpretability, that prevented the widespread adoption by a larger community. In this presentation we will summarize some of our latest developments to address this issue. We will review the main characteristics of GPs and their advantages in vegetation monitoring standard applications. Then, three advanced GP models will be introduced. First, we will derive sensitivity maps for the GP predictive function that allows us to obtain feature ranking from the model and to assess the influence of examples in the solution. Second, we will introduce a Joint GP (JGP) model that combines in situ measurements and simulated radiative transfer data in a single GP model. The JGP regression provides more sensible confidence intervals for the predictions, respects the physics of the underlying processes, and allows for transferability across time and space. Finally, a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical models of the system is presented. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Empirical evidence of the performance of these models will be presented through illustrative examples.

  14. [MTCARI: A kind of vegetation index monitoring vegetation leaf chlorophyll content based on hyperspectral remote sensing].

    Science.gov (United States)

    Meng, Qing-ye; Dong, Heng; Qin, Qi-ming; Wang, Jin-liang; Zhao, Jiang-hua

    2012-08-01

    The chlorophyll content of plant has relative correlation with photosynthetic capacity and growth levels of plant. It affects the plant canopy spectra, so the authors can use hyperspectral remote sensing to monitor chlorophyll content. By analyzing existing mature vegetation index model, the present research pointed out that the TCARI model has deficiencies, and then tried to improve the model. Then using the PROSPECT+SAIL model to simulate the canopy spectral under different levels of chlorophyll content and leaf area index (LAI), the related constant factor has been calculated. The research finally got modified transformed chlorophyll absorption ratio index (MTCARI). And then this research used optimized soil background adjust index (OSAVI) to improve the model. Using the measured data for test and verification, the model has good reliability.

  15. Monitoring vegetation dynamics with SPOT-VEGETATION NDVI time-series data in Tarim Basin, Xinjiang, China

    Science.gov (United States)

    Wan, Hongxiu; Sun, Zhandong; Xu, Yongming

    2009-09-01

    Desertification in the arid and semiarid regions directly influences the density and growth status of vegetation, NDVI (Normalized Difference Vegetation Index) has been widely used to monitor vegetation changes. This study analyzed the spatial patters of vegetation activity and its temporal variability in Tarim Basin, Xinjiang, China since 1998 to 2007 with NDVI data derived from SPOT4 Vegetation. The coefficient of variation (CoV) of the NDVI was used as a parameter to characterize the change of vegetation and to compare the amount of variation in different sets of sample data. The method of quantifying changes in CoV values for each pixel was based on linear regression. The slope of linear regression was acted as the criterion for the change direction: pixels with a negative slope are considered to represent ground area with decreasing amounts of vegetation, vice versa. In this paper, We calculated (1) the inter-annual CoV based on the yearly ONDVI, the sum of the monthly NDVI in the growing season (from April to October), for each pixel between 1998-2007 to reveal the spatial patterns of vegetation activity, (2) the intra-annual CoV based on monthly NDVI by MVC to reflect vegetation seasonal dynamics, (3) the slope (") of the intra-annual CoV regression line for each pixel to identify the overall long-term trend of vegetation dynamics. This experiment demonstrated the feasibility of applying the CoV and its regression analysis based on long term SPOT-VGT NDVI time-series data for vegetation dynamics monitoring.

  16. Monitoring soil-vegetation interactions using non-invasive geophysical techniques

    Science.gov (United States)

    Perri, M.; Cassiani, G.; Boaga, J.; Rossi, M.; Vignoli, G.; Deiana, R.; Ursino, N.; Putti, M.; Majone, B.; Bellin, A.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U.

    2012-12-01

    The understanding of soil-vegetation-atmosphere interactions is of utmost importance in the solution of a number of hydrological questions and practical issues, including flood control, agricultural best practice, slope stability and impacts of climatic changes. Geophysical time-lapse monitoring can greatly contribute to the understanding of these interactions particularly for its capability to map in space and time the effects of vegetation on soil moisture content. In this work we present the results of two case studies showing the potential of hydro-geophysics in this context. The first example refers to the long term monitoring of the soil static and dynamic characteristics in an experimental site located in Sardinia (Italy). The main objective of this study is to understand the effects of soil - water - plants interactions on soil water balance. A combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements is here used, in order to achieve quantitative field-scale estimates of moisture content from topsoil layer. Natural gamma-ray emission mapping, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We therefore observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system. The second example regards the time-lapse monitoring of soil moisture content in an apple orchard located in the Alpine region of Northern Italy (Trento). A three-dimensional cross-hole ERT

  17. Estimation and seasonal monitoring of urban vegetation abundance based on remote sensing

    Science.gov (United States)

    Zhou, Ji; Chen, Yun H.; Li, Jing; Weng, Qi H.; Tang, Yan

    2007-06-01

    Vegetation is a fundamental component of urban environment and its abundance is determinant of urban climate and urban ground energy fluxes. Based on the radiometric normalization of multitemporal ASTER imageries, the objectives of this study are: firstly, to estimate the vegetation abundance based on linear spectral mixture model (LSMM), and to compare it with NDVI and SDVI; secondly, to analyze the spatial distribution patterns of urban vegetation abundance in different seasons combined with some landscape metrics. The result indicates that both the vegetation abundance estimation based on LSMM and SDVI can reach high accuracy; however, NDVI is not a robust parameter for vegetation abundance estimation because there is significant non-linear effect between NDVI and vegetation abundance. This study reveals that the landscape characteristics of vegetation abundance is most complicated in summer, with spring and autumn less complicated and simplest in winter. This provides valuable information for urban vegetation abundance estimation and its seasonal change monitoring using remote sensing data.

  18. Monitoring Control Applications at CERN

    CERN Document Server

    Bernard, F; Milcent, H; Petrova, L B; Varela, F

    2011-01-01

    The Industrial Controls and Engineering (EN-ICE) group [1] of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protection systems, power interlocks for the Large Hadron Collider and other subsystems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE group is presently developing the Monitoring Operation of cOntrols Networks (MOON) tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (WinCC OA) [2] SCADA and makes usage of the Joint COntrols Project (JCOP) [3] and the UNified INdustrial COntrol System (UNICOS) [4] Frameworks developed at CERN. The tool provides centralized monitoring and software management of the different elements integrating the control systems like Windows and L...

  19. Butler Hollow Glades : Baseline assessment and vegetation monitoring establishment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Several sampling and documentation protocols were implemented to establish baseline vegetation data. These data will provide a comparison point for future...

  20. Using MERIS for mountain vegetation mapping and monitoring in Sweden

    OpenAIRE

    Reese, Heather; Nilsson, Mats; Olsson, Håkan

    2007-01-01

    The objective of this study is to apply ENVISAT MERIS data in mapping mountain vegetation in Sweden. The Swedish mountain vegetation is characterized by mosaics of different land cover types; a single MERIS pixel (300 meter IFOV) can consist of several of these different land cover types. “Hard” classifications which produce a single thematic class per pixel often give a low accuracy. While many different unmixing methods are reviewed in the literature, the use of regression trees is reported...

  1. Long-term monitoring of stream bank stability under different vegetation cover

    Science.gov (United States)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  2. Monitoring vegetation water uptake in a semiarid riparian corridor

    Science.gov (United States)

    Robinson, J.; Ochoa, C. G.; Leonard, J.

    2015-12-01

    With a changing global climate and growing demand for water throughout the world, responsible and sustainable land and water resource management practices are becoming increasingly important. Accounting for the amount of water used by riparian vegetation is a critical element for better managing water resources in arid and semiarid environments. The objective of this study was to determine water uptake by selected riparian vegetative species in a semiarid riparian corridor in North-Central Oregon. Exo-skin sap flow sensors (Dynamax, Houston, TX, U.S.A.) were used to measure sap flux in red alder (Alnus rubra) trees, the dominant overstory vegetation at the field site. Xylem sap flow data was collected from selected trees at the field site and in a greenhouse setting. Transpiration rates were determined based on an energy balance method, which makes it possible to estimate the mass flow of sap by measuring the velocity of electrical heat pulses through the plant stem. Preliminary field results indicate that red alder tree branches of about 1 inch diameter transpire between 2 and 6 kg of water/day. Higher transpiration rates of up to 7.3 kg of water/day were observed under greenhouse conditions. Streamflow and stream water temperature, vegetation characteristics, and meteorological data were analyzed in conjunction with transpiration data. Results of this study provide insight on riparian vegetation water consumption in water scarce ecosystems. This study is part of an overarching project focused on climate-vegetation interactions and ecohydrologic processes in arid and semiarid landscapes.

  3. Vegetation of Coastal Wetland Elevation Monitoring Sites on National Wildlife Refuges in the South Atlantic Geography

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Assessment of vegetation structure and composition at each of the Coastal Wetland Elevation Monitoring sites on South Atlantic Geography National Wildlife Refuges....

  4. Monitoring And Controlling Hydroponic Flow

    Science.gov (United States)

    Dreschel, Thomas W.

    1992-01-01

    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  5. Condition Monitoring of Control Loops

    OpenAIRE

    Horch, Alexander

    2000-01-01

    The main concern of this work is the development of methodsfor automatic condition monitoring of control loops withapplication to the process industry. By condition monitoringboth detection and diagnosis of malfunctioning control loops isunderstood, using normal operating data and a minimum amount ofprocess knowledge. The use of indices for quantifying loop performance is dealtwith in the first part of the thesis. The starting point is anindex proposed by Harris (1989). This index has been mo...

  6. 2009 Field Season : Annual Grassland Vegetation Monitoring : Summary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An annual grassland monitoring plan was initiated on the grassland units at Bear River Migratory Bird Refuge during the 2009 field season. The annual monitoring plan...

  7. Advances in monitoring vegetation and land use dynamics in the Sahel

    DEFF Research Database (Denmark)

    Mbow, Cheikh; Fensholt, Rasmus; Nielsen, Thomas Theis

    2014-01-01

    of CO2 in the atmosphere, grazing pressure, bush fires and agricultural expansion or contraction. The use of satellite data in combination with field data played a major role in the monitoring of vegetation dynamics and land use in the Sahel, since the mega drought of the 1970s and the 1980s. This paper...... briefly reviews the advance of satellite-based monitoring of vegetation dynamics over these 40 years. We discuss the promises of current and likely future data sources and analysis tools, as well as the need to strengthen in situ data collection to support and validate satellite-based vegetation and land...

  8. [Evaluating the utility of MODIS vegetation index for monitoring agricultural drought].

    Science.gov (United States)

    Li, Hua-Peng; Zhang, Shu-Qing; Gao, Zi-Qiang; Sun, Yan

    2013-03-01

    The exclusive shortwave bands provided by MODIS sensors offer new opportunities for agricultural drought monitoring, since they are very sensitive to vegetation moisture. In the present work, we selected Songnen Plain in Northeast China as study area aiming at monitoring agricultural drought of dry farmland here. Four types of vegetation water indices and vegetation greenness indices were calculated from the 8-day composite MODIS product (MODO9A1) in vegetation growing season between 2001 and 2010, respectively. Multi-scale standardized precipitation index (SPI) derived from precipitation data of weather stations was used as reference data to estimate drought sensitivity of various vegetation indices, and a pixel-to-weather station paired correlation approach was used to calculate the Pearson correlation coefficient between vegetation index and SPIs. The result indicated that vegetation water indices established by near infrared and shortwave infrared bands outperformed vegetation greenness indices based on visible and near infrared bands. Of these indices, NDII7 performs the best with highest correlation coefficients across all SPIs. The authors' results demonstrated the potential of MODIS shortwave spectral bands in monitoring agricultural drought, and this provides new insights to future research.

  9. Monitoring of riparian vegetation response to flood disturbances using terrestrial photography

    Directory of Open Access Journals (Sweden)

    K. Džubáková

    2014-03-01

    Full Text Available The distribution of riparian vegetation on river floodplains is strongly impacted by floods. In this study we use a new setup with high resolution ground-based cameras in an Alpine gravel bed braided river to quantify the immediate response of riparian vegetation to flood disturbance with the use of vegetation indices. Five largest floods with return periods between 1.4 and 20.1 years in the period 2008–2011 in the Maggia River were used to evaluate patterns of vegetation response in three distinct floodplain units (main bar, secondary bar, transitional zone and to compare seven vegetation indices. The results show both negative (damage and positive (enhancement response of vegetation in a short period following floods, with a selective impact based on the hydrogeomorphological setting and the intensity of the flood forcing. The spatial distribution of vegetation damage provides a coherent picture of floodplain response in the three floodplain units with different flood stress. We show that the tested vegetation indices generally agree on the direction of predicted change and its spatial distribution. The average disagreement between indices was in the range 14.4–24.9% despite the complex environment, i.e. highly variable surface wetness, high gravel reflectance, extensive water–soil–vegetation contact zones. We conclude that immediate vegetation response to flood disturbance may be effectively monitored by terrestrial photography with potential for long-term assessment in river management and restoration projects.

  10. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  11. Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation.

    Science.gov (United States)

    Kilpatrick, Adam D; Lewis, Megan M; Ostendorf, Bertram

    2015-01-01

    A need exists in arid rangelands for effective monitoring of the impacts of grazing management on vegetation cover. Monitoring methods which utilize remotely-sensed imagery may have comprehensive spatial and temporal sampling, but do not necessarily control for spatial variation of natural variables, such as landsystem, vegetation type, soil type and rainfall. We use the inverse of the red band from Landsat TM satellite imagery to determine levels of vegetation cover in a 22,672 km(2) area of arid rangeland in central South Australia. We interpret this wealth of data using a cross-fence comparison methodology, allowing us to rank paddocks (fields) in the study region according to effectiveness of grazing management. The cross-fence comparison methodology generates and solves simultaneous equations of the relationship between each paddock and all other paddocks, derived from pairs of cross-fence sample points. We compare this ranking from two image dates separated by six years, during which management changes are known to have taken place. Changes in paddock rank resulting from the cross-fence comparison method show strong correspondence to those predicted by grazing management in this region, with a significant difference between the two common management types; a change from full stocking rate to light 20% stocking regime (Major Stocking Reduction) and maintenance of full 100% stocking regime (Full Stocking Maintained) (P = 0.00000132). While no paddocks had a known increase in stocking rate during the study period, many had a reduction or complete removal in stock numbers, and many also experienced removals of pest species, such as rabbits, and other ecosystem restoration activities. These paddocks generally showed an improvement in rank compared to paddocks where the stocking regime remained relatively unchanged. For the first time, this method allows us to rank non-adjacent paddocks in a rangeland region relative to each other, while controlling for natural

  12. Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation.

    Directory of Open Access Journals (Sweden)

    Adam D Kilpatrick

    Full Text Available A need exists in arid rangelands for effective monitoring of the impacts of grazing management on vegetation cover. Monitoring methods which utilize remotely-sensed imagery may have comprehensive spatial and temporal sampling, but do not necessarily control for spatial variation of natural variables, such as landsystem, vegetation type, soil type and rainfall. We use the inverse of the red band from Landsat TM satellite imagery to determine levels of vegetation cover in a 22,672 km(2 area of arid rangeland in central South Australia. We interpret this wealth of data using a cross-fence comparison methodology, allowing us to rank paddocks (fields in the study region according to effectiveness of grazing management. The cross-fence comparison methodology generates and solves simultaneous equations of the relationship between each paddock and all other paddocks, derived from pairs of cross-fence sample points. We compare this ranking from two image dates separated by six years, during which management changes are known to have taken place. Changes in paddock rank resulting from the cross-fence comparison method show strong correspondence to those predicted by grazing management in this region, with a significant difference between the two common management types; a change from full stocking rate to light 20% stocking regime (Major Stocking Reduction and maintenance of full 100% stocking regime (Full Stocking Maintained (P = 0.00000132. While no paddocks had a known increase in stocking rate during the study period, many had a reduction or complete removal in stock numbers, and many also experienced removals of pest species, such as rabbits, and other ecosystem restoration activities. These paddocks generally showed an improvement in rank compared to paddocks where the stocking regime remained relatively unchanged. For the first time, this method allows us to rank non-adjacent paddocks in a rangeland region relative to each other, while controlling

  13. MONITORING CONTROL APPLICATIONS AT CERN

    CERN Document Server

    Bernard, F; Milcent, H; Petrova, L B; Varlea, F

    2011-01-01

    The Industrial Controls and Engineering (EN-ICE) group [1] of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protection systems, power interlocks for the Large Hadron Collider and other sub-systems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE group is presently developing the Monitoring Operation of cOntrols Networks (MOON) tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (WinCC OA) [2] SCADA and makes usage of the Joint COntrols Project (JCOP) [3] and the UNified INdustrial COntrol System (UNICOS) [4] Frameworks developed at CERN. The tool provides centralized monitoring and software management of the different elements integrating the control systems like Windows and Linux servers, PL...

  14. PROBLEMS IN VEGETATION MONITORING IN NATURE MANAGEMENT PRACTICE: TWO CASE STUDIES

    Directory of Open Access Journals (Sweden)

    I. DE RONDE

    2007-04-01

    Full Text Available One of the major requirements of the monitoring of vegetation is the comparability of data between years. Therefore, a proper sampling scheme is essential. However, through the years, in nature management practice lots of data collected without a primary monitoring goal. Afterwards, it often seems very valuable to include these older data in the analysis for several reasons. In two examples from military ranges in the Netherlands, two of the problems which can be met with in comparing unequivalent or biased data in monitoring are shown. In the first example, the frequency of grassland species in two sets of relevés is examined. A solution is presented for the overrepresentation of relevés from one or more vegetation types from the first year, based on the area of the vegetation types on the vegetation map of this same year. In the second example, two sequential vegetation maps are compared. A major problem is often the thematic incongruence of sequential vegetation maps. Afterwards, this can only be resolved by upscaling one or both maps. It is concluded that the use of old data for monitoring purposes can be very valuable, but that this often calls for creative data handling, in which GIS and modern computer programmes are very helpful.

  15. East African weathering dynamics controlled by vegetation-climate feedbacks

    Science.gov (United States)

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Boehlke, Adam; Lézine, Anne-Marie; Vincens, Annie; Cohen, Andrew S.

    2017-01-01

    Tropical weathering has important linkages to global biogeochemistry and landscape evolution in the East African rift. We disentangle the influences of climate and terrestrial vegetation on chemical weathering intensity and erosion at Lake Malawi using a long sediment record. Fossil pollen, microcharcoal, particle size, and mineralogy data affirm that the detrital clays accumulating in deep water within the lake are controlled by feedbacks between climate and hinterland forest composition. Particle-size patterns are also best explained by vegetation, through feedbacks with lake levels, wildfires, and erosion. We develop a new source-to-sink framework that links lacustrine sedimentation to hinterland vegetation in tropical rifts. Our analysis suggests that climate-vegetation interactions and their coupling to weathering/erosion could threaten future food security and has implications for accurately predicting petroleum play elements in continental rift basins.

  16. Monitoring the vegetation recovery in Østerild Plantage 2013. Part 1

    DEFF Research Database (Denmark)

    Wind, Peter

    The trees in a part of Østerild Plantage have been cut down to give room for a national test center. Before the afforestation DCE has performed a baseline monitoring in the summer of 2011. DCE has in late summer 2013 re-monitored the recovery of the vegetation cover in the northernmost part of th...... of the afforested area that was covered by plantation of Pinus mugo. The results from the re-monitoring are presented in the report....

  17. Monitoring the vegetation recovery in Østerild Plantage 2013. Part 1

    DEFF Research Database (Denmark)

    Wind, Peter

    The trees in a part of Østerild Plantage have been cut down to give room for a national test center. Before the afforestation DCE has performed a baseline monitoring in the summer of 2011. DCE has in late summer 2013 re-monitored the recovery of the vegetation cover in the northernmost part of th...... of the afforested area that was covered by plantation of Pinus mugo. The results from the re-monitoring are presented in the report....

  18. Suspended sediment control and water quality conservation through riparian vegetation:

    Science.gov (United States)

    Pavanelli, D.; Cavazza, C.; Correggiari, S.

    2009-04-01

    Soil erosion and Suspended Sediment River are strongly related in the Apennines catchments which are generally characterised by a clayey lithology and impermeable soils and extensive and severe erosion and slope stability problems. In fact the suspended sediment yield represents one of the most reliable tools to assess real basin soil loss (Pavanelli and Pagliarani, 2002; Pavanelli and Rigotti, 2007) from the surface rain erosive features in a mountain watershed, as rills and interrills erosion, gullies, bad-lands (calanchi basins). Suspended sediment yield is known to imply several detrimental consequences: soil losses from agricultural land, worsening of the quality of the water, clogging of water supply filters and reservoir siltation. In addition, suspended sediment yield is also one of the main vector for pollutants and nutrients: various studies have already proved how nitrogen content has been constantly rising in aquifers and surface waters [Böhlke and Denver, 1995]. Finer particles and their aggregates have been proved to be the preferential vehicle for particulate nitrogen [Droppo et al., 1997; Ongley et al., 1992]. In one research [Pavanelli and al. 2006] four Apennines torrents (Gaiana, Sillaro, Savena and Lavino) with mountain basins ranging from 8.7 to 139 Km2 were monitored via automatic sampling devices, the samples of water collected were analysed to characterise suspended solids in terms of their grain size distribution and total nitrogen with respect to the source of eroded area in the catchment. Preliminary results [Pavanelli and al. 2007] seem to show the existence of a direct relationship between nitrogen concentration and finer particle concentration (position within the catchment and the availability of suspended particles. The results seem to indicate hillsides as main sources of suspended sediment to the torrents monitored. The problem of controlling the river suspended sediment concentration can be tackled by increasing the riparian

  19. Vegetation Growth Monitoring Under Coal Exploitation Stress by Remote Sensing in the Bulianta Coal Mining Area

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Coal exploitation inevitably damages the natural ecological environment through large scale underground exploitation which exhausts the surrounding areas and is the cause of surface subsidence and cracks.These types of damage seriously lower the underground water table.Deterioration of the environment has certainly an impact on and limits growth of vegetation, which is a very important indicator of a healthy ecological system.Dynamically monitoring vegetation growth under coal exploitation stress by remote sensing technology provides advantages such as large scale coverage, high accuracy and abundant information.A scatter plot was built by a TM (Thematic Mapper) infrared and red bands.A detailed analysis of the distributional characteristics of vegetation pixels has been carried out.Results show that vegetation pixels are affected by soil background pixels, while the distribution of soil pixels presents a linear pattern.Soil line equations were obtained mainly by linear regression.A new band, reflecting vegetation growth, has been obtained based on the elimination of the soil background.A grading of vegetation images was extracted by means of a density slice method.Our analysis indicates that before the exploitation of the Bulianta coal mining area, vegetation growth had gradually reduced; especially intermediate growth vegetation had been transformed into low vegetation.It may have been caused by the deterioration of the brittle environment in the western part of the mining area.All the same, after the start of coal production, vegetation growth has gradually improved, probably due to large scale aerial seeding.Remote sensing interpretation results proved to be consistent with the actual situation on the ground.From our research results we can not conclude that coal exploitation stress has no impact on the growth of vegetation.More detailed research on vegetation growth needs to be analyzed.

  20. Monitoring Phenology of Floodplain Grassland and Herbaceous Vegetation with Uav Imagery

    Science.gov (United States)

    van Iersel, W. K.; Straatsma, M. W.; Addink, E. A.; Middelkoop, H.

    2016-06-01

    River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1) evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2) to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1) the vertical accuracy of UAV normalized digital surface models (nDSMs) is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2) vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm), (3) temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  1. MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    W. K. van Iersel

    2016-06-01

    Full Text Available River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1 evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2 to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1 the vertical accuracy of UAV normalized digital surface models (nDSMs is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2 vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm, (3 temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  2. Use of satellite imagery to map and monitor vegetation in New Zealand

    OpenAIRE

    Stephens, P. R.; Dymond, J. R.; Brown, L J

    1995-01-01

    研究概要:Land resource and environmental decision makers require quantitative information on the spatial distribution of vegetation types and their condition, and changes in these over time. Such vegetation mapping and monitoring is often required to be undertaken quickly. Remotely-sensed satellite imagery, in conjunction with other data sources, have been used to satisfy this need. This paper describes the uses of satellite imagery by reference to three regional mapping projects in New Zealand. ...

  3. Monitoring vegetation responses to drought -- linking Remotely-sensed Drought Indices with Meteorological drought indices

    Science.gov (United States)

    Wang, H.; Lin, H.; Liu, D.

    2013-12-01

    Abstract: Effectively monitoring vegetation drought is of great significance in ecological conservation and agriculture irrigation at the regional scale. Combining meteorological drought indices with remotely sensed drought indices can improve tracking vegetation dynamic under the threat of drought. This study analyzes the dynamics of spatially-defined Temperature Vegetation Dryness Index (TVDI) and temporally-defined Vegetation Health Index (VHI) from remotely sensed NDVI and LST datasets in the dry spells in Southwest China. We analyzed the correlation between remotely sensed drought indices and meteorological drought index of different time scales. The results show that TVDI was limited by the spatial variations of LST and NDVI, while VHI was limited by the temporal variations of LST and NDVI. Station-based buffering analysis indicates that the extracted remotely sensed drought indices and Standard Precipitation Index (SPI) could reach stable correlation with buffering radius larger than 35 km. Three factors affect the spatiotemporal relationship between remotely sensed drought indices and SPI: i) different vegetation types; ii) the timescale of SPI; and iii) remote sensing data noise. Vegetation responds differently to meteorological drought at various time scales. The correlation between SPI6 and VHI is more significant than that between SPI6 and TVDI. Spatial consistency between VHI and TVDI varies with drought aggravation. In early drought period from October to December, VHI and TVDI show limited consistency due to the low quality of remotely sensed images. The study helps to improve monitoring vegetation drought using both meteorological drought indices and remotely sensed drought indices.

  4. Characterization of a Field Spectroradiometer for Unattended Vegetation Monitoring. Key Sensor Models and Impacts on Reflectance

    Directory of Open Access Journals (Sweden)

    Javier Pacheco-Labrador

    2015-02-01

    Full Text Available Field spectroradiometers integrated in automated systems at Eddy Covariance (EC sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF. Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED. Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects.

  5. Monitoring the hydrologic and vegetation dynamics of arid land with satellite remote sensing and mathematic modeling

    Science.gov (United States)

    Zhan, Xiwu; Gao, Wei; Pan, Xiaoling; Ma, Yingjun

    2003-07-01

    Terrestrial ecosystems, in which carbon is retained in live biomass, play an important role in the global carbon cycling. Among these ecological systems, vegetation and soils in deserts and semi deserts control significant proportions in the total carbon stocks on the land surface and the carbon fluxes between the land surface and the atmosphere (IPCC special report: Land Use, Land Use Change and Forestry, June 2000). Therefore, accurate assessment of the carbon stocks and fluxes of the desert and semi desert areas at regional scales is required in global carbon cycle studies. In addition, vegetative ecosystem in semi-arid and arid land is strongly dependent on the water resources. Monitoring the hydrologic processes of the land is thus also required. This work explores the methodology for the sequential continuous estimation of the carbon stocks, CO2 flux, evapotranspiration, and sensible heat fluxes over desert and semidesert area using data from the Jornada desert in New Mexico, USA. A CO2 and energy flux coupled model is used to estimate CO2, water vapor and sensible heat fluxes over the desert area. The model is driven by the observed meteorological data. Its input land surface parameters are derived from satellite images. Simulated energy fluxes are validated for specific sites with eddy covariance observations. Based on the output of spatially distributed CO2 fluxes, carbon accumulations over the desert area during a period of time is calculated and the contribution of the desert ecosystem to the atmospheric carbon pool is discussed.

  6. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography

    Directory of Open Access Journals (Sweden)

    Zhenwang Li

    2014-03-01

    Full Text Available On 12 May 2008, the 8.0-magnitude Wenchuan earthquake occurred in Sichuan Province, China, triggering thousands of landslides, debris flows, and barrier lakes, leading to a substantial loss of life and damage to the local environment and infrastructure. This study aimed to monitor the status of geologic hazards and vegetation recovery in a post-earthquake disaster area using high-resolution aerial photography from 2008 to 2011, acquired from the Center for Earth Observation and Digital Earth (CEODE, Chinese Academy of Sciences. The distribution and range of hazards were identified in 15 large, representative geologic hazard areas triggered by the Wenchuan earthquake. After conducting an overlay analysis, the variations of these hazards between successive years were analyzed to reflect the geologic hazard development and vegetation recovery. The results showed that in the first year after the Wenchuan earthquake, debris flows occurred frequently with high intensity. Resultantly, with the source material becoming less available and the slope structure stabilizing, the intensity and frequency of debris flows gradually decreased with time. The development rate of debris flows between 2008 and 2011 was 3% per year. The lithology played a dominant role in the formation of debris flows, and the topography and hazard size in the earthquake affected area also had an influence on the debris flow development process. Meanwhile, the overall geologic hazard area decreased at 12% per year, and the vegetation recovery on the landslide mass was 15% to 20% per year between 2008 and 2011. The outcomes of this study provide supporting data for ecological recovery as well as debris flow control and prevention projects in hazard-prone areas.

  7. Monitoring vegetation cover in the postfire in Tavira - São Brás de Alportel (southern Portugal)

    Science.gov (United States)

    Ramos-Simões, Nuno A.; Granja-Martins, Fernando M.; Neto-Paixão, Helena M.; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    1. INTRODUCTION Often, restoration of areas affected by fire faces lack of knowledge of how ecosystems respond to the action of fire. Depending on environmental conditions, structure and diversity of the vegetation or the severity of the fire, burnt systems can provide responses ranging from spontaneous recovery in a relatively short time to onset of severe degradation processes. For this reason, it is necessary to monitor the evolution of post-burned in the fire, in order to plan effective strategies for restoring systems and soil erosion control. In order to assess soil erosion risk, this research aims to is to analyse the evolution of vegetation cover in a Mediterranean burnt forest soil, using vegetation indexes derived from Landsat-7 (Thematic Mapper sensor-TM) and Landsat-8 (Operation Land Imager sensor, OLI). 2. METHODS This study was carried out in a forest area affected by a wildfire by 18-22 July 2012. The study area is located within the coordinates 37o 9' - 37o 21' N and 7o 40' - 7o 53' W, including part of the municipalities of Tavira and São Brás de Alportel (southern Portugal). The relief in the studied area has an irregular topography. Soils are shallow and develop mainly metamorphic rocks (as slates or quartzite) and igneous rocks, which produce acidic and nutrient-poor soils, poorly developed in depth. The wildfire was one of the most important fires in Portugal during the recent years, and affected more than 24000 ha. Vegetation is dominated by cork oak (Quercus suber) ,holm oaks (Quercus ilex), strawberry tree (Arbutus unedo) and sclerophyllous vegetation (mostly formed by Quercus coccifera and Rosmarinus officinalis). These species are adapted to acidic-poor soils and show a great capability of resprouting and germination after fire. The study area is poorly developed, with cork and timber harvesting and other forest products or tourism as main economic activities. The area shows a highly fragmented urban fabric with the sparse

  8. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.;

    2012-01-01

    • Over the past 30 years (1982-2011), the Normalized Difference Vegetation Index (NDVI), an index of green vegetation, has increased 15.5% in the North American Arctic and 8.2% in the Eurasian Arctic. In the more southern regions of Arctic tundra, the estimated aboveground plant biomass has...

  9. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  10. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  11. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks.......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  12. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    Science.gov (United States)

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  13. [Vegetation water content retrieval and application of drought monitoring using multi-spectral remote sensing].

    Science.gov (United States)

    Wang, Li-Tao; Wang, Shi-Xin; Zhou, Yi; Liu, Wen-Liang; Wang, Fu-Tao

    2011-10-01

    The vegetation is one of main drying carriers. The change of Vegetation Water Content (VWC) reflects the spatial-temporal distribution of drought situation and the degree of drought. In the present paper, a method of retrieving the VWC based on remote sensing data is introduced and analyzed, including the monitoring theory, vegetation water content indicator and retrieving model. The application was carried out in the region of Southwest China in the spring, 2010. The VWC data was calculated from MODIS data and spatially-temporally analyzed. Combined with the meteorological data from weather stations, the relationship between the EWT and weather data shows that precipitation has impact on the change in vegetation moisture to a certain extent. However, there is a process of delay during the course of vegetation absorbing water. So precipitation has a delaying impact on VWC. Based on the above analysis, the probability of drought monitoring and evaluation based on multi-spectral VWC data was discussed. Through temporal synthesis and combined with auxiliary data (i. e. historical data), it will help overcome the limitation of data itself and enhance the application of drought monitoring and evaluation based on the multi-spectral remote sensing.

  14. Thirty-year monitoring of subalpine meadow vegetation following a 1967 trampling experiment at Logan Pass, Glacier National Park, Montana

    Science.gov (United States)

    Ernest Hartley

    2000-01-01

    This long-term study, monitoring visitor impact on subalpine vegetation beginning in 1967, revealed that after 30 years all treatment plots had returned to pre-treatment ratios of vegetation (all species combined), organic litter and bare ground. Higher trampling intensities produced longer term impacts. Vegetation cover recovered in 19 to 25 years when trampled 15...

  15. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Science.gov (United States)

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  16. Sustainability of greenhouse fruit vegetables; Spain versus The Netherlands; Development of a monitoring system

    NARCIS (Netherlands)

    Velden, van der N.J.A.

    2004-01-01

    Sustainability is becoming more and more important in the competitive battle between the greenhouse-grown fruiting vegetables produced in Spain and the Netherlands. A monitoring system has been developed. Sustainability is a broad concept regarding primary producers and other links in the chain. How

  17. Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics

    NARCIS (Netherlands)

    Zurita Milla, R.; Kaiser, G.; Clevers, J.G.P.W.; Schneider, W.; Schaepman, M.E.

    2009-01-01

    Monitoring vegetation dynamics is fundamental for improving Earth system models and for increasing our understanding of the terrestrial carbon cycle and the interactions between biosphere and climate. Medium spatial resolution sensors, like MERIS, exhibit a significant potential to study these dynam

  18. Changes in methodology for monitoring long-term vegetation quadrats on the Jornada Experimental Range

    Science.gov (United States)

    Nearly 150 sq. mi. quadrats were established for long-term monitoring of vegetation dynamics on the Jornada Experimental Range in south central New Mexico in the early 1900s. Today, approximately 120 of those sites are revisited on a five year sampling rotation. Although some of the methods for data...

  19. Landsat-Based Woody Vegetation Cover Monitoring in Southern African Savannahs

    Science.gov (United States)

    Symeonakis, E.; Petroulaki, K.; Higginbottom, T.

    2016-06-01

    Mapping woody cover over large areas can only be effectively achieved using remote sensing data and techniques. The longest continuously operating Earth-observation program, the Landsat series, is now freely-available as an atmospherically corrected, cloud masked surface reflectance product. The availability and length of the Landsat archive is thus an unparalleled Earth-observation resource, particularly for long-term change detection and monitoring. Here, we map and monitor woody vegetation cover in the Northwest Province of South Africa, an area of more than 100,000 km2 covered by 11 Landsat scenes. We employ a multi-temporal approach with dry-season data from 7 epochs between 1990 to 2015. We use 0.5 m-pixel colour aerial photography to collect > 15,000 point samples for training and validating Random Forest classifications of (i) woody vegetation cover, (ii) other vegetation types (including grasses and agricultural land), and (iii) non-vegetated areas (i.e. urban areas and bare land). Overall accuracies for all years are around 80 % and overall kappa between 0.45 and 0.66. Woody vegetation covers a quarter of the Province and is the most accurately mapped class (balanced accuracies between 0.74-0.84 for the 7 epochs). There is a steady increase in woody vegetation cover over the 25-year-long period of study in the expense of the other vegetation types. We identify potential woody vegetation encroachment 'hot-spots' where mitigation measures might be required and thus provide a management tool for the prioritisation of such measures in degraded and food-insecure areas.

  20. LANDSAT-BASED WOODY VEGETATION COVER MONITORING IN SOUTHERN AFRICAN SAVANNAHS

    Directory of Open Access Journals (Sweden)

    E. Symeonakis

    2016-06-01

    Full Text Available Mapping woody cover over large areas can only be effectively achieved using remote sensing data and techniques. The longest continuously operating Earth-observation program, the Landsat series, is now freely-available as an atmospherically corrected, cloud masked surface reflectance product. The availability and length of the Landsat archive is thus an unparalleled Earth-observation resource, particularly for long-term change detection and monitoring. Here, we map and monitor woody vegetation cover in the Northwest Province of South Africa, an area of more than 100,000 km2 covered by 11 Landsat scenes. We employ a multi-temporal approach with dry-season data from 7 epochs between 1990 to 2015. We use 0.5 m-pixel colour aerial photography to collect > 15,000 point samples for training and validating Random Forest classifications of (i woody vegetation cover, (ii other vegetation types (including grasses and agricultural land, and (iii non-vegetated areas (i.e. urban areas and bare land. Overall accuracies for all years are around 80 % and overall kappa between 0.45 and 0.66. Woody vegetation covers a quarter of the Province and is the most accurately mapped class (balanced accuracies between 0.74-0.84 for the 7 epochs. There is a steady increase in woody vegetation cover over the 25-year-long period of study in the expense of the other vegetation types. We identify potential woody vegetation encroachment 'hot-spots' where mitigation measures might be required and thus provide a management tool for the prioritisation of such measures in degraded and food-insecure areas.

  1. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    Full Text Available Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history, the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard, or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae in 2,528 olive groves in Andalusia (Spain from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  2. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2015-01-01

    Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  3. Results from the monitoring of pesticide residues in fruit and vegetables on the Danish market 1998-99

    DEFF Research Database (Denmark)

    Andersen, Jens Hinge; Poulsen, Mette Erecius

    2001-01-01

    The objective of the Danish pesticide monitoring programme for fruit and vegetables was to check for compliance with the maximum residue levels in foods and to monitor the residue levels to assess the pesticide exposure of the Danish population. Sampling plans were designed based on previous find....... Residues were found in 54% of the samples of fruit but only in 13% of the vegetables. Residues above the MRL were found in 4% of all samples of fruit and in 1% of vegetables....

  4. Design of electric control system for automatic vegetable bundling machine

    Science.gov (United States)

    Bao, Yan

    2017-06-01

    A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.

  5. Modeling vegetation reflectance from satellite and in-situ monitoring data

    Science.gov (United States)

    Zoran, Maria; Florin Zoran, Liviu; Ionescu Golovanov, Carmen; Dida, Adrian

    2010-05-01

    Vegetation can be distinguished using remote sensing data from most other (mainly inorganic) materials by virtue of its notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance and, especially, its very strong reflectance in the near-IR. Different types of vegetation show often distinctive variability from one another owing to such parameters as leaf shape and size, overall plant shape, water content, and associated background (e.g., soil types and spacing of the plants (density of vegetative cover within the scene). Different three-dimensional numerical models explicitly represent the vegetation canopy and use numerical methods to calculate reflectance. These models are computationally intensive and are therefore not generally suited to the correction of satellite imagery containing millions of pixels. Physically based models do provide understanding and are potentially more robust in extrapolation. They consider the vegetation canopy to comprise thin layers of leaves, suspended in air like sediment particles in water forming a turbid medium. Monitoring of vegetation cover changes by remote sensing data is one of the most important applications of satellite imagery. Vegetation reflectance has variations with sun zenith angle, view zenith angle, and terrain slope angle. To provide corrections of these effects, for visible and near-infrared light, was used a three parameters model and developed a simple physical model of vegetation reflectance, by assuming homogeneous and closed vegetation canopy with randomly oriented leaves. Multiple scattering theory was used to extend the model to function for both near-infrared and visible light. This vegetation reflectance model may be used to correct satellite imagery for bidirectional and topographic effects. For two ASTER images over Cernica forested area, placed to the East of Bucharest town , Romania, acquired within minutes from one another ,a nadir and off-nadir for band 3

  6. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2005-01-28

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. The redesign and upgrade of the laboratory prototype was completed on schedule and it was assembled during the last period. Testing was begin during the first week of October. Initial results indicated that the dynamic range of the damping was less than predicted and that the maximum damping was also less than required. A number of possible explanations for these results were posited, and test equipment was acquired to evaluate the various hypotheses. Testing was just underway at the end of this period.

  7. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-29

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Phase II began on June 1, and the first month's effort were reported in the seventh quarterly report on the project.1 The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. The redesign and upgrade of the laboratory prototype was completed on schedule during this period, and assembly was complete at the end of this period. Testing will begin during the first week of October. This aspect of the project is thus approximately six weeks behind schedule. Design of the field prototype is progressing per schedule.

  8. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2005-04-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  9. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  10. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  11. Overview of vegetation monitoring data, 1952--1983. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.P.

    1994-03-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from emissions since 1944 at the Hanford Site near Richland, Washington. Members of the HEDR Project`s Environmental Monitoring Data Task have developed databases of historical environmental measurements of such emissions. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories. This report is the third in a series that documents the information available on measurements of iodine-131 concentrations in vegetation. The first two reports provide the data for 1945--1951. This report provides an overview of the historical documents, which contain vegetation data for 1952--1983. The overview is organized according to the documents available for any given year. Each section, covering one year, contains a discussion of the media sampled, the sampling locations, significant events if there were any, emission quantities, constituents measured, and a list of the documents with complete reference information. Because the emissions which affected vegetation were significantly less after 1951, the vegetation monitoring data after that date have not been used in the HEDR Project. However, access to these data may be of interest to the public. This overview is, therefore, being published.

  12. An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat

    Science.gov (United States)

    Tavernia, Brian G; Lyons, James E.; Loges, Brian W; Wilson, Andrew; Collazo, Jaime; Runge, Michael C.

    2016-01-01

    Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.

  13. Performance of vegetation indices from Landsat time series in deforestation monitoring

    Science.gov (United States)

    Schultz, Michael; Clevers, Jan G. P. W.; Carter, Sarah; Verbesselt, Jan; Avitabile, Valerio; Quang, Hien Vu; Herold, Martin

    2016-10-01

    The performance of Landsat time series (LTS) of eight vegetation indices (VIs) was assessed for monitoring deforestation across the tropics. Three sites were selected based on differing remote sensing observation frequencies, deforestation drivers and environmental factors. The LTS of each VI was analysed using the Breaks For Additive Season and Trend (BFAST) Monitor method to identify deforestation. A robust reference database was used to evaluate the performance regarding spatial accuracy, sensitivity to observation frequency and combined use of multiple VIs. The canopy cover sensitive Normalized Difference Fraction Index (NDFI) was the most accurate. Among those tested, wetness related VIs (Normalized Difference Moisture Index (NDMI) and the Tasselled Cap wetness (TCw)) were spatially more accurate than greenness related VIs (Normalized Difference Vegetation Index (NDVI) and Tasselled Cap greenness (TCg)). When VIs were fused on feature level, spatial accuracy was improved and overestimation of change reduced. NDVI and NDFI produced the most robust results when observation frequency varies.

  14. Forested floristic quality index: An assessment tool for forested wetland habitats using the quality and quantity of woody vegetation at Coastwide Reference Monitoring System (CRMS) vegetation monitoring stations

    Science.gov (United States)

    Wood, William B.; Shaffer, Gary P.; Visser, Jenneke M.; Krauss, Ken W.; Piazza, Sarai C.; Sharp, Leigh Anne; Cretini, Kari F.

    2017-02-08

    The U.S. Geological Survey, in cooperation with the Coastal Protection and Restoration Authority of Louisiana and the Coastal Wetlands Planning, Protection and Restoration Act, developed the Forested Floristic Quality Index (FFQI) for the Coastwide Reference Monitoring System (CRMS). The FFQI will help evaluate forested wetland sites on a continuum from severely degraded to healthy and will assist in defining areas where forested wetland restoration can be successful by projecting the trajectories of change. At each CRMS forested wetland site there are stations for quantifying the overstory, understory, and herbaceous vegetation layers. Rapidly responding overstory canopy cover and herbaceous layer composition are measured annually, while gradually changing overstory basal area and species composition are collected on a 3-year cycle.A CRMS analytical team has tailored these data into an index much like the Floristic Quality Index (FQI) currently used for herbaceous marsh and for the herbaceous layer of the swamp vegetation. The core of the FFQI uses basal area by species to assess the quality and quantity of the overstory at each of three stations within each CRMS forested wetland site. Trees that are considered by experts to be higher quality swamp species like Taxodium distichum (bald cypress) and Nyssa aquatica (water tupelo) are scored higher than tree species like Triadica sebifera (Chinese tallow) and Salix nigra (black willow) that are indicators of recent disturbance. This base FFQI is further enhanced by the percent canopy cover in the overstory and the presence of indicator species at the forest floor. This systemic approach attempts to differentiate between locations with similar basal areas that are on different ecosystem trajectories. Because of these varying states of habitat degradation, paired use of the FQI and the FFQI is useful to interpret the vegetative data in transitional locations. There is often an inverse relation between the health of the

  15. Multiple criteria analysis of remotely piloted aircraft systems for monitoring the crops vegetation status

    Science.gov (United States)

    Cristea, L.; Luculescu, M. C.; Zamfira, S. C.; Boer, A. L.; Pop, S.

    2016-08-01

    The paper presents an analysis of Remotely Piloted Aircraft Systems (RPAS) used for monitoring the crops vegetation status. The study focuses on two types of RPAS, namely the flying wing and the multi-copter. The following criteria were taken into account: technical characteristics, power consumption, flight autonomy, flight conditions, costs, data acquisition systems used for monitoring, crops area and so on. Based on this analysis, advantages and disadvantages are emphasized offering a useful tool for choosing the proper solution according to the specific application conditions.

  16. Topographic, edaphic, and vegetative controls on plant-available water

    Science.gov (United States)

    Dymond, Salli F.; Bradford, John B.; Bolstad, Paul V.; Kolka, Randall K.; Sebestyen, Stephen D.; DeSutter, Thomas S.

    2017-01-01

    Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary productivity, runoff, microbial decomposition, and soil fertility. We investigated the patterns and variability in in situ soil moisture measurements converted to plant-available water across time and space under different vegetative cover types and topographic positions at the Marcell Experimental Forest (Minnesota, USA). From 0 – 228.6 cm soil depth, plant-available water was significantly higher under the hardwoods (12%), followed by the aspen (8%) and red pine (5%) cover types. Across the same soil depth, toeslopes were wetter (mean plant-available water = 10%) than ridges and backslopes (mean plant-available water was 8%), although these differences were not statistically significant (p plant-available water and that topography was not significantly related to plant-available water within this low-relief landscape. Additionally, during the three-year monitoring period, red pine and quaking aspen sites experienced plant-available water levels that may be considered limiting to plant growth and function. Given that increasing temperatures and more erratic precipitation patterns associated with climate change may result in decreased soil moisture in this region, these species may be sensitive and vulnerable to future shifts in climate.

  17. Towards an Operational Vegetation Health Monitoring System for the Northern Great Plains

    Science.gov (United States)

    Aloysius, N.; Kim, H. J.

