WorldWideScience

Sample records for monitoring uv inactivation

  1. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  2. Immunogenicity of UV-inactivated measles virus

    International Nuclear Information System (INIS)

    Zahorska, R.; Mazur, N.; Korbecki, M.

    1978-01-01

    By means of the antigen extinction limit test it was shown that a triple dose vaccination of guinea pigs with UV-inactivated measles virus gave better results, than a single dose vaccination which was proved by the very low immunogenicity index. For both vaccination schemes (single and triple) the immune response was only sligthly influenced by a change of dose from 10 5 to 10 6 HadU 50 /ml or by the addition of aluminum adjuvant. In the antigen extinction limit test the antibody levels were determined by two methods (HIT and NT) the results of which were statistically equivalent. The UV-inactivated measles virus was also found to induce hemolysis-inhibiting antibodies. (orig.) [de

  3. Sequential and Simultaneous Applications of UV and Chlorine for Adenovirus Inactivation.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko; Takizawa, Satoshi

    2015-09-01

    Adenoviruses are water-borne human pathogens with high resistance to UV disinfection. Combination of UV treatment and chlorination could be an effective approach to deal with adenoviruses. In this study, human adenovirus 5 (HAdV-5) was challenged in a bench-scale experiment by separate applications of UV or chlorine and by combined applications of UV and chlorine in either a sequential or simultaneous manner. The treated samples were then propagated in human lung carcinoma epithelial cells to quantify the log inactivation of HAdV-5. When the processes were separate, a fluence of 100 mJ/cm(2) and a CT value of 0.02 mg min/L were required to achieve 2 log inactivation of HAdV-5 by UV disinfection and chlorination, respectively. Interestingly, synergistic effects on the HAdV-5 inactivation rates were found in the sequential process of chlorine followed by UV (Cl2-UV) (p simultaneous application of UV/Cl2. This implies that a pretreatment with chlorine may increase the sensitivity of the virus to the subsequent UV disinfection. In conclusion, this study suggests that the combined application of UV and chlorine could be an effective measure against adenoviruses as a multi-barrier approach in water disinfection.

  4. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Inactivation of microorganisms by UV-treatment of must and wine

    Directory of Open Access Journals (Sweden)

    Durner Dominik

    2017-01-01

    Full Text Available The objective was to investigate the applicability of UV-C technology to inactivate yeasts and bacteria in must and wine. Experiments were carried out in vintage 2016 with Riesling musts of different quality containing their natural microflora. Yeasts were tested more resistant to UV-C energy than bacteria. Saccharomyces cerevisiae showed higher tolerance against UV-C irradiation than Hanseniaspora uvarum facilitating new opportunities to control spontaneous fermentations. However, inactivation efficacy was strongly dependent on turbidity of musts and the initial degree of contamination suggesting a shadowing effect of individual germs. Compared with thermal pasteurization, UV-C treatment of must with 1 kJ/L showed similar effects in germ-reduction. While thermal pasteurization significantly decreased aroma precursors in musts, UV-C treatment did not change concentrations of glycosidically-bound C6-alcohols, monoterpenes and C13-norisoprenoids as shown by GC-MS analysis. Applying UV-C technology in wines, it was possible to irreversibly stop ongoing alcoholic fermentation indicating that UV-C treatment is capable to replace SO2 addition to produce wines with residual sugar. Besides inactivation power, UV-C is known for its ability to form powerful off-flavours such as methional or methanethiol. Sensory analysis revealed that the application of UV-C at doses < 2 kJ/L in must is uncritical. However, applying UV-C after alcoholic fermentation can result in rising concentrations of mercaptans already at doses < 1 kJ/L. In this context, compounds such as caftaric acid, riboflavin and dissolved oxygen are thought to positively contribute to the UV-induced formation of off-flavours in wine.

  6. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2.

    Science.gov (United States)

    Yoon, Younggun; Chung, Hay Jung; Wen Di, Doris Yoong; Dodd, Michael C; Hur, Hor-Gil; Lee, Yunho

    2017-10-15

    This study assessed the inactivation efficiency of plasmid-encoded antibiotic resistance genes (ARGs) both in extracellular form (e-ARG) and present within Escherichia coli (intracellular form, i-ARG) during water treatment with chlorine, UV (254 nm), and UV/H 2 O 2 . A quantitative real-time PCR (qPCR) method was used to quantify the ARG damage to amp R (850 bp) and kan R (806 bp) amplicons, both of which are located in the pUC4K plasmid. The plate count and flow cytometry methods were also used to determine the bacterial inactivation parameters, such as culturability and membrane damage, respectively. In the first part of the study, the kinetics of E. coli inactivation and ARG damage were determined in phosphate buffered solutions. The ARG damage occurred much more slowly than E. coli inactivation in all cases. To achieve 4-log reduction of ARG concentration at pH 7, the required chlorine exposure and UV fluence were 33-72 (mg × min)/L for chlorine and 50-130 mJ/cm 2 for UV and UV/H 2 O 2 . After increasing pH from 7 to 8, the rates of ARG damage decreased for chlorine, while they did not vary for UV and UV/H 2 O 2 . The i-ARGs mostly showed lower rates of damage compared to the e-ARGs due to the protective roles of cellular components against oxidants and UV. The contribution of OH radicals to i-ARG damage was negligible in UV/H 2 O 2 due to significant OH radical scavenging by cellular components. In all cases, the ARG damage rates were similar for amp R versus kan R , except for the chlorination of e-ARGs, in which the damage to amp R occurred faster than that to kan R . Chlorine and UV dose-dependent ARG inactivation levels determined in a wastewater effluent matrix could be reasonably explained by the kinetic data obtained from the phosphate buffered solutions and the expected oxidant (chlorine and OH radicals) demands by water matrix components. These results can be useful in optimizing chlorine and UV-based disinfection systems to achieve ARG

  8. Microbial inactivation and cytotoxicity evaluation of UV irradiated coconut water in a novel continuous flow spiral reactor.

    Science.gov (United States)

    Bhullar, Manreet Singh; Patras, Ankit; Kilanzo-Nthenge, Agnes; Pokharel, Bharat; Yannam, Sudheer Kumar; Rakariyatham, Kanyasiri; Pan, Che; Xiao, Hang; Sasges, Michael

    2018-01-01

    A continuous-flow UV reactor operating at 254nm wave-length was used to investigate inactivation of microorganisms including bacteriophage in coconut water, a highly opaque liquid food. UV-C inactivation kinetics of two surrogate viruses (MS2, T1UV) and three bacteria (E. coli ATCC 25922, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes ATCC 19115) in buffer and coconut water were investigated (D 10 values ranging from 2.82 to 4.54mJ·cm -2 ). A series of known UV-C doses were delivered to the samples. Inactivation levels of all organisms were linearly proportional to UV-C dose (r 2 >0.97). At the highest dose of 30mJ·cm -2 , the three pathogenic organisms were inactivated by >5 log 10 (pUV-C irradiation effectively inactivated bacteriophage and pathogenic microbes in coconut water. The inactivation kinetics of microorganisms were best described by log linear model with a low root mean square error (RMSE) and high coefficient of determination (r 2 >0.97). Models for predicting log reduction as a function of UV-C irradiation dose were found to be significant (pUV-C treatment did not generate cytotoxic compounds in the coconut water. This study clearly demonstrated that high levels of inactivation of pathogens can be achieved in coconut water, and suggested potential method for UV-C treatment of other liquid foods. This research paper provides scientific evidence of the potential benefits of UV-C irradiation in inactivating bacterial and viral surrogates at commercially relevant doses of 0-120mJ·cm -2 . The irradiated coconut water showed no cytotoxic effects on normal intestinal and healthy mice liver cells. UV-C irradiation is an attractive food preservation technology and offers opportunities for horticultural and food processing industries to meet the growing demand from consumers for healthier and safe food products. This study would provide technical support for commercialization of UV-C treatment of beverages. Copyright © 2017 Elsevier Ltd. All

  9. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination

    International Nuclear Information System (INIS)

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2013-01-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log 10 control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log 10 reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. - Highlights: • As a disinfectant, chlorine is more effective than UV in inactivating Aspergillus flavus. • As a combined method, UV irradiation followed by chlorination shows high efficiency. • UV irradiation can improve effectiveness of chlorination in reducing Aspergillus flavus

  10. PEF and UV combined system for pathogen microorganisms inactivation in liquid food products

    Energy Technology Data Exchange (ETDEWEB)

    Cramariuc, R [Competence Center in Electrostatics and Electrotechnologies, Bucharest (Romania); Popa, M; Mitelut, A; Geicu, M [University of Agronomic Science and Veterinary Medicine, Bucharest (Romania); Tudorache, A; Brinduse, E; Kontek, A; Fotescu, L [Research and Development Institute in Viticulture and Vinification Valea Calugareasca (Romania); Cramariuc, B [IT Center for Science and Technology, Bucharest (Romania); Nisiparu, L, E-mail: raducramariuc@yahoo.com [Carol Davila University of Medicine and Pharmacy, Bucharest (Romania)

    2011-06-23

    Pulsed electrical field (PEF) treatment is a non-thermal food preservation technology based on the use of the electrical field in impulses applied in order to inactivate and control pathogen microorganisms in foods. This technology is highly appreciated for its ability to prolong the shelf life of the treated product without the use of heat and also for its ability to preserve the product's sensory qualities and nutritional value as well as for the microbiological control of the treated products. This paper presents the PEF and UV treatment methods, or a combination between the two, for microbe inactivation in liquid products. The experiments were carried out using yeasts, lactic bacteria and acetic bacteria in the following systems: stand-alone treatments (PEF or UV) or in combination (UV+PEF or PEF+UV). The results of these experiments showed that one can obtain total inactivation of microorganisms using the combined UV+PEF system, thus leading to the possibility of increasing liquid food products quality as compared to the quality obtained using thermal pasteurization.

  11. PEF and UV combined system for pathogen microorganisms inactivation in liquid food products

    Science.gov (United States)

    Cramariuc, R.; Popa, M.; Tudorache, A.; Brînduşe, E.; Kontek, A.; Mitelut, A.; Fotescu, L.; Cramariuc, B.; Geicu, M.; Nisiparu, L.

    2011-06-01

    Pulsed electrical field (PEF) treatment is a non-thermal food preservation technology based on the use of the electrical field in impulses applied in order to inactivate and control pathogen microorganisms in foods. This technology is highly appreciated for its ability to prolong the shelf life of the treated product without the use of heat and also for its ability to preserve the product's sensory qualities and nutritional value as well as for the microbiological control of the treated products. This paper presents the PEF and UV treatment methods, or a combination between the two, for microbe inactivation in liquid products. The experiments were carried out using yeasts, lactic bacteria and acetic bacteria in the following systems: stand-alone treatments (PEF or UV) or in combination (UV+PEF or PEF+UV). The results of these experiments showed that one can obtain total inactivation of microorganisms using the combined UV+PEF system, thus leading to the possibility of increasing liquid food products quality as compared to the quality obtained using thermal pasteurization.

  12. PEF and UV combined system for pathogen microorganisms inactivation in liquid food products

    International Nuclear Information System (INIS)

    Cramariuc, R; Popa, M; Mitelut, A; Geicu, M; Tudorache, A; Brinduse, E; Kontek, A; Fotescu, L; Cramariuc, B; Nisiparu, L

    2011-01-01

    Pulsed electrical field (PEF) treatment is a non-thermal food preservation technology based on the use of the electrical field in impulses applied in order to inactivate and control pathogen microorganisms in foods. This technology is highly appreciated for its ability to prolong the shelf life of the treated product without the use of heat and also for its ability to preserve the product's sensory qualities and nutritional value as well as for the microbiological control of the treated products. This paper presents the PEF and UV treatment methods, or a combination between the two, for microbe inactivation in liquid products. The experiments were carried out using yeasts, lactic bacteria and acetic bacteria in the following systems: stand-alone treatments (PEF or UV) or in combination (UV+PEF or PEF+UV). The results of these experiments showed that one can obtain total inactivation of microorganisms using the combined UV+PEF system, thus leading to the possibility of increasing liquid food products quality as compared to the quality obtained using thermal pasteurization.

  13. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  14. UV inactivation: Combined effects of UV radiation and xenobiotics in two strains of Saccharomyces

    International Nuclear Information System (INIS)

    Lochmann, E.R.; Lochmann, G.

    1997-01-01

    The effects of eight chemicals on the inactivation rate of ultraviolet radiation on the colony building capabilities of two strains of Saccharomyces cervisae - a wild type strain and a mutant deficient in excision repair - were studied. The insecticide methoxychlor, the herbicide 2,4-dichlorophenoxyacetic acid, the fungicide pentachlorophenol and its metabolite tetrachlorohydroquinone, as well as the chemicals acrylonitrile and 2,3-dichloro-1-propene have no significant impact on the effects of UV radiation in Saccharomyces cerevisae. Depending on the concentration, trichloroethylene increases the sensitivity to UV radiation. The herbicide paraquat provides efficient protection against UV radiation at concentrations where a toxic effect cannot be observed even without UV. The results were rather similar for both strains. (orig.) [de

  15. Inactivation of Bacterial Spores and Vegetative Bacterial Cells by Interaction with ZnO-Fe2O3 Nanoparticles and UV Radiation

    Directory of Open Access Journals (Sweden)

    José Luis Sánchez-Salas

    2017-09-01

    Full Text Available ZnO-Fe2O3 nanoparticles (ZnO-Fe NPs were synthesized and characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS and dynamic light scattering (DLS. The generation of chemical reactive hydroxyl radicals (•OH was measured spectrophotometrically (UV-Vis by monitoring of p-nitrosodimethylaniline (pNDA bleaching. Inactivation of E. coli and B. subtilis spores in the presence of different concentrations of ZnO-Fe NPs, under UV365nm or visible radiation, was evaluated. We observed the best results under visible light, of which inactivation of E. coli of about 90% was accomplished in 30 minutes, while B. subtilis inactivation close to 90% was achieved in 120 minutes. These results indicate that the prepared photocatalytic systems are promising for improving water quality by reducing the viability of water-borne microorganisms, including bacterial spores.

  16. Use of laser-UV for inactivation of virus in blood products

    International Nuclear Information System (INIS)

    Prodouz, K.N.; Fratantoni, J.C.; Boone, E.J.; Bonner, R.F.

    1987-01-01

    Inactivation of virus by UV radiation was examined as a potential method for sterilization of blood products. Samples of attenuated poliovirus, platelets and plasma were uniformly irradiated with a XeCl excimer laser that delivered 40 nsec pulses of UV at 308 nm (UVB308). Intensities and exposure does were varied from 0.11 to 1.40 MW/cm2 and 0.51 to 56.0 J/cm2, respectively. In studies conducted with low intensity UVB308 (less than or equal to 0.17 MW/cm2), using exposure doses greater than or equal to 10.8 J/cm2, it was possible to inactivate poliovirus by 4 to 6 log10. Platelets irradiated with doses less than or equal to 21.5 J/cm2 exhibited minimal damage as assessed by aggregation activity and spontaneous release of serotonin. Examination of the coagulation activity of irradiated plasma indicated that exposure doses less than or equal to 21.5 J/cm2 resulted in less than 20% increase in prothrombin and partial thromboplastin times. The use of UVB308 at a higher intensity (1.4 MW/cm2) over a similar range of exposure doses did not enhance viral inactivation but did result in increased damage to platelet and plasma proteins. These results demonstrate that at 308 nm there exists a window of efficacy for exposure doses between 10.8 and 21.5 J/cm2 and peak intensities less than or equal to 0.17 MW/cm2 in which a hardy virus is significantly inactivated and platelets and plasma proteins are, by functional criteria, minimally affected. Increased viral inactivation cannot be accomplished with higher UV intensities and will require additional or alternate measures

  17. Inhibition of host cell protein synthesis by UV-inactivated poliovirus

    International Nuclear Information System (INIS)

    Helentjaris, T.; Ehrenfeld, E.

    1977-01-01

    The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm 2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell

  18. Effect of hybrid UV-thermal energy stimuli on inactivation of S. epidermidis andB. subtilis bacterial bioaerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gi Byoung; Jung, Jae Hee; Jeong, Tae Gun; Lee, Byung Uk, E-mail: leebu@konkuk.ac.kr [Aerosol and Bioengineering Laboratory, Department of Mechanical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-Gu, Seoul, 143-701(Korea, Republic of)

    2010-11-01

    Bioaerosols have become an increasingly important issue due to their harmful effects on human health. As the concern over airborne microorganisms grows, so does the need to develop and study efficient methods of controlling them. In this study, we designed a hybrid system involving ultraviolet (UV) irradiation and thermal energy and investigated its effects on bacterial bioaerosols, followed by a comparison with thermal energy alone and UV irradiation alone. The results show that the hybrid effect caused no variation in the shape of the normalized particle size distributions of S. epidermidis and B. subtilis bioaerosols. However, a physical transport loss of bacterial bioaerosols developed as the temperature inside the glass quartz tube increased. When bacterial bioaerosols were simultaneously exposed to UV irradiation and thermal energy for less than 1.05 s, more than 99% of S. epidermidis bioaerosols were inactivated at 120 {sup o}C with exposure to one UV lamp and at 80 {sup o}C with exposure to two UV lamps; and 93.5% and 98.5% of B. subtilis bioaerosols were inactivated at 280 {sup o}C with exposure to one and two UV lamps, respectively. Moreover, the hybrid UV-thermal stimuli significantly reduced the concentration of ozone, which is a secondary UV-induced pollutant. Our results show that to obtain the same inactivation efficiency, the hybrid UV-thermal stimuli were more efficient than thermal energy alone in terms of energy consumption and produced significantly less ozone than UV irradiation alone. The hybrid stimuli also had higher inactivation efficiency than UV alone. Therefore, these results provide valuable information for the development of new methods for controlling bioaerosols.

  19. UV inactivation of pathogenic and indicator microorganisms

    International Nuclear Information System (INIS)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-01-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts

  20. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  1. Kinetics of recB-dependent repair: Relationship to post-UV inactivation of the prophage

    International Nuclear Information System (INIS)

    Trgovcevic, Z.; Petranovic, D.; Salaj-Smic, E.; Petranovic, M.

    1987-01-01

    By making use of the temperature-sensitive mutant recB270, we showed that the RecBCD enzyme is needed for repair between 1 and 4 h after UV exposure. recB-dependent prophage inactivation takes place in all dying cells during the same period of time. The kinetics of decrease in the yield of recombinants in phage-prophage crosses resemble those of prophage inactivation in UV-irradiated bacteria. This indicates that recombination processes (including site-specific recombination required for prophage excision) are blocked in cells destined to die. On the basis of our results, we suggest that a large fraction of damaged cells is rescued by the RecA-RecBCD recombination pathway. If repair is unsuccessful, RecA-RecBCD recombinaton intermediates persist in the irradiated cells leading to prophage inactivation. 27 refs.; 4 figs

  2. Inactivation of bacteria via photosensitization of vitamin K3 by UV-A light.

    Science.gov (United States)

    Xu, Fei; Vostal, Jaroslav G

    2014-09-01

    This study investigated inactivation of bacteria with ultraviolet light A irradiation in combination with vitamin K3 as a photosensitizer. Six bacteria including Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and Escherichia coli suspended in vitamin K3 aqueous solution were exposed to ultraviolet light A. Five of six bacteria, with the exception of Pseudomonas aeruginosa, were reduced by eight logs with 1600 μM of vitamin K3 and 5.8 J cm(-2) UV-A irradiation. Pseudomonas aeruginosa was reduced by four logs under these conditions. Reactive oxygen species including singlet oxygen, hydroxyl radical and superoxide anion radical were generated in vitamin K3 aqueous solution under UV-A irradiation. These results suggest that vitamin K3 and UV-A irradiation may be effective for bacterial inactivation in environmental and medical applications. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. The inactivation of hepatitis A virus and other model viruses by UV irradiation

    International Nuclear Information System (INIS)

    Battigelli, D.A.; Sobsey, M.D.; Lobe, D.C.

    1993-01-01

    Ultraviolet light is an attractive alternative to chemical disinfection of water, but little is known about its ability to inactivate important waterborne pathogens such as hepatitis A virus. Therefore, the sensitivity of HAV strain HM-175, coxsackievirus type B-5, rotavirus strain SA-11, and bacteriophages MS2 and φX174 to ultraviolet radiation of 254 nm wavelength in phosphate buffered water was determined. Purified stocks of the viruses were combined and exposed to collimated UV radiation in a stirred reactor for a total dose of up to 40 mW sec/cm 2 . Virus survival kinetics were determined from samples removed at dose intervals. The results of these experiments indicate that UV radiation can effectively inactivate viruses of public health concern in drinking water. (author)

  4. Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures

    International Nuclear Information System (INIS)

    Watson, A.J.; Klaniecki, J.; Hanson, C.V.

    1990-01-01

    A rapid procedure for the inactivation of HIV-1-infected cells using psoralen and ultraviolet (UV) light is described. Exposure of HIV-1-infected cells to 5 micrograms/ml psoralen followed by UV irradiation (320-380 nm) for 5 minutes yields cells that are noninfectious as assessed by extended infectivity assays. The psoralen/UV inactivation procedure described is effective with cells chronically or acutely infected with HIV-1 and is unaffected by cell densities up to 12 x 10(6)/ml. At 5 micrograms/ml psoralen does little damage to cellular permeability as shown by the ability of treated cells to exclude trypan blue and propidium iodide. Psoralen/UV treatment of HIV-1-infected cells does not cause a significant decrease in the reactivity of HIV-1 core and envelope antigens or cellular antigens to monoclonal antibodies. Experiments are presented demonstrating the use of these cells for flow cytometry studies and for cell surface labeling using the lactoperoxidase 125 I iodination procedure

  5. The inactivation of hepatitis A virus and other model viruses by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, D A; Sobsey, M D; Lobe, D C [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences

    1993-01-01

    Ultraviolet light is an attractive alternative to chemical disinfection of water, but little is known about its ability to inactivate important waterborne pathogens such as hepatitis A virus. Therefore, the sensitivity of HAV strain HM-175, coxsackievirus type B-5, rotavirus strain SA-11, and bacteriophages MS2 and [phi]X174 to ultraviolet radiation of 254 nm wavelength in phosphate buffered water was determined. Purified stocks of the viruses were combined and exposed to collimated UV radiation in a stirred reactor for a total dose of up to 40 mW sec/cm[sup 2]. Virus survival kinetics were determined from samples removed at dose intervals. The results of these experiments indicate that UV radiation can effectively inactivate viruses of public health concern in drinking water. (author).

  6. Monitoring and control of UV and UV-TiO2 disinfections for municipal wastewater reclamation using artificial neural networks

    International Nuclear Information System (INIS)

    Lin, Chuang-Hung; Yu, Ruey-Fang; Cheng, Wen-Po; Liu, Chun-Ru

    2012-01-01

    Highlights: ► ANN models can effectively control both UV and UV-TiO 2 disinfections for wastewater reuse. ► Comparing to UV disinfection, UV-TiO 2 disinfection can save 13.2–15.7% of UV dosage and capacity. ► SS decreases disinfection efficiency when UV doses were 2 . - Abstract: The use of ultraviolet (UV) irradiation as a physical wastewater disinfection has increased in recent years, especially for wastewater reuse. The UV-TiO 2 can generate OH radicals, which is highly effective to inactivate microorganisms in wastewater disinfection. However, both UV and UV-TiO 2 disinfections create multiple physical, chemical, and bio-chemical phenomena that affect their germicidal efficiency. It is difficult to build a precise control model using existing mathematic models. This study applies artificial neural network (ANN) models to control UV and UV-TiO 2 disinfections. Experimental results indicate that the ANN models, which precisely generate relationships among multiple monitored parameters, total coliform counts in influent and effluent, and UV doses, can be used as control models for UV and UV-TiO 2 disinfections. A novel ANN control strategy is applied to control UV and UV-TiO 2 disinfection processes to meet three total coliform count limits for three wastewater reuse purposes. The proposed controlled strategy effectively controls UV and UV-TiO 2 disinfection, resulting in acceptable total coliform counts in effluent for the three wastewater reuse purposes. The required UV doses for UV-TiO 2 disinfection were lower than those for UV disinfection, resulting in energy saving and capacity reduction of 13.2–15.7%.

  7. Effectiveness of standard UV depuration at inactivating Cryptosporidium parvum recovered from spiked Pacific oysters (Crassostrea gigas).

    Science.gov (United States)

    Sunnotel, O; Snelling, W J; McDonough, N; Browne, L; Moore, J E; Dooley, J S G; Lowery, C J

    2007-08-01

    When filter-feeding shellfish are consumed raw, because of their ability to concentrate and store waterborne pathogens, they are being increasingly associated with human gastroenteritis and have become recognized as important pathogen vectors. In the shellfish industry, UV depuration procedures are mandatory to reduce pathogen levels prior to human consumption. However, these guidelines are based around more susceptible fecal coliforms and Salmonella spp. and do not consider Cryptosporidium spp., which have significant resistance to environmental stresses. Thus, there is an urgent need to evaluate the efficiency of standard UV depuration against the survival of Cryptosporidium recovered from shellfish. Our study found that in industrial-scale shellfish depuration treatment tanks, standard UV treatment resulted in a 13-fold inactivation of recovered, viable C. parvum oocysts from spiked (1 x 10(6) oocysts liter (-1)) Pacific oysters. Depuration at half power also significantly reduced (P oysters. While UV treatment resulted in significant reductions of recovered viable oocysts, low numbers of viable oocysts were still recovered from oysters after depuration, making their consumption when raw a public health risk. Our study highlights the need for increased periodic monitoring programs for shellfish harvesting sites, improved depuration procedures, and revised microbial quality control parameters, including Cryptosporidium assessment, to minimize the risk of cryptosporidiosis.

  8. INACTIVATION OF PATHOGENIC BACTERIA USING PULSED UV-LIGHT AND ITS APPLICATION IN WATER DISINFECTION AND QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    M. K. Sharifi-Yazdi H. Darghahi

    2006-09-01

    Full Text Available The lethality of pulsed ultra-violet (UV rich light for the inactivation of pathogenic bacteria has been investigated. A low pressure xenon filled flash lamps that produced UV intensities have been used. The pulsed operation of the system enable the release of electrical energy stored in the capacitor into the flash lamp within a short time and produces the high current and high peak power required for emitting the intense UV flash. The flash frequency was adjusted to one pulse per second. Several types of bacteria were investigated for their susceptibility to pulsed UV illumination. The treated bacterial populations were reduced and determined by direct viable counts. Among the tested bacteria Pseudomonas aeruginosa was the most susceptible to the pulsed UV- light with a 8 log10 cfu/ml reduction after 11 pulses, while the spores of Bacillus megaterium was the most resistant and only 4 log10 cfu/ml reduction achieved after 50 pulses of illumination. The results of this study demonstrated that pulsed UV- light technology could be used as an effective method for the inactivation, of pathogenic bacteria in different environments such as drinking water.

  9. Monitoring and control of UV and UV-TiO{sub 2} disinfections for municipal wastewater reclamation using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chuang-Hung [Department of Architecture, National United University, Miao-Li 360, Taiwan, ROC (China); Yu, Ruey-Fang, E-mail: rfyu@nuu.edu.tw [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan, ROC (China); Cheng, Wen-Po; Liu, Chun-Ru [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan, ROC (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ANN models can effectively control both UV and UV-TiO{sub 2} disinfections for wastewater reuse. Black-Right-Pointing-Pointer Comparing to UV disinfection, UV-TiO{sub 2} disinfection can save 13.2-15.7% of UV dosage and capacity. Black-Right-Pointing-Pointer SS decreases disinfection efficiency when UV doses were <10,000 {mu}W s/cm{sup 2}. - Abstract: The use of ultraviolet (UV) irradiation as a physical wastewater disinfection has increased in recent years, especially for wastewater reuse. The UV-TiO{sub 2} can generate OH radicals, which is highly effective to inactivate microorganisms in wastewater disinfection. However, both UV and UV-TiO{sub 2} disinfections create multiple physical, chemical, and bio-chemical phenomena that affect their germicidal efficiency. It is difficult to build a precise control model using existing mathematic models. This study applies artificial neural network (ANN) models to control UV and UV-TiO{sub 2} disinfections. Experimental results indicate that the ANN models, which precisely generate relationships among multiple monitored parameters, total coliform counts in influent and effluent, and UV doses, can be used as control models for UV and UV-TiO{sub 2} disinfections. A novel ANN control strategy is applied to control UV and UV-TiO{sub 2} disinfection processes to meet three total coliform count limits for three wastewater reuse purposes. The proposed controlled strategy effectively controls UV and UV-TiO{sub 2} disinfection, resulting in acceptable total coliform counts in effluent for the three wastewater reuse purposes. The required UV doses for UV-TiO{sub 2} disinfection were lower than those for UV disinfection, resulting in energy saving and capacity reduction of 13.2-15.7%.

  10. Effectiveness of Standard UV Depuration at Inactivating Cryptosporidium parvum Recovered from Spiked Pacific Oysters (Crassostrea gigas)▿

    Science.gov (United States)

    Sunnotel, O.; Snelling, W. J.; McDonough, N.; Browne, L.; Moore, J. E.; Dooley, J. S. G.; Lowery, C. J.

    2007-01-01

    When filter-feeding shellfish are consumed raw, because of their ability to concentrate and store waterborne pathogens, they are being increasingly associated with human gastroenteritis and have become recognized as important pathogen vectors. In the shellfish industry, UV depuration procedures are mandatory to reduce pathogen levels prior to human consumption. However, these guidelines are based around more susceptible fecal coliforms and Salmonella spp. and do not consider Cryptosporidium spp., which have significant resistance to environmental stresses. Thus, there is an urgent need to evaluate the efficiency of standard UV depuration against the survival of Cryptosporidium recovered from shellfish. Our study found that in industrial-scale shellfish depuration treatment tanks, standard UV treatment resulted in a 13-fold inactivation of recovered, viable C. parvum oocysts from spiked (1 × 106 oocysts liter −1) Pacific oysters. Depuration at half power also significantly reduced (P oysters. While UV treatment resulted in significant reductions of recovered viable oocysts, low numbers of viable oocysts were still recovered from oysters after depuration, making their consumption when raw a public health risk. Our study highlights the need for increased periodic monitoring programs for shellfish harvesting sites, improved depuration procedures, and revised microbial quality control parameters, including Cryptosporidium assessment, to minimize the risk of cryptosporidiosis. PMID:17574996

  11. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities

    International Nuclear Information System (INIS)

    Barrett, M.; Fitzhenry, K.; O'Flaherty, V.; Dore, W.; Keaveney, S.; Cormican, M.; Rowan, N.; Clifford, E.