    2007-12-01

    Farmers and Rangers in the Northern Great Plains (NGP) of the United States had been devastated by the extremely dry weather conditions in the summer of 2006. The entire state of North Dakota was declared a primary agricultural disaster area in September, 2006 by the US Department of Agriculture. Emergency grazing on CRP lands was extended in several NGP states. On the contrary, the summer of 2005 had been exceptionally wet in certain parts of NGP which ruined crops. The occurrences of these weather extremes severely affect the natural resource based enterprises like farming and ranching, the effects of which ripple through the economies of several states in the region. In order to monitor and assess the impacts of these extreme events and to take mitigation strategies, variety of physical and environmental conditions have to be taken into consideration. Remote sensing based vegetation indices such as normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), climate information and drought indices are employed to assess the growth of vegetation and its vigor, both spatially and temporally. A 25-year history of NDVI and seven-year history of EVI data were used to develop a near real-time vegetation growth monitoring system for the five Northern Great Plains states (ID, MT, ND, SD and WY). The EVI and EVI anomaly, computed based on 2000-2005 averages, are updated twice monthly for the growing season, April through September. In addition, precipitation anomalies based on a 30-year average and Palmer Z-index (a short term moisture availability index) are also updated monthly for the 45 climate divisions within the NGP states. The presentation will highlight how the near real-time monitoring of the combination of vegetation and climate parameters can help to identify the temporal and spatial patterns of vegetation dynamics at different spatial (from individual farms, climate divisions to states and, even, the whole NGP region) and temporal

  18. The use of a commercial vegetable juice as a practical means to increase vegetable intake: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Reeves Rebecca S

    2010-09-01

    Full Text Available Abstract Background Recommendations for daily dietary vegetable intake were increased in the 2005 USDA Dietary Guidelines as consumption of a diet rich in vegetables has been associated with lower risk of certain chronic health disorders including cardiovascular disease. However, vegetable consumption in the United States has declined over the past decade; consequently, the gap between dietary recommendations and vegetable intake is widening. The primary aim of this study is to determine if drinking vegetable juice is a practical way to help meet daily dietary recommendations for vegetable intake consistent with the 2005 Dietary Guidelines and the Dietary Approaches to Stop Hypertension (DASH diet. The secondary aim is to assess the effect of a vegetable juice on measures of cardiovascular health. Methods We conducted a 12-week, randomized, controlled, parallel-arm study consisting of 3 groups of free-living, healthy volunteers who participated in study visits at the Ragle Human Nutrition Research Center at the University of California, Davis. All subjects received education on the DASH diet and 0, 8 or 16 fluid ounces of vegetable juice daily. Assessments were completed of daily vegetable servings before and after incorporation of vegetable juice and cardiovascular health parameters including blood pressure. Results Without the juice, vegetable intake in all groups was lower than the 2005 Dietary Guidelines and DASH diet recommendations. The consumption of the vegetable juice helped participants reach recommended intake. In general, parameters associated with cardiovascular health did not change over time. However, in the vegetable juice intervention groups, subjects who were pre-hypertensive at the start of the study showed a significant decrease in blood pressure during the 12-week intervention period. Conclusion Including 1-2 cups of vegetable juice daily was an effective and acceptable way for healthy adults to close the dietary vegetable

  19. Remote sensing-based vegetation indices for monitoring vegetation change in the semi-arid region of Sudan

    Science.gov (United States)

    R. A., Majdaldin; Osunmadewa, B. A.; Csaplovics, E.; Aralova, D.

    2016-10-01

    Land degradation, a phenomenon referring to (drought) in arid, semi-arid and dry sub-humid regions as a result of climatic variations and anthropogenic activities most especially in the semi-arid lands of Sudan, where vast majority of the rural population depend solely on agriculture and pasture for their daily livelihood, the ecological pattern had been greatly influenced thereby leading to loss of vegetation cover coupled with climatic variability and replacement of the natural tree composition with invasive mesquite species. The principal aim of this study is to quantitatively examine the vigour of vegetation in Sudan through different vegetation indices. The assessment was done based on indicators such as soil adjusted vegetation index (SAVI). Cloud free multi-spectral remotely sensed data from LANDSAT imagery for the dry season periods of 1984 and 2009 were used in this study. Results of this study shows conversion of vegetation to other land use type. In general, an increase in area covered by vegetation was observed from the NDVI results of 2009 which is a contrast of that of 1984. The results of the vegetation indices for NDVI in 1984 (vegetated area) showed that about 21% was covered by vegetation while 49% of the area were covered with vegetation in 2009. Similar increase in vegetated area were observed from the result of SAVI. The decrease in vegetation observed in 1984 is as a result of extensive drought period which affects vegetation productivity thereby accelerating expansion of bare surfaces and sand accumulation. Although, increase in vegetated area were observed from the result of this study, this increase has a negative impact as the natural vegetation are degraded due to human induced activities which gradually led to the replacement of the natural vegetation with invasive tree species. The results of the study shows that NDVI perform better than by SAVI.

  20. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.

    Science.gov (United States)

    Lausch, Angela; Pause, Marion; Merbach, Ines; Zacharias, Steffen; Doktor, Daniel; Volk, Martin; Seppelt, Ralf

    2013-02-01

    Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the "One Sensor at Different Scales" (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R (2) of 0.83, which was

  1. Monitoring, analysis and classification of vegetation and soil data collected by a small and lightweight hyperspectral imaging system

    Science.gov (United States)

    Mönnig, Carsten

    2014-05-01

    The increasing precision of modern farming systems requires a near-real-time monitoring of agricultural crops in order to estimate soil condition, plant health and potential crop yield. For large sized agricultural plots, satellite imagery or aerial surveys can be used at considerable costs and possible time delays of days or even weeks. However, for small to medium sized plots, these monitoring approaches are cost-prohibitive and difficult to assess. Therefore, we propose within the INTERREG IV A-Project SMART INSPECTORS (Smart Aerial Test Rigs with Infrared Spectrometers and Radar), a cost effective, comparably simple approach to support farmers with a small and lightweight hyperspectral imaging system to collect remotely sensed data in spectral bands in between 400 to 1700nm. SMART INSPECTORS includes the whole remote sensing processing chain of small scale remote sensing from sensor construction, data processing and ground truthing for analysis of the results. The sensors are mounted on a remotely controlled (RC) Octocopter, a fixed wing RC airplane as well as on a two-seated Autogyro for larger plots. The high resolution images up to 5cm on the ground include spectra of visible light, near and thermal infrared as well as hyperspectral imagery. The data will be analyzed using remote sensing software and a Geographic Information System (GIS). The soil condition analysis includes soil humidity, temperature and roughness. Furthermore, a radar sensor is envisaged for the detection of geomorphologic, drainage and soil-plant roughness investigation. Plant health control includes drought stress, vegetation health, pest control, growth condition and canopy temperature. Different vegetation and soil indices will help to determine and understand soil conditions and plant traits. Additional investigation might include crop yield estimation of certain crops like apples, strawberries, pasture land, etc. The quality of remotely sensed vegetation data will be tested with

  2. Daily MODIS 500 m Reflectance Anisotropy Direct Broadcast (DB) Products for Monitoring Vegetation Phenology Dynamics

    Science.gov (United States)

    Shuai, Yanmin; Schaaf, Crystal; Zhang, Xiaoyang; Strahler, Alan; Roy, David; Morisette, Jeffrey; Wang, Zhuosen; Nightingale, Joanne; Nickeson, Jaime; Richardson, Andrew D.; Xie, Donghui; Wang, Jindi; Li, Xiaowen; Strabala, Kathleen; Davies, James E.

    2013-01-01

    Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest.

  3. Risk assessment and monitoring programme of nitrates through vegetables in the Region of Valencia (Spain).

    Science.gov (United States)

    Quijano, Leyre; Yusà, Vicent; Font, Guillermina; McAllister, Claudia; Torres, Concepción; Pardo, Olga

    2017-02-01

    This study was carried out to determine current levels of nitrate in vegetables marketed in the Region of Valencia (Spain) and to estimate the toxicological risk associated with their intake. A total of 533 samples of seven vegetable species were studied. Nitrate levels were derived from the Valencia Region monitoring programme carried out from 2009 to 2013 and food consumption levels were taken from the first Valencia Food Consumption Survey, conducted in 2010. The exposure was estimated using a probabilistic approach and two scenarios were assumed for left-censored data: the lower-bound scenario, in which unquantified results (below the limit of quantification) were set to zero and the upper-bound scenario, in which unquantified results were set to the limit of quantification value. The exposure of the Valencia consumers to nitrate through the consumption of vegetable products appears to be relatively low. In the adult population (16-95 years) the P99.9 was 3.13 mg kg(-1) body weight day(-1) and 3.15 mg kg(-1) body weight day(-1) in the lower bound and upper bound scenario, respectively. On the other hand, for young people (6-15 years) the P99.9 of the exposure was 4.20 mg kg(-1) body weight day(-1) and 4.40 mg kg(-1) body weight day(-1) in the lower bound and upper bound scenario, respectively. The risk characterisation indicates that, under the upper bound scenario, 0.79% of adults and 1.39% of young people can exceed the Acceptable Daily Intake of nitrate. This percentage could join the vegetable extreme consumers (such as vegetarians) of vegetables. Overall, the estimated exposures to nitrate from vegetables are unlikely to result in appreciable health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Monitoring and design of stormwater control basins

    Science.gov (United States)

    Veenhuis, J.E.; Parrish, J.H.; Jennings, M.E.

    1989-01-01

    The City of Austin, Texas, has played a pioneering role in the control of urban nonpoint source pollution by enacting watershed and stormwater ordinances, overseeing detailed monitoring programs, and improving design criteria for stormwater control methods. The effectiveness of the methods used in Austin, and perhaps in other areas of the United States, to protect urban water resources has not yet been fully established. Therefore, detailed monitoring programs capable of quantitatively determining the effectiveness of control methods and of stormwater ordinances, are required. The purpose of this report is to present an overview of the City of Austin's stormwater monitoring program, including previous monitoring programs with the U.S. Environmental Protection Agency and the U.S. Geological Survey, and to describe the relation of monitoring to design of stormwater control basins.

  5. Vegetation Plot Data of the Coastal Wetland Elevation Monitoring Sites on National Wildlife Refuges in the South Atlantic Geography.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Plot level raw datasets--including Cover, Woody Stem, Plot/Environmental, and Soil--from vegetation sampling on Coastal Wetland Elevation Monitoring Sites within the...

  6. An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration

    Directory of Open Access Journals (Sweden)

    Michal Heliasz

    2011-08-01

    Full Text Available We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  7. An optical sensor network for vegetation phenology monitoring and satellite data calibration.

    Science.gov (United States)

    Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal

    2011-01-01

    We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  8. Employee quality, monitoring environment and internal control

    Directory of Open Access Journals (Sweden)

    Chunli Liu

    2017-03-01

    Full Text Available We investigate the effect of internal control employees (ICEs on internal control quality. Using special survey data from Chinese listed firms, we find that ICE quality has a significant positive influence on internal control quality. We examine the effect of monitoring on this result and find that the effect is more pronounced for firms with strict monitoring environments, especially when the firms implement the Chinese internal control regulation system (CSOX, have higher institutional ownership or attach greater importance to internal control. Our findings suggest that ICEs play an important role in the design and implementation of internal control systems. Our study should be of interest to both top managers who wish to improve corporate internal control quality and regulators who wish to understand the mechanisms of internal control monitoring.

  9. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  10. Monitored Geologic Repository Operations Monitoring and Control System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    E.F. Loros

    2000-06-29

    The Monitored Geologic Repository Operations Monitoring and Control System provides supervisory control, monitoring, and selected remote control of primary and secondary repository operations. Primary repository operations consist of both surface and subsurface activities relating to high-level waste receipt, preparation, and emplacement. Secondary repository operations consist of support operations for waste handling and treatment, utilities, subsurface construction, and other selected ancillary activities. Remote control of the subsurface emplacement operations, as well as, repository performance confirmation operations are the direct responsibility of the system. In addition, the system monitors parameters such as radiological data, air quality data, fire detection status, meteorological conditions, unauthorized access, and abnormal operating conditions, to ensure a safe workplace for personnel. Parameters are displayed in a real-time manner to human operators regarding surface and subsurface conditions. The system performs supervisory monitoring and control for both important to safety and non-safety systems. The system provides repository operational information, alarm capability, and human operator response messages during emergency response situations. The system also includes logic control to place equipment, systems, and utilities in a safe operational mode or complete shutdown during emergency response situations. The system initiates alarms and provides operational data to enable appropriate actions at the local level in support of emergency response, radiological protection response, evacuation, and underground rescue. The system provides data communications, data processing, managerial reports, data storage, and data analysis. This system's primary surface and subsurface operator consoles, for both supervisory and remote control activities, will be located in a Central Control Center (CCC) inside one of the surface facility buildings. The system

  11. EWMA control charts in statistical process monitoring

    NARCIS (Netherlands)

    Zwetsloot, I.M.

    2016-01-01

    In today’s world, the amount of available data is steadily increasing, and it is often of interest to detect changes in the data. Statistical process monitoring (SPM) provides tools to monitor data streams and to signal changes in the data. One of these tools is the control chart. The topic of this

  12. Dynamic Drought Monitoring in Guangxi Using Revised Temperature Vegetation Dryness Index

    Institute of Scientific and Technical Information of China (English)

    LU Yuan; TAG Heping; WU Hua

    2007-01-01

    Moderate resolution imaging spectroradiometer (MODIS) data are very suitable for vast extent, long term and dynamic drought monitoring for its high temporal resolution, high spectral resolution and moderate spatial resolution. The composite Enhanced Vegetation Index (EVI) and composite land surface temperature (Ts) obtained from MODIS data MOD11A2 and MOD13A2 were used to construct the EVI-rs space. And Temperature Vegetation Dryness Index (TVDI) was calculated to evaluate the agriculture drought in Guangxi province, China in October of 2006. The results showed that the drought area in Guangxi was evidently increasing and continuously deteriorating from the middle of September to the middle of November. The TVDI, coming from the EVI-rs space, could effectively indicate the spatial distribution and temporal evolution of drought, so that it could provide a strong technical support for the forecasting agricultural drought in south China.

  13. Project Monitoring and Control Measures In CMMI

    Directory of Open Access Journals (Sweden)

    Mahmoud Khraiwesh

    2013-10-01

    Full Text Available Project monitoring and control process is an important process in developing any computer informationsystem. Monitoring and Control provides an understanding of the project’s progress so that when theproject deviates significantly from the plan appropriate corrective actions can be taken. This research willidentify general measures for the specific goals and its specific practices of Project Monitoring andControl Process Area in Capability Maturity Model Integration (CMMI. CMMI is developed in USA bySoftware Engineering Institute (SEI in Carnegie Mellon University. CMMI is a framework for assessmentand improvement of computer information systems. The procedure we used to determine the measures is toapply the Goal Questions Metrics (GQM approach to the two specific goals and its ten specific practicesof Project Monitoring and Control Process Area in CMMI.

  14. Marsh Creation in a Northern Pacific Estuary: Is Thirteen Years of Monitoring Vegetation Dynamics Enough?

    Directory of Open Access Journals (Sweden)

    Neil K. Dawe

    2000-12-01

    Full Text Available Vegetation changes were monitored over a 13-yr period (1982-1994 in the Campbell River estuary following the development of marshes on four intertidal islands. The marshes were created to mitigate the loss of a natural estuarine marsh resulting from the construction of a dry land log-sorting facility. Plant species coverage was measured along 23 permanent transects in planted and unplanted blocks on the constructed islands, and in naturally occurring low-marsh and mid-to-high marsh reference communities on nearby Nunn's Island. Five dominant species, Carex lyngbyei, Juncus balticus, Potentilla pacifica, Deschampsia caespitosa, and Eleocharis palustris established successfully and increased in cover in both planted and unplanted areas. The planted, unplanted, and Nunn's Island low-marsh sites had similar total plant cover and species richness by the 13th year. Principal components analysis of the transects through time indicated successful establishment of mid-to-low marsh communities on the constructed islands by the fourth year. Vegetation fluctuations on the constructed islands were greater than in the mid-to-high and low-marsh reference communities on Nunn's Island. Results showed that substrate elevation and island configuration were major influences on the successful establishment and subsequent dynamics of created marsh communities. Aboveground biomass estimates of marshes on the created islands attained those of the reference marshes on Nunn's Island between years 6 and 13. However, Carex lyngbyei biomass on the created islands had not reached that of the reference marshes by year 13. Despite the establishment of what appeared to be a productive marsh, with species composition and cover similar to those of the reference marshes on Nunn's Island, vegetation on the created islands was still undergoing changes that, in some cases, were cause for concern. On three of the islands, large areas devoid of vegetation formed between years 6 and 13

  15. Modified Whittaker plots as an assessment and monitoring tool for vegetation in a lowland tropical rainforest.

    Science.gov (United States)

    Campbell, Patrick; Comiskey, James; Alonso, Alfonso; Dallmeier, Francisco; Nuñez, Percy; Beltran, Hamilton; Baldeon, Severo; Nauray, William; de la Colina, Rafael; Acurio, Lucero; Udvardy, Shana

    2002-05-01

    Resource exploitation in lowland tropical forests is increasing and causing loss of biodiversity. Effective evaluation and management of the impacts of development on tropical forests requires appropriate assessment and monitoring tools. We propose the use of 0.1-ha multi-scale, modified Whittaker plots (MWPs) to assess and monitor vegetation in lowland tropical rainforests. We established MWPs at 4 sites to: (1) describe and compare composition and structure of the sites using MWPs, (2) compare these results to those of 1-ha permanent vegetation plots (BDPs), and (3) evaluate the ability of MWPs to detect changes in populations (statistical power). We recorded more than 400 species at each site. Species composition among the sites was distinctive, while mean abundance and basal area was similar. Comparisons between MWPs and BDPs show that they record similar species composition and abundance and that both perform equally well at detecting rare species. However, MWPs tend to record more species, and power analysis studies show that MWPs were more effective at detecting changes in the mean number of species of trees > or = 10 cm in diameter at breast height (dbh) and in herbaceous plants. Ten MWPs were sufficient to detect a change of 11% in the mean number of herb species, and they were able to detect a 14% change in the mean number of species of trees > or =10 cm dbh. The value of MWPs for assessment and monitoring is discussed, along with recommendations for improving the sampling design to increase power.

  16. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-01-09

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program entails modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. The project continues to advance, but is behind the revised (14-month) schedule. Tasks 1-3 (Modeling, Specification and Design) are all essentially complete. The test bench for the Test and Evaluation (Tasks 4 & 5) has been designed and constructed. The design of the full-scale laboratory prototype and associated test equipment is complete and the components are out for manufacture. Barring any unforeseen difficulties, laboratory testing should be complete by the end of March, as currently scheduled. We anticipate the expenses through March to be approximately equal to those budgeted for Phase I.

  17. Ultrasonic techniques for process monitoring and control.

    Energy Technology Data Exchange (ETDEWEB)

    Chien, H.-T.

    1999-03-24

    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  18. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  19. Use of gabions and vegetation in erosion-control works

    Directory of Open Access Journals (Sweden)

    Matić Vjačeslava

    2009-01-01

    Full Text Available Heavy winter and spring rainfall during the years 2005, -06, -07, and -08 brought about numerous torrential floods and landslides throughout the world and in Serbia. They endangered people, animals, settlements, fields, and roads. This reminded us of a readily available, cheap, and efficient material: stone in wire baskets of doubly galvanized wire of various sizes and forms - gabions - which are also long-lasting, flexible, and ecological. If made according to prescribed standards, they offer a permanent solution for many erosion-control problems. In addition, they can be used in urgent interventions to protect the lives of humans, animals, and plants and prevent of immense material losses. This paper calls attention to an unjustifiably neglected but important material, easily manipulated and with significant advantages compared to other structural materials, as well as to the possibility of its successful combination with vegetation, viz., willow (Salix sp. cuttings and grasses.

  20. Using MODIS NDVI products for vegetation state monitoring on the oil production territory in Western Siberia

    Directory of Open Access Journals (Sweden)

    Kovalev Anton

    2016-01-01

    Full Text Available Article describes the results of using remote sensing data for vegetation state monitoring on the oil field territories in Western Siberia. We used MODIS data product providing the normalized difference vegetation index (NDVI values. Average NDVI values of each studied area were calculated for the period from 2010 to 2015 with one year interval for June, July and August. Analysis was carried out via an open tool of geographic information system QGIS used for spatial analysis and calculation of statistical parameters within chosen polygons. Results are presented in graphs showing the variation of NDVI for each study area and explaining the changes in trend lines for each field. It is shown that the majority of graphs are similar in shape which is caused by similar weather conditions. To confirm these results, we have conducted data analysis including temperature conditions and information about the accidents for each area. Abnormal changes in NDVI values revealed an emergency situation on the Priobskoe oil field caused by the flood in 2015. To sum up, the research results show that vegetation of studied areas is in a sufficiently stable state.

  1. Comparative validation of UAV based sensors for the use in vegetation monitoring

    Science.gov (United States)

    von Bueren, S.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.; Yule, I.

    2014-03-01

    Unmanned Aerial Vehicles (UAVs) equipped with lightweight spectral sensors facilitate non-destructive, near real time vegetation analysis. In order to guarantee quality scientific analysis, data acquisition protocols and processing methodologies need to be developed and new sensors must be trialed against state of the art instruments. In the following study, four different types of optical UAV based sensors (RGB camera, near infrared camera, six band multispectral camera, and a high resolution spectrometer) were compared and validated in order to evaluate their applicability for vegetation monitoring with a focus on precision agricultural applications. Data was collected in New Zealand over ryegrass pastures of various conditions. The UAV sensor data was validated with ground spectral measurements. It was found that large scale imaging of pasture variability can be achieved by either using a true color or a modified near infrared camera. A six band multispectral camera was used as an imaging spectrometer capable of identifying in field variations of vegetation status that correlate with ground spectral measurements. The high resolution spectrometer was validated and found to deliver spectral data that can match the quality of ground spectral measurements.

  2. A plasma process monitor/control system

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.O.; Ward, P.P.; Smith, M.L. [Sandia National Labs., Albuquerque, NM (United States); Markle, R.J. [Advanced Micro Devices, Inc., Austin, TX (United States)

    1997-08-01

    Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

  3. Nuclear propulsion control and health monitoring

    Science.gov (United States)

    Walter, P. B.; Edwards, R. M.

    1993-01-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  4. Intelligent Control and Health Monitoring. Chapter 3

    Science.gov (United States)

    Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.

    2009-01-01

    Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.

  5. Parameter Optimization of Information Channels for Laser Fluorescence Method of Vegetation Monitoring

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2015-01-01

    Full Text Available Nowadays, there is a growing interest in application of remote monitoring and accounting systems in agriculture.One of the promising areas of remote vegetation monitoring is a fluorescence analysis, as it potentially allows sensing stress of plants according to characteristics of their fluorescent radiation.The shape of the fluorescence spectra of vegetation in the normal condition differs from that of the fluorescence spectra of vegetation in stressful conditions. This potentially allows you to sence the plants by recording information about the shape of the fluorescence spectra.Analysis of the fluorescence spectrum shape can be replaced by the analysis of fluorescence intensities in several spectral bands, which simpifies problem-solving.Currently, there are various devices developed for laser fluorescence sensing of plant stress. However, a lot of issues important to the practice remain unclear.Most of these issues concern the parameters of receiving channels to record information signals, which allow you to perceve the stress-sensed plants:- how many information channels of spectral bands better to use;- what the best width of these spectral bands of information is ;- what is the best width of the spectral bands of information;- what the best threshold value for the threshold algorithm is, and if there is the better algorithm to process measurement data.The work uses mathematical modeling based on the experimentally measured fluorescence spectra to determine the optimal (in terms of probability of sensing characteristics of the stress of plants, i.e. the probability of good sense and false alarm parameters of information channels for laser fluorescence method to sense the plant stress: the central wavelength of the information spectral bands, their spectral width, and parameters of the algorithm in the case of processing two spectral channels of information. It is shown that using the additional third information spectral band allows you to

  6. Loblolly pine growth following operational vegetation management treatments compares favorably to that achieved in complete vegetation control research trials

    Science.gov (United States)

    Dwight K. Lauer; Harold E. Quicke

    2010-01-01

    Different combinations of chemical site prep and post-plant herbaceous weed control installed at three Upper Coastal Plain locations were compared in terms of year 3 loblolly (Pinus taeda L.) pine response to determine the better vegetation management regimes. Site prep treatments were different herbicide rates applied in either July or October. Site...

  7. Long-term vegetation monitoring in Great Britain - the Countryside Survey 1978-2007 and beyond

    Science.gov (United States)

    Wood, Claire M.; Smart, Simon M.; Bunce, Robert G. H.; Norton, Lisa R.; Maskell, Lindsay C.; Howard, David C.; Scott, W. Andrew; Henrys, Peter A.

    2017-07-01

    The Countryside Survey (CS) of Great Britain provides a globally unique series of datasets, consisting of an extensive set of repeated ecological measurements at a national scale, covering a time span of 29 years. CS was first undertaken in 1978 to monitor ecological and land use change in Britain using standardised procedures for recording ecological data from representative 1 km squares throughout the country. The same sites, with some additional squares, were used for subsequent surveys of vegetation undertaken in 1990, 1998 and 2007, with the intention of future surveys. Other data records include soils, freshwater habitats and invertebrates, and land cover and landscape feature diversity and extents. These data have been recorded in the same locations on analogous dates. However, the present paper describes only the details of the vegetation surveys. The survey design is a series of gridded, stratified, randomly selected 1 km squares taken as representative of classes derived from a statistical environmental classification of Britain. In the 1978 survey, 256 one-kilometre sample squares were recorded, increasing to 506 in 1990, 569 in 1998 and 591 in 2007. Initially each square contained up to 11 dispersed vegetation plots but additional plots were later placed in different features so that eventually up to 36 additional sampling plots were recorded, all of which can be relocated where possible (unless the plot has been lost, for example as a consequence of building work), providing a total of 16 992 plots by 2007. Plots are estimated to have a precise relocation accuracy of 85 %. A range of plots located in different land cover types and landscape features (for example, field boundaries) are included. Although a range of analyses have already been carried out, with changes in the vegetation being related to a range of drivers at local and national scales, there is major potential for further analyses, for example in relation to climate change. Although the

  8. Monitoring natural vegetation in Southern Greenland using NOAA AVHRR and field measurements

    DEFF Research Database (Denmark)

    Hansen, Birger Ulf

    1991-01-01

    vegetation, sheep farming, biomass production, Remote Sensing, NOAA AVHRR, Southern Greenland, NDVI......vegetation, sheep farming, biomass production, Remote Sensing, NOAA AVHRR, Southern Greenland, NDVI...

  9. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    Science.gov (United States)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  10. A monitoring system for vegetable greenhouses based on a wireless sensor network.

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring.

  11. Monitoring of Vegetation Impact Due to Trampling on Cadillac Mountain Summit Using High Spatial Resolution Remote Sensing Data Sets

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J.

    2012-11-01

    Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P < 0.001). Research implications are explored that relate to the spatial extent of the radial patterns of impact of trampling on vegetation at the site level. Management implications are explored in terms of the spatial strategies used to

  12. Monitoring of vegetation impact due to trampling on Cadillac Mountain summit using high spatial resolution remote sensing data sets.

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J

    2012-11-01

    Cadillac Mountain--the highest peak along the eastern seaboard of the United States--is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies--based on placing physical barriers and educational messages for visitors--have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P vegetation at the site level. Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.

  13. Biomarker monitoring in sports doping control.

    Science.gov (United States)

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  14. On the demands on imaging spectrometry for the monitoring of global vegetation fluorescence from space

    Science.gov (United States)

    Kraft, S.; Del Bello, U.; Drusch, M.; Gabriele, A.; Harnisch, B.; Moreno, J.

    2013-09-01

    Vegetation fluorescence when measured from space contributes only a tiny fraction of the signal coming on top of the reflected radiance by the Earth surface and the atmosphere. As a consequence, imaging spectrometers have to provide sufficient throughput and radiometric accuracy to enable accurate global monitoring of the daily to seasonal variations of the Earth's vegetation breath, which is particularly challenging if ground resolutions of a few hundred meters are targeted. Since fluorescence retrieval algorithms have to make corrections for atmospheric effects, it is necessary to provide sufficient spectral resolution, so that signal alterations due to the main parameters such as surface pressure, atmospheric temperature profile, vertical distribution of aerosols concentration, and water vapour content can be accurately modelled. ESA's Earth Explorer 8 candidate mission FLEX carries a Fluorescence Imaging Spectrometer (FLORIS), which has been designed and optimised to enable such measurement. The spectrometer will measure in a spectral range between 500 and 780 nm and provide high spectral resolution of 0.3 nm in particular at the Oxygen-A and -B bands. It will also cover the photochemical reflection features between 500 and 600 nm, the Chlorophyll absorption region between 600 and 677 nm, and the red-edge in the region of 697 to 755 nm. FLEX will fly in formation with Sentinel-3 in order to further enhance the spectral coverage from measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening and proper characterization of the atmospheric status.

  15. Energy monitoring and control Systems - which one

    Energy Technology Data Exchange (ETDEWEB)

    Agase, H.D.

    1980-01-01

    Considering the high cost and general limitations of energy supplies, there is no better source of energy than simple conservation. It is the cheapest, the safest and the most productive alternative available today. This overview of Energy Monitoring and Control System types, and what to consider in their selection, will relate to conservation and significant dollar savings potential to the user.

  16. Hydrometeorological and vegetation indices for the drought monitoring system in Tuscany Region, Italy

    Directory of Open Access Journals (Sweden)

    F. Caparrini

    2009-03-01

    Full Text Available We present here the first experiments for an integrated system that is under development for drought monitoring and water resources assessment in Tuscany Region in central Italy. The system is based on the cross-evaluation of the Standardized Precipitation Index (SPI, Vegetation Indices from remote sensing (from MODIS and SEVIRI-MSG, and outputs from the distributed hydrological model MOBIDIC, that is used in real-time for water balance evaluation and hydrological forecast in the major basins of Tuscany.

    Furthermore, a telemetric network of aquifer levels is near completion in the region, and data from nearly 50 stations are already available in real-time.

    Preliminary estimates of drought indices over Tuscany in the first eight months of 2007 are shown, and pathway for further studies on the correlation between patterns of crop water stress, precipitation deficit and groundwater conditions is discussed.

  17. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  18. Potentiometric stripping analysis (PSA) for monitoring of antimony in samples of vegetation from a mining area

    Energy Technology Data Exchange (ETDEWEB)

    Toro Gordillo, M.C.; Pinilla Gil, E. [Dept. de Quimica Analitica y Electroquimica, Universidad de Extremadura, Badajoz (Spain); Rodriguez Gonzalez, M.A.; Murciego Murciego, A. [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Badajoz (Spain); Ostapczuk, P. [Forschungszentrum Juelich GmbH (Germany)

    2001-06-01

    A potentiometric stripping analysis (PSA) method has been developed and checked for the fast and reliable determination of antimony in vegetation samples of Cistus ladanifer from a mining area in Badajoz, Southwest Spain. The method, modified from previous PSA methods for Sb in environmental samples, is based on dry ashing of the homogenized leaves, dissolution in hydrochloric acid, and PSA analysis on a mercury film plated on to a glassy carbon disk electrode. The influence of experimental variables such as the deposition potential, the deposition time, the signal stability and the calibration parameters, has been investigated. The method has been compared with an independent technique (instrumental neutron activation analysis) by analysis of standards and reference materials and comparison of the results. As a result of automation of the PSA equipment, the proposed method enables unattended analysis of 20 digested samples in a total time of 2 h, thus providing a useful tool for Sb monitoring of a large number of samples. (orig.)

  19. Potentiometric stripping analysis (PSA) for monitoring of antimony in samples of vegetation from a mining area.

    Science.gov (United States)

    Toro Gordillo, M C; Pinilla Gil, E; Rodríguez González, M A; Murciego Murciego, A; Ostapczuk, P

    2001-06-01

    A potentiometric stripping analysis (PSA) method has been developed and checked for the fast and reliable determination of antimony in vegetation samples of Cistus ladanifer from a mining area in Badajoz, Southwest Spain. The method, modified from previous PSA methods for Sb in environmental samples, is based on dry ashing of the homogenized leaves, dissolution in hydrochloric acid, and PSA analysis on a mercury film plated on to a glassy carbon disk electrode. The influence of experimental variables such as the deposition potential, the deposition time, the signal stability and the calibration parameters, has been investigated. The method has been compared with an independent technique (instrumental neutron activation analysis) by analysis of standards and reference materials and comparison of the results. As a result of automation of the PSA equipment, the proposed method enables unattended analysis of 20 digested samples in a total time of 2 h, thus providing a useful tool for Sb monitoring of a large number of samples.

  20. Monitoring and controlling the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Angelidaki, I. [The Technical Univ. of Denmark, Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1997-08-01

    Many modern large-scale biogas plants have been constructed recently, increasing the demand for proper monitoring and control of these large reactor systems. For monitoring the biogas process, an easy to measure and reliable indicator is required, which reflects the metabolic state and the activity of the bacterial populations in the reactor. In this paper, we discuss existing indicators as well as indicators under development which can potentially be used to monitor the state of the biogas process in a reactor. Furthermore, data are presented from two large scale thermophilic biogas plants, subjected to temperature changes and where the concentration of volatile fatty acids was monitored. The results clearly demonstrated that significant changes in the concentration of the individual VFA occurred although the biogas production was not significantly changed. Especially the concentrations of butyrate, isobutyrate and isovalerate showed significant changes. Future improvements of process control could therefore be based on monitoring of the concentration of specific VFA`s together with information about the bacterial populations in the reactor. The last information could be supplied by the use of modern molecular techniques. (au) 51 refs.

  1. Relative Skills of Soil Moisutre and Vegetation Optical Depth Retrievals for Agricultural Drought Monitoring

    Science.gov (United States)

    Han, E.; Crow, W. T.; Holmes, T. R.; Bolten, J. D.

    2012-12-01

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Microwave Scanning Radiometer (AMSR-E). This study aims to investigate added skills of VOD in addition to SM for agricultural drought monitoring using monthly LPRM-SM and VOD products from 2002 to 2011. First, the lagged rank cross-correlation between Normalized Difference Vegetation Index (NDVI) and the SM/VOD retrievals is used to evaluate the skills of the SM and VOD for drought monitoring. Interestingly, the highest rank cross-correlation between NDVI and VOD is found with lag of (+1) month (temporally lagged behind ranks of NDVI by 1 month), while the highest rank cross-correlation coefficient of SM is found with lag (-1) month (temporally precedes the ranks of NDVI by 1 month). Lagged responses of plants to the available water capacity in the root zone may explain this lagged peak of correlation of VOD. In order to understand this finding more systematically, additional analysis on the microwave polarization difference index and vertical/horizontal brightness temperature are conducted. Next, different types of observations (SM, VOD and NDVI) and hydrologic model results (Palmer model) are merged to improve predictive power. We adopt two different merging approaches (simple weighting method and auto-regressive model) to quantify the added skills of those different drought-related indices. The results show that adding more information rather than using solely SM observation increases lag (-1) month cross-correlation coefficient with NDVI. This result indicates that different observations/models have independent information to some degree. Therefore further analysis on error-correlations between the observations/model results is also conducted. This study suggests

  2. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  3. Parental control over feeding and children's fruit and vegetable intake: how are they related?

    Science.gov (United States)

    Wardle, Jane; Carnell, Susan; Cooke, Lucy

    2005-02-01

    To replicate the finding of a negative association between parental control and fruit and vegetable consumption in girls. To extend the investigation to boys and examine sex differences. To test the hypothesis that children's food neophobia explains this association. Cross-sectional questionnaire survey. The questionnaire included items assessing parents' and children's fruit and vegetable intake, the Parental Control Index, and the Child Food Neophobia Scale. Parents of 564 2- to 6-year-old children, recruited from 22 London nursery schools. Relationships between continuous variables were examined with Pearson product moment correlation coefficients. Sex differences were tested using independent sample t tests, and sex differences in correlations were assessed from their 95% confidence intervals. Parental control and children's food neophobia were entered into a hierarchical multiple regression to test the hypothesis that neophobia explains the association between parental control and children's fruit and vegetable intake. We replicated the finding that parental control was correlated with children's fruit and vegetable consumption and found no significant sex differences. Parental fruit and vegetable consumption and children's food neophobia were also strong predictors of children's fruit and vegetable consumption, and both were associated with parental control, suggesting that they might explain the association between control and intake. Controlling for children's food neophobia and parental intake reduced the association of parental control with children's fruit and vegetable intake to nonsignificance. These findings emphasize the importance of systematic research about associations between parental feeding styles and children's dietary habits so that dietetics professionals can give parents sound advice.

  4. Assessment of a fiber-optic distributed-temperature-sensing system to monitor the thermal dynamics of vegetated roof

    Science.gov (United States)

    Cousiño, J. A.; Hausner, M. B.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.; Suarez, F. I.

    2014-12-01

    Vegetated (green) roofs include a growing media and vegetation layer, and offer a range of benefits such as the reduction of: the heat island effect, rooftop runoff peak flows, roof surface temperatures, energy used for cooling or heating buildings, and noise levels inside infrastructures. Vegetated roofs also offer aesthetic benefits and increase the biodiversity of the urban environment, and are increasingly used in sustainable urban development. Understanding the thermal dynamics of vegetated roofs will make it possible to improve their design and to better assess their impacts on energy efficiency. Here, we evaluate the first vertical high-resolution distributed-temperature-sensing (DTS) system installed in a vegetated roof. This system allows a continuous measurement of the thermal profile within a vegetated roof - going from the interior, upward through the drainage layers and soil substrate of the vegetated roof and ending in the air above the vegetation. Temperatures can be observed as frequently as every 30 s at a spatial resolution on the order of centimeters. This DTS system was installed in the "Laboratory of Vegetal Infrastructure of Buildings" (LIVE - its acronym in Spanish), located in the San Joaquín Campus of the Pontifical Catholic University, Santiago, Chile. The laboratory features 18 experimental modules to investigate different configurations of the vegetated roof layers. The LIVE was designed with the installation of the optical fibers in mind, and the DTS system allows simultaneous monitoring of three or four modules of the LIVE. In this work, we describe the design of this DTS deployment, the calibration metrics obtained using the software provided by the manufacturers, and other calibration algorithms previously developed. We compare the results obtained using single- and double-ended measurements, highlighting strengths and weaknesses of DTS methods. Finally, we present the observations obtained from this biophysical environment

  5. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    2017-03-14

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  6. Canopy Level Solar Induced Fluorescence for Vegetation in Controlled Experiments

    Science.gov (United States)

    Middleton, E. M.; Corp, L. A.; Campbell, P. K. Entcheva

    2007-01-01

    Solar induced chlorophyll fluorescence (SIF) was retrieved from high resolution reflectance spectra acquired one meter above saplings of three deciduous tree species during springtime (three weeks after leaf flush) and in late summer when foliage was mature. SIF was determined by application of the Fraunhofer Line Depth (FLD) Principal to above-canopy spectra acquired with an Analytical Spectral Devices (ASD) Fieldspec spectroradiometer (3.2 nm resolution with 1.2 nm sampling interval). SIF retrievals were made at the two atmospheric oxygen (O2) absorption features that occur in the chlorophyll fluorescence (ChlF) region (660 -780 nm). These telluric features are 02V, the broader and deeper feature centered at 760 nm, but located on the shoulder of the far-red ChlF peak at 740 nm; and 023, a narrow feature centered at 688 nm that is positioned near the red ChlF peak at 685 nm. Supporting, coincident leaf level fluorescence, reflectance, photochemical and other measurements were also made. At the leaf level, these measurements included in situ photosynthetic capacity (Pmax) and light adapted total chlorophyll fluorescence (Fs') collected at steady state under high light and controlled chamber conditions (e.g., temperature, PAR, humidity, and COz); optical properties (reflectance, transmittance, absorptance); chlorophyll and carotenoid content; specific leaf mass; carbon (C) and nitrogen (N) content; fluorescence emission spectra at multiple excitation wavelengths; the ChlF contribution to red (R) and far-red (FR) reflectance; fluorescence imagery; and fluorescence excitation-emission matrices (EEMs). The tree species examined were tulip poplar (Liriodendron tulipifera L.), red maple (Acer rubrum L.), and sweetgum (Liquidambar styraczflua L.), and each had been provided four levels of N augmentation (0, 19, 37, and 75 kg Nhectare seasonally) to simulate atmospheric deposition from air pollution. Whole-plant SIF measurements of these species were compared with SIF

  7. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    Science.gov (United States)

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for monitoring rangeland health or progress toward management objectives because of its importance for assessing riparian areas, post-fire recovery, wind erosion, and wildlife habitat. Federal land management agencies ...

  8. Repeatability of riparian vegetation sampling methods: how useful are these techniques for broad-scale, long-term monitoring?

    Science.gov (United States)

    Marc C. Coles-Ritchie; Richard C. Henderson; Eric K. Archer; Caroline Kennedy; Jeffrey L. Kershner

    2004-01-01

    Tests were conducted to evaluate variability among observers for riparian vegetation data collection methods and data reduction techniques. The methods are used as part of a largescale monitoring program designed to detect changes in riparian resource conditions on Federal lands. Methods were evaluated using agreement matrices, the Bray-Curtis dissimilarity metric, the...

  9. Master Console System Monitoring and Control Development

    Science.gov (United States)

    Brooks, Russell A.

    2013-01-01

    The Master Console internship during the summer of 2013 involved the development of firing room displays and support applications at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I created control scripts using the Application Control Language (ACL) to analyze the health and status of Kennedy Ground Control System (KGCS) programmable logic controllers (PLCs). This application provides a system health and status display I created with summarized data for use by Master Console Operators (MCO) to monitor and verify the integrity of KGCS subsystems.

  10. PASTIS 57: Autonomous light sensors for PAI continuous monitoring. Principles, calibration and application to vegetation phenology

    Science.gov (United States)

    Lecerf, R.; Baret, F.; Hanocq, J.; Marloie, O.; Rautiainen, M.; Mottus, M.; Heiskanen, J.; Stenberg, P.

    2010-12-01

    The LAI (Leaf Area Index) is a key variable to analyze and model vegetation and its interactions with atmosphere and soils. The LAI maps derived from remote sensing images are often validated with non-destructive LAI measures obtained from digital hemispherical photography, LAI-2000 or ceptometer instruments. These methods are expensive and time consuming particularly when human intervention is needed. Consequently it is difficult to acquire overlapping field data and remotely sensed LAI. There is a need of a cheap, autonomous, easy to use ground system to measure foliage development and senescence at least with a daily frequency in order to increase the number of validation sites where vegetation phenology is continuously monitored. A system called PASTIS-57 (PAI Autonomous System from Transmittance Instantaneous Sensors oriented at 57°) devoted to PAI (Plant Area Index) ground measurements was developed to answer this need. PASTIS-57 consists in 6 sensors plugged on one logger that record data with a sampling rate of 1 to few minutes (tunable) with up to 3 months autonomy (energy and data storage). The sensors are plugged to the logger with 2x10m wires, 2x6m wires and 2x2m wires. The distance between each sensor was determined to obtain a representative spatial sampling over a 20m pixel corresponding to an Elementary Sampling Unit (ESU). The PASTIS-57 sensors are made of photodiodes that measure the incoming light in the blue wavelength to maximize the contrast between vegetation and sky and limit multiple scattering effects in the canopy. The diodes are oriented to the north to avoid direct sun light and point to a zenithal angle of 57° to minimize leaf angle distribution and plant clumping effects. The field of view of the diodes was set to ± 20° to take into consideration vegetation cover heterogeneity and to minimize environmental effects. The sensors were calibrated after recording data on a clear view site during a week. After calibration, the sensors

  11. Fruits and vegetables and cardiovascular risk profile: a diet controlled intervention study

    NARCIS (Netherlands)

    Broekmans, W.M.R.; Klopping-Ketelaars, W.A.; Klurft, C.; Berg, van den H.; Kok, F.J.; Poppel, van G.

    2001-01-01

    Interventions: During 4 weeks 24 volunteers consumed a standardised meal, consisting of 500 g/day fruit and vegetables and 200 ml/day fruit juice ('high' group) and 23 volunteers consumed 100 g/day fruit and vegetables ('low' group) with an energy and fat controlled diet. Results: Final total choles

  12. Combining MODIS and AMSR-E-based vegetation moisture retrievals for improved fire risk monitoring

    Science.gov (United States)

    Dasgupta, Swarvanu; Qu, John J.

    2006-08-01

    Research has shown that remote sensing in both the optical and microwave domain has the capability of estimating vegetation water content (VWC). Though lower in spatial resolution than MODIS optical bands, AMSR-E microwave measurements are typically less affected by clouds, water vapor, aerosol or solar illumination, making them complementary to MODIS real time measurements over regions of clouds and haze. In this study we explored a wavelet based approach for combining vegetation water content observations derived from higher spatial resolution MODIS and lower spatial resolution AMSR-E microwave measurements. Regression analysis between AMSR-E VWC and spatially aggregated MODIS NDII (Normalized Difference Infrared Index) was first used to scale MODIS NDII to MODIS VWC products. Our approach for combining information from the two sensors resorts to multiresolution wavelet decomposition of MODIS VWC into a set of detail images and a single approximation image at AMSR-E resolution. The substitution method of image fusion is then undertaken, in which the approximation image is replaced by AMSR-E VWC image, prior to using inverse wavelet transform to construct a merged VWC product. The merged VWC product thus has information from both MODIS and AMSR-E measurements. The technique is applied over low vegetation regions in Texas grasslands to obtain merged VWC products at intermediate resolutions of ~1.5km. Apart from offering a way to calibrate MODIS VWC content products to AMSR-E observations, the technique has the potential for downscaling AMSR-E VWC to higher spatial resolution over moderately cloudy or hazy regions where MODIS reflective bands become contaminated by the atmosphere. During such situations when contaminated MODIS signals cannot be used to obtain the wavelet detail images, MODIS detail images from a preceding time step is used to downscale the current AMSR-E VWC to higher resolutions. This approach of using detail images from the recent past would be

  13. [Remote sensing based monitoring of vegetation dynamics and ecological restoration in Beijing mountainous area].

    Science.gov (United States)

    Hu, Yong; Liu, Liang-yun; Jia, Jian-hua

    2010-11-01

    By using the Landsat images in 1979, 1988, 1999, 2005, and 2009, and the linear unmixed model at pixel scale, this paper analyzed the spatiotemporal variation of vegetation coverage in Beijing mountainous area. After detecting the areas of vegetation degradation or restoration, the impacts of elevation, slope, and soil type on vegetation restoration were studied. From 1979 to 1988, the vegetation coverage in the study area had no obvious change, but in the following 12 years, the vegetation coverage was seriously destroyed due to the fast development of social economy. Fortunately, many protective measures were taken since 2000, which improved the vegetation coverage to 72% in 2009, with an increment of 13% compared to the vegetation coverage in 1999. A significant correlation was observed between the variations of vegetation coverage and territorial features. The areas with poor soil or large slope were more easily suffered from degradation than other places, and the flat regions with low elevation were more affected by human activities.

  14. Fermilab accelerator control system: Analog monitoring facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  15. Drought monitoring over the Horn of Africa using remotely sensed evapotranspiration, soil moisture and vegetation parameters

    Science.gov (United States)

    Timmermans, J.; Gokmen, M.; Eden, U.; Abou Ali, M.; Vekerdy, Z.; Su, Z.

    2012-04-01

    The need to good drought monitoring and management for the Horn of Africa has never been greater. This ongoing drought is the largest in the past sixty years and is effecting the life of around 10 million people, according to the United Nations. The impact of drought is most apparent in food security and health. In addition secondary problems arise related to the drought such as large migration; more than 15000 Somalia have fled to neighboring countries to escape the problems caused by the drought. These problems will only grow in the future to larger areas due to increase in extreme weather patterns due to global climate change. Monitoring drought impact and managing the drought effects are therefore of critical importance. The impact of a drought is hard to characterize as drought depends on several parameters, like precipitation, land use, irrigation. Consequently the effects of the drought vary spatially and range from short-term to long-term. For this reason a drought event can be characterized into four categories: meteorological, agricultural, hydrological and socio-economical. In terms of food production the agricultural drought, or short term dryness near the surface layer, is most important. This drought is usually characterized by low soil moisture content in the root zone, decreased evapotranspiration, and changes in vegetation vigor. All of these parameters can be detected with good accuracy from space. The advantage of remote sensing in Drought monitoring is evident. Drought monitoring is usually performed using drought indices, like the Palmer Index (PDSI), Crop Moisture Index (CMI), Standard Precipitation Index (SPI). With the introduction of remote sensing several indices of these have shown great potential for large scale application. These indices however all incorporate precipitation as the main surface parameter neglecting the response of the surface to the dryness. More recently two agricultural drought indices, the EvapoTranspiration Deficit

  16. Combined Control Scheme for Monitoring Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Adekeye K.S.

    2014-07-01

    Full Text Available In the literature, the Exponentially Weighted Moving Average (EWMA and Exponentially Weighted Moving Variance (EMWV control schemes have been used separately to monitor the process average and process variability respectively. Here the two are combined and applied on simulated process with different level of variation. The control limit interval (CLI and the average run length (ARL were evaluated for the combined chart. The combined chart performed better than the two independently. Furthermore, an algorithm was developed for the two control charts and implemented on visual basic VB6.0. The obtained results show that the combined EWMA and EWMV control chart is very sensitive in detecting shift in production process and every shift in the process mean is always preceded by shift in the process variability.