    2016-01-01

    It is accepted that discharged wastewaters can be a significant source of pathogenic viruses in receiving water bodies contributing to pollution and may in turn enter the human food chain and pose a risk to human health, thus norovirus (NoV) is often a predominant cause of gastroenteritis globally. Working with NoV poses particular challenges as it cannot be readily identified and detection by molecular methods does not assess infectivity. It has been proposed that the infectivity of NoV may be modelled through the use of an alternative virus; F-specific RNA (FRNA) bacteriophages; GA genotype and other FRNA bacteriophages have been used as a surrogate in studies of NoV inactivation. This study investigated the efficiency of novel pulsed ultraviolet irradiation and low pressure ultraviolet irradiation as a potential pathogen inactivation system for NoV and FRNA bacteriophage (GA) in secondary treated wastewaters. The role of UV dose and the impact of suspended solids concentration on removal efficiency were also examined. The study also investigated the role of settlement processes in wastewater treatment plants in removing NoV. While NoV inactivation could not be determined it was found that at a maximum UV dose of 6.9 J/cm"2 (6900 mJ/cm"2) an average 2.4 log removal of FRNA bacteriophage (GA) was observed; indicating the potential need for high UV doses to remove NoV if FRNA bacteriophage prove a suitable indicator for NoV. The study found that increasing concentrations of suspended solids impacted on PUV efficiency however, it appears the extent of the impact may be site specific. Furthermore, the study found that settlement processes can play a significant role in the removal of FRNA bacteriophage, thus potentially NoV. - Highlights: • Effectiveness of low pressure UV and novel high-intensity pulsed UV disinfection in NoVs removal. • Reduction of FRNA bacteriophage was seen in clarified wastewater after settling. • Adsorption of viral particles to solids

  12. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M. [Microbial Ecology Laboratory, Microbiology, School of Natural sciences, National University of Ireland Galway (Ireland); Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland); Fitzhenry, K. [Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland); O' Flaherty, V. [Microbial Ecology Laboratory, Microbiology, School of Natural sciences, National University of Ireland Galway (Ireland); Ryan Institute, National University of Ireland Galway (Ireland); Dore, W.; Keaveney, S. [Marine Institute, Galway (Ireland); Cormican, M. [Ryan Institute, National University of Ireland Galway (Ireland); Centre for Health from Environment, Ryan Institute, National University of Ireland Galway (Ireland); Rowan, N. [Bioscience Research Institute, Athlone Institute of Technology (Ireland); Clifford, E., E-mail: eoghan.clifford@nuigalway.ie [Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland)

    2016-10-15

    It is accepted that discharged wastewaters can be a significant source of pathogenic viruses in receiving water bodies contributing to pollution and may in turn enter the human food chain and pose a risk to human health, thus norovirus (NoV) is often a predominant cause of gastroenteritis globally. Working with NoV poses particular challenges as it cannot be readily identified and detection by molecular methods does not assess infectivity. It has been proposed that the infectivity of NoV may be modelled through the use of an alternative virus; F-specific RNA (FRNA) bacteriophages; GA genotype and other FRNA bacteriophages have been used as a surrogate in studies of NoV inactivation. This study investigated the efficiency of novel pulsed ultraviolet irradiation and low pressure ultraviolet irradiation as a potential pathogen inactivation system for NoV and FRNA bacteriophage (GA) in secondary treated wastewaters. The role of UV dose and the impact of suspended solids concentration on removal efficiency were also examined. The study also investigated the role of settlement processes in wastewater treatment plants in removing NoV. While NoV inactivation could not be determined it was found that at a maximum UV dose of 6.9 J/cm{sup 2} (6900 mJ/cm{sup 2}) an average 2.4 log removal of FRNA bacteriophage (GA) was observed; indicating the potential need for high UV doses to remove NoV if FRNA bacteriophage prove a suitable indicator for NoV. The study found that increasing concentrations of suspended solids impacted on PUV efficiency however, it appears the extent of the impact may be site specific. Furthermore, the study found that settlement processes can play a significant role in the removal of FRNA bacteriophage, thus potentially NoV. - Highlights: • Effectiveness of low pressure UV and novel high-intensity pulsed UV disinfection in NoVs removal. • Reduction of FRNA bacteriophage was seen in clarified wastewater after settling. • Adsorption of viral particles

  13. Inactivation of Bacteria S. aureus ATCC 25923 and S. Thyphimurium ATCC 14 028 Influence of UV-HPEF

    Science.gov (United States)

    Bakri, A.; Hariono, B.; Utami, M. M. D.; Sutrisno

    2018-01-01

    The research was objected to study the performance of the UV unit - HPEF in inactivating bacteria population of Gram-positive (S aureus ATCC 25923) and Gram-negative (S Thyphimurium ATCC 14028) inoculated in sterilized goat’s milk. UV pasteurization instrument employed three reactors constructed in series UV-C system at 10 W, 253.7 nm wavelength made in Kada (USA) Inc. with 1.8 J/cm2 dose per reactor. HPEF instrument used high pulsed electric field at 31.67 kV/cm, 15 Hz and goat’s milk rate at 4:32 ± 0.71 cc/second. Pathogenic bacteria was observed According to Indonesian National Standard 01-2782-1998. Inactivation rate of pathogenic bacteria ie S Thyphimurium ATCC 14028 and S. aureus ATCC 25923 was 0.28 and 0.19 log cycle or 6.35 and 4.34 log cfu/ml/hour, respectively; D value was 0.16 and 0.23 hour with k value was 14.62 and 10 hour-1 respectively.

  14. Reactivation in UV inactivated Escherichia coli by cell-free extracts of propionic acid bacteria

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Nikitenko, G.V.; Khodzhaev, E.Yu.; Ponomareva, G.M.

    1993-01-01

    For the first time reactivation of cell extraction of three strains of Propionibacterium shermanii in UV inactivated not filament-forming strain Escherichia colli AB 1157 is shown. Reactivation was demonstrated in prencubated and postincubated test-culture and increased as survival of E.coli decreased in a range 1,8-0,006%. The factor (factores) of defense in dialysable, thermolable and is present as in a fraction of nucleoproteins and nucleic acids so in a fraction of soluble proteins. The extracts were inactivated by incubation with proteinase K and trypsin, partly decreased activity by incubation with alpha-amylase and selected nuclease but not with lipase. Polypeltide nature of reactivative factor is supposed

  15. Photoreversible UV-inactivation of messenger RNA in an insect embryo (Smittia spec., chironomidae, diptera)

    International Nuclear Information System (INIS)

    Jaeckle, H.; Kalthoff, K.

    1980-01-01

    Smittia embryos were UV-irradiated during intravitelline cleavage while nuclei are heavily shielded by yolk-rich cytoplasm and do not synthesize detectable amounts of RNA. Irradiation at 265, 285 and 295 nm wavelength caused biological inactivation, and pyrimidine dimer formation in maternal RNA. Marked effects on protein synthesis were also observed: (1) the overall rate of 35 S-methionine incorporation in vivo was reduced to less than half of the normal rate, (2) two dimensional gel electrophoresis revealed quantitative variations in the synthetic rate of some polypeptides and the appearance of new ones in UV-irradiated embryos, (3) translation of polyadenylated RNA from Smittia embryos in a cell-free system was inhibited by UV-irradiation in vivo, (4) the apparent degradation during early embryogenesis, of maternal polyadenylated RNA was retarded in UV-irradiated embryos. Exposure to light (400 nm) after UV caused partial photoreversal of all UV effects observed. This is the first data showing that animal mRNA, after UV-irradiation, can be photoreactivated in vivo. The results also strongly suggest that the photorepairable lesions consist of pyrimidine dimers generated in a photosensitized reaction. (author)

  16. 'In vitro' studies on the interaction of rickettsia and macrophages. I. Effect of ultraviolet light on 'Coxiella burnetii' inactivation and macrophage enzymes: uv-inactivated 'C. burnetii'/macrophage enzymes. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1979-09-04

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (UV) light was studied. The effect of UV treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that UV treatment of 600 microwatts/sq cm for 15 sec at a distance of 10 cm inactivated C. burnetii, either in suspension (10 to the 8th power organisms/ML) or within guinea pig peritoneal macrophages. Similar UV treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients. However, longer exposure caused considerable inactivatioin of these enzymes.

  17. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  18. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  19. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    Science.gov (United States)

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe0 process for safe water production.

    Science.gov (United States)

    Yousefzadeh, Samira; Matin, Atiyeh Rajabi; Ahmadi, Ehsan; Sabeti, Zahra; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-01

    One of the most important aspects of environmental issues is the demand for clean and safe water. Meanwhile, disinfection process is one of the most important steps in safe water production. The present study aims at estimating the performance of UV, nano Zero-Valent Iron particles (nZVI, nano-Fe 0 ), and UV treatment with the addition of nZVI (combined process) for Bacillus subtilis spores inactivation. Effects of different factors on inactivation including contact time, initial nZVI concentration, UV irradiance and various aerations conditions were investigated. Response surface methodology, based on a five-level, two variable central composite design, was used to optimize target microorganism reduction and the experimental parameters. The results indicated that the disinfection time had the greatest positive impact on disinfection ability among the different selected independent variables. According to the results, it can be concluded that microbial reduction by UV alone was more effective than nZVI while the combined UV/nZVI process demonstrated the maximum log reduction. The optimum reduction of about 4 logs was observed at 491 mg/L of nZVI and 60 min of contact time when spores were exposed to UV radiation under deaerated condition. Therefore, UV/nZVI process can be suggested as a reliable method for Bacillus subtilis spores inactivation. Copyright © 2018. Published by Elsevier Ltd.

  1. Radiobiological inactivation of Epstein-Barr virus

    International Nuclear Information System (INIS)

    Henderson, E.; Heston, L.; Grogan, E.; Miller, G.

    1978-01-01

    Lymphocyte transforming properties of B95-8 strain Epstein-Barr virus (EBV) are very sensitive to inactivation by either uv or x irradiation. No dose of irradiation increases the transforming capacity of EBV. The x-ray dose needed for inactivation of EBV transformation (dose that results in 37% survival, 60,000 rads) is similar to the dose required for inactivation of plaque formation by herpes simplex virus type 1 (Fischer strain). Although herpes simplex virus is more sensitive than EBV to uv irradiation, this difference is most likely due to differences in the kinetics or mechanisms of repair of uv damage to the two viruses. The results lead to the hypothesis that a large part, or perhaps all, of the EBV genome is in some way needed to initiate transformation. The abilities of EBV to stimulate host cell DNA synthesis, to induce nuclear antigen, and to immortalize are inactivated in parallel. All clones of marmoset cells transformed by irradiated virus produce extracellular transforming virus. These findings suggest that the abilities of the virus to transform and to replicate complete progeny are inactivated together. The amounts of uv and x irradiation that inactivate transformation by B95-8 virus are less than the dose needed to inactivate early antigen induction by the nontransforming P 3 HR-1 strain of EBV. Based on radiobiological inactivation, 10 to 50% of the genome is needed for early antigen induction

  2. Immunogenicity of equine herpesvirus type 1 (EHV1) and equine rhinovirus type 1 (ERhV1) following inactivation by betapropiolactone (BPL) and ultraviolet (UV) light

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, T.M.; Studdert, M.J.; Blackney, M.H. (Melbourne Univ., Parkville (Australia). School of Veterinary Science)

    1982-12-01

    Some kinetic data on the inactivation of equine herpesvirus type 1 (EHV1) and equine rhinovirus type 1 (ERhV1) by betapropiolactone (BPL) and ultraviolet (UV) irradiation are reported. 0.25% BPL at 37/sup 0/C for 1 h reduced the titre of EHV1 by > 10sup(3.4) and of ERhV1 by > 10sup(4.1) TCID/sub 50//ml. UV irradiation (334 ..mu..W/cm/sup 2/) produced similar reductions in titre after 2 min. These data were used as a basis for inactivating EHV1 and ERhV1 by the combined action of BPL and UV irradiation. Viruses were exposed to 0.1% BPL for 1 h at 4/sup 0/C with constant stirring, followed by UV irradiation for 2 min, followed by incubation for 3 h at 37/sup 0/C. Inactivated EHV1 elicted secondary immune responses only in horses whereas ERhV1 produced primary immune responses in mice (including athymic nu/nu mice), rabbits and probably in horses.

  3. Immunogenicity of equine herpesvirus type 1 (EHV1) and equine rhinovirus type 1 (ERhV1) following inactivation by betapropiolactone (BPL) and ultraviolet (UV) light

    International Nuclear Information System (INIS)

    Campbell, T.M.; Studdert, M.J.; Blackney, M.H.

    1982-01-01

    Some kinetic data on the inactivation of equine herpesvirus type 1 (EHV1) and equine rhinovirus type 1 (ERhV1) by betapropiolactone (BPL) and ultraviolet (UV) irradiation are reported. 0.25% BPL at 37 0 C for 1 h reduced the titre of EHV1 by > 10sup(3.4) and of ERhV1 by > 10sup(4.1) TCID 50 /ml. UV irradiation (334 μW/cm 2 ) produced similar reductions in titre after 2 min. These data were used as a basis for inactivating EHV1 and ERhV1 by the combined action of BPL and UV irradiation. Viruses were exposed to 0.1% BPL for 1 h at 4 0 C with constant stirring, followed by UV irradiation for 2 min, followed by incubation for 3 h at 37 0 C. Inactivated EHV1 elicted secondary immune responses only in horses whereas ERhV1 produced primary immune responses in mice (including athymic nu/nu mice), rabbits and probably in horses. (Auth.)

  4. Inactivation of normal and mutant Neurospora crassa conidia by visible light and near-UV: role of 1O2, carotenoid composition and sensitizer location

    International Nuclear Information System (INIS)

    Thomas, S.A.; Sargent, M.L.; Tuveson, R.W.

    1981-01-01

    Inactivation of Neurospora crassa conidia from wild-type and mutant strains by visible and near-ultraviolet light was investigated in the presence and absence of photosensitizing dyes. Inactivation by near-UV was virtually unchanged by the presence of deuterium oxide or azide suggesting that, contrary to the situation with visible light and photosensitizing dyes, 1 O 2 is not involved in any substantial way in the formation of lethal lesions. Carotenoid deficient strains were similar to wild-type strains in sensitivity to near-UV inactivation which is consistent with 1 O 2 not being involved. Photodynamic inactivation of conidia by visible light occurred in the presence of methylene blue (MB), toluidine blue O (TB), or acridine orange (AO). Carotenoid deficient strains were more sensitive to such inactivation only when MB and TB were used. This suggests that MB and TB mediated damage involves the cell membrane where carotenoids are available for quenching, whereas AO mediated damage occurs in the nucleus sequestered from the protective influence of carotenoids. A newly isolated, lemon-yellow mutant exhibited sensitivities to photodynamic inactivation similar to other pure-white mutants. The sensitivity of this pigmented mutant is apparently related to insufficient unsaturation of the two coloured carotenoids produced by the mutant. (author)

  5. Assessment of the Effects of Various UV Sources on Inactivation and Photoproduct Induction in Phage T7 Dosimeter

    NARCIS (Netherlands)

    Fekete, A.; Vink, A.A.; Gaspar, S.; Berces, A.; Modos, K.; Ronto, Gy.; Roza, L.

    1998-01-01

    The correlation between the biologically effective dose (BED) of a phage T7 biological dosimeter and the induction of cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts ((6-4)PD) in the phage DNA was determined using seven various UV sources. The BED is the inactivation rate of phage T7

  6. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  7. UV ability to destroy poliovirus end FRNA specific bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Joret, J.C.; Lesavre, J.; Perrot, J.Y.

    1996-01-01

    In France, the use of ultraviolet radiation to disinfect secondary effluents is only in its initial stage. The aim of this study was to examine the ability of UV to destroy Poliovirus Type 1 and FRNA specific bacteriophages (laboratory MS2 phages and indigenous phages). Concentrated viral solutions were mixed with secondary effluents artificially enriched with suspended solids and then irradiated at various UV dose in a collimated beam. Bacteriological analysis of Escherichia coli and enterococci were performed at the same time. UV were very efficient to kill Poliovirus : Inactivation of 3 and 5 log units were observed respectively at UV doses of 20 and 40 mW/cm{sup 2}. The Poliovirus disinfection rate was almost the same than Escherichia coli. Enterococci were more resistant than E. coli. Inactivation of MS2 bacteriophages was significantly correlated to UV dose following the relationship MS2 Inactivation = 0.047{sup *} Dose + 0,396. At UV dose of 20 mWs/cm{sup 2}, MS2 phages were 2.3 times more resistant to UV than Poliovirus, i.e. they need UV dose 2,3 times greater to be disinfected at the same level. A review of the literature has also shown that viruses more resistant to UV treatment have never been reported. All this would tend to confirm the interest of this group of virus as indicators of the disinfection efficiency of UV, which could indicate, on site, the inactivation of pathogenic viruses. Inactivation rates obtained for FRNA phages proved the good virucidal activity of UV. The inactivation of indigenous FRNA bacteriophages was not correlated with E. coli inactivation. On the other hand, it was correlated with enterococci inactivation. (Author). 23 refs., 7 figs., 4 tabs.

  8. Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase.

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Rashid, Naira; Chaudhuri Chattopadhyay, Pratima

    2018-01-01

    The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mechanism of reactivation of the UV-inactivated cells of Escherichia coli by cell extracts of propionic acid bacteria

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Khodzhaev, E.Y.; Ponomareva, G.M.

    1995-01-01

    Two mechanisms of reactivation of UV-inactivated Escherichia coli cells - photoreactivation (PhR) and reactivation by the dialyzate of cell extract of propionic acid bacteria - are shown to be different but not completely additive. PhR displays an insignificant negative effect on the reactivaton by active substances (peptides) of the dialyzate, whereas reactivation by dialyzate inhibits PhR. The maximal reactivation can be attained under complete PhR followed by the protective action of dialyzate. The dialyzate protects UV-irradiated E. coli cells with PolA, UvrA, and RecA mutations and Salmonella typhimurium TA 100 (UvrB) cells, and also exerts an antimutagenic effect on S. typhimurium TA 100. Protection by dialyzate is suggested to be due to restoration of the cell division mechanism damaged by UV irradiation. 14 refs., 3 figs., 5 tabs

  10. UV disinfection of water

    International Nuclear Information System (INIS)

    Skipperud, E.; Johansen; Myhrstad, J.A.

    1978-01-01

    UV radiation has been found to have advantages over chloration for the disinfection of water. New regulations for dietary conditions on Norwegian ships introduced in 1974 led to increased use of UV disinfection, and this has in the following years spread to waterworks. The present article is based on a study to determine possible limitation. The nature of the injuries to the microorganisms is first discussed, together with repair mechanisms. A table is given showing the energy required for 90 and 100 percent inactivation of a number of microorganisms. Some other factors affecting UV inactivation are briefly mentioned. (JIW)

  11. Impact of fouling on UV effectiveness

    International Nuclear Information System (INIS)

    Dykstra, T.S.; Chauret, C.

    2002-01-01

    In recent years ultraviolet light has gained in popularity as an attractive disinfection alternative due to its ability to inactivate bacteria and viruses. UV light has the potential to inactivate Cryptosporidium parvum and Giardia lamblia with a very low potential for the formation of harmful disinfection by-products. Previous studies have reported that particulate material present in the water can act to reduce the exposure of UV light to the receiving waters and that the interference of organic particles can serve to protect bacteria and viruses from intended disinfection. Disinfection capacity can also be reduced by organics in the source water that can accumulate on the surface of quartz sleeves. The purpose of this study was to determine the ability of a medium pressure UV light, at drinking water treatment levels, to inactivate MS 2 bacteriophage after a quartz tube has been fouled with organic rich source water for a 12- week period. To this end the inactivation of MS 2 was determined under clean and fouled conditions, in the presence and absence of humic rich water. The effect of lamp age on inactivation was also investigated. The results suggest that organic fouling of a quartz tube has a significant impact on the disinfection capacity of a medium pressure UV lamp. The presence of organics in the source water also plays a significant role in reducing the capacity of UV for bacterial and viral disinfection. Lamp age also seems to have some effect on the efficiency of UV disinfection. (author)

  12. COMPARISON OF UV INACTIVATION OF SPORES OF THREE ENCEPHALITOZOON SPECIES WITH THAT OF SPORES OF TWO DNA REPAIR-DEFICIENT BACILLUS SUBTILIS BIODOSIMETRY STRAINS

    Science.gov (United States)

    The sensitivity of three Encephalitozoon spp. to ultraviolet (UV) inactivation was determined. Encephalitozoon intestinalis is a contaminant listed on the USEPA's 1998 Contaminant Candidate List (CCL). Also, use of DNA repair deficient strains of Bacillus subtilis were evaluat...

  13. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization.

    Science.gov (United States)

    Matin, Atiyeh Rajabi; Yousefzadeh, Samira; Ahmadi, Ehsan; Mahvi, Amirhossein; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-03

    Although chlorination can inactivate most of the microorganisms in water but protozoan parasites like C. parvum oocysts and Giardia cysts can resist against it. Therefore, many researches have been conducted to find a novel method for water disinfection. Present study evaluated the synergistic effect of H2O2 and ferrate followed by UV radiation to inactivate Bacillus subtilis spores as surrogate microorganisms. Response surface methodology(RSM) was employed for the optimization for UV/H2O2/ferrate and H2O2/ferrate processes. By using central composite design(CCD), the effect of three main parameters including time, hydrogen peroxide, and ferrate concentrations was examined on process performance. The results showed that the combination of UV, H2O2 and ferrate was the most effective disinfection process in compare with when H2O2 and ferrate were used. This study indicated that by UV/H2O2/ferrate, about 5.2 log reductions of B. subtilis spores was inactivated at 9299 mg/l of H2O2 and 0.4 mg/l of ferrate concentrations after 57 min of contact time which was the optimum condition, but H2O2/ferrate can inactivate B. subtilis spores about 4.7 logs compare to the other process. Therefore, the results of this research demonstrated that UV/H2O2 /ferrate process is a promising process for spore inactivation and water disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Studies on disappearance and inactivation of viruses in sewage, 2

    International Nuclear Information System (INIS)

    Yano, Kazuyoshi; Yabuuchi, Kiyoshi; Taguchi, Fumiaki.

    1985-01-01

    Methods of inactivating viruses in wastewater were studied. Polio visuses were added to the distilled water until the number of viruses reached 10sup(6.8) TCID 50 /ml, and liquid layer was 2 mm. The inactivation rate of viruses was determined at each time of ultraviolet (U.V.) irradiation (from 0.425 x 10 4 μw/cm 2 to 10.0 x 10 4 μw/cm 2 ). A linear correlation was seen between the inactivation rate of viruses and the time of U.V. irradiation obtained from logarithmic transformation. The irradiation time required for inactivation of 99.9% viruses was 15 sec when U.V. intensity was 10.0 x 10 4 μw/cm 2 and 9.6 min when it was 0.423 x 10 4 μw/cm 2 . When the U.V. intensity was 0.425 x 10 4 μw/cm 2 , the time required for inactivation was dependent on the number of viruses (120 sec in cases of 10sup(3.8) TCID 50 /ml of viruses and 720 sec in cases of 10sup(7.8) TCID 50 /ml of viruses). When viruses were added to the distilled water until the number reached 10sup(5.8) TCID 50 /ml, and the depth of water was designated as 2 mm, 10 cm, and 15 cm, the U.V. permeability was more than 89% at any depth of water, and a sixteen-min U.V. irradiation inactivated more than 99.99% of viruses. When polio viruses were added to triple step-treated water until the number reached 10sup(5.3) TCID 50 /ml, the irradiation time required for inactivation of more than 99.99% was one min when the U.V. intensity was 10.0 x 10 4 μw/cm 2 and 20 min when it was 0.425 x 10 4 μw/cm 2 . (Namekawa, K.)

  15. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination

    International Nuclear Information System (INIS)

    Erdim, Esra; Badireddy, Appala Raju; Wiesner, Mark R.

    2015-01-01

    Highlights: • We synthesized a novel ZVI/nC 60 nano-composite device for multi-ROS generation. • O 2 · − (UV-A independent) and 1 O 2 (UV-A dependent) are generated at neutral pH. • At low Fe concentration, ZVI/nC 60 device is a better ROS generator than ZVI alone. • C 60 mediates electron transfer from ZVI surface to dissolved O 2 to produce O 2 · − . • Bacteria are rapidly inactivated by O 2 · − even at low ZVI/nC 60 ratio. - Abstract: A nano-composite device composed of nano-scale zerovalent iron (ZVI) and C 60 fullerene aggregates (ZVI/nC 60 ) was produced via a rapid nucleation method. The device was conceived to deliver reactive oxygen species (ROS) generated by photosensitization and/or electron transfer to targeted contaminants, including waterborne pathogens under neutral pH conditions. Certain variations of the nano-composite were fabricated differing in the amounts of (1) ZVI (0.1 mM and 2 mM) but not nC 60 (2.5 mg-C/L), and (2) nC 60 (0–25 mg-C/L) but not ZVI (0.1 mM). The generation of ROS by the ZVI/nC 60 nano-composites and ZVI nanoparticles was quantified using organic probe compounds. 0.1 mM ZVI/2.5 mg-C/L C 60 generated 3.74-fold higher O 2 · − concentration and also resulted in an additional 2-log inactivation of Pseudomonas aeruginosa when compared to 0.1 mM ZVI (3-log inactivation). 2 mM ZVI/2.5 mg-C/L nC 60 showed negligible improvement over 2 mM ZVI in terms of O 2 · − generation or inactivation. Further, incremental amounts of nC 60 in the range of 0–25 mg-C/L in 0.1 mM ZVI/nC 60 led to increased O 2 · − concentration, independent of UV-A. This study demonstrates that ZVI/nC 60 device delivers (1) enhanced O 2 · − with nC 60 as a mediator for electron transfer, and (2) 1 O 2 (only under UV-A illumination) at neutral pH conditions

  16. UV survival of human mycoplasmas

    International Nuclear Information System (INIS)

    Aoki, Shigeji; Ito, Shoko; Watanabe, Takehiko

    1979-01-01

    The inactivation by ultraviolet (UV) light irradiation of mycoplasma cells of five human strains was monitored by investigating the colony-forming ability. The survival curves of five strains tested indicated that the cells of Mycoplasma buccale only are single and homogenously susceptible to UV light. The effect of the repair inhibitor, caffeine, on the colony-forming ability of UV-irradiated cells was investigated with M. buccale because of its homogeneous susceptibility to UV light. The colony formation of irradiated cells was markedly depressed by post-irradiation treatment with caffeine at concentration that had little or no effect on the colony formation of unirradiated cells. The colony-forming units (CFU) of UV-irradiated cells which were kept in broth without caffeine in the dark increased without a lag as the time in the dark increased. The colony-forming ability of the irradiated cells completely recovered after 3 hr in the dark. However, when irradiated cells were kept in the presence of caffeine, no increase in their CFU was observed. The mode of action of caffeine on UV-irradiated cells closely resembles that described for other organisms which possess dark reactivation systems for UV-induced damage in deoxyribonucleic acid. Thus, the results obtained provide evidence for the existence of a dark repair function in M. buccale. (author)

  17. UV-LEDs Efficiently Inactivate DNA and RNA Coliphages

    Directory of Open Access Journals (Sweden)

    Alyaa M. Zyara

    2017-01-01

    Full Text Available UV-LEDs are a new method of disinfecting drinking water. Some viruses are very resistant to UV and the efficiency of UV-LEDs to disinfect them needs to be studied. Drinking water was disinfected with UV-LEDs after spiking the water with MS2 and four UV- and/or Cl-resistant coliphages belonging to RNA or DNA coliphages isolated from municipal wastewater. UV-LEDs operating at a wavelength of 270 nm for 2 min with 120 mW of irradiation caused 0.93–2.73 Log10-reductions of coliphages tested in a reactor of a 5.2 L volume. Irradiation time of 10 min in the same system increased the Log10-reductions to 4.30–5.16. Traditional mercury UV (Hg-UV lamp at a 254 nm wavelength caused 0.67–4.08 Log10-reductions in 2 min and 4.56–7.21 Log10-reductions in 10 min in 10 mL of water. All coliphages tested except MS2 achieved 4 Log10-reductions with UV-LEDs at a dose that corresponded to 70 mWs/cm2 using Hg-UV. Thus, UV-LEDs are a promising method of disinfecting UV- and/or Cl-resistant viruses.

  18. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.

    Science.gov (United States)

    Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G

    2017-02-01

    A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    Science.gov (United States)

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  20. Study of UV-mutagenesis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Lotareva, O.V.; Filippov, V.D.

    1974-01-01

    The sensitivity of Bac. subtilis to the inactivating and mutagenic effects of UV-mutants has been determined: uvr, which does not extract pyrimidine dimers from damaged DNA; recsub(x), which exhibits a reduced activity of ATP-dependent DNAase; poll, which is devoid of DNA polymerase, and wild strains (DT). The sensitivity of these strains to the inactivating effects of UV rays increases in the order: DT<= recsub(x) << uvr < poll, and UV mutability in the order: DT = rec(sub(x) < poll<< uvr. A comparison of UV mutagenesis in Bac. subtilis and E. coli suggests the hypothesis that the mechanisms of UV mutation formation are similar in these two organisms. (author)

  1. Effectiveness of UV-C light assisted by mild heat on Saccharomyces cerevisiae KE 162 inactivation in carrot-orange juice blend studied by flow cytometry and transmission electron microscopy.

    Science.gov (United States)

    García Carrillo, Mercedes; Ferrario, Mariana; Guerrero, Sandra

    2018-08-01

    The aim of this study was to analyze the effectiveness of UV-C light (0-10.6 kJ/m 2 ) assisted by mild heat treatment (50 °C) on the inactivation of Saccharomyces cerevisiae KE 162 in peptone water and fresh carrot-orange juice blend (pH: 3.8; 9.8°Brix; 707 NTU; absorption coefficient: 0.17 cm -1 ). Yeast induced damage by single UV-C and mild heat (H) and the combined treatment UV-C/H, was investigated by flow cytometry (FC) and transmission electron microscopy (TEM). When studying induced damage by FC, cells were labeled with fluorescein diacetate (FDA) and propidium iodide (PI) to monitor membrane integrity and esterase activity. UV-C/H provoked up to 4.7 log-reductions of S. cerevisiae; whereas, only 2.6-3.3 log-reductions were achieved by single UV-C and H treatments. FC revealed a shift with treatment time from cells with esterase activity and intact membrane to cells with permeabilized membrane. This shift was more noticeable in peptone water and UV-C/H treated juice. In the UV-C treated juice, double stained cells were detected, suggesting the possibility of being sub-lethally damaged, with compromised membrane but still metabolically active. TEM images of treated cells revealed severe damage, encompassing coagulated inner content, disorganized lumen and cell debris. FC and TEM provided additional information regarding degree and type of damage, complementing information revealed by the traditional plate count technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The effect of UV light on the inactivation of Giardia lamblia and Giardia muris cysts as determined by animal infectivity assay (P-2951-01).

    Science.gov (United States)

    Mofidi, Alexander A; Meyer, Ernest A; Wallis, Peter M; Chou, Connie I; Meyer, Barbara P; Ramalingam, Shivaji; Coffey, Bradley M

    2002-04-01

    This study measured the effect of germicidal ultraviolet (UV) light on Giardia lamblia and Giardia muris cysts, as determined by their infectivity in Mongolian gerbils and CD-1 mice, respectively. Reduction of cyst infectivity due to UV exposure was quantified by applying most probable number techniques. Controlled bench-scale, collimated-beam tests exposed cysts suspended in filtered natural water to light from a low-pressure UV lamp. Both G. lamblia and G. muris cysts showed similar sensitivity to UV light. At 3 mJ/cm2, a dose 10-fold lower than what large-scale UV reactors may be designed to provide, > 2-log10 (99 percent) inactivation was observed. These results, combined with previously published data showing other protozoa and bacteria have similar, high sensitivity to UV light, establish that UV disinfection of drinking water is controlled by viruses which may require over 10-fold more UV dose for the same level of control.

  3. The Norwegian UV-monitoring program. Period 1995/96 to 2001

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Bjoern; Mikkelborg, Oddbjoern; Hannevik, Merete; Nilsen, Lill Tove; Saxeboel, Gunnar; Blaasaas, Karl Gerhard

    2002-07-01

    The report describes the program and results obtained during the period 1995 to 2001. The UV monitoring is performed at 8 locations between 58 {sup o} N and 79 {sup o} N. The experiments with the network implementation and operation are very good. Calibrations are traceable to several European UV networks, through the Nordic Intercomparison of UV and total ozone instruments in Sweden 2000. The measurements have been validated and found consistent. Six years of complete series of daily integrated erythemally effective UV-radiation (denoted UV-doses for short) and UV-indices are available for public and scientific use. The measurement series are yet too short to infer any trend in the UV-radiation. The Norwegian Institute provides UV-forecasts for air research (Author)

  4. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation

    International Nuclear Information System (INIS)

    Blanc, P.L.; Tuveson, R.W.; Sargent, M.L.

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10 percent survival. The same strains were about equally sensitive to shortwave ultraviolet (uv) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0 percent survival) than are conidia from a uv-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably not cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas uv-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment

  5. Evaluating UV-C LED disinfection performance and ...

    Science.gov (United States)

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of

  6. Assessment of DNA damage and repair in Mycobacterium terrae after exposure to UV irradiation.

    Science.gov (United States)

    Bohrerova, Z; Linden, K G

    2006-11-01

    Ultraviolet (UV) irradiation for drinking water treatment was examined for inactivation and subsequent dark and photo-repair of Mycobacterium terrae. UV sources tested were low pressure (monochromatic, 254 nm) and medium pressure (polychromatic UV output) Hg lamps. UV exposure resulted in inactivation, and was followed by dark or photo-repair experiments. Inactivation and repair were quantified utilizing a molecular-based endonuclease sensitive site (ESS) assay and conventional colony forming unit (CFU) viability assay. Mycobacterium terrae was more resistant to UV disinfection compared to many other bacteria, with approximately 2-log reduction at a UV fluence of 10 mJ cm(-2) ; similar to UV inactivation of M. tuberculosis. There was no difference in inactivation between monochromatic or polychromatic UV lamps. Mycobacterium terrae did not undergo detectable dark repair. Photo-repair resulted in recovery from inactivation by approximately 0.5-log in less than 30 min for both UV lamp systems. Mycobacterium terrae is able to photo-repair DNA damage within a short timeframe. The number of pyrimidine dimers induced by UV light were similar for Escherichia coli and M. terrae, however, this similarity did not hold true for viability results. There is no practical difference between UV sources for disinfection or prevention of DNA repair for M. terrae. The capability of M. terrae to photo-repair UV damage fairly quickly is important for wastewater treatment applications where disinfected effluent is exposed to sunlight. Finally, molecular based assay results should be evaluated with respect to differences in the nucleic acid content of the test micro-organism.

  7. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules

    International Nuclear Information System (INIS)

    Tuveson, R.W.; Larson, R.A.; Kagan, J.

    1988-01-01

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, harmine, and phenylheptatriyne) which are thought to have the membrane as an important lethal target. Protection of carotenoid-producing cells against inactivation was not observed with acridine orange plus visible light but was seen with toluidine blue O plus visible light

  8. Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

    Directory of Open Access Journals (Sweden)

    Luz del Carmen Huesca-Espitia

    2017-10-01

    Full Text Available Different water treatment processes (physical and chemical exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II/H2O2 and UV radiation (365 nm to inactivate Bacillus subtilis spores, considered among the most resistant biological structures known. Different concentrations of Fe(II, H2O2 and UV radiation (365 nm were used to inactivate wt and some coat spore mutants of B. subtilis. Wt spores of B. subtilis were inactivated after 60 min using this process. In general, all defective coat mutants were more sensitive than the wt spores and, particularly, the double mutant was 10 folds more sensitive than others being inactivated during the first 10 minutes using soft reaction conditions. Presence of Fe(II ions was found essential for spore inactivating process and, for those spores inactivated using the Fe(II/H2O2 under UV radiation process, it is suggested that coat structures are important to their resistance to the treatment process. The photo-assisted Fenton process using Fe(II, H2O2 and UV radiation (365 nm can be used to inactivate any water microorganisms with the same or less resistance that B. subtilis spores to produce safe drinking water in relatively short treatment time.

  9. Immunization against chlamydial genital infection in guinea pigs with UV-inactivated and viable chlamydiae administered by different routes

    International Nuclear Information System (INIS)

    Rank, R.G.; Batteiger, B.E.; Soderberg, L.S.

    1990-01-01

    Female guinea pigs were immunized with viable or UV light-inactivated chlamydiae, belonging to the species Chlamydia psittaci, by intravenous, subcutaneous, oral, or ocular routes. All animals were then inoculated vaginally with viable chlamydiae to determine the extent of protection against challenge infection induced by the various regimens. The course of genital infection was significantly reduced in intensity in all groups of animals except the unimmunized controls and those animals immunized orally with inactivated antigen. Guinea pigs immunized with viable antigen were more likely to develop resistance to challenge infection and, in general, had a significantly greater degree of protection than animals immunized with inactivated antigen. No one route seemed superior in producing a protective response. Animals in all groups demonstrating protection developed serum and secretion immunoglobulin G antibody responses to chlamydiae. Lymphocyte proliferative reactions to chlamydial antigen were variable among groups. Immunoblot analysis of serum and secretions indicated a wide range of antibody specificities, but most protected animals produced antibodies to the major outer membrane protein, lipopolysaccharide, and the 61-kilodalton protein. No definitive associations could be made between the increased ability of immunization with viable organisms to produce resistance to challenge infection and a particular immune parameter. These data indicate that viable chlamydiae given by various routes are able to induce a strong immune response which can provide resistance against reinfection in some cases or at least reduce the degree of infection to a greater degree than inactivated antigen. However, complete resistance to genital tract infection may be difficult to obtain and alternate immunizations strategies may have to be developed

  10. LED-based UV source for monitoring spectroradiometer properties

    Science.gov (United States)

    Sildoja, Meelis-Mait; Nevas, Saulius; Kouremeti, Natalia; Gröbner, Julian; Pape, Sven; Pendsa, Stefan; Sperfeld, Peter; Kemus, Fabian

    2018-06-01

    A compact and stable UV monitoring source based on state-of-the-art commercially available ultraviolet light emitting diodes (UV-LEDs) has been developed. It is designed to trace the radiometric stability—both responsivity and wavelength scale—of array spectroradiometers measuring direct solar irradiance in the wavelength range between 300 nm and 400 nm. The spectral irradiance stability of the UV-LED-based light source observed in the laboratory after seasoning (burning-in) the individual LEDs was better than 0.3% over a 12 h period of continuous operation. The integral irradiance measurements of the source over a period of several months, where the UV-LED source was not operated continuously between the measurements, showed stability within 0.3%. In-field measurements of the source with an array spectroradiometer indicated the stability of the source to be within the standard uncertainty of the spectroradiometer calibration, which was within 1% to 2%.

  11. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination

    Energy Technology Data Exchange (ETDEWEB)

    Erdim, Esra [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Environmental Engineering Department, Marmara University, Istanbul 34469 (Turkey); Badireddy, Appala Raju [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States); Wiesner, Mark R., E-mail: wiesner@duke.edu [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States)

    2015-02-11

    Highlights: • We synthesized a novel ZVI/nC{sub 60} nano-composite device for multi-ROS generation. • O{sub 2}·{sup −} (UV-A independent) and {sup 1}O{sub 2} (UV-A dependent) are generated at neutral pH. • At low Fe concentration, ZVI/nC{sub 60} device is a better ROS generator than ZVI alone. • C{sub 60} mediates electron transfer from ZVI surface to dissolved O{sub 2} to produce O{sub 2}·{sup −}. • Bacteria are rapidly inactivated by O{sub 2}·{sup −} even at low ZVI/nC{sub 60} ratio. - Abstract: A nano-composite device composed of nano-scale zerovalent iron (ZVI) and C{sub 60} fullerene aggregates (ZVI/nC{sub 60}) was produced via a rapid nucleation method. The device was conceived to deliver reactive oxygen species (ROS) generated by photosensitization and/or electron transfer to targeted contaminants, including waterborne pathogens under neutral pH conditions. Certain variations of the nano-composite were fabricated differing in the amounts of (1) ZVI (0.1 mM and 2 mM) but not nC{sub 60} (2.5 mg-C/L), and (2) nC{sub 60} (0–25 mg-C/L) but not ZVI (0.1 mM). The generation of ROS by the ZVI/nC{sub 60} nano-composites and ZVI nanoparticles was quantified using organic probe compounds. 0.1 mM ZVI/2.5 mg-C/L C{sub 60} generated 3.74-fold higher O{sub 2}·{sup −} concentration and also resulted in an additional 2-log inactivation of Pseudomonas aeruginosa when compared to 0.1 mM ZVI (3-log inactivation). 2 mM ZVI/2.5 mg-C/L nC{sub 60} showed negligible improvement over 2 mM ZVI in terms of O{sub 2}·{sup −} generation or inactivation. Further, incremental amounts of nC{sub 60} in the range of 0–25 mg-C/L in 0.1 mM ZVI/nC{sub 60} led to increased O{sub 2}·{sup −} concentration, independent of UV-A. This study demonstrates that ZVI/nC{sub 60} device delivers (1) enhanced O{sub 2}·{sup −} with nC{sub 60} as a mediator for electron transfer, and (2) {sup 1}O{sub 2} (only under UV-A illumination) at neutral pH conditions.

  12. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing.

    Science.gov (United States)

    Sommers, Christopher H; Sheen, Shiowshuh

    2015-09-01

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharyngeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food and food contact surfaces was investigated. When a commercial UV-C conveyor was used (5 mW/cm(2)/s) 0.5 J/cm(2) inactivated >7 log of the Y. pestis cocktail on agar plates. At 0.5 J/cm(2), UV-C inactivated ca. 4 log of Y. pestis in beef, chicken, and catfish, exudates inoculated onto high density polypropylene or polyethylene, and stainless steel coupons, and >6 log was eliminated at 1 J/cm(2). Approximately 1 log was inactivated on chicken breast, beef steak, and catfish fillet surfaces at a UV-C dose of 1 J/cm(2). UV-C treatment prior to freezing of the foods did not increase the inactivation of Y. pestis over freezing alone. These results indicate that routine use of UV-C during food processing would provide workers and consumers some protection against Y. pestis. Published by Elsevier Ltd.

  13. Effect and mechanism of a High Gradient Magnetic Separation (HGMS) and Ultraviolet (UV) composite process on the inactivation of microbes in ballast water

    International Nuclear Information System (INIS)

    Ren, Zhijun; Zhang, Lin; Shi, Yue; Leng, Xiaodong; Shao, Jingchao

    2016-01-01

    The patented technology of a High Gradient Magnetic Separation (HGMS)-Ultraviolet (UV) composite process was used to treat ballast water. Staphylococcus aureus (S. aureus) was selected as the reference bacteria. After treatment by the HGMS-UV process, the concentration of S. aureus on the log 10 scale was lower than 2 at different flow rates, S. aureus suffered the most serious damage, and K + leakage of the bacteria was 1.73 mg/L higher than separate 60 min UV irradiation (1.17 mg/L) and HGMS (0.12 mg/L) processes. These results demonstrated that the HGMS-UV composite process was an effective approach to treat ballast water. Further, the HGMS process had synergistic action on the subsequent UV irradiation process and accelerated cell membrane damage. Meanwhile, the results of superoxide dismutase (SOD) activities of bacteria and DNA band analyses indicated that the inactivation mechanisms were different for HGMS and UV irradiation. - Highlights: •The HGMS process had synergistic action on the subsequent UV irradiation process. •HGMS directly influenced the active center of a metal enzyme and did not cause damage to DNA. •UV irradiation was found to depend on the production of free radicals to affect the bacterial DNA and enzyme activity.

  14. Ultraviolet-C irradiation for inactivation of viruses in foetal bovine serum.

    Science.gov (United States)

    Vaidya, Vivek; Dhere, Rajeev; Agnihotri, Snehal; Muley, Ravindra; Patil, Sanjay; Pawar, Amit

    2018-07-05

    Foetal Bovine Serum (FBS) and porcine trypsin are one of the essential raw materials used in the manufacturing of cell culture based viral vaccines. Being from animal origin, these raw materials can potentially contaminate the final product by known or unknown adventitious agents. The issue is more serious in case of live attenuated viral vaccines, where there is no inactivation step which can take care of such adventitious agents. It is essential to design production processes which can offer maximum viral clearance potential for animal origin products. Ultraviolet-C irradiation is known to inactivate various adventitious viral agents; however there are limited studies on ultraviolet inactivation of viruses in liquid media. We obtained a recently developed UVivatec ultraviolet-C (UV-C) irradiation based viral clearance system for evaluating its efficacy to inactivate selected model viruses. This system has a unique design with spiral path of liquid allowing maximum exposure to UV-C light of a short wavelength of 254 nm. Five live attenuated vaccine viruses and four other model viruses were spiked in tissue culture media and exposed to UV-C irradiation. The pre and post UV-C irradiation samples were analyzed for virus content to find out the extent of inactivation of various viruses. These experiments showed substantial log reduction for the majority of the viruses with few exceptions based on the characteristics of these viruses. Having known the effect of UV irradiation on protein structure, we also evaluated the post irradiation samples of culture media for growth promoting properties using one of the most fastidious human diploid cells (MRC-5). UV-C exposure did not show any notable impact on the nutritional properties of culture media. The use of an UV-C irradiation based system is considered to be promising approach to mitigate the risk of adventitious agents in cell culture media arising through animal derived products. Copyright © 2018 Elsevier Ltd. All

  15. Focus formation and neoplastic transformation by herpes simplex virus type 2 inactivated intracellularly by 5-bromo-2'-deoxyuridine and near UV light

    International Nuclear Information System (INIS)

    Manak, M.M.; Aurelian, L.; Ts'o, P.O.

    1981-01-01

    The induction of focus formation in low serum and of neoplastic transformation of Syrian hamster embryo cells was examined after the expression of herpes simplex virus type 2 functions. Syrian hamster embryo cells infected at a high multiplicity (5 PFU/cell) with 5-bromo-2'-deoxyuridine-labeled herpes simplex virus type 2 (11% substitution of thymidine residues) were exposed to near UV light irradiation at various times postinfection. This procedure specifically inactivated the viral genome, while having little, if any, effect on the unlabeled cellular DNA. Focus formation in 1% serum and neoplastic transformation were observed in cells exposed to virus inactivated before infection, but the frequency was enhanced (15- to 27-fold) in cells in which the virus was inactivated at 4 to 8 h postinfection. Only 2 to 45 independently isolated foci were capable of establishing tumorigenic lines. The established lines exhibited phenotypic alterations characteristic of a transformed state, including reduced serum requirement, anchorage-independent growth, and tumorigenicity. They retained viral DNA sequences and, even at relatively late passage, expressed viral antigens, including ICP 10

  16. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  17. Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview

    NARCIS (Netherlands)

    Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, J.P.; Levelt, P.F.

    2007-01-01

    We present an overview of the theoretical and algorithmic aspects of the Ozone Monitoring Instrument (OMI) aerosol and surface UV algorithms. Aerosol properties are derived from two independent algorithms. The nearUV algorithm makes use of OMI observations in the 350-390 nm spectral region to

  18. UV disinfection of water. 1. Effect on microorganisms/virus conditions which can limit the use of UV radiation as a means of disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, E; Johansen,; Myhrstad, J A [Statens Inst. for Folkehelse, Oslo (Norway)

    1978-01-01

    UV radiation has been found to have advantages over chloration for the disinfection of water. New regulations for dietary conditions on Norwegian ships introduced in 1974 led to increased use of UV disinfection, and this has in the following years spread to waterworks. The present article is based on a study to determine possible limitation. The nature of the injuries to the microorganisms is first discussed, together with repair mechanisms. A table is given showing the energy required for 90 and 100 percent inactivation of a number of microorganisms. Some other factors affecting UV inactivation are briefly mentioned. (JIW).

  19. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, R.C.; Lund, V.; Carlson, D.A.

    1987-02-01

    Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.

  20. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation

    International Nuclear Information System (INIS)

    Butler, R.C.; Lund, V.; Carlson, D.A.

    1987-01-01

    Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid

  1. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, M.; Kraemer, K.H.

    1985-01-01

    The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfection resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D 0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA

  2. Inactivation of certain insect pathogens by ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, A.; Groener, A.; Huber, J.; Zimmermann, G.

    1981-01-01

    The UV-sensitivity of two baculoviruses (granulosis virus, nuclear polyhedrosis virus) and two entomopathogenic microorganisms (Bacillus thuringiensis, Beauveria bassiana) was determined by radiation tests. In the far UV (254 nm) the stability, measured at an inactivation rate of 99%, was in declining order: nuclear polyhedra >= conidia of B. bassiana > granula > spores of B. thuringiensis >= vegetative cells of B. thuringiensis. In the near UV (285-380 nm) the following order could be found: conidia of B. bassiana >= nuclear polyhedra > spores of B. thuringiensis >= granula > vegetative cells of B. thuringiensis. Far UV had a much higher germicidal effect for all pathogens tested than near UV.

  3. LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    Science.gov (United States)

    This research was initiated to confirm and expand the current database for the inactivation of Giardia spp. using ultraviolet (UV) radiation. Initially, previous research that used in vitro excystation as the indicator for UV effectiveness was confirmed. Later, the in vitro excys...

  4. Ultraviolet (UV) Disinfection for Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  5. Cytolytic T lymphocyte responses to metabolically inactivated stimulator cells. I. Metabolic inactivation impairs both CD and LD antigen signals

    International Nuclear Information System (INIS)

    Kelso, A.; Boyle, W.

    1982-01-01

    The effects of metabolic inactivation of spleen cells on antigen presentation to precursors of alloreactive cytolytic T lymphocytes (T/sub c/) were examined. By serological methods, populations inactivated by ultraviolet irradiation, glutaraldehyde fixation or plasma membrane isolation were found to retain normal levels of H-2K/D and Ia antigens. However, comparison of the antigen doses required to stimulate secondary T/sub c/ responses in mixed leukocyte culture showed that the inactivated preparations were approximately 10-fold less immunogenic than X-irradiated spleen cells. Their total inability to stimulate primary cytolytic responses pointed to at least a 100-fold impairment of immunogenicity for unprimed T/sub c/ precursors in the case of uv-irradiated and glutaraldehyde-treated stimulator cells, and at least a 10-fold impairment for membrane fragments. Experiments showing that the capacity of cell monolayers to absorb precursor T/sub c/ from unprimed spleen populations was reduced following uv-irradiation or glutaraldehyde treatment provided direct evidence that this loss of immunogenicity was due in part to suboptimal antigen presentation to precursor T/sub c/. It is concluded that, in addition to the traditional view that these treatments damage the ''LD'' signal to helper T lymphocytes, metabolic inactivation also impairs recognition of ''CD'' determinants by precursor T/sub c/

  6. Evaluation of Combined Peracetic acid and UV treatment for ...

    Science.gov (United States)

    The current study evaluates the effectiveness of the combined application of Peracetic acid and ultraviolet radiation as alternative disinfectant agents to the traditional chlorination of wastewater effluents. Various pathogens (E. coli, enterococci and fecal coliforms) were evaluated in the study. Four experiments were conducted using low to high PAA levels and UV dosages. E. coli and enterococci were resistant to low to moderate PAA dosage (0.5- 1 mg/L). These microbes can be removed effectively at high PAA dosage (2.5 mg/L) with 30 min contact time. Fecal coliforms were completely inactivated even at a low PAA dose of 0.7 mg/L. E. coli was more susceptible to UV disinfection than enterococci at low UV dosages. Enterococci required at least 40 mJ/cm2 for 2.5 log inactivation. In combined PAA + UV treatment, low UV intensities between 7 – 40 mJ/cm2 showed poor disinfection performance at a low PAA concentration of 1.5 mg/L. High UV intensities of 120 and 60 mJ/cm2 inactivated all the pathogens to below detection levels even at low to moderate PAA (0.7 mg/L and 1 mg/L) pretreatment concentration. Combined PAA + UV treatment at 1 mg/L (for 15 and 30 min contact time) + 120 and 60 mJ/cm2 did not show any regrowth of microbes, whereas PAA only disinfection with 15 min contact time showed regrowth of enterococci and fecal coliforms. UV only disinfection showed E. coli regrowth. • This pilot scale study was designed for providing necessary parameter optimization

  7. Inactivation of certain insect pathogens by ultraviolet radiation

    International Nuclear Information System (INIS)

    Krieg, A.; Groener, A.; Huber, J.; Zimmermann, G.

    1981-01-01

    The UV-sensitivity of two baculoviruses (granulosis virus, nuclear polyhedrosis virus) and two entomopathogenic microorganisms (Bacillus thuringiensis, Beauveria bassiana) was determined by radiation tests. In the far UV (254 nm) the stability, measured at an inactivation rate of 99%, was in declining order: nuclear polyhedra >= conidia of B. bassiana > granula > spores of B. thuringiensis >= vegetative cells of B. thuringiensis. In the near UV (285-380 nm) the following order could be found: conidia of B. bassiana >= nuclear polyhedra > spores of B. thuringiensis >= granula > vegetative cells of B. thuringiensis. Far UV had a much higher germicidal effect for all pathogens tested than near UV. (orig.) [de

  8. Quality assurance of the UV irradiances of the UV-B Monitoring and Research Program: the Mauna Loa test case

    Science.gov (United States)

    Zempila, Melina Maria; Davis, John; Janson, George; Olson, Becky; Chen, Maosi; Durham, Bill; Simpson, Scott; Straube, Jonathan; Sun, Zhibin; Gao, Wei

    2017-09-01

    The USDA UV-B Monitoring and Research Program (UVMRP) is an ongoing effort aiming to establish a valuable, longstanding database of ground-based ultraviolet (UV) solar radiation measurements over the US. Furthermore, the program aims to achieve a better understanding of UV variations through time, and develop a UV climatology for the Northern American section. By providing high quality radiometric measurements of UV solar radiation, UVMRP is also focusing on advancing science for agricultural, forest, and range systems in order to mitigate climate impacts. Within these foci, the goal of the present study is to investigate, analyze, and validate the accuracy of the measurements of the UV multi-filter rotating shadowband radiometer (UV-MFRSR) and Yankee (YES) UVB-1 sensor at the high altitude, pristine site at Mauna Loa, Hawaii. The response-weighted irradiances at 7 UV channels of the UV-MFRSR along with the erythemal dose rates from the UVB-1 radiometer are discussed, and evaluated for the period 2006-2015. Uncertainties during the calibration procedures are also analyzed, while collocated groundbased measurements from a Brewer spectrophotometer along with model simulations are used as a baseline for the validation of the data. Besides this quantitative research, the limitations and merits of the existing UVMRP methods are considered and further improvements are introduced.

  9. Effect of UV-irradiation on rotavirus

    International Nuclear Information System (INIS)

    Smirnov, Y.A.; Kapitulets, S.P.; Kaverin, N.V.; Amitina, N.N.; Ginevskaya, V.A.

    1991-01-01

    The effect of UV-irradiation on the infectivity of the SAll rotavirus was examined. The time behavior of the inactivation of infectivity generally exhibited the one-hit pattern. The effect was studied with respect to two phenomena, viz. the RNA-protein linkage and the formation of uracil dimers. To determine the number of the latter, purified 3 H-uridine-labelled rotavirus was exposed to UV radiation, and the RNA was extracted and analyzed by paper chromatography in the ascending mode. The formation of photodimers was found to be an important mechanism in the rotavirus inactivation on conventional irradiation, whereas RNA-protein linkages were observed on the application of high doses only. (author). 3 figs., 10 refs

  10. Increased resistance of environmental anaerobic spores to inactivation by UV

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Veer, A.J. van der; Beerendonk, E.F.; Medema, Gerriet Jan

    2004-01-01

    Water Company Europoort started a pilot plant (MP)UV study to determine the UV-fluence to meet the Dutch drinking water standards. The results of large volume sampling of this pilot plant demonstrated that environmental spores of sulphite-reducing clostridia (SSRC) were highly resistant against UV.

  11. Prevention of alloimmunization by ultraviolet-B irradiation. Inactivation of leukocytes and the generation of active oxygen and radicals

    International Nuclear Information System (INIS)

    Takahashi, Tsuneo; Mogi, Yuko; Sekiguchi, Sadayoshi; Akasaka, Junichi; Kamo, Naoki; Kuwabara, Mikinori.

    1994-01-01

    UV-B irradiation of platelet concentrates (PC) has been tried in several institutes to inactivate leukocytes in PC and prevent alloimmunization on platelet transfusion. However, the mechanism of inactivation of leukocytes contaminating PC has not been fully understood. It is known that UV-B light is absorbed by photosensitizers in cells and produces active oxygen and radicals, such as singlet oxygen, superioxide anions and hydroxyl radicals. These active oxygen or radicals should injure cellular components and this could cause the suppression of cellular functions. In this study, we investigated the relationships among UV-B irradiation, free radical generation and leukocyte inactivation. We found the evidence that active oxygen and radicals were produced in peripheral blood mononuclear cells by UV-B irradiation. UV-B irradiation suppressed the stimulatory function of leukocytes in a mixed lymphocyte reaction (MLR), and the suppression depended on the dosage of UV-B. Even a low dosage of UV-B, 10 J/m 2 , could inhibit the MLR if the irradiated cells were incubated at 37degC for 24 hours before co-culture with responder cells. Treatments of cells with the exogenous singlet oxygen or superoxide anions also caused suppression of the stimulatory function in the MLR, inhibition of capping formation of HLA-DR antigens, and an increase of intracellular free Ca 2+ levels as did the UV-B treatment. These results indicate that the active oxygen or radicals generated in UV-B-irradiated leukocytes could be one of the causes of leukocyte inactivation. (author0

  12. Efficacy of Inactivation of Human Enteroviruses by Multiple ...

    Science.gov (United States)

    Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment applications, such as the inefficiency of energy consumption and more importantly potential mercury contamination upon disposal of the lamps. The recent invention of a novel light-emitting-diodes (LED) device generating germicidal UV wavelengths could eliminate the aforementioned limitations. In this study, we investigated the efficacy of multiple-wavelength UV LEDs for inactivating USEPA contaminant candidate list (CCL) RNA enteroviruses. Of 12 enterovirus species, serotype representatives of the four human enteric species (enterovirus A-D) such as coxsackievirus A10 (CVA10), echovirus 30 (Echo30), poliovirus 1 (PV1), and enterovirus 70 (EV70) respectively were selected as testing RNA viruses. Bench-scale performance evaluation was conducted using a collimated beam (CB) apparatus with LEDs emitting at 260 nm, 280 nm, and the combination of 260|280 nm together, as well as a monochromatic low-pressure (LP) UV lamp at 254 nm for comparison. The CB tests were performed with mixed stocks of four viruses. Infectious virus concentrations were determined using an integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR). The 260 nm LED was most effective at inactivating all enteroviruses teste

  13. Ultraviolet inactivation of avian sarcoma virus: biological and biochemical analysis

    International Nuclear Information System (INIS)

    Owada, M.; Ihara, S.; Toyoshima, K.; Kozai, Y.; Sugino, Y.

    1976-01-01

    The rate of inactivation by ultraviolet light of the focus-forming capacity of avian sarcoma virus was almost the same as that of the virus-producing capacity, measured as plaque formation. In addition, no significant difference was observed in inactivation of the transforming capacity assayed on C/BE chick embryo fibroblasts (CEF), which carry endogenous avian tumor virus DNA, and on duck embryo fibroblasts (DEF), which are known to be devoid of this DNA. All foci induced by nonirradiated virus produced infectious sarcoma virus, but some of the foci induced by uv-irradiated virus did not produce infectious virus of either transforming or transformation-defective type. The proportion of nonproducer foci was 3.4 times more in DEF than in gs - chf - CEF. RNAs extracted from uv-irradiated virions by sodium dodecyl sulfate (SDS) treatment were found to be composed of 60--70 S and 4 S RNAs by analysis in a sucrose gradient containing 0.5 percent SDS. The large RNA, however, became hydrophobic after irradiation and was sedimented with SDS by addition of one drop of saturated potassium chloride solution. This RNA was not dissociated into 30--40S components by heating at 100 0 for 45 sec, unlike 60--70 S RNA from uv-irradiated virions. After SDS--Pronase treatment, the 60--70 S RNA from uv-irradiated virions no longer had these altered characteristics. Reverse transcriptase activity with the endogenous template decreased in parallel with increase in the uv dose. The reduction rate was similar to that assayed with exogenous template or in the presence of actinomycin D. These data strongly suggest that RNA damage is not the only cause of virus inactivation by uv light

  14. Inactivation of E. Coli in Water Using Photocatalytic, Nanostructured Films Synthesized by Aerosol Routes

    Directory of Open Access Journals (Sweden)

    Pratim Biswas

    2013-03-01

    Full Text Available TiO2 nanostructured films were synthesized by an aerosol chemical vapor deposition (ACVD method with different controlled morphologies: columnar, granular, and branched structures for the photocatalytic inactivation of Escherichia coli (E. coli in water. Effects of film morphology and external applied voltage on inactivation rate were investigated. As-prepared films were characterized using scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffractometry (XRD, and UV-VIS. Photocatalytic and photoelectrochemical inactivation of E. coli using as-prepared TiO2 films were performed under irradiation of UVA light (note: UVA has a low efficiency to inactivate E. coli. Inactivation rate constants for each case were obtained from their respective inactivation curve through a 2 h incubation period. Photocatalytic inactivation rate constants of E. coli are 0.02/min (using columnar films, and 0.08/min (using branched films. The inactivation rate constant for the columnar film was enhanced by 330% by applied voltage on the film while that for the branched film was increased only by 30%. Photocatalytic microbial inactivation rate of the columnar and the branched films were also compared taking into account their different surface areas. Since the majority of the UV radiation that reaches the Earth’s surface is UVA, this study provides an opportunity to use sunlight to efficiently decontaminate drinking water.

  15. Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries.

    Science.gov (United States)

    Liu, Chuhan; Li, Xinhui; Chen, Haiqiang

    2015-12-02

    In this study, a novel set-up using water-assisted UV processing was developed and evaluated for its decontamination efficacy against murine norovirus (MNV-1) inoculated on fresh blueberries for both small and large-scale experimental setups. Blueberries were skin-inoculated with MNV-1 and treated for 1-5 min with UV directly (dry UV) or immersed in agitated water during UV treatment (water-assisted UV). The effect of the presence of 2% (v/v) blueberry juice or 5% crushed blueberries (w/w) in wash water was also evaluated. Results showed that water-assisted UV treatment generally showed higher efficacies than dry UV treatment. With 12,000 J/m(2) UV treatment in small-scale setup, MNV reductions of >4.32- and 2.48-log were achieved by water-assisted UV and dry UV treatments, respectively. Water-assisted UV showed similar inactivating efficacy as 10-ppm chlorine wash. No virus was detected in wash water after UV treatment or chlorine wash. MNV-1 was more easily killed on skin-inoculated blueberries compared with calyx-inoculated berries. When clear water was used as wash water in the large-scale setup, water-assisted UV treatment (UV dose of 12,000 J/m(2)) resulted in >3.20 log and 1.81 log MNV-1 reductions for skin- and calyx-inoculated berries, respectively. The presence of 2% blueberry juice in wash water decreased the decontamination efficacy of water-assisted UV and chlorine washing treatments. To improve the inactivation efficacy, the effect of combining water-assisted UV treatment with chlorine washing was also evaluated. The combined treatment had better or similar inactivation efficacy compared to water-assisted UV treatment and chlorine washing alone. Findings of this study suggest that water-assisted UV treatment could be used as an alternative to chlorine washing for blueberries and potentially for other fresh produce. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. UV-sensitivity and repair of UV-damage in Salmonella of wild type

    International Nuclear Information System (INIS)

    Kondratiev, Y.S.; Brukhansky, G.V.; Andreeva, I.V.; Skavronskaya, A.G.