  17. Comparison and Intercalibration of Vegetation Indices from Different Sensors for Monitoring Above-Ground Plant Nitrogen Uptake in Winter Wheat

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2013-03-01

    Full Text Available Various sensors have been used to obtain the canopy spectral reflectance for monitoring above-ground plant nitrogen (N uptake in winter wheat. Comparison and intercalibration of spectral reflectance and vegetation indices derived from different sensors are important for multi-sensor data fusion and utilization. In this study, the spectral reflectance and its derived vegetation indices from three ground-based sensors (ASD Field Spec Pro spectrometer, CropScan MSR 16 and GreenSeeker RT 100 in six winter wheat field experiments were compared. Then, the best sensor (ASD and its normalized difference vegetation index (NDVI (807, 736 for estimating above-ground plant N uptake were determined (R2 of 0.885 and RMSE of 1.440 g·N·m−2 for model calibration. In order to better utilize the spectral reflectance from the three sensors, intercalibration models for vegetation indices based on different sensors were developed. The results indicated that the vegetation indices from different sensors could be intercalibrated, which should promote application of data fusion and make monitoring of above-ground plant N uptake more precise and accurate.

  18. MPS Vax monitor and control software architecture

    Energy Technology Data Exchange (ETDEWEB)

    Allison, S.; Spencer, N.; Underwood, K.; VanOlst, D.; Zelanzy, M.

    1993-04-01

    The new Machine Protection System (MPS) now being tested at the SLAC Linear Collider (SLC) includes monitoring and controlling facilities integrated into the existing VAX control system. The actual machine protection is performed by VME micros which control the beam repetition rate on a pulse-by-pulse basis based on measurements from fault detectors. The VAX is used to control and configure the VME micros, configure custom CAMAC modules providing the fault detector inputs, monitor and report faults and system errors, update the SLC database, and interface with the user. The design goals of the VAX software include a database-driven system to allow configuration changes without code changes, use of a standard TCP/IP-based message service for communication, use of existing SLCNET micros for CAMAC configuration, security and verification features to prevent unauthorized access, error and alarm logging and display updates as quickly as possible, and use of touch panels and X-windows displays for the user interface.

  19. Monitoring of vegetation response to elk population and habitat management in Rocky Mountain National Park, 2008–14

    Science.gov (United States)

    Zeigenfuss, Linda C.; Johnson, Therese L.

    2015-12-17

    Since 2008, Rocky Mountain National Park in Colorado has been implementing an elk and vegetation management plan with the goal of managing elk populations and their habitats to improve the condition of key vegetation communities on elk winter range. Management actions that have been taken thus far include small reductions in the elk herd through culling of animals and temporary fencing of large areas of willow and aspen habitat to protect them from elk browsing. As part of the park’s elk and vegetation management plan (EVMP), a monitoring program was established to assess effectiveness of management actions in achieving vegetation goals. We collected data to monitor offtake (consumption) of upland herbaceous plants and willow annually from 2008 to 2014 and to assess aspen stand structure and regeneration and willow cover and height in 2013, 5 years after plan implementation. Loss of many willow and a few aspen monitoring sites to a fire in late 2012 complicated data collection and interpretation of results but will provide opportunities to observe habitat recovery following fire and in the presence and absence of elk herbivory, which will offer important insights into the use of prescribed fire as an additional management tool in these habitats.

  20. Monitoring Earthquake-Damaged Vegetation after the 2008 Wenchuan Earthquake in the Mountainous River Basins, Dujiangyan County

    Directory of Open Access Journals (Sweden)

    Huaizhen Zhang

    2015-05-01

    Full Text Available The 2008 Wenchuan earthquake destroyed large areas of vegetation in the Baisha River and Longxi River basins, in Dujiangyan County, China. There were several debris flow events in these mountainous river basins after 2008. Currently, these damaged vegetation areas are in various stages of recovery. This recovery vegetation improves the resistance of slopes to both surficial erosion and mass wasting. We introduce a probabilistic approach to determining the relationships between damaged vegetation and slope materials’ stability, and model the sediment and flow (hydrological connectivity index to detect the hydrological changes in a given river basin, using the multi-temporal (1994–2014 remote-sensing images to monitor the vegetation recovery processes. Our results demonstrated that the earthquake-damaged vegetation areas have coupling relationships with topographic environment and slope material properties, and can be used to assess the slope material stability. Further, our analysis results showed that the areas with horizontal distance to river streams <500 m are areas that actively contribute sediment to the stream channel network, and are main material sources for debris flow processes in one given mountainous basin.

  1. Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques.

    Science.gov (United States)

    Peña-Fleitas, M T; Gallardo, M; Thompson, R B; Farneselli, M; Padilla, F M

    2015-11-01

    Evaluation of crop N status will assist optimal N management of intensive vegetable production. Simple procedures for monitoring crop N status such as petiole sap [NO 3(-)-N], leaf N content and soil solution [NO 3(-)] were evaluated with indeterminate tomato and muskmelon. Their sensitivity to assess crop N status throughout each crop was evaluated using linear regression analysis against nitrogen nutrition index (NNI) and crop N content. NNI is the ratio between the actual and the critical crop N contents (critical N content is the minimum N content necessary to achieve maximum growth), and is an established indicator of crop N status. Nutrient solutions with four different N concentrations (treatments N1-N4) were applied throughout each crop. Average applied N concentrations were 1, 5, 13 and 22 mmol L(-1) in tomato, and 2, 7, 13 and 21 mmol L(-1) in muskmelon. Respective rates of N were 23, 147, 421 and 672 kg N ha(-1) in tomato, and 28, 124, 245 and 380 kg N ha(-1) in muskmelon. For each N treatment in each crop, petiole sap [NO 3(-)-N] was relatively constant throughout the crop. During both crops, there were very significant (P 1. Relationships between petiole sap [NO 3(-)-N] with crop N content, and leaf N content with both NNI and crop N content had variable slopes and intercept values during the indeterminate tomato and the muskmelon crops. Soil solution [NO 3(-)] in the root zone was not a sensitive indicator of crop N status. Of the three systems examined for monitoring crop/soil N status, petiole sap [NO 3(-)-N] is suggested to be the most useful because of its sensitivity to crop N status and because it can be rapidly analysed on the farm.

  2. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-Mediterranean Climate: Preliminary Results.

    Science.gov (United States)

    Piro, Patrizia; Porti, Michele; Veltri, Simone; Lupo, Emanuela; Moroni, Monica

    2017-03-23

    In urban and industrial environments, the constant increase of impermeable surfaces has produced drastic changes in the natural hydrological cycle. Decreasing green areas not only produce negative effects from a hydrological-hydraulic perspective, but also from an energy point of view, modifying the urban microclimate and generating, as shown in the literature, heat islands in our cities. In this context, green infrastructures may represent an environmental compensation action that can be used to re-equilibrate the hydrological and energy balance and reduce the impact of pollutant load on receiving water bodies. To ensure that a green infrastructure will work properly, vegetated areas have to be continuously monitored to verify their health state. This paper presents a ground spectroscopy monitoring survey of a green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. This study is part of a larger research project financed by European Structural funds aimed at understanding the influence of green roofs on rainwater management and energy consumption for air conditioning in the Mediterranean area. Reflectance values were acquired with a field-portable spectroradiometer that operates in the range of wavelengths 350-2500 nm. The survey was carried out during the time period November 2014-June 2015 and data were acquired weekly. Climatic, thermo-physical, hydrological and hydraulic quantities were acquired as well and related to spectral data. Broadband and narrowband spectral indices, related to chlorophyll content and to chlorophyll-carotenoid ratio, were computed. The two narrowband indices NDVI705 and SIPI turned out to be the most representative indices to detect the plant health status.

  3. Swelling Soils and Vegetation Interactions: New Results from PSI Monitoring on Eastern Paris Area (France)

    Science.gov (United States)

    Kaveh, H. F.; Deffontaines, B.; Fruneau, B.; Cojean, R.; Arnaud, A.; Duro, J.

    2010-12-01

    Swelling soils phenomena induce small surface displacements under various climatic conditions that may locally affect suburban individual buildings. The aim of this work, funded by MAIF foundation (Insurance company), is to monitor those small seasonal-dependant displacements through persistent scatterer interferometric (PSI) method. The chosen test site correspond to the eastern Paris basin where "Argiles Vertes de Romainville" Oligocene in age is outcropping and are particularly sensible to swelling soils phenomena well observed during for instance the last major dryness event of the summer 2003. Our major results with Persistent Scatterer Interferometry (PSI) in order to monitor this phenomenon reveal precisely continuous small surface pluricentimetric displacements through time. Furthermore it appears that vegetation more specifically trees, plays a major role for the vertical displacement which is due to the evapotranspiration processes. We therefore precisely map the location and height of the different trees species in the studied area that gave us their potential planimetric roots influence then compare them to the different surrounding buildings using a Geographical Information System (GIS). We then compare our results to both building deformations observed in the fields and the calculated displacements deduced from numerous PSI profiles where an excellent correlation is then observed associated with more than 90% confidence. Even if we still have some uncertainties due for instance to the location of the PSI natural reflectors (+/- 2,5m), we now need in perspective terms to instrument precisely test sites in order to calibrate then validate the PSI displacements and the observed buildings deformations. This new application of PSI interferometry presents high potential to better understand swelling soils processes and associated natural hazards.

  4. Review of Methods for the Monitoring of Biomass and Vegetal Carbon in Tropical Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    William Fonseca

    2017-06-01

    Full Text Available The quantification of vegetal biomass is the key to know the carbon that forest ecosystems store, and therefore, its capacity to mitigate climatic change. There is a variety of methods to estimate biomass, many with small variations, such as size and shape of sampling units, inclusion or not of any reservoir component (leaves, branches, roots, necromasses, minimum diameter inventoried, among others. The objective of the paper is to explain the most important aspects to be considered in the inventory of removals, based on the inventory design (statistical design, size and shape of the sampling units, components of the biomass to be evaluated. A second point deals with the determination of aerial biomass and roots, referring to the direct or destructive method, and indirect methods, especially to the use of mathematical models for their easy application and low cost; besides, some models for natural forest and plantations are noted. Reference is also made to the study of carbon in soils, biomass expansion factors, and how to determine carbon in biomass. We hope that these notes will facilitate the understanding of the topic and be a reference for the establishment of monitoring, reporting and verification schemes.

  5. Environmental Assessment Marsh Vegetation Rehabilitation Chemical Control of Phragmites at Prime Hook National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This proposal describes a rehabilitation program for up to 3,000 acres of marsh vegetation. The primary objectives are: 1) to chemically control the dense stands of...

  6. The role of action control and action planning on fruit and vegetable consumption.

    Science.gov (United States)

    Zhou, Guangyu; Gan, Yiqun; Miao, Miao; Hamilton, Kyra; Knoll, Nina; Schwarzer, Ralf

    2015-08-01

    Globally, fruit and vegetable intake is lower than recommended despite being an important component to a healthy diet. Adopting or maintaining a sufficient amount of fruit and vegetables in one's diet may require not only motivation but also self-regulatory processes. Action control and action planning are two key volitional determinants that have been identified in the literature; however, it is not fully understood how these two factors operate between intention and behavior. Thus, the aim of the current study was to explore the roles of action control and action planning as mediators between intentions and dietary behavior. A longitudinal study with three points in time was conducted. Participants (N = 286) were undergraduate students and invited to participate in a health behavior survey. At baseline (Time 1), measures of intention and fruit and vegetable intake were assessed. Two weeks later (Time 2), action control and action planning were assessed as putative sequential mediators. At Time 3 (two weeks after Time 2), fruit and vegetable consumption was measured as the outcome. The results revealed action control and action planning to sequentially mediate between intention and subsequent fruit and vegetable intake, controlling for baseline behavior. Both self-regulatory constructs, action control and action planning, make a difference when moving from motivation to action. Our preliminary evidence, therefore, suggests that planning may be more proximal to fruit and vegetable intake than action control. Further research, however, needs to be undertaken to substantiate this conclusion.

  7. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    approval. The levels in selected monitoring wells are recorded continuously, by using downhole pressure sensors equipped with automatic data loggers, and periodically are also measured manually. Groundwater level data were recovered during the current review period on September 19, 2008, and on March 25, April 25-27, and October 20, 2009. (3) Argonne experience has demonstrated that the sampling and analysis (for VOCs) of native vegetation, and particularly tree tissues, often provides a sensitive indicator of possible carbon tetrachloride contamination in the surface water or shallow groundwater within the plant rooting zone. With the approval of the CCC/USDA, on August 28, 2009, samples of tree branch tissues were therefore collected for analyses at 18 locations along the intermittent creek west (downgradient) of the former CCC/USDA facility and the Nigh property.

  8. Downhole Vibration Monitoring and Control System

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2007-09-30

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE

  9. Identifying environmental controls on vegetation greenness phenology through model-data integration

    Directory of Open Access Journals (Sweden)

    M. Forkel

    2014-07-01

    Full Text Available Existing dynamic global vegetation models (DGVMs have a~limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus to enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a~new phenology model within the LPJmL (Lund Potsdam Jena managed lands DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR, albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules

  10. Exploring the control of land-atmospheric oscillations over terrestrial vegetation productivity

    Science.gov (United States)

    Depoorter, Mathieu; Green, Julia; Gentine, Pierre; Liu, Yi; van Eck, Christel; Regnier, Pierre; Dorigo, Wouter; Verhoest, Niko; Miralles, Diego

    2015-04-01

    Vegetation dynamics play an important role in the climate system due to their control on the carbon, energy and water cycles. The spatiotemporal variability of vegetation is regulated by internal climate variability as well as natural and anthropogenic forcing mechanisms, including fires, land use, volcano eruptions or greenhouse gas emissions. Ocean-atmospheric oscillations, affect the fluxes of heat and water over continents, leading to anomalies in radiation, precipitation or temperature at widely separated locations (i.e. teleconnections); an effect of ocean-atmospheric oscillations on terrestrial primary productivity can therefore be expected. While different studies have shown the general importance of internal climate variability for global vegetation dynamics, the control by particular teleconnections over the regional growth and decay of vegetation is still poorly understood. At continental to global scales, satellite remote sensing offers a feasible approach to enhance our understanding of the main drivers of vegetation variability. Traditional studies of the multi-decadal variability of global vegetation have been usually based on the normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR), which extends back to the early '80s. There are, however, some limitations to NDVI observations; arguably the most important of these limitations is that from the plant physiology perspective the index does not have a well-defined meaning, appearing poorly correlated to vegetation productivity. On the other hand, recently developed records from other remotely-sensed properties of vegetation, like fluorescence or microwave vegetation optical depth, have proven a significantly better correspondence to above-ground biomass. To enhance our understanding of the controls of ocean-atmosphere oscillations over vegetation, we propose to explore the link between climate oscillation extremes and net primary productivity

  11. Radar Monitoring of Wetlands for Malaria Control

    Science.gov (United States)

    Pope, Kevin O.

    1997-01-01

    Malaria is perhaps the most serious human disease problem. It inflicts millions worldwide and is on the rise in many countries where it was once under control. This rise is in part due to the high costs, both economic and environmental, of current control programs. The search for more cost-effective means to combat malaria has focussed attention on new technologies, one of which is remote sensing. Remote sensing has become an important tool in the effort to control a variety of diseases worldwide and malaria is perhaps one of the most promising. This study is part of the malaria control effort in the Central American country of Belize, which has experienced a resurgence of malaria in the last two decades. The proposed project is a feasibility study of the use of Radarsat (and other similar radar systems) to monitor seasonal changes in the breeding sites of the anopheline mosquito, which is responsible for malaria transmission. We propose that spatial and temporal changes in anopheline mosquito production can be predicted by sensing where and when their breeding sites are flooded. Timely knowledge of anopheline mosquito production is a key factor in control efforts. Such knowledge can be used by local control agencies to direct their limited resources to selected areas and time periods when the human population is at greatest risk. Radar is a key sensor in this application because frequent cloud cover during the peak periods of malaria transmission precludes the use of optical sensors.

  12. Environmental controls on multiscale spatial patterns of salt marsh vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2010-01-01

    physical processes operate. This study investigated such a topography-vegetation relationship in a Danish salt marsh, focusing upon two scales: a macro-scale (ca. 500 m) across the marsh platform, encompassing seaward and landward areas, and a meso-scale ( ca. 25 m) across tidal creeks. While long-term sea...... represented an ecological sequence from early to late succession, and strongly correlated with surface elevation. However, the gradient did not show any significant relationship with distance from shoreline or tidal channels. Our results suggest that, in salt marshes, elevation plays a still more important...

  13. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons... internal corrosion. Each coupon or other means of monitoring internal corrosion must be checked two...

  14. Monitoring the intensity of locust damage to vegetation using hyper-spectra data obtained at ground surface

    Science.gov (United States)

    Ni, Shaoxiang; Wu, Tong

    2007-09-01

    Since 1980s of the last century, outbreak of Oriental Migratory Locust (Locusta migratoria manilensis Meyen) has rampantly emerged again in some regions of China. It is extremely important to monitor efficiently the locust damage to vegetation in order to control this kind of insect pest. In this paper, taking Huanghua County of Hebei province, China as the study area and based on the in situ hyper-spectral data, the differences in canopy reflectance spectra and the characteristic parameters of hyper-spectra were analyzed and compared for the reeds at normal growing and for those under encroaching from locusts. In addition, five models were developed to simulate the relations between the characteristic parameters of hyper-spectra and Leaf Area Index (LAI) of reeds. The result showed that among those indices the locust damage spectra index (LDSI) is mostly applicable to reflect the intensity of locust damage in the study area. Finally, a scheme for the intensity distinction of locust damage to reeds was suggested based on LDSI data, i.e., no damage if LDSI is over 62.856, slightly damage if LDSI is between 41.254 and 59.496, and seriously damage if LDSI is less than 41.254.

  15. Program for environmental monitoring Tjeldbergodden. Monitoring of soil, vegetation and epiphytes 2011; Program for miljoeovervaaking Tjeldbergodden. Overvaaking av jord, vegetasjon og epifytter 2011

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Baard; Aarrestad, Per Arild (ed.)

    2012-07-01

    An environmental monitoring program was initiated in 1993 in relation to the establishment of the methanol factory at Tjeldbergodden in Aure municipality, Moere og Romsdal county, with the aim to detect possible negative effects on terrestrial and aquatic ecosystems, caused by emissions from the factory. Since the baseline study in 1993/1994 the terrestrial investigations have been repeated two times using the same sampling methods. In this report changes in the ecosystem from 1993 to 2011 are described in relation to the monitoring of soil, ground vegetation and epiphytes. Overall, these various surveys in 2011 give no indication that the discharge of pollutants from methanol plant has affected soil, ground or Epiphyte vegetation in forest systems within the catchment area of the factory.(eb)

  16. Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra

    Science.gov (United States)

    Dafflon, Baptiste; Oktem, Rusen; Peterson, John; Ulrich, Craig; Tran, Anh Phuong; Romanovsky, Vladimir; Hubbard, Susan S.

    2017-06-01

    Coincident monitoring of the spatiotemporal distribution of and interactions between land, soil, and permafrost properties is important for advancing our understanding of ecosystem dynamics. In this study, a novel monitoring strategy was developed to quantify complex Arctic ecosystem responses to the seasonal freeze-thaw-growing season conditions. The strategy exploited autonomous measurements obtained through electrical resistivity tomography to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness, and soil dielectric permittivity. The spatially and temporally dense monitoring data sets revealed several insights about tundra system behavior at a site located near Barrow, AK. In the active layer, the soil electrical conductivity (a proxy for soil water content) indicated an increasing positive correlation with the green chromatic coordinate (a proxy for vegetation vigor) over the growing season, with the strongest correlation (R = 0.89) near the typical peak of the growing season. Soil conductivity and green chromatic coordinate also showed significant positive correlations with thaw depth, which is influenced by soil and surface properties. In the permafrost, soil electrical conductivity revealed annual variations in solute concentration and unfrozen water content, even at temperatures well below 0°C in saline permafrost. These conditions may contribute to an acceleration of long-term thaw in Coastal permafrost regions. Demonstration of this first aboveground and belowground geophysical monitoring approach within an Arctic ecosystem illustrates its significant potential to remotely "visualize" permafrost, soil, and vegetation ecosystem codynamics in high resolution over field relevant scales.

  17. Induced arousal following zolpidem treatment in a vegetative state after brain injury in 7 cases Analysis using visual single photon emission computerized tomography and digitized cerebral state monitor

    Institute of Scientific and Technical Information of China (English)

    Bo Du; Aijun Shan; Di Yang; Wei Xiang

    2008-01-01

    BACKGROUND: Several studies have reported the use of zolpidem for induced arousal after permanent vegetative states. However, changes in brain function and EMG after zolpidem treatment requires further investigation. OBJECTIVE: To investigate the effect of zolpidem, an unconventional drug, on inducing arousal in patients in a permanent vegetative state after brain injury using visual single photon emission computerized tomography and digitized cerebral state monitor. DESIGN: A self-controlled observation. SETTING: Shenzhen People's Hospital.PARTICIPANTS: Seven patients in a permanent vegetative state were selected from the Department of Neurosurgery, Shenzhen People's Hospital from March 2005 to May 2007. The group included 5 males and 2 females, 24–55 years of age, with a mean age of 38.5 years. All seven patients had been in a permanent vegetative statement for at least six months. The patient group included three comatose patients, who had sustained injuries to the cerebral cortex, basal ganglia, or thalamus in motor vehicle accidents, and four patients, who had suffered primary/secondary brain stem injury. Informed consents were obtained from the patients’ relatives. METHODS: The patients brains were imaged by 99Tcm ECD single photon emission computerized tomography prior to treatment with zolpidem [Sanofi Winthrop Industrie, France, code number approved by the State Food & Drug Administration (SFDA) J20040033, specification 10 mg per tablet. At 8:00 p.m., 10 mg zolpidem was dissolved with distilled water and administered through a nasogastric tube at 1 hour before and after treatment and 1 week following treatment, respectively. Visual analysis of cerebral perfusion changes in the injured brain regions before and after treatment was performed. Simultaneously, three monitoring parameters were obtained though a cerebral state monitor, which included cerebral state index, electromyographic index, and burst suppression index. MAIN OUTCOME MEASURES: Comparison

  18. Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI

    NARCIS (Netherlands)

    Beck, P.S.A.; Atzberger, C.; Hogda, K.A.; Johansen, B.; Skidmore, A.K.

    2006-01-01

    Current models of vegetation dynamics using the normalized vegetation index (NDVI) time series perform poorly for high-latitude environments. This is due partly to specific attributes of these environments, such as short growing season, long periods of darkness in winter, persistence of snow cover,

  19. Monitoring and Controlling an Underwater Robotic Arm

    Science.gov (United States)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  20. Fruit and vegetable consumption and lung cancer risk: a case-control study in Galicia, Spain.

    Science.gov (United States)

    Tarrazo-Antelo, Ana Marina; Ruano-Ravina, Alberto; Abal Arca, José; Barros-Dios, Juan Miguel

    2014-01-01

    Lung cancer has multiple risk factors and tobacco is the main one. Diet plays a role, but no clear effect has been consistently observed for different fruit and vegetable consumption. We aim to assess the association between fruit and vegetable consumption and lung cancer risk through a hospital-based case-control study in Spanish population. We recruited incident lung cancer cases in 2 Spanish hospitals from 2004 to 2008. Controls were individuals attending hospital for trivial surgery. Cases and controls were older than 30 and did not have a neoplasic history. We collected information on lifestyle with special emphases on tobacco and dietary habits. We included 371 cases and 496 controls. We found no protective effect for overall fruit consumption. For green leafy vegetables, the odds ratio (OR) was 0.92 [95% confidence interval (CI) = 0.32-2.69), and for other vegetables the OR was 0.77 (95% CI = 0.40-1.48) for the categories compared. We observed a reduced risk for broccoli and pumpkin intake. Although fruit consumption does not seem to be associated with a lower lung cancer risk, only the frequent consumption of specific green leafy vegetables and other vegetables might be associated with a reduced risk of lung cancer.

  1. Vegetation change (1988–2010 in Camdeboo National Park (South Africa, using fixed-point photo monitoring: The role of herbivory and climate

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2013-02-01

    Full Text Available Fixed-point photo monitoring supplemented by animal census data and climate monitoring potential has never been explored as a long-term monitoring tool for studying vegetation change in the arid and semi-arid national parks of South Africa. The long-term (1988–2010, fixed-point monitoring dataset developed for the Camdeboo National Park, therefore, provides an important opportunity to do this. Using a quantitative estimate of the change in vegetation and growth form cover in 1152 fixed-point photographs, as well as series of step-point vegetation surveys at each photo monitoring site, this study documented the extent of vegetation change in the park in response to key climate drivers, such as rainfall, as well as land use drivers such as herbivory by indigenous ungulates. We demonstrated the varied response of vegetation cover within three main growth forms (grasses, dwarf shrubs [< 1 m] and tall shrubs [> 1 m] in three different vegetation units and landforms (slopes, plains, rivers within the Camdeboo National Park since 1988. Sites within Albany Thicket and Dwarf Shrublands showed the least change in vegetation cover, whilst Azonal vegetation and Grassy Dwarf Shrublands were more dynamic. Abiotic factors such as drought and flooding, total annual rainfall and rainfall seasonality appeared to have the greatest influence on growth form cover as assessed from the fixed-point photographs. Herbivory appeared not to have had a noticeable impact on the vegetation of the Camdeboo National Park as far as could be determined from the rather coarse approach used in this analysis and herbivore densities remained relatively low over the study duration.Conservation implications: We provided an historical assessment of the pattern of vegetation and climatic trends that can help evaluate many of South African National Parks’ biodiversity monitoring programmes, especially relating to habitat change. It will help arid parks in assessing the trajectories of

  2. Evaluating an Enhanced Vegetation Condition Index (VCI Based on VIUPD for Drought Monitoring in the Continental United States

    Directory of Open Access Journals (Sweden)

    Wenzhe Jiao

    2016-03-01

    Full Text Available Drought is a complex hazard, and it has an impact on agricultural, ecological, and socio-economic systems. The vegetation condition index (VCI, which is derived from remote-sensing data, has been widely used for drought monitoring. However, VCI based on the normalized difference vegetation index (NDVI does not perform well in certain circumstances. In this study, we examined the utility of the vegetation index based on the universal pattern decomposition method (VIUPD based VCI for drought monitoring in various climate divisions across the continental United States (CONUS. We compared the VIUPD-derived VCI with the NDVI-derived VCI in various climate divisions and during different sub-periods of the growing season. It was also compared with other remote-sensing-based drought indices, such as the temperature condition index (TCI, precipitation condition index (PCI and the soil moisture condition index (SMCI. The VIUPD-derived VCI had stronger correlations with long-term in situ drought indices, such as the Palmer Drought Severity Index (PDSI and the standardized precipitation index (SPI-3, SPI-6, SPI-9, and SPI-12 than did the NDVI-derived VCI, and other indices, such as TCI, PCI and SMCI. The VIUPD has considerable potential for drought monitoring. As VIUPD can make use of the information from all the observation bands, the VIUPD-derived VCI can be regarded as an enhanced VCI.

  3. A High Density Storm Surge Monitoring Network: Evaluating the Ability of Wetland Vegetation to Reduce Storm Surge

    Science.gov (United States)

    Lawler, S.; Denton, M.; Ferreira, C.

    2013-12-01

    Recent tropical storm activity in the Chesapeake Bay and a potential increase in the predicted frequency and magnitude of weather systems have drawn increased attention to the need for improved tools for monitoring, modeling and predicting the magnitude of storm surge, coastal flooding and the respective damage to infrastructure and wetland ecosystems. Among other forms of flood protection, it is believed that coastal wetlands and vegetation can act as a natural barrier that slows hurricane flooding, helping to reduce the impact of storm surge. However, quantifying the relationship between the physical process of storm surge and its attenuation by wetland vegetation is an active area of research and the deployment of in-situ measuring devices is crucial to data collection efforts in this field. The United States Geological Survey (USGS) mobile storm-surge network has already successfully provided a framework for evaluating hurricane induced storm surge water levels on a regional scale through the use of in-situ devices installed in areas affected by storm surge during extreme events. Based on the success of the USGS efforts, in this study we adapted the monitoring network to cover relatively small areas of wetlands and coastal vegetation with an increased density of sensors. Groups of 6 to 10 water level sensors were installed in sites strategically selected in three locations on the Virginia coast of the lower Chesapeake Bay area to monitor different types of vegetation and the resulting hydrodynamic patterns (open coast and inland waters). Each group of sensors recorded time series data of water levels for both astronomical tide circulation and meteorological induced surge. Field campaigns were carried out to survey characteristics of vegetation contributing to flow resistance (i.e. height, diameter and stem density) and mapped using high precision GPS. A geodatabase containing data from field campaigns will support the development and calibration of

  4. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    Science.gov (United States)

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  5. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    Science.gov (United States)

    Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed

    2014-01-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  6. The monitoring and control of TRUEX processes

    Energy Technology Data Exchange (ETDEWEB)

    Regalbuto, M.C.; Misra, B.; Chamberlain, D.B.; Leonard, R.A.; Vandegrift, G.F.

    1992-04-01

    The Generic TRUEX Model (GTM) was used to design a flowsheet for the TRUEX solvent extraction process that would be used to determine its instrumentation and control requirements. Sensitivity analyses of the key process variables, namely, the aqueous and organic flow rates, feed compositions, and the number of contactor stages, were carried out to assess their impact on the operation of the TRUEX process. Results of these analyses provide a basis for the selection of an instrument and control system and the eventual implementation of a control algorithm. Volume Two of this report is an evaluation of the instruments available for measuring many of the physical parameters. Equations that model the dynamic behavior of the TRUEX process have been generated. These equations can be used to describe the transient or dynamic behavior of the process for a given flowsheet in accordance with the TRUEX model. Further work will be done with the dynamic model to determine how and how quickly the system responds to various perturbations. The use of perturbation analysis early in the design stage will lead to a robust flowsheet, namely, one that will meet all process goals and allow for wide control bounds. The process time delay, that is, the speed with which the system reaches a new steady state, is an important parameter in monitoring and controlling a process. In the future, instrument selection and point-of-variable measurement, now done using the steady-state results reported here, will be reviewed and modified as necessary based on this dynamic method of analysis.

  7. Monitoring deterioration of vegetation cover in the vicinity of smelting industry, using statistical methods and TM and ETM(+) imageries, Sarcheshmeh copper complex, Central Iran.

    Science.gov (United States)

    Rastmanesh, F; Moore, F; Kharrati-Kopaei, M; Behrouz, M

    2010-04-01

    Simple statistical methods on Normalized Difference Vegetation Index (NDVI) and bands 3 and 4 data of relatively coarse resolution Thematic Mapper (TM) and Enhanced Thematic Mapper plus (ETM(+)) imageries were used to investigate the impacts of air pollution on the deterioration of the vegetation cover in the Sarcheshmeh copper complex of central Iran. Descriptive statistics and k-means cluster analysis indicated that vegetation deterioration had already started in the prevailing wind directions. The results show that combination of simple statistical methods and satellite imageries can be used as effective monitoring tools to indicate vegetation stress even in regions of sparse vegetation. Despite various possible perturbing factors upon NDVI, this index remains to be a valuable quantitative vegetation monitoring tool.

  8. 49 CFR 193.2635 - Monitoring corrosion control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  9. Analysis of polymer molecules including reaction monitoring and control

    NARCIS (Netherlands)

    Schoenmakers, P.; van Herk, A.M.

    2013-01-01

    To monitor, control, and optimize emulsion polymerisations, there is a need to perform a variety of different measurements. The monomer conversion is a key parameter to monitor and control the reaction. A rapid response is required for real-time reaction monitoring. This chapter considers on-line an

  10. Employee quality, monitoring environment and internal control

    National Research Council Canada - National Science Library

    Chunli Liu Bin Lin Wei Shu

    2017-01-01

    ... quality.We examine the effect of monitoring on this result and find that the effect is more pronounced for firms with strict monitoring environments, especially when the firms implement the Chinese internal...

  11. A proposal for a long-term baseline phytobenthos monitoring programme for the Finnish Baltic coastal waters: monitoring submerged rocky shore vegetation.

    Science.gov (United States)

    Bäck, Saara; Ekebom, Jan; Kangas, Pentti

    2002-10-01

    Several local surveys on the submerged vegetation have been conducted in past decades along the Finnish Baltic coastal areas. Surveys have been carried out by using various methods, which make the temporal comparisons of the results difficult. The need of a joint programme for coastal phytobenthic monitoring is emphasised by the Nordic Council of Ministers and HELCOM. The Finnish coastal phytobenthic monitoring programme complements the Baltic HELCOM monitoring programme (COMBINE). It is primarily designed to reveal the effects of eutrophication. The programme includes general principles for selection of monitoring areas as well as a proposal for monitored habitats, communities and species. The need of evaluated and tested field methods, data collecting, interpretation and data storage are addressed in the Quality Assurance part. The cost-efficiency is secured by integrating the phytobenthos programme with the coastal water monitoring for obtaining the supporting data such like salinity, temperature and nutrients. In the design of the monitoring programme a special interest is paid on areas with high protection values such as Natura 2000 or HELCOM's BSPA (Baltic Sea Protected Areas) or on aspects that would support the implementation of the EU Water Framework Directive.

  12. Inventory of vegetation structure and phenology at Kulm Wetland Management District : Inventory and Monitoring final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Fiscal year 2012 final report for the inventory of vegetation structure and phenology at Kulm Wetland Management District. The purpose of the study was to conduct a...

  13. Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia

    OpenAIRE

    Santosh Bhandari; Tony Gill; Stuart Phinn

    2012-01-01

    Time series of images are required to extract and separate information on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term trends. While images from the Landsat Thematic Mapper (TM) sensor have the spatial and spectral characteristics suited for mapping a range of vegetation structural and compositional properties, its 16-day revisit period combined with cloud cover problems and seasonally limited latitudinal range, limit the availability of image...

  14. Northern Hemisphere control of deglacial vegetation changes in the Rufiji uplands (Tanzania)

    Science.gov (United States)

    Bouimetarhan, I.; Dupont, L.; Kuhlmann, H.; Patzold, J.; Prange, M.; Schefuss, E.; Zonneveld, K.

    2015-05-01

    In tropical eastern Africa, vegetation distribution is largely controlled by regional hydrology, which has varied over the past 20 000 years. Therefore, accurate reconstructions of past vegetation and hydrological changes are crucial for a better understanding of climate variability in the tropical southeastern African region. We present high-resolution pollen records from a marine sediment core recovered offshore of the Rufiji River delta. Our data document significant shifts in pollen assemblages during the last deglaciation, identifying, through changes in both upland and lowland vegetation, specific responses of plant communities to atmospheric (precipitation) and coastal (coastal dynamics and sea-level changes) alterations. Specifically, arid conditions reflected by a maximum pollen representation of dry and open vegetation occurred during the Northern Hemisphere cold Heinrich event 1 (H1), suggesting that the expansion of drier upland vegetation was synchronous with cold Northern Hemisphere conditions. This arid period is followed by an interval in which forest and humid woodlands expanded, indicating a hydrologic shift towards more humid conditions. Droughts during H1 and the shift to humid conditions around 14.8 kyr BP in the uplands are consistent with latitudinal shifts of the intertropical convergence zone (ITCZ) driven by high-latitude Northern Hemisphere climatic fluctuations. Additionally, our results show that the lowland vegetation, consisting of well-developed salt marshes and mangroves in a successional pattern typical for vegetation occurring in intertidal habitats, has responded mainly to local coastal dynamics related to marine inundation frequencies and soil salinity in the Rufiji Delta as well as to the local moisture availability. Lowland vegetation shows a substantial expansion of mangrove trees after ~ 14.8 kyr BP, suggesting an increased moisture availability and river runoff in the coastal area. The results of this study highlight the

  15. Northern Hemisphere control of deglacial vegetation changes in the Rufiji uplands (Tanzania

    Directory of Open Access Journals (Sweden)

    I. Bouimetarhan

    2014-09-01

    Full Text Available In tropical Eastern Africa, vegetation distribution is largely controlled by regional hydrology which has varied over the past 20 000 years. Therefore, accurate reconstructions of past vegetation and hydrological changes are crucial to better understand climate variability in the tropical Eastern African region. Through high-resolution pollen records from a marine sediment core recovered offshore the Rufiji River, our data show significant shifts in pollen assemblages during the last deglaciation identifying, through respective changes in both upland and lowland vegetation, specific responses of plant communities to atmospheric (precipitation and coastal (coastal dynamics/sea level changes alterations. Specifically, an interval of maximum pollen representation of dry and open vegetation occurred during the Northern Hemisphere cold Heinrich event 1 (H1 suggesting the expansion of drier upland vegetation under arid conditions. This dry spell is followed by an interval in which forest and humid woodland expanded, indicating a hydrologic shift towards more humid conditions. Droughts during H1 and the return to humid conditions around ~14.8 kyr BP in the uplands are primarily attributed to latitudinal shifts of the Intertropical Convergence Zone (ITCZ driven by high-latitude Northern Hemisphere climatic fluctuations. Additionally, our results show that the lowland vegetation, consisting of a well developed salt marshes and mangroves in a successional pattern typical for vegetation occurring in intertidal habitats, has responded mainly to local coastal dynamics related to marine inundation frequencies and soil salinity in the Rufiji Delta as well as the local moisture availability. Lowland vegetation shows a substantial expansion of mangrove trees after ~14.8 kyr BP suggesting also an increased moisture availability and river runoff in the coastal area. The results of this study highlight the de-coupled climatic and environmental processes to which

  16. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data

    Science.gov (United States)

    Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P.

    2008-01-01

    The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r???0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r???0.22). Copyright 2008 by the American Geophysical Union.

  17. Desertification Risk Monitoring for North Shaanxi Province, China, Using Normalized Difference Vegetation Index (NDVI)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this study, the remote sensing is applied to the examination of the relationship between desertification and normalized difference vegetation index (NDVI) in the context of northern Shaanxi Province. This relationship is also examined using spatial analysis methods. A strong negative correlation is found in the largest area desert, indicating that the relationship between desert and NDVI is not a simple linear one and that the correlation coefficient between NDVI and vegetation abundance is significant.The normalized difference vegetation index (NDVI) was compared with other vegetation index-based methodologies. NDVI is a valuable first-cut indicator for such systems, although the analysis and interpretation of its relationship to desertification are complex and also based on the detailed analysis of its reiationship to ecological zone, vegetation type and season. Conclusions thus made would help to upgrade the methodology as an effective tool for early-warning desertification in the northern Shaanxi Province where a drought is a recurring threat. This methodology includes the integration of NDVI with other socio-economic and bio-physical indicators in GIS, the complementation of desert area data with satellite data, and the analysis of the relationship between NDVI and specific climatic zones, for each season and vegetation type.

  18. Radio Frequency Based Water Level Monitor and Controller for ...

    African Journals Online (AJOL)

    Radio Frequency Based Water Level Monitor and Controller for Residential Applications. ... Nigerian Journal of Technology ... This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor ...

  19. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data

    Directory of Open Access Journals (Sweden)

    Willem J. D. van Leeuwen

    2008-03-01

    Full Text Available This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR and examine burn severity at the selected sites. The phenological metrics (pheno-metrics included the timing and greenness (i.e. NDVI for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation

  20. A study on the vegetation succession of pioneer trees in landslide control areas

    Science.gov (United States)

    Lee, J. H.; Lin, S. H.

    2015-12-01

    Located in subtropics, the steep terrain, concentrated rainy season, natural disaster, and artificial development have damaged the surface vegetation and resulted in soil loss and landslide in Taiwan. The control of landslide should stabilize the side slope as the priority. Furthermore, a proper engineering is applied to grow plants for the rapid forestation on landslide. Taking the location which has been done hydroseeding in the Shihmen Reservoir watershed as the example, the vegetation succession within the 8 years after the hydroseeding is investigated in this study. The growth and decline of pioneer trees like Rhus javanica is particularly discussed the vegetation recovery role and function on landslide. The research result could provide reference for the planning and design of vegetation recovery.

  1. AVHRR, MODIS and Landsat Time Series for the Monitoring of Vegetation Changes Around the World (Invited)

    Science.gov (United States)

    de Beurs, K.; Owsley, B.; Julian, J.; Henebry, G. M.

    2013-12-01

    A confluence of computing power, cost of storage, ease of access to data, and ease of product delivery make it possible to harness the power of multiple remote sensing data streams to monitor land surface dynamics. Change detection has always been a fundamental remote sensing task, and there are myriad ways to perceive differences. From a statistical viewpoint, image time series of the vegetated land surface are complicated data to analyze. The time series are often seasonal and have high temporal autocorrelation. These characteristics result in the failure of the data to meet the assumption of most standard parametric statistical tests. Failure of statistical assumptions is not trivial and the use of inappropriate statistical methods may lead to the detection of spurious trends, while any actual trends and/or step changes might be overlooked. While the analysis of messy data, which can be influenced by discontinuity, missing observation, non-linearity and seasonality, is still developing within the remote sensing community, other scientific research areas routinely encounter similar problems and have developed statistically appropriate ways to deal with them. In this talk we describe the process of change analysis as a sequence of tasks: (1) detection of changes; (2) quantification of changes; (3) assessment of changes; (4) attribution of changes; and (5) projection of the potential consequences of changes. To detect, quantify, and assess the significance of broad scale land surface changes, we will first apply the nonparametric Seasonal Kendall (SK) trend test corrected for first-order temporal autocorrelation to MODIS image time series. We will then discuss three case studies, situated in the USA, Russia, and New Zealand in which we combine or fuse satellite data at two spatial resolutions (30m Landsat and 500m MODIS) to assess and attribute changes at fine spatial and temporal scales. In the USA we will investigate changes as a result of urban development, in

  2. Testing ZigBee Motes for Monitoring Refrigerated Vegetable Transportation under Real Conditions

    Directory of Open Access Journals (Sweden)

    Luis Ruiz-Garcia

    2010-05-01

    Full Text Available Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous ‘cold chain’ from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments.

  3. Testing ZigBee motes for monitoring refrigerated vegetable transportation under real conditions.

    Science.gov (United States)

    Ruiz-Garcia, Luis; Barreiro, Pilar; Robla, Jose Ignacio; Lunadei, Loredana

    2010-01-01

    Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous 'cold chain' from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France) which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments.

  4. Borehole geophysical monitoring of amendment emplacement and geochemical changes during vegetable oil biostimulation, Anoka County Riverfront Park, Fridley, Minnesota

    Science.gov (United States)

    Lane, Jr., John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Joesten, Peter K.; Kochiss, Christopher S.

    2007-01-01

    The U.S. Geological Survey (USGS) conducted a series of geophysical investigations to monitor a field-scale biostimulation pilot project at the Anoka County Riverfront Park (ACP), downgradient from the Naval Industrial Reserve Ordnance Plant, in Fridley, Minnesota. The pilot project was undertaken by the U.S. Naval Facilities Engineering Command, Southern Division, for the purpose of evaluating biostimulation using emulsified vegetable oil to treat ground water contaminated with chlorinated hydrocarbons. Vegetable oil was introduced to the subsurface to serve as substrate for naturally occurring microbes, which ultimately break down chlorinated hydrocarbons into chloride, carbon dioxide, and water through oxidation-reduction reactions. In support of this effort, the USGS collected cross-borehole radar data and conventional borehole geophysical data in five site visits over 1.5 years to evaluate the effectiveness of geophysical methods for monitoring emplacement of the vegetable oil emulsion and for tracking changes in water chemistry. Radar zero-offset profile (ZOP) data, radar traveltime tomograms, electromagnetic (EM) induction logs, natural gamma logs, neutron porosity logs, and magnetic susceptibility logs were collected and analyzed.

  5. Top-down vs. bottom-up control on vegetation composition in a tidal marsh depends on scale

    NARCIS (Netherlands)

    Elschot, Kelly; Vermeulen, Anke; Vandenbruwaene, Wouter; Bakker, Jan P.; Bouma, Tjeerd J.; Stahl, Julia; Castelijns, Henk; Temmerman, Stijn

    2017-01-01

    The relative impact of top-down control by herbivores and bottom-up control by environmental conditions on vegetation is a subject of debate in ecology. In this study, we hypothesize that top-down control by goose foraging and bottom-up control by sediment accretion on vegetation composition with

  6. Traffic Monitoring and Control Using RFID

    Directory of Open Access Journals (Sweden)

    Gaurav Thakur

    2013-09-01

    Full Text Available Traffic congestion and tidal flow management were recognized as major problems in modern urban areas, which have caused much frustration and loss of man hours. The operation of standard traffic lights which are currently deployed in many junctions, are based on predetermined timing schemes, which are fixed during the installation and remain until further resetting. The timing is no more than a default setup to control what may be considered as normal traffic. Although every road junction by necessity requires different traffic light timing setup, many existing systems operate with a default sequence. To design an intelligent and efficient traffic control system, a number of parameters that represent the status of the road conditions must be identified and taken into consideration. Approach: In order to solve the problem an intelligent RFID traffic control has been developed. This project is based on monitoring the traffic density at the signal using RFID Reader. RFID tags which is placed (instead of number plate at each vehicle will serve as the unique number of vehicle .Reader will count the number of tags at the signal and take decision of increasing or decreasing the signal time .This reader is also use to find the violation(VIN of violator of the signal. Each passive tag will have certain number of bytes information will be different for different vehicles. Whenever any tag will approach any signal, reader will take that bytes of information and simultaneously will also increment the number of vehicles for making decision to change the signal timing. Each tag of data will be stored in main memory (database.This unique data will also help in determining the violator of the signal .Thus it will save human efforts and resources to a greater extent and reduce waiting of the people at the signal. After implementation of this project, now all people waiting at the signal will get proper time (green light according to the traffic density

  7. Hydroclimatic Controls on the Means and Variability of Vegetation Phenology and Carbon Uptake

    Science.gov (United States)

    Koster, Randal Dean; Walker, Gregory K.; Collatz, George J.; Thornton, Peter E.

    2013-01-01

    Long-term, global offline (land-only) simulations with a dynamic vegetation phenology model are used to examine the control of hydroclimate over vegetation-related quantities. First, with a control simulation, the model is shown to capture successfully (though with some bias) key observed relationships between hydroclimate and the spatial and temporal variations of phenological expression. In subsequent simulations, the model shows that: (i) the global spatial variation of seasonal phenological maxima is controlled mostly by hydroclimate, irrespective of distributions in vegetation type, (ii) the occurrence of high interannual moisture-related phenological variability in grassland areas is determined by hydroclimate rather than by the specific properties of grassland, and (iii) hydroclimatic means and variability have a corresponding impact on the spatial and temporal distributions of gross primary productivity (GPP).

  8. Cryptogamic covers control spectral vegetation indices and their seasonal variation in dryland systems

    Science.gov (United States)

    Rodriguez-Caballero, Emilio; Knerr, Tanja; Büdel, Burkhard; Hill, Joachim; Weber, Bettina

    2016-04-01

    components at the study sites, controlled the mean response of both study areas. When the individual response of cryptogamic covers and vascular vegetation (obtained from LANDSAT images; spatial resolution: 30 m) were compared with temporal series of MODIS images (spatial resolution: 250 m), where different surface components interact in one pixel, strong similarities were observed between cryptogam dominated areas and the mean response of the study area obtained from the MODIS images. This illustrates the impact of cryptogamic covers on the spectral response of dryland surfaces, emphasizing the necessity to consider their presence in multi-temporal studies aimed at analyzing dryland water status, phenology, productivity, and energy budgets.