    1977-01-01

    The UV-sensitivity of wild type Salmonella strains has been compared to that of wild type E.coli and its UV-sensitive mutants. Many wild type Salmonella strains are 4-5 times more sensitive than wild type E.coli and their inactivation curve is similar to that for E.coli with a mutation in the polA gene. Alkaline sucrose gradient centrifugation has shown a deficiency of these strains in normal excision repair of UV-damaged DNA. This deficiency is not a Salmonella genus feature because one strain as resistant as wild type E.coli was found. This resistant strain showed normal excision repair in alkaline sucrose gradient centrifugation experiments. The possible influence of plasmids and mutations in repair genes on the ability of Salmonella to repair UV-damaged DNA is discussed. (orig.) [de

  17. UV-sensitivity and repair of UV-damage in Salmonella of wild type

    Energy Technology Data Exchange (ETDEWEB)

    Kondratiev, Y S; Brukhansky, G V; Andreeva, I V; Skavronskaya, A G [Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Ehpidemiologii i Mikrobiologii

    1977-12-01

    The UV-sensitivity of wild type Salmonella strains has been compared to that of wild type E.coli and its UV-sensitive mutants. Many wild type Salmonella strains are 4-5 times more sensitive than wild type E.coli and their inactivation curve is similar to that for E.coli with a mutation in the polA gene. Alkaline sucrose gradient centrifugation has shown a deficiency of these strains in normal excision repair of UV-damaged DNA. This deficiency is not a Salmonella genus feature because one strain as resistant as wild type E.coli was found. This resistant strain showed normal excision repair in alkaline sucrose gradient centrifugation experiments. The possible influence of plasmids and mutations in repair genes on the ability of Salmonella to repair UV-damaged DNA is discussed.

  18. UV-inactivation of Epstein-Barr virus: differences in early antigen expression in two different non-productive cell lines and influence of caffeine

    International Nuclear Information System (INIS)

    Suchankova, A.; Vonka, V.

    1978-01-01

    Two non-productive Epstein-Barr (EB) virus genome-carrying lymphoblastoid cell lines, namely Raji and NC37, were used for studying the effect of UV irradiation on the ability of P3HR-1 EB virus to induce early antigen (EA) formation. In NC37 cells infected with UV-irradiated virus the formation of EA was delayed; thus the slope of inactivation curve based on the early (24 hr) reading was steeper than that based on the late (72 hr) reading. This was not observed in Raji cells. Caffeine did not influence the percentage of EA positive cells in cultures infected with untreated virus; however, the drug exhibited a marked inhibitory effect on EA production after infection with UV-irradiated virus. The sensitivity to caffeine decreased more rapidly with time after infection of Raji than of NC37 cells, suggesting a higher degree of readiness of the host cell repair system in the former than in the latter cells. The caffeine effect was merely directed against the synthesis of R (restricted) component of EA; its influence on the D (diffuse) component formation was negligible. (author)

  19. Use of ultraviolet radiation for inactivation of bacteria and coliphages in pretreated wastewater

    International Nuclear Information System (INIS)

    Dizer, H.; Bartocha, W.; Bartel, H.; Seidel, K.; Lopez-Pila, J.M.; Grohmann, A.

    1993-01-01

    The inactivation of bacteria and coliphages by u.v. radiation was tested in a full-scale pilot plant with a flow rate of 180 m 3 /h. The investigated water contained about 70% secondary effluent from sewage treatment plants and 30% surface water. The minimal rated radiation density was 13.3 mW/cm 2 (60% of u.v. transmission in water), and the radiation exposure lasted for 3.54 s resulting in a u.v. radiation dose of 47 mWs/cm 2 . This type of u.v. radiation chamber decreased the concentration of total coliform organisms, E. coli, fecal streptococci, Salmonella sp. and coliphages in the influent by 1–2 logs. Strains of bacteria, Streptococcus faecalis and Salmonella enteritidis, seeded artificially into the influent showed a reduction of about 2–4 logs after u.v. radiation. The coliphage f2 was more resistant than the tested bacteria and reduced by less than 2 logs through u.v. radiation. The inactivating effect of u.v. radiation was counteracted by the binding of the coliphage f2 to suspended turbid particles. It can be recommended to use u.v. treatment of effluents of wastewater plants after a flocculation and filtration step to improve the efficiency of the u.v. radiation. (author)

  20. Validation of γ-radiation and ultraviolet as a new inactivators for foot and mouth disease virus in comparison with the traditional methods

    Science.gov (United States)

    Mahdy, Safy El din; Hassanin, Amr Ismail; Gamal El-Din, Wael Mossad; Ibrahim, Ehab El-Sayed; Fakhry, Hiam Mohamed

    2015-01-01

    Aim: The present work deals with different methods for foot and mouth disease virus (FMDV) inactivation for serotypes O/pan Asia, A/Iran05, and SAT-2/2012 by heat, gamma radiation, and ultraviolet (UV) in comparison with the traditional methods and their effects on the antigenicity of viruses for production of inactivated vaccines. Materials and Methods: FMDV types O/pan Asia, A/Iran05, and SAT-2/2012 were propagated in baby hamster kidney 21 (BHK21) and titrated then divided into five parts; the first part inactivated with heat, the second part inactivated with gamma radiation, the third part inactivated with UV light, the fourth part inactivated with binary ethylamine, and the last part inactivated with combination of binary ethylamine and formaldehyde (BEI+FA). Evaluate the method of inactivation via inoculation in BHK21, inoculation in suckling baby mice and complement fixation test then formulate vaccine using different methods of inactivation then applying the quality control tests to evaluate each formulated vaccine. Results: The effect of heat, gamma radiation, and UV on the ability of replication of FMDV “O/pan Asia, A/Iran05, and SAT-2/2012” was determined through BHK cell line passage. Each of the 9 virus aliquots titer 108 TCID50 (3 for each strain) were exposed to 37, 57, and 77°C for 15, 30, and 45 min. Similarly, another 15 aliquots (5 for each strain) contain 1 mm depth of the exposed samples in petri-dish was exposed to UV light (252.7 nm wavelength: One foot distance) for 15, 30, 45, 60, and 65 min. Different doses of gamma radiation (10, 20, 25, 30, 35, 40, 45, 50, 55, and 60 KGy) were applied in a dose rate 0.551 Gy/s for each strain and repeated 6 times for each dose. FMDV (O/pan Asia, A/Iran05, and SAT-2/2012) were inactivated when exposed to heat ≥57°C for 15 min. The UV inactivation of FMDV (O/pan Asia and SAT-2) was obtained within 60 min and 65 min for type A/Iran05. The ideal dose for inactivation of FMDV (O/pan Asia, A/Iran05

  1. Validation of γ-radiation and ultraviolet as a new inactivators for foot and mouth disease virus in comparison with the traditional methods

    Directory of Open Access Journals (Sweden)

    Safy El din Mahdy

    2015-09-01

    Full Text Available Aim: The present work deals with different methods for foot and mouth disease virus (FMDV inactivation for serotypes O/pan Asia, A/Iran05, and SAT-2/2012 by heat, gamma radiation, and ultraviolet (UV in comparison with the traditional methods and their effects on the antigenicity of viruses for production of inactivated vaccines. Materials and Methods: FMDV types O/pan Asia, A/Iran05, and SAT-2/2012 were propagated in baby hamster kidney 21 (BHK21 and titrated then divided into five parts; the first part inactivated with heat, the second part inactivated with gamma radiation, the third part inactivated with UV light, the fourth part inactivated with binary ethylamine, and the last part inactivated with combination of binary ethylamine and formaldehyde (BEI+FA. Evaluate the method of inactivation via inoculation in BHK21, inoculation in suckling baby mice and complement fixation test then formulate vaccine using different methods of inactivation then applying the quality control tests to evaluate each formulated vaccine. Results: The effect of heat, gamma radiation, and UV on the ability of replication of FMDV "O/pan Asia, A/Iran05, and SAT-2/2012" was determined through BHK cell line passage. Each of the 9 virus aliquots titer 108 TCID50 (3 for each strain were exposed to 37, 57, and 77°C for 15, 30, and 45 min. Similarly, another 15 aliquots (5 for each strain contain 1 mm depth of the exposed samples in petri-dish was exposed to UV light (252.7 nm wavelength: One foot distance for 15, 30, 45, 60, and 65 min. Different doses of gamma radiation (10, 20, 25, 30, 35, 40, 45, 50, 55, and 60 KGy were applied in a dose rate 0.551 Gy/s for each strain and repeated 6 times for each dose. FMDV (O/pan Asia, A/Iran05, and SAT-2/2012 were inactivated when exposed to heat ≥57°C for 15 min. The UV inactivation of FMDV (O/pan Asia and SAT-2 was obtained within 60 min and 65 min for type A/Iran05. The ideal dose for inactivation of FMDV (O/pan Asia, A

  2. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-03-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients.

  3. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    International Nuclear Information System (INIS)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-01-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients

  4. Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Meng, Q.S.; Gerba, C.P.

    1996-01-01

    The inactivation of enteric adenoviruses 40 and 41 by ultraviolet (UV) radiation was investigated and compared with poliovirus type 1 (strain LSc-2ab) and coliphages MS-2 and PRD-1. Purified stocks of the viruses were exposed to collimated ultraviolet radiation in a stirred reactor for a total dose of up to 140 mW s/cm 2 . The doses of UV to achieve a 90% inactivation of adenovirus 40, adenovirus 41, coliphages MS-2 and PRD-1 and poliovirus type 1 were 30, 23.6, 14, 8.7 and 4.1 mW s/cm 2 , respectively. Adenovirus 40 was significantly more resistant than coliphage MS-2 to UV irradiation (P < 0.01). Adenovirus 41 appeared slightly more sensitive than adenovirus 40, but the difference was not significant (P>0.05). The resistance of PRD-1 was less than MS-2 (P < 0.01), but greater than poliovirus type 1 (P < 0.01). Adenoviruses 40 and 41 were more resistant than Bacillus subtilis spores, often suggested as an indicator of UV light performance. The double-stranded DNA adenoviruses appear to be the most resistant of all potentially water-borne enteric viruses to UV light disinfection. (author)

  5. Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light.

    Science.gov (United States)

    Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C

    2007-11-01

    Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.

  6. Rotavirus Virus-Like Particles as Surrogates in Environmental Persistence and Inactivation Studies

    Science.gov (United States)

    Caballero, Santiago; Abad, F. Xavier; Loisy, Fabienne; Le Guyader, Françoise S.; Cohen, Jean; Pintó, Rosa M.; Bosch, Albert

    2004-01-01

    Virus-like particles (VLPs) with the full-length VP2 and VP6 rotavirus capsid proteins, produced in the baculovirus expression system, have been evaluated as surrogates of human rotavirus in different environmental scenarios. Green fluorescent protein-labeled VLPs (GFP-VLPs) and particles enclosing a heterologous RNA (pseudoviruses), whose stability may be monitored by flow cytometry and antigen capture reverse transcription-PCR, respectively, were used. After 1 month in seawater at 20°C, no significant differences were observed between the behaviors of GFP-VLPs and of infectious rotavirus, whereas pseudovirus particles showed a higher decay rate. In the presence of 1 mg of free chlorine (FC)/liter both tracers persisted longer in freshwater at 20°C than infectious viruses, whereas in the presence of 0.2 mg of FC/liter no differences were observed between tracers and infectious rotavirus at short contact times. However, from 30 min of contact with FC onward, the decay of infectious rotavirus was higher than that of recombinant particles. The predicted Ct value for a 90% reduction of GFP-VLPs or pseudoviruses induces a 99.99% inactivation of infectious rotavirus. Both tracers were more resistant to UV light irradiation than infectious rotavirus in fresh and marine water. The effect of UV exposure was more pronounced on pseudovirus than in GFP-VLPs. In all types of water, the UV dose to induce a 90% reduction of pseudovirus ensures a 99.99% inactivation of infectious rotavirus. Recombinant virus surrogates open new possibilities for the systematic validation of virus removal practices in actual field situations where pathogenic agents cannot be introduced. PMID:15240262

  7. Liquid egg white pasteurization using a centrifugal UV irradiator.

    Science.gov (United States)

    Geveke, David J; Torres, Daniel

    2013-03-01

    Studies are limited on UV nonthermal pasteurization of liquid egg white (LEW). The objective of this study was to inactivate Escherichia coli using a UV irradiator that centrifugally formed a thin film of LEW on the inside of a rotating cylinder. The LEW was inoculated with E. coli K12 to approximately 8 log cfu/ml and was processed at the following conditions: UV intensity 1.5 to 9.0 mW/cm²; cylinder rotational speed 450 to 750 RPM, cylinder inclination angle 15° to 45°, and flow rate 300 to 900 ml/min, and treatment time 1.1 to 3.2s. Appropriate dilutions of the samples were pourplated with tryptic soy agar (TSA). Sublethal injury was determined using TSA+4% NaCl. The regrowth of surviving E. coli during refrigerated storage for 28 days was investigated. The electrical energy of the UV process was also determined. The results demonstrated that UV processing of LEW at a dose of 29 mJ/cm² at 10°C reduced E. coli by 5 log cfu/ml. Inactivation significantly increased with increasing UV dose and decreasing flow rate. The results at cylinder inclination angles of 30° and 45° were similar and were significantly better than those at 15°. The cylinder rotational speed had no significant effect on inactivation. The occurrence of sublethal injury was detected. Storage of UV processed LEW at 4° and 10°C for 21 days further reduced the population of E. coli to approximately 1 log cfu/ml where it remained for an additional 7 days. The UV energy applied to the LEW to obtain a 5 log reduction of E. coli was 3.9 J/ml. These results suggest that LEW may be efficiently pasteurized, albeit at low flow rates, using a nonthermal UV device that centrifugally forms a thin film. Published by Elsevier B.V.

  8. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    OpenAIRE

    Beber de Souza, Jeanette; Queiroz Valdez, Fernanda; Jeranoski, Rhuan Felipe; Vidal, Carlos Magno de Sousa; Cavallini, Grasiele Soares

    2015-01-01

    The individual methods of disinfection peracetic acid (PAA) and UV radiation and combined process PAA/UV in water (synthetic) and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater), and coliphages (such as virus indicators). Under the experimental conditions investigated, doses o...

  9. Application of isothermal calorimetry and uv spectroscopy for stability monitoring of pentaerythritol tetranitrate

    International Nuclear Information System (INIS)

    Dosser, L.R.; Pickard, J.M.

    1992-01-01

    Thermal stabilities for a series of pentaerythritol-tetranitrate (PETN) samples with variable surf ace areas were monitored by isothermal calorimetry and UV spectroscopy over the temperature range of 363 to 408 K. Isothermal induction times measured with constant volume calorimetry under an air atmosphere and No evolution rates monitored by UV absorbance at 213 nm under vacuum correlated with the PETN surface area at temperatures equal to or exceeding 383 K. Rate data measured at 383 K are in accord with predictions based on detailed kinetic modeling. Below 383 K, NO evolution data suggested that additional geometric factors may be significant in controlling PETN stability. Mechanisms for influencing surface area upon the rate-determining step are addressed

  10. Inactivation of dengue, chikungunya, and Ross River viruses in platelet concentrates after treatment with ultraviolet C light.

    Science.gov (United States)

    Faddy, Helen M; Fryk, Jesse J; Prow, Natalie A; Watterson, Daniel; Young, Paul R; Hall, Roy A; Tolksdorf, Frank; Sumian, Chryslain; Gravemann, Ute; Seltsam, Axel; Marks, Denese C

    2016-06-01

    Arboviruses, including dengue (DENV 1-4), chikungunya (CHIKV), and Ross River (RRV), are emerging viruses that are a risk for transfusion safety globally. An approach for managing this risk is pathogen inactivation, such as the THERAFLEX UV-Platelets system. We investigated the ability of this system to inactivate the above mentioned arboviruses. DENV 1-4, CHIKV, or RRV were spiked into buffy coat (BC)-derived platelet (PLT) concentrates in additive solution and treated with the THERAFLEX UV-Platelets system at the following doses: 0.05, 0.1, 0.15, and 0.2 J/cm(2) (standard dose). Pre- and posttreatment samples were taken for each dose, and the level of viral infectivity was determined. At the standard ultraviolet C (UVC) dose (0.2 J/cm(2) ), viral inactivation of at least 4.43, 6.34, and 5.13 log or more, was observed for DENV 1-4, CHIKV, and RRV, respectively. A dose dependency in viral inactivation was observed with increasing UVC doses. Our study has shown that DENV, CHIKV, and RRV, spiked into BC-derived PLT concentrates, were inactivated by the THERAFLEX UV-Platelets system to the limit of detection of our assay, suggesting that this system could contribute to the safety of PLT concentrates with respect to these emerging arboviruses. © 2016 AABB.

  11. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese

    Science.gov (United States)

    Kim, Soo-Ji; Kim, Do-Kyun

    2015-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm2, respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm2, and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm2. Our results showed that inactivation rates after UV-LED treatment were significantly different (P UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm2 for all three pathogens, with negligible generation of injured cells. PMID:26386061

  12. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  13. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  14. Rhodosporidium BANNO: Inactivation of yeast phase cells by ultraviolet light and N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Boettcher, F.; Samsonova, I.A.

    1977-01-01

    The inactivation of stationary phase cells by ultraviolet light (UV) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was examined in eight wild strains of Rhodotorula, six of which are the sporidial yeast phase of Rhodosporidium, a basidiomycetous fungus. It thas been found that (1) the UV-resistance of Rhodosporidium and Rhodotorula yeasts is higher and the MNNG-resistance lower than the resistance of Candida and Hansenula yeasts, (2) the shape of the survival curves is sigmoid in the case of UV and two-phase exponential in the case of MNNG, (3) the mutagen sensitivities but not the inactivation kinetics of the strains are different, (4) the UV- and MNNG-sensitivities for each of the strains are correlated, (5) the relatively high resistance to UV cannot be due to the carotenoid pigments of the cells, (6) mutations to UV-sensitivity can be induced with a high rate, (7) the sigmoidal character of the UV survival curves were reduced or transformed to an exponential shape by the UVS-mutations. (author)

  15. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    Directory of Open Access Journals (Sweden)

    Jeanette Beber de Souza

    2015-01-01

    Full Text Available The individual methods of disinfection peracetic acid (PAA and UV radiation and combined process PAA/UV in water (synthetic and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater, and coliphages (such as virus indicators. Under the experimental conditions investigated, doses of 2, 3, and 4 mg/L of PAA and contact time of 10 minutes and 60 and 90 s exposure to UV radiation, the results indicated that the combined method PAA/UV provided superior efficacy when compared to individual methods of disinfection.

  16. Mutagenesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. Pt. 2

    International Nuclear Information System (INIS)

    Serres, F.J. de

    1980-01-01

    UV-induced inactivation and induction of mutations at the ad-3A and ad-3B loci of Neurospora crassa have been compared among 7 different UV-sensitive strains and a standard wild-type strain. The 7 strains show varying degrees of sensitivity to UV-induced inactivation, with the relative sensitivity being: uvs-2 > uvs-3 > uvs-4 > uvs-6 > upr-1 > uvs-5 > uvs-1. Studies on the induction of ad-3 mutants by UV show that the 2 excision-repair deficient mutants uvs-2 and upr-1 exhibit enhanced ad-3 mutant frequencies, while uvs-4 and uvs-5 exhibit reduced ad-3 mutant frequencies, and uvs-3 completely eliminates UV mutagenesis. The ad-3 mutation-induction curves obtained with uvs-1 or uvs-6 are not significantly different from that found with the wild-type strain. (orig.)

  17. Fundamental Characteristics of Deep-UV Light-Emitting Diodes and Their Application To Control Foodborne Pathogens

    Science.gov (United States)

    Shin, Joo-Yeon; Kim, Soo-Ji; Kim, Do-Kyun

    2015-01-01

    Low-pressure mercury UV (LP-UV) lamps have long been used for bacterial inactivation, but due to certain disadvantages, such as the possibility of mercury leakage, deep-UV-C light-emitting diodes (DUV-LEDs) for disinfection have recently been of great interest as an alternative. Therefore, in this study, we examined the basic spectral properties of DUV-LEDs and the effects of UV-C irradiation for inactivating foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes, on solid media, as well as in water. As the temperature increased, DUV-LED light intensity decreased slightly, whereas LP-UV lamps showed increasing intensity until they reached a peak at around 30°C. As the irradiation dosage and temperature increased, E. coli O157:H7 and S. Typhimurium experienced 5- to 6-log-unit reductions. L. monocytogenes was reduced by over 5 log units at a dose of 1.67 mJ/cm2. At 90% relative humidity (RH), only E. coli O157:H7 experienced inactivation significantly greater than at 30 and 60% RH. In a water treatment study involving a continuous system, 6.38-, 5.81-, and 3.47-log-unit reductions were achieved in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, at 0.5 liter per minute (LPM) and 200 mW output power. The results of this study suggest that the use of DUV-LEDs may compensate for the drawbacks of using LP-UV lamps to inactivate foodborne pathogens. PMID:26162872

  18. Photoreactivation of RNA in UV-irradiated insect eggs (Smittia SP., Chironomidae, Diptera)

    International Nuclear Information System (INIS)

    Kalthoff, K.; Urban, K.; Jaeckle, H.

    1978-01-01

    Two biological effects of UV radiation upon Smittia eggs are observed, both of which seem to be associated with the formation of pyrimidine dimers in the RNA (largely ribosomal) of the eggs. While irradiation of the anterior pole region causes the formation of an aberrant segment pattern (double abdomen induction), irradiation of entire eggs leads to an arrest of their development (inactivation). Both UV effects are photoreversible with different action spectra of the photoreactivating light. A dose rate dependence of the photoreactivation can be observed after both UV effects. The saturating dose rate is about 6 W/m 2 (at 440 nm) after UV induction of double abdomens. Upon UV inactivation, the saturating dose rate level for the photoreactivating light is much higher, and a single light flash causes both a considerable biological reactivation and the disappearance of about 7 x 10 9 pyrimidine dimers from the total RNA per egg. The results indicate the presence of heterogeneous light-dependent repair activities acting upon UV induced pyrimidine dimers in the RNA of the eggs. (author)

  19. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese.

    Science.gov (United States)

    Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2016-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm(2), respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm(2), and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm(2). Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm(2) for all three pathogens, with negligible generation of injured cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. X-ray inactivation and reactivation characteristics of the phage 'kappa'

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.; Samad, S.A.; Mandal, J.C.; Chatterjee, S.N.

    1991-01-01

    Vibrio cholerae temperate phage 'kappa' was inactivated by X-ray (60 kV) in a dose dependent manner, the inactivation dose leading to 37% survival (D 37 ) in PBS, pH 7.4 being 0.36 kGy. The phages were significantly protected against X-ray irradiation when histidine or cysteine or both were present in PBS or when phages were irradiated in nutrient broth. The maximum protection was offered when histidine (10.0 nM) and cysteine (10.0 nM) were both present in PBS (dose enhancement factor being 4.17). The X-irradiated 'kappa' phages also underwent a small but significant Weigle reactivation and also Weigle mutagenesis in the UV-irradiated V. cholerae host H218Sm r . The Weigle factor (WF) or the frequency of clear plaque mutants increased with increasing UV dose, attained a maximum at the UV dose of 2.4 Jm -2 and thereafter decreased gradually with further increase of UV dose. The X-ray dose (D)-survival (S) curves could be empirically described by the equation S=exp-(aD+bD 2 ) where 'a' and 'b' are constants depending on the irradiation conditions and good agreement between the theoretical curves and experimental data was obtained. (author). 1 5 refs., 2 fig., 1 tab

  1. Inhibition of photosystem II by UV-B-radiation

    International Nuclear Information System (INIS)

    Tevini, M.; Pfister, K.

    1985-01-01

    The effect of UV-B-radiation on PSII activity of spinach chloroplasts was analyzed by measuring the integrity of the herbicide-binding protein (HBP 32), by measurement of fluorescence induction in the presence of Diuron (DCMU), and by mathematical analysis of the fluorescence induction curves. It was shown that UV-B inactivates the PSII α-centers but not PSII β-centers. However, the possibility cannot be excluded that in addition the donor site of PSII near the reaction center is attacked by UV-B-radiation. (orig.)

  2. Design and Fabrication of an Integrated Circuit for Monitoring UV Radiation for Health Physics Applications

    International Nuclear Information System (INIS)

    Nazififard, Mohammad; Faghihi, Reyhaneh; Champiri, Afshin Mahmoudieh; Norov, Enkhbat; Suh, Kune Y.

    2014-01-01

    A particularly important term in the clinical photobiology is the standard erythemal dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. However, both the quality and quantity of the UV radiation are important factors for the UV monitoring. This paper aims to introduce and investigate a UV radiation meter in order to establish its applicability for non-ionizing radiation detection. The ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further divided into three regions: UVA, UVB, and UVC. There is increasing evidence that long wave UV radiation plays a vital role in the pathogenesis of photo-dermatoses such as polymorphous light eruption as well as photo-aging. UVA, UVB, and UVC can all damage collagen fibers and, therefore, accelerate aging of the skin. Both UVA and UVB destroy vitamin A in the skin, which may cause further damage. The quantities of the UV radiation are generally expressed using the radiometric terminology

  3. Design and Fabrication of an Integrated Circuit for Monitoring UV Radiation for Health Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nazififard, Mohammad; Faghihi, Reyhaneh [Kashan Univ., Kashan (Iran, Islamic Republic of); Champiri, Afshin Mahmoudieh [Shahid Chamran Univ., Ahwaz (Iran, Islamic Republic of); Norov, Enkhbat [POSTECH, Pohang (Korea, Republic of); Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    A particularly important term in the clinical photobiology is the standard erythemal dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. However, both the quality and quantity of the UV radiation are important factors for the UV monitoring. This paper aims to introduce and investigate a UV radiation meter in order to establish its applicability for non-ionizing radiation detection. The ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further divided into three regions: UVA, UVB, and UVC. There is increasing evidence that long wave UV radiation plays a vital role in the pathogenesis of photo-dermatoses such as polymorphous light eruption as well as photo-aging. UVA, UVB, and UVC can all damage collagen fibers and, therefore, accelerate aging of the skin. Both UVA and UVB destroy vitamin A in the skin, which may cause further damage. The quantities of the UV radiation are generally expressed using the radiometric terminology.

  4. Studies on ultraviolet inactivation of air-borne microorganisms, 1

    International Nuclear Information System (INIS)

    Adachi, Shin-ichi; Doi, Hitoshi; Yamayoshi, Takao; Nunoura, Masako; Tatsumi, Noriyuki.

    1989-01-01

    UV(254nm) inactivation of air-borne bacteria in an air-controlling apparatus was studied. The appratus was composed of a chamber for vaporizing a bacterial suspension and an irradiation duct equipped with an UV lamp(GL-30). The bacterial which passed through the irradiation duct impinged on a petri dish by an air slit sampler. Selected bacteria for the experiment were Serratia marcescens, Escherichia coli, Sarcina lutea and Bacillus subtilis(spores). The apparatus was useful for the study of the susceptibility of air-borne bacteria to UV radiation. UV dose necessary to inhibit colony formation in 90% of individual bacteria in the controlled air was as low as 27 to 35% of the dose required for the agar plate method. (author)

  5. Development of a molecular method for testing the effectiveness of UV systems on-site.

    Science.gov (United States)

    Nizri, Limor; Vaizel-Ohayon, Dalit; Ben-Amram, Hila; Sharaby, Yehonatan; Halpern, Malka; Mamane, Hadas

    2017-12-15

    We established a molecular method for quantifying ultraviolet (UV) disinfection efficacy using total bacterial DNA in a water sample. To evaluate UV damage to the DNA, we developed the "DNA damage" factor, which is a novel cultivation-independent approach that reveals UV-exposure efficiency by applying a simple PCR amplification method. The study's goal was to prove the feasibility of this method for demonstrating the efficiency of UV systems in the field using flow-through UV reactors. In laboratory-based experiments using seeded bacteria, the DNA damage tests demonstrated a good correlation between PCR products and UV dose. In the field, natural groundwater sampled before and after being subjected to the full-scale UV reactors was filtered, and the DNA extracted from the filtrate was subjected to PCR amplification for a 900-bp fragment of the 16S rRNA gene with initial DNA concentrations of 0.1 and 1 ng/μL. In both cases, the UV dose predicted and explained a significant proportion of the variance in the log inactivation ratio and DNA damage factor. Log inactivation ratio was very low, as expected in groundwater due to low initial bacterial counts, whereas the DNA damage factor was within the range of values obtained in the laboratory-based experiments. Consequently, the DNA damage factor reflected the true performance of the full-scale UV system during operational water flow by using the indigenous bacterial array present in a water sample. By applying this method, we were able to predict with high confidence, the UV reactor inactivation potential. For method validation, laboratory and field iterations are required to create a practical field calibration curve that can be used to determine the expected efficiency of the full-scale UV system in the field under actual operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Far UV irradiation of DNA in the presence of proteins, amino acids or peptides

    International Nuclear Information System (INIS)

    Larcom, L.L.; Rains, C.A.

    1985-01-01

    The DNA of bacteriophage SPO2c12 was subjected to 254 nm irradiation in solutions containing lysozyme or histone. The sensitivity of phage DNA to biological inactivation by UV increased as the amount of lysozyme bound per DNA strand increased. Although binding constants could not be measured for the DNA-histone interaction, this protein had a protective effect which was greater under conditions which cause enhanced binding. No crosslinking of either protein could be detected. Irradiation was also performed in the presence of various amino acids and short peptides. These were chosen to include amino acids which: (1) are positively charged, (2) absorb UV of this wavelength or (3) form UV-induced crosslinks to DNA. None of the amino acids tested affected sensitivity of the DNA to biological inactivation. Peptides containing a UV-absorbing amino acid and a positively charged amino acid enhanced sensitivity. For each of these peptides, a mixture of the constituent amino acids had the same effect as the peptide itself. Under the conditions used, no evidence for formation of DNA-amino acid crosslinks was found. The results indicate that proteins and peptides can sensitize DNA to UV inactivation by mechanisms other than covalent crosslink formation. (author)

  7. Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Edelson, R. [University of Maryland, Department of Astronomy, College Park, MD 20742-2421 (United States); Gelbord, J. [Spectral Sciences Inc., 4 Fourth Avenue, Burlington, MA 01803 (United States); Cackett, E. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock Street, Detroit, MI 48201 (United States); Connolly, S.; McHardy, I. [University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Done, C.; Gardner, E. [University of Durham, Center for Extragalactic Astronomy, Department of Physics, South Road, Durham, DH1 3LE (United Kingdom); Fausnaugh, M.; Peterson, B. M. [The Ohio State University, Department of Astronomy, 140 W 18th Avenue, Columbus, OH 43210 (United States); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Goad, M.; Vaughan, S. [University of Leicester, Department of Physics and Astronomy, Leicester, LE1 7RH (United Kingdom); Horne, K. [SUPA Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS Scotland (United Kingdom); Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Breeveld, A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Barth, A. J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bentz, M. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Bottorff, M. [Physics Department, Southwestern University, Georgetown, TX 78626 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, Eberly College of Science, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Crawford, S. M. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others

    2017-05-01

    Swift monitoring of NGC 4151 with an ∼6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3–50 keV) and six in the ultraviolet (UV)/optical (1900–5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ∼3–4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to lead the optical by ∼0.5–1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner and Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.

  8. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs

    Science.gov (United States)

    Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment applications, suc...

  9. Use of UV-irradiated bacteriophage T6 to kill extracellular bacteria in tissue culture infectivity assays

    International Nuclear Information System (INIS)

    Shaw, D.R.; Maurelli, A.T.; Goguen, J.D.; Straley, S.C.; Curtiss, R. III

    1983-01-01

    The authors have utilized 'lysis from without' mediated by UV-inactivated bacteriophage T6 to eliminate extracellular bacteria in experiments measuring the internalization, intracellular survival and replication of Yersinia pestis within mouse peritoneal macrophages and of Shigella flexneri within a human intestinal epithelial cell line. The technique described has the following characteristics: (a) bacterial killing is complete within 15 min at 37 0 C, with a >10 3 -fold reduction in colony-forming units (CFU); (b) bacteria within cultured mammalian cells are protected from killing by UV-inactivated T6; (c) the mammalian cells are not observably affected by exposure to UV-inactivated T6. This technique has several advantages over the use of antibiotics to eliminate extracellular bacteria and is potentially widely applicable in studies of the interactions between pathogenic bacteria and host phagocytic cells as well as other target tissues. (Auth.)

  10. Fundamental Characteristics of Deep-UV Light-Emitting Diodes and Their Application To Control Foodborne Pathogens.

    Science.gov (United States)

    Shin, Joo-Yeon; Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2016-01-01

    Low-pressure mercury UV (LP-UV) lamps have long been used for bacterial inactivation, but due to certain disadvantages, such as the possibility of mercury leakage, deep-UV-C light-emitting diodes (DUV-LEDs) for disinfection have recently been of great interest as an alternative. Therefore, in this study, we examined the basic spectral properties of DUV-LEDs and the effects of UV-C irradiation for inactivating foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes, on solid media, as well as in water. As the temperature increased, DUV-LED light intensity decreased slightly, whereas LP-UV lamps showed increasing intensity until they reached a peak at around 30°C. As the irradiation dosage and temperature increased, E. coli O157:H7 and S. Typhimurium experienced 5- to 6-log-unit reductions. L. monocytogenes was reduced by over 5 log units at a dose of 1.67 mJ/cm(2). At 90% relative humidity (RH), only E. coli O157:H7 experienced inactivation significantly greater than at 30 and 60% RH. In a water treatment study involving a continuous system, 6.38-, 5.81-, and 3.47-log-unit reductions were achieved in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, at 0.5 liter per minute (LPM) and 200 mW output power. The results of this study suggest that the use of DUV-LEDs may compensate for the drawbacks of using LP-UV lamps to inactivate foodborne pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda.

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Ssenyonga, Taddeo; Chen, Yi-Chun; Stamnes, Jakob J; Frette, Øyvind; Hamre, Børge

    2015-10-01

    The Ozone Monitoring Instrument (OMI) overpass solar ultraviolet (UV) indices have been validated against the ground-based UV indices derived from Norwegian Institute for Air Research UV measurements in Kampala (0.31° N, 32.58° E, 1200 m), Uganda for the period between 2005 and 2014. An excessive use of old cars, which would imply a high loading of absorbing aerosols, could cause the OMI retrieval algorithm to overestimate the surface UV irradiances. The UV index values were found to follow a seasonal pattern with maximum values in March and October. Under all-sky conditions, the OMI retrieval algorithm was found to overestimate the UV index values with a mean bias of about 28%. When only days with radiation modification factor greater than or equal to 65%, 70%, 75%, and 80% were considered, the mean bias between ground-based and OMI overpass UV index values was reduced to 8%, 5%, 3%, and 1%, respectively. The overestimation of the UV index by the OMI retrieval algorithm was found to be mainly due to clouds and aerosols.

  12. Use of satellite erythemal UV products in analysing the global UV changes

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2011-09-01

    Full Text Available Long term changes in solar UV radiation affect global bio-geochemistry and climate. The satellite-based dataset of TOMS (Total Ozone Monitoring System and OMI (Ozone Monitoring Instrument of erythemal UV product was applied for the first time to estimate the long-term ultraviolet (UV changes at the global scale. The analysis of the uncertainty related to the different input information is presented. OMI and GOME-2 (Global Ozone Monitoring Experiment-2 products were compared in order to analyse the differences in the global UV distribution and their effect on the linear trend estimation.

    The results showed that the differences in the inputs (mainly surface albedo and aerosol information used in the retrieval, affect significantly the UV change calculation, pointing out the importance of using a consistent dataset when calculating long term UV changes. The areas where these differences played a major role were identified using global maps of monthly UV changes. Despite the uncertainties, significant positive UV changes (ranging from 0 to about 5 %/decade were observed, with higher values in the Southern Hemisphere at mid-latitudes during spring-summer, where the largest ozone decrease was observed.

  13. LOW PRESSURE ULTRAVEIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    Science.gov (United States)

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  14. A high-performance doped photocatalysts for inactivation of total coliforms in superficial waters using different sources of radiation.

    Science.gov (United States)

    Claro, Elis Marina Turini; Bidoia, Ederio Dino; de Moraes, Peterson Bueno

    2016-07-15

    Photocatalytic water treatment has a currently elevated electricity demand and maintenance costs, but the photocatalytic water treatment may also assist in overcoming the limitations and drawbacks of conventional water treatment processes. Among the Advanced Oxidation Processes, heterogeneous photocatalysis is one of the most widely and efficiently used processes to degrade and/or remove a wide range of polluting compounds. The goal of this work was to find out a highly efficient photocatalytic disinfection process in superficial water with different doped photocatalysts and using three sources of radiation: mercury vapor lamp, solar simulator and UV-A LED. Three doped photocatalysts were prepared, SiZnO, NSiZnO and FNSiZnO. The inactivation efficiency of each synthesized photocatalysts was compared to a TiO2 P25 (Degussa(®)) 0.5 g L(-1) control. Photolysis inactivation efficiency was 85% with UV-A LED, which is considered very high, demanding low electricity consumption in the process, whereas mercury vapor lamp and solar simulator yielded 19% and 13% inactivation efficiency, respectively. The best conditions were found with photocatalysts SiZnO, FNSiZnO and NSiZnO irradiated with UV-A LED, where efficiency exceeded 95% that matched inactivation of coliforms using the same irradiation and photocatalyst TiO2. All photocatalysts showed photocatalytic activity with all three radiation sources able to inactivate total coliforms from river water. The use of UV-A LED as the light source without photocatalyst is very promising, allowing the creation of cost-effective and highly efficient water treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Manoranjan; Wu Bing; Zhu Liying; Jacobson, Craig; Wang Weining; Jones, Kristen; Goyal, Yogesh; Tang, Yinjie J; Biswas, Pratim, E-mail: pbiswas@wustl.edu [Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2011-10-14

    The properties of Cu-doped TiO{sub 2} nanoparticles (NPs) were independently controlled in a flame aerosol reactor by varying the molar feed ratios of the precursors, and by optimizing temperature and time history in the flame. The effect of the physico-chemical properties (dopant concentration, crystal phase and particle size) of Cu-doped TiO{sub 2} nanoparticles on inactivation of Mycobacterium smegmatis (a model pathogenic bacterium) was investigated under three light conditions (complete dark, fluorescent light and UV light). The survival rate of M. smegmatis (in a minimal salt medium for 2 h) exposed to the NPs varied depending on the light irradiation conditions as well as the dopant concentrations. In dark conditions, pristine TiO{sub 2} showed insignificant microbial inactivation, but inactivation increased with increasing dopant concentration. Under fluorescent light illumination, no significant effect was observed for TiO{sub 2}. However, when TiO{sub 2} was doped with copper, inactivation increased with dopant concentration, reaching more than 90% (>3 wt% dopant). Enhanced microbial inactivation by TiO{sub 2} NPs was observed only under UV light. When TiO{sub 2} NPs were doped with copper, their inactivation potential was promoted and the UV-resistant cells were reduced by over 99%. In addition, the microbial inactivation potential of NPs was also crystal-phase-and size-dependent under all three light conditions. A lower ratio of anatase phase and smaller sizes of Cu-doped TiO{sub 2} NPs resulted in decreased bacterial survival. The increased inactivation potential of doped TiO{sub 2} NPs is possibly due to both enhanced photocatalytic reactions and leached copper ions.

  16. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    Science.gov (United States)

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mutagenesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. Pt. 3

    International Nuclear Information System (INIS)

    Schuepbach, M.E.; Serres, F.J. de

    1981-01-01

    γ-ray-induced inactivation and induction of mutations at the ad-3A and ad-3B loci of Neurospora crassa have been compared among 6 different UV- sensitive strains and a standard wild-type strain. The 6 strains show varying degrees of sensitivy to γ-ray-induced inactivation, with the relative sensitivy at 37% survival being uvs-6 > upr-1 > uvs-2 UE uvs-3 > wild-type > uvs-5 > uvs-4. Studies on the induction of ad-3 mutants by γ-rays show that when the dose-response curves (expressed in terms of ad-3 mutants among the surving colonies) of the UV-sensitive strains are compared with wild-type, the excision-repair-deficient mutants uvs-2 and upr-1 exhibit enhanced ad-3 mutant frequencies, uvs-3 exibits reduced ad-3 mutant frequencies whereas both uvs-4 and uvs-5 show lower mutant frequencies than wild-type. (orig.)

  18. Practical considerations in the use of UV light for drinking water disinfection

    International Nuclear Information System (INIS)

    Jeyanayagam, S.; Cotton, C.

    2002-01-01

    Ultraviolet (UV) light was discovered approximately 150 years ago. The first commercial UV lamp was made in the early 1900s soon followed by the manufacture of the quartz sleeve. These technological advances allowed the first application of UV light for water disinfection in 1907 in France. In the mid 1980s, UV disinfection was named as a Best available technology (BAT) for wastewater disinfection in the United States. Fueled by the recent findings that UV disinfection can inactivate key pathogens at cost effective UV doses, the drinking water industry in North America is closely investigating its application in large installations. (author)

  19. Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)

    Science.gov (United States)

    Rae, Chris; Koudelka, Kristopher J.; Destito, Giuseppe; Estrada, Mayra N.; Gonzalez, Maria J.; Manchester, Marianne

    2008-01-01

    Background Cowpea Mosaic Virus (CPMV) is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. Methodology/Principal Findings Short wave (254 nm) UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0–2.5 J/cm2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. Conclusions These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications. PMID:18830402

  20. Chemical addressability of ultraviolet-inactivated viral nanoparticles (VNPs.

    Directory of Open Access Journals (Sweden)

    Chris Rae

    2008-10-01

    Full Text Available Cowpea Mosaic Virus (CPMV is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality.Short wave (254 nm UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0-2.5 J/cm(2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT.These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications.

  1. The role of reactive oxygen species in near-ultraviolet (320-400 nm) light inactivation of Escherichia coli

    International Nuclear Information System (INIS)

    Sammartano, L.J.

    1988-01-01

    The purpose of the present study was to further elucidate the mechanism of near-UV inactivation in Escherichia coli. Several genetic and biochemical techniques were employed to examine the role of oxygen reactive species in near-UV mediated damage to DNA and membrane components, and to identify endogenous photosensitizers. The results demonstrate that the near-UV inactivation process is initiated when the radiant energy is absorbed by components of the respiratory chain, including cytochromes. The absorption of energy causes the chromophore to be electronically excited into the triplet state which leads to subsequent generation of oxygen reactive species within the membrane. The first line of cellular defense against this oxidative stress is a complex network of antioxidants and scavengers, including catalase, superoxide dismutase and glutathione reductase. E. coli cells also have a second line of defense that incorporates repair systems. In this study evidence is provided for an excision repair pathway that is unique to near-UV mediated damage. Results suggest that a unique, but as yet unidentified, DNA lesion occurs in near-UV irradiated cells. Evidence is also presented that shows near-UV mediated damage also occurs in the membrane

  2. In-line ATR-UV and Raman Spectroscopy for Monitoring API Dissolution Process During Liquid-Filled Soft-Gelatin Capsule Manufacturing.

    Science.gov (United States)

    Wan, Boyong; Zordan, Christopher A; Lu, Xujin; McGeorge, Gary

    2016-10-01

    Complete dissolution of the active pharmaceutical ingredient (API) is critical in the manufacturing of liquid-filled soft-gelatin capsules (SGC). Attenuated total reflectance UV spectroscopy (ATR-UV) and Raman spectroscopy have been investigated for in-line monitoring of API dissolution during manufacturing of an SGC product. Calibration models have been developed with both techniques for in-line determination of API potency. Performance of both techniques was evaluated and compared. The ATR-UV methodology was found to be able to monitor the dissolution process and determine the endpoint, but was sensitive to temperature variations. The Raman technique was also capable of effectively monitoring the process and was more robust to the temperature variation and process perturbations by using an excipient peak for internal correction. Different data preprocessing methodologies were explored in an attempt to improve method performance.

  3. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    Directory of Open Access Journals (Sweden)

    M. Gouma

    2015-01-01

    Full Text Available This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment to inactivate 5-Log10 cycles (performance criterion of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature that would achieve the stated performance criterion, mathematical equations based on Geeraerd’s model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min and 2.26 J/mL (2.09 min to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C.

  4. Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater

    Directory of Open Access Journals (Sweden)

    Raphael Corrêa Medeiros

    2015-05-01

    Full Text Available Sewage disinfection has the primary objective of inactivating pathogenic organisms to prevent the dissemination of waterborne diseases. This study analyzed individual disinfection, with chlorine and ultraviolet radiation, and sequential disinfection (chlorine-UV radiation. The tests were conducted with anaerobic effluent in batch, in laboratory scale, with two dosages of chlorine (10 and 20 mg L-1 and UV (2.5 and 6.1 Wh m-3. In addition, to guarantee the presence of cysts in the tests, 104 cysts per liter of Giardia spp. were inoculated. The resistance order was as follows: E. coli = Total Coliforms < Clostridium perfringens < Giardia spp.. Furthermore, synergistic effects reached 0.06 to 1.42 log of inactivation in sequential disinfection for both the most resistant microorganisms.

  5. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs - abstract

    Science.gov (United States)

    Background: Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment appli...

  6. Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films.

    Science.gov (United States)

    Ha, Jae-Won; Back, Kyeong-Hwan; Kim, Yoon-Hee; Kang, Dong-Hyun

    2016-08-01

    In this study, the efficacy of using UV-C light to inactivate sliced cheese inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and, packaged with 0.07 mm films of polyethylene terephthalate (PET), polyvinylchloride (PVC), polypropylene (PP), and polyethylene (PE) was investigated. The results show that compared with PET and PVC, PP and PE films showed significantly reduced levels of the three pathogens compared to inoculated but non-treated controls. Therefore, PP and PE films of different thicknesses (0.07 mm, 0.10 mm, and 0.13 mm) were then evaluated for pathogen reduction of inoculated sliced cheese samples. Compared with 0.10 and 0.13 mm, 0.07 mm thick PP and PE films did not show statistically significant reductions compared to non-packaged treated samples. Moreover, there were no statistically significant differences between the efficacy of PP and PE films. These results suggest that adjusted PP or PE film packaging in conjunction with UV-C radiation can be applied to control foodborne pathogens in the dairy industry. Copyright © 2016. Published by Elsevier Ltd.

  7. Role of DNA damage in ultraviolet (313 nm) inactivation of yeasts Saccharomyces cerevisial

    International Nuclear Information System (INIS)

    Pospelov, M.E.; Ivanova, Eh.V.; Frajkin, G.Ya.

    1984-01-01

    Relative contribution of photoinhibition of cell respiration and DNA damage to lethal effect, caused by ultraviolet (UV) radiation of 313 m in certain yeast strains Saccharomyces cerevisiae, has been studied. It is shown that cell inactivation is mainly conditioned by DNA photodamage. When studying photoreactivation it has been established, that dimers of pyrimidine bases are the main lethal photoproducts, formed in DNA Under the effect of UV-radiation of 313 nm

  8. Photoreactivation of cells and phages inactivated by UV of ecological wave-lengths

    International Nuclear Information System (INIS)

    Samojlova, K.A.; Yanovska, Eh.; Vizdalova, M.; Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav)

    1979-01-01

    It has been found that the photoreactivity of infusoria Paramecium caudatum and bacteria Escherichia coli is high and practically similar if they are irradiated with short-wave (254 nm) and mean-wave (300-315 nm) UV radiation. The cells damaged with long-wave (315-400 nm) UV rays are not photoactivated. The latter is caused by the appearance of nonphotoreactivated damages since the phages jrradiated with the same UV rays are reactivated extremely weakly in the intact cells of bacteria (phage T7) or are not reactivated at all (phage lambdasub(c1 857))

  9. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater.

    Science.gov (United States)

    Gehr, Ronald; Wagner, Monika; Veerasubramanian, Priya; Payment, Pierre

    2003-11-01

    The City of Montreal Wastewater Treatment Plant uses enhanced physicochemical processes (ferric and/or alum coagulation) for suspended solids and phosphorus removal. The objective of this study was to assess the ability of peracetic acid (PAA), UV, or ozone to inactivate the indicator organisms fecal coliforms, Enterococci, MS-2 coliphage, or Clostridium perfringens in the effluent from this plant. PAA doses to reach the target fecal coliform level of 9000 CFU/100mL exceeded 6 mg/L; similar results were obtained for enterococci, and no inactivation of Clostridium perfringens was observed. However a 1-log reduction of MS-2 occurred at PAA doses of 1.5 mg/L and higher. It was expected that this effluent would have a high ozone demand, and would require relatively high UV fluences, because of relatively high effluent COD, iron and suspended solids concentrations, and low UV transmittance. This was confirmed herein. For UV, the inactivation curve for fecal coliforms showed the typical two-stage shape, with the target of 1000 CFU/100 mL (to account for photoreactivation) occurring in the asymptote zone at fluences >20 mJ/cm(2). In contrast, inactivation curves for MS-2 and Clostridium perfringens were linear. Clostridium perfringens was the most resistant organism. For ozone, inactivation was already observed before any residuals could be measured. The transferred ozone doses to reach target fecal coliform levels ( approximately 2-log reduction) were 30-50 mg/L. MS-2 was less resistant, but Clostridium perfringens was more resistant than fecal coliforms. The different behaviour of the four indicator organisms studied, depending on the disinfectant, suggests that a single indicator organism might not be appropriate. The required dose of any of the disinfectants is unlikely to be economically viable, and upstream changes to the plant will be needed.

  10. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate.

    Science.gov (United States)

    Garkusheva, Natalya; Matafonova, Galina; Tsenter, Irina; Beck, Sara; Batoev, Valeriy; Linden, Karl

    2017-07-29

    This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe 2+ ) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (10 5 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (Q UV(A+B) , kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a Q UV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe 2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.

  11. The roles of the various plasma agents in the inactivation of bacteria

    International Nuclear Information System (INIS)

    Lu Xinpei; Xiong Qing; Tang Zhiyuan; Xiong Zhilan; Hu Jing; Jiang Zhonghe; Pan Yuan; Ye Tao; Cao Yingguang; Sun Ziyong

    2008-01-01

    The roles of various plasma agents in the inactivation of bacteria have recently been investigated. However, up to now, the effect of the charged particles on the inactivation of bacteria is not well understood. In this paper, an atmospheric pressure plasma jet device, which generates a cold plasma plume carrying a peak current of 300 mA, is used to investigate the role of the charged particles in the inactivation process. It is found that the charged particles play a minor role in the inactivation process when He/N 2 (3%) is used as working gas. On the other hand, when He/O 2 (3%) is used, the charged particles are expected to play an important role in the inactivation of bacteria. Further analysis shows that the negative ions O 2 - might be the charged particles that are playing the role. Besides, it is found that the active species, including O, O 3 , and metastable state O 2 *, can play a crucial role in the inactivation of the bacteria. However, the excited He*, N 2 C 3 Π u , and N 2 + B 2 Σ u + have no significant direct effect on the inactivation of bacteria. It is also concluded that heat and UV play no or minor role in the inactivation process

  12. Inactivation of Nonpathogenic Escherichia coli, Escherichia coli O157:H7, Salmonella enterica Typhimurium, and Listeria monocytogenes in Ice Using a UVC Light-Emitting Diode.

    Science.gov (United States)

    Murashita, Suguru; Kawamura, Shuso; Koseki, Shigenobu

    2017-07-01

    Ice, widely used in the food industry, is a potential cause of food poisoning resulting from microbial contamination. Direct microbial inactivation of ice is necessary because microorganisms may have been present in the source water used to make it and/or may have been introduced due to poor hygiene during production or handling of the ice. Nonthermal and nondestructive microbial inactivation technologies are needed to control microorganisms in ice. We evaluated the applicability of a UVC light-emitting diode (UVC-LED) for microbial inactivation in ice. The effects of UV intensity and UV dose of the UVC-LED on Escherichia coli ATCC 25922 and a comparison of UVC-LED with a conventional UV lamp for effective bacterial inactivation in distilled water and ice cubes were investigated to evaluate the performance of the UVC-LED. Finally, we assessed the effects of the UVC-LED on pathogens such as E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in ice cubes. The results indicated that UVC-LED effectiveness depended on the UV dose at all UV intensity conditions (0.084, 0.025, 0.013, 0.007, and 0.005 mW/cm 2 ) in ice and that UVC-LED could more efficiently inactivate E. coli ATCC 25922 in distilled water and ice than the UV lamp. At a UV dose of 2.64 mJ/cm 2 , E. coli in distilled water was decreased by 0.90 log CFU/mL (UV lamp) and by more than 7.0 log CFU/mL (UVC-LED). At 15.2 mJ/cm 2 , E. coli in ice was decreased by 3.18 log CFU/mL (UV lamp) and by 4.45 CFU/mL (UVC-LED). Furthermore, UVC-LED irradiation reduced the viable number of pathogens by 6 to 7 log cycles at 160 mJ/cm 2 , although the bactericidal effect was somewhat dependent on the type of bacteria. L. monocytogenes in ice was relatively more sensitive to UVC irradiation than were E. coli O157:H7 and Salmonella Typhimurium. These results demonstrate that UVC-LED irradiation could contribute to the safety of ice in the food industry.

  13. Uveka: a UV exposure monitoring system using autonomous instruments network for Reunion Island citizens

    Science.gov (United States)

    Sébastien, Nicolas; Cros, Sylvain; Lallemand, Caroline; Kurzrock, Frederik; Schmutz, Nicolas

    2016-04-01

    Reunion Island is a French oversea territory located in the Indian Ocean. This tropical Island has about 840,000 inhabitants and is visited every year by more than 400,000 tourists. On average, 340 sunny days occurs on this island in a whole year. Beyond these advantageous conditions, exposure of the population to ultraviolet radiation constitutes a public health issue. The number of hospitalisations for skin cancer increased by 50% between 2005 and 2010. Health insurance reimbursements due to ophthalmic anomalies caused by the sun is about two million Euros. Among the prevention measures recommended by public health policies, access to information on UV radiation is one of the basic needs. Reuniwatt, supported by the Regional Council of La Reunion, is currently developing the project Uveka. Uveka is a solution permitting to provide in real-time and in short-term forecast (several hours), the UV radiation maps of the Reunion Island. Accessible via web interface and smartphone application, Uveka informs the citizens about the UV exposure rate and its risk according to its individual characteristics (skin phototype, past exposure to sun etc.). The present work describes this initiative through the presentation of the UV radiation monitoring system and the data processing chain toward the end-users. The UV radiation monitoring system of Uveka is a network of low cost UV sensors. Each instrument is equipped with a solar panel and a battery. Moreover, the sensor is able to communicate using the 3G telecommunication network. Then, the instrument can be installed without AC power or access to a wired communication network. This feature eliminates a site selection constraint. Indeed, with more than 200 microclimates and a strong cloud cover spatial variability, building a representative measurement site network in this island with a limited number of instruments is a real challenge. In addition to these UV radiation measurements, the mapping of the surface solar radiation

  14. recA+-dependent inactivation of the lambda repressor in Escherichia coli lysogens by γ-radiation and by tif expression

    International Nuclear Information System (INIS)

    West, S.C.; Powell, K.A.; Emmerson, P.T.

    1975-01-01

    When lambda lysogens of E. coli are induced by γ-radiation the lambda repressor, as measured by its specific binding to lambda DNA, is rapidly inactivated by a recA + -dependent process which does not require new protein synthesis. This rapid inactivation is similar to inactivation of repressor by expression of the temperature sensitive E. coli mutation tif. In contrast, induction by UV irradiation or mitomycin C treatment requires new protein synthesis and there is a lag before the repressor is inactivated (Tomizawa and Ogawa, 1967; Shinagawa and Itoh, 1973). (orig.) [de

  15. Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring

    Science.gov (United States)

    Olds, W. J.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures

  16. Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts.

    Science.gov (United States)

    Cervero-Aragó, Sílvia; Sommer, Regina; Araujo, Rosa M

    2014-12-15

    Water systems are the primary reservoir for Legionella spp., where the bacteria live in association with other microorganisms, such as free-living amoebae. A wide range of disinfection treatments have been studied to control and prevent Legionella colonization but few of them were performed considering its relation with protozoa. In this study, the effectiveness of UV irradiation (253.7 nm) using low-pressure lamps was investigated as a disinfection method for Legionella and amoebae under controlled laboratory conditions. UV treatments were applied to 5 strains of Legionella spp., 4 strains of free-living amoeba of the genera Acanthamoeba and Vermamoeba, treating separately trophozoites and cysts, and to two different co-cultures of Legionella pneumophila with the Acanthamoeba strains. No significant differences in the UV inactivation behavior were observed among Legionella strains tested which were 3 logs reduced for fluences around 45 J/m(2). UV irradiation was less effective against free-living amoebae; which in some cases required up to 990 J/m(2) to obtain the same population reduction. UV treatment was more effective against trophozoites compared to cysts; moreover, inactivation patterns were clearly different between the genus Acanthamoeba and Vermamoeba. For the first time data about Vermamoeba vermiformis UV inactivation has been reported in a study. Finally, the results showed that the association of L. pneumophila with free-living amoebae decreases the effectiveness of UV irradiation against the bacteria in a range of 1.5-2 fold. That fact demonstrates that the relations established between different microorganisms in the water systems can modify the effectiveness of the UV treatments applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Study of induced functions by UV in Staphylococcus

    International Nuclear Information System (INIS)

    Silva, B.S. da.

    1982-01-01

    SOS functions induced by ultraviolet (UV) radiation were studied using S. aureus and S. epidermidis. Comparing the results obtained from these two organisms with those described in the literature for E. coli allows us to conclude: the difference in UV sensibility between the lysogenic and non-lysogenic strains of Staphylococcus is extremely large; the dose of UV radiation which results in the maximum induction of the lysogenic strains lead to 99% inactivation of the lysogenic strains; the kinetics of prophage liberation in lysogenic cultures of Staphylococcus is more rapid than those described for E. coli; the dose of UV radiation is much lower than the dose described for E. coli; the maximum W-reactivatio and W-mutagenesis are obtained immediately after the irradiation or within the 15 minutes allowed for the phage adsorption. (author)

  18. Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action.

    Science.gov (United States)

    Ha, Jae-Won; Kang, Dong-Hyun

    2015-01-01

    The objective of the study described in this article was, first, to investigate the effect of the simultaneous application of near-infrared (NIR) heating and UV irradiation on inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham and as well as its effect on product quality and, second, to elucidate the underlying mechanisms of the synergistic bactericidal action of NIR heating and UV irradiation. With the inoculation amounts used, simultaneous NIR-UV combined treatment for 70 s achieved 3.62, 4.17, and 3.43 log CFU reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. For all three pathogens, the simultaneous application of both technologies resulted in an additional log unit reduction as a result of their synergism compared to the sum of the reductions obtained after the individual treatments. To investigate the mechanisms of NIR-UV synergistic injury for a particular microorganism in a food base, we evaluated the effect of four types of metabolic inhibitors using the overlay method and confirmed that damage to cellular membranes and the inability of cells to repair these structures due to ribosomal damage were the primary factors related to the synergistic lethal effect. Additionally, NIR-UV combined treatment for a maximum of 70 s did not alter the color values or texture parameters of ham slices significantly (P > 0.05). These results suggest that a NIR-UV combined process could be an innovative antimicrobial intervention for RTE meat products. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Spectral Estimation of UV-Vis Absorbance Time Series for Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas-Nossa

    2017-05-01

    Full Text Available Context: Signals recorded as multivariate time series by UV-Vis absorbance captors installed in urban sewer systems, can be non-stationary, yielding complications in the analysis of water quality monitoring. This work proposes to perform spectral estimation using the Box-Cox transformation and differentiation in order to obtain stationary multivariate time series in a wide sense. Additionally, Principal Component Analysis (PCA is applied to reduce their dimensionality. Method: Three different UV-Vis absorbance time series for different Colombian locations were studied: (i El-Salitre Wastewater Treatment Plant (WWTP in Bogotá; (ii Gibraltar Pumping Station (GPS in Bogotá; and (iii San-Fernando WWTP in Itagüí. Each UV-Vis absorbance time series had equal sample number (5705. The esti-mation of the spectral power density is obtained using the average of modified periodograms with rectangular window and an overlap of 50%, with the 20 most important harmonics from the Discrete Fourier Transform (DFT and Inverse Fast Fourier Transform (IFFT. Results: Absorbance time series dimensionality reduction using PCA, resulted in 6, 8 and 7 principal components for each study site respectively, altogether explaining more than 97% of their variability. Values of differences below 30% for the UV range were obtained for the three study sites, while for the visible range the maximum differences obtained were: (i 35% for El-Salitre WWTP; (ii 61% for GPS; and (iii 75% for San-Fernando WWTP. Conclusions: The Box-Cox transformation and the differentiation process applied to the UV-Vis absorbance time series for the study sites (El-Salitre, GPS and San-Fernando, allowed to reduce variance and to eliminate ten-dency of the time series. A pre-processing of UV-Vis absorbance time series is recommended to detect and remove outliers and then apply the proposed process for spectral estimation. Language: Spanish.

  20. UV disinfection in drinking water supplies.

    Science.gov (United States)

    Hoyer, O

    2000-01-01

    UV disinfection has become a practical and safely validatable disinfection procedure by specifying the requirements for testing and monitoring in DVGW standard W 294. A standardized biodosimetric testing procedure and monitoring with standardized UV sensors is introduced and successfully applied. On-line monitoring of irradiance can be counterchecked with handheld reference sensors and makes it possible that UV systems can be used for drinking water disinfection with the same level of confidence and safety as is conventional chemical disinfection.