  9. Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

    Indian Academy of Sciences (India)

    C Sudhakar Reddy; V V L Padma Alekhya; K R L Saranya; K Athira; C S Jha; P G Diwakar; V K Dadhwal

    2017-02-01

    Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km², respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO₂ emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO₂ emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO₂ emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO₂ emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  10. Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

    Science.gov (United States)

    Reddy, C. Sudhakar; Padma Alekhya, V. V. L.; Saranya, K. R. L.; Athira, K.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2017-02-01

    Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  11. Vegetation response to invasive Tamarix control in southwestern U.S. rivers: A collaborative study including 416 sites

    Science.gov (United States)

    González, Eduardo; Sher, Anna A; Anderson, Robert M.; Bay, Robin F.; Bean, Daniel W.; Bissonnete, Gabriel J.; Bourgeois, Bérenger; Cooper, David J.; Dohrenwend, Kara; Eichhorst, Kim D.; El Waer, Hisham; Kennard, Deborah K.; Harms-Weissinger, Rebecca; Henry, Annie L.; Makarick, Lori J.; Ostoja, Steven M.; Reynolds, Lindsay V.; Robinson, W. Wright; Shafroth, Patrick B.

    2017-01-01

    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species.

  12. Fuel processor temperature monitoring and control

    Science.gov (United States)

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2002-01-01

    In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.

  13. Monitoring the Phenology of Global Agroecosystems Using SMAP Multi-temporal Vegetation Optical Depth Retrievals

    Science.gov (United States)

    Piles, M.; Entekhabi, D.; Konings, A. G.; Akbar, R.; Jagdhuber, T.; Chaparro, D.; Das, N. N.

    2016-12-01

    The first year of SMAP observations has been used to derive simultaneously soil moisture and microwave vegetation optical depth (VOD) using solely passive L-band microwave measurements, without reliance of a priori information on vegetation classification. VOD is known to be sensitive to above-ground biomass and plant water content. Unlike well-established visible-infrared indices, VOD is independent of greenness, is not affected by atmospheric conditions and remains sensitive to biomass water-uptake dynamics. A selection of global agricultural core regions (Southern Canada, US Midwest, Argentina, Spain, Sahel, South India, North India) have been selected to focus on the vegetation signal measured at L-band. First results comparing changes in SMAP VOD to changes in MODIS Enhanced Vegetation Index outline the independent and complementary information provided by microwave and optical sensors in agroecosystems. The two months of SMAP active measurements acquired over these regions have also been analyzed to further investigate the different sensitivity of active and passive measurements to vegetation properties. Measures and statistics of crop phenology in the target regions are proposed. Results provide a first evaluation of the full potential of L-band microwave sensors for global land surface phenology and eco-hydrological studies.

  14. Elevation Control on Vegetation Organization in a Semiarid Ecosystem in Central New Mexico

    Science.gov (United States)

    Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.

    2015-12-01

    Many semiarid and desert ecosystems are characterized by patchy and dynamic vegetation. Topography plays a commanding role on vegetation patterns. It is observed that plant biomes and biodiversity vary systematically with slope and aspect, from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations. In this study, we investigate the role of elevation dependent climatology on vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. An ecohydrologic cellular automaton model developed within Landlab (component based modeling framework) is used. The model couples local vegetation dynamics (that simulate biomass production based on local soil moisture and potential evapotranspiration) and plant establishment and mortality based on competition for resources and space. This model is driven by elevation dependent rainfall pulses and solar radiation. The domain is initialized with randomly assigned plant types and the model parameters that couple plant response with soil moisture are systematically changed. Climate perturbation experiments are conducted to examine spatial vegetation organization and associated timescales. Model results reproduce elevation and aspect controls on observed vegetation patterns indicating that this model captures necessary and sufficient conditions that explain these observed ecohydrological patterns.

  15. A New EO-Based Indicator for Assessing and Monitoring Climate-Related Vegetation Stress

    Science.gov (United States)

    McCormick, Niall; Gobron, Nadine

    2016-08-01

    This paper describes a study in which a new environmental indicator, called Annual Vegetation Stress (AVS), has been developed, based on annual anomalies of satellite-measured Fraction of Absorbed Photosynthetically Active Radiation (FAPAR ), and used to map the area affected annually by vegetation stress during the period 2003-2014, for 108 selected developing countries. Analysis of the results for six countries in the "tropical and subtropical forests" ecoregion, reveals good correspondence between high AVS values, and the occurrence of climatic extremes (droughts) and anthropogenic disturbance (deforestation). The results for Equatorial Guinea suggest that the recent trend of large-scale droughts and rainfall deficits in Central and Western Africa, contribute to increased vegetation stress in the region's tropical rainforests. In East Timor there is evidence of a "biological lag" effect, whereby the main impacts of drought on the country's seasonally dry tropical forests are delayed until the year following the climate event.

  16. Computer and control applications in a vegetable processing plant

    Science.gov (United States)

    There are many advantages to the use of computers and control in food industry. Software in the food industry takes 2 forms - general purpose commercial computer software and software for specialized applications, such as drying and thermal processing of foods. Many applied simulation models for d...

  17. Standardized principal components for vegetation variability monitoring across space and time

    Science.gov (United States)

    Mathew, T. R.; Vohora, V. K.

    2016-08-01

    Vegetation at any given location changes through time and in space. In what quantity it changes, where and when can help us in identifying sources of ecosystem stress, which is very useful for understanding changes in biodiversity and its effect on climate change. Such changes known for a region are important in prioritizing management. The present study considers the dynamics of savanna vegetation in Kruger National Park (KNP) through the use of temporal satellite remote sensing images. Spatial variability of vegetation is a key characteristic of savanna landscapes and its importance to biodiversity has been demonstrated by field-based studies. The data used for the study were sourced from the U.S. Agency for International Development where AVHRR derived Normalized Difference Vegetation Index (NDVI) images available at spatial resolutions of 8 km and at dekadal scales. The study area was extracted from these images for the time-period 1984-2002. Maximum value composites were derived for individual months resulting in an image dataset of 216 NDVI images. Vegetation dynamics across spatio-temporal domains were analyzed using standardized principal components analysis (SPCA) on the NDVI time-series. Each individual image variability in the time-series is considered. The outcome of this study demonstrated promising results - the variability of vegetation change in the area across space and time, and also indicated changes in landscape on 6 individual principal components (PCs) showing differences not only in magnitude, but also in pattern, of different selected eco-zones with constantly changing and evolving ecosystem.

  18. Monitoring of organophosphorus pesticide residues in vegetables of agricultural area in Venezuela.

    Science.gov (United States)

    Quintero, América; Caselles, María J; Ettiene, Gretty; de Colmenares, Nélida G; Ramírez, Tibisay; Medina, Deisy

    2008-10-01

    The purpose of this study was to determine the residues of seven pesticides organophosphorus (methamidophos, diazinon, chlorpyriphos, parathion-methyl, dimethoate, malathion and tetrachlorvinphos), in some vegetables like: potato, lettuce, tomato, onion, red pepper and green onion cultivated in José María Vargas County in Táchira State, Venezuela. The research permitted to detect that 48.0% of the samples were contaminated with some of the pesticides studied. Methamidophos was founded in the vegetables in the rank of 6.3%-65.5%. The results show that 16.7% of the samples tested have residues higher than the maximum limits permitted.

  19. Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region

    DEFF Research Database (Denmark)

    Moeslund, Jesper Erenskjold; Arge, Lars; Bøcher, Peder Klith;

    2013-01-01

    vegetation plots to assess the importance of topography for local plant diversity and distribution patterns across Denmark, a 43000 km2 lowland region. The vegetation data came from 901 nature conservation sites (mean size = 0.16 km2) distributed throughout Denmark, each having an average of 34 plots (five...... relationships with the main species-compositional gradient, the main functional gradient and the plant's average soil moisture preference. The strength of these relationships was strongly influenced by habitat and site-level average moisture conditions, with the strongest relationships found in wet habitats....... While a plurality of underlying mechanisms may contribute to the relationship between topography and vegetation patterns, topographically controlled soil moisture exerts primary control on the relationship....

  20. Monitoring Corals and Submerged Aquatic Vegetation in Western Pacific Using Satellite Remote Sensing Integrated with Field Data

    Science.gov (United States)

    Roelfsema, C. M.; Phinn, S. R.; Lyons, M. B.; Kovacs, E.; Saunders, M. I.; Leon, J. X.

    2013-12-01

    Corals and Submerged Aquatic Vegetation (SAV) are typically found in highly dynamic environments where the magnitude and types of physical and biological processes controlling their distribution, diversity and function changes dramatically. Recent advances in the types of satellite image data and the length of their archives that are available globally, coupled with new techniques for extracting environmental information from these data sets has enabled significant advances to be made in our ability to map and monitor coral and SAV environments. Object Based Image Analysis techniques are one of the most significant advances in information extraction techniques for processing images to deliver environmental information at multiple spatial scales. This poster demonstrates OBIA applied to high spatial resolution satellite image data to map and monitor coral and SAV communities across a variety of environments in the Western Pacific that vary in their extent, biological composition, forcing physical factors and location. High spatial resolution satellite imagery (Quickbird, Ikonos and Worldview2) were acquired coincident with field surveys on each reef to collect georeferenced benthic photo transects, over various areas in the Western Pacific. Base line maps were created, from Roviana Lagoon Solomon island (600 km2), Bikini Atoll Marshall Island (800 Km2), Lizard Island, Australia (30 km2) and time series maps for geomorphic and benthic communities were collected for Heron Reef, Australia (24 km2) and Eastern Banks area of Moreton Bay, Australia (200 km2). The satellite image data were corrected for radiometric and atmospheric distortions to at-surface reflectance. Georeferenced benthic photos were acquired by divers or Autonomous Underwater Vehicles, analysed for benthic cover composition, and used for calibration and validation purposes. Hierarchical mapping from: reef/non-reef (1000's - 10000's m); reef type (100's - 1000's m); 'geomorphic zone' (10's - 100's m); to

  1. Developing Remote Sensing Methodology to Characterize Savanna Vegetation Structure and Composition for Rangeland Monitoring and Conservation Applications

    Science.gov (United States)

    Tsalyuk, M.; Kelly, M.; Getz, W.

    2012-12-01

    Rangeland ecosystems cover more than fifty percent of earth's land surface, host considerable biodiversity and provide vital ecosystem services. However, rangelands around the world face degradation due to climate change, land use change and overgrazing. Human-driven changes to fire and grazing regimes enhance degradation processes. The purpose of this research is to develop a remote sensing methodology to characterize the structure and composition of savanna vegetation, in order to improve the ability of conservation managers to monitor and address such degradation processes. Our study site, Etosha National Park, is a 22,270 km^2 semi-arid savanna located in north-central Namibia. Fencing and provision of artificial water sources for wildlife have changed the natural grazing patterns, which has caused bush encroachment and vegetation degradation across the park. We used MODIS and Landsat ETM+ 7 satellite imagery to map the vegetation type, dominant species, density, cover and biomass of herbaceous and woody vegetation in Etosha. We used imagery for 2007-2012 together with extensive field sampling, both in the wet and the dry seasons. At each sampling point, we identified the dominant species and measured the density, canopy size, height and diameter of the trees and shrubs. At only 31% of the sampling points, the identified vegetation type matched the class assigned at the 1996 classification. This may indicate significant habitat modifications in Etosha. We used two parallel analytical approaches to correlate between radiometric and field data. First, we show that traditional supervised classification identifies well five classes: bare soil, grassland, steppe, shrub savanna and tree savanna. We then refined this classification to enable us to identify the species composition in an area utilizing the phenological differences in timing and duration of greenness of the dominant tree and shrub species in Etosha. Specifically, using multi-date images we were able to

  2. Vegetative Erosion Control Studies Tennessee-Tombigbee Waterway.

    Science.gov (United States)

    1981-01-01

    available. All cultivars of rye were developed for rye grain production and its use for soil stabilization is secondary. Reseeding of rye will occur to a...FORESTRY EXPERIMENT STATION MISSISSIPPI STATE, MISSISSIPPI PRINCIPLE INVESTIGATOR JEFFREY V. KRANS RESEARCH ASSOCIATES CLIFFORD TRAMMEL RICHARD HARROD...with nitrogen fertilization. Its principle use in seeding mixtures for soil erosion control is for rapid establishment and persistant growth under

  3. Controls on sinuosity in the sparsely vegetated Fossálar River, southern Iceland

    Science.gov (United States)

    Ielpi, Alessandro

    2017-06-01

    Vegetation exerts strong controls on fluvial sinuosity, providing bank stability and buffering surface runoff. These controls are manifest in densely vegetated landscapes, whereas sparsely vegetated fluvial systems have been so far overlooked. This study integrates remote sensing and gauging records of the meandering to wandering Fossálar River, a relatively steep-sloped ( 0.05), suggesting that relationships between the two are mediated by intervening variables and uncertain lag times. By comparison, discharge regime and fluvial planform show direct correlation over monthly to yearly time scales, with stable discharge stages accompanying the accretion of meander bends and peak floods related to destructive point-bar reworking. Rapid planform change is aided by the unconsolidated nature of unrooted alluvial banks, with recorded rates of lateral channel-belt migration averaging 18 m/yr. Valley confinement and channel mobility also control the geometry and evolution of individual point bars, with the highest degree of spatial geomorphic variability recorded in low-gradient stretches where lateral migration is unimpeded. Point bars in the Fossálar River display morphometric values comparable to those of other sparsely vegetated rivers, suggesting shared scalar properties. This conjecture prompts the need for more sophisticated integrations between remote sensing and gauging records on modern rivers lacking widespread plant life. While a large volume of experimental and field-based work maintains that thick vegetation has a critical role in limiting braiding, thus favouring sinuosity, this study demonstrates the stronger controls of discharge regime and alluvial morphology on sparsely vegetated sinuous rivers.

  4. The 2005 and 2012 major drought events in Iberia: monitoring vegetation dynamics and crop yields using satellite data.

    Science.gov (United States)

    Gouveia, Célia M.; Trigo, Ricardo M.

    2014-05-01

    The Iberian Peninsula is recurrently affected by drought episodes and therefore by the adverse effects associated that range from severe water shortages to economic losses and related social impacts. During the hydrological years of 2004/2005 and 2011/2012, Iberia was hit by two of the worst drought episodes ever recording in this semi-arid region (Garcia-Herrera at al., 2007; Trigo et al., 2013). These two drought episodes were extreme in both its magnitude and spatial extent. A tendency towards a drier Mediterranean for the period 1970-2010 in comparison with 1901-70 has been identified (Hoerling et al., 2012), reinforcing the need for a continuous monitoring of vegetation stress and reliable estimates of the drought impacts. The strong effect of water scarcity on vegetation dynamics is well documented in Mediterranean and other semi-arid regions. Despite the usual link established between the decrease of vegetation greenness and the lack of precipitation during a considerably long period, the impact on vegetation activity may be amplified by other climatic anomalies, such as high temperature, high wind, and low relative humidity. The recent availability of consistent satellite imagery covering large regions over long periods of time has progressively reinforced the role of remote sensing in environmental studies, in particular in those related to drought episodes (e.g. Gouveia et al., 2009). The aim of the present work is to assess and monitor the cumulative impact over time of drought conditions on vegetation over Iberian Peninsula. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2013. The entire 15-yr long period was analysed, but particular attention was devoted to the two extreme drought episodes of 2004-2005 and 2011-2012. During the hydrological years of 2004-2005 and 2011-2012 drought episodes negative anomalies of NDVI were observed over

  5. Monitoring phenology of floodplain grassland and herbaceous vegetation with UAV imagery

    NARCIS (Netherlands)

    Van Iersel, W. K.; Straatsma, M. W.; Addink, E. A.; Middelkoop, H.

    2016-01-01

    River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetatio

  6. Manual for habitat and vegetation surveillance and monitoring : temperate, mediterranean and desert biomes

    NARCIS (Netherlands)

    Bunce, R.G.H.; Bogers, M.M.B.; Roche, P.; Walczak, M.; Geijzendorffer, I.R.; Jongman, R.H.G.

    2011-01-01

    The primary objective of this Manual is to describe the methodology appropriate for coordinating information on habitats and vegetation in order to obtain statistically robust estimates of their extent and associated changes in biodiversity. Such detailed rules are necessary if surveillance, i.e., r

  7. Preparing Landsat Image Time Series (LITS for Monitoring Changes in Vegetation Phenology in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Santosh Bhandari

    2012-06-01

    Full Text Available Time series of images are required to extract and separate information on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term trends. While images from the Landsat Thematic Mapper (TM sensor have the spatial and spectral characteristics suited for mapping a range of vegetation structural and compositional properties, its 16-day revisit period combined with cloud cover problems and seasonally limited latitudinal range, limit the availability of images at intervals and durations suitable for time series analysis of vegetation in many parts of the world. Landsat Image Time Series (LITS is defined here as a sequence of Landsat TM images with observations from every 16 days for a five-year period, commencing on July 2003, for a Eucalyptus woodland area in Queensland, Australia. Synthetic Landsat TM images were created using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM algorithm for all dates when images were either unavailable or too cloudy. This was done using cloud-free scenes and a MODIS Nadir BRDF Adjusted Reflectance (NBAR product. The ability of the LITS to measure attributes of vegetation phenology was examined by: (1 assessing the accuracy of predicted image-derived Foliage Projective Cover (FPC estimates using ground-measured values; and (2 comparing the LITS-generated normalized difference vegetation index (NDVI and MODIS NDVI (MOD13Q1 time series. The predicted image-derived FPC products (value ranges from 0 to 100% had an RMSE of 5.6. Comparison between vegetation phenology parameters estimated from LITS-generated NDVI and MODIS NDVI showed no significant difference in trend and less than 16 days (equal to the composite period of the MODIS data used difference in key seasonal parameters, including start and end of season in most of the cases. In comparison to similar published work, this paper tested the STARFM algorithm in a new (broadleaf forest environment and also

  8. Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing

    Science.gov (United States)

    Couchman, M. J.; Everett, M. E.

    2016-12-01

    Controlled Source Electromagnetics (CSEM) have been used as a direct hydrocarbon indicator since the 1960s, with a resurgence in marine conventional settings in the new millennium, with many studies revolving around detecting a thin resistive layer such as a reservoir at 1m-3km depth. The presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. Here the lessons learned from these studies are applied to terrestrial unconventional settings. However, unlike in marine settings where resistive hydrocarbon-charged fluids comprise a conventional reservoir, on land we are interested in electrically conductive injected fluids. The work shown here is a means to develop further methods to enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. Overall this project attempts to create more efficient fracturing, by determining fluid pathways, hence making projects more cost effective by reducing the cost of extraction. The predictive model developed focuses on the mapping of fluid flow in from a horizontal pipe in a uniform halfspace using a long in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The code provided has been edited to include a long-dipole source in addition to the half dipole source originally in place in order to align with current CSEM field practices. The well casing has also been included due to its large effect on CSEM response.

  9. Multivariate Statistical Process Control Process Monitoring Methods and Applications

    CERN Document Server

    Ge, Zhiqiang

    2013-01-01

      Given their key position in the process control industry, process monitoring techniques have been extensively investigated by industrial practitioners and academic control researchers. Multivariate statistical process control (MSPC) is one of the most popular data-based methods for process monitoring and is widely used in various industrial areas. Effective routines for process monitoring can help operators run industrial processes efficiently at the same time as maintaining high product quality. Multivariate Statistical Process Control reviews the developments and improvements that have been made to MSPC over the last decade, and goes on to propose a series of new MSPC-based approaches for complex process monitoring. These new methods are demonstrated in several case studies from the chemical, biological, and semiconductor industrial areas.   Control and process engineers, and academic researchers in the process monitoring, process control and fault detection and isolation (FDI) disciplines will be inter...

  10. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  11. The role of vegetation dynamics in the control of atmospheric CO{sub 2} content

    Energy Technology Data Exchange (ETDEWEB)

    Sitch, Stephen

    2000-04-01

    This thesis contains a description of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) and its application to infer the role of vegetation dynamics on atmospheric CO{sub 2} content at different time-scales. The model combines vegetation dynamics and biogeochemistry in a modular framework. Individual modules describe ecosystems processes, including vegetation resource competition and production, tissue turnover, growth, fire and mortality, soil and litter biogeochemistry, including the effects of CO{sub 2} on these processes. The model simulates realistic post-disturbance succession in different environments. Seasonal exchange of H{sub 2}O and CO{sub 2} between the terrestrial biosphere and the atmosphere is modelled in reasonable agreement with observation. Global estimates of carbon stocks in soil, litter and vegetation are within their acceptable ranges and the model captures the present-day patterns in vegetation. Fire return intervals are simulated correctly in most regions. Results emphasise the important role of the terrestrial biosphere in both the seasonal cycle and in the inter-annual variability in the growth rate of atmospheric CO{sub 2}. LPJ successfully reproduced both the amplitude and phase of the seasonal cycle of atmospheric CO{sub 2} content as measured at a global network of monitoring stations. The model predicted a small net terrestrial biosphere uptake of CO{sub 2} during the 1980s with a strong CO{sub 2} fertilisation effect, which enhances plant production, reduced by the effects of climate and land use change. Historical land use change and CO{sub 2} fertilisation have been the dominant, albeit opposing factors governing the response of the terrestrial biosphere with respect to carbon storage during the 20th century. LPJ is run using one future climate and atmospheric CO{sub 2} scenario until 2200. Enhanced production due to the CO{sub 2} fertilisation effect eventually reaches an asymptote, and consequently the ability of

  12. Overall control and monitoring systems for pumped storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, B.; Cvetko, H.

    1982-06-01

    The article describes control and monitoring concepts in which the delegation of responsibility is becoming more decisive than ever (automation hierarchy), and which are capable of optimized, automatic control of process events in pumped storage plants. 8 refs.

  13. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    Science.gov (United States)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  14. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  15. Final environmental assessment for vegetation control at VHF stations, microwave stations, electrical substations, and pole yards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-13

    Southwestern Power Adm. operates very high frequency (VHF) and microwave radio stations, electrical substations, and pole yards for electric power transmission throughout AR, MO, and OK. Vegetation growth at the stations must be suppressed for safety of operation and personnel. Southwestern has been using a combination of mechanical/manual and herbicide control for this purpose; Federally- mandated reductions in staff and budgetary resources require Southwestern to evaluate all potentially efficient methods for vegetation control. Three alternatives were examined: no action, mechanical/manual control, and (proposed) a combination of mechanical/manual and herbicide control. Environmental impacts on air and water quality, wetlands, wildlife, endangered species, archaeological and other resources, farmland, human health, transportation, etc. were evaluated.

  16. 蔬菜粉虱的系统调查与监测技术%Systematic investigation and monitoring of whitefly pests in a vegetable ecosystem

    Institute of Scientific and Technical Information of China (English)

    任顺祥; 刘同先; 杜予州; 彭正强; 邱宝利; 戈峰

    2014-01-01

    由于烟粉虱Bemisia tabaci、温室白粉虱Trialeurodes vaporariorum等粉虱害虫在我国猖獗为害,我国已从种群动态监测到害虫综合治理开展了一系列研究。为了有一套统一、规范的标准,我们制定了保护地蔬菜与露地蔬菜生产上粉虱害虫的系统调查与监测技术规程,包括调查与监测的目的、样本大棚或田块的选择,粉虱各虫态发生数量的调查、监测与统计方法等,并根据保护地蔬菜与露地蔬菜的生长特点,提出了相应的粉虱害虫预测预报、防治阈值、防治对策及防控时间等技术措施。%Many species of whiteflies, including Bemisia tabaci and Trialeurodes vaporariorum, are important pests of vegetables, ornamentals and field crops. Numerous studies have been carried out on these species, from monitoring population dynamics to integrated management. In order to have a set of unified and standard rules for whitefly pest control, a series of technical standards have been formulated, including those for the monitoring and sampling of different species of whiteflies on different crops and data analysis for different whitefly instars. The prediction and forecasting of whitefly pests, their control threshold, control strategies and timing have been drafted according to the growth characteristics of different vegetables in both greenhouses and field conditions.

  17. A monitoring protocol for vegetation change on Irish peatland and heath

    Science.gov (United States)

    O'Connell, J.; Connolly, J.; Holden, N. M.

    2014-09-01

    Amendments to Articles 3.3 and 3.4 of the Kyoto Protocol have meant that detection of vegetation change may now form an interracial part of national soil carbon stocks. In this study multispectral multi-platform satellite data was processed to detect change to the surface vegetation of four peatland sites and one heath in Ireland. Spectral and spatial thresholds were used on difference images between master and slave data in the extraction of temporally invariant targets for multi-platform cross calibration. The Kolmogorov-Smirnov test was used to evaluate any difference in the cumulative probability distributions of the master, slave and calibrated slave data as expressed by the D statistic, with values reduced by an average of 89.7% due to the cross calibration procedure. A change detection model was created which incorporated a spatial threshold of 9 pixels and a standard deviation (SD) spectral threshold. Kappa accuracy values for the five sites ranged from 80 to 97%, showing that 1.5 SD was the optimum spectral threshold for detecting vegetation change. Change detection results showed mean percentage change ranging from 2.11 to 3.28% of total area and cumulative change over the observed time period of between 15.24 and 49.27% of total area.

  18. CDF Run Ⅱ Run Control and Online Monitor

    Institute of Scientific and Technical Information of China (English)

    T.Arisawa; W.Badgett; 等

    2001-01-01

    In this paper,we discuss the CDF Run Ⅱ Run Control and online event monitoring system.Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes,Run Control is a real-time multi-threaded application implemented in Java with flexible state machines,using JDBC database connections to configure clients,and including a user friendly and powerful graphical user interface.The CDF online event monitoring system consists of several parts;the eent monitoring programs,the display to browse their results,the server program which communicates with the display via socket connections ,the error receiver which displays error messages and communicates with run Control,and the state manager which monitors the state of the monitor programs.

  19. Intelligent Belt Conveyor Monitoring and Control

    NARCIS (Netherlands)

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack

  20. Intelligent Belt Conveyor Monitoring and Control

    NARCIS (Netherlands)

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack o

  1. Monitoring of oil palm plantations and growth variations with a dense vegetation model

    DEFF Research Database (Denmark)

    Teng, Khar Chun; Koay, Jun Yi; Tey, Seng Heng

    2014-01-01

    -PACT) and Fresnel Phase Corrections. The iterative solutions of the radiative transfer model are computed with input based on ground truth measurements of physical parameters of oil palm plantations in the state of Perak, Malaysia, and compared with the SAR images obtained from RADARSAT2. Preliminary results...... are analyzed for dominant scattering mechanisms as well as monitoring of growth variation of oil palm trees for further development of operation models for long term monitoring of oil palm plantations....

  2. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp.

    Science.gov (United States)

    Federico, Baruzzi; Pinto, Loris; Quintieri, Laura; Carito, Antonia; Calabrese, Nicola; Caputo, Leonardo

    2015-12-23

    The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.

  3. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    2013-07-01

    Full Text Available Conservation biological control (CBC is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina and the olive moth (Prays oleae. Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems.

  4. Effect of non-crop vegetation types on conservation biological control of pests in olive groves.

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2013-01-01

    Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems.

  5. Forest vegetation monitoring and foliar chemistry of red spruce and red maple at Acadia National Park in Maine.

    Science.gov (United States)

    Wiersma, G Bruce; Elvir, Jose Alexander; Eckhoff, Janet D

    2007-03-01

    The USDA Forest Service Forest Health Monitoring (FHM) program indicators, including forest mensuration, crown condition classification, and damage and mortality indicators were used in the Cadillac Brook and Hadlock Brook watershed forests at Acadia National Park (ANP) along coastal Maine. Cadillac Brook watershed burned in a wildfire in 1947. Hadlock Brook watershed, undisturbed for several centuries, serves as the reference site. These two small watersheds have been gauged and monitored at ANP since 1998 as part of the Park Research and Intensive Monitoring of Ecosystems Network (PRIMENet). Forest vegetation at Hadlock Brook was dominated by late successional species such as Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Acer rubrum and Picea rubens. Forest vegetation at Cadillac Brook, on the other hand, was younger and more diverse and included those species found in Hadlock as well as early successional species such as Betula papyrifera and Populus grandidentata. Differences in forest species composition and stand structure were attributed to the severe wildfire that affected the Cadillac Brook watershed. Overall, the forests at these ANP watersheds were healthy with a low percentage (

  6. Controls of vegetation structure and net primary production in restored grasslands

    Science.gov (United States)

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  7. Effect of vegetable oil (Brazil nut oil and mineral oil (liquid petrolatum on dental biofilm control

    Directory of Open Access Journals (Sweden)

    Cíntia de Fátima Buldrini Filogônio

    2011-12-01

    Full Text Available Dental biofilm control represents a basic procedure to prevent caries and the occurrence of periodontal diseases. Currently, toothbrushes and dentifrices are used almost universally, and the employment of good oral hygiene allows for appropriate biofilm removal by both mechanical and chemical control. The aim of this study was to evaluate the effectiveness of adding vegetable or mineral oil to a commercially available dentifrice in dental biofilm control. A comparison using the Oral Hygiene Index Simplified (OHI-S was performed in 30 individuals who were randomly divided into three groups. Group 1 (G1 received a commercially available dentifrice; the composition of this dentifrice was modified by addition of mineral oil (Nujol® for group 2 (G2 or a vegetable oil (Alpha Care® for group 3 (G3 at 10% of the total volume, respectively. The two-way repeated-measures analysis of variance (two-way ANOVA was used to test the effect of group (G1, G2 and G3 or time (baseline, 45 days and 90 days on the OHI-S index scores. Statistical analysis revealed a significant reduction in the OHI-S at day 90 in G2 (p < 0.05 and G3 (p < 0.0001 in comparison to G1. Therefore, the addition of a vegetable or a mineral oil to a commercially available dentifrice improved dental biofilm control, suggesting that these oils may aid in the prevention and/or control of caries and periodontal disease.

  8. Vibrational spectroscopy in the monitoring of chilling injury in fruits and vegetables

    Science.gov (United States)

    Bertoluzza, Alessandro; Bottura, G.; Filippetti, P.; Tosi, M. R.; Vasina, M.

    1993-06-01

    Vegetable marrows (cv. Seme Bolognese) and peach fruits (cv. Suncrest) were stored at different chilling temperatures in order to evaluate, by vibrational spectroscopy, the unsaturation degree of the total lipidic component and other possible markers of chilling injuries. Capillary Gas Chromatography also has been applied to evaluate the unsaturation degree of the esterified fatty acids. Both methodologies indicate a general increase of the unsaturation degrees with storage time. This can be interpreted as a better adaptation capability of the fruits to low temperatures. Moreover, the FTIR-ATR methodology points out the onset of a hydrolysis reaction of the esteric phosphate group of phospholipids during storage.

  9. Versatile CAMAC power supply controller-monitor with built-in ramping and ripple monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H.; Horelick, D.

    1984-10-01

    An integrated power supply controller-monitor has been designed and is in use to control large power supplies for SLC dc magnets. This single-width CAMAC module contains a 14-bit DAC, a 14-bit ADC, and several channels of optically coupled digital status and control signals. Additional features include built-in selectable ramping rates, self-test capabilities, and a ripple monitor circuit to measure ac ripple in the power supply current.

  10. Memory-type control charts for monitoring the process dispersion

    NARCIS (Netherlands)

    Abbas, N.; Riaz, M.; Does, R.J.M.M.

    2014-01-01

    Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past information in setting up the control structure. This makes CUSUM and EWMA-t

  11. Memory-type control charts for monitoring the process dispersion

    NARCIS (Netherlands)

    Abbas, N.; Riaz, M.; Does, R.J.M.M.

    2014-01-01

    Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past information in setting up the control structure. This makes CUSUM and EWMA-t

  12. Monitoring of vegetation dynamics on the former military training area Königsbrücker Heide using remote sensing time series

    Science.gov (United States)

    Wessollek, Christine; Karrasch, Pierre

    2016-10-01

    In 1989 about 1.5 million soldiers were stationed in Germany. With the political changes in the early 1990s a substantial decline of the staff occurred on currently 200,000 employees in the armed forces and less than 60,000 soldiers of foreign forces. These processes entailed conversions of large areas not longer used for military purposes, especially in the new federal states in the eastern part of Germany. One of these conversion areas is the former military training area Konigsbruck in Saxony. For the analysis of vegetation and its development over time, the Normalized Difference Vegetation Index (NDVI) has established as one of the most important indicators. In this context, the questions arise whether MODIS NDVI products are suitable to determine conversion processes on former military territories like military training areas and what development processes occurred in the "Konigsbrucker Heide" in the past 15 years. First, a decomposition of each series in its trend component, seasonality and the remaining residuals is performed. For the trend component different regression models are tested. Statistical analysis of these trends can reveal different developments, for example in nature development zones (without human impact) and zones of controlled succession. The presented workflow is intended to show the opportunity to support a high temporal resolution monitoring of conversion areas such as former military training areas.

  13. Biosensors and Automation for Bioprocess Monitoring and Control

    OpenAIRE

    2011-01-01

    Bioprocess monitoring and control is a complex task that needs rapid and reliable methods which are adaptable to continuous analysis. Process monitoring during fermentation is widely applicable in the field of pharmaceutical, food and beverages and wastewater treatment. The ability to monitor has direct relevance in improving performance, quality, productivity, and yield of the process. In fact, the complexity of the bioprocesses requires almost real time insight into the dynamic process for ...

  14. Dealing with distributed intelligence in monitoring and control systems

    CERN Document Server

    McLaren, R A

    1981-01-01

    The European Hybrid Spectrometer is built up of many individual detectors, each having widely varying monitoring and control requirements. With the advent of cheap microprocessor systems a shift from the concept of a single monitoring and control computer to that of distributed intelligent controllers has been economically feasible. A detector designer can now thoroughly test and debug a complete monitoring and control system on a local, dedicated micro-computer, while during operation, the central computer can be relieved of many simple repetitive tasks. Rapidly, however, it has become obvious that the designers of these systems have to take into account the final operational environment and build into both the hardware and software, features allowing easy integration into a central monitoring and control chain. In addition, the problems of maintenance and eventual modification have to be taken into consideration early in the development. Examples of currently operational systems will be briefly described to...

  15. Planning and self-efficacy can increase fruit and vegetable consumption: a randomized controlled trial.

    Science.gov (United States)

    Kreausukon, Pimchanok; Gellert, Paul; Lippke, Sonia; Schwarzer, Ralf

    2012-08-01

    Fruit and vegetable consumption represents a nutritional goal to prevent obesity and chronic illness. To change dietary behaviors, people must be motivated to do so, and they must translate their motivation into actual behavior. The present experiment aims at the psychological mechanisms that support such changes, with a particular focus on dietary self-efficacy and planning skills. A randomized controlled trial compared a theory-based psychological intervention with a health education session in 114 participants. Dependent variables were fruit and vegetable consumption, intention to consume more fruit and vegetables, planning to consume more, and dietary self-efficacy, assessed before the intervention, 1 week afterwards, and at 6-week follow up. Significant group by time interactions for all four dependent variables documented superior treatment effects for the psychological intervention group, with substantially higher scores at posttest and follow-up for the experimental group, although all students benefited from participation. To identify the contribution of the main intervention ingredients (self-efficacy and planning), regression analyses yielded mediator effects for these two factors. A social-cognitive intervention to improve fruit and vegetable consumption was superior to a knowledge-based education session. Self-efficacy and planning seem to play a major role in the mechanisms that facilitate dietary changes.

  16. Native Roadside Vegetation that Enhances Soil Erosion Control in Boreal Scandinavia

    Directory of Open Access Journals (Sweden)

    Annika K. Jägerbrand

    2014-07-01

    Full Text Available This study focused on identifying vegetation characteristics associated with erosion control at nine roadside sites in mid-West Sweden. A number of vegetation characteristics such as cover, diversity, plant functional type, biomass and plant community structure were included. Significant difference in cover between eroded and non-eroded sub-sites was found in evergreen shrubs, total cover, and total above ground biomass. Thus, our results support the use of shrubs in order to stabilize vegetation and minimize erosion along roadsides. However, shrubs are disfavored by several natural and human imposed factors. This could have several impacts on the long-term management of roadsides in boreal regions. By both choosing and applying active management that supports native evergreen shrubs in boreal regions, several positive effects could be achieved along roadsides, such as lower erosion rate and secured long-term vegetation cover. This could also lead to lower costs for roadside maintenance as lower erosion rates would require less frequent stabilizing treatments and mowing could be kept to a minimum in order not to disfavor shrubs.

  17. A randomised controlled trial of a theory of planned behaviour to increase fruit and vegetable consumption. Fresh Facts.

    Science.gov (United States)

    Kothe, Emily J; Mullan, Barbara A

    2014-07-01

    Young adults are less likely than other adults to consume fruit and vegetables. Fresh Facts is a theory of planned behaviour based intervention designed to promote fruit and vegetable consumption. The present study sought to evaluate Fresh Facts using a randomised controlled trial. Australian young adults (n = 162) were allocated to the Fresh Facts intervention or to the control group in 2011. Intervention participants received automated email messages promoting fruit and vegetable consumption every 3 days over the course of the 1 month intervention. Messages targeted attitude, subjective norm, and perceived behavioural control. Theory of planned behaviour variables and fruit and vegetable intake were measured at baseline and post-intervention (Day 30). Significant increases in attitude and subjective norm relative to control were found among Fresh Facts participants. However, intention, perceived behavioural control and fruit and vegetable consumption did not change as a result of the intervention. Changes in intention reported by each participant between baseline and follow-up were not correlated with corresponding changes in fruit and vegetable consumption. Fresh Facts was not successful in increasing fruit and vegetable consumption. Current evidence does not support the use of the theory of planned behaviour in the design of interventions to increase fruit and vegetable intake in this population.

  18. Predicting Use of Ineffective Responsive, Structure and Control Vegetable Parenting Practices with the Model of Goal Directed Behavior.

    Science.gov (United States)

    Baranowski, Tom; Beltran, Alicia; Chen, Tzu-An; Thompson, Debbe; O'Connor, Teresia; Hughes, Sheryl; Diep, Cassandra; Baranowski, Janice C

    This study reports the modeling of three categories of ineffective vegetable parenting practices (IVPP) separately (responsive, structure, and control vegetable parenting practices). An internet survey was employed for a cross sectional assessment of parenting practices and cognitive-emotional variables. Parents (n=307) of preschool children (3-5 years old) were recruited through announcements and postings. Models were analyzed with block regression and backward deletion procedures using a composite IVPP scale as the dependent variable. The independent variables included validated scales from a Model of Goal Directed Vegetable Parenting Practices (MGDVPP), including: intention, habit, perceived barriers, desire, competence, autonomy, relatedness, attitudes, norms, perceived behavioral control, and anticipated emotions. The available scales accounted for 26.5%, 16.7% and 44.6% of the variance in the IVPP responsive, structure and control subscales, respectively. Different sets of diverse variables predicted the three IVPP constructs. Intentions, Habits and Perceived Behavioral Control were strong predictors for each of the IVPP constructs, but the subscales were specific to each IVPP construct. Parent emotional responses, an infrequently investigated variable, was an important predictor of ineffective responsive vegetable parenting practices and ineffective structure vegetable parenting practices, but not ineffective control vegetable parenting practices. An Attitude subscale and a Norms subscale predicted ineffective responsive vegetable parenting practices alone. This was the first report of psychometrically tested scales to predict use of IVPP subscales. Further research is needed to verify these findings in larger longitudinal cohorts. Interventions to increase child vegetable intake may have to reduce IVPP.

  19. Using biogeochemical tracing and ecohydrological monitoring to increase understanding of water, sediment and carbon dynamics across dryland vegetation transitions

    Science.gov (United States)

    Puttock, Alan; Dungait, Jennifer; Macleod, Kit; Bol, Roland; Brazier, Richard

    2014-05-01

    Drylands worldwide have experienced rapid and extensive environmental change, which across large areas has been characterised by the encroachment of woody vegetation into grasslands. Woody encroachment leads to changes in the abiotic and biotic structure and function of dryland ecosystems and has been shown to result in accelerated soil erosion and loss of soil nutrients. The relationship between environmental change, soil erosion and the carbon cycle in dryland environments remains uncertain. Covering over 40 % of the terrestrial land surface, dryland environments are of significant global importance, both as a habitat and a soil carbon store. Thus, there is a clear need to further our understanding of dryland vegetation change and impacts on carbon dynamics. Here, grama grass to creosote shrub and grama grass to piñon-juniper woodland; two grass-to-woody ecotones that occur across large swathes of the semi-arid Southwestern United States are investigated. This study combines an ecohydrological monitoring framework with a multi-proxy biogeochemical approach using stable carbon isotope and n-alkane lipid biomarkers to trace the source of organic carbon. Results will be presented showing that following woody encroachment into grasslands, there is a transition to a more heterogeneous ecosystem structure and an increased hydrological connectivity. Consequentially, not only do drylands lose significantly more soil and organic carbon via accentuated fluvial erosion, but this includes significant amounts of legacy organic carbon which would previously have been stable under the previous grass cover. Results suggest that dryland soils may therefore, not act as a stable organic carbon pool and that accelerated fluvial erosion of carbon, driven by vegetation change, has important implications for the global carbon cycle.

  20. Land-use: landslide monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, B.; Blasi, L.; Brandimarte, U.; Bucci, M. (ENEA, Rome (Italy). Lab. di Geologia Ambientale)

    1990-10-01

    A terrain characterization study was conducted in the coastal Monte Argentario region of central Italy (western coast). The geological and geophysical surveys placed emphasis on the identification of zones subject to landside activity. In order to assist local community officials in land-use planning and civil protection a real time monitoring system was set up to oversee high risk areas. Guidelines were established for the reclamation of zones strongly influenced by slides. An attempt was made to identify the parameters influencing local soil-rock stability.

  1. The Role of Monitoring in Controlling Water Pollution

    Science.gov (United States)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  2. 40 CFR 52.1680 - Control strategy: Monitoring and reporting.

    Science.gov (United States)

    2010-07-01

    ... Control strategy: Monitoring and reporting. (a) Section 227.6 (a) and (f) are disapproved because they are not consistent with the continuous monitoring and reporting requirements of 40 CFR 51.214. ... reporting. 52.1680 Section 52.1680 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  3. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    OpenAIRE

    2013-01-01

    Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two...

  4. Ewmareg control chart applied in the monitoring of industrial processes

    Directory of Open Access Journals (Sweden)

    Danilo Cuzzuol Pedrini

    2011-12-01

    Full Text Available If the process quality characteristics are dependent of control variables, and these vary during the process operation, the basic assumptions of control charts are violated. If the values of the control variables are known, it’s possible to apply the regression control chart. One of the most recent works in this area is the EWMAREG chart, which is the monitoring of the standardized residuals using exponentially weighted moving average control chart. In this paper, we present a systematic application of the EWMAREG control chart in monitoring a simulated process of chemical industry. The process characteristic monitored was the corrosion rate of steel pipe in function of four process control variables. The tool applied demonstrated high potential to detect change in surveillance of corrosion rate, ensuring stability process.

  5. Monitoring drought impact on Mediterranean oak savanna vegetation using remote sensing

    Science.gov (United States)

    González-Dugo, Maria P.; Carpintero, Elisabet; Andreu, Ana

    2015-04-01

    A holm oak savanna, known as dehesa in Spain and montado in Portugal, is the largest agroforest ecosystem in Europe, covering about 3 million hectares in the Iberian Peninsula and Greece (Papanastasis et al., 2004). It is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural development and economy (Plieninger et al., 2001). It is a combination between an agricultural and a naturally vegetated ecosystem, consisting of widely-spaced oak trees (mostly Quercus Ilex and Quercus suber) combined with a sub-canopy composed by crops, annual grassland and/or shrubs. It has a Mediterranean climate with severe periodic droughts. In the last decades, this system is being exposed to multiple threats derived from socio-economic changes and intensive agricultural use, which have caused environmental degradation, including tree decline, changes in soil properties and hydrological processes, and an increase of soil erosion (Coelho et al., 2004). Soil water dynamics plays a central role in the current decline and reduction of forested areas that jeopardizes the preservation of the system. In this work, a series of remotely sensed images since 1990 to present was used to evaluate the effect of several drought events occurred in the study area (1995, 2009, 2010/2011) on the tree density and water status. Data from satellites Landsat and field measurements have been combined in a spectral mixture model to assess separately the evolution of tree, dry grass and bare soil ground coverage. Only summer images have been used to avoid the influence of the green herbaceous layer on the analysis. Thermal data from the same sensors and meteorological information are integrated in a two source surface energy balance model to compute the Evaporative Stress Index (ESI) and evaluate the vegetation water status. The results have provided insights about the severity of each event and the spatial distribution of

  6. Use of Landsat land surface temperature and vegetation indices for monitoring drought in the Salt Lake Basin Area, Turkey.

    Science.gov (United States)

    Orhan, Osman; Ekercin, Semih; Dadaser-Celik, Filiz

    2014-01-01

    The main purpose of this paper is to investigate multitemporal land surface temperature (LST) changes by using satellite remote sensing data. The study included a real-time field work performed during the overpass of Landsat-5 satellite on 21/08/2011 over Salt Lake, Turkey. Normalized vegetation index (NDVI), vegetation condition index (VCI), and temperature vegetation index (TVX) were used for evaluating drought impact over the region between 1984 and 2011. In the image processing step, geometric and radiometric correction procedures were conducted to make satellite remote sensing data comparable with in situ measurements carried out using thermal infrared thermometer supported by hand-held GPS. The results showed that real-time ground and satellite remote sensing data were in good agreement with correlation coefficient (R2) values of 0.90. The remotely sensed and treated satellite images and resulting thematic indices maps showed that dramatic land surface temperature changes occurred (about 2°C) in the Salt Lake Basin area during the 28-year period (1984-2011). Analysis of air temperature data also showed increases at a rate of 1.5-2°C during the same period. Intensification of irrigated agriculture particularly in the southern basin was also detected. The use of water supplies, especially groundwater, should be controlled considering particularly summer drought impacts on the basin.

  7. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2014-01-01

    Full Text Available The main purpose of this paper is to investigate multitemporal land surface temperature (LST changes by using satellite remote sensing data. The study included a real-time field work performed during the overpass of Landsat-5 satellite on 21/08/2011 over Salt Lake, Turkey. Normalized vegetation index (NDVI, vegetation condition index (VCI, and temperature vegetation index (TVX were used for evaluating drought impact over the region between 1984 and 2011. In the image processing step, geometric and radiometric correction procedures were conducted to make satellite remote sensing data comparable with in situ measurements carried out using thermal infrared thermometer supported by hand-held GPS. The results showed that real-time ground and satellite remote sensing data were in good agreement with correlation coefficient (R2 values of 0.90. The remotely sensed and treated satellite images and resulting thematic indices maps showed that dramatic land surface temperature changes occurred (about 2∘C in the Salt Lake Basin area during the 28-year period (1984–2011. Analysis of air temperature data also showed increases at a rate of 1.5–2∘C during the same period. Intensification of irrigated agriculture particularly in the southern basin was also detected. The use of water supplies, especially groundwater, should be controlled considering particularly summer drought impacts on the basin.

  8. Survey of the terrestrial habitats and vegetation of Shetland, 1974 - a framework for long-term ecological monitoring

    Science.gov (United States)

    Wood, Claire M.; Bunce, Robert G. H.