  1. The Usage of Crumb Rubber Filtration and UV Radiation for Ballast Water Treatment

    Directory of Open Access Journals (Sweden)

    Trika Pitana

    2017-12-01

    Full Text Available This research is aimed to build ship’s ballast water treatment prototipe that used to inactivate microbial water patogen in ballast water to produce unpolluted ballast water that can be standardised by IMO Ballast Water Management Convention. A simple concept that used in the development of this prototype is by draining ballast water with capacity at 5 lpm, 10 lpm and 20 lpm into alternative filtration crumb rubber and UV reactor. In the filtration process using crumb rubber, ballast water will be filtered with the precision filtration up to 50 micron, while in the UV reactor ballast water will be illuminated by UV-C with maksimum dose 16,58 mW/cm2. Finally,the study shows the performance of alternative filtration of crumb rubber and UV-C irradiation on microbial water phatogen, and at what UV-C dose ballast water treatment prototipe can inactivate  microbial water phatogens, which are complying with IMO Ballast Water Management Convention ANNEX D. This research is aimed to build ship’s ballast water treatment prototipe that used to inactivate microbial water patogen in ballast water to produce unpolluted ballast water that can be standardised by IMO Ballast Water Management Convention. A simple concept that used in the development of this prototype is by draining ballast water with capacity at 5 lpm, 10 lpm and 20 lpm into alternative filtration crumb rubber and UV reactor. In the filtration process using crumb rubber, ballast water will be filtered with the precision filtration up to 50 micron, while in the UV reactor ballast water will be illuminated by UV-C with maksimum dose 16,58 mW/cm2. Finally,the study shows the performance of alternative filtration of crumb rubber and UV-C irradiation on microbial water phatogen, and at what UV-C dose ballast water treatment prototipe can inactivate  microbial water phatogens, which are complying with IMO Ballast Water Management Convention ANNEX D. Normal 0 false false false EN-US X-NONE X

  2. A novel CD4-conjugated ultraviolet light-activated photocatalyst inactivates HIV-1 and SIV efficiently.

    Science.gov (United States)

    Yamaguchi, Koushi; Sugiyama, Takahiro; Kato, Shinji; Kondo, Yoichi; Ageyama, Naohide; Kanekiyo, Masaru; Iwata, Misao; Koyanagi, Yoshio; Yamamoto, Naoki; Honda, Mitsuo

    2008-08-01

    In this study, we found that the electric potential derived from the redox reaction of ultraviolet (UV)-illuminated CD4-conjugated titanium dioxide (TiO2) inactivated a wide range of high-titered primary HIV-1 isolates, regardless of virus co-receptor usage or genetic clade. In vitro incubation of HIV-1 isolates with CD4-conjugated TiO2 (CD4-TiO2) followed by UV illumination led to inhibition of viral infectivity in both H9 cells and peripheral blood mononuclear cells as well as to the complete inactivation of plasma virions from HIV-1-infected individuals. Treatment with a newly established extra-corporeal circulation system with the photocatalyst in rhesus macaques completely inactivated plasma virus in the system and effectively reduced the infectious plasma viral load. Furthermore, plasma viremia and infectious viral loads were controlled following a second therapeutic photocatalyst treatment during primary SIV(mac239) infection of macaques. Our findings suggest that this therapeutic immunophysical strategy may help control human immunodeficiency viral infection in vivo.

  3. Quality assurance and quality control methodologies used within the austrian UV monitoring network

    International Nuclear Information System (INIS)

    Mario, B.

    2004-01-01

    The Austrian UVB monitoring network is operational since 1997. Nine detectors for measuring erythemally weighted solar UV irradiance are distributed over Austria in order to cover the main populated areas as well as different levels of altitude. The detectors are calibrated to indicate the UV-Index, the internationally agreed unit for erythemally weighted solar UV irradiance. Calibration is carried out in the laboratory for determination of spectral sensitivity of each detector, and under the sun for absolute comparison with a well-calibrated, double-monochromator spectro-radiometer. For the conversion from detector-weighted units to erythemally weighted units a lookup table is used, which is calculated using a radiative transfer model and which reflects the dependence of the conversion on the solar zenith angle and total ozone content of the atmosphere. The uncertainty of the calibration is about ±7%, dominated by the uncertainty of the calibration lamp for the spectro-radiometer (±4%). The long-term stability of this type of detectors has been found to be not satisfactory. Therefore, routinely every year all detectors are completely re-calibrated. Variations of the calibration factors up to ±10% are found. Thus, during routine operation, several measures take place for quality control. The measured data are compared to results of model calculations with a radiative transfer model, where clear sky and an aerosol-free atmosphere are assumed. At each site, the UV data are also compared with data from a co-located pyrano-meter measuring total solar irradiance. These two radiation quantities are well correlated, especially on clear days and when the ozone content is taken into account. If suspicious measurements are found for one detector in the network, a well-calibrated travelling reference detector of the same type is set up side-by-side, allowing the identification of relative differences of ∼3%. If necessary, a recalibration is carried out. As the main aim

  4. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    Science.gov (United States)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result

  5. Sunlight-induced inactivation of human Wa and porcine OSU rotaviruses in the presence of exogenous photosensitizers

    KAUST Repository

    Romero-Maraccini, Ofelia C.

    2013-10-01

    Human rotavirus Wa and porcine rotavirus OSU solutions were irradiated with simulated solar UV and visible light in the presence of different photosensitizers dissolved in buffered solutions. For human rotavirus, the exogenous effects were greater than the endogenous effects under irradiation with full spectrum and UVA and visible light at 25 C. For porcine rotavirus, the exogenous effects with UVA and visible light irradiation were only observed at high temperatures, >40 C. The results from dark experiments conducted at different temperatures suggest that porcine rotavirus has higher thermostability than human rotavirus. Concentrations of 3′-MAP excited triplet states of 1.8 fM and above resulted in significant human rotavirus inactivation. The measured excited triplet state concentrations of ≤0.45 fM produced by UVA and visible light irradiation of natural dissolved organic matter solutions were likely not directly responsible for rotavirus inactivation. Instead, the linear correlation for human rotavirus inactivation rate constant (kobs) with the phenol degradation rate constant (kexp) found in both 1 mM NaHCO3 and 1 mM phosphate-buffered solutions suggested that OH radical was a major reactive species for the exogenous inactivation of rotaviruses. Linear correlations between rotavirus kobs and specific UV254 nm absorbance of two river-dissolved organic matter and two effluent organic matter isolates indicated that organic matter aromaticity may help predict formation of radicals responsible for rotavirus inactivation. The results from this study also suggested that the differences in rotavirus strains should be considered when predicting solar inactivation of rotavirus in sunlit surface waters. © 2013 American Chemical Society.

  6. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    Science.gov (United States)

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  7. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  8. Plasma inactivation of food-related microorganisms in liquids

    International Nuclear Information System (INIS)

    Marsili, Lisa; Espie, Steven; Anderson, J.G.John G.; MacGregor, S.J.Scott J.

    2002-01-01

    This paper reports on a plasma process that inactivates microorganisms in liquids through the application of high-voltage pulses. These pulses result in breakdown of the gas and liquid layers, producing many active species such as UV photons, ozone, free radicals and free electrons. Several test microorganisms representing a range of problematic microorganisms were investigated. Significant reductions in microbial population were achieved, demonstrating the effectiveness of using the plasma discharge process to treat contaminated liquids

  9. Investigation of E. coli bacteria inactivation by photocatalytic activity of TiO2 coated expanded polystyrene foam

    Science.gov (United States)

    Varnagiris, S.; Sakalauskaite, S.; Tuckute, S.; Lelis, M.; Daugelavicius, R.; Milcius, D.

    2017-03-01

    Photocatalytic properties of anatase and other TiO2 polymorphs are widely researched and applied in practical application. In current study TiO2 films on the plasma pre-treated expanded polystyrene (EPS) foam were deposited using magnetron sputtering technique. Main properties of the films were characterised using combination of XRD, XPS and SEM techniques. Photocatalytic properties of the observed crystalline anatase phase were tested by investigating bleaching of the methylene blue (MB) aqueous solution and by testing Escherichia coli (E. coli) viability after incubation under UV-B irradiation. E. coli viability experiments indicated that there are two mechanisms of E. coli bacteria inactivation. UV irradiation alone causes rapid damage to the outer membrane of E. coli bacteria. The second mechanism of E. coli inactivation is invoked only with synergistic combination of TiO2 and UV. Acting as photocatalyst TiO2 generates active radicals who initiate the chain peroxidation of organic molecules and within 45 min reduce E. coli bacteria viability by nearly 90%.

  10. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-29

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  11. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  12. Cross-Resistance of UV- or Chlorine Dioxide-Resistant Echovirus 11 to Other Disinfectants

    Directory of Open Access Journals (Sweden)

    Qingxia Zhong

    2017-10-01

    Full Text Available The emergence of waterborne viruses with resistance to disinfection has been demonstrated in the laboratory and in the environment. Yet, the implications of such resistance for virus control remain obscure. In this study we investigate if viruses with resistance to a given disinfection method exhibit cross-resistance to other disinfectants. Chlorine dioxide (ClO2- or UV-resistant populations of echovirus 11 were exposed to five inactivating treatments (free chlorine, ClO2, UV radiation, sunlight, and heat, and the extent of cross-resistance was determined. The ClO2-resistant population exhibited cross-resistance to free chlorine, but to none of the other inactivating treatments tested. We furthermore demonstrated that ClO2 and free chlorine act by a similar mechanism, in that they mainly inhibit the binding of echovirus 11 to its host cell. As such, viruses with host binding mechanisms that can withstand ClO2 treatment were also better able to withstand oxidation by free chlorine. Conversely, the UV-resistant population was not significantly cross-resistant to any other disinfection treatment. Overall, our results indicate that viruses with resistance to multiple disinfectants exist, but that they can be controlled by inactivating methods that operate by a distinctly different mechanism. We therefore suggest to utilize two disinfection barriers that act by different mechanisms in order to control disinfection-resistant viruses.

  13. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.

    Science.gov (United States)

    Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R

    2017-07-18

    At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F 10 ), minimum fluence (F min ), and mean fluence (F mean ) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F 10 , F min , and F mean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.

  14. Development of a method for the characterization and operation of UV-LED for water treatment.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2017-10-01

    Tremendous improvements in semiconductor technology have made ultraviolet light-emitting diodes (UV-LEDs) a viable alternative to conventional UV sources for water treatment. A robust and validated experimental protocol for studying the kinetics of microorganism inactivation is key to the further development of UV-LEDs for water treatment. This study proposes a protocol to operate UV-LEDs and control their output as a polychromatic radiation source. In order to systematically develop this protocol, the results of spectral power distribution, radiation profile, and radiant power measurements of a variety of UV-LEDs are presented. A wide range of UV-LEDs was selected for this study, covering various UVA, UVB, and UVC wavelengths, viewing angles from 3.5° to 135°, and a variety of output powers. The effects of operational conditions and measurement techniques were investigated on these UV-LEDs using a specially designed and fabricated setup. Operating conditions, such as the UV-LED electrical current and solder temperature, were found to significantly affect the power and peak wavelength output. The measurement techniques and equipment, including the detector size, detector distance from the UV-LED, and potential reflection from the environment, were shown to influence the results for many of the UV-LEDs. The results obtained from these studies were analyzed and applied to the development of a protocol for UV-LED characterization. This protocol is presented as a guideline that allows the operation and control of UV-LEDs in any structure, as well as accurately measuring the UV-LED output. Such information is essential for performing a reliable UV-LED assessment for the inactivation of microorganisms and for obtaining precise kinetic data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. UV disinfection and flocculation-chlorination sachets to reduce hepatitis E virus in drinking water.

    Science.gov (United States)

    Guerrero-Latorre, Laura; Gonzales-Gustavson, Eloy; Hundesa, Ayalkibet; Sommer, Regina; Rosina, Girones

    2016-07-01

    Hepatitis E Virus (HEV) is a major cause of waterborne outbreaks in areas with poor sanitation. As safe water supplies are the keystone for preventing HEV outbreaks, data on the efficacy of disinfection treatments are urgently needed. Here, we evaluated the ability of UV radiation and flocculation-chlorination sachets (FCSs) to reduce HEV in water matrices. The HEV-p6-kernow strain was replicated in the HepG2/C3A cell line, and we quantified genome number using qRT-PCR and infectivity using an immunofluorescence assay (IFA). UV irradiation tests using low-pressure radiation showed inactivation kinetics for HEV of 99.99% with a UV fluence of 232J/m(2) (IC 95%, 195,02-269,18). Moreover, the FCSs preparations significantly reduced viral concentrations in both water matrices, although the inactivation results were under the baseline of reduction (4.5 LRV) proposed by WHO guidelines. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Genetic control of near-UV (300-400 nm) sensitivity independent of the recA gene in strains of Escherichia coli K12

    International Nuclear Information System (INIS)

    Tuveson, R.W.; Jonas, R.B.

    1979-01-01

    Stationary cells of isogenic pairs of Escherichia coli K12 strains presumably differing only in the recA function, were inactivated with near-UV (300-400 nm) radiation. Based on near-UV inactivation kinetics, the strains can be divided into two discrete categories in which near-UV sensitivity does not necessarily correlate with far-UV sensitivity conferred by two different recA alleles. Lack of overlap between near-UV and far-UV (recA) sensitivity can be explained by assuming that a different chromosomal gene (nur) controls near-UV sensitivity. Support for this hypothesis came from a mating experiment in which four selected recombinants, isogenic with respect to auxotrophic markers, were identified exhibiting all four possible combinations of far-UV (recA1 vs recA + ) and near-UV sensitivity (nur vs nur + ). Transduction with phase P1 showed that introduction of the recA1 allele into a recA + recipient did not affect the near-UV sensitivity of the recipient. Additional matings together with transduction experiments suggested that the nur gene is located at a position on the E. coli linkage map clearly separable from recA (minute 58). (author)

  17. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-12-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  18. UV-Visible Spectroscopic Method and Models for Assessment and Monitoring of Harmful Algal Blooms

    Science.gov (United States)

    Mitchell, B. Greg

    2000-01-01

    The development of an enhanced predictive and early warning capability for the occurrence and impact of harmful algal blooms (HABs) would be of great benefit to coastal communities. A critical issue for early detection and monitoring of HABs is the need to detect harmful algal species within a mixed-species phytoplankton assemblage. Possession of UV-absorbing compounds called mycosporine-like amino acids (MAAs) may be one factor that allows HAB species to out-compete their phytoplankton neighbors. Possession of MAAs, which we believe can be inferred from strong UV-absorption signals in phytoplankton absorption coefficients, can be used as a flag for potential HAB outbreak. The goal of this project was to develop a solar simulating UV-visible incubator to grow HAB dinoflagellates, to begin MAA analysis of samples collected on global cruises, and to carry out initial experiments on HAB dinoflagellate species in pure culture. Our scientific objectives are to quantify MAA production and spectral induction mechanisms in HAB species, to characterize spectral absorption of MAAs, and to define the ecological benefit of MAAs (i.e. photoprotection). Data collected on cruises to the global oceans will be used to parameterize phytoplankton absorption in the UV region, and this parameterization could be incorporated into existing models of seawater optical properties in the UV spectral region. Data collected in this project were used for graduate fellowship applications by Elizabeth Frame. She has been awarded an EPA STAR fellowship to continue the work initiated by this project.

  19. Inactivation of Cytomegalovirus in Breast Milk Using Ultraviolet-C Irradiation: Opportunities for a New Treatment Option in Breast Milk Banking.

    Science.gov (United States)

    Lloyd, Megan L; Hod, Nurul; Jayaraman, Jothsna; Marchant, Elizabeth A; Christen, Lukas; Chiang, Peter; Hartmann, Peter; Shellam, Geoffrey R; Simmer, Karen

    2016-01-01

    Pasteurized donor human milk is provided by milk banks to very preterm babies where their maternal supply is insufficient or unavailable. Donor milk is currently processed by Holder pasteurization, producing a microbiologically safe product but significantly reducing immunoprotective components. Ultraviolet-C (UV-C) irradiation at 254 nm is being investigated as an alternative treatment method and has been shown to preserve components such as lactoferrin, lysozyme and secretory IgA considerably better than Holder pasteurization. We describe the inactivation of cytomegalovirus, a virus commonly excreted into breast milk, using UV-C irradiation. Full replication was ablated by various treatment doses. However, evidence of viral immediate early proteins within the cells was never completely eliminated indicating that some viral gene transcription was still occurring. In conclusion, UV-C may be a safe alternative to pasteurisation for the treatment of human donor milk that preserves the bioactivity. However, our data suggests that CMV inactivation will have to be carefully evaluated for each device designed to treat breast milk using UV-C irradiation.

  20. Inactivation of Cytomegalovirus in Breast Milk Using Ultraviolet-C Irradiation: Opportunities for a New Treatment Option in Breast Milk Banking.

    Directory of Open Access Journals (Sweden)

    Megan L Lloyd

    Full Text Available Pasteurized donor human milk is provided by milk banks to very preterm babies where their maternal supply is insufficient or unavailable. Donor milk is currently processed by Holder pasteurization, producing a microbiologically safe product but significantly reducing immunoprotective components. Ultraviolet-C (UV-C irradiation at 254 nm is being investigated as an alternative treatment method and has been shown to preserve components such as lactoferrin, lysozyme and secretory IgA considerably better than Holder pasteurization. We describe the inactivation of cytomegalovirus, a virus commonly excreted into breast milk, using UV-C irradiation. Full replication was ablated by various treatment doses. However, evidence of viral immediate early proteins within the cells was never completely eliminated indicating that some viral gene transcription was still occurring. In conclusion, UV-C may be a safe alternative to pasteurisation for the treatment of human donor milk that preserves the bioactivity. However, our data suggests that CMV inactivation will have to be carefully evaluated for each device designed to treat breast milk using UV-C irradiation.

  1. Integrated oxide graphene based device for laser inactivation of pathogenic microorganisms

    Science.gov (United States)

    Grishkanich, Alexsandr; Ruzankina, Julia; Afanasyev, Mikhail; Paklinov, Nikita; Hafizov, Nail

    2018-02-01

    We develop device for virus disinfection of pathogenic microorganisms. Viral decontamination can be carried out due to hard ultraviolet irradiation and singlet oxygen destroying the genetic material of a virus capsid. UV rays can destroy DNA, leading to the formation of dimers of nucleic acids. This practically does not occur in tissues, tk. UV rays penetrate badly through them, however, the viral particles are small and UV can destroy their genetic material, RNA / DNA and the virus can not replicate. It is with the construction of the ultraviolet laser water disinfection system (UFLOV) based on the continuous and periodic pulsed ultraviolet laser sources (pump) binds to solve sterility and depyrogenation of water. It has been established that small doses of UV irradiation stimulate reproduction, and large doses cause the death of pathogenic microorganisms. The effect of a dose of ultraviolet is the result of photochemical action on the substance of a living bacterial cell or virion. Also complex photodynamic laser inactivation on graphene oxide is realized.

  2. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli.

    Science.gov (United States)

    Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki

    2018-04-01

    In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Simultaneous analysis and monitoring of 16 UV filters in cosmetics by high-performance liquid chromatography.

    Science.gov (United States)

    Kim, Dojung; Kim, Sangseop; Kim, Seol-A; Choi, Myoengsin; Kwon, Kyoung-Jin; Kim, Mijeong; Kim, Dong-Sup; Kim, Seung-Hee; Choi, Bo-Kyung

    2012-01-01

    Sixteen UV filters were simultaneously analyzed using the high-performance liquid chromatographic method. They were drometrizole (USAN Drometrizole), 4-methylbenzylidene camphor (USAN Enzacamene), menthyl anthranilate (USAN Menthyl anthranilate), benzophenone-3 (USAN Oxybenzone), benzophenone-8 (USAN Dioxybenzone), butyl methoxydibenzoylmethane (USAN Avobenzone), ethylhexyl triazone (USAN Octyl triazone), octocrylene (USAN Octocrylene), ethylhexyl dimethyl p-aminobenzoic acid (USAN Padimate O), ethylhexyl methoxycinnamate (USAN Octinoxate), p-aminobenzoic acid (USAN Aminobenzoic acid), 2-phenylbenzimidazole-5-sulfonic acid (USAN Ensulizole), isoamyl p-methoxycinnamate (USAN Amiloxate), and recent UV filters such as diethylhexyl butamidotriazone (USAN Iscotrizinol), methylene bis-benzotriazolyl tetramethylbutylphenol (USAN Bisoctrizole), and terephthalylidene dicamphor sulfonic acid (USAN Ecamsule). Separation of the UV filters was carried out in a C(18) column with a gradient of methanol-phosphate buffer, and the UV detection was at 300, 320, or 360 nm without any interference. The limits of detection were between 0.08 and 1.94 μg/ml, and the limits of quantitation were between 0.24 and 5.89 μg/ml. The extracting solvent for the UV filters was methanol, except for ethylhexyl triazone and methylene bis-benzotriazolyl tetramethylbutylphenol, which were prepared with tetrahydrofuran. The recoveries from spiked samples were between 94.90% and 116.54%, depending on the matrixes used. The developed method was applied to 23 sunscreens obtained from local markets, and the results were acceptable to their own criteria and to maximum authorized concentrations. Consequently, these results would provide a simple extracting method and a simultaneous determination for various UV filters, which can improve the quality control process as well as the environmental monitoring of sunscreens.

  4. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  5. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    Science.gov (United States)

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  6. Effects of photoprotection and reversible inactivation of the yeast Candida guilliermondii, induced by 313 nm light

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Pospelov, M.E.; Rubin, L.B.

    1976-01-01

    The results of studies on the effect of near uv light on the yeast Candida guilliermondii are presented. It was shown that certain doses of 313 nm light inactivated the yeast. The detailed affect is shown in the loss of the ability of the cells to form microcolonies and outwardly does not differ from inactivation caused by 254 nm uv. It was concluded that the cell destruction caused by the 313 nm light was not due to damage to DNA. Experiments in which yeast cells were inactivated by 313 nm light before plating on agar and held for some time in a non-nutrient medium permitted observation of recovery of their viability. A difference was shown in the level of repair of yeasts irradiated by 313 nm light (up to 100% recovery) and 254 nm light (60% recovery). The nature of the dependence of the photoprotection on the 313 nm light dose was determined. A decrease in photoprotection was noted, starting with 7x10 -7 einstein/cm 2 , with its complete disappearance upon further dose increase. It is suggested that, in this recovery of the yeast, some other, thus far unknown, mechanism participates. Data were obtained on the survival of yeast irradiated with lethal uv doses. Of special importance, in the authors' opinion, is the fact that, for the photoprotection effect to appear, some time is needed between actions of the 313 and 254 nm lights, which suggests a photoinduced formation in the yeast cells of compounds that protect them from lethal injury

  7. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Wen-Long; Huo, Zheng-Yang; Lu, Yun; Hu, Hong-Ying

    2017-12-01

    Studies on ultraviolet light-emitting diode (UV-LED) water disinfection have shown advantages, such as safety, flexible design, and lower starting voltages. However, information about reactivation after UV-LED disinfection is limited, which is an important issue of UV light-based technology. In this study, the photoreactivation and dark repair of Escherichia coli after UV-LEDs and low pressure (LP) UV disinfection were compared. Four UV-LED units, 265 nm, 280 nm, the combination of 265 + 280 (50%), and 265 + 280 (75%) were tested. 265 nm LEDs was more effective than 280 nm LEDs and LP UV lamps for E. coli inactivation. No synergic effect for disinfection was observed from the combination of 265 and 280 nm LEDs. 265 nm LEDs had no different reactivation performances with that of LP UV, while 280 nm LEDs could significantly repress photoreactivation and dark repair at a low irradiation intensity of 6.9 mJ/cm 2 . Furthermore, the UV-induced damage of 280 nm LEDs was less repaired which was determined by endonuclease sensitive site (ESS) assay. The impaired protein activities by 280 nm LEDs might be one of the reasons that inhibited reactivation. A new reactivation rate constant, K max , was introduced into the logistic model to simulate the reactivation data, which showed positive relationship with the maximum survival ratio and was more reasonable to interpret the results of photoreactivation and dark repair. This study revealed the distinct roles of different UV lights in disinfection and reactivation, which is helpful for the future design of UV-LED equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    Science.gov (United States)

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  9. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy

    Science.gov (United States)

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research in...

  10. Inactivation of airborne Enterococcus faecalis and infectious bursal disease virus using a pilot-scale ultraviolet photocatalytic oxidation scrubber

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Xin, H.

    2014-01-01

    High microbial concentrations and emissions associated with livestock houses raise health and environmental concerns. A pilot-scale ultraviolet photocatalytic (UV-PCO) scrubber was tested for its efficacy to inactivate aerosolized Enterococcus faecalis and infectious bursal disease virus (IBDV).

  11. Wastewater disinfection with peracetic acid and UV

    International Nuclear Information System (INIS)

    Caretti, C.; Lubello, C.

    2001-01-01

    Was investigated the synergy between UV and peracetic acid (PAA) through a five months on-site experimental study in a pilot plant fed by the secondary effluent of the central wastewater treatment plant of Pistoia, Italy. This experiment is a part of a larger research project on advanced treatment for municipal wastewater reuse in agriculture. Because of Italy's strict limits on unrestricted wastewater reuse in agriculture (2 CFU total coliform/100 ml), a very high degree of disinfection is necessary. In the investigated experimental conditions, it has been impossible to meet such values through an exclusive use of UV irradiation (the UV unit reaches at most 4 Log inactivation). Low levels of PAA greatly enhance the decline of indicator levels, but higher unsustainable doses are required to hit the Italian limit. Through a poor amount of information on the subject was available in literature, it was tried to find out how the disinfection efficiency could improve by simultaneously using UV and PAA. It was found out that a combined treatment is satisfactory and that it is more advantage of the hydroxyl radicals formation due to the PAA photo lysis. The application of 2 ppm of PAA with an UV dose of 192 mWscm - 2 is enough to meet the Italian limit [it

  12. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  13. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  14. Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce.

    Science.gov (United States)

    Guo, Shuanghuan; Huang, Runze; Chen, Haiqiang

    2017-09-18

    With the demand for fresh produce increases in recent decades, concerns for microbiological safety of fresh produce are also raised. To identify effective ultraviolet (UV) light treatment for fresh produce decontamination, we first determined the effect of three forms of UV treatment, dry UV (samples were treated by UV directly), wet UV (samples were dipped in water briefly and then exposed to UV), and water-assisted UV (samples were treated by UV while being immersed in agitated water) on inactivation of Salmonella inoculated on tomatoes and fresh-cut lettuce. In general, the water-assisted UV treatment was found to be the most effective for both produce items. Chlorine and hydrogen peroxide were then tested to determine whether they could be used to enhance the decontamination efficacy of water-assisted UV treatment and prevent transfer of Salmonella via wash water by completely eliminating it. Neither of them significantly enhanced water-assisted UV inactivation of Salmonella on tomatoes. Chlorine significantly improved the decontamination effectiveness of the water-assisted UV treatment for baby-cut carrots and lettuce, but not for spinach. In general, the single water-assisted UV treatment and the combined treatment of water-assisted UV and chlorine were similar or more effective than the chlorine washing treatment. In most of the cases, no Salmonella was detected in the wash water when the single water-assisted UV treatment was used to decontaminate tomatoes. In a few cases when Salmonella was detected in the wash water, the populations were very low,≤2CFU/mL, and the wash water contained an extremely high level of organic load and soil level. Therefore, the single water-assisted UV treatment could potentially be used as an environmentally friendly and non-chemical alternative to chlorine washing for tomatoes after validation in industrial scale. For lettuce, spinach and baby-cut carrots, the combined treatment of water-assisted UV treatment and chlorine

  15. Microbial inactivation kinetics and mechanisms of carbon-doped TiO{sub 2} (C-TiO{sub 2}) under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jaehong [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); School of Natural Resources, University of Nebraska–Lincoln, Lincoln, NE 68583-0817 (United States); Seo, Young-Seok; Oh, Byung-Taek [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); Cho, Min, E-mail: cho317@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of)

    2016-04-05

    Highlights: • Carbon modified TiO{sub 2} photocatalysts prepared by sol–gel methods. • C-TiO{sub 2} was highly effective in the inactivation of L. monocytogenes. • C-TiO{sub 2} was shown to be more synergistic inactivation effect under visible light. • C-TiO{sub 2} be useful in the development of alternative disinfectants for environmental application. - Abstract: In this study, titanium dioxide nanoparticles doped with carbon (C-TiO{sub 2}) were synthesized by means of sol–gel methods, and the synthesis was verified by means of X-ray photoelectron spectroscopy. The nanoparticles’ photocatalytic disinfection activity of Listeria monocytogenes was tested under UV and visible light. The observed inactivation levels for 150 min of visible light exposure with and without UV cutoff filters were 2.10 and 2.45 log, respectively. We also found that traditional reactive oxygen species had insignificant actions on C-TiO{sub 2} photocatalysts and that L. monocytogenes inactivation in the C-TiO{sub 2} system under visible light was induced in large part by the midgap states (h{sub mid}{sup +}) that was produced photochemically from the visible light response. C-TiO{sub 2} was found to accelerate bacterial inactivation (of L. monocytogenes) in the presence of visible light. Our data suggests that the C-TiO{sub 2} may be useful in the development of alternative disinfectants for environmental applications.

  16. Influence of uranyl dibutylphosphate on the UV/VIS spectrophotometric online monitoring of uranium in tributylphosphate/hydrocarbon solvent

    International Nuclear Information System (INIS)

    Creech, E.T.; Rutenberg, A.C.; Smithwick, R.W.; Seals, R.D.

    1984-01-01

    In the uranium recovery process at the Y-12 Plant uranium is recovered from aqueous uranyl solutions by extraction into a solvent consisting of 30% tributylphosphate (TBP) and 70% hydrocarbon solvent. Within this process the uranium is continuously monitored by a UV/VIS absorbance measurement of the uranyl/tributylphosphate complex in the organic phase. The uranium is then further extracted from the organic phase to a final water phase. Dibutylphosphate (DBP), which is a decomposition product of TBP, builds up in the organic solvent. A very strong complex of uranyl/dibutylphosphate is formed which cannot be extracted into the aqueous phase. Prior to this work the uranyl/dibutylphosphate complex absorbance was assumed to be the same as the uranyl tributylphosphate complex. To determine the effect of the presence of uranyl/dibutylphosphate on the continuous UV/VIS monitor required (a) the purification of commercial dibutylphosphate, (b) the synthesis, and (c) the characterization of uranyl/dibutylphosphate

  17. Electiveness of photorepair, influence of dark-repair on shape of dose-response curves, and high-dose decline, in UV-induced colour mutations of Serratia

    International Nuclear Information System (INIS)

    Kaplan, R.W.

    1978-01-01

    Strain CV of Serratia marcescens mutates by UV with high frequency to 3 groups of mutants (w, h, s) differing in colour from the red wild-type. The mutational dose-response curve has a curvature corresponding to about 3 hits. It reaches a peak and declines at high doses. Inactivation curves have a broad shoulder and mostly, but not always, a break to a lesser slope at UV doses near the peak of mutations. Photo reactivation (PR) gives a dose reduction of about 2 for both inactivation and mutation including the break and peak. The dose curve with PR for w-mutations shows 1 hit-, the other types 2-hit curvature leading to a change of mutation spectrum with dose due to PR. The UV-sensitive mutant uvs21 of CV has a survival curve with a small shoulder and a long upward concavity without a break, and the mutation curve is of the one-hit type without a peak and decline. PR gives a dose reduction of 12 for inactivation and of 7.5 for mutation. The 3-hit mutation curve of CV is interpreted by assuming that 2 further hits are required to protect the 1-hit pre-mutations from being abolished by the repair lacking in uvs21. UV induction of SOS repair cannot be responsible for the 3-hit curvature because UVR of phages and induction of prophage are already saturated at rather low doses. As high-dose decline is not observed in uvs21, possibly the non-mutagenic repair lacking from uvs21 interferes with the mutation finishing processes at high doses in the repair-proficient strain CV. However, UV induction of this interference cannot be a one-hit process but requires a very large number of hits. (Auth.)