    2016-02-01

    A survey of the natural environment was undertaken in Shetland in 1974, after concern was expressed that large-scale development from the new oil industry could threaten the natural features of the islands. A framework was constructed by the Institute of Terrestrial Ecology on which to select samples for the survey. The vegetation and habitat data that were collected, along with the sampling framework, have recently been made public via the following doi:10.5285/06fc0b8c-cc4a-4ea8-b4be-f8bd7ee25342 (Terrestrial habitat, vegetation and soil data from Shetland, 1974) and doi:10.5285/f1b3179e-b446-473d-a5fb-4166668da146 (Land Classification of Shetland 1974). In addition to providing valuable information about the state of the natural environment of Shetland, the repeatable and statistically robust methods developed in the survey were used to underpin the Countryside Survey, Great Britain's national long-term integrated environmental monitoring programme. The demonstration of the effectiveness of the methodology indicates that a repeat of the Shetland survey would yield statistics about ecological changes in the islands, such as those arising from the impacts of the oil industry, a range of socio-economic impacts, and perhaps climate change. Currently no such figures are available, although there is much information on the sociological impacts, as well as changes in agriculture.

  9. Survey of the terrestrial habitats and vegetation of Shetland, 1974 - a framework for long term ecological monitoring

    Science.gov (United States)

    Wood, C. M.; Bunce, R. G. H.

    2015-10-01

    A survey of the natural environment was undertaken in Shetland in 1974, after concern was expressed that large scale development from the new oil industry could threaten the natural features of the islands. A framework was constructed by the Institute of Terrestrial Ecology on which to select samples for the survey. The vegetation and habitat data that were collected, along with the sampling framework, have recently been made public via the following DOIs: doi:10.5285/06fc0b8c-cc4a-4ea8-b4be-f8bd7ee25342 (Terrestrial habitat, vegetation and soil data from Shetland, 1974) and doi:10.5285/f1b3179e-b446-473d-a5fb-4166668da146 (Land Classification of Shetland 1974). In addition to providing valuable information about the state of the natural environment of Shetland, the repeatable and statistically robust methods developed in the survey were used to underpin the Countryside Survey, Great Britain's national long-term integrated environmental monitoring programme. The demonstration of the effectiveness of the methodology indicates that a repeat of the survey would yield statistics about ecological changes in the islands, such as those arising from the impacts of the oil industry. Currently no such figures are available although there is much information on the sociological impacts, as well as changes in agriculture.

  10. Vegetation and non-native ungulate monitoring at the Big Island National Wildlife Refuge Complex 2010–2014.

    Science.gov (United States)

    Hess, Steven C.; Leopold, Christina R.; Kendall, Steven J.

    2015-01-01

    The Hakalau Forest Unit (HFU) of Big Island National Wildlife Refuge Complex (BINWRC) has intensively managed feral cattle (Bos taurus) and pigs (Sus scrofa) and monitored non-native ungulate presence and distribution during surveys of all managed areas since 1988. We: 1) provide results from recent ungulate surveys at HFU to determine current feral pig abundance and distribution; 2) present results of surveys of ungulate presence and distribution at the Kona Forest Unit (KFU); 3) present results of surveys of weed presence and cover at both refuge units; and 4) present baseline results from long-term vegetation monitoring plots at KFU. Overall pig abundance appears to have decreased at HFU, although not significantly, over the period from 2010 to 2014. Management units 2 and 4 contained the majority of pigs at HFU. Pig density outside of adjacent managed areas has declined significantly from 2010 to 2014 for unknown reasons. Ungulate sign occurred in > 50% of plots at KFU during the November 2012 and September 2013 surveys, but ungulate sign occurred in temporal pattern. Spatial patterns are more pronounced; however, some weed species may not be reliably represented due to observers’ abilities to recognize less common weeds. Nonetheless, the distribution and cover of fireweed (Senecio madagascariensis) at KFU may have increased over the study period. Vegetation surveys documented baseline floristic composition and forest structure at KFU. It is not known if this current amount of emerging cover is sufficient for long-term self-sustaining forest canopy regeneration; however, numerous ‘ōhi‘a seedlings were found in the wet forest and mesic ‘ōhi‘a habitats, indicating an ample viable seed source and robust potential for forest regeneration.

  11. Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study

    Directory of Open Access Journals (Sweden)

    Zhang Yuesheng

    2010-04-01

    Full Text Available Abstract Background Inverse associations between cruciferous vegetable intake and lung cancer risk have been consistently reported. However, associations within smoking status subgroups have not been consistently addressed. Methods We conducted a hospital-based case-control study with lung cancer cases and controls matched on smoking status, and further adjusted for smoking status, duration, and intensity in the multivariate models. A total of 948 cases and 1743 controls were included in the analysis. Results Inverse linear trends were observed between intake of fruits, total vegetables, and cruciferous vegetables and risk of lung cancer (ORs ranged from 0.53-0.70, with P for trend Conclusions Our findings are consistent with the smoking-related carcinogen-modulating effect of isothiocyanates, a group of phytochemicals uniquely present in cruciferous vegetables. Our data support consumption of a diet rich in cruciferous vegetables may reduce the risk of lung cancer among smokers.

  12. Aircraft Control Augmentation and Health Monitoring Using FADS Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research proposal is aimed at demonstrating the feasibility of an innovative architecture comprising control augmentation and on-line health monitoring...

  13. Sheldon-Hart - Invasive Species Inventory, Monitoring, and Control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Beginning in 2009/2010, the Sheldon/Hart Refuge Complex refocused efforts to inventory, monitor, and control invasive plant species to allow for better adaptive...

  14. sampling plans for monitoring quality control process at a plastic ...

    African Journals Online (AJOL)

    Dr Obe

    managing these -activities in an intercultural environment will be of increasing ... adoption of new managerial concepts and .techniques among ... sample for both monitoring and quality control purposes. Prybrutok, et al. 7 observed that the.

  15. Double Shell Tank (DST) Monitor and Control Subsystem Specification

    Energy Technology Data Exchange (ETDEWEB)

    BAFUS, R.R.

    2000-11-03

    This specification revises the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Monitor and Control Subsystem that supports the first phase of Waste Feed Delivery.

  16. Project Design Concept for Monitoring and Control System

    Energy Technology Data Exchange (ETDEWEB)

    MCGREW, D.L.

    2000-10-02

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations.

  17. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation

    NARCIS (Netherlands)

    Barth, Ruud; Hemming, Jochen; Henten, van E.J.

    2016-01-01

    A modular software framework design that allows flexible implementation of eye-in-hand sensing and motion control for agricultural robotics in dense vegetation is reported. Harvesting robots in cultivars with dense vegetation require multiple viewpoints and on-line trajectory adjustments in order

  18. 47 CFR 73.1400 - Transmission system monitoring and control.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Transmission system monitoring and control. 73... be accomplished by either: (i) Direct supervision and control of transmission system parameters by a person at the transmitter site; or (ii) Remote control of the transmission system by a person at the main...

  19. Use of Different Vegetable Products to Increase Preschool-Aged Children's Preference for and Intake of a Target Vegetable: A Randomized Controlled Trial.

    Science.gov (United States)

    de Wild, Victoire W T; de Graaf, Cees; Jager, Gerry

    2017-06-01

    Children's low vegetable consumption requires effective strategies to enhance preference for and intake of vegetables. The study compared three preparation practices for a target vegetable (spinach) on their effectiveness in increasing preschool-aged children's preference for and intake of the target vegetable in comparison to a control vegetable (green beans). We conducted a randomized controlled trial with four parallel groups: plain spinach, creamed spinach, spinach ravioli, and green beans. During the intervention, children were served the vegetable at their main meal six times over 6 weeks at home. Children aged 2 to 4 years were recruited from six child-care centers located in Wageningen, the Netherlands, and randomly assigned to one of the four groups, with vegetable products provided by the researchers. The study was performed between September 2014 and January 2015. In total, 103 children participated, with 26, 25, 26, and 26 in the plain spinach, creamed spinach, spinach ravioli, and green beans groups, respectively. Preference for and ad libitum intake of cooked spinach were assessed during a test meal at the day-care center pre- and postintervention. Food neophobia was assessed via the Child Food Neophobia Scale. General linear model repeated measures analysis, including food neophobia, spinach liking, exposure, and consumption scores as covariates, was performed to test for effects of group on intake. Logistic regression was used to assess changes in preference between pre- and postintervention. All four groups significantly increased their spinach intake from pre- (53 g) to postintervention (91 g) by an average of 70%. For preference, no significant shift toward the target vegetable was found from pre- to postintervention. The effect on intake depended on the child's neophobia status and preintervention spinach consumption, with children with neophobia being less responsive to the intervention and with children who ate more spinach before the

  20. Interactions among vegetation, climate, and herbivory control greenhouse gas fluxes in a subarctic coastal wetland

    Science.gov (United States)

    Kelsey, K. C.; Leffler, A. J.; Beard, K. H.; Schmutz, J. A.; Choi, R. T.; Welker, J. M.

    2016-12-01

    High-latitude ecosystems are experiencing the most rapid climate changes globally, and in many areas these changes are concurrent with shifts in patterns of herbivory. Individually, climate and herbivory are known to influence biosphere-atmosphere greenhouse gas (GHG) exchange; however, the interactive effects of climate and herbivory in driving GHG fluxes have been poorly quantified, especially in coastal systems that support large populations of migratory waterfowl. We investigated the magnitude and the climatic and physical controls of GHG exchange within the Yukon-Kuskokwim Delta in western Alaska across four distinct vegetation communities formed by herbivory and local microtopography. Net CO2 flux was greatest in the ungrazed Carex meadow community (3.97 ± 0.58 [SE] µmol CO2 m-2 s-1), but CH4 flux was greatest in the grazed community (14.00 ± 6.56 nmol CH4 m-2 s-1). The grazed community is also the only vegetation type where CH4 was a larger contributor than CO2 to overall GHG forcing. We found that vegetation community was an important predictor of CO2 and CH4 exchange, demonstrating that variation in regional gas exchange is best explained when the effect of grazing, determined by the difference between grazed and ungrazed communities, is included. Further, we identified an interaction between temperature and vegetation community, indicating that grazed regions could experience the greatest increases in CH4 emissions with warming. These results suggest that future GHG fluxes could be influenced by both climate and by changes in herbivore population dynamics that expand or contract the vegetation community most responsive to future temperature change.

  1. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    Science.gov (United States)

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when

  2. Secure VM for Monitoring Industrial Process Controllers

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Dipankar [ORNL; Ali, Mohammad Hassan [University of Memphis; Abercrombie, Robert K [ORNL; Schlicher, Bob G [ORNL; Sheldon, Frederick T [ORNL; Carvalho, Marco [Institute of Human and Machine Cognition

    2011-01-01

    In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicated host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.

  3. The run control and monitoring system of the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Gerry; /MIT; Boyer, Vincent; /CERN; Branson, James; /UCLA; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; /CERN; O' Dell, Vivian; /Fermilab; Erhan, Samim; /CERN /UC, San Diego; Gigi, Dominique; /CERN /Kyungpook Natl. U. /MIT /UCLA /CERN /INFN, Legnaro

    2007-10-01

    The CMS experiment at the LHC at CERN will start taking data in 2008. To configure, control and monitor the experiment during data-taking the Run Control and Monitoring System (RCMS) was developed. This paper describes the architecture and the technology used to implement the RCMS, as well as the deployment and commissioning strategy of this important component of the online software for the CMS experiment.

  4. Lessons from five years of vegetation monitoring on the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.B.

    1992-10-01

    In 1987 the US Department of Energy funded a formal, extensive monitoring program for the flora and fauna on the Nevada Test Site. The goal was to understand and record changes with time In the distribution and abundance of the plants and animals. The need to detect changes, rather than do a one-time characterization, required careful selection of parameters and the use of permanent plots to distinguish spatial from temporal variability. Repeated measurements of the same plots revealed errors and imprecision which required changes in training and data collection techniques. Interpretation of trends after several years suggested it will be important to monitor not only changes, but causes of change, such as soil moisture and herbivory. Finally, the requirement for records to be available over long periods of time poses problems of archiving and publication. This report consists of viewgraphs presenting the findings of the study.

  5. Transfer Function Control for Biometric Monitoring System

    Science.gov (United States)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodinsky, Carlos M. (Inventor)

    2015-01-01

    A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data.

  6. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene.

    Science.gov (United States)

    Eom, Hyun-Ju; Park, Joong Min; Seo, Min Jae; Kim, Myoung-Dong; Han, Nam Soo

    2008-09-01

    In 2004, Leuconostoc mesenteroides DRC was first used as a starter culture for achieving higher organoleptic effects in Korean kimchi manufacture. For a better understanding of starter growth in a mixed culture system, and for predicting starter predominance in kimchi, a monitoring system for the starter was established. The chloramphenicol resistance marker gene (cat) was randomly integrated into chromosomal DNA of L. mesenteroides DRC using a viral transposon and transposase. The DRC mutant, tDRC2, had a similar growth pattern to the host strain, with no major alteration in phenotypic characteristics. The mutant strain was inoculated into real kimchi, and monitoring of the starter population was successfully achieved. The overall predominance of Leuconostoc in kimchi inoculated with DRC followed the general growth pattern of this genus during kimchi fermentation. Our results also demonstrate the competitive ability of the DRC starter against Leuconostoc from natural flora, maintaining its predominance above 88% during the whole fermentation period. Based on this experiment, the random gene integration method using a transposon was shown to be of utility in transferring any commercial starter into a selectable and monitorable strain for simulation purposes.

  7. Modelling and monitoring vegetation and evapotranspiration on an anthropogenic grassland succession in the Andes of Ecuador

    Science.gov (United States)

    Silva, B.; Bendix, J.

    2012-04-01

    In the eastern Andes of southern Ecuador the infestation of pasture (mostly C4-grass Setaria sphacelata) by the aggressive bracken fern (Pteridium sp.) still is an unsolved problem. Environmental and exogenous factors and direct plant competition have been hypothesized to drive bracken occurrence. Special attention is given to pasture burning, which stimulates bracken growth, and is common in the relative dry season (Oct-Dec). However, no knowledge is available for a quantitative hypothesis investigation on bracken occurrence under current and future local climate. In this work a modeling approach is presented, in which initial investigations support the application of a two-big-leaf model, and parameterization and model forcing are made with extensive data on physiological traits and on the physical environment. Our main aims here are (i) to show field investigations on a plant scale, which are the basis for a proper model parameterization; and (ii) to provide initialization data, which is based on estimation of green leaf area index from very-high and high resolution optical remote sensing (air-photos and Quickbird images); (iii) to simulate vegetation succession after burn on an experimental site, using in situ climate data and future climate-change scenarios. The modeling approach is based in the main on the vegetation dynamic model called Southern Bracken Competition Model (SoBraCoMo), which has been coupled to a hydrological model written on the catchment model framework (CMF), to simulate soil-vegetation dynamics. Main initialization variables are biochemical parameters (quantum and carboxylation efficiency) and the green leaf area index (green-LAI). Forcing data include soil, leaf and air temperature, soil and air humidity and radiation. The model has been developed and tested on the experimental site (2100 m asl) in the Rio San Francisco Valley, Ecuador. Simulation results on the burn experiment of 2009 showed that stimulation by fire could not boost fern

  8. Timely monitoring of Asian Migratory locust habitats in the Amudarya delta, Uzbekistan using time series of satellite remote sensing vegetation index.

    Science.gov (United States)

    Löw, Fabian; Waldner, François; Latchininsky, Alexandre; Biradar, Chandrashekhar; Bolkart, Maximilian; Colditz, René R

    2016-12-01

    The Asian Migratory locust (Locusta migratoria migratoria L.) is a pest that continuously threatens crops in the Amudarya River delta near the Aral Sea in Uzbekistan, Central Asia. Its development coincides with the growing period of its main food plant, a tall reed grass (Phragmites australis), which represents the predominant vegetation in the delta and which cover vast areas of the former Aral Sea, which is desiccating since the 1960s. Current locust survey methods and control practices would tremendously benefit from accurate and timely spatially explicit information on the potential locust habitat distribution. To that aim, satellite observation from the MODIS Terra/Aqua satellites and in-situ observations were combined to monitor potential locust habitats according to their corresponding risk of infestations along the growing season. A Random Forest (RF) algorithm was applied for classifying time series of MODIS enhanced vegetation index (EVI) from 2003 to 2014 at an 8-day interval. Based on an independent ground truth data set, classification accuracies of reeds posing a medium or high risk of locust infestation exceeded 89% on average. For the 12-year period covered in this study, an average of 7504 km(2) (28% of the observed area) was flagged as potential locust habitat and 5% represents a permanent high risk of locust infestation. Results are instrumental for predicting potential locust outbreaks and developing well-targeted management plans. The method offers positive perspectives for locust management and treatment of infested sites because it is able to deliver risk maps in near real time, with an accuracy of 80% in April-May which coincides with both locust hatching and the first control surveys. Such maps could help in rapid decision-making regarding control interventions against the initial locust congregations, and thus the efficiency of survey teams and the chemical treatments could be increased, thus potentially reducing environmental pollution

  9. Guidelines To Validate Control of Cross-Contamination during Washing of Fresh-Cut Leafy Vegetables.

    Science.gov (United States)

    Gombas, D; Luo, Y; Brennan, J; Shergill, G; Petran, R; Walsh, R; Hau, H; Khurana, K; Zomorodi, B; Rosen, J; Varley, R; Deng, K

    2017-02-01

    The U.S. Food and Drug Administration requires food processors to implement and validate processes that will result in significantly minimizing or preventing the occurrence of hazards that are reasonably foreseeable in food production. During production of fresh-cut leafy vegetables, microbial contamination that may be present on the product can spread throughout the production batch when the product is washed, thus increasing the risk of illnesses. The use of antimicrobials in the wash water is a critical step in preventing such water-mediated cross-contamination; however, many factors can affect antimicrobial efficacy in the production of fresh-cut leafy vegetables, and the procedures for validating this key preventive control have not been articulated. Producers may consider three options for validating antimicrobial washing as a preventive control for cross-contamination. Option 1 involves the use of a surrogate for the microbial hazard and the demonstration that cross-contamination is prevented by the antimicrobial wash. Option 2 involves the use of antimicrobial sensors and the demonstration that a critical antimicrobial level is maintained during worst-case operating conditions. Option 3 validates the placement of the sensors in the processing equipment with the demonstration that a critical antimicrobial level is maintained at all locations, regardless of operating conditions. These validation options developed for fresh-cut leafy vegetables may serve as examples for validating processes that prevent cross-contamination during washing of other fresh produce commodities.

  10. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley

    Directory of Open Access Journals (Sweden)

    Thomas J. Trout

    2012-02-01

    Full Text Available Reflective bands of Landsat-5 Thematic Mapper satellite imagery were used to facilitate the estimation of basal crop evapotranspiration (ETcb, or potential crop water use, in San Joaquin Valley fields during 2008. A ground-based digital camera measured green fractional cover (Fc of 49 commercial fields planted to 18 different crop types (row crops, grains, orchard, vineyard of varying maturity over 11 Landsat overpass dates. Landsat L1T terrain-corrected images were transformed to surface reflectance and converted to normalized difference vegetation index (NDVI. A strong linear relationship between NDVI and Fc was observed (r2 = 0.96, RMSE = 0.062. The resulting regression equation was used to estimate Fc for crop cycles of broccoli, bellpepper, head lettuce, and garlic on nominal 7–9 day intervals for several study fields. Prior relationships developed by weighing lysimeter were used to transform Fc to fraction of reference evapotranspiration, also known as basal crop coefficient (Kcb. Measurements of grass reference evapotranspiration from the California Irrigation Management Information System were then used to calculate ETcb for each overpass date. Temporal profiles of Fc, Kcb, and ETcb were thus developed for the study fields, along with estimates of seasonal water use. Daily ETcb retrieval uncertainty resulting from error in satellite-based Fc estimation was < 0.5 mm/d, with seasonal uncertainty of 6–10%. Results were compared with FAO-56 irrigation guidelines and prior lysimeter observations for reference.

  11. Forest Vegetation Monitoring Protocol for National Parks in the North Coast and Cascades Network

    Science.gov (United States)

    Woodward, Andrea; Hutten, Karen M.; Boetsch, John R.; Acker, Steven A.; Rochefort, Regina M.; Bivin, Mignonne M.; Kurth, Laurie L.

    2009-01-01

    Plant communities are the foundation for terrestrial trophic webs and animal habitat, and their structure and species composition are an integrated result of biological and physical drivers (Gates, 1993). Additionally, they have a major role in geologic, geomorphologic and soil development processes (Jenny, 1941; Stevens and Walker, 1970). Throughout most of the Pacific Northwest, environmental conditions support coniferous forests as the dominant vegetation type. In the face of anthropogenic climate change, forests have a global role as potential sinks for atmospheric carbon (Goodale and others, 2002). Consequently, knowledge of the status of forests in the three large parks of the NCCN [that is, Mount Rainier (MORA), North Cascades (NOCA), and Olympic (OLYM) National Parks] is fundamental to understanding the condition of Pacific Northwest ecosystems. Diverse climate and soil properties across the Pacific Northwest result in a variety of forest types (Franklin and Dyrness, 1973; Franklin and others, 1988; Henderson and others, 1989, 1992). The mountainous terrain of Mount Rainier, North Cascades, and Olympic National Parks create steep elevational and precipitation gradients within and among the parks: collectively, these parks span from sea level to more than 4,200 m; and include areas with precipitation from 90 to more than 500 cm. The resulting forests range from coastal rainforests with dense understories and massive trees draped with epiphytes; to areas with drought-adapted Ponderosa pines; to high-elevation subalpine fir forests interspersed with meadows just below treeline (table 1). These forests, in turn, are the foundation for other biotic communities constituting Pacific Northwest ecosystems.

  12. Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region

    DEFF Research Database (Denmark)

    Moeslund, Jesper Erenskjold; Arge, Lars; Bøcher, Peder Klith

    2013-01-01

    Topography is recognized as an important factor in controlling plant distribution and diversity patterns, but its scale dependence and the underlying mechanisms by which it operates are not well understood. Here, we used novel high-resolution (2-m scale) topographic data from more than 30500...... vegetation plots to assess the importance of topography for local plant diversity and distribution patterns across Denmark, a 43000 km2 lowland region. The vegetation data came from 901 nature conservation sites (mean size = 0.16 km2) distributed throughout Denmark, each having an average of 34 plots (five...... and 250 × 250 m) was used to identify the horizontal resolution yielding the strongest vegetation–topography relationships. Using data scaled at this resolution, we quantified local (within-site) and regional (among sites) relationships between elevation, mechanistic topographic factors (slope, heat index...

  13. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

    DEFF Research Database (Denmark)

    Law, B.E.; Falge, E.; Gu, L.;

    2002-01-01

    . FLUXNETs goals are to understand the mechanisms controlling the exchanges of CO2, water vapor and energy across a spectrum of time and space scales, and to provide information for modeling of carbon and water cycling across regions and the globe. At a subset of sites, net carbon uptake (net ecosystem......The objective of this research was to compare seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and to investigating the responses of vegetation to environmental variables...... associated with reduced temperature. The slope of the relation between monthly gross ecosystem production and evapotranspiration was similar between biomes. except for tundra vegetation, showing a strong linkage between carbon gain and water loss integrated over the year (slopes = 3.4 g CO2/kg H2O...

  14. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size.

    Science.gov (United States)

    Moon, Sunok; Jung, Ki-Hong; Lee, Do-Eun; Lee, Dong-Yeon; Lee, Jinwon; An, Kyungsook; Kang, Hong-Gyu; An, Gynheung

    2006-02-28

    Most plant organs develop from meristems. Rice FON1, which is an ortholog of Clv1, regulates stem cell proliferation and organ initiation. The point muta-tions, fon1-1 and fon1-2, disrupt meristem balance, resulting in alteration of floral organ numbers and the architecture of primary rachis branches. In this study, we identified two knockout alleles, fon1-3 and fon1-4, generated by T-DNA and Tos17 insertion, respectively. Unlike the previously isolated point mutants, the null mutants have alterations not only of the reproductive organs but also of vegetative tissues, producing fewer tillers and secondary rachis branches. The mutant plants are semi-dwarfs due to delayed leaf emergence, and leaf senescence is delayed. SEM analysis showed that the shoot apical meristems of fon1-3 mutants are enlarged. These results indicate that FON1 controls vegetative as well as reproductive development by regulating meristem size.

  15. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    Science.gov (United States)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  16. Colchicum autumnale - Control strategies and their impact on vegetation composition of species-rich grasslands

    Directory of Open Access Journals (Sweden)

    Seither, Melanie

    2014-02-01

    Full Text Available The meadow saffron Colchicum autumnale occurs on agricultural land predominantly in extensively managed grassland, often underlying nature preservation regulations. Due to its high toxicity if fresh or conserved (hay and silage, there is a need of control measures to ensure the future management and sward utilization of sites with occurrence of C. autumnale. Until now it is unclear, to what extent common management recommendations affect the vegetation composition of species-rich grassland. In this study, the effect of different management measures (late hay cut with or without rolling, early hay cut, late mulching in May, early mulching in April, herbicide application with or without reseeding on the number of C. autumnale and the vegetation composition of a moderately species-rich Dauco-Arrhenatheretum elatioris (31 ± 4 species per m², mean ± standard deviation was examined since 2006. The number of C. autumnale was first significantly reduced three years after the start of the experiment in the early and late mulching treatments; in the next three experimental years treatment differences in C. autumnale reduction did not increase significantly. With respect to vegetation composition, herbicide application had the overriding effect, as it decreased the plant species number and proportions of forbs significantly. The late hay cut preserved the original plant diversity, no negative effect of rolling or the early hay cut was observed. Early mulching resulted in an increase in Dactylis glomerata and Trisetum flavescens and in the decrease of Crepis biennis, Vicia sepium, Tragopogon pratense and Trifolium pratense; it had no negative effect on the total proportion of high nature value (HNV species. Late mulching resulted in a significantly lower yield proportion of high nature value species in 2012 and less similar in vegetation composition compared to the late hay cut treatment than early mulching; therefore it seems not to be a suitable

  17. Top-down vs. bottom-up control on vegetation composition in a tidal marsh depends on scale.

    Science.gov (United States)

    Elschot, Kelly; Vermeulen, Anke; Vandenbruwaene, Wouter; Bakker, Jan P; Bouma, Tjeerd J; Stahl, Julia; Castelijns, Henk; Temmerman, Stijn

    2017-01-01

    The relative impact of top-down control by herbivores and bottom-up control by environmental conditions on vegetation is a subject of debate in ecology. In this study, we hypothesize that top-down control by goose foraging and bottom-up control by sediment accretion on vegetation composition within an ecosystem can co-occur but operate at different spatial and temporal scales. We used a highly dynamic marsh system with a large population of the Greylag goose (Anser anser) to investigate the potential importance of spatial and temporal scales on these processes. At the local scale, Greylag geese grub for below-ground storage organs of the vegetation, thereby creating bare patches of a few square metres within the marsh vegetation. In our study, such activities by Greylag geese allowed them to exert top-down control by setting back vegetation succession. However, we found that the patches reverted back to the initial vegetation type within 12 years. At large spatial (i.e. several square kilometres) and temporal scales (i.e. decades), high rates of sediment accretion surpassing the rate of local sea-level rise were found to drive long-term vegetation succession and increased cover of several climax vegetation types. In summary, we conclude that the vegetation composition within this tidal marsh was primarily controlled by the bottom-up factor of sediment accretion, which operates at large spatial as well as temporal scales. Top-down control exerted by herbivores was found to be a secondary process and operated at much smaller spatial and temporal scales.

  18. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review.

    Science.gov (United States)

    Bian, Zhong Hua; Yang, Qi Chang; Liu, Wen Ke

    2015-03-30

    Phytochemicals in vegetables are important for human health, and their biosynthesis, metabolism and accumulation are affected by environmental factors. Light condition (light quality, light intensity and photoperiod) is one of the most important environmental variables in regulating vegetable growth, development and phytochemical accumulation, particularly for vegetables produced in controlled environments. With the development of light-emitting diode (LED) technology, the regulation of light environments has become increasingly feasible for the provision of ideal light quality, intensity and photoperiod for protected facilities. In this review, the effects of light quality regulation on phytochemical accumulation in vegetables produced in controlled environments are identified, highlighting the research progress and advantages of LED technology as a light environment regulation tool for modifying phytochemical accumulation in vegetables. © 2014 Society of Chemical Industry.

  19. Effect of vegetable oil (Brazil nut oil) and mineral oil (liquid petrolatum) on dental biofilm control.

    Science.gov (United States)

    Filogônio, Cíntia de Fátima Buldrini; Soares, Rodrigo Villamarim; Horta, Martinho Campolina Rebello; Penido, Cláudia Valéria de Sousa Resende; Cruz, Roberval de Almeida

    2011-01-01

    Dental biofilm control represents a basic procedure to prevent caries and the occurrence of periodontal diseases. Currently, toothbrushes and dentifrices are used almost universally, and the employment of good oral hygiene allows for appropriate biofilm removal by both mechanical and chemical control. The aim of this study was to evaluate the effectiveness of adding vegetable or mineral oil to a commercially available dentifrice in dental biofilm control. A comparison using the Oral Hygiene Index Simplified (OHI-S) was performed in 30 individuals who were randomly divided into three groups. Group 1 (G1) received a commercially available dentifrice; the composition of this dentifrice was modified by addition of mineral oil (Nujol®) for group 2 (G2) or a vegetable oil (Alpha Care®) for group 3 (G3) at 10% of the total volume, respectively. The two-way repeated-measures analysis of variance (two-way ANOVA) was used to test the effect of group (G1, G2 and G3) or time (baseline, 45 days and 90 days) on the OHI-S index scores. Statistical analysis revealed a significant reduction in the OHI-S at day 90 in G2 (p mineral oil to a commercially available dentifrice improved dental biofilm control, suggesting that these oils may aid in the prevention and/or control of caries and periodontal disease.

  20. Optothermal window method for on-line monitoring of decay kinetics of trans-á-carotene in thermally treated vegetable oils

    NARCIS (Netherlands)

    Ganguli, O.; Bicanic, D.D.; BonifaSi', M.; Nicoli, M.C.; Chirtoc, M.

    2003-01-01

    The optothermal window detection method at 488 nm was used to monitor on-line the concentration of trans-ß-carotene that was added to several vegetable oils after treating them at 200 °C in the presence of air for varying amounts of time. Results obtained for extra virgin oil show a direct proportio

  1. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa.

    Science.gov (United States)

    Ivory, Sarah J; McGlue, Michael M; Ellis, Geoffrey S; Lézine, Anne-Marie; Cohen, Andrew S; Vincens, Annie

    2014-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼ 18-9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely

  2. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa

    Science.gov (United States)

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie

    2015-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (~18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact

  3. PLS-based memory control scheme for enhanced process monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-01-20

    Fault detection is important for safe operation of various modern engineering systems. Partial least square (PLS) has been widely used in monitoring highly correlated process variables. Conventional PLS-based methods, nevertheless, often fail to detect incipient faults. In this paper, we develop new PLS-based monitoring chart, combining PLS with multivariate memory control chart, the multivariate exponentially weighted moving average (MEWMA) monitoring chart. The MEWMA are sensitive to incipient faults in the process mean, which significantly improves the performance of PLS methods and widen their applicability in practice. Using simulated distillation column data, we demonstrate that the proposed PLS-based MEWMA control chart is more effective in detecting incipient fault in the mean of the multivariate process variables, and outperform the conventional PLS-based monitoring charts.

  4. International Symposium on Monitoring Behavior and Supervisory Control

    CERN Document Server

    Johannsen, Gunnar

    1976-01-01

    This book includes all papers presented at the International Symposium on Monitoring Behavior and Supervisory Control held at Berchtesgaden, Federal Republic of Germany, March 8-12, 1976. The Symposium was sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization, Brussels, and the government of the Federal Republic of Germany, Bonn. We believe the book constitutes an important and timely status report on monitoring behavior and supervisory control by human operators of complex man-machine systems in which the computer is sharing key functions with the man. These systems include aircraft and other vehicles, nuclear and more conventional power plants, and processes for the manu­ facture of chemicals, petroleum, and discrete parts. By "monitoring" we mean the systematic observation by a human operator of mul tiple sources of information, e. g. , ranging from integrated display consoles to disparate "live situations". The monitor's purpose is to determine whether operations are norm...

  5. B190 computer controlled radiation monitoring and safety interlock system

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, D L; Fields, W F; Gittins, D E; Roberts, M L

    1998-08-01

    The Center for Accelerator Mass Spectrometry (CAMS) in the Earth and Environmental Sciences Directorate at Lawrence Livermore National Laboratory (LLNL) operates two accelerators and is in the process of installing two new additional accelerators in support of a variety of basic and applied measurement programs. To monitor the radiation environment in the facility in which these accelerators are located and to terminate accelerator operations if predetermined radiation levels are exceeded, an updated computer controlled radiation monitoring system has been installed. This new system also monitors various machine safety interlocks and again terminates accelerator operations if machine interlocks are broken. This new system replaces an older system that was originally installed in 1988. This paper describes the updated B190 computer controlled radiation monitoring and safety interlock system.

  6. Monitoring and Control Interface Based on Virtual Sensors

    Directory of Open Access Journals (Sweden)

    Ricardo F. Escobar

    2014-10-01

    Full Text Available In this article, a toolbox based on a monitoring and control interface (MCI is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity. An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users.

  7. Web based remote monitoring and controlling system for vulnerable environments

    Science.gov (United States)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  8. Availability of free fruits and vegetables at canteen lunch improves lunch and daily nutritional profiles: a randomised controlled trial.

    Science.gov (United States)

    Lachat, Carl K; Verstraeten, Roosmarijn; De Meulenaer, Bruno; Menten, Joris; Huybregts, Lieven F; Van Camp, John; Roberfroid, Dominique; Kolsteren, Patrick W

    2009-10-01

    Canteens are known to be promising settings for activities to promote intake of fruits and vegetables, but it remains unclear to what extent distributing free fruits and vegetables can influence dietary patterns of customers. The present study evaluated the effect of providing fruits and vegetables for free in a university canteen on the daily diet of university canteen customers. Canteen customers (n 209) were randomly allocated to a fruit and vegetable group (FVG) and a control group (CG). FVG participants were given two portions of fruits and one portion of vegetables for free at lunchtime. Food and beverage intake was measured using a dietary record for 3 d and dietary quality was appraised using a comprehensive scoring system. The FVG participants ate 80 g more fruits (P canteen lunch can be instrumental to enhance the nutritional quality of lunch as well as the overall quality of the diet of the customers.

  9. Monitoring system and methods for a distributed and recoverable digital control system

    Science.gov (United States)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.

  10. Use of biorational for the vegetable pest control in the north of Sinaloa

    Directory of Open Access Journals (Sweden)

    María Berenice González Maldonado

    2012-09-01

    Full Text Available In Sinaloa the vegetable and cucurbits production are important agricultural activities, so each year a high volume of chemicalinsecticides are applied to pest control that attack these crops. This paper present the main pests insects in the region, as wellas an analysis about effects of biorational insecticides on these pests. Was found that for control of Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae is used Neem oil 0.2%., for kill nymphs of Bactericera cockerelli Sulc. (Homoptera: Psyllidae soursop Annona muricata L. (Annonales: Annonaceae at doses of 2500-5000 mg/L., for Liriomyza trifolii Burgess (Diptera: Agromyzidae neem seeds 2%., to Myzus persicae Sulzer (Hemiptera: Aphididae rapeseed oil at doses 920 g/L (2% v/v., to Frankliniella occidentalis Pergande (Thysanoptera: Thripidae spinosad (Conserve® 48-60 mg/L., and for Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae granular viruses (105 OBs/mL combined with neem (DalNeem TM emulsifiable oil and NeemAzal TM -T/S at doses of 8 mg/L, everyone. The use of these products and the dose depends on the type of pest and crop. In general these products cause insect mortality greater than 95%, besides having low toxicity on natural enemies, so that these can be used individually or in combination in integrated pest control schemes against vegetable pests, and also for disease vectors insects in the northern of Sinaloa.

  11. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    Science.gov (United States)

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes

  12. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  13. Double Shell Tank (DST) Monitor and Control Subsystem Specification

    Energy Technology Data Exchange (ETDEWEB)

    BAFUS, R.R.

    2000-04-27

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Monitor and Control Subsystem that supports the first phase of Waste Feed Delivery. This subsystem specification establishes the interface and performance requirements and provides references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Monitor and Control Subsystem. The DST Monitor and Control Subsystem consists of the new and existing equipment that will be used to provide tank farm operators with integrated local monitoring and control of the DST systems to support Waste Feed Delivery (WFD). New equipment will provide automatic control and safety interlocks where required and provide operators with visibility into the status of DST subsystem operations (e.g., DST mixer pump operation and DST waste transfers) and the ability to manually control specified DST functions as necessary. This specification is intended to be the basis for new project/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  14. Controls on vegetation structure in Southwestern ponderosa pine forests, 1941 and 2004.

    Science.gov (United States)

    Bakker, Jonathan D; Moore, Margaret M

    2007-09-01

    considered when extrapolating results from one site to another. In addition, the understory vegetation was more strongly controlled by the ponderosa pine overstory than by recent livestock grazing or by temporal dynamics, indicating that overstory effects must be accounted for when examining understory responses in this ecosystem.

  15. Structural monitoring and smart control of a wind turbine

    DEFF Research Database (Denmark)

    Caterino, Nicola; Trinchillo, Francesco; Georgakis, Christos T.

    2014-01-01

    The remarkable growth in height of wind turbines in the last years - for a higher production of electricity - makes the issues of monitoring and control of such challenging engineering works pressing than ever. The research herein proposed is addressed to monitor the structural demand imposed...... to the tower as well as to bound it within given limits thanks to the presence and automatic remote control of smart devices at the base of the tower. The latter are magnetorheological (MR) dampers, i.e. special dissipative devices able to change, almost in real time, their mechanical behaviour according...

  16. Tank monitor and control system (TMACS) software configuration management plan

    Energy Technology Data Exchange (ETDEWEB)

    GLASSCOCK, J.A.

    1999-05-13

    This Software Configuration Management Plan (SCMP) describes the methodology for control of computer software developed and supported by the Systems Development and Integration (SD and I) organization of Lockheed Martin Services, Inc. (LMSI) for the Tank Monitor and Control System (TMACS). This plan controls changes to the software and configuration files used by TMACS. The controlled software includes the Gensym software package, Gensym knowledge base files developed for TMACS, C-language programs used by TMACS, the operating system on the production machine, language compilers, and all Windows NT commands and functions which affect the operating environment. The configuration files controlled include the files downloaded to the Acromag and Westronic field instruments.

  17. Panels Manufactured from Vegetable Fibers: An Alternative Approach for Controlling Noises in Indoor Environments

    Directory of Open Access Journals (Sweden)

    Leopoldo Pacheco Bastos

    2012-01-01

    Full Text Available Noise control devices such as panels and barriers, when of high efficiency, generally are of difficult acquisition due to high costs turning in many cases their use impracticable, mainly for limited budget small-sized companies. There is a huge requirement for new acoustic materials that have satisfactory performance, not only under acoustic aspect but also other relevant ones and are of low cost. Vegetable fibers are an alternative solution when used as panels since they promise satisfactory acoustic absorption, according to previous researches, exist in abundance, and derive from renewable sources. This paper, therefore, reports on the development of panels made from vegetable fibers (coconut, palm, sisal, and açaí, assesses their applicability by various experimental (flammability, odor, fungal growth, and ageing tests, and characterize them acoustically in terms of their sound absorption coefficients on a scale model reverberant chamber. Acoustic results point out that the aforementioned fiber panels play pretty well the role of a noise control device since they have compatible, and in some cases, higher performance when compared to commercially available conventional materials.

  18. Monitoring and Control of the Automated Transfer Vehicle

    Science.gov (United States)

    Hugonnet, C.; D'Hoine, S.

    The objective of this paper is to present succinctly the architecture of the heart of the ATV Control Centre: the Monitoring and Control developed by CS for the French Space Agency (CNES) and the European Space Agency (ESA). At the moment, the Monitoring and Control is in the development phase, a first real time version will be delivered to CNES in July 2003, then a second version will be delivered in October including off line capabilities. The following paper introduces the high level specifications and the main driving performance criteria of the monitoring and control system in order to successfully operate these complex ATV space vehicles from the first flight planned in 2004. It presents the approach taken by CS and CNES in order to meet this challenge in a very short time. ATV-CC Monitoring and Control system is based on the reuse of flight proven components that are integrated in a software bus based architecture. The paper particularly shows the advantages of using new computer technologies in operational system: use of Object Oriented technologies from specification, design (UML) to development (C++, Java, PLSQL), use of a CORBA Object Request Broker for the exchange of messages and some centralised services, use of Java for the development of an ergonomic and standardised (for all functions of the M&C) Graphical User Interface and the extensive use of XML for data exchanges.

  19. Food safety controls in different governance structures in China’s vegetable and fruit industry

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie-hong; LI Kai; LIANG Qiao

    2015-01-01

    Food safety issues constitute an international topic discussed by many scholars. Although there is an extensive body of literature on comparisons of food safety control practices across different governance structures, these studies have been conducted mainly in terms of qualitative and descriptive analysis. In addition, little attention has been given to family farms. This study addresses the food safety control practices adopted by ifrms with different governance structures in China. Food safety control is expressed by the folowing aspects, i.e., polution-free, green, organic, and/or geographical indication prod-ucts certiifcation, establishment of production records, and pesticide residue testing. Three types of governance structures that engage in agricultural production are distinguished: farmer cooperatives, agricultural companies, and family farms. The food safety control practices of various governance structures are investigated based on a database that comprises 600 vegetable and fruit enterprises in Zhejiang, China. The results show that (1) pesticide residue testing is adopted by the most ifrms, folowed by products certiifcation, and production records are adopted by the fewest ifrms, and (2) agricul-tural companies adopt more food safety control practices than family farms, while farmer cooperatives adopt the fewest food safety control practices. Governance structure features of a cooperative in terms of ownership, decision-making, and income distribution are the main reasons for the low level of food safety control in the cooperative.

  20. Multiplatform automated system for monitoring and sprinkler irrigation control

    Directory of Open Access Journals (Sweden)

    PINTO, M. L.

    2016-06-01

    Full Text Available The automation systems together with web and mobile control is a facilitator of the various processes in several areas, among them the agricultural sector. Specically in the irrigation management, the lowest cost technology is not able to satisfy the farmer's needs, which are the correct water supply to plants and remote monitoring of the irrigation. The objective of this paper is to present a system for controlling and monitoring irrigation with a multiplatform support for both desktop and web/mobile. The system is designed to realize automatic irrigation management in order to provide the exact amount of water needed for culture, avoiding water stress both the culture and the waste of resources such as water and electricity. Additionally, the system allows remote monitoring from anywhere by means of a computer and/or mobile device by internet. This work was developed during the undergraduate mentorship of the authors.

  1. Run Control and Monitor System for the CMS Experiment

    CERN Document Server

    Bellato, M; Brigljevic, V; Bruno, G; Cano, E; Cittolin, Sergio; Csilling, Akos; Erhan, S; Gigi, D; Glege, F; Gómez-Reino, Robert; Gulmini, M; Gutleber, J; Jacobs, C; Kozlovszky, Miklos; Larsen, H; Magrans de Abril, Ildefons; Maron, G; Meijers, F; Meschi, E; Murray, S; Oh, A; Orsini, L; Pollet, L; Rácz, A; Rorato, G; Samyn, D; Scharff-Hansen, P; Schwick, C; Sphicas, Paris; Toniolo, N; Ventura, Sandro; Zangrando, L

    2003-01-01

    The Run Control and Monitor System (RCMS) of the CMS experiment is the set of hardware and software components responsible for controlling and monitoring the experiment during data-taking. It provides users with a "virtual counting room", enabling them to operate the experiment and to monitor detector status and data quality from any point in the world. This paper describes the architecture of the RCMS with particular emphasis on its scalability through a distributed collection of nodes arranged in a tree-based hierarchy. The current implementation of the architecture in a prototype RCMS used in test beam setups, detector validations and DAQ demonstrators is documented. A discussion of the key technologies used, including Web Services, and the results of tests performed with a 128-node system are presented.

  2. Environmental Monitoring and Greenhouse Control by Distributed Sensor Network

    Directory of Open Access Journals (Sweden)

    S.R.BOSELIN PRABHU

    2014-03-01

    Full Text Available A sensor is a miniature component which measure physical parameters from the environment. Sensors measure the physical parameters and transmit them either by wired or wireless medium. In wireless medium the sensor and its associated components are called as node. A node is self-possessed by a processor, local memory, sensors, radio, battery and a base station responsible for receiving and processing data collected by the nodes. They carry out joint activities due to limited resources such as battery, processor and memory. Nowadays, the applications of these networks are numerous, varied and the applications in agriculture are still budding. One interesting application is in environmental monitoring and greenhouse control, where the crop conditions such as climate and soil do not depend on natural agents. To control and monitor the environmental factors, sensors and actuators are necessary. Under these circumstances, these devices must be used to make a distributed measure, spreading sensors all over the greenhouse using distributed clustering. This paper reveals an idea of environmental monitoring and greenhouse control using a sensor network. The hardware implementation shows periodic monitoring and control of greenhouse gases in an enhanced manner. Future work is concentrated in application of the same mechanism using wireless sensor network.

  3. Challenges for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: traskd@aecl.ca [Atomic Energy of Canada Limited, Fredericton, New Brunswick (Canada)

    2013-07-01

    This paper considers a model for small, unmanned, remotely located reactors and discusses the ensuing cyber security and operational challenges for monitoring and control and how these challenges might be overcome through some of AECL's research initiatives and experience. (author)

  4. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    Science.gov (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  5. Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shujuan [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Wei [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); Wang, Kelin, E-mail: kelin@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); Pan, Fujing [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Shan [Changsha university, Changsha 410003 (China); Shu, Shiyan [Changjiang Project Supervision & Consultancy Co. Ltd, Wuhan 430010 (China); Changjiang Ecology (Hubei) Technology Development LLC, Wuhan 430010 (China)

    2015-07-15

    Vegetation succession enhances the accumulation of carbon in the soil. However, little is known about the mechanisms underlying soil organic carbon (SOC) accumulation in different vegetation types in the karst region of Southwest China. The goal of this study was to identify and prioritize the effects of environmental parameters, including soil physico-chemical properties, microbial biomass, enzyme activities, and litter characteristics, on SOC accumulation along a vegetation succession sere (grassland, shrubland, secondary forest, and primary forest) in the karst landscape of Southwest China. Relationships between these parameters and SOC were evaluated by redundancy analysis. The results showed that SOC accumulation was significantly different among vegetation types (P < 0.01) and increased with vegetation succession (from 29.10 g·kg{sup −1} in grassland to 73.92 g·kg{sup −1} in primary forest). Soil biochemistry and physical characteristics significantly affected the accumulation of SOC. Soil microbial biomass showed a predominant effect on SOC in each of the four vegetation types. In addition, the soil physical property (especially the silt content) was another controlling factor in the early stages (grassland), and urease activity and saccharase activity were important controlling factors in the early-middle and middle-late stages, respectively. Litter characteristics only showed mild effects on SOC accumulation. Variation partitioning analysis showed that the contribution of sole main factors to SOC variation decreased, while the interaction effect among parameters increased along the succession gradient. - Highlights: • Vegetation restoration is conducive to soil carbon sequestration in karst areas. • The factors controlling SOC accumulation differed along vegetation succession. • The interaction effect among significant factors became more and more prominent along succession.

  6. Effect of fruit and vegetable concentrates on endothelial function in metabolic syndrome: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ma Yingying

    2011-06-01

    Full Text Available Abstract Background and Objective Dehydrated fruit and vegetable concentrates provide an accessible form of phytonutrient supplementation that may offer cardioprotective effects. This study assessed the effects of two blends of encapsulated juice powder concentrates (with and without added berry powders on endothelial function in persons with metabolic syndrome, a risk factor for type 2 diabetes and cardiovascular disease. Methods Randomized, double blind, placebo controlled crossover clinical trial with three treatment arms. 64 adults with metabolic syndrome were enrolled and received 8-week sequences of each blend of the concentrates and placebo. The primary outcome measure was change in endothelial function (assessed as flow-mediated dilatation of the brachial artery 2 hr after consuming a 75 g glucose load, after 8-weeks of daily consumption (sustained or 2 hr after consumption of a single dose (acute. Secondary outcome measures included plasma glucose, serum insulin, serum lipids, and body weight. Results No significant between-group differences in endothelial function with daily treatment for 8 weeks were seen. No other significant treatment effects were discerned in glucose, insulin, lipids, and weight. Conclusion Encapsulated fruit and vegetable juice powder concentrates did not alter insulin or glucose measures in this sample of adults with metabolic syndrome. Trial Registration clinicaltrials.gov NCT01224743

  7. Performance of Eucalyptus dunnii as influenced by vegetation ...

    African Journals Online (AJOL)

    Performance of Eucalyptus dunnii as influenced by vegetation control when ... Log in or Register to get access to full text downloads. ... Tree growth was monitored throughout the rotation and this, together with the cost of the various weeding ...

  8. Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation

    Science.gov (United States)

    Byrd, Kristin B.; O'Connell, Jessica L.; Di Tommaso, Stefania; Kelly, Maggi

    2014-01-01

    There is a need to quantify large-scale plant productivity in coastal marshes to understand marsh resilience to sea level rise, to help define eligibility for carbon offset credits, and to monitor impacts from land use, eutrophication and contamination. Remote monitoring of aboveground biomass of emergent wetland vegetation will help address this need. Differences in sensor spatial resolution, bandwidth, temporal frequency and cost constrain the accuracy of biomass maps produced for management applications. In addition the use of vegetation indices to map biomass may not be effective in wetlands due to confounding effects of water inundation on spectral reflectance. To address these challenges, we used partial least squares regression to select optimal spectral features in situ and with satellite reflectance data to develop predictive models of aboveground biomass for common emergent freshwater marsh species, Typha spp. and Schoenoplectus acutus, at two restored marshes in the Sacramento–San Joaquin River Delta, California, USA. We used field spectrometer data to test model errors associated with hyperspectral narrowbands and multispectral broadbands, the influence of water inundation on prediction accuracy, and the ability to develop species specific models. We used Hyperion data, Digital Globe World View-2 (WV-2) data, and Landsat 7 data to scale up the best statistical models of biomass. Field spectrometer-based models of the full dataset showed that narrowband reflectance data predicted biomass somewhat, though not significantly better than broadband reflectance data [R2 = 0.46 and percent normalized RMSE (%RMSE) = 16% for narrowband models]. However hyperspectral first derivative reflectance spectra best predicted biomass for plots where water levels were less than 15 cm (R2 = 0.69, %RMSE = 12.6%). In species-specific models, error rates differed by species (Typha spp.: %RMSE = 18.5%; S. acutus: %RMSE = 24.9%), likely due to the more vertical structure and

  9. A Comparative Analysis between GIMSS NDVIg and NDVI3g for Monitoring Vegetation Activity Change in the Northern Hemisphere during 1982–2008

    Directory of Open Access Journals (Sweden)

    Deqin Fan

    2013-08-01

    Full Text Available The long-term Normalized Difference Vegetation Index (NDVI time-series data set generated from the Advanced Very High Resolution Radiometers (AVHRR has been widely used to monitor vegetation activity change. The third version of NDVI (NDVI3g produced by the Global Inventory Modeling and Mapping Studies (GIMMS group was released recently. The comparisons between the new and old versions should be conducted for linking existing studies with future applications of NDVI3g in monitoring vegetation activity change. Based on simple and piecewise linear regression methods, this study made a comparative analysis between NDVIg and NDVI3g for monitoring vegetation activity change and its responses to climate change in the middle and high latitudes of the Northern Hemisphere during 1982–2008. Our results indicated that there were large differences between NDVIg and NDVI3g in the spatial patterns for both the overall changing trends and the timing of Turning Points (TP in NDVI time series, which spread over almost the entire study region. The average NDVI trend from NDVI3g was almost twice as great as that from NDVIg and the detected average timing of TP from NDVI3g was about one year later. Although the general spatial patterns were consistent between two data sets for detecting the responses of growing-season NDVI to temperature and precipitation changes, there were large differences in the response magnitude, with a higher response magnitude to temperature in NDVI3g and an opposite response to precipitation change for the two data sets. These results demonstrated that the NDVIg data set may underestimate the vegetation activity change trend and its response to climate change in the middle and high latitudes of the Northern Hemisphere during the past three decades.

  10. Daily self-monitoring of body weight, step count, fruit/vegetable intake, and water consumption: a feasible and effective long-term weight loss maintenance approach.

    Science.gov (United States)

    Akers, Jeremy D; Cornett, Rachel A; Savla, Jyoti S; Davy, Kevin P; Davy, Brenda M

    2012-05-01

    Maintenance of weight loss remains a challenge for most individuals. Thus, practical and effective weight-loss maintenance (WTLM) strategies are needed. A two-group 12-month WTLM intervention trial was conducted from June 2007 to February 2010 to determine the feasibility and effectiveness of a WTLM intervention for older adults using daily self-monitoring of body weight, step count, fruit/vegetable (F/V) intake, and water consumption. Forty weight-reduced individuals (mean weight lost=6.7±0.6 kg; body mass index [calculated as kg/m²] 29.2±1.1), age 63±1 years, who had previously participated in a 12-week randomized controlled weight-loss intervention trial, were instructed to record daily body weight, step count, and F/V intake (WEV [defined as weight, exercise, and F/V]). Experimental group (WEV+) participants were also instructed to consume 16 fl oz of water before each main meal (ie, three times daily), and to record daily water intake. Outcome measures included weight change, diet/physical activity behaviors, theoretical constructs related to health behaviors, and other clinical measures. Statistical analyses included growth curve analyses and repeated measures analysis of variance. Over 12 months, there was a linear decrease in weight (β=-0.32, Pweight for each participant determined that weight loss was greater over the study period in the WEV+ group than in the WEV group, corresponding to weight changes of -0.67 kg and 1.00 kg, respectively, and an 87% greater weight loss (β=-0.01, Pweight, physical activity, and F/V consumption is a feasible and effective approach for maintaining weight loss for 12 months, and daily self-monitoring of increased water consumption may provide additional WTLM benefits.

  11. Condition monitoring, diagnostic and controlling tool for boiler feed pump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sohail [Siemens AG, Muelheim (Germany). Energy Sector; Leithner, Reinhard; Kosyna, Guenter [TU Braunschweig (Germany)

    2010-07-01

    The boiler feed pump is an important component of a thermal power generation cycle and demands high safety and unquestionable availability for flexible power plant operation. In this research paper, the methodology of a general purpose condition monitoring, diagnostic and controlling tool is presented, which can address the challenges of operational safety and availability as well as optimal operation of a boiler feed pump. This tool not only effectively records the life time consumption of both casings and rotors and monitors the small gaps between casings and rotors but also suggests appropriate actions in order to ensure that the pump operates within the allowable design limits. (orig.)

  12. Mobile monitoring and embedded control system for factory environment.

    Science.gov (United States)

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  13. Mobile Monitoring and Embedded Control System for Factory Environment

    Directory of Open Access Journals (Sweden)

    Kuang-Yow Lian

    2013-12-01

    Full Text Available This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC technology is used to carry out the actual electricity load experiments using smart phones.

  14. Statistical process control methods for expert system performance monitoring.

    Science.gov (United States)

    Kahn, M G; Bailey, T C; Steib, S A; Fraser, V J; Dunagan, W C

    1996-01-01

    The literature on the performance evaluation of medical expert system is extensive, yet most of the techniques used in the early stages of system development are inappropriate for deployed expert systems. Because extensive clinical and informatics expertise and resources are required to perform evaluations, efficient yet effective methods of monitoring performance during the long-term maintenance phase of the expert system life cycle must be devised. Statistical process control techniques provide a well-established methodology that can be used to define policies and procedures for continuous, concurrent performance evaluation. Although the field of statistical process control has been developed for monitoring industrial processes, its tools, techniques, and theory are easily transferred to the evaluation of expert systems. Statistical process tools provide convenient visual methods and heuristic guidelines for detecting meaningful changes in expert system performance. The underlying statistical theory provides estimates of the detection capabilities of alternative evaluation strategies. This paper describes a set of statistical process control tools that can be used to monitor the performance of a number of deployed medical expert systems. It describes how p-charts are used in practice to monitor the GermWatcher expert system. The case volume and error rate of GermWatcher are then used to demonstrate how different inspection strategies would perform.

  15. A pooled analysis of case-control studies of thyroid cancer. VII. Cruciferous and other vegetables (International)

    NARCIS (Netherlands)

    Bosetti, C; Negri, E; Kolonel, L; Ron, E; Franceschi, S; Preston-Martin, S; McTiernan, A; Dal Maso, L; Mark, SD; Mabuchi, K; Land, C; Jin, F; Wingren, G; Galanti, MR; Hallquist, A; Glattre, E; Lund, E; Levi, F; Linos, D; La Vecchia, C

    2002-01-01

    Objective: To investigate the association between cruciferous and other vegetables and thyroid cancer risk we systematically reanalyzed the original data from 11 case-control studies conducted in the US, Asia, and Europe. Methods: A total of 2241 cases (1784 women, 457 men) and 3716 controls (2744

  16. A pooled analysis of case-control studies of thyroid cancer. VII. Cruciferous and other vegetables (International)

    NARCIS (Netherlands)

    Bosetti, C; Negri, E; Kolonel, L; Ron, E; Franceschi, S; Preston-Martin, S; McTiernan, A; Dal Maso, L; Mark, SD; Mabuchi, K; Land, C; Jin, F; Wingren, G; Galanti, MR; Hallquist, A; Glattre, E; Lund, E; Levi, F; Linos, D; La Vecchia, C

    2002-01-01

    Objective: To investigate the association between cruciferous and other vegetables and thyroid cancer risk we systematically reanalyzed the original data from 11 case-control studies conducted in the US, Asia, and Europe. Methods: A total of 2241 cases (1784 women, 457 men) and 3716 controls (2744 w

  17. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  18. On-line Monitoring and Active Control for Transformer Noise

    Science.gov (United States)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  19. Distributed and Redundant Design of Ship Monitoring and Control Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jun-dong; SUI; Jiang-hua

    2002-01-01

    The world trend in ship automation is to integrate the monitoring, intelligent control and systematic management of the instruments and equipments both on bridge and in engine room. The paper presents a design scheme of the ship integrated monitoring and operating system based on two layers distributed and redundant computer network. The lower layer network is the field bus network connected mainly by CAN bus; the upper one is the PC local network in TCP/IP protocol, which consisted of a database server, monitoring and operating computers, industrial computers and a set of switches. Distributed schemes are fully applied to both software and hardware. This paper specifically describes the composition, software distribution and redundant technology of the upper local network and gives some important sample codes for the implement of the redundant and distributed design. The technologies here have been proved in the many applications and it may be applied to other industrial fields.

  20. Monitoring service for the Gran Telescopio Canarias control system

    Science.gov (United States)

    Huertas, Manuel; Molgo, Jordi; Macías, Rosa; Ramos, Francisco

    2016-07-01

    The Monitoring Service collects, persists and propagates the Telescope and Instrument telemetry, for the Gran Telescopio CANARIAS (GTC), an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). A new version of the Monitoring Service has been developed in order to improve performance, provide high availability, guarantee fault tolerance and scalability to cope with high volume of data. The architecture is based on a distributed in-memory data store with a Product/Consumer pattern design. The producer generates the data samples. The consumers either persists the samples to a database for further analysis or propagates them to the consoles in the control room to monitorize the state of the whole system.

  1. Monitoring and control of fine abrasive finishing processes

    DEFF Research Database (Denmark)

    Lazarev, Ruslan

    In engineering, surfaces with specified functional properties are of high demand in various applications. Desired surface finish can be obtained using several methods. Abrasive finishing is one of the most important processes in the manufacturing of mould and dies tools. It is a principal method...... of this work was to investigate foundations for process monitoring and control methods in application to semi-automated polishing machine based on the industrial robot. The monitoring system was built on NI data acquisition system with two sensors, acoustic emission sensor and accelerometer. Acquired sensory...... signals were analysed in time-frequency domain and specific process features are extracted in relation to machining parameters and processed surface properties. Development and research of the process monitoring was done with background in evaluation of surface roughness parameters. The characterization...

  2. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    Science.gov (United States)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  3. Effects of social approval bias on self-reported fruit and vegetable consumption: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Marcus Al C

    2008-06-01

    Full Text Available Abstract Background Self-reports of dietary intake in the context of nutrition intervention research can be biased by the tendency of respondents to answer consistent with expected norms (social approval bias. The objective of this study was to assess the potential influence of social approval bias on self-reports of fruit and vegetable intake obtained using both food frequency questionnaire (FFQ and 24-hour recall methods. Methods A randomized blinded trial compared reported fruit and vegetable intake among subjects exposed to a potentially biasing prompt to that from control subjects. Subjects included 163 women residing in Colorado between 35 and 65 years of age who were randomly selected and recruited by telephone to complete what they were told would be a future telephone survey about health. Randomly half of the subjects then received a letter prior to the interview describing this as a study of fruit and vegetable intake. The letter included a brief statement of the benefits of fruits and vegetables, a 5-A-Day sticker, and a 5-a-Day refrigerator magnet. The remainder received the same letter, but describing the study purpose only as a more general nutrition survey, with neither the fruit and vegetable message nor the 5-A-Day materials. Subjects were then interviewed on the telephone within 10 days following the letters using an eight-item FFQ and a limited 24-hour recall to estimate fruit and vegetable intake. All interviewers were blinded to the treatment condition. Results By the FFQ method, subjects who viewed the potentially biasing prompts reported consuming more fruits and vegetables than did control subjects (5.2 vs. 3.7 servings per day, p Conclusion Self-reports of fruit and vegetable intake using either a food frequency questionnaire or a limited 24-hour recall are both susceptible to substantial social approval bias. Valid assessments of intervention effects in nutritional intervention trials may require objective measures of

  4. Effect of lifestyle on asthma control in Japanese patients: importance of periodical exercise and raw vegetable diet.

    Science.gov (United States)

    Iikura, Motoyasu; Yi, Siyan; Ichimura, Yasunori; Hori, Ai; Izumi, Shinyu; Sugiyama, Haruhito; Kudo, Koichiro; Mizoue, Tetsuya; Kobayashi, Nobuyuki

    2013-01-01

    The avoidance of inhaled allergens or tobacco smoke has been known to have favorable effects on asthma control. However, it remains unclear whether other lifestyle-related factors are also related to asthma control. Therefore, a comprehensive study to examine the associations between various lifestyle factors and asthma control was conducted in Japanese asthmatic patients. The study subjects included 437 stable asthmatic patients recruited from our outpatient clinic over a one-year period. A written, informed consent was obtained from each participant. Asthma control was assessed using the asthma control test (ACT), and a structured questionnaire was administered to obtain information regarding lifestyle factors, including tobacco smoking, alcohol drinking, physical exercise, and diet. Both bivariate and multivariate analyses were conducted. The proportions of total control (ACT = 25), well controlled (ACT = 20-24), and poorly controlled (ACT smoking status and alcohol drinking were not associated with asthma control. On the other hand, younger age (smoking, periodical exercise (> 3 metabolic equivalents-h/week), and raw vegetable intake (> 5 units/week) were significantly associated with good asthma control by bivariate analysis. Younger age, periodical exercise, and raw vegetable intake were significantly associated with good asthma control by multiple linear regression analysis. Periodical exercise and raw vegetable intake are associated with good asthma control in Japanese patients.

  5. Extrato vegetal, fosfito e sulfato de zinco no controle do oídio em eucalipto

    Directory of Open Access Journals (Sweden)

    André Costa da Silva

    Full Text Available RESUMO O objetivo do trabalho foi avaliar a eficácia de um extrato vegetal obtido a partir de folhas de cafeeiro infectadas por Hemileia vastatrix (NEFID, do fosfito de zinco, sulfato de zinco e da mistura desses nutrientes com o extrato NEFID, no controle do oídio em eucalipto. O experimento foi conduzido em minijardim clonal, contendo minicepas do híbrido Eucalyptus urophylla x Eucalyptus grandis (“urograndis”, considerado altamente suscetível ao oídio. Os tratamentos consistiram da aplicação do extrato NEFID, do sulfato ou fosfito de zinco e a combinação desses nutrientes com o extrato nas proporções de 50:50, 25:75 e 75:25, respectivamente. As aplicações dos tratamentos e as avaliações da severidade da doença foram feitas a cada 14 dias. Foram avaliados também os efeitos dos tratamentos sobre a produção e a porcentagem de enraizamento das mini-estacas, além da ação fungitóxica direta dos tratamentos sobre o Oidium eucalypti através da microscopia eletrônica de varredura. Todos os tratamentos foram eficientes no controle do oídio em minicepas de eucalipto, obtendo controles que variaram de 45-70% da doença. O extrato vegetal NEFID, o fosfito de zinco, a mistura desses dois produtos e o tratamento contendo 25% Sulfato de zinco + 75% NEFID foram os que obtiveram melhores controles do oídio, sendo mais eficiente que o fungicida à base de piraclostrobina + epoxiconazole usado no controle do patógeno. Verificou-se que todos os tratamentos foram fungitóxicos, causando grandes modificações na sua morfologia. Os tratamentos não afetaram negativamente a produção de mini-estacas e a porcentagem de enraizamento.

  6. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  7. Study protocol: a cluster randomised controlled trial of a school based fruit and vegetable intervention – Project Tomato

    Directory of Open Access Journals (Sweden)

    Conner Mark T

    2009-06-01

    Full Text Available Abstract Background The School Fruit and Vegetable Scheme (SFVS is an important public health intervention. The aim of this scheme is to provide a free piece of fruit and/or vegetable every day for children in Reception to Year 2. When children are no longer eligible for the scheme (from Year 3 their overall fruit and vegetable consumption decreases back to baseline levels. This proposed study aims to design a flexible multi-component intervention for schools to support the maintenance of fruit and vegetable consumption for Year 3 children who are no longer eligible for the scheme. Method This study is a cluster randomised controlled trial of Year 2 classes from 54 primary schools across England. The schools will be randomly allocated into two groups to receive either an active intervention called Project Tomato, to support maintenance of fruit intake in Year 3 children, or a less active intervention (control group, consisting of a 5 A DAY booklet. Children's diets will be analysed using the Child And Diet Evaluation Tool (CADET, and height and weight measurements collected, at baseline (Year 2 and 18 month follow-up (Year 4. The primary outcome will be the ability of the intervention (Project Tomato to maintain consumption of fruit and vegetable portions compared to the control group. Discussion A positive result will identify how fruit and vegetable consumption can be maintained in young children, and will be useful for policies supporting the SFVS. A negative result would be used to inform the research agenda and contribute to redefining future strategies for increasing children's fruit and vegetable consumption. Trial registration Medical Research Council Registry code G0501297

  8. Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan.

    Science.gov (United States)

    Hara, Megumi; Hanaoka, Tomoyuki; Kobayashi, Minatsu; Otani, Tetsuya; Adachi, Helena Yukari; Montani, Ai; Natsukawa, Syusuke; Shaura, Kozo; Koizumi, Yoichi; Kasuga, Yoshio; Matsuzawa, Tsunetomo; Ikekawa, Tetsuro; Sasaki, Satoshi; Tsugane, Shoichiro

    2003-01-01

    We assessed the possible association of gastrointestinal cancers with cruciferous vegetables and mushrooms in a multicenter, hospital-based case-control study in an agricultural area of Japan. One hundred forty-nine cases and 287 controls for stomach cancer and 115 cases and 230 controls for colorectal cancer were matched by age, sex, and residential area. In stomach cancer, the protective effect of vegetables (consumption of total vegetable) was obscure, but it became clearer when we examined specific kinds of vegetables. Marginal associations were observed in the group of the highest consumption of Chinese cabbage (odds ratio [OR] = 0.61; 95% confidence interval [CI] = 0.35-1.07), broccoli (OR = 0.60; 95% CI = 0.34-1.08), Hypsizigus marmoreus (Bunashimeji) (OR = 0.57; 95% CI = 0.31-1.04) and Pholita nameko (Nameko) (OR = 0.56; 95% CI = 0.30-1.06). In colorectal cancer, we observed decreased risks from the highest tertile of total vegetables (OR = 0.22; 95% CI = 0.08-0.66) and low-carotene-containing vegetables (OR = 0.28; 95% CI = 0.08-0.77), and inverse associations were observed in the group of the highest consumption of broccoli (OR = 0.18; 95% CI = 0.06-0.58). Although the sample size was limited, subgroup analyses showed that the associations differed with the histopathological subtype. These findings suggest that cruciferous vegetables decrease the risk of both stomach and colorectal cancer, and that mushrooms are associated with a decreased risk of stomach cancer.

  9. Study on the idity fuzzy neural network controller based on improved genetic algorithm of intelligent temperature control system in vegetable greenhouse

    Science.gov (United States)

    Zhang, Su; Yuan, Hongbo; Zhou, Yuhong; Wang, Nan

    2009-07-01

    In order to create the environment that the suitable crop grows, direct against the characteristic of the system of the greenhouse. The aim of the research was to study the intelligent temperature control system in vegetable greenhouse. Based on computer automatic control ,a kind of intelligent temperature control system in vegetable greenhouse was designed. The design thought of systematic hardwares such as temperature collection system, temperature display, control system, heater control circuit in the heater were expounded in detail The control algorithm of the system was improved and system simulation was made by using MATLAB finally. The control algorithm of the system was improved by a new fuzzy neural network controller. The stimulation curve showed that the system had better controlling and tracking performances ,higher accuracy of controlling the temperature. And this system and host epigyny computer could constitute the secondary computer control system which was favorable for realizing the centralized management of the production.

  10. Language Control in Bilinguals: Monitoring and Response Selection.

    Science.gov (United States)

    Branzi, Francesca M; Della Rosa, Pasquale A; Canini, Matteo; Costa, Albert; Abutalebi, Jubin

    2016-06-01

    Language control refers to the cognitive mechanism that allows bilinguals to correctly speak in one language avoiding interference from the nontarget language. Bilinguals achieve this feat by engaging brain areas closely related to cognitive control. However, 2 questions still await resolution: whether this network is differently engaged when controlling nonlinguistic representations, and whether this network is differently engaged when control is exerted upon a restricted set of lexical representations that were previously used (i.e., local control) as opposed to control of the entire language system (i.e., global control). In the present event-related functional magnetic resonance imaging study, we investigated these 2 questions by employing linguistic and nonlinguistic blocked switching tasks in the same bilingual participants. We first report that the left prefrontal cortex is driven similarly for control of linguistic and nonlinguistic representations, suggesting its domain-general role in the implementation of response selection. Second, we propose that language control in bilinguals is hierarchically organized with the dorsal anterior cingulate cortex/presupplementary motor area acting as the supervisory attentional system, recruited for increased monitoring demands such as local control in the second language. On the other hand, prefrontal, inferior parietal areas and the caudate would act as the response selection system, tailored for language selection for both local and global control.

  11. Effect of lifestyle on asthma control in Japanese patients: importance of periodical exercise and raw vegetable diet.

    Directory of Open Access Journals (Sweden)

    Motoyasu Iikura

    Full Text Available BACKGROUND: The avoidance of inhaled allergens or tobacco smoke has been known to have favorable effects on asthma control. However, it remains unclear whether other lifestyle-related factors are also related to asthma control. Therefore, a comprehensive study to examine the associations between various lifestyle factors and asthma control was conducted in Japanese asthmatic patients. METHODS: The study subjects included 437 stable asthmatic patients recruited from our outpatient clinic over a one-year period. A written, informed consent was obtained from each participant. Asthma control was assessed using the asthma control test (ACT, and a structured questionnaire was administered to obtain information regarding lifestyle factors, including tobacco smoking, alcohol drinking, physical exercise, and diet. Both bivariate and multivariate analyses were conducted. RESULTS: The proportions of total control (ACT = 25, well controlled (ACT = 20-24, and poorly controlled (ACT 3 metabolic equivalents-h/week, and raw vegetable intake (> 5 units/week were significantly associated with good asthma control by bivariate analysis. Younger age, periodical exercise, and raw vegetable intake were significantly associated with good asthma control by multiple linear regression analysis. CONCLUSIONS: Periodical exercise and raw vegetable intake are associated with good asthma control in Japanese patients.

  12. Statistical Process Control Charts for Public Health Monitoring

    Science.gov (United States)

    2014-12-01

    Poisson counts) [21-23].  Cumulative sum ( CUSUM ) and exponentially weighted moving average (EWMA) control charts are often used with Phase II data. These...charts have been shown to more quickly detect small changes than traditional Shewhart charts. There have been several applications of CUSUM charts in...distribution, a CUSUM or EWMA chart would be required.  Risk adjustment for health data has been applied when monitoring variables that can be

  13. How Much Control is Enough? Monitoring and Enforcement under Stalin.

    OpenAIRE

    Markevich, Andreĭ

    2007-01-01

    Given wide scope for asymmetric information in huge hierarchies agents have a large capacity for opportunistic behaviour. Hidden actions increase transactions costs and cause the demand for monitoring and enforcement. Once the latter are costly, this raises questions about their scope, logistics and type. Using historical records, this paper examines the Stalin’s answers to them. We find that Stalin maximised efficiency of the Soviet system of control but had to mitigate with the problems of ...

  14. TeleLab – A Remote Monitoring and Control System

    OpenAIRE

    Ashish Taneja; Aakash Kushwah; Akshat Gupta; Vats, Vipin B.

    2007-01-01

    Presented herein is a remote monitoring and control system which provides the user (client) with graphical output of the acquired experimental data. The experiment is based on MATLAB, Atmel AVR (namely the mega8). Instead of using different tools, the project focuses at using just one so as to make it simple for the user to understand and debug if necessary. A tool such as MatLab, being simple yet efficient, provides the greatest flexibility. At present the setup ...

  15. Fruits and vegetables consumption and esophageal squamous cell carcinoma: a case-control study.

    Science.gov (United States)

    Hajizadeh, Bahareh; Jessri, Mahsa; Moasheri, Seyed Majid; Rad, Anahita Houshiar; Rashidkhani, Bahram

    2011-01-01

    The authors examined the association of food group intakes and the risk of esophageal squamous cell carcinoma (SCC) in a hospital-based case-control study in Iran. In total, 47 patients with esophageal SCC and 96 controls underwent face-to-face private interviews. Usual dietary intake was assessed using a semiquantitative food frequency questionnaire. Multivariate logistic regression was used to estimate odds ratios and 95% confidence intervals. Cases had higher tobacco consumption and symptomatic gastresophageal reflux, whereas controls had higher mean body mass index (25.3 vs. 20.4) and years of education. A protective independent effect was observed for the highest tertile of total fruit consumption (OR: 0.13, CI: 0.04-0.45, P value = 0.001). Within the group of fruits, a significant inverse association was observed for bananas and kiwis (P for trends: 0.03 and 0.02, respectively). The risk of SCC decreased monotonically with increasing intake frequency of oranges (P value for trend = 0.01). The effect of total vegetable consumption on esophageal SCC was not significant, although a reduction in risk was observed in the highest tertile of intake (OR: 0.66, CI: 0.23-1.87, P value = 0.43). The results of the present study suggest a reasonable association between fruit consumption and esophageal SCC in a Middle Eastern high-risk population.

  16. Irradiation to control insects in fruits and vegetables for export from Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Follett, P.A. E-mail: pfollett@pbarc.ars.usda.gov

    2004-10-01

    Phytosanitary or quarantine treatments are often required to disinfest host commodities of economically important arthropod pests before they are moved through market channels to areas where the pest does not occur. Irradiation is an accepted treatment to control quarantine pests in 10 fruits and five vegetables for export from Hawaii to the US mainland. Irradiation is the ideal technology for developing generic quarantine treatments because it is effective against most insect and mite pests at dose levels that do not affect the quality of most commodities. A generic dose of 150 Gy has been proposed for tephritid fruit flies. Contrary to the 150 Gy dose, approved irradiation quarantine treatment doses for Mediterranean fruit fly, melon fly, and oriental fruit fly in Hawaii are 210-250 Gy. Irradiation studies were conducted to determine if the approved doses were unnecessarily high and could be reduced. Irradiation is also a viable alternative to methyl bromide fumigation to disinfest Hawaii sweetpotatoes, and studies are in progress to identify an effective dose for two key sweetpotato insect pests. Results indicate that irradiation doses <150 Gy will control Hawaii's fruit flies, which supports the proposed generic dose. The idea of generic doses is appealing because it would greatly accelerate the process of approving irradiation quarantine treatments for specific crops, and thereby rapidly expand exports. Preliminary results show that 250-300 Gy will control Hawaii's sweetpotato pests.

  17. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  18. Unseen sentinels: local monitoring and control in conservation's blind spots

    Directory of Open Access Journals (Sweden)

    Douglas Sheil

    2015-06-01

    Full Text Available Although official on-the-ground environmental monitoring is absent over much of the world, many people living in these regions observe, manage, and protect their environment. The autonomous monitoring processes associated with these activities are seldom documented and appear poorly recognized by conservation professionals. We identified monitoring activities in three villages in the Mamberamo-Foja region (Mamberamo Regency of Papua (Indonesian New Guinea. In each village we found evidence that local monitoring contributes to effective protection and deters unregulated exploitation. Although everyone gathers observations and shares information, there are also specific roles. For example, the Ijabait hereditary guardians live at strategic sites where they control access to resource-rich lakes and tributaries along the Tariku River. Often, monitoring is combined with and thus influences other activities: for example, hunting regularly includes areas judged vulnerable to incursions by neighboring communities. We identified various examples of community members intervening to prevent and deter outsiders from exploiting resources within their territories. Enforcement of rules and assessment of resource status also help prevent local overexploitation within the communities. Clearly, local people are effective in protecting large areas in a relatively natural state. We discuss the value of these autonomous monitoring and protection processes, their neglect, and the need for explicit recognition by those concerned about these people and their environments, as well as about conservation. We highlight a potential "tragedy of the unseen sentinels" when effective local protection is undermined not because these local systems are invisible, but because no one recognizes what they see.

  19. Drought impact assessment from monitoring the seasonality of vegetation condition using long-term time-series satellite images: a case study of Mt. Kenya region.

    Science.gov (United States)

    Song, Youngkeun; Njoroge, John B; Morimoto, Yukihiro

    2013-05-01

    Drought-induced anomalies in vegetation condition over wide areas can be observed by using time-series satellite remote sensing data. Previous methods to assess the anomalies may include limitations in considering (1) the seasonality in terms of each vegetation-cover type, (2) cumulative damage during the drought event, and (3) the application to various types of land cover. This study proposed an improved methodology to assess drought impact from the annual vegetation responses, and discussed the result in terms of diverse landscape mosaics in the Mt. Kenya region (0.4° N 35.8° E ~ 1.6° S 38.4° E). From the 30-year annual rainfall records at the six meteorological stations in the study area, we identified 2000 as the drought year and 2001, 2004, and 2007 as the normal precipitation years. The time-series profiles of vegetation condition in the drought and normal precipitation years were obtained from the values of Enhanced Vegetation Index (EVI; Huete et al. 2002), which were acquired from Terra MODIS remote sensing dataset (MOD13Q1) taken every 16 days at the scale of 250-m spatial resolution. The drought impact was determined by integrating the annual differences in EVI profiles between drought and normal conditions, per pixel based on nearly same day of year. As a result, we successfully described the distribution of landscape vulnerability to drought, considering the seasonality of each vegetation-cover type at every MODIS pixel. This result will contribute to the large-scale landscape management of Mt. Kenya region. Future study should improve this method by considering land-use change occurred during the long-term monitoring period.

  20. Effect of fruits and vegetables on metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Shin, Jin Young; Kim, Ji Young; Kang, Hee Tak; Han, Kyung Hwa; Shim, Jae Yong

    2015-01-01

    Evidence regarding the effect of fruit and vegetable consumption on metabolic syndrome remains inconclusive. Using MEDLINE, EMBASE, and Cochrane, we searched for relevant studies published before 10 December 2013. Of the 383 articles identified, eight randomized controlled trials with 396 participants (205 in intervention groups and 191 in control groups) were included in the final analyses. Fruit and vegetable intake was associated with a reduction in diastolic blood pressure (standardized mean difference: -0.29; 95% confidence interval: -0.57 to -0.02; p = 0.04); however, such intake did not affect waist circumference, systolic blood pressure, fasting glucose, high-density lipoprotein cholesterol, and triglyceride levels in metabolic syndrome patients. In a subgroup analysis, there were no statistically significant differences found according to the intervention period and provision type. Our results suggest an inverse association between fruit and vegetable consumption and diastolic blood pressure in metabolic syndrome patients.

  1. Establishment and Sampling of Permanent Vegetation Monitoring Plots in Herbaceous Communities at Big Muddy National Fish and Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2002 and 2003, as part of an effort to characterize bird habitat, vegetation at Big Muddy National Fish and Wildlife Refuge was sampled in three very coarse...

  2. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    Science.gov (United States)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found

  3. Relations among weight control behaviors and eating attitudes, social physique anxiety, and fruit and vegetable consumption in Turkish adolescents.

    Science.gov (United States)

    Baş, Murat; Kiziltan, Gül

    2007-01-01

    This study examined the relationship among dieting, eating attitudes, social physique anxiety, and fruit and vegetable consumption among Turkish adolescents. Abnormal eating behavior (EAT-26 > or =20) was found in 32.8% of the total sample; this included 26.4% of the males and 38.7% of the females. Weight-control and weight-related behaviors are associated with high fruit and vegetable consumption in adolescents. Dieting was significantly associated with types of consumption in female adolescents. In addition, EAT-26 scores were significantly positively correlated with high fruit and vegetable consumption, but this association was not observed in SPAS scores among adolescents. Adolescents who engage in dieting behaviors seem to consume more fruit and vegetables than do other adolescents. Female adolescents may be more likely to display abnormal eating attitudes and dieting behaviors than do males. Although some weight-control behaviors may be risky, adolescents who were practicing dieting behaviors engaged in the positive dietary behavior of consuming more servings of fruit and vegetables than did non-dieters.

  4. Cooperative Remote Monitoring, Arms control and nonproliferation technologies: Fourth quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, G M [ed.

    1995-01-01

    The DOE`s Cooperative Remote Monitoring programs integrate elements from research and development and implementation to achieve DOE`s objectives in arms control and nonproliferation. The contents of this issue are: cooperative remote monitoring--trends in arms control and nonproliferation; Modular Integrated Monitoring System (MIMS); Authenticated Tracking and Monitoring Systems (ATMS); Tracking and Nuclear Materials by Wide-Area Nuclear Detection (WAND); Cooperative Monitoring Center; the International Remote Monitoring Project; international US and IAEA remote monitoring field trials; Project Dustcloud: monitoring the test stands in Iraq; bilateral remote monitoring: Kurchatov-Argonne-West Demonstration; INSENS Sensor System Project.

  5. Environmental controls on the greening of terrestrial vegetation across northern Eurasia

    Directory of Open Access Journals (Sweden)

    P. Dass

    2015-06-01

    Full Text Available Terrestrial ecosystems of northern Eurasia are greening, yet few studies have provided definitive attribution for the changes. While prior studies point to increasing temperatures as the principle environmental control, influences from moisture and other factors are less clear. We assess how changes in temperature, precipitation, cloudiness and forest fires contribute to the trend in Gross Primary Productivity (GPP derived from satellite data across northern Eurasia. For the period 1982–2008 we find that GPP, estimated using ensemble satellite NDVI (Normalized Difference Vegetation Index observations from GIMMS3g and VIP datasets, is most sensitive to temperature, precipitation and cloudiness during summer, the peak of the growing season. For regional median GPP, summer temperature explains 33.3 % of the variation in GPP, while the other environmental variables explain from 2.2 to 11.8 %. Warming over the period analyzed, even without a sustained increase in precipitation, led to a significant GPP increase over 67.3 % of the region. A significant decrease in GPP was found over 6.2 % of the region, primarily the dryer grasslands in the south-western. For this area, precipitation positively correlates with GPP, as does cloudiness. This shows that the south-western part of northern Eurasia is relatively more vulnerable to drought than other areas. Our results further advance the notion that air temperature is the dominant environmental control for the recent GPP increases across northern Eurasia.

  6. A Self-Calibrating Remote Control Chemical Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  7. Automatic Energy Control And Monitoring System For Building

    Directory of Open Access Journals (Sweden)

    Hnin Nu Thaung

    2015-08-01

    Full Text Available The use of smart home technology in the home or building offers significant potential for energy savings. In this paper an energy management system based on wireless sensor networks. The proposed system is composed of two main components a wireless sensor network and monitoring terminal. Wireless sensors are used for sensing and transmitting electricity data and remote monitoring and control of appliances are provided to users through computer. The system enables users to save energy by monitoring and controlling appliances through terminal. This paper gives an overview of sensor technology and wireless networks in the development of an intelligent energy management system for buildings. This technology has ample potential to change the way live and work. ZigBee is used as a communication medium in building intelligent energy management system in this paper. From the prototype setup it is shown that ZigBee is a suitable technology to be adopted as the communication infrastructure in energy management system for buildings .The proposed system can be installed and maintained in residential environments with ease.

  8. Wireless video monitoring and robot control in security applications

    Science.gov (United States)

    Nurkkala, Eero A.; Pyssysalo, Tino; Roning, Juha

    1998-10-01

    This research focuses on applications based on wireless monitoring and robot control, utilizing motion image and augmented reality. These applications include remote services and surveillance-related functions such as remote monitoring. A remote service can be, for example, a way to deliver products at a hospital or old people's home. Due to the mobile nature of the system, monitoring at places with privacy concerns is possible. On the other hand, mobility demands wireless communications. Suitable and present technologies for wireless video transfer are weighted. Identification of objects with the help of Radio Frequency Identifying (RFID) technology and facial recognition results in intelligent actions, for example, where the control of a robot does not require extensive workload from the user. In other words, tasks can be partially autonomous, RFID can be also used in augmentation of the video view with virtual objects. As a real-life experiment, a prototype environment is being constructed that consists of a robot equipped with a video camera and wireless links to the network and multimedia computer.

  9. Cruciferous vegetable feeding alters UGT1A1 activity: diet- and genotype-dependent changes in serum bilirubin in a controlled feeding trial.

    Science.gov (United States)

    Navarro, Sandi L; Peterson, Sabrina; Chen, Chu; Makar, Karen W; Schwarz, Yvonne; King, Irena B; Li, Shuying S; Li, Lin; Kestin, Mark; Lampe, Johanna W

    2009-04-01

    Chemoprevention by isothiocyanates from cruciferous vegetables occurs partly through up-regulation of phase II conjugating enzymes, such as UDP-glucuronosyltransferases (UGT). UGT1A1 glucuronidates bilirubin, estrogens, and several dietary carcinogens. The UGT1A1*28 polymorphism reduces transcription compared with the wild-type, resulting in decreased enzyme activity. Isothiocyanates are metabolized by glutathione S-transferases (GST); variants may alter isothiocyanate clearance such that response to crucifers may vary by genotype. We evaluated, in a randomized, controlled, crossover feeding trial in humans (n = 70), three test diets (single- and double-"dose" cruciferous and cruciferous plus apiaceous) compared with a fruit and vegetable-free basal diet. We measured serum bilirubin concentrations on days 0, 7, 11, and 14 of each 2-week feeding period to monitor UGT1A1 activity and determined effects of UGT1A1*28 and GSTM1/GSTT1-null variants on response. Aggregate bilirubin response to all vegetable-containing diets was statistically significantly lower compared with the basal diet (P cruciferous diets compared with basal (P cruciferous and cruciferous plus apiaceous compared with basal, and cruciferous plus apiaceous compared with single-dose cruciferous (P vegetable-containing diets compared with basal (P < 0.02 for all). Evaluation of the effects of diet stratified by GST genotype revealed some statistically significant genotypic differences; however, the magnitude was similar and not statistically significant between genotypes. These results may have implications for altering carcinogen metabolism through dietary intervention, particularly among UGT1A1*28/*28 individuals.

  10. Controlling and Monitoring of Electric Feeders Using GSM Network Technology

    Directory of Open Access Journals (Sweden)

    AHMED Afaz Uddin

    2013-10-01

    Full Text Available The application of computer interfaced controlling devices is increasingly rapidly in modern age. Analogous wired systems are substituted by computer interfaced system alternatives in growingnumber of industries. Such control systems had been developed with complex and critical high-end stuffs. In this paper, we developed an automated system that controls the switching of electric feeder power supply featuring the existing GSM technology. The target is tooperate the device according to a preset sequence of on-off mode for three feeders after a particular time interval and to monitor the running condition. The device sends short message updating the status of every action. It also warns the consumers about load shedding using GSM module via sending message. Controlling the gate pulse of a MOSFET that operates the relay, it executes on-off operation of the circuit breaker of the respective feeders. Since GSM technology is used worldwide for communication, third world countries that are still struggling to meet the power demand can use this technology to operate and monitor the condition of power distribution. To operate the GSM device, AT command of GSM location operation for SIM900 is used. This paper targets to improve the power distribution system in developing countries like India, Bangladesh, Nepal where powercrisis and load shedding is quite a common phenomenon.

  11. Monitoring and control of ventilation in Polish coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Dziurzynski, W.; Roszkowski, J.; Tobiczyk, J.; Wasilewski, S. [Polish Academy of Sciences, Krakow (Poland). Strata Mechanics Research Institute

    2005-07-01

    In the 1990s, the SMP hazards monitoring and ventilation control systems, based on continuous measurement of air parameters, were put into operation at nearly 30 Polish mines. These systems provide continuous measurement of methane concentration within the range of zero to 100 per cent with automatic switching off of electrical energy immediately after detection of potentially explosive conditions. Early detection of coal spontaneous combustion and open fires is made by continuous measurements of CO, CO{sub 2}, smoke and O{sub 2} content in mine air as well as temperature changes in air and rock mass. The essence of the system is intrinsic safety of all underground instrumentation and uninterrupted central power supply from the surface. All abnormal and critical states are signalled to the mine control room. These trigger alarm and emergency procedures. The computer based ventilation monitoring and control system also performs the function of an expert system for fire detection and underground fire fighting. The mine control operator (dispatcher) makes use of stored data in computer escape route schemes and procedures for the safe withdrawal of miners from hazardous areas. The operator can put in motion intrinsically safe alarm signalling units and banners with programmed messages indicating escape routes. 7 refs., 6 figs.

  12. Intentions and Trait Self-Control Predict Fruit and Vegetable Consumption during the Transition to First-Year University

    Science.gov (United States)

    Tomasone, Jennifer R.; Meikle, Natasha; Bray, Steven R.

    2015-01-01

    Objective: To examine the independent and combined effects of Theory of Planned Behavior (TPB) variables and trait self-control (TSC) in the prediction of fruit and vegetable consumption (FVC) among first-year university students. Participants: Seventy-six first-year undergraduate university students. Methods: In their first week of class…

  13. Intentions and Trait Self-Control Predict Fruit and Vegetable Consumption during the Transition to First-Year University

    Science.gov (United States)

    Tomasone, Jennifer R.; Meikle, Natasha; Bray, Steven R.

    2015-01-01

    Objective: To examine the independent and combined effects of Theory of Planned Behavior (TPB) variables and trait self-control (TSC) in the prediction of fruit and vegetable consumption (FVC) among first-year university students. Participants: Seventy-six first-year undergraduate university students. Methods: In their first week of class…

  14. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic l

  15. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  16. Using a terrestrial laser scanner to characterize vegetation-induced flow resistance in a controlled channel

    CERN Document Server

    Vinatier, Fabrice; Belaud, Gilles; Combemale, David

    2016-01-01

    Vegetation characteristics providing spatial heterogeneity at the channel reach scale can produce complex flow patterns and the relationship between plant patterns morphology and flow resistance is still an open question (Nepf 2012). Unlike experiments in laboratory, measuring the vegetation characteristics related to flow resistance on open channel in situ is difficult. Thanks to its high resolution and light weight, scanner lasers allow now to collect in situ 3D vegetation characteristics. In this study we used a 1064 nm usual Terrestrial Laser Scanner (TLS) located 5 meters at nadir above a 8 meters long equipped channel in order to both i) characterize the vegetation structure heterogeneity within the channel form a single scan (blockage factor, canopy height) and ii) to measure the 2D water level all over the channel during steady flow within a few seconds scan. This latter measuring system was possible thanks to an additive dispersive product sprinkled at the water surface. Vegetation characteristics an...

  17. Insects, vegetation, and the control of laughing gulls (Larus atricilla) at Kennedy International Airport, New York

    Science.gov (United States)

    Buckley, P.A.; McCarthy, M.

    1994-01-01

    1. In response to a purported 'bird-strike problem' at J.F. Kennedy International Airport in New York City, we examined short (5 cm) and long (45 cm) grass heights as gull deterrents, in a randomized-block experiment. 2. Vegetative cover, numbers of adult insects and of larval beetles (suspected on-airport food of the gulls) were sampled in the six-block, 36-plot study area, as well as gut contents of adult and downy young gulls in the immediately adjacent colony in the Jamaica Bay Wildlife Refuge. 3. We found that (i) Oriental beetle larvae were the most numerous and concentrated in one experimental block; (ii) beetle larvae numbers were uncorrelated with grass height; (iii) adult beetles were also uncorrelated with grass height; (iv) laughing gulls were distributed across blocks irrespective of percentage cover; (v) within blocks, laughing gulls were selecting short grass and avoiding long grass plots; (vi) laughing gull numbers were positively associated with numbers of Oriental beetle larvae; (vii) adult laughing gulls on the airport were eating lower-nutrition food of terrestrial origin (74-83% adult beetles, mostly Oriental plus green June and ground beetles); (viii) on the other hand, gull chicks in the adjacent breeding colony were being fed more easily digested, higher-protein food of marine origin (86-88% fishes, crustacea and molluscs); (ix) laughing gulls on the airport were taking their adult beetles only in short-grass plots, ignoring large numbers in adjacent long grass; (x) during the summer, on-airport gulls shifted from performing largely maintenance activities on pavement to feeding actively for beetles on newly mown short grass, the change coinciding with adult beetle emergence; (xi) standing water on the airport attracted significantly more gulls than dry areas all summer long. 4. We recommend a series of ecologically compatible, but aggressive habitat management actions for controlling laughing gulls on Kennedy Airport by rendering the airport

  18. Landslide Geohazard Monitoring, Early Warning and Stabilization Control Methods

    Directory of Open Access Journals (Sweden)

    Bednarczyk Zbigniew

    2014-03-01

    Full Text Available This paper is a presentation of landslide monitoring, early warning and remediation methods recommended for the Polish Carpathians. Instrumentation included standard and automatic on-line measurements with the real-time transfer of data to an Internet web server. The research was funded through EU Innovative Economy Programme and also by the SOPO Landslide Counteraction Project. The landslides investigated were characterized by relatively low rates of the displacements. These ranged from a few millimetres to several centimetres per year. Colluviums of clayey flysch deposits were of a soil-rock type with a very high plasticity and moisture content. The instrumentation consisted of 23 standard inclinometers set to depths of 5-21 m. The starting point of monitoring measurements was in January 2006. These were performed every 1-2 months over the period of 8 years. The measurements taken detected displacements from several millimetres to 40 cm set at a depth of 1-17 m. The modern, on-line monitoring and early warning system was installed in May 2010. The system is the first of its kind in Poland and only one of several such real-time systems in the world. The installation was working with the Local Road Authority in Gorlice. It contained three automatic field stations for investigation of landslide parameters to depths of 12-16 m and weather station. In-place tilt transducers and innovative 3D continuous inclinometer systems with sensors located every 0.5 m were used. It has the possibility of measuring a much greater range of movements compared to standard systems. The conventional and real-time data obtained provided a better recognition of the triggering parameters and the control of geohazard stabilizations. The monitoring methods chosen supplemented by numerical modelling could lead to more reliable forecasting of such landslides and could thus provide better control and landslide remediation possibilities also to stabilization works which

  19. Landslide Geohazard Monitoring, Early Warning and Stabilization Control Methods

    Science.gov (United States)

    Bednarczyk, Zbigniew

    2014-03-01

    This paper is a presentation of landslide monitoring, early warning and remediation methods recommended for the Polish Carpathians. Instrumentation included standard and automatic on-line measurements with the real-time transfer of data to an Internet web server. The research was funded through EU Innovative Economy Programme and also by the SOPO Landslide Counteraction Project. The landslides investigated were characterized by relatively low rates of the displacements. These ranged from a few millimetres to several centimetres per year. Colluviums of clayey flysch deposits were of a soil-rock type with a very high plasticity and moisture content. The instrumentation consisted of 23 standard inclinometers set to depths of 5-21 m. The starting point of monitoring measurements was in January 2006. These were performed every 1-2 months over the period of 8 years. The measurements taken detected displacements from several millimetres to 40 cm set at a depth of 1-17 m. The modern, on-line monitoring and early warning system was installed in May 2010. The system is the first of its kind in Poland and only one of several such real-time systems in the world. The installation was working with the Local Road Authority in Gorlice. It contained three automatic field stations for investigation of landslide parameters to depths of 12-16 m and weather station. In-place tilt transducers and innovative 3D continuous inclinometer systems with sensors located every 0.5 m were used. It has the possibility of measuring a much greater range of movements compared to standard systems. The conventional and real-time data obtained provided a better recognition of the triggering parameters and the control of geohazard stabilizations. The monitoring methods chosen supplemented by numerical modelling could lead to more reliable forecasting of such landslides and could thus provide better control and landslide remediation possibilities also to stabilization works which prevent landslides.