  18. Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate.

    Science.gov (United States)

    Kim, Seong Hee; Lee, Sang Woo; Lee, Gye Min; Lee, Byung-Tae; Yun, Seong-Taek; Kim, Soon-Oh

    2016-01-01

    A photo-oxidation process using UV-LEDs and TiO2 was studied for removal of cyanide contained in mine wastewater and leachates. This study focused on monitoring of a TiO2-catalyzed LED photo-oxidation process, particularly emphasizing the effects of TiO2 form and light source on the efficiency of cyanide removal. The generation of hydroxyl radicals was also examined during the process to evaluate the mechanism of the photo-catalytic process. The apparent removal efficiency of UV-LEDs was lower than that achieved using a UV-lamp, but cyanide removal in response to irradiation as well as consumption of electrical energy was observed to be higher for UV-LEDs than for UV-lamps. The Degussa P25 TiO2 showed the highest performance of the TiO2 photo-catalysts tested. The experimental results indicate that hydroxyl radicals oxidize cyanide to OCN(-), NO2(-), NO3(-), HCO3(-), and CO3(2-), which have lower toxicity than cyanide. In addition, the overall efficacy of the process appeared to be significantly affected by diverse operational parameters, such as the mixing ratio of anatase and rutile, the type of gas injected, and the number of UV-LEDs used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sarraguca, Mafalda C.; Lopes, Joao A. [Universidade do Porto, REQUIMTE, Servico de Quimica-Fisica, Faculdade de Farmacia, Porto (Portugal); Paulo, Ana; Alves, Madalena M.; Dias, Ana M.A.; Ferreira, Eugenio C. [Universidade do Minho, IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Braga (Portugal)

    2009-10-15

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO{sub 3}{sup -}), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of {proportional_to}25% and correlation coefficients of {proportional_to}0.82 for COD and TSS and 0.87 for N-NO{sub 3}{sup -}. The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification. (orig.)

  20. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C

    2009-10-01

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.

  1. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing

    Science.gov (United States)

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharangeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food an...

  2. Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)

    Science.gov (United States)

    Tyutyundzhiev, N.; Angelov, Ch; Lovchinov, K.; Nitchev, Hr; Petrov, M.; Arsov, T.

    2018-03-01

    Studies of and modeling the impact of natural UV irradiation on the human population are of significant importance for human activity and economics. The sharp increase of environmental problems – extraordinary temperature changes, solar irradiation abnormalities, icy rains – raises the question of developing novel means of assessing and predicting potential UV effects. In this paper, we discuss new UV irradiation modeling based on recent real-time measurements at Moussala Basic Environmental Observatory (BEO) on Moussala Peak (2925 m ASL) in Rila Mountain, Bulgaria, and highlight the development and initial validation of portable embedded devices for UV-A, UV-B monitoring using open-source software architecture, narrow bandpass UV sensors, and the popular Arduino controllers. Despite the high temporal resolution of the VIS and UV irradiation measurements, the results obtained reveal the need of new assumptions in order to minimize the discrepancy with available databases.

  3. UV filters for lighting of plants

    Energy Technology Data Exchange (ETDEWEB)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H.K.; Payer, H.D. [GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH, Oberschleissheim (Germany)

    1994-12-31

    Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The ageing of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.

  4. ADEQUATE UV EXPOSURES FOR HEALTHY LIFE: IN SITU MONITORING AND MODEL CALCULATION OF THE VITAMIN-D-SYNTHETIC CAPACITY OF SUNLIGHT

    Directory of Open Access Journals (Sweden)

    Irina Terenetskaya

    2012-06-01

    Full Text Available Vitamin D which is formed upon UV solar radiation in human skin is essential in many physiological functions. To estimate beneficial vitamin-D-synthetic capacity of sunlight a bio-equivalent UV dosimeter that is based on the same molecular photochemistry from which vitamin D is photosynthesized in human skin has been developed. The examples of an in situ monitoring of the vitamin-D-synthetic capacity of sunlight using an in vitro model of vitamin D synthesis are presented, and various operational principles of the UV biodosimeter are discussed. In addition, reliable algorithm is presented for direct calculation of previtamin D3 accumulation using the photoreaction mathematical model with solar UV spectra as input data. Critical dependence of previtamin D3 accumulation on cloudiness and aerosols is demonstrated.

  5. UV spectrophotometry for monitoring the performance of a yeast-based deoxygenation process to treat ships' ballast water.

    Science.gov (United States)

    Veilleux, Éloïse; de Lafontaine, Yves; Thomas, Olivier

    2016-04-01

    This study assessed the usefulness of UV spectrophotometry for the monitoring of a yeast-based deoxygenation process proposed for ships' ballast water treatment to prevent the transfer of aquatic invasive species. Ten-day laboratory experiments using three treatment concentrations and different water types were conducted and resulted in complete oxygen depletion of treated waters. The treatment performance and quality of treated waters were determined by measuring the UV-visible absorbance spectra of water samples taken over time. Samples were also used for laboratory analysis of water quality properties. The UV absorbance spectra values were strongly correlated (r = 0.96) to yeast cell density in treated waters. The second-order derivative (D (2)) of the spectra varied greatly over time, and the spectrum profiles could be divided into two groups corresponding to the oxygenated and anoxic phases of the treatment. The D (2) value at 215 nm was strongly correlated (r = 0.94) to ammonia levels, which increased over time. The D (2) value at 225 nm was strongly correlated (r > 0.97) to DO concentration. Our results showed that UV spectrophotometry may provide a rapid assessment of the behavior and performance of the yeast bioreactor over time by quantifying (1) the density of yeast cells, (2) the time at which anoxic conditions were reached, and (3) a water quality index of the treated water related to the production of ammonia. We conclude that the rapidity of the technique confers a solid advantage over standard methods used for water quality analysis in laboratory and would permit the direct monitoring of the treatment performance on-board ships.

  6. Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes.

    Science.gov (United States)

    Rodríguez-Chueca, J; García-Cañibano, C; Lepistö, R-J; Encinas, Á; Pellinen, J; Marugán, J

    2018-04-21

    This study explores the enhancement of UV-C tertiary treatment by sulfate radical based Advanced Oxidation Processes (SR-AOPs), including photolytic activation of peroxymonosulfate (PMS) and persulfate (PS) and their photocatalytic activation using Fe(II). Their efficiency was assessed both for the inactivation of microorganisms and the removal or micropollutants (MPs) in real wastewater treatment plant effluents. Under the studied experimental range (UV-C dose 5.7-57 J/L; UV-C contact time 3 to 28 s), the photolysis of PMS and PS (0.01 mM) increased up to 25% the bacterial removal regarding to UV-C system. The photolytic activation of PMS led to the total inactivation of bacteria (≈ 5.70 log) with the highest UV-C dose (57 J/L). However, these conditions were insufficient to remove the MPs, being required oxidant's dosages of 5 mM to remove above 90% of carbamazepine, diclofenac, atenolol and triclosan. The best efficiencies were achieved by the combination of PMS or PS with Fe(II), leading to the total removal of the MPs using a low UV-C dosage (19 J/L), UV-C contact time (9 s) and reagent's dosages (0.5 mM). Finally, high mineralization was reached (>50%) with photocatalytic activation of PMS and PS even with low reagent's dosages. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Physicochemical stability and inactivation of human and simian rotaviruses

    International Nuclear Information System (INIS)

    Meng, Z.D.; Birch, C.; Heath, R.; Gust, I.

    1987-01-01

    The effects of various physical and chemical treatments on the stability of a human serotype 1 rotavirus and simian agent 11 (SA11) were compared by using a fluorescence focus assay. The infectivity of both strains was retained after storage at room temperature for 14 days, 4 degree C for 22 days, and -20 degree C for 32 days; lyophilization; and treatment at pH 3 to 11. Both viruses were inactivated at pH 12, as was the human virus at pH 2, although this pH resulted in only partial inactivation of SA11. The human virus also appeared to be more sensitive than SA11 to the action of ether and chloroform. The infectivity of both viruses was lost after UV irradiation for 15 min and after treatment with 8% formaldehyde for 5 min, 70% (vol/vol) ethanol for 30 min, and 2% lysol, 2% phenol, and 1% H 2 O 2 for 1 h each

  8. Physicochemical stability and inactivation of human and simian rotaviruses

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Z.D.; Birch, C.; Heath, R.; Gust, I.

    1987-04-01

    The effects of various physical and chemical treatments on the stability of a human serotype 1 rotavirus and simian agent 11 (SA11) were compared by using a fluorescence focus assay. The infectivity of both strains was retained after storage at room temperature for 14 days, 4 degree C for 22 days, and -20 degree C for 32 days; lyophilization; and treatment at pH 3 to 11. Both viruses were inactivated at pH 12, as was the human virus at pH 2, although this pH resulted in only partial inactivation of SA11. The human virus also appeared to be more sensitive than SA11 to the action of ether and chloroform. The infectivity of both viruses was lost after UV irradiation for 15 min and after treatment with 8% formaldehyde for 5 min, 70% (vol/vol) ethanol for 30 min, and 2% lysol, 2% phenol, and 1% H/sub 2/O/sub 2/ for 1 h each.

  9. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems - presentation

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  10. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    Science.gov (United States)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  11. Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent.

    Science.gov (United States)

    Weng, ShihChi; Dunkin, Nathan; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G

    2018-09-01

    Peracetic acid (PAA) is a strong oxidant/bactericide that has been applied in various industries (e.g., food processing, pharmaceuticals, medical device sterilization, etc.) as a disinfectant. There is increasing interest in using PAA for wastewater disinfection because it does not form halogenated byproducts, and no post-treatment quenching is required. Previous studies have demonstrated good efficiency in controlling bacteria in wastewater, but limited information is available for viruses, especially those hosted by mammals (e.g., norovirus). Therefore, a study on the infectivity reduction of murine norovirus (MNV) was undertaken to evaluate the disinfection efficacy of PAA or UV alone and in combination with UV irradiation in undisinfected secondary effluent from a municipal wastewater reclamation facility (MWW) and phosphate buffer solution (PBS) at pH 7. Experiments employing MS2 bacteriophage were also performed in parallel for comparison purposes. MS2 infectivity reduction was found to be lower than MNV infectivity reduction for each condition studied - PAA, PAA + UV, and UV disinfection. These data suggest that MS2 may not be an appropriate surrogate to accurately predict the reduction of MNV infectivity. UV irradiation, in a dose range of 5-250 mJ/cm 2 , provided linear log inactivation (-log (N/N 0 )) with a regression slope (cm 2 mJ -1 ) of 0.031-0.034 and 0.165-0.202 for MS2 and MNV, respectively. UV irradiation provided similar inactivation for MS2 and MNV in both suspensions (PBS or MWW). Low infectivity reduction of MS2 was observed when PAA was used alone at a practical dose of 1.5 mg/L and below. A greater reduction of both MNV and MS2 was observed in PAA disinfection experiments using PBS as the microbial suspension medium, than in secondary effluent. Similar results were observed in PAA + UV experiments, in which greater synergistic effects were found in PBS than in MWW. Results of OH radical formation experiments suggest the presence of

  12. Role of oxygen intermediates in UV-induced epidermal cell injury

    International Nuclear Information System (INIS)

    Danno, K.; Horio, T.; Takigawa, M.; Imamura, S.

    1984-01-01

    To investigate the role of oxygen intermediates (OIs) in sunburn cell (SC) formation and development of UV-inflammation in vivo, groups of mice were injected intravenously with OI scavengers, including bovine blood superoxide dismutase (SOD), bovine liver catalase, L-histidine, D-mannitol, and saline (controls) before and/or after UV irradiation with sunlamp tubes (mainly 280-320 nm; 300 mJ/cm2; UVR). Ear thickness was measured before and 6 and 24 h after UVR. Ears were removed 24 h after UVR and the number of SCs per unit length of ear epidermis was counted using hematoxylineosin stained sections. The number of SCs was significantly decreased (p less than 0.02) by a single injection of SOD (10-30 units/g body weight) given either just before or immediately after (less than 15 min) UVR, while SC formation was no longer suppressed by injections given more than 2 h before or after UVR. Four repeated injections of SOD (10 units/g) also reduced SC counts but did not significantly alter ear-swelling responses (ESR). Neither SC counts nor ESR were remarkably suppressed by 4 injections of any of the other active OI scavengers, inactivated SOD, or bovine serum albumin. A single injection of diethyldithiocarbamate, an SOD inactivator, significantly augmented SC formation (p less than 0.05), but did not change ESR. These findings suggest that OIs generated by UVR participate in SC formation but are not apparently involved in UV-edema

  13. UV induction of coliphage 186: Prophage induction as an SOS function

    Energy Technology Data Exchange (ETDEWEB)

    Lamont, I.; Brumby, A.M.; Egan, J.B.

    1989-07-01

    Our results show that UV induction of the 186 prophage depends upon the phage function Tum, with the mutant phenotype of turbid plaques on mitomycin plates and the expression of which is controlled by the host LexA protein. Tum function, encoded near the right-hand end of the coliphage 186 chromosome, is under the control of promoter p95. This promoter is overlapped by a sequence closely related to the consensus sequence of the LexA-binding site. It is proposed that inactivation of LexA after UV irradiation (or by genetic means) leads to prophage induction by permitting expression of Tum which, by unknown means, induces prophage. This mechanism is basically different from that seen with the UV-inducible lambdoid coliphages, which are not regulated by LexA.

  14. Oxygen-independent inactivation of Haemophilus influenzae transforming DNA by monochromatic radiation: action spectrum, effect of histidine and repair

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Juarez, E; Setlow, J K; Swenson, P A; Peak, M J

    1976-01-01

    The action spectrum for the oxygen-independent inactivation of native transforming DNA from Haemophilus influenzae with near-uv radiation revealed a shoulder beginning at 334 and extending to 460 nm. The presence of 0.2 M histidine during irradiation produced a small increase in inactivation at 254, 290 and 313 nm, a large increase at 334 nm and a decrease in inactivation at 365, 405, and 460 nm. Photoreactivation did not reverse the DNA damage produced at pH 7.0 at 334, 365, 405 and 460 nm, but did reactivate the DNA after irradiation at 254, 290 and 313 nm. The inactivation of DNA irradiated at 254, 290 and 313 nm was considerably greater when the transforming ability was assayed in an excision-defective mutant compared with the wild type, although DNA irradiated at 334, 365, 405 and 460 nm showed smaller differences. These results suggest that the oxygen-independent inactivation of H. influenzae DNA at pH 7 by irradiation at 334, 365, 405 and 460 nm is caused by lesions other than pyrimidine dimers.

  15. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    Science.gov (United States)

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  16. Eleven years of monitoring the Seyfert 1 Mrk 335 with Swift: Characterizing the X-ray and UV/optical variability

    Science.gov (United States)

    Gallo, L. C.; Blue, D. M.; Grupe, D.; Komossa, S.; Wilkins, D. R.

    2018-05-01

    The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10 - 100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (˜1800 Å in the source frame) structure function appears to have two breaks and two different slopes between 10 - 160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.

  17. UV-C Adaptation of Shigella: Morphological, Outer Membrane Proteins, Secreted Proteins, and Lipopolysaccharides Effects.

    Science.gov (United States)

    Chourabi, Kalthoum; Campoy, Susana; Rodriguez, Jesus A; Kloula, Salma; Landoulsi, Ahmed; Chatti, Abdelwaheb

    2017-11-01

    Water UV disinfection remains extremely important, particularly in developing countries where drinking and reclaimed crop irrigation water may spread devastating infectious diseases. Enteric bacterial pathogens, among which Shigella, are possible contaminants of drinking and bathing water and foods. To study the effect of UV light on Shigella, four strains were exposed to different doses in a laboratory-made irradiation device, given that the ultraviolet radiation degree of inactivation is directly related to the UV dose applied to water. Our results showed that the UV-C rays are effective against all the tested Shigella strains. However, UV-C doses appeared as determinant factors for Shigella eradication. On the other hand, Shigella-survived strains changed their outer membrane protein profiles, secreted proteins, and lipopolysaccharides. Also, as shown by electron microscopy transmission, morphological alterations were manifested by an internal cytoplasm disorganized and membrane envelope breaks. Taken together, the focus of interest of our study is to know the adaptive mechanism of UV-C resistance of Shigella strains.

  18. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes

    Science.gov (United States)

    Hönes, Katharina; Stangl, Felix; Sift, Michael; Hessling, Martin

    2015-07-01

    The Ulm University of Applied Sciences is investigating a technique using visible optical radiation (405 nm and 460 nm) to inactivate health-hazardous bacteria in water. A conceivable application could be point-of-use disinfection implementations in developing countries for safe drinking water supply. Another possible application field could be to provide sterile water in medical institutions like hospitals or dental surgeries where contaminated pipework or long-term disuse often results in higher germ concentrations. Optical radiation for disinfection is presently mostly used in UV wavelength ranges but the possibility of bacterial inactivation with visible light was so far generally disregarded. One of the advantages of visible light is, that instead of mercury arc lamps, light emitting diodes could be used, which are commercially available and therefore cost-efficient concerning the visible light spectrum. Furthermore they inherit a considerable longer life span than UV-C LEDs and are non-hazardous in contrast to mercury arc lamps. Above all there are specific germs, like Bacillus subtilis, which show an inactivation resistance to UV-C wavelengths. Due to the totally different deactivation mechanism even higher disinfection rates are reached, compared to Escherichia coli as a standard laboratory germ. By 460 nm a reduction of three log-levels appeared with Bacillus subtilis and a half log-level with Escherichia coli both at a dose of about 300 J/cm². By the more efficient wavelength of 405 nm four and a half log-levels are reached with Bacillus subtilis and one and a half log-level with Escherichia coli also both at a dose of about 300 J/cm². In addition the employed optical setup, which delivered a homogeneous illumination and skirts the need of a stirring technique to compensate irregularities, was an important improvement compared to previous published setups. Evaluated by optical simulation in ZEMAX® the designed optical element provided proven

  19. Use of UV-vis-NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform.

    Science.gov (United States)

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock

    2014-08-01

    Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Efecto de la exposición a la luz ultravioleta uv-c en la viabilidad de especies de Eschericha coli y Salmonella typhimurium

    OpenAIRE

    Oviedo, Dumas; Rojas, Jesús María; Borda, Ricardo Alberto; Durango, Mónica María

    2013-01-01

    Introduction. The germicidal effect UV-C light has is regarded as an effective tool to inactivate and eliminate harmful contaminating agents, such as Escherichia coli and Salmonella typhimurium. Objective. evaluating the effectiveness of UV-C light for reducing Escherichia coli and Salmonella typhimorium populations from cultures that had the microorganisms, combining factors like concentration, time and distance. Methodology. A UV-C lamp, with a 254 nm and 8 ...

  1. Complementing xeroderma pigmentosum fibroblasts restore biological activity to UV-damaged DNA

    International Nuclear Information System (INIS)

    Day, R.S. III; Kraemer, K.H.; Robbins, J.H.

    1975-01-01

    UV survival curves of adenovirus 2 using fused complementing xeroderma pigmentosum fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusions involved strains in the same complementing group. Extrapolation to zero dose indicated that three percent of the viral plaque-forming units had infected cells capable of normal repair; this suggested that three percent of the cells were complementing heterokaryons. Thus, heterokaryons formed from xeroderma pigmentosum fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells

  2. Treatment of blood with a pathogen reduction technology using UV light and riboflavin inactivates Ebola virus in vitro

    Science.gov (United States)

    Cap, Andrew P.; Pidcoke, Heather F.; Keil, Shawn D.; Staples, Hilary M.; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A.; Frazer-Abel, Ashley; Taylor, Audra L.; Gonzales, Richard; Patterson, Jean L.; Goodrich, Raymond P.

    2018-01-01

    BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called ‘convalescent plasma,’ is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV + RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV + RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of ebolavirus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV + RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1–3 were: 4.21 log10 GFP units/mL, 4.96 log10 infectious units per mL, and 4.23 log10 plaque forming units per mL (PFU/mL). Conditions tested in the first three experiments included: 1. EBOV-GFP + UV + RB; 2. EBOV-GFP + RB only; 3 EBOV-GFP + UV only; 4. EBOV-GFP without RB or UV; 5. Virus-free control + UV only; and 6. Virus-free control without RB or UV. RESULTS UV + RB reduced EBOV titers to non-detectable levels in both non-human primate serum (≥ 2.8 to 3.2 log reduction) and human whole blood (≥ 3.0 log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV + RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV + RB can improve convalescent blood product safety is indicated. PMID:27001363

  3. Photoreactivation of RNA in UV-irradiated insect eggs (Smittia SP., Chironomidae, Diptera)

    International Nuclear Information System (INIS)

    Jaeckle, H.; Kalthoff, K.

    1978-01-01

    Irradiation of Smittia eggs with UV during intravitelline cleavage causes the formation of pyrimidine dimers in the (largely ribosomal) RNA of the eggs. The yield of dimers is wavelength-dependent in a way that strongly suggests the involvement of photosensitizing egg components. Illumination of UV-irradiated eggs with light (380 or 400 nm) causes both photoreactivation of the eggs and monomerization of the pyrimidine dimers in their RNA. The photoreactivable sector of the biological damage is correlated with the amount of pyrimidine dimers present in the RNA after inactivation of the eggs with UV of different wavelengths. The data are regarded as the first direct evidence that the photoreactivation of a eukaryotic organism is correlated with the light-dependent (and apparently enzymatic) monomerization of pyrimidine dimers in RNA. (author)

  4. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Beerendonk, E.F.; Medema, Gerriet Jan

    2006-01-01

    UV disinfection technology is of growing interest in the water industry since it was demonstrated that UV radiation is very effective against (oo)cysts of Cryptosporidium and Giardia, two pathogenic micro-organisms of major importance for the safety of drinking water. Quantitative Microbial Risk

  5. Evaluation of an Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  6. Action spectra for inactivation of normal and xeroderma pigmentosum human skin fibroblasts by ultraviolet radiations

    International Nuclear Information System (INIS)

    Keyse, S.M.; Moss, S.H.; Davies, D.J.G.

    1983-01-01

    Action spectra for UV-induced lethality as measured by colony forming ability were determined both for a normal human skin fibroblast strain (1BR) and for an excision deficient xeroderma pigmentosum strain (XP4LO) assigned to complementation group A using 7 monochromatic wavelengths in the range 254-365 nm. The relative sensitivity of the XP strain compared to the normal skin fibroblasts shows a marked decrease at wavelengths longer than 313 nm, changing from a ratio of about 20 at the shorter wavelengths to just greater than 1.0 at the longer wavelengths. The action spectra thus indicate that the influence on cell inactivation of the DNA repair defect associated with XP cells is decreased and almost reaches zero at longer UV wavelengths. This would occur, for example, if the importance of pyrimidine dimers as the lethal lesion decreased with increasing wavelength. These results are consistent with pyrimidine dimers induced in DNA being the major lethal lesion in both cell strains over the wavelength range 254-313 nm. However, it is indicated that different mechanisms of inactivation operate at wavelengths longer than 313 nm. (author)

  7. Mirasol PRT system inactivation efficacy evaluated in platelet concentrates by bacteria-contamination model

    Directory of Open Access Journals (Sweden)

    Jocić Miodrag

    2011-01-01

    Full Text Available Background/Aim. Bacterial contamination of blood components, primarily platelet concentrates (PCs, has been identified as one of the most frequent infectious complications in transfusion practice. PC units have a high risk for bacterial growth/multiplication due to their storage at ambient temperature (20 ± 2°C. Consequences of blood contamination could be effectively prevented or reduced by pathogen inactivation systems. The aim of this study was to determine the Mirasol pathogen reduction technology (PRT system efficacy in PCs using an artificial bacteria-contamination model. Methods. According to the ABO blood groups, PC units (n = 216 were pooled into 54 pools (PC-Ps. PC-Ps were divided into three equal groups, with 18 units in each, designed for an artificial bacteria-contamination. Briefly, PC-Ps were contaminated by Staphylococcus epidermidis, Staphylococcus aureus or Escherichia coli in concentrations 102 to 107 colony forming units (CFU per unit. Afterward, PC-Ps were underwent to inactivation by Mirasol PRT system, using UV (l = 265-370 nm activated riboflavin (RB. All PC-Ps were assayed by BacT/Alert Microbial Detection System for CFU quantification before and after the Mirasol treatment. Samples from non-inactivated PC-P units were tested after preparation and immediately following bacterial contamination. Samples from Mirasol treated units were quantified for CFUs one hour, 3 days and 5 days after inactivation. Results. A complete inactivation of all bacteria species was obtained at CFU concentrations of 102 and 103 per PC-P unit through storage/ investigation period. The most effective inactivation (105 CFU per PC-P unit was obtained in Escherichia coli setting. Contrary, inactivation of all the three tested bacteria species was unworkable in concentrations of ≥ 106 CFU per PC-P unit. Conclusion. Efficient inactivation of investigated bacteria types with a significant CFU depletion in PC-P units was obtained - 3 Log for all

  8. Hydroxylamine technique for in vitro prevention of penicillin inactivation of tobramycin.

    Science.gov (United States)

    Falkowski, A J; Creger, R J

    1984-01-01

    Hydroxylamine was evaluated and found to be a highly effective agent for the in vitro prevention of penicillin inactivation of tobramycin. This inactivation reaction resulted in an underestimation of tobramycin concentrations and was dependent on time, temperature, amount and type of penicillin, and amount of tobramycin. Plasma samples containing tobramycin and three clinically relevant concentrations of ticarcillin, carbenicillin, azlocillin, or piperacillin were incubated with and without hydroxylamine, and tobramycin concentrations were monitored at 0, 12, 24, 48, and 72 h. The inactivation reaction was found to be completely inhibited by hydroxylamine (1 mg/ml) compared with a 27 to 50% loss of measured tobramycin concentration in the unprotected tobramycin-penicillin samples. Hydroxylamine did not interfere with the Emit enzyme immunoassay (Syva Co.) at either high or low tobramycin concentrations. Hydroxylamine was effective in inhibiting the tobramycin inactivation at both room and refrigerator temperatures and was 100% effective in protecting tobramycin on a 1:1 molar basis. PMID:6393865

  9. Fabrication of magnetic Fe@ZnO0.6S0.4 nanocomposite for visible-light-driven photocatalytic inactivation of Escherichia coli

    Science.gov (United States)

    Peng, Ziling; Wu, Dan; Wang, Wei; Tan, Fatang; Ng, Tsz Wai; Chen, Jianguo; Qiao, Xueliang; Wong, Po Keung

    2017-02-01

    Bacterial inactivation by magnetic photocatalysts has now received growing interests due to the easy separation for recycle and reuse of photocatalysts. In this study, magnetic Fe@ZnO0.6S0.4 photocatalyst was prepared by a facile two-step precipitation method. Multiple techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffused reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM) were employed to characterize the structure, morphology and physicochemical properties of the photocatalyst. The as-obtained Fe@ZnO0.6S0.4 possessing magnetic property was easily collected from the reaction system by a magnet. Under white light-emitting-diode (LED) lamp irradiation, Fe@ZnO0.6S0.4 nanocomposite could completely inactivate 7-log of Escherichia coli K-12 within 5 h. More importantly, almost no decrease of photocatalytic efficiency in bacterial inactivation was observed even after five consecutive cycles, demonstrating Fe@ZnO0.6S0.4 exhibited good stability for reuse. The low released rate of Fe2+/Fe3+ and Zn2+ from Fe@ZnO0.6S0.4 composite further indicated the photocatalyst showed low cytotoxicity to bacterium and high stability under LED lamp irradiation. Facile preparation, high photocatalytic efficiency, good stability and reusability, and magnetic recovery property endow Fe@ZnO0.6S0.4 nanocomposite to be a promising photocatalytic material for bacterial inactivation.

  10. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    Science.gov (United States)

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype. Copyright 2004 Wiley-Liss, Inc.

  11. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    Science.gov (United States)

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a pr...

  12. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Science.gov (United States)

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  13. Inactivation of viruses in bubbling processes utilized for personal bioaerosol monitoring.

    Science.gov (United States)

    Agranovski, I E; Safatov, A S; Borodulin, A I; Pyankov, O V; Petrishchenko, V A; Sergeev, A N; Agafonov, A P; Ignatiev, G M; Sergeev, A A; Agranovski, V

    2004-12-01

    A new personal bioaerosol sampler has recently been developed and evaluated for sampling of viable airborne bacteria and fungi under controlled laboratory conditions and in the field. The operational principle of the device is based on the passage of air through porous medium immersed in liquid. This process leads to the formation of bubbles within the filter as the carrier gas passes through and thus provides effective mechanisms for aerosol removal. As demonstrated in previous studies, the culturability of sampled bacterium and fungi remained high for the entire 8-h sampling period. The present study is the first step of the evaluation of the new sampler for monitoring of viable airborne viruses. It focuses on the investigation of the inactivation rate of viruses in the bubbling process during 4 h of continuous operation. Four microbes were used in this study, influenza, measles, mumps, and vaccinia viruses. It was found that the use of distilled water as the collection fluid was associated with a relatively high decay rate. A significant improvement was achieved by utilizing virus maintenance fluid prepared by using Hank's solution with appropriate additives. The survival rates of the influenza, measles, and mumps viruses were increased by 1.4 log, 0.83 log, and 0.82 log, respectively, after the first hour of operation compared to bubbling through the sterile water. The same trend was observed throughout the entire 4-h experiment. There was no significant difference observed only for the robust vaccinia virus.

  14. UV-observations with a Brewer spectrophotometer at Hohenpeissenberg

    Science.gov (United States)

    Vandersee, Winfried; Koehler, U.

    1994-01-01

    Regular spectral UV-B measurements with a Brewer spectrophotometer have been performed at Hohenpeissenberg since 1990. Intercomparison of the Brewer instrument with other UV-B monitoring devices have shown agreement to within plus or minus 10 percent. Comparisons of UV-B spectra measured on fair weather days reveal the well known increasing influence of ozone on UV-B irradiance with decreasing wavelengths. The integral amplification factor the erythemal irradiance reaches values up to 2.8, which can be diminished by increasing turbidity. The influence of cirrus cloud on the UV-B is also shown.