  20. Wireless Structural Sensing for Health Monitoring and Control Applications

    Science.gov (United States)

    Lynch, J. P.

    2003-12-01

    health monitoring) have been included in the unit's computational core. Additionally, an actuation interface has recently been added to the sensing unit design to allow for direct operation of structural actuators. With a computational core capable of real-time data processing, the data acquisition and actuation interfaces can be coupled through discrete-time feedback control loops implemented in software. Looking to the future, this intelligent monitoring infrastructure can possibly tune a structural control system in real-time after early warning of a pending seismic disturbance has been communicated to the wireless sensor network.

  1. Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner

    Directory of Open Access Journals (Sweden)

    Chen Chu

    2011-01-01

    Full Text Available Abstract Background Cruciferous vegetable intake is inversely associated with the risk of several cancers. Isothiocyanates (ITC are hypothesized to be the major bioactive constituents contributing to these cancer-preventive effects. The polymorphic glutathione-S-transferase (GST gene family encodes several enzymes which catalyze ITC degradation in vivo. Methods We utilized high throughput proteomics methods to examine how human serum peptides (the "peptidome" change in response to cruciferous vegetable feeding in individuals of different GSTM1 genotypes. In two randomized, crossover, controlled feeding studies (EAT and 2EAT participants consumed a fruit- and vegetable-free basal diet and the basal diet supplemented with cruciferous vegetables. Serum samples collected at the end of the feeding period were fractionated and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF mass spectrometry spectra were obtained. Peak identification/alignment computer algorithms and mixed effects models were used to analyze the data. Results After analysis of spectra from EAT participants, 24 distinct peaks showed statistically significant differences associated with cruciferous vegetable intake. Twenty of these peaks were driven by their GSTM1 genotype (i.e., GSTM1+ or GSTM1- null. When data from EAT and 2EAT participants were compared by joint processing of spectra to align a common set, 6 peaks showed consistent changes in both studies in a genotype-dependent manner. The peaks at 6700 m/z and 9565 m/z were identified as an isoform of transthyretin (TTR and a fragment of zinc α2-glycoprotein (ZAG, respectively. Conclusions Cruciferous vegetable intake in GSTM1+ individuals led to changes in circulating levels of several peptides/proteins, including TTR and a fragment of ZAG. TTR is a known marker of nutritional status and ZAG is an adipokine that plays a role in lipid mobilization. The results of this study present evidence that the GSTM1

  2. Effects of site disturbance and vegetation control on aboveground biomass in young mixed-conifer plantations in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Powers, R.; Fiddler, G. [United States Dept. of Agriculture Forest Service, CA (United States). California Long-Term Soil Productivity Experiment Steering Committee, Pacific Southwest Research Station; Young, D. [United States Dept. of Agriculture Forest Service, CA (United States). California Long-Term Soil Productivity Experiment Steering Committee, Shasta-Trinity National Forest; Roath, B.; Landram, M. [United States Dept. of Agriculture Forest Service, CA (United States). California Long-Term Soil Productivity Experiment Steering Committee, Pacific Southwest Region

    2010-07-01

    This study evaluated the effect of vegetation control and site disturbance on aboveground biomass in young conifer plantations in California. Ten-year vegetation data from 12 long-term soil productivity sites in the Sierra Nevada and southern Cascades were used to determine above ground biomass. In addition, 15-year vegetation data from 3 earlier Sierra Nevada sites was also examined. The aim of the study was to determine how biomass management impacts site productivity in the next generation of forest. The sites included 9 factorial combinations of 3 organic matter removals. Plots were planted with a mixture of conifers and divided into 2 subplots where understory vegetation was either controlled, or allowed to develop naturally. The study showed that neither the 10-year nor the 15-year total aboveground biomass was significantly impacted by organic matter removal. Results indicated that no negative effect of either organic matter removal or soil compaction on total aboveground biomass occurred in the early stages of stand development of mixed conifer plantations. However, understory control significantly decreased total site production as a result of delayed site occupancy.

  3. Rice Crop Monitoring and Yield Assessment with MODIS 250m Gridded Vegetation Products: A Case Study of Sa Kaeo Province, Thailand

    Science.gov (United States)

    Wijesingha, J. S. J.; Deshapriya, N. L.; Samarakoon, L.

    2015-04-01

    Billions of people in the world depend on rice as a staple food and as an income-generating crop. Asia is the leader in rice cultivation and it is necessary to maintain an up-to-date rice-related database to ensure food security as well as economic development. This study investigates general applicability of high temporal resolution Moderate Resolution Imaging Spectroradiometer (MODIS) 250m gridded vegetation product for monitoring rice crop growth, mapping rice crop acreage and analyzing crop yield, at the province-level. The MODIS 250m Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series data, field data and crop calendar information were utilized in this research in Sa Kaeo Province, Thailand. The following methodology was used: (1) data pre-processing and rice plant growth analysis using Vegetation Indices (VI) (2) extraction of rice acreage and start-of-season dates from VI time series data (3) accuracy assessment, and (4) yield analysis with MODIS VI. The results show a direct relationship between rice plant height and MODIS VI. The crop calendar information and the smoothed NDVI time series with Whittaker Smoother gave high rice acreage estimation (with 86% area accuracy and 75% classification accuracy). Point level yield analysis showed that the MODIS EVI is highly correlated with rice yield and yield prediction using maximum EVI in the rice cycle predicted yield with an average prediction error 4.2%. This study shows the immense potential of MODIS gridded vegetation product for keeping an up-to-date Geographic Information System of rice cultivation.

  4. Fruit and vegetable consumption and risk of esophageal cancer: a case-control study in north-west China.

    Science.gov (United States)

    Tang, L; Lee, A H; Xu, F; Zhang, T; Lei, J; Binns, C W

    2014-01-01

    The north-western region of China carries a big burden of esophageal cancer with incidence above the national average. This study ascertained the association between fruit and vegetable consumption and the risk of esophageal cancer in this remote part of China. A case-control study was undertaken in Urumqi and Shihezi, Xinjiang Uyghur Autonomous Region of China, between 2008 and 2009. Participants were 359 incident esophageal cancer patients and 380 hospital-based controls. Information on habitual fruit and vegetable consumption was obtained by face-to-face interview using a validated semiquantitative food frequency questionnaire. Unconditional logistic regression analyses were performed to assess the strength of the associations. The esophageal cancer patients consumed significantly less fruits (mean 364.3, standard deviation [SD] 497.4 g) and vegetables (mean 711.4, SD 727.9 g) daily than their counterparts without the disease (mean 496.5, SD 634.4 g and mean 894.5, SD 746.1 g, respectively). The adjusted odds ratios were 0.48 (95% confidence interval 0.33-0.71) and 0.46 (95% confidence interval 0.32-0.68) for consuming at least 515 g of fruits and 940 g of vegetables per day, respectively, relative to at most 170 g and 520 g. With respect to nutrients contained in fruits and vegetables, intakes of vitamin C, vitamin E, β-cryptoxanthin, potassium, and magnesium at high levels also reduced the esophageal cancer risk. In conclusion, inverse associations were evident between consumption of fruits and vegetables and the risk of esophageal cancer for adults residing in north-west China.

  5. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    BARNES, D.A.

    2000-06-01

    The purpose of this document is to describe tests performed to validate Revision 12.0 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be communicating to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

  6. Tank Monitoring and Control Sys (TMACS) Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    WANDLING, R.R.

    1999-11-08

    The purpose of this document is to describe tests performed to validate Revision 11.2 of the TMACS Monitor and Control System (TMCACS) and verify that the software functions as intended by design. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

  7. Control and monitoring system for TRT detector in ATLAS experiment

    CERN Document Server

    Hajduk, Z

    2002-01-01

    In this article we present methods and tools for design and construction of the control and monitoring system for a big particle physics experiment taking as an example one of the ATLAS subdetectors. Several requirements has been enumerated which such a system have to meet both by hardware and software. Harsh environmental conditions, difficult if not impossible access and very long exploitation time create conditions where only application of industrial standards allow for serviceability, possibility of fast and easy upgrades and intuitive running of the system by relatively non-experienced staff. (6 refs).

  8. Scanner baseliner monitoring and control in high volume manufacturing

    Science.gov (United States)

    Samudrala, Pavan; Chung, Woong Jae; Aung, Nyan; Subramany, Lokesh; Gao, Haiyong; Gomez, Juan-Manuel

    2016-03-01

    We analyze performance of different customized models on baseliner overlay data and demonstrate the reduction in overlay residuals by ~10%. Smart Sampling sets were assessed and compared with the full wafer measurements. We found that performance of the grid can still be maintained by going to one-third of total sampling points, while reducing metrology time by 60%. We also demonstrate the feasibility of achieving time to time matching using scanner fleet manager and thus identify the tool drifts even when the tool monitoring controls are within spec limits. We also explore the scanner feedback constant variation with illumination sources.

  9. Technology evaluation of control/monitoring systems for MIUS application. [utility services management

    Science.gov (United States)

    Pringle, L. M., Jr.

    1974-01-01

    Potential ways of providing control and monitoring for the Modular Integrated Utility System (MIUS) program are elaborated. Control and monitoring hardware and operational systems are described. The requirements for the MIUS program and the development requirements are discussed.

  10. A CURLY LEAF homologue controls both vegetative and reproductive development of tomato plants.

    Science.gov (United States)

    Boureau, L; How-Kit, A; Teyssier, E; Drevensek, S; Rainieri, M; Joubès, J; Stammitti, L; Pribat, A; Bowler, C; Hong, Y; Gallusci, P

    2016-03-01

    The Enhancer of Zeste Polycomb group proteins, which are encoded by a small gene family in Arabidopsis thaliana, participate to the control of plant development. In the tomato (Solanum lycopersicum), these proteins are encoded by three genes (SlEZ1, SlEZ2 and SlEZ3) that display specific expression profiles. Using a gene specific RNAi strategy, we demonstrate that repression of SlEZ2 correlates with a general reduction of H3K27me3 levels, indicating that SlEZ2 is part of an active PRC2 complex. Reduction of SlEZ2 gene expression impacts the vegetative development of tomato plants, consistent with SlEZ2 having retained at least some of the functions of the Arabidopsis CURLY LEAF (CLF) protein. Notwithstanding, we observed significant differences between transgenic SlEZ2 RNAi tomato plants and Arabidopsis clf mutants. First, we found that reduced SlEZ2 expression has dramatic effects on tomato fruit development and ripening, functions not described in Arabidopsis for the CLF protein. In addition, repression of SlEZ2 has no significant effect on the flowering time or the control of flower organ identity, in contrast to the Arabidopsis clf mutation. Taken together, our results are consistent with a diversification of the function of CLF orthologues in plants, and indicate that although partly conserved amongst plants, the function of EZ proteins need to be newly investigated for non-model plants because they might have been recruited to specific developmental processes.

  11. A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula

    NARCIS (Netherlands)

    Beck, P.S.A.; Jonsson, P.; Hogda, K.A.; Karlsen, S.R.; Skidmore, A.K.; Eklundh, L.

    2007-01-01

    An NDVI dataset covering Fennoscandia and the Kola peninsula was created for vegetation and climate studies, using Moderate Resolution Imaging Spectroradiometer 16-day maximum value composite data from 2000 to 2005. To create the dataset, (1) the influence of the polar night and snow on the NDVI

  12. Undercover predators: Vegetation mediates foraging, trophic cascades, and biological control by omnivorous weed seed predators

    OpenAIRE

    Blubaugh, Carmen K

    2015-01-01

    Weed pressure is the most costly challenge that vegetable growers face, requiring more labor investment than other production inputs. Vertebrate and invertebrate seed predators destroy a large percentage of weed propagules on the soil surface, and their ecosystem services may ease labor requirements for farmers in herbicide-free systems. Cover provided by living vegetation is an important predictor of seed predator activity, and my dissertation takes a comprehensive approach to understanding ...

  13. Application of Risk Management for Control and Monitoring Systems

    CERN Document Server

    Grau, S; Balda, F; Chouvelon, A

    2001-01-01

    This paper presents an application of the state of the art and new trends for risk management of safety-related control and monitoring systems, currently applied in the industry. These techniques not only enable to manage safety and reliability issues but they also help in the control of quality and economic factors affected by the availability and maintenance of the system. The method includes an unambiguous definition of the system in terms of functions and a systematic analysis of hazardous situations, undesired events and possible malfunctions. It also includes the identification and quantification of the risk associated to the system. The required risk reduction is specified in terms of safety integrity levels. The safety integrity level results in requirements, preventive measures, possible improvements and recommendations to assure the satisfactory management of the risk.

  14. The Use of Control Charts in Neonatal Death Monitoring

    Directory of Open Access Journals (Sweden)

    Mostafa Farah Bakhsh

    2015-07-01

    Full Text Available Background and Objectives : Data are managed in two approaches in health information system:       Data–led and Action–led. In action–led approach, data are used in process improvement. In most of health facilities, functional data are not used in a proper way. This study aimed to explore the use of control charts in neonatal death monitoring. Materials and Methods : This study was conducted for designing a practical model of control charts in primary health care. The live births number and neonatal death number were gathered monthly in a two-year period from 19 districts. Data were analyzed in Excel software and control chart was depicted in SPSS 16. Results : Neonatal mortality rate was 12.37 and 10.7 in 1000 live births respectively in 2007 and 2008 in rural population of East Azerbaijan province. Average of index was 11.54 in a two-year period with standard deviation of 2.75. Monthly NMR was 5.18 -15.93. Conclusion : Opportunities are missed for an on-time correction of causes with an annual calculation of NMR. Control charts are very effective in organizational learning and process improvements. These charts convert the data into information and knowledge. The use of control charts in primary health care shows errors and problems on-time.

  15. Role of dietary iodine and cruciferous vegetables in thyroid cancer: a countrywide case-control study in New Caledonia.

    Science.gov (United States)

    Truong, Thérèse; Baron-Dubourdieu, Dominique; Rougier, Yannick; Guénel, Pascal

    2010-08-01

    Exceptionally high incidence rates of thyroid cancer have been reported in New Caledonia, particularly in Melanesian women. To clarify the reasons of this elevated incidence, we conducted a countrywide population-based case-control study in the multiethnic population of Caledonian women. The study included 293 cases of thyroid cancer and 354 population controls. Based on a food frequency questionnaire, we investigated the role in thyroid cancer of food items rich in iodine-such as seafood-and of vegetables containing goitrogens-such as cruciferous vegetables. A measure of total daily iodine intake based on a food composition table was also used. Our findings provided little support for an association between thyroid cancer and consumption of fish and seafood. We found that high consumption of cruciferous vegetables was associated with thyroid cancer among women with low iodine intake (OR = 1.86; 95% CI: 1.01-3.43 for iodine intake cruciferous vegetables among Melanesian women, a group with mild iodine deficiency, may contribute to explain the exceptionally high incidence of thyroid cancer in this group.

  16. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Science.gov (United States)

    2010-07-01

    ... control system. 157.12 Section 157.12 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that... incorporated by reference (see § 157.02). (c) Each oil discharge monitoring and control system on a U.S. vessel...

  17. Adaptive Contingency Control: Wind Turbine Operation Integrated with Blade Condition Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — We report here on first steps towards integrating systems health monitoring with adaptive contingency controls. In the scenario considered, the adaptive controller...

  18. CONTROL OF SOIL-BORNE DISEASES BY DIFFERENT COMPOSTS IN POTTED VEGETABLE CROPS.

    Science.gov (United States)

    Pugliese, M; Benetti, A; Gilardi, G; Gullino, M L; Garibaldi, A

    2014-01-01

    The composting process and the type and nature of wastes and raw materials influence the maturity, quality and suppressiveness of composts. Variability in disease suppression also depends on the pathosystem, on soil or substrate type, on chemical-physical conditions, like pH and moisture, and on the microbial component of compost. The aim of the research was to evaluate the suppressiveness of composts, originated from green wastes and/or municipal biowastes, and produced by different composting plants located in Europe. The composts were tested against soil-borne pathogens in greenhouse on potted plants: Fusarium oxysporum f.sp. busilici/basil, Pythium ultimum/cucumber, Rhizoctonia solani/bean. Composts were blended with a peat substrate at different dosages (10, 20 and 50% vol./vol.) 14 days before seeding or transplanting. Pythium ultimum and Rhizoctonia solani were mixed into the substrate at 0.5 g of wheat kernels L(-1) 7 days before seeding, while, in the case of Fusarium oxysporum f.sp. basilici, chlamydospores were applied at 1 x 10(4) CFU/g. Seeds of basil, cucumber and bean were sown into 2 L pots in greenhouse. The number of alive plants was counted and above ground biomass was weighed 30 days after seeding. The number of infected cucumber and basil plants was significantly reduced by increasing dosages of composts, but municipal compost was phytotoxic when applied at high dosages compared to green compost. Moreover, municipal compost increased the disease caused by Rhizoctonia solani on bean. The use of compost in substrates can be a suitable strategy for controlling soil-borne diseases on vegetable crops, but results depend on type of composts, application rates and pathosystems.

  19. Biomass Performance : Monitoring and Control in Pharmaceutical Production

    OpenAIRE

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this thesis process monitoring is one of the central themes, from monitoring the environment of the micro-organisms to monitoring the micro-organisms themselves. The latter is called monitoring biomass performa...

  20. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, R.E., E-mail: ralf.erik.rossel@cern.ch [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Hochschule RheinMain, Fachbereich Design Informatik Medien, Wiesbaden (Germany); Fedosseev, V.N.; Marsh, B.A. [CERN, Geneva (Switzerland); Richter, D. [Hochschule RheinMain, Fachbereich Design Informatik Medien, Wiesbaden (Germany); Rothe, S. [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Wendt, K.D.A. [Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)

    2013-12-15

    Highlights: • The requirements for continuous and automated RILIS operation are outlined. • Laser wavelength, power, beam position and pulse timing are continuously monitored. • A network-extended LabVIEW-based equipment operation framework was developed. • The system serves as a foundation for collaborative laser spectroscopy data acquisition. • Example applications have been successfully tested with ISOLDE experiment setups. -- Abstract: With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  1. 植被物候遥感监测研究进展%Review of advances in vegetation phenology monitoring by remote sensing

    Institute of Scientific and Technical Information of China (English)

    夏传福; 李静; 柳钦火

    2013-01-01

    We reviewed and analyzed the monitoring methods, the validation methods and the error sources of remote sensing phenology. First, the monitoring methods, including the threshold-based, delayed-moving-average and curve-fitting methods, etc., were introduced and inter-compared. Second, the primary validation methods were analyzed, including sensor-network-monitoring, simulation model, etc. The error sources of remote sensing phenology products were further analyzed from the monitoring methods and the remote sensing data. At last, we made prospects for the future development of vegetation phenology monitoring by remote sensing: (1) To develop the new monitoring methodology by coupling the physiological and ecological respond mechanisms of vegetation phenology with the spectral response of remote sensing data. (2) To establish the standardized validation dataset for remote sensing phenology. (3) To improve the temporal resolution and the accuracy of remote sensing data for phenology monitoring by multi-satellite data.%植被物候是研究植被与气候、环境变化间关系的重要参量.本文针对目前常用的阈值法、拟合法和延迟滑动平均法等植被物候遥感监测方法进行比较分析;介绍了传感器网络法、物候模型法等物候遥感监测验证方法;从遥感监测方法和数据源两方面分析物候遥感监测的误差来源;针对目前研究中存在的问题,讨论了遥感物候的主要研究方向:从机理层面,应创新植被物候遥感监测方法;建立标准化地面验证数据源;利用多源遥感数据,组成高时间分辨率的原始遥感数据源,提高植被物候遥感监测的时间分辨率和测算精度.

  2. Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas

    Directory of Open Access Journals (Sweden)

    Luyi Sun

    2016-08-01

    Full Text Available Sub-Pixel Offset Tracking (sPOT is applied to derive high-resolution centimetre-level landslide rates in the Three Gorges Region of China using TerraSAR-X Hi-resolution Spotlight (TSX HS space-borne SAR images. These results contrast sharply with previous use of conventional differential Interferometric Synthetic Aperture Radar (DInSAR techniques in areas with steep slopes, dense vegetation and large variability in water vapour which indicated around 12% phase coherent coverage. By contrast, sPOT is capable of measuring two dimensional deformation of large gradient over steeply sloped areas covered in dense vegetation. Previous applications of sPOT in this region relies on corner reflectors (CRs, (high coherence features to obtain reliable measurements. However, CRs are expensive and difficult to install, especially in remote areas; and other potential high coherence features comparable with CRs are very few and outside the landslide boundary. The resultant sub-pixel level deformation field can be statistically analysed to yield multi-modal maps of deformation regions. This approach is shown to have a significant impact when compared with previous offset tracking measurements of landslide deformation, as it is demonstrated that sPOT can be applied even in densely vegetated terrain without relying on high-contrast surface features or requiring any de-noising process.

  3. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  4. Evaluating Water Controls on Vegetation Growth in the Semi-Arid Sahel Using Field and Earth Observation Data

    Directory of Open Access Journals (Sweden)

    Abdulhakim M. Abdi

    2017-03-01

    Full Text Available Water loss is a crucial factor for vegetation in the semi-arid Sahel region of Africa. Global satellite-driven estimates of plant CO2 uptake (gross primary productivity, GPP have been found to not accurately account for Sahelian conditions, particularly the impact of canopy water stress. Here, we identify the main biophysical limitations that induce canopy water stress in Sahelian vegetation and evaluate the relationships between field data and Earth observation-derived spectral products for up-scaling GPP. We find that plant-available water and vapor pressure deficit together control the GPP of Sahelian vegetation through their impact on the greening and browning phases. Our results show that a multiple linear regression (MLR GPP model that combines the enhanced vegetation index, land surface temperature, and the short-wave infrared reflectance (Band 7, 2105–2155 nm of the moderate-resolution imaging spectroradiometer satellite sensor was able to explain between 88% and 96% of the variability of eddy covariance flux tower GPP at three Sahelian sites (overall = 89%. The MLR GPP model presented here is potentially scalable at a relatively high spatial and temporal resolution. Given the scarcity of field data on CO2 fluxes in the Sahel, this scalability is important due to the low number of flux towers in the region.

  5. Climate and local controls of long-term vegetation dynamics in northern Patagonia (Lat 41°S)

    Science.gov (United States)

    Iglesias, Virginia; Whitlock, Cathy; Bianchi, María Martha; Villarosa, Gustavo; Outes, Valeria

    2012-11-01

    Patagonian vegetation has dramatically changed in composition and distribution over the last 16,000 yr. Although patterns of vegetation change are relatively clear, our understanding of the processes that produce them is limited. High-resolution pollen and charcoal records from two lakes located at lat 41°S provide new information on the postglacial history of vegetation and fire activity at the forest-steppe ecotone, and help clarify the relative importance of local and regional drivers of late-Holocene ecological change. Our results suggest that late-glacial parkland was colonized by shrubs at ca. 11,200 cal yr BP and this vegetation persisted until 4900 cal yr BP, when increased humidity allowed for the establishment of Nothofagus forest. The late Holocene is characterized by oscillations in forest dominance largely driven by changes in humidity, possibly associated with the onset or strengthening of ENSO. In the last 4900 yr, humid periods (4900-3800 and 2850-1350 cal yr BP) have promoted Nothofagus forest, whereas drier times (3800-2850 and 1350-450 cal yr BP) have favored Austrocedrus expansion. At intermediate moisture levels, however, the lower forest supported both taxa, and fire became an important control of community composition, with severe, infrequent fires facilitating Nothofagus regeneration and high fire frequency and intensity supporting Austrocedrus.

  6. Guam - Leucaena leucocephala Control and Restoration and Early Detection Monitoring for Invasive Vegetation and Insects

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Over the next 5 years there is planned to be a dramatic increase in population and infrastructure due to an increase in military activity on the island of Guam. Guam...

  7. Power, leadership and control of the distribution companies in the export of fresh vegetables from Sinaloa, México

    Directory of Open Access Journals (Sweden)

    Ezequiel Avilés Ochoa

    2012-05-01

    Full Text Available A key concept in the construction of the paradigm of global value chains is governance, for its constitution the variables of power, leadership and control are essential. The research focuses on Sinaloa vegetable distributors in the U.S.A. market, which reveals the interaction between regions of different countries for the formation of a horticultural value chain. The result is an index that defines which of the actors, involved in the fresh produce trade, practices more governance.

  8. Toxoplasma gondii infection in workers occupationally exposed to unwashed raw fruits and vegetables: a case control seroprevalence study

    Directory of Open Access Journals (Sweden)

    Alvarado-Esquivel Cosme

    2011-12-01

    Full Text Available Abstract Background Through a case control seroprevalence study, we sought to determine the association of Toxoplasma gondii infection with occupational exposure to unwashed raw fruits and vegetables. Methods Subjects, numbering 200, who worked growing or selling fruits and vegetables, and 400 control subjects matched by age, gender, and residence were examined by enzyme immunoassays for the presence of anti-Toxoplasma IgG and IgM antibodies. Socio-demographic, clinical, and behavioral characteristics from the study subjects were obtained. Results Of the 200 fruit and vegetable workers, 15 (7.5% of whom, and 31 (7.8% of the 400 controls were positive for anti-Toxoplasma IgG antibodies (P = 0.96. Anti-Toxoplasma IgM antibodies were found in 2 (1% of the fruit workers and in 11 (2.8% of the control subjects (P = 0.23. Seroprevalence of Toxoplasma antibodies increased with age (P = 0.0004. In addition, seropositivity to Toxoplasma was associated with ill status (P = 0.04, chronic tonsillitis (P = 0.03, and reflex impairment (P = 0.03. Multivariate analysis showed that Toxoplasma infection was associated with consumption of raw meat (OR = 5.77; 95% CI: 1.15-28.79; P = 0.03, unwashed raw fruits (OR = 2.50; 95% CI: 1.11-5.63; P = 0.02, and living in a house with soil floors (OR = 3.10; 95% CI: 1.22-7.88; P = 0.01, whereas Toxoplasma infection was negatively associated with traveling abroad (OR = 0.28; 95% CI: 0.12-0.67; P = 0.005. Conclusions This is the first report of seroprevalence and contributing factors for Toxoplasma infection in workers occupationally exposed to unwashed raw fruits and vegetables, and the results may help in the design of optimal preventive measures against Toxoplasma infection especially in female workers at reproductive age.

  9. Knowledge management for chronic patient control and monitoring

    Science.gov (United States)

    Pedreira, Nieves; Aguiar-Pulido, Vanessa; Dorado, Julián; Pazos, Alejandro; Pereira, Javier

    2014-10-01

    Knowledge Management (KM) can be seen as the process of capturing, developing, sharing, and effectively using organizational knowledge. In this context, the work presented here proposes a KM System to be used in the scope of chronic patient control and monitoring for distributed research projects. It was designed in order to enable communication between patient and doctors, as well as to be usedbythe researchers involved in the project for its management. The proposed model integrates all the information concerning every patient and project management tasks in the Institutional Memory of a KMSystem and uses an ontology to maintain the information and its categorization independently. Furthermore, taking the philosophy of intelligent agents, the system will interact with the user to show him the information according to his preferences and access rights. Finally, three different scenarios of application are described.

  10. Mechanistic Fermentation Models for Process Design, Monitoring, and Control

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads Orla

    2017-01-01

    Mechanistic models require a significant investment of time and resources, but their application to multiple stages of fermentation process development and operation can make this investment highly valuable. This Opinion article discusses how an established fermentation model may be adapted...... for application to different stages of fermentation process development: planning, process design, monitoring, and control. Although a longer development time is required for such modeling methods in comparison to purely data-based model techniques, the wide range of applications makes them a highly valuable tool...... for fermentation research and development. In addition, in a research environment, where collaboration is important, developing mechanistic models provides a platform for knowledge sharing and consolidation of existing process understanding....

  11. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation

    Science.gov (United States)

    Maddah, Hisham; Chogle, Aman

    2016-10-01

    This paper is a comprehensive review of biofouling in reverse osmosis modules where we have discussed the mechanism of biofouling. Water crisis is an issue of pandemic concern because of the steady rise in demand of drinking water. Overcoming biofouling is vital since we need to optimize expenses and quality of potable water production. Various kinds of microorganisms responsible for biofouling have been identified to develop better understanding of their attacking behavior enabling us to encounter the problem. Both primitive and advanced detection techniques have been studied for the monitoring of biofilm development on reverse osmosis membranes. Biofouling has a negative impact on membrane life as well as permeate flux and quality. Thus, a mathematical model has been presented for the calculation of normalized permeate flux for evaluating the extent of biofouling. It is concluded that biofouling can be controlled by the application of several physical and chemical remediation techniques.

  12. Remote Control and Monitoring of VLBI Experiments by Smartphones

    Science.gov (United States)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  13. Online monitoring and control of the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Boe, K.

    2006-07-01

    The demand for online monitoring and control of biogas process is increasing, since better monitoring and control system can improve process stability and enhance process performance for better economy of the biogas plants. A number of parameters in both the liquid and the gas phase have been suggested as process indicators. These include gas production, pH, alkalinity, volatile fatty acids (VFA) and hydrogen. Of these, VFA is the most widely recognised as a direct, relevant measure of stability. The individual, rather than collective VFA concentrations are recognised as providing significantly more information for diagnosis. However, classic on-line measurement is based on filtration, which suffers from fouling, especially in particulate or slurry wastes. In this project, a new online VFA monitoring system has been developed using gas-phase VFA extraction to avoid sample filtration. The liquid sample is pumped into a sampling chamber, acidified, added with salt and heated to extract VFA into the gas phase before analysis by GC-FID. This allows easy application to manure. Sample and analysis time of the system varies from 25-40 min. depending on the washing duration. The sampling frequency is fast enough for the dynamic of a manure digester, which is in the range of several hours. This system has been validated over more than 6 months and had shown good agreement with offline VFA measurement. Response from this sensor was compared with other process parameters such as biogas production, pH and dissolved hydrogen during overload situations in a laboratory-scale digester, to investigate the suitability of each measure as a process indicator. VFA was most reliable for indicating process imbalance, and propionate was most persistent. However, when coupling the online VFA monitoring with a simple control for automatic controlling propionate level in a digester, it was found that propionate decreased so slow that the biogas production fluctuated. Therefore, it is more

  14. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    Science.gov (United States)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  15. Formulation of a strategy for monitoring control integrity in critical digital control systems

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  16. Total Vegetation 1992

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The coverage contains 1992 vegetation polygons representing GCES monitoring sites. These data were developed by Dr. G. Waring Northern AZ. University for use in the...

  17. Total Vegetation 1973

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The coverage contains 1973 vegetation polygons representing GCES monitoring sites. These data were developed as study by Dr. G. Waring Northern AZ. University of...

  18. Total Vegetation 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The coverage contains 1965 vegetation polygons representing GCES monitoring sites. These data were developed as study by Dr. G. Waring Northern AZ. University of...

  19. Total Vegetation 1984

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The coverage contains 1984 vegetation polygons representing GCES monitoring sites. These data were developed as study by Dr. G. Waring Northern AZ. University of...

  20. 2016 Vegetation Photographs of the Coastal Wetland Elevation Monitoring Sites on National Wildlife Refuges in the South Atlantic Geography

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One representative photo taken from each coastal wetland elevation monitoring site. Photos were taken from one corner of the plot and oriented within the plot. In...

  1. Baseline Vegetation Photographs of the Coastal Wetland Elevation Monitoring Sites on National Wildlife Refuges in the South Atlantic Geography

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One representative photo taken from each coastal wetland elevation monitoring site. Photos were taken from one corner of the plot and oriented within the plot. In...

  2. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  3. Phosphorus Characteristics with Controlled Nitrogen in Fertile Soils in Protected Vegetable Field

    Directory of Open Access Journals (Sweden)

    WANG Heng

    2014-06-01

    Full Text Available There is an unreasonable phenomenon of fertilization in vegetable facility cultivation, with the serious imbalance of soil nutrient. In purpose of understanding the absorption characteristics of phosphorus from nitrogen-rich soil, a long-term nitrogen-controlled experiment was carried from the year 2004 to 2007, and a split plot experiment of leaching was carried in winter-spring season of 2007. The results showed that the content of phosphorus varied with different nitrogen control. The TP was decreased with nitrogen supply of none(NN 、organic manure(MN 、organic manure and straw(MN+S, and the decreased range was NN>MN>MN+S, meanwhile the increase range of TP was traditional-nitrogen(CN >traditional-nitrogen+straw(CN+S >optimized-nitrogen+straw(SN+S >optimized-nitrogen(SN. The available P with CN and CN+S reached to 213.7 mg· kg -1 、225.4 mg·kg -1, which increased by 17.1 percent and 23.5 percent, which declared the phosphorus was accumulated; The available P with other nitrogen controlled decreased with the range of NN>MN>MN+S>SN+S>SN跃CN>CN+S, which showed that the supply reduction of nitrogen could slowdown the phosphorus accumulated and promote the utilization ratio of phosphorus. The organophosphorus was increased except NN, with obvious increase with CN、CN+S(308.4 mg·kg -1 、331.4 mg·kg -1 by 28.5 percent and 38.2 percent. The absorption coefficient of phosphorus with SN+S(P 2 O 5,mg· 100 g -1 reached to 1 571, increased by 143.6 percent; Otherwise the absorption coefficient of phosphorus with CN、CN+S showed negative growth, the CN dipped to 416(P 2 O 5,mg·100 g -1 by 35.5 percent. Adding wheat straw could greatly improved the capacity of absorption of phosphorus and slow down the accumulation of available phosphorus to some extent. The concentrations of total phosphorus in the filtrate with SN+S were less than SN, contrary to the concentration of organophosphorus, thus the straw returning had a certain effect on

  4. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhang, Li; Guo, Huadong; Ji, Lei; Lei, Liping; Wang, Cuizhen; Yan, Dongmei; Li, Bin; Li, Jing

    2013-01-01

    The Qinghai-Tibetan Plateau has been experiencing a distinct warming trend, and climate warming has a direct and quick impact on the alpine grassland ecosystem. We detected the greenness trend of the grasslands in the plateau using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2009. Weather station data were used to explore the climatic drivers for vegetation greenness variations. The results demonstrated that the region-wide averaged normalized difference vegetation index (NDVI) increased at a rate of 0.036  yr−1. Approximately 20% of the vegetation areas, which were primarily located in the northeastern plateau, exhibited significant NDVI increase trend (p-value NDVI and precipitation, especially in the northeastern plateau, suggested that precipitation was a favorable factor for the grassland NDVI. Negative correlations between NDVI and temperature, especially in the southern plateau, indicated that higher temperature adversely affected the grassland growth. Although a warming climate was expected to be beneficial to the vegetation growth in cold regions, the grasslands in the central and southwestern plateau showed a decrease in trends influenced by increased temperature coupled with decreased precipitation.

  5. [Influence of three types of riparian vegetation on fluvial erosion control in Pantanos de Centla, Mexico].

    Science.gov (United States)

    Sepúlveda-Lozada, Alejandra; Geissen, Violette; Ochoa-Gaona, Susana; Jarquín-Sánchez, Aarón; de la Cruz, Simón Hernández; Capetillo, Edward; Zamora-Cornelio, Luis Felipe

    2009-12-01

    Wetlands constitute very important ecological areas. The aim of this study was to quantify the soil losses due to fluvial erosion from 2006 to 2008 in two riverbanks under three types of vegetal coverage dominated by Haematoxylum campechianum, Dalbergia brownei and Brachiaria mutica, in the Pantanos de Centla Biosphere Reserve, SE Mexico. The relationship between the texture, organic matter and pH of soils and soil losses was evaluated. We used erosion sticks to estimate soil losses in 18 plots (three plots per type, three vegetation types, two riverbanks). Soil loss decreased in this order: H. campechianum>B. mutica>D. brownei indicating that D. brownei scrubland has the most potential to retain soil. The higher erosive impact within H. campechianum sites can be related with the low density of these trees in the study areas, as well as the lack of association with other types of vegetation that could reinforce the rooting of the soil profile. Furthermore, soil losses in H. campechianum sites were dependent on soil texture. The soils under this type of vegetal coverage were mainly sandy, which are more vulnerable to the erosive action in comparison with fine textured soils or soils with higher clay content, like the ones found in D. brownei and B. mutica sites. Soil losses of 100 % in the second year (B. mutica plots) can be attributed to the distribution of roots in the upper soil layer and also to livestock management along riverbanks. This study recognizes the importance of D. brownei scrublands in riverbank soil retention. Nevertheless it is necessary to consider the role of an entire vegetal community in future research.

  6. Monitoring and remote control of a hybrid photovoltaic microgrid

    Directory of Open Access Journals (Sweden)

    Henrique Tiggemann

    2016-07-01

    Full Text Available The search of new alternatives for energy supply in island communities has always been a challenge in scientific and social context. In order to attend these communities, in January 2013 a photovoltaic hybrid microgrid project had its beginning at Universidade do Vale do Rio dos Sinos (UNISINOS. This paper presents the characterization and the development of such microgrid, monitored remotely via internet, which allows visualizing the electrical measurements, energy production and performing remote control actions. This work also aims increasing the interaction between students of universities to perform laboratory practices. The system consists of two photovoltaic modules technologies, mono and multicrystalline, totaling 570 Wp, connected to an energy storage bank of 200 Ah in 24 V and a pure sinusoidal inverter of 1 kW to supply AC voltage loads of 220 V. All acquisition components of data, conversion and management system are located in a control cabinet. Currently, the microgrid uses the utility grid as an auxiliary generator, simulating an alternative source of energy, which can be further replaced by fuel cell, biodiesel generator, etc.

  7. Optical sensors for process control and emissions monitoring in industry

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  8. Controle de Qualidade e triagem fitoquímica da droga vegetal das folhas de Morus nigra L. (MORACEAE

    Directory of Open Access Journals (Sweden)

    Pedro Luis Guizzo

    2015-10-01

    Full Text Available Uma rigorosa análise de controle de qualidade é uma das etapas na produção de fitoterápicos. Devido a escassez de estudos sobre Morus nigra L. (MORACEAE, mais conhecida como amora, este trabalho teve como objetivo o controle de qualidade das folhas da amoreira, incluindo uma análise Fitoquímica preliminar, controle de qualidade físico-químico e microbiológico utilizando metodologias farmacopeicas e não farmacopeicas. Os testes fitoquímicos evidenciaram a presença de isoflavonas, taninos hidrolisáveis e alcaloides. Os resultados do controle físico-químico e microbiológico mostraram-se de acordo com as especificações. Isso destaca a importância do estabelecimento de normas para o controle da qualidade para as plantas, a fim de que sejam utilizadas como fitoterápicos.Palavras-chave: Controle de qualidade. Droga vegetal. Fitoquímica. Morus nigra. ABSTRACT A rigorous quality control analysis is one of the steps in the production of herbal medicines. Due to lack of studies on Morus nigra L. (Moraceae, better known as mulberry, this study had as objective the quality control of mulberry leaves, including a preliminary Phytochemical analysis of physical-chemical and microbiological quality control methodologies, using pharmacopoeic and non pharmacopoeic. Phytochemicals tests revealed the presence of isoflavones, hydrolysable tannins and alkaloids. The results of the physic-chemical and microbiological control shown in accordance with the specifications. This shows the importance of establishing standards for quality control for plants, to be used as herbal medicines.Keywords: Quality control. vegetal drug. Phytochemistry. Morus nigra.

  9. Experimental identification of mechanisms controlling calcium isotopic fractionations by the vegetation.

    Science.gov (United States)

    Cobert, Florian; Schimtt, Anne-Désirée.; Bourgeade, Pascale; Stille, Peter; Chabaux, François; Badot, Pierre-Marie; Jaegler, Thomas

    2010-05-01

    This study aims to better understand the role of vegetation on the Ca cycle at the level of the critical zone of the Earth, in order to specify the mechanisms controlling the Ca absorption by plants at the rock/plant interface. To do this, we performed experiments using hydroponic plant cultures in a way that we could control the co-occuring geochemical and physiological process and determine the impact of the nutritive solution on the Ca cycle within plants. A dicotyledon and calcicole plant with rapid growth, the French bean (Phaseolus vulgaris L.), has been chosen to have access to one complete growth cycle. Several experiments have been conducted with two Ca concentrations, 6 (L) and 60 (H) ppm and two pH values (4 and 6) in the nutritive solution, for which the Ca concentration was maintained constant, so its Ca content is considered as infinite. A second experiment (non infinite L6) allowed Ca depletion in the solution through time; therefore, response effects on the Ca isotopic signatures in the plant organs and in the nutritive solution were observed. We determined Ca concentrations and isotopic ratios in the nutritive solution and in different organs (main roots, secondary roots, old and young stems, old and young leaves and fruits) at two different growth stages (10 days and 6 weeks). Preliminary results show that: (1) the roots (main and secondary) were enriched in the light isotope (40Ca) compared to the nutritive solution, and leaves were enriched in the heavy isotope (44Ca) compared to stems. These results are in accord with previously published field studies (Wigand et al., 2005; Page et al., 2008; Cenki-Tok et al., 2009; Holmden and Bélanger, 2010). Leaves and secondary roots were however enriched in the heavy isotope (44Ca) compared to bean pods, stems and main roots. These results could be related to kinetic fractionation processes occurring either during the Ca root uptake, or during the Ca transport within the plant, or physiological mechanisms

  10. Quality control in bio-monitoring networks, Spanish Aerobiology Network.

    Science.gov (United States)

    Oteros, Jose; Galán, Carmen; Alcázar, Purificación; Domínguez-Vilches, Eugenio

    2013-01-15

    Several of the airborne biological particles, such as pollen grains and fungal spores, are known to generate human health problems including allergies and infections. A number of aerobiologists have focused their research on these airborne particles. The Spanish Aerobiology Network (REA) was set up in 1992, and since then dozens of research groups have worked on a range of related topics, including the standardization of study methods and the quality control of data generated by this network. In 2010, the REA started work on an inter-laboratory survey for proficiency testing purposes. The main goal of the study reported in the present paper was to determine the performance of technicians in the REA network using an analytical method that could be implemented by other bio-monitoring networks worldwide. The results recorded by each technician were compared with the scores obtained for a bounded mean of all results. The performance of each technician was expressed in terms of the relative error made in counting each of several pollen types. The method developed and implemented here proved appropriate for proficiency testing in interlaboratory studies involving bio-monitoring networks, and enabled the source of data quality problems to be pinpointed. The test revealed a variation coefficient of 10%. The relative error was significant for 3.5% of observations. In overall terms, the REA staff performed well, in accordance with the REA Management and Quality Manual. These findings serve to guarantee the quality of the data obtained, which can reliably be used for research purposes and published in the media in order to help prevent pollen-related health problems.

  11. Practical Physiological Monitoring Protocol for Heat Strain Control

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R B; Johnson, J S; Burastero, S R; Gilmore, O

    2003-07-01

    , effecting metabolic heat generation is the most important factor. However, it does have several advantages including: Ease of deployment, high employee acceptance, relatively non-invasive, encourages self-monitoring, enables on-the-spot work/rest regimen adjustments protecting worker health and documents the effectiveness of control methods.

  12. Evaluating water controls on vegetation growth in the semi-arid sahel using field and earth observation data

    DEFF Research Database (Denmark)

    Abdi, Abdulhakim M.; Boke-Olen, Niklas; Tenenbaum, David E.

    2017-01-01

    Water loss is a crucial factor for vegetation in the semi-arid Sahel region of Africa. Global satellite-driven estimates of plant CO2 uptake (gross primary productivity, GPP) have been found to not accurately account for Sahelian conditions, particularly the impact of canopy water stress. Here, we...... identify the main biophysical limitations that induce canopy water stress in Sahelian vegetation and evaluate the relationships between field data and Earth observation-derived spectral products for up-scaling GPP. We find that plant-available water and vapor pressure deficit together control the GPP......-resolution imaging spectroradiometer satellite sensor was able to explain between 88% and 96% of the variability of eddy covariance flux tower GPP at three Sahelian sites (overall = 89%). The MLR GPP model presented here is potentially scalable at a relatively high spatial and temporal resolution. Given the scarcity...

  13. Controle de fitopatógenos do solo com materiais vegetais associados à solarização Control of soil-borne phytopathogenic fungi by the association between materials vegetable materials and solarization

    Directory of Open Access Journals (Sweden)

    Márcia Michelle de Queiroz Ambrósio

    2008-12-01

    fungal species (Fusarium oxysporum f. sp. lycopersici race 2; Macrophomina phaseolina, Rhizoctonia solani AG-4 HGI and Sclerotium rolfsii was evaluated against four fresh materials vegetables, ground and incorporated into the soil (leaves and branches of broccoli, eucalyptus, castor bean, and wild cassava. Control was evaluated through of the analysis of the survival of structures in a specific semi-selective medium, during four periods (7, 14, 21 and 28 days from the beginning of the experiment. Temperature values were monitored by a DataLogger Type CR23X (Campbell Scientific, and CO2 and O2 percentages were monitored with a gas analyzer equipment (Testo 325-1. The association between incorporation of vegetable materials with soil solarization inactivated F. oxysporum f. sp. lycopersici race 2, M. phaseolina and R. solani. The fungus S. rolfsii was the only that didn't present 100% of control with solarization more castor bean during the studied period. The incorporation of cassava followed by solarization provided the control of all fungi studied in less than seven days from the installation of the experiment, and was as efficient as broccoli in the eradication of these soil-borne plant pathogens.

  14. Woody vegetation cover monitoring with multi-temporal Landsat data and Random Forests: the case of the Northwest Province (South Africa)

    Science.gov (United States)

    Symeonakis, Elias; Higginbottom, Thomas; Petroulaki, Kyriaki

    2016-04-01

    Land degradation and desertification (LDD) are serious global threats to humans and the environment. Globally, 10-20% of drylands and 24% of the world's productive lands are potentially degraded, which affects 1.5 billion people and reduces GDP by €3.4 billion. In Africa, LDD processes affect up to a third of savannahs, leading to a decline in the ecosystem services provided to some of the continent's poorest and most vulnerable communities. Indirectly, LDD can be monitored using relevant indicators. The encroachment of woody plants into grasslands, and the subsequent conversion of savannahs and open woodlands into shrublands, has attracted a lot of attention over the last decades and has been identified as an indicator of LDD. According to some assessments, bush encroachment has rendered 1.1 million ha of South African savanna unusable, threatens another 27 million ha (~17% of the country), and has reduced the grazing capacity throughout the region by up to 50%. Mapping woody cover encroachment over large areas can only be effectively achieved using remote sensing data and techniques. The longest continuously operating Earth-observation program, the Landsat series, is now freely-available as an atmospherically corrected, cloud masked surface reflectance product. The availability and length of the Landsat archive is thus an unparalleled Earth-observation resource, particularly for long-term change detection and monitoring. Here, we map and monitor woody vegetation cover in the Northwest Province of South Africa, a mosaic of 12 Landsat scenes that expands over more than 100,000km2. We employ a multi-temporal approach with dry-season TM, ETM+ and OLI data from 15 epochs between 1989 to 2015. We use 0.5m-pixel colour aerial photography to collect >15,000 samples for training and validating a Random Forest model to map woody cover, grasses, crops, urban and bare areas. High classification accuracies are achieved, especially so for the two cover types indirectly

  15. Study on Real-time Monitoring and Alarm System of Field Forest Vegetation%野外无人值守森林实时监控与报警系统研究

    Institute of Scientific and Technical Information of China (English)

    杨华

    2014-01-01

    随着中国森林的过度砍伐,森林面积急剧减少,对植被的保护刻不容缓。但由于人力物力有限,无法对大量的野生植被进行实时巡视,造成大量野生植被的滥砍滥伐。采用数字摄像头作为采集终端,利用太阳能电池作为可移动电源,结合 GPS 和 GSM的智能控制板,实现植被状况的前端智能判断与实时监控。%Because forest is cut heavily in our country and the size of forest decrease sharply,the protection of forest vegetation is urgent.However,a lot of field forest vegetation is lost due to the absence of real-time patrol with limitation of person and devices. This paper developed the real-time monitoring system with intelligent client device which combined GPS and GSM control panel,e-quipped digital cameras as sampling clients and solar batteries as movable power supplies.

  16. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we re

  17. Monitoring `Renewable resources`. Vegetable oils and other fuels from plants. Third status report; Monitoring `Nachwachsende Rohstoffe`. Pflanzliche Oele und andere Kraftstoffe aus Pflanzen. Dritter Sachstandsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, C.

    1997-11-01

    The present status report `vegetable oils and other fuels from plants` deals with important developments on the utilization of biofuels in spark ignition engines and diesel engines since presentation of the report `growing raw materials` of the Enquete comission `Technikfolgenabschaetzung und -bewertung`. The report deals mainly with rapeseed oil and rape seed oil fatty acid methyl ester produced from this (mentioned short of biodiesel) as well as with bioethanol made from sugar beet and grain. (orig./SR) [Deutsch] Der vorliegende Sachstandsbericht `Pflanzliche Oele und andere Kraftstoffe aus Pflanzen` beschaeftigt sich mit den wichtigsten Entwicklungen beim Einsatz von Biokraftstoffen in Otto- und Dieselmotoren seit Vorlage des Berichts `Nachwachsende Rohstoffe` der Enquete-Kommission `Technikfolgenabschaetzung und -bewertung`. Der Bericht befasst sich schwerpunktmaessig mit Rapsoel und daraus hergestelltem Rapsoelfettsaeuremethylester (kurz Biodiesel genannt) sowie mit aus Zuckerrueben und Getreide erzeugtem Bioethanol. (orig./SR)

  18. CCSDS Spacecraft Monitor and Control Mission Operations Interoperability Prototype

    Science.gov (United States)

    Lucord, Steve; Martinez, Lindolfo

    2009-01-01

    We are entering a new era in space exploration. Reduced operating budgets require innovative solutions to leverage existing systems to implement the capabilities of future missions. Custom solutions to fulfill mission objectives are no longer viable. Can NASA adopt international standards to reduce costs and increase interoperability with other space agencies? Can legacy systems be leveraged in a service oriented architecture (SOA) to further reduce operations costs? The Operations Technology Facility (OTF) at the Johnson Space Center (JSC) is collaborating with Deutsches Zentrum fur Luft- und Raumfahrt (DLR) to answer these very questions. The Mission Operations and Information Management Services Area (MOIMS) Spacecraft Monitor and Control (SM&C) Working Group within the Consultative Committee for Space Data Systems (CCSDS) is developing the Mission Operations standards to address this problem space. The set of proposed standards presents a service oriented architecture to increase the level of interoperability among space agencies. The OTF and DLR are developing independent implementations of the standards as part of an interoperability prototype. This prototype will address three key components: validation of the SM&C Mission Operations protocol, exploration of the Object Management Group (OMG) Data Distribution Service (DDS), and the incorporation of legacy systems in a SOA. The OTF will implement the service providers described in the SM&C Mission Operation standards to create a portal for interaction with a spacecraft simulator. DLR will implement the service consumers to perform the monitor and control of the spacecraft. The specifications insulate the applications from the underlying transport layer. We will gain experience with a DDS transport layer as we delegate responsibility to the middleware and explore transport bridges to connect disparate middleware products. A SOA facilitates the reuse of software components. The prototype will leverage the

  19. Evaluation of a Remote Monitoring System for Diabetes Control.

    Science.gov (United States)

    Katalenich, Bonnie; Shi, Lizheng; Liu, Shuqian; Shao, Hui; McDuffie, Roberta; Carpio, Gandahari; Thethi, Tina; Fonseca, Vivian

    2015-06-01

    The use of technology to implement cost-effective health care management on a large scale may be an alternative for diabetes management but needs to be evaluated in controlled trials. This study assessed the utility and cost-effectiveness of an automated Diabetes Remote Monitoring and Management System (DRMS) in glycemic control versus usual care. In this randomized, controlled study, patients with uncontrolled diabetes on insulin were randomized to use of the DRMS or usual care. Participants in both groups were followed up for 6 months and had 3 clinic visits at 0, 3, and 6 months. The DRMS used text messages or phone calls to remind patients to test their blood glucose and to report results via an automated system, with no human interaction unless a patient had severely high or low blood glucose. The DRMS made adjustments to insulin dose(s) based on validated algorithms. Participants reported medication adherence through the Morisky Medication Adherence Scale-8, and diabetes-specific quality of life through the diabetes Daily Quality of Life questionnaire. A cost-effectiveness analysis was conducted based on the estimated overall costs of DRMS and usual care. A total of 98 patients were enrolled (59 [60%] female; mean age, 59 years); 87 participants (89%) completed follow-up. HbA1c was similar between the DRMS and control groups at 3 months (7.60% vs 8.10%) and at 6 months (8.10% vs 7.90%). Changes from baseline to 6 months were not statistically significant for self-reported medication adherence and diabetes-specific quality of life, with the exception of the Daily Quality of Life-Social/Vocational Concerns subscale score (P = 0.04). An automated system like the DRMS may improve glycemic control to the same degree as usual clinic care and may significantly improve the social/vocational aspects of quality of life. Cost-effectiveness analysis found DRMS to be cost-effective when compared to usual care and suggests DRMS has a good scale of economy for program scale

  20. Research on Integration of Coal Mine Monitoring and Control System with Field Bus Control System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize the system and to improve the flexibility and extent of the system. Essentially, the paper introduces the integration of FCS on I/O layers. Based on a real coal mine safety-monitoring and control system applied with a CAN field bus, the major technology of system relays and extensions is discussed. We believe that one of the most applicable methods is currently replacing the connection between function-stations and field-sensors with a CAN bus on I/O layers for system integration.

  1. Using NASA Earth Observing Satellites and Statistical Model Analysis to Monitor Vegetation and Habitat Rehabilitation in Southwest Virginia's Reclaimed Mine Lands

    Science.gov (United States)

    Tate, Z.; Dusenge, D.; Elliot, T. S.; Hafashimana, P.; Medley, S.; Porter, R. P.; Rajappan, R.; Rodriguez, P.; Spangler, J.; Swaminathan, R. S.; VanGundy, R. D.

    2014-12-01

    The majority of the population in southwest Virginia depends economically on coal mining. In 2011, coal mining generated $2,000,000 in tax revenue to Wise County alone. However, surface mining completely removes land cover and leaves the land exposed to erosion. The destruction of the forest cover directly impacts local species, as some are displaced and others perish in the mining process. Even though surface mining has a negative impact on the environment, land reclamation efforts are in place to either restore mined areas to their natural vegetated state or to transform these areas for economic purposes. This project aimed to monitor the progress of land reclamation and the effect on the return of local species. By incorporating NASA Earth observations, such as Landsat 8 Operational Land Imager (OLI) and Landsat 5 Thematic Mapper (TM), re-vegetation process in reclamation sites was estimated through a Time series analysis using the Normalized Difference Vegetation Index (NDVI). A continuous source of cloud free images was accomplished by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM). This model developed synthetic Landsat imagery by integrating the high-frequency temporal information from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution spatial information from Landsat sensors In addition, the Maximum Entropy Modeling (MaxENT), an eco-niche model was used to estimate the adaptation of animal species to the newly formed habitats. By combining factors such as land type, precipitation from Tropical Rainfall Measuring Mission (TRMM), and slope from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the MaxENT model produced a statistical analysis on the probability of species habitat. Altogether, the project compiled the ecological information which can be used to identify suitable habitats for local species in reclaimed mined areas.

  2. Process control and recovery in the Link Monitor and Control Operator Assistant

    Science.gov (United States)

    Lee, Lorrine; Hill, Randall W., Jr.

    1993-01-01

    This paper describes our approach to providing process control and recovery functions in the Link Monitor and Control Operator Assistant (LMCOA). The focus of the LMCOA is to provide semi-automated monitor and control to support station operations in the Deep Space Network. The LMCOA will be demonstrated with precalibration operations for Very Long Baseline Interferometry on a 70-meter antenna. Precalibration, the task of setting up the equipment to support a communications link with a spacecraft, is a manual, time consuming and error-prone process. One problem with the current system is that it does not provide explicit feedback about the effects of control actions. The LMCOA uses a Temporal Dependency Network (TDN) to represent an end-to-end sequence of operational procedures and a Situation Manager (SM) module to provide process control, diagnosis, and recovery functions. The TDN is a directed network representing precedence, parallelism, precondition, and postcondition constraints. The SM maintains an internal model of the expected and actual states of the subsystems in order to determine if each control action executed successfully and to provide feedback to the user. The LMCOA is implemented on a NeXT workstation using Objective C, Interface Builder and the C Language Integrated Production System.

  3. Protocols for vegetation and habitat monitoring with unmanned aerial vehicles: linking research to management on US public lands

    Science.gov (United States)

    Background/Question/Methods: Monitoring of the condition and trend of natural resources is critical for determining effectiveness of management actions and understanding ecosystem responses to broad-scale processes like climate change. While broad-scale remote sensing has generally improved the abi...

  4. Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis

    NARCIS (Netherlands)

    Hutchinson, J.M.S.; Jacquin, A.; Hutchinson, S.L.; Verbesselt, J.

    2015-01-01

    Given the significant land holdings of the U.S. Department of Defense, and the importance of those lands to support a variety of inherently damaging activities, application of sound natural resource conservation principles and proactive monitoring practices are necessary to manage military training

  5. Microbial monitoring by molecular tools of a two-phase anaerobic bioreactor treating fruit and vegetable wastes.

    Science.gov (United States)

    Bouallagui, H; Torrijos, M; Godon, J J; Moletta, R; Cheikh, R Ben; Touhami, Y; Delgenes, J P; Hamdi, M

    2004-05-01

    Microbial consortia in a two-phase, anaerobic bioreactor using a mixture of fruit and vegetable wastes were established. Bacterial and archaeal communities obtained by a culture-independent approach based on single strand conformation polymorphism analysis of total 16S rDNA showed the adaptation of the microflora to the process parameters. Throughout the 90 d of the study, the species composition of the bacterial community changed significantly. Bacterial 16S rDNA showed at least 7 different major species with a very prominent one corresponding to a Megasphaera elsdenii whereas bacterial 16S rDNA of a methanization bioreactor showed 10 different major species. After two weeks, Prevotella ruminicola became major and its dominance increased continuously until day 50. After an acid shock at pH 5, the 16S rDNA archaeal patterns in the acidogenic reactor showed two major prominent species corresponding to Methanosphaera stadtmanii and Methanobrevibacter wolinii, a hydrogenotrophic bacterium.

  6. An artificial reality environment for remote factory control and monitoring

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  7. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    CERN Document Server

    Rossel, R E; Richter, D; Wendt, K D A; Rothe, S; Marsh, B A

    2013-01-01

    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The syst...

  8. Mechanical Harvesting Effectively Controls Young Typha spp. Invasion and Unmanned Aerial Vehicle Data Enhances Post-treatment Monitoring

    Directory of Open Access Journals (Sweden)

    Shane C. Lishawa

    2017-04-01

    Full Text Available The ecological impacts of invasive plants increase dramatically with time since invasion. Targeting young populations for treatment is therefore an economically and ecologically effective management approach, especially when linked to post-treatment monitoring to evaluate the efficacy of management. However, collecting detailed field-based post-treatment data is prohibitively expensive, typically resulting in inadequate documentation of the ecological effects of invasive plant management. Alternative approaches, such as remote detection with unmanned aerial vehicles (UAV, provide an opportunity to advance the science and practice of restoration ecology. In this study, we sought to determine the plant community response to different mechanical removal treatments to a dominant invasive wetland macrophyte (Typha spp. along an age-gradient within a Great Lakes coastal wetland. We assessed the post-treatment responses with both intensive field vegetation and UAV data. Prior to treatment, the oldest Typha stands had the lowest plant diversity, lowest native sedge (Carex spp. cover, and the greatest Typha cover. Following treatment, plots that were mechanically harvested below the surface of the water differed from unharvested control and above-water harvested plots for several plant community measures, including lower Typha dominance, lower native plant cover, and greater floating and submerged aquatic species cover. Repeated-measures analysis revealed that above-water cutting increased plant diversity and aquatic species cover across all ages, and maintained native Carex spp. cover in the youngest portions of Typha stands. UAV data revealed significant post-treatment differences in normalized difference vegetation index (NDVI scores, blue band reflectance, and vegetation height, and these remotely collected measures corresponded to field observations. Our findings suggest that both mechanically harvesting the above-water biomass of young Typha stands

  9. Mechanical Harvesting Effectively Controls Young Typha spp. Invasion and Unmanned Aerial Vehicle Data Enhances Post-treatment Monitoring.

    Science.gov (United States)

    Lishawa, Shane C; Carson, Brendan D; Brandt, Jodi S; Tallant, Jason M; Reo, Nicholas J; Albert, Dennis A; Monks, Andrew M; Lautenbach, Joseph M; Clark, Eric

    2017-01-01

    The ecological impacts of invasive plants increase dramatically with time since invasion. Targeting young populations for treatment is therefore an economically and ecologically effective management approach, especially when linked to post-treatment monitoring to evaluate the efficacy of management. However, collecting detailed field-based post-treatment data is prohibitively expensive, typically resulting in inadequate documentation of the ecological effects of invasive plant management. Alternative approaches, such as remote detection with unmanned aerial vehicles (UAV), provide an opportunity to advance the science and practice of restoration ecology. In this study, we sought to determine the plant community response to different mechanical removal treatments to a dominant invasive wetland macrophyte (Typha spp.) along an age-gradient within a Great Lakes coastal wetland. We assessed the post-treatment responses with both intensive field vegetation and UAV data. Prior to treatment, the oldest Typha stands had the lowest plant diversity, lowest native sedge (Carex spp.) cover, and the greatest Typha cover. Following treatment, plots that were mechanically harvested below the surface of the water differed from unharvested control and above-water harvested plots for several plant community measures, including lower Typha dominance, lower native plant cover, and greater floating and submerged aquatic species cover. Repeated-measures analysis revealed that above-water cutting increased plant diversity and aquatic species cover across all ages, and maintained native Carex spp. cover in the youngest portions of Typha stands. UAV data revealed significant post-treatment differences in normalized difference vegetation index (NDVI) scores, blue band reflectance, and vegetation height, and these remotely collected measures corresponded to field observations. Our findings suggest that both mechanically harvesting the above-water biomass of young Typha stands and harvesting

  10. Relative significance of microtopography and vegetation as controls on surface water flow on a low-gradient floodplain

    Science.gov (United States)

    Choi, Jungyill; Harvey, Judson W.

    2014-01-01

    Surface water flow controls water velocities, water depths, and residence times, and influences sediment and nutrient transport and other ecological processes in shallow aquatic systems. Flow through wetlands is substantially influenced by drag on vegetation stems but is also affected by microtopography. Our goal was to use microtopography data directly in a widely used wetland model while retaining the advantages of the model’s one-dimensional structure. The base simulation with no explicit treatment of microtopography only performed well for a period of high water when vegetation dominated flow resistance. Extended simulations using microtopography can improve the fit to low-water conditions substantially. The best fit simulation had a flow conductance parameter that decreased in value by 70 % during dry season such that mcrotopographic features blocked 40 % of the cross sectional width for flow. Modeled surface water became ponded and flow ceased when 85 % of the cross sectional width became blocked by microtopographic features. We conclude that vegetation drag dominates wetland flow resistance at higher water levels and microtopography dominates at low water levels with the threshold delineated by the top of microtopographic features. Our results support the practicality of predicting flow on floodplains using relatively easily measured physical and biological variables.

  11. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  12. Advances in quality control for dioxins monitoring and evaluation of measurement uncertainty from quality control data.

    Science.gov (United States)

    Eppe, Gauthier; De Pauw, Edwin

    2009-08-01

    This paper describes an application of multivariate and multilevel quality control charts with the aim of improving the internal quality control (IQC) procedures for the monitoring of dioxins and dioxin-like PCBs analysis in food. Dioxin analysts have to use the toxic equivalent concept (TEQ) to assess the toxicity potential of a mixture of dioxin-like compounds. The TEQ approach requires quantifying individually 29 dioxin-like compounds. Monitoring the congeners separately on univariate QC charts is misleading owing to the increase of false alarm rate. We propose to subdivide the TEQ value into 3 sub-groups and to control simultaneously the 3 variables in a T(2) chart. When a T(2) exceeds the upper control limit, it acts as a warning to trigger additional investigations on individual congeners. We discuss the minimum number of runs required to reliably estimate the QC chart parameters and we suggest using data from multilevel QC charts to properly characterize the standard deviations and the correlation coefficients. Moreover, the univariate QC chart can be sensitised to detect systematic errors by using exponentially weighted moving average (EWMA) technique. The EWMA chart provides an additional guidance on setting appropriate criteria to control the method bias and to support trend analysis. Finally, we present an estimate of measurement uncertainty by computing the accuracy profile in a retrospective way with the QC data generated and we discuss assessment of compliance with regulatory maximum levels.

  13. Extrato de alho e óleo vegetal no controle do míldio da videira

    Directory of Open Access Journals (Sweden)

    Carla Daiane Leite

    2011-06-01

    Full Text Available O objetivo deste trabalho foi verificar o efeito do extrato de alho e do óleo vegetal no controle do míldio da videira cv. Isabel (Vitis labrusca. A severidade da doença, expressa pela área abaixo da curva de progresso da doença (AACPD, e a germinação de esporângios de seu agente causal Plasmopara viticola foram as variáveis avaliadas. Os tratamentos consistiram em 0; 5; 10; 15; 20; 25 ou 30 mL L-1 de extrato de alho adicionados de 2,5 mL L-1 óleo vegetal, calda bordalesa (1:1:100 e testemunha (sem tratamento. No teste de germinação, utilizou-se mancozebe (2 g L-1 como tratamento-padrão. Em condições de campo, observou-se redução da severidade do míldio com o óleo vegetal, sendo que o extrato de alho, a partir de 20 mL L-1, potencializou tal ação biocida. A germinação dos esporângios de P. viticola variou em função do tempo de exposição ao extrato de alho, não apresentando boa eficiência quando comparada ao tratamento com calda bordalesa e mancozebe. O óleo vegetal não influenciou na germinação dos esporângios desse patógeno.

  14. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010.

    Science.gov (United States)

    Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei

    2015-02-01

    Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.

  15. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  16. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

    DEFF Research Database (Denmark)

    Law, B.E.; Falge, E.; Gu, L.

    2002-01-01

    associated with reduced temperature. The slope of the relation between monthly gross ecosystem production and evapotranspiration was similar between biomes. except for tundra vegetation, showing a strong linkage between carbon gain and water loss integrated over the year (slopes = 3.4 g CO2/kg H2O...... compared with forests. Ecosystem respiration was weakly correlated with mean annual temperature across biomes, in spite of within site sensitivity over shorter temporal scales. Mean annual temperature and site water balance explained much of the variation in gross photosynthesis. Water availability limits...

  17. Monitoring and analysis of natural vegetation in a special protected area of mountain Antichasia--Meteora, central Greece.

    Science.gov (United States)

    Meliadis, Ioannis; Platis, Panagiotis; Ainalis, Apostolos; Meliadis, Miltiadis

    2010-04-01

    Natural ecosystems are renewable resources with special environmental, social, and economical attributes and characteristics. The increasing need of human beings for a better environment results in the use of new technologies that offer many advantages in detecting changes in the ecosystems. Remote sensing tools, technology, and the spatial analysis of the Geographic Information System were used in determining any changes in this study which attempts to classify land cover over a 10-year period. The study area is in Thessaly, central Greece, and has been classified as a Special Protection Area, because of its important wild fauna. The results have shown that current technologies can be used for modeling environmental parameters which improve our knowledge of the attributes, characteristics, situation, trends, and changes of natural ecosystems. The changes over time that have been observed result from the development of the vegetation or to anthropogenic and socioeconomic reasons. Rational range management will be a very comprehensive tool for farmers. This action will have a positive impact on flora in the rangelands. The core strategy is to combine forest, pasture, and livestock so that each component produces usable products.

  18. Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring

    Science.gov (United States)

    Peng, D.; Hu, Y.; Li, Z.

    2016-05-01

    It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.

  19. Filaria control and elimination: diagnostic, monitoring and surveillance needs.

    Science.gov (United States)

    Molyneux, David H

    2009-04-01

    Gold standard diagnosis using blood films or skin snips has dimished relevance as mass drug distribution programmes for control of filaria infections expand. The view of 'diagnosis' and its relevance at the individual level has changed, as it has been recognised that the spectrum of programmatic processes (mapping, mass drug interventions, monitoring and evaluation, and surveillance) require different approaches as different questions are asked at each stage. The feasibility and relevance of skin biopsy or blood film examination is challenged when mass drug distribution seeks to treat all eligibles in communities. The need to expand programmes rapidly by identifying the highest risk communities has seen the development of rapid assessment methods, such as rapid epidemiological mapping of onchocerciasis (REMO) and rapid epidemiological assessment (REA) for onchocerciasis, immunochromatographic test (ICT)-based mapping for lymphatic filariasis (LF), and Rapid Assessment Procedure for Loiasis (RAPLOA) for Loa, to reduce the risk of serious adverse events and to guide projects in high-risk communities. As programmes reduce the prevalence through mass drug distribution, more sensitive techniques are required to define endpoints, for LF in particular where the programmatic goal is elimination; for onchocerciasis, sensitive surveillance tools are required particularly in those areas where such risks of recrudescence are high. Whilst much progress has been made in the development and deployment of rapid methods, there are still specific needs for antigen detection in onchocerciasis, whilst standardisation of a panel of tools for LF will allow the definition of endpoint parameters so that countries can decide when mass drug administration (MDA) can be stopped and have a sensitive post-MDA surveillance system.

  20. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    Science.gov (United States)

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  1. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    Science.gov (United States)

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  2. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    Directory of Open Access Journals (Sweden)

    Sumalika Biswas

    Full Text Available Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas and woody savannas (non-protected areas. The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  3. Vegetative filter strips efficiency controlling soil loss and trapping herbicides in two olive orchards at the short-term

    Science.gov (United States)

    de Luna, Elena; Guzmán, Gema; Gómez, José A.

    2014-05-01

    The optimization of water use in a semi-arid climate is based on an optimal use of rainwater adopting management practices that prevent and/or control runoff. This is a key point for increasing the economic and environmental sustainability of agriculture due to the minimization of diffuse pollution associated to runoff and to sediment and chemical transport. One strategy is the establishment of vegetative filters strips that prevent pesticides (Stehle et al. 2011), herbicides (Vianello et al. 2005), fertilizers (Withers et al. 2009) and runoff-sediment (Campo-Bescós et al. 2013) from entering streams or surface water reservoirs. To evaluate the short-term risks associated with the use of herbicides a trial was designed in two olive groves located in Benacazón (Sevilla) and Cabra (Córdoba) both with an average steepness of 11%. Two different management systems were evaluated, bare soil and bare soil with vegetative filter strips. Pre-emergence herbicides were applied and analysed at the beginning of the trial by chromatography GC-MS and after each rainfall event both in soil and sediment. Runoff and soil losses were measured, as well. The results obtained from this study show that soil management practices such as, the use of vegetative filter strips results in a reduction of soil losses and runoff. This it is translated in the improvement of soil quality and a reduction of water pollution caused by the use of herbicides. This information will improve the understanding of insufficiently known aspects and it will help to increase the knowledge for a better implementation of sustainable management practices at a farm scale and at larger temporal scale. References: Campo-Bescós, M. A., Muñoz-Carpena, R., & Kiker, G. (2013) Influencia del suelo en la eficiencia de la implantación de filtros verdes en un distrito de riego por superficie en medio árido. En Estudios de la Zona no Saturada del Suelo, Vol. XI: 183-187. Stehle, S., Elsaesser, D., Gregoire, C., Imfeld

  4. Control and monitoring of on-line trigger algorithms using a SCADA system

    CERN Document Server

    van Herwijnen, E; Barczyk, A; Damodaran, B; Frank, M; Gaidioz, B; Gaspar, C; Jacobsson, R; Jost, B; Neufeld, N; Bonifazi, F; Callot, O; Lopes, H

    2006-01-01

    LHCb [1] has an integrated Experiment Control System (ECS) [2], based on the commercial SCADA system PVSS [3]. The novelty of this approach is that, in addition to the usual control and monitoring of experimental equipment, it provides control and monitoring for software processes, namely the on-line trigger algorithms. Algorithms based on Gaudi [4] (the LHCb software framework) compute the trigger decisions on an event filter farm of around 2000 PCs. Gaucho [5], the GAUdi Component Helping Online, was developed to allow the control and monitoring of Gaudi algorithms. Using Gaucho, algorithms can be monitored from the run control system provided by the ECS. To achieve this, Gaucho implements a hierarchical control system using Finite State Machines. In this article we describe the Gaucho architecture, the experience of monitoring a large number of software processes and some requirements for future extensions.

  5. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Directory of Open Access Journals (Sweden)

    Andrzej Pawlowski

    2009-01-01

    Full Text Available Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results.

  6. Installation and Operation of RENO Slow Control and Online Monitoring System

    CERN Document Server

    Choi, J H; Pac, M Y; Ahn, J K; Choi, S; Choi, Y; Choi, W K; Jang, J S; Jeon, E J; Joo, K K; Kim, H S; Kim, J Y; Kim, S B; Kim, W; Kim, Y D; Lee, J; Lim, I T; Ma, K J; Park, I G; Park, J S; Park, K S; Shin, J W; K, Siyeon; Stepanyan, S S; Yeo, I S; Yu, I

    2013-01-01

    The RENO is the reactor based experiment to measure the smallest neutrino mixing angle, $\\theta_{13}$. The slow control and online monitoring system for RENO monitors the status of the HV systems, the temperatures of the electronics crates and detectors, the fluids levels, humidities of experimental halls and electronics huts, and gas concentrations. And the slow control system is able to set up high voltage for each channel and turn on and off HV remotely. An online monitoring system located in the control room reads data from the DAQ host computer via network. It provides event display, online histograms to monitor detector performance, and variety of additional tasks needed to efficiently monitor detector performance parameters and diagnose troubles of detector and DAQ system. In this paper, we explan the installation of the slow control and monitoring system and their operation status,

  7. Environmental monitoring program for the Ormen Lange Onshore Processing Plant and the Reserve Power Plant at Nyhamna, Gossa. Monitoring of vegetation and soil: re-analyses and establishment of new monitoring plots in 2010.; Miljoeovervaakingsprogram for Ormen Lange landanlegg og Reservegasskraftverk paa Nyhamna, Gossa. Overvaaking av vegetasjon og jord: gjenanalyser og nyetablering av overvaakingsfelter i 2010

    Energy Technology Data Exchange (ETDEWEB)

    Aarrestad, P.A.; Bakkestuen, V.; Stabbetorp, O.E.; Myklebost, Heidi

    2011-07-01

    The Ormen Lange Onshore Processing Plant in Aukra municipality (Moere og Romsdal county) receives unprocessed gas and condensate from the Ormen Lange field in the Norwegian Sea. During processing of sales gas and condensate, the plant emits CO, Co2, Nox, CH4, NMVOC (including BTEX), SO2 and small amounts of heavy metals, as specified in the discharge permit issued by the Climate and Pollution Directorate. The plant started production in 2007, with A/S Norske Shell as operator. In general, emissions of nitrogen and sulphur-containing gasses may affect terrestrial ecosystems through acidification and fertilization of soil and vegetation. The emissions from the onshore plant are calculated to be below the current critical loads for the terrestrial nature types. However, the nitrogen background level in the area of influence is close to the critical loads for oligotrophic habitats. To be able to document any effects of emissions to air on terrestrial ecosystems, a monitoring program for vegetation and soil was established in 2008 in the area of influence from the Ormen Lange Onshore Plant. The monitoring is planned at regular intervals according to the same methods employed in 2008, with the first reanalysis in 2010. The benefits of the monitoring parameters will be continuously evaluated. Statnett has established a Reserve Power Plant with discharge permits of similar substances in the same area as the Ormen Lange Onshore Processing plant, and participates in an extended monitor program from 2010. In 2008 two monitoring sites were established, one with rather high deposition of nitrogen north of the plant within Gule-Stavmyran nature reserve in Fraena municipality (site Gulmyran) and one south of the plant on the island Gossa (site Aukra). Deposition values have been estimated by the Norwegian Institute for Air Research (NILU). Within each site integrated monitoring of the species composition of the vegetation, plant growth, and chemical content of plants and soil is

  8. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    Science.gov (United States)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  9. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  10. Front-End Control and Monitoring System for the Resistive Plate Chambers at the CMS Experiment

    CERN Document Server

    Thyssen, Filip

    2011-01-01

    An online control and monitoring system has recently been developed to automatically configure and continuously monitor FEB parameters. A fine-grained software model of hardware and detector components, organized in a dual hierarchical tree structure, facilitates command and data flow. A novel web-based user-interface allows control of an...

  11. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  12. An EWMA-type control chart for monitoring the process mean using auxiliary information

    NARCIS (Netherlands)

    Abbas, N.; Riaz, M.; Does, R.J.M.M.

    2014-01-01

    Statistical process control (SPC) is an important application of statistics in which the outputs of production processes are monitored. Control charts are an important tool of SPC. A very popular category is the Shewhart's x-chart used to monitor the mean of a process characteristic. Two alternative

  13. 49 CFR 195.573 - What must I do to monitor external corrosion control?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor external corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.573 What must I do to monitor external corrosion control? (a) Protected pipelines. You must do the following to...

  14. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that...

  15. Compost Extracts of Vegetable Wastes as Biopesticide to Control Cucumber Mosaic Virus

    Directory of Open Access Journals (Sweden)

    WIWIEK SRI WAHYUNI

    2010-06-01

    Full Text Available In semiaerobic conditions, different composting processes of vegetable wastes have different characteristics. When compost extracts amended with the effective microorganism-4 (EM4, +E and Pseudomonas aeruginosa Ch1 (+B stored for 40 days, the bacteria population and P-content increased. Tobacco plants treated with compost extracts amended with +E+B and [+E+B] directly to organic materials and inoculated with Cucumber mosaic virus (CMV both sprayed or watered applications reduced the disease severity. This is due to the higher bacteria population in the root and rhizosphere, particularly the activities of P. aeruginosa Ch1 as plant growth promoting rhizobacteria (PGPR rather than the activities of bacteria from EM4. The role of P. aeruginosa Ch1 to induce resistance of the plants to CMV was suggested by producing siderophores under the limited Fe conditions,17-20 ppm.

  16. Two year soil moisture and temperature monitoring from two vegetation communities on olivine-basalt soils from Coppermine Peninsula, Maritime Antarctica

    Science.gov (United States)

    Schaefer, Carlos; Thomazini, André; Michel, Roberto; Francelino, Márcio; Pereira, Antônio; Schünemann, Adriano; Mendonça, Eduardo Sá

    2017-04-01

    Current climate change is greatly affecting terrestrial ecosystems of Maritime Antarctica, especially due the variations in soil temperature and moisture content. The vegetation species distribution in Maritime Antarctica is highly heterogeneous on the landscape, being governed mainly by water regime and soil characteristics. Hence, the objective of this study was to evaluate soil temperature and moisture based on long-term in situ measurements from two well-developed vegetation communities in Coppermine Peninsula, Robert Island, Maritime Antarctica. The moss site (S1) is located in a marine terrace, highly influenced by ice/snow/permafrost melting (20 m a.s.l) not affected by permafrost. This site represents the most extensive moss carpet in Coppermine Peninsula, mainly constituted by Sanionia uncinata (Hedw.) Loeske, forming a dense carpet of 3-7 cm thickness. The moss/lichen site (S2) is located in an elevated area on basaltic ridge (29 m a.s.l.). The site has great influence of permafrost bellow the A horizon of the soil, at 50 cm depth. Vegetation species constitution is highly variable, with a significant occurrence of Polytrichastrum alpinum G.L. Smith. Musiccolas lichens populations of Psoroma cinnamomeum Malme, Ochrolechia frigida (Sw.). The monitoring systems consist of soil temperature probes (Campbell L107E thermocouple, accuracy of ± 0.2°C) and soil moisture probes (CS656 water content reflectometer, accuracy of ± 2.5%), placed in the active layer at 0-10 cm depths. Three probes were inserted at each site in triplicates, spaced at 2 m from each other. All probes were connected to a Campbell Scientific CR 1000 data logger, recording data at every 1 hour interval. We calculated the thawing days (TD), freezing days (FD); thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). This system recorded data of soil temperature and moisture from February 2014 to February 2016. A predominance of freezing conditions

  17. Ethernet Based Remote Monitoring And Control Of Temperature By Using Rabbit Processor

    Directory of Open Access Journals (Sweden)

    B.V.S.GOUD

    2012-09-01

    Full Text Available Networking is a major component of the processes and control instrumentation systems as the network’s architecture solves many of the Industrial automation problems. There is a great deal of benefits in the process of industrial parameters to adopt the Ethernet control system. Hence an attempt has been made to develop an Ethernet based remote monitoring and control of temperature. In the present work the experimental result shows that remote monitoring and control system (RMACS over the Ethernet.

  18. TEMPORAL VEGETATION DYNAMICS IN PEAT SWAMP AREA USING MODIS TIME-SERIES IMAGERY: A MONITORING APPROACH OF HIGH-SENSITIVE ECOSYSTEM IN REGIONAL SCALE

    Directory of Open Access Journals (Sweden)

    Yudi Setiawan

    2016-10-01

    Full Text Available Peat swamp area is an essential ecosystem due to high vulnerability of functions and services. As the change of forest cover in peat swamp area has increased considerably, many studies on peat swamp have focused on forest conversion or forest degradation. Meanwhile, in the context of changes in the forestlands are the sum of several processes such as deforestation, reforestation/afforestation, regeneration of previously deforested areas, and the changing spatial location of the forest boundary. Remote sensing technology seems to be a powerful tool to provide information required following that concerns. A comparison imagery taken at the different dates over the same locations for assessing those changes tends to be limited by the vegetation phenology and land-management practices. Consequently, the simultaneous analysis seems to be a way to deal with the issues above, as a means for better understanding of the dynamics changes in peat swamp area. In this study, we examined the feasibility of using MODIS images during the last 14 years for detecting and monitoring the changes in peat swamp area. We identified several significant patterns that have been assigned as the specific peat swamp ecosystem. The results indicate that a different type of ecosystem and its response to the environmental changes can be portrayed well by the significant patterns. In understanding the complex situations of each pattern, several vegetation dynamics patterns were characterized by physical land characteristics, such as peat depth, land use, concessions and others. Characterizing the pathways of dynamics change in peat swamp area will allow further identification for the range of proximate and underlying factors of the forest cover change that can help to develop useful policy interventions in peatland management.

  19. Monitoring of a landslide stabilized with bioengineering techniques in 1997, northern Tuscany. Vegetation development analysis and state of preservation of wood

    Science.gov (United States)

    Errico, Alessandro; Giambastiani, Yamuna; Guastini, Enrico; Dani, Andrea

    2014-05-01

    In 1996 a large landslide occurred in the chestnut grove nearby Pomezzana, a small town situated in the mountains of northern Tuscany, Italy. No damages were registered to population nor infrastructures, but the residual risks deriving from the effects of the event needed to be solved by means of a stabilization of the ground and reforestation. The choice has been found among bioengineering techniques, which perfectly fit in the ecosystem, landscape and the economic budgets of mountain engineering. A complex project has been implemented, using several different typologies of wooden structures, combined with rooted plants, wooden cuttings and grass seeding on the slopes. The most of the stabilization effect was assigned to the cribwalls, construct using local chestnut wood. Works ended in 1997. In 2013, 16 years later, a monitoring on the vegetation development and the state of preservation of the wood in cribwalls has been conducted. On vegetation, it has been surveyed the composition of species, diameter and height. Moreover, by means of a GPS device, the position of every plant has been registered and transcribed on GIS softwares for elaboration. The conservation of wood in cribwalls has been checked using a Resistograph, drilling each structure in three areas (at the two ends and roughly in the middle) and testing every order. The root systems of two plants have been excavated to calculate the RAR value for different depths, in order to quantify the contribution of roots in land stabilization. The soil has been also analyzed to determine structure, texture and geotechnical properties. Combining these data with the topographic survey conducted by the designers of the work, it has been possible to calculate the Safety Factor for landslide triggering using the model Slip4ex. The results show a good preservation rate of wooden structures, combined with a high contribution of roots in stabilization. The registered tree species (mainly Alnus glutinosa) were almost all

  20. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    Science.gov (United States)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  1. Flavonoid intake from vegetables and fruits is inversely associated with colorectal cancer risk: a case-control study in China.

    Science.gov (United States)

    Xu, Ming; Chen, Yu-Ming; Huang, Jing; Fang, Yu-Jing; Huang, Wu-Qing; Yan, Bo; Lu, Min-Shan; Pan, Zhi-Zhong; Zhang, Cai-Xia

    2016-10-01

    Flavonoids may play an important role in the protective effects of vegetables, fruits and tea against colorectal cancer. However, associations between flavonoids and colorectal cancer risk are inconsistent, and a few studies have evaluated the effect of flavonoids from different dietary sources separately. This study aimed to evaluate associations of flavonoids intake from different dietary sources with colorectal cancer risk in a Chinese population. From July 2010 to December 2015, 1632 eligible colorectal cancer cases and 1632 frequency-matched controls (age and sex) completed in-person interviews. A validated FFQ was used to estimate dietary flavonoids intake. Multivariate logistical regression models were used to calculate the OR and 95 % CI of colorectal cancer risk after adjusting for various confounders. No significant association was found between total flavonoids and colorectal cancer risk, with an adjusted OR of 1·06 (95 % CI 0·85, 1·32) comparing the highest with the lowest quartile. Anthocyanidins, flavanones and flavones intakes from total diet were found to be inversely associated with colorectal cancer risk. Compared with the lowest quartile, the adjusted OR for the highest quartile were 0·80 (95 % CI 0·64, 1·00) for anthocyanidins, 0·28 (95 % CI 0·22, 0·36) for flavanones and 0·54 (95 % CI 0·43, 0·67) for flavones. All subclasses of flavonoids from vegetables and fruits were inversely associated with colorectal cancer. However, no significant association was found between tea flavonoids and colorectal cancer risk. These data indicate that specific flavonoids, specifically flavonoids from vegetables and fruits, may be linked with the reduced risk of colorectal cancer.

  2. [Monitoring of a HACCP (Hazard Analysis Critical Control Point) plan for Listeria monocytogenes control].

    Science.gov (United States)

    Mengoni, G B; Apraiz, P M

    2003-01-01

    The monitoring of a HACCP (Hazard Analysis Critical Control Point) plan for the Listeria monocytogenes control in the cooked and frozen meat section of a thermo-processing meat plant was evaluated. Seventy "non-product-contact" surface samples and fourteen finished product samples were examined. Thirty eight positive sites for the presence of Listeria sp. were obtained. Twenty-two isolates were identified as L. monocytogenes, two as L. seeligeri and fourteen as L. innocua. Non isolates were obtained from finished product samples. The detection of L. monocytogenes in cooked and frozen meat section environment showed the need for the HACCP plan to eliminate or prevent product contamination in the post-thermal step.

  3. Controller-area-network bus control and monitor system for a radio astronomy interferometer.

    Science.gov (United States)

    Woody, David P; Wiitala, Bradley; Scott, Stephen L; Lamb, James W; Lawrence, Ronald P; Giovanine, Curt; Fredsti, Sancar J; Beard, Andrew; Pryke, Clem; Loh, Michael; Greer, Christopher H; Cartwright, John K; Gutierrez-Kraybill, Colby; Bolatto, Alberto D; Muchovej, Stephen J C

    2007-09-01

    We describe the design and implementation of a controller-area-network bus (CANbus) monitor and control system for a millimeter wave interferometer. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) is a 15-antenna connected-element interferometer for astronomical imaging, created by the merger of two university observatories. Its new control system relies on a central computer supervising a variety of subsystem computers, many of which control distributed intelligent nodes over CANbus. Subsystems are located in the control building and in individual antennas and communicate with the central computer via Ethernet. Each of the CAN modules has a very specific function, such as reading an antenna encoder or tuning an oscillator. Hardware for the modules was based on a core design including a commercial CANbus-enabled single-board computer and some standard circuitry for interfacing to peripherals. Hardware elements were added or changed as necessary for the specific module types. Similarly, a base set of embedded code was implemented for essential common functions such as CAN message handling and time keeping and extended to implement the required functionality for the different hardware. Using a standard CAN messaging protocol designed to fit the requirements of CARMA and a well-defined interface to the high-level software allowed separate development of high-level code and embedded code with minimal integration problems. Over 30 module types have been implemented and successfully deployed in CARMA, which is now delivering excellent new science data.

  4. Access Control for Monitoring System-Spanning Business Processes

    NARCIS (Netherlands)

    Bassil, S.; Reichert, M.U.; Bobrik, R.; Bauer, Th.

    2007-01-01

    Integrated process support is highly desirable in environ- ments where data related to a particular (business) process are scattered over distributed and heterogeneous information systems (IS). A process monitoring component is a much-needed module in order to provide an integrated view on all these

  5. Biomass performance : monitoring and control in bio-pharmaceutical production

    NARCIS (Netherlands)

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this

  6. A controlled experiment for water front monitoring using GPR technology

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    We use a stepped frequency continuous wave (SFCW) radar and an impulse radar to monitor a water flood experiment in a sand box. The SFCW system operates in the bandwidth from 800 MHz to 2.8 GHz. The impulse radar system is bi-static and works with a central frequency of 1 GHz. The sand box is a mete

  7. Biomass Performance : Monitoring and Control in Pharmaceutical Production

    NARCIS (Netherlands)

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this thesis p

  8. A controlled experiment for water front monitoring using GPR technology

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    We use a stepped frequency continuous wave (SFCW) radar and an impulse radar to monitor a water flood experiment in a sand box. The SFCW system operates in the bandwidth from 800 MHz to 2.8 GHz. The impulse radar system is bi-static and works with a central frequency of 1 GHz. The sand box is a

  9. Overall control and monitoring systems for pumped storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, B.; Cvetko, H.

    1982-01-01

    Experience and technical innovations in power plant engineering have resulted in continuous improvements of operation control, availability and safety of pumped storage plants. Process control is constantly improved as new developments are made in equipment and systems engineering. Plant control concepts with increasingly complex automation hierarchy are described by which pumped storage processes can be controlled optimally, reliably, and automatically.

  10. Offering choice and its effect on Dutch children’s liking and consumption of vegetables: a randomized controlled trial

    NARCIS (Netherlands)

    Zeinstra, G.G.; Renes, R.J.; Koelen, M.A.; Kok, F.J.; Graaf, de C.

    2010-01-01

    Background: Children's vegetable consumption is below recommended amounts. According to self-determination theory, stimulating children's feelings of autonomy by offering a choice of vegetables may be a valuable strategy to increase their vegetable liking and consumption. The effect of choice-offeri

  11. Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Hameed Ullah

    2017-01-01

    Full Text Available Chemical syntheses involve either hazardous reactants or byproducts which adversely affect the environment. It is, therefore, desirable to develop synthesis processes which either do not involve hazardous reactants or consume all the reactants giving no byproducts. We have synthesized CuO nanoparticles (NPs adhering to some of the principles of green chemistry. The CuO NPs have been synthesized exploiting extracts of vegetable wastes, that is, Cauliflower waste and Potatoes and Peas peels. The extracts were aimed to work as capping agents to get control over the microstructure and morphology of the resulting CuO NPs. The green synthesized CuO NPs were characterized to explore the microstructure, morphology, optical bandgaps, and photocatalytic performances. XRD revealed that the CuO NPs of all the samples crystallized in a single crystal system, that is, monoclinic. However, the morphologies and the optical bandgaps energies varied as a function of the extract of vegetable waste. Similarly, the CuO NPs obtained through different extracts have shown different photocatalytic activities. The CuO NPs produced with extract of Cauliflower have shown high degradation of MB (96.28% compared to obtained with Potatoes peels (87.37% and Peas peels (79.11%.

  12. Patterns of success: online self-monitoring in a web-based behavioral weight control program.

    Science.gov (United States)

    Krukowski, Rebecca A; Harvey-Berino, Jean; Bursac, Zoran; Ashikaga, Taka; West, Delia Smith

    2013-02-01

    Online weight control technologies could reduce barriers to treatment, including increased ease and convenience of self-monitoring. Self-monitoring consistently predicts outcomes in behavioral weight loss programs; however, little is known about patterns of self-monitoring associated with success. The current study examines 161 participants (92% women; 31% African American; mean body mass index = 35.7 ± 5.7) randomized to a 6-month online behavioral weight control program that offered weekly group "chat" sessions and online self-monitoring. Self-monitoring log-ins were continuously monitored electronically during treatment and examined in association with weight change and demographics. Weekend and weekday log-ins were examined separately and length of periods of continuous self-monitoring were examined. We found that 91% of participants logged in to the self-monitoring webpage at least once. Over 6 months, these participants monitored on an average of 28% of weekdays and 17% of weekend days, with most log-ins earlier in the program. Women were less likely to log-in, and there were trends for greater self-monitoring by older participants. Race, education, and marital status were not significant predictors of self-monitoring. Both weekday and weekend log-ins were significant independent predictors of weight loss. Patterns of consistent self-monitoring emerged early for participants who went on to achieve greater than a 5% weight loss. Patterns of online self-monitoring were strongly associated with weight loss outcomes. These results suggest a specific focus on consistent self-monitoring early in a behavioral weight control program might be beneficial for achieving clinically significant weight losses.

  13. Randomized controlled trial of a messaging intervention to increase fruit and vegetable intake in adolescents: Affective versus instrumental messages.

    Science.gov (United States)

    Carfora, Valentina; Caso, Daniela; Conner, Mark

    2016-11-01

    The present research aimed to test the efficacy of affective and instrumental text messages compared with a no-message control as a strategy to increase fruit and vegetable intake (FVI) in adolescents. A randomized controlled trial was used test impact of different text messages compared with no message on FVI over a 2-week period. A total of 1,065 adolescents (14-19 years) from a high school of the South of Italy completed the baseline questionnaire and were randomly allocated to one of three conditions: instrumental messages (N = 238), affective messages (N = 300), and no messages (N = 521). Students in the message conditions received one message each day over a 2-week period. The messages targeted affective (affective benefits) or instrumental (instrumental benefits) information about FVI. Self-reported FVI at 2 weeks was the key dependent variable. Analyses were based on the N = 634 who completed all aspects of the