  15. Microbial Safety and Shelf Life of UV-C Treated Freshly Squeezed White Grape Juice.

    Science.gov (United States)

    Unluturk, Sevcan; Atilgan, Mehmet R

    2015-08-01

    The effects of UV-C irradiation on the inactivation of Escherichia coli K-12 (ATCC 25253), a surrogate of E. coli O157:H7, and on the shelf life of freshly squeezed turbid white grape juice (FSWGJ) were investigated. FSWGJ samples were processed at 0.90 mL/s for 32 min by circulating 8 times in an annular flow UV system. The UV exposure time was 244 s per cycle. The population of E. coli K-12 was reduced by 5.34 log cycles after exposure to a total UV dosage of 9.92 J/cm(2) (1.24 J/cm(2) per cycle) at 0.90 mL/s flow rate. The microbial shelf life of UV-C treated FSWGJ was extended up to 14 d at 4 °C. UV exposure was not found to alter pH, total soluble solid, and titratable acidity of juice. There was a significant effect (P shelf life of FSWGJ was doubled after UV-C treatment, whereas the quality of juice was adversely affected similarly observed in the control samples. © 2015 Institute of Food Technologists®

  16. Review: Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages

    Directory of Open Access Journals (Sweden)

    Daniela Marta Guglielmotti

    2012-01-01

    Full Text Available Bacteriophages can cause great economic losses due to fermentation failure in dairy plants. Hence, physical and chemical treatments of raw material and/or equipment are mandatory to maintain phage levels as low as possible. Regarding thermal treatments used to kill pathogenic bacteria or achieve longer shelf-life of dairy products, neither low temperature long time (LTLT nor high temperature short time (HTST pasteurization were able to inactivate most lactic acid bacteria (LAB phages. Even though most phages did not survive 90ºC for 2 min, there were some that resisted 90ºC for more than 15 min (conditions suggested by the International Dairy Federation, IDF, for complete phage destruction. Among biocides tested, ethanol showed variable effectiveness in phage inactivation, since only phages infecting dairy cocci and Lactobacillus helveticus were reasonably inactivated by this alcohol, whereas isopropanol was in all cases highly ineffective. In turn, peracetic acid has consistently proved to be very fast and efficient to inactivate dairy phages, whereas efficiency of sodium hypochlorite was variable, even among different phages infecting the same LAB species. Both alkaline chloride foam and ethoxylated nonylphenol with phosphoric acid were remarkably efficient, trait probably related to their highly alkaline or acidic pH values in solution, respectively. Photocatalysis using UV light and TiO2 has been recently reported as a feasible option to industrially inactivate phages infecting diverse LAB species. Processes involving high pressure were barely used for phage inactivation, but until now most studied phages revealed high resistance to these treatments. To conclude, and given the great phage diversity found on dairies, it is always advisable to combine different anti-phage treatments (biocides, heat, high pressure, photocatalysis, rather than using them separately at extreme conditions.

  17. Inactivation of acetylcholinesterase by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride.

    Science.gov (United States)

    Zang, Lun-Yi; Misra, Hara P

    2003-12-01

    The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.

  18. Five years of solar UV-radiation monitoring in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Weine

    1996-10-01

    A network of five stations measuring the solar UV-radiation has been operated for about five years. Data are presented as plotted time-series of monthly and yearly values for the sites. A general climatology can be deduced from these data. Daily and hourly maximum values are shown for each month as indicators of the potential extreme exposure levels. The large annual variation at high latitudes is easily seen in the data set. This illustrates the importance of the solar elevation on the level of the UV-irradiance. Influence of cloud variation and of larger changes in ozone is also detectable. A few examples of the daily variation also show the strong solar elevation dependence of the UV-irradiance. The quantity and unit of the UV-radiation in this presentation is CIE-weighted irradiance expressed as MED (minimum erythermal dose), where one MED equals 210 Jm{sup -2}. The values have been recomputed to refer to the international intercomparison of broad-band meters in Helsinki in 1995. In the following named WMO-STUK 1995 scale. As will be seen there are many sources of error and detailed studies are prevented by the large uncertainty connected with these data. Due to the short period of the record and the low accuracy no attempt to study trends is done. 6 refs, 27 figs, 4 tabs

  19. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    Science.gov (United States)

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  20. Attempts to use pulsed light as an emerging technology for inactivation of mould naturally present on rye

    Directory of Open Access Journals (Sweden)

    NICOLETA ARON MAFTEI

    2011-12-01

    Full Text Available Pulsed light technology was used to inactivate moulds, naturally present on rye. The experiments were performed on samples containing 3.5·104 CFU/g and 4.3·103 CFU/g. Treatments of different duration (5, 10, 15, 20, 30, and 40 pulses at intensity of 0.4 J·cm-2 per pulse were applied and mould inactivation was evaluated. Besides confirming the utilisation of pulsed light as decontamination method for cereals, this work contributes with new information regarding the effects of the spectral range of pulsed light, proving that the whole UV range of the spectrum accounts for the lethal effect against moulds. This research supports pulsed light as emerging technology in food preservation.

  1. Studies on the ability of irradiated Escherichia coli bacteria to reactivate X-ray inactivated bacteriophages

    International Nuclear Information System (INIS)

    Kiessling, W.

    1980-01-01

    The Weigle Reactivation phenomenon ie. the observation that low UV-flow irradiated bacteria increase the survival rate of UV-irradiated phages has not, to date, been studied with other forms of irradiation as inducers. In the studies reported here lambda-phages and E. coli cells in LB-medium were treated with X-rays. Host cells treated with an X-ray dose from 85 to 765 Gy showed a reactivation factor of 1.3 to 3.0 for X-ray inactivated phages. The capacity of the bacteria for phage reproduction did not appear to be markedly diminished. A reactivation factor of 1.3 only was found for X-irradiated phages when host cells were treated with UV-irradiation. The low Weigle reactivation of X-ray treated phages compared to UV-treatment was found to be due to a diminished absorption capacity, as demonstrated by the determination of free non-absorbed phages by filtration of radioactive-labelled phage-host-complexes. Reactivation studies on X-irradiated phages with various host bacteria of different radiation sensitivities confirm this finding. (orig.) [de

  2. An action spectrum for UV-induced attachment of V79 Chinese hamster cells to a substratum

    Energy Technology Data Exchange (ETDEWEB)

    Baanrud, H; Berg, K; Platou, T; Moan, J [Inst. for Cancer Research, Oslo (Norway). Dept. of Biophysics

    1993-10-01

    When cells growing in monolayers are exposed to ultraviolet radiation (UV), their binding to the substratum is increased in strength. An action spectrum for such UV-induced binding was determined, using the time needed for trypsin-EDTA to detach the cells as a measure of binding strength. This action spectrum was significantly different from that for cell inactivation, also determined. At the shortest wavelengths (297/302, 313 nm) lethal fluences were needed to induce measurable binding while at the longest wavelengths (365, 405 nm) completely nonlethal fluences induced strong and persistent binding. (author).

  3. Protection by DABCO against inactivation of transforming DNA by near-ultraviolet light: action spectra and implications for involvement of singlet oxygen

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.; Foote, C.S.

    1981-01-01

    Diazobicyclo (2.2.2) octane (DABCO) protects the genetic activity of purified transforming Bacillus subtilis DNA against inactivation by near-, but not far-, UV light. The maximum dose-modifying factor is 0.4, at 0.1 M DABCO. Maximal protection is at about 350 nm and no protection occurs below 313 nm. The spectrum for protection is similar to that described for 2-aminoethylisothiouronium bromide hydrobromide. The relevance of these observations with regard to the role of singlet oxygen in near-UV effects is discussed. (author)

  4. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    International Nuclear Information System (INIS)

    Chevremont, A.-C.; Farnet, A.-M.; Coulomb, B.; Boudenne, J.-L.

    2012-01-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO 2 . - Highlights: ► We test UV-LEDs as an urban wastewater tertiary treatment. ► UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. ► Coupled wavelengths have the most efficient bactericidal effect. ► Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  5. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    Science.gov (United States)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such

  6. Inactivation of the lactose permease of Escherichia coli by monochromatic ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Robb, F T; Peak, M J [Rhodes Univ., Grahamstown (South Africa)

    1979-09-01

    The lactose permease of E. coli was inactivated exponetially by seven wavelengths of monochromatic UV light. An action spectrum revealed that the shorter wavelengths (243, 290 and 313 nm) were much more efficient than longer wavelengths. Inactivation at 290 nm was most efficient and was not due to generalized membrane damage. The rate of counterflux of intracellular ..beta..-galactoside in response to externally added ..beta..-galactoside was slowed by 290 nm irradiation, indicating destruction of the facilitated diffusion mechanism. The induction of ..beta..-galactosidase and ..beta..-galactoside permease was co-ordinate both with and without pre-irradiation by 290 nm light. The ..beta.. galactosidase was approximately 26-fold more resistant to 290 nm than the permease. These results are discussed in terms of a greater sensitivity of membrane proteins to 290 nm light, which may be due to the role of aromatic amino acids in conferring stability to the permease in the membrane.

  7. Cost Effective Process Monitoring using UV-VIS-NIR Spectroscopy

    International Nuclear Information System (INIS)

    Cipiti, B.; McDaniel, M.; Bryan, S.; Pratt, S.

    2015-01-01

    UV-VIS-NIR Spectroscopy is a simple and inexpensive measurement technology which has been proposed for process monitoring applications at reprocessing plants. The purpose of this work was to examine if spectroscopy could replace more costly analytical measurements to reduce the safeguards burden to the operator or inspector. Recognizing that the higher measurement uncertainty of spectroscopy makes it unsuited for the accountability tanks, the approach instead was to focus on replacing mass spectrometry for random samples that are taken in a plant. The Interim Inventory Verification and Short Inventory Verification (IIV/SIV) at the Rokkasho Reprocessing Plant utilize random sampling of internal process vessels and laboratory measurement using Isotope Dilution Mass Spectrometry (IDMS) to account for plutonium on a timely basis. These measurements are time-consuming, and the low uncertainty may not always be required. For this work, modelling was used to examine if spectroscopy could be used without adversely affecting the safeguards of the plant. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, was utilized to examine the replacement of IDMS measurements with spectroscopy. Modeling results showed that complete replacement of IDMS with spectroscopy lowered the detection probability for diversion by an unacceptable amount. However, partial replacement (only for samples from vessels with low plutonium content) did not adversely affect the detection probability. This partial replacement covers roughly half of the twenty or so sampling points used for the IIV/SIVA cost-benefit analysis was completed to determine the cost savings that this approach can provide based on lower equipment costs, maintenance, and reduction of analysts' time. This work envisions working with the existing sampling system and performing the spectroscopic measurements in the analytical laboratory, but future work could examine incorporating

  8. Kinetic studies of acid inactivation of alpha-amylase from Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    The stability of alpha-amylase from Aspergillus oryzae has been studied at different pH. The enzyme is extremely stable at neutral pH (pH 5-8), whereas outside this pH-range a substantial loss of activity is observed. The acid-inactivation of alpha-amylase from A. oryzae was monitored on...... regains part of its activity, and the reactivation process also follows first-order kinetics. The irreversible loss of activity is found not to result from a protease contamination of the protein samples. A proposed model, where irreversibly inactivated a-amylase is formed both directly from the active...

  9. Inactivation Data.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a spreadsheet that contains results of inactivation experiments that were conducted to to determine the effectiveness of chlorine in inactivating B....

  10. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chevremont, A.-C., E-mail: anne-celine.chevremont@imbe.fr [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France); Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Farnet, A.-M. [Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Coulomb, B.; Boudenne, J.-L. [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France)

    2012-06-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO{sub 2}. - Highlights: Black-Right-Pointing-Pointer We test UV-LEDs as an urban wastewater tertiary treatment. Black-Right-Pointing-Pointer UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. Black-Right-Pointing-Pointer Coupled wavelengths have the most efficient bactericidal effect. Black-Right-Pointing-Pointer Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  11. Influence of local UV-micro-irradiation on nuclear apparatus and cytoplasm of a ciliate Paramecium caudatum

    International Nuclear Information System (INIS)

    Fokin, S.I.; Osipov, D.V.

    1975-01-01

    The paper describes the first attempt to use ultra-violet microirradiation (u.v. injection) in the study of nuclear dualism of infusoria. The u.v. injection affords a means of selectively inactivating individual components of the nuclear apparatus of living infusoria and observing the consequences of an operation in the remote progeny of an irradiated cell. The procedures for applying the u.v. injection have been developed for the infusoria Paramecium caudatum. A rotating compressor of novel design was used to immobilize the infusoria at the time of operation. The effective u.v. doses were chosen and comparative sensitivities of the cytoplasm, the macronucleus, the micronucleus and the symbiotic bacteria of the micronucleus - omega particles - were determined. Healthy infected cells were irradiated in different variants. Depending on dose, the u.v. injection can result in a reduction in the cloning efficiency, the loss of omega particles from the micronucleus and the appearance of cells with 2-3 micronuclei and, possibly, amicronuclear cells. Visible light repairs the damage caused by the u.v. injection. (photoreactivation). (author)

  12. Influence of local uv-micro-irradiation on nuclear apparatus and cytoplasm of a ciliate Paramecium caudatum

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, S I; Osipov, D V [Leningradskij Gosudarstvennyj Univ. (USSR). Biologicheskij Nauchno-Issledovatel' skij Inst.

    1975-09-01

    The paper describes the first attempt to use ultraviolet microirradiation (uv injection) in the study of nuclear dualism of infusoria. The uv injection affords a means of selectively inactivating individual components of the nuclear apparatus of living infusoria and observing the consequences of an operation in the remote progeny of an irradiated cell. The procedures for applying the uv injection have been developed for the infusoria Paramecium caudatum. A rotating compressor of novel design was used to immobilize the infusoria at the time of operation. The effective uv doses were chosen and comparative sensitivities of the cytoplasm, the macronucleus, the micronucleus and the symbiotic bacteria of the micronucleus - omega particles - were determined. Healthy infected cells were irradiated in different variants. Depending on dose, the uv injection can result in a reduction in the cloning efficiency, the loss of omega particles from the micronucleus and the appearance of cells with 2 to 3 micronuclei and, possibly, amicronuclear cells. Visible light repairs the damage caused by the uv injection. (photoreactivation).

  13. Investigation of UV-LED Initiated Photopolymerisation of Bio-compatible HEMA

    OpenAIRE

    McDermott, Sharon

    2008-01-01

    Ultraviolet (UV) fluorescent lamps are widely used in photopolymerisation processes. However, there a number of disadvantages to these lamps, namely, their intensity varies over time and has to be constantly monitored. This thesis is concerned with the possibility of replacing these lamps with UV Light Emitting Diodes (UV-LEDs). A number of emission characteristics of both the fluorescent lamp and the UV-LEDs were measured and compared to ensure that the optical properties of the UV-LEDs were...

  14. Influence of DOC on the inactivation efficacy of ozonation assessed with Clostridium perfringens and a lab-scale continuous flow system

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Medema, Gerriet Jan; Baars, E.; Bosklopper, T.G.J.; Veer, A.J. van der; Meijers, R.T.

    2004-01-01

    Routine quality monitoring for fecal indicators after ozonation at the river-lake waterworks Weesperkarspel of Amsterdam Water Supply (AWS) show large variation in inactivation. The influence of the high DOC in the water on the inactivation efficiency was investigated. Results showed a higher

  15. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    Science.gov (United States)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  16. Application of UV Imaging in Formulation Development

    DEFF Research Database (Denmark)

    Sun, Yu; Østergaard, Jesper

    2017-01-01

    defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution...... related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV...

  17. Cell-cycle variation in the induction of lethality and mitotic recombination after treatment with UV and nitrous acid in the yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Davies, P.J.; Tippins, R.S.; Parry, J.M.

    1978-01-01

    Exponentially growing yeast cultures separated into discrete periods of the cell cycle by zonal rotor centrifugation show cyclic variation in both UV and nitrous acid induced cell lethality, mitotic gene conversion and mitotic crossing-over. Maximum cell survival after UV treatment was observed in the S and G2 phases of the cell cycle at a time when UV induction of both types of mitotic recombination was at a minumum. In contrast, cell inactivation by the chemical mutagen nitrous acid showed a single discrete period of sensitivity which occurred in S phase cells which are undergoing DNA synthesis. Mitotic gene conversion ahd mitotic crossing-over were induced by nitrous acid in cells at all stages of the cell cycle with a peak of induction of both events occurring at the time of maximum cell lethality. The lack of correlation observed between maximum cell survival and the maximum induction of mitotic intragenic recombination suggest that other DNA-repair mechanisms besides DNA-recombination repair are involved in the recovery of inactivated yeast cells during the cell cycle. (Auth.)

  18. Contribution of a caffeine-sensitive recombinational repair pathway to survival and mutagenesis in UV-irradiated Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Gentner, N.E.; Werner, M.M.; Hannan, M.A.; Nasim, A.

    1978-01-01

    Cells of wild-type Schizosacharomyces pombe exposed to UV radiation in either G1 or G2 phase show enhanced inactivation of colony-forming ability if plated in the presence of caffeine. This UV-sensitization by caffeine is abolished in both G1 an G2 phase cells by the radlmutation; since both caffeine and the radl mutation markedly reduce recombinational events, this suggests that a recombinational repair process is active in cells irradiated either in G1 or G2 phase. Caffeine-sensitive repair begins immediately and is completed before resumption of DNA synthesis. Caffeine-sensitive repair of UV-damage in G1 cells displays a considerable lag and then occurs concomitantly with DNA synthesis. UV-induced mutagenesis was examined in wild-type and rad mutants using a forward mutation system. Rad mutants which show higher UV-induced mutation rates than wild-type retain the recombinational mechanism. In contrast, rad strains which are relatively UV-immutable compared to wild-type do not possess the caffeine-sensitive UV-repair process. The recombinational process therefore may be the major pathway responsible for UV-induced mutation. (orig./AJ) [de

  19. Inactivation of Escherichia Coli O157:H7 and Salmonella Enterica on Blueberries in Water Using Ultraviolet Light.

    Science.gov (United States)

    Liu, Chuhan; Huang, Yaoxin; Chen, Haiqiang

    2015-07-01

    Ultraviolet light (UV) has antimicrobial effects, but the shadowing effect has limited its application. In this study, a novel setup using UV processing in agitated water was developed to inactivate Escherichia coli O157:H7 and Salmonella on blueberries. Blueberries were dip- or spot-inoculated with E. coli or Salmonella. Blueberries inoculated with E. coli were treated for 2 to 10 min with UV directly (dry UV) or immersed in agitated water during UV treatment (wet UV). E. coli was most easily killed on spot-inoculated blueberries with a 5.2-log reduction after 10-min wet UV treatment. Dip-inoculated blueberries were the most difficult to be decontaminated with only 1.6-log reduction after 10-min wet UV treatment. Wet UV treatment generally showed higher efficacies than dry UV treatment, achieving an average of 1.4 log more reduction for spot-inoculated blueberries. For dip-inoculated blueberries, chlorine washing and UV treatments were less effective, achieving blueberries were UV-treated while being immersed in agitated water containing 100 ppm SDS, 0.5% levulinic acid or 10 ppm chlorine. The 3 chemicals did not significantly enhance the wet UV treatment. Findings of this study suggest that UV treatment could be used as an alternative to chlorine washing for blueberries and potentially for other fresh produce. A novel UV light system for decontamination of blueberries in water was developed and evaluated. Results demonstrated that the decontamination efficacy of this system was generally as effective as chlorine washing, indicating that it could potentially be used as an alternative to chlorine washing for blueberries and other fresh produce. © 2015 Institute of Food Technologists®

  20. Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus.

    Science.gov (United States)

    Langeveld, J P; Brennan, F R; Martínez-Torrecuadrada, J L; Jones, T D; Boshuizen, R S; Vela, C; Casal, J I; Kamstrup, S; Dalsgaard, K; Meloen, R H; Bendig, M M; Hamilton, W D

    2001-06-14

    A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1 was inactivated by UV treatment to remove the possibility of replication of the recombinant plant virus in a plant host after manufacture of the vaccine. We show that the inactivated CVP is able to protect dogs from a lethal challenge with CPV following parenteral immunization with the vaccine. Dogs immunized with the inactivated CPMV-PARVO1 in adjuvant displayed no clinical signs of disease and shedding of CPV in faeces was limited following CPV challenge. All immunized dogs elicited high titres of peptide-specific antibody, which neutralized CPV in vitro. Levels of protection, virus shedding and VP2-specific antibody were comparable to those seen in dogs immunized with the same VP2- peptide coupled to keyhole limpet hemocyanin (KLH). Since plant virus-derived vaccines have the potential for cost-effective manufacture and are not known to replicate in mammalian cells, they represent a viable alternative to current replicating vaccine vectors for development of both human and veterinary vaccines.

  1. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation.

    Science.gov (United States)

    Dong, Shuai; Shi, Hongxi; Zhang, Xintong; Chen, Xi; Cao, Donghui; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2018-01-01

    Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA) is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA's phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway. A single-chain variable-fragment phage (JM) with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate a combined nanoscale material, which was called PPA-JM-phage. After photodynamic inactivation, the growth of C. albicans was inhibited by PPA-JM-phage and apoptosis was observed. Scanning electron microscopy analysis revealed shrinking and rupturing of C. albicans . We also found that depolarization of mitochondrial membrane potential was decreased and intracellular reactive oxygen species levels were elevated significantly in C. albicans inhibited by PPA-JM-phage. Additionally, PPA-JM-phage also lead to S-phase arrest, and metacaspase activation

  2. Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice

    Science.gov (United States)

    Gouma, Maria; Gayán, Elisa; Raso, Javier; Condón, Santiago; Álvarez, Ignacio

    2015-01-01

    Commercial apple juice inoculated with Escherichia coli was treated with UV-C, heat (55°C) and dimethyl dicarbonate – DMDC (25, 50, and 75 mg/L)-, applied separately and in combination, in order to investigate the possibility of synergistic lethal effects. The inactivation levels resulting from each treatment applied individually for a maximum treatment time of 3.58 min were limited, reaching 1.2, 2.9, and 0.06 log10 reductions for UV, heat, and DMDC (75 mg/L), respectively. However, all the investigated combinations resulted in a synergistic lethal effect, reducing the total treatment time and UV dose, with the synergistic lethal effect being higher when larger concentrations of DMDC were added to the apple juice. The addition of 75 mg/L of DMDC prior to the combined UV-C light treatment at 55°C resulted in 5 log10 reductions after only 1.8 min, reducing the treatment time and UV dose of the combined UV-Heat treatment by 44%. PMID:26042117

  3. Sterilization of Escherichia coli by using near-UV LED and TiO{sub 2} nanofibers that were prepared by using electrostatic spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Gil; Hong, Ji-Tae; Son, Min-Kyu; Lee, Kyoung-Jun; Xu, Guo-Cheng; Prabakar, Kandasamy; Kim, Hee-je, E-mail: heeje@pusan.ac.k [Department of Electrical Engineering Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2010-05-01

    TiO{sub 2} nanofiber films were prepared by a homemade electrostatic spray method at 13 kV using a high power supply. As-prepared TiO{sub 2} was used to sterilize enteropathogenic Escherichia coli in polluted water by using near-UV LEDs at three different wavelengths with variable exposure time and frequency of irradiation. Irrespective of the wavelength of the light source used, longer irradiation times such as 1 h completely inactivated the E. coli. However, a wavelength of 375 nm was effective in inactivating in a shorter irradiation time (15 min). When the frequency of irradiation was 1 kHz, almost 95% of the E. coli was inactivated after 30 min exposure.

  4. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses.

    Science.gov (United States)

    Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques

    2018-01-01

    The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2), about 49%, and the oleic monounsaturated (18  :  1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  5. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses

    Directory of Open Access Journals (Sweden)

    Maydla dos Santos Vasconcelos

    2018-01-01

    Full Text Available The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.. The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB and ∼90% (RSLB. The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2, about 49%, and the oleic monounsaturated (18  :  1, ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3, ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  6. Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water.

    Science.gov (United States)

    Marjanovic, Miloch; Giannakis, Stefanos; Grandjean, Dominique; de Alencastro, Luiz Felippe; Pulgarin, Cesar

    2018-09-01

    In this work, solar disinfection (SODIS) was enhanced by moderate addition of Fe and sodium peroxydisulfate (PDS), under solar light. A systematic assessment of the activating factors was performed, firstly isolated, then in pairs and concluded in the combined Fe/heat/solar UV-PDS activation process. Solar light was the most effective (single) activator, and its combination with Fe and heat (double activation) yielded high level of synergies (up to S = 2.13). The triple activation was able to reduce the bacterial load up to 6-log in less than 1 h, similarly to the photo-Fenton process done in comparison (SODIS alone: >5 h). Fe-oxides were suitable activators of PDS under the same conditions while the presence of organic matter enhanced bacterial inactivation by the triple activated PDS process. The degradation of a (selected) mixture of micropollutants (i.e. drugs, pesticides) was also achieved in similar order of magnitude, and faster than the photo-Fenton process. Finally, the removal of a viral pathogen indicator (MS2 bacteriophage) was attained at minute-range residence times. The aforementioned facts indicate the suitability of the mild, combined process, as a potential SODIS enhancement, producing safe drinking water for sunny and especially for developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  8. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines.

    Science.gov (United States)

    Fredericks, Ilse N; du Toit, Maret; Krügel, Maricel

    2011-05-01

    Since sulphur dioxide (SO(2)) is associated with health risks, the wine industry endeavours to reduce SO(2) levels in wines with new innovative techniques. The aim of this study was, therefore, to investigate the efficacy of ultraviolet radiation (UV)-C (254 nm) as an alternative technology to inactivate microorganisms in grape juices and wines. A pilot-scale UV-C technology (SurePure, South Africa) consisting of an UV-C germicidal lamp (100 W output; 30 W UV-C output) was used to apply UV-C dosages ranging from 0 to 3672 J l(-1), at a constant flow rate of 4000 l h(-1) (Re > 7500). Yeasts, lactic and acetic acid bacteria were singly and co-inoculated into 20 l batches of Chenin blanc juice, Shiraz juice, Chardonnay wine and Pinotage wine, respectively. A dosage of 3672 J l(-1), resulted in an average log(10) microbial reduction of 4.97 and 4.89 in Chardonnay and Pinotage, respectively. In Chenin blanc and Shiraz juice, an average log(10) reduction of 4.48 and 4.25 was obtained, respectively. UV-C efficacy may be influenced by liquid properties such as colour and turbidity. These results had clearly indicated significant (p radiation may stabilize grape juice and wine microbiologically in conjunction with reduced SO(2) levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Simultaneous UHPLC-UV analysis of hydroxychloroquine, minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple's disease.

    Science.gov (United States)

    Armstrong, Nicholas; Richez, Magali; Raoult, Didier; Chabriere, Eric

    2017-08-15

    A fast UHPLC-UV method was developed for the simultaneous analysis of Hydroxychloroquine, Minocycline and Doxycycline drugs from 100μL of human serum samples. Serum samples were extracted by liquid-liquid extraction and injected into a phenyl hexyl reverse phase column. Compounds were separated using a mobile phase linear gradient and monitored by UV detection at 343nm. Chloroquine and Oxytetracycline were used as internal standards. Lower and upper limits of quantifications, as well as the other levels of calibration, were validated with acceptable accuracy (<15% deviation) and precision (<15% coefficient of variation) according to the European Medicines Agency guidelines. This new method enables cost and time reduction and was considered suitable for the clinical laboratory. It is the first published assay for the therapeutic drug monitoring of patients diagnosed with Q fever or Whipple's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rapid bioelectric reaction of elodea leaf cells to the UV radiation

    International Nuclear Information System (INIS)

    Aliev, D.A.; Mamedov, T.G.; Akhmedov, I.S.; Khalilov, R.I.

    1984-01-01

    It has been established that changes of membrane potential (MP) of elodea leaf cells in the UV radiation are manifested in a form of rapid response reaction, which is similar to an action potential. At present a lot of new data confirming the existence of electrogenic proton pump on plasmalemma plant cells is making their appearance. The plant cell membrane potential consists of two components: equilibrium( passive) potential and potential created by an electrogenic proton pump. A contribution of the second component to the elodea leaf cell MP is considerable and constitutes more than a half of the total MP. Constant values of membrane conductivity and intracell electric bonds in the process of depolarization development and after MP recovery testify to the fact, that UV radiation does not effect upon the MP passive component. High degree of depolarization and its strong dependence on medium pH and also the observed effect independence on potassium and sodium ions presence in the external medium testify to the fact that UV radiation ingenuously inactivates electrogenic proton pumps

  11. Two pathogen reduction technologies--methylene blue plus light and shortwave ultraviolet light--effectively inactivate hepatitis C virus in blood products.

    Science.gov (United States)

    Steinmann, Eike; Gravemann, Ute; Friesland, Martina; Doerrbecker, Juliane; Müller, Thomas H; Pietschmann, Thomas; Seltsam, Axel

    2013-05-01

    Contamination of blood products with hepatitis C virus (HCV) can cause infections resulting in acute and chronic liver diseases. Pathogen reduction methods such as photodynamic treatment with methylene blue (MB) plus visible light as well as irradiation with shortwave ultraviolet (UVC) light were developed to inactivate viruses and other pathogens in plasma and platelet concentrates (PCs), respectively. So far, their inactivation capacities for HCV have only been tested in inactivation studies using model viruses for HCV. Recently, a HCV infection system for the propagation of infectious HCV in cell culture was developed. Inactivation studies were performed with cell culture-derived HCV and bovine viral diarrhea virus (BVDV), a model for HCV. Plasma units or PCs were spiked with high titers of cell culture-grown viruses. After treatment of the blood units with MB plus light (Theraflex MB-Plasma system, MacoPharma) or UVC (Theraflex UV-Platelets system, MacoPharma), residual viral infectivity was assessed using sensitive cell culture systems. HCV was sensitive to inactivation by both pathogen reduction procedures. HCV in plasma was efficiently inactivated by MB plus light below the detection limit already by 1/12 of the full light dose. HCV in PCs was inactivated by UVC irradiation with a reduction factor of more than 5 log. BVDV was less sensitive to the two pathogen reduction methods. Functional assays with human HCV offer an efficient tool to directly assess the inactivation capacity of pathogen reduction procedures. Pathogen reduction technologies such as MB plus light treatment and UVC irradiation have the potential to significantly reduce transfusion-transmitted HCV infections. © 2012 American Association of Blood Banks.

  12. UV-screening Organic Matter (CDOM and MAA) as indicators for monitoring changes of the polar marine ecosystem

    Science.gov (United States)

    PARK, M. O.; Kang, S. H.; Ha, S. Y.

    2014-12-01

    At Kongsfjorden bay, DOC, CDOM, FDOM, composition of phytoplankton and MAAs were measured from seawater. The relationship between CDOM, DOC vs Chl a was also investigated. DOC of seawater in 2010 and 2011 was increased 68% and 34% respectively in average compared to DOC in 2009. CDOM was in the range of acdom(375): 0.1855 m-1 ~ 0.0965 m-1, and it showed clear decreasing gradient form inside bay to offshore. CDOM vs DOC and Chl a was inversely related in the study area. Biomass of phytoplankton during 2009~2011 was 0.43~ 0.76 mg/m3 and little change was observed, but the composition and dominant classes have changed. Phaeocystis sp. was rare and diatom and cryptophyte were dominant in the center of bay and coastal area, respectively. 5 different MAAs, shinorine, palythine, mycosporine-glycine, porphyra-334, asterine-330 are identified and separated from Arctic phytoplanktons by HPLC and an unknown MAA was identified from Phaeocystis pouchetti. The spatial distribution pattern of MAAs in the study area was similar with the distribution of Phaeocystis sp. in 2009. The concentration of MAA in 2011 was decreased upto 50% with maximum concentration and seems to related with very low abundance of Phaeocystis sp. in the bay. The results from UV B exposure experiment with Phaeocystis pouchetti. and Porosira glacialis revealed clear discrepancy in the response to carbon uptake rate and photo-inhibition, and also the organic matter from these phytoplankton showed a different photo reactivity. Porosira glacialis, larger than Phaeocystis pouchetti. was more resistant to harmful UV B effect and result of carbon uptake rate using 13C support this tendency. In case Phaeocystis pouchetti becomes the dominant species, it is likely CDOM will be easily degraded and the UV screening effect of seawater will be reduced. acdom(375) 0.14m-1in spring in the arctic was higher than 0.11m-1 in the antarctic at monitoring station. These 3 year monitoring in the arctic Kongsfjorden showed a

  13. Inactivation of Laccase by the Attack of As (III) Reaction in Water.

    Science.gov (United States)

    Hu, Jinyuan; Lu, Kun; Dong, Shipeng; Huang, Qingguo; Mao, Liang

    2018-03-06

    Laccase is a multicopper oxidase containing four coppers as reaction sites, including one type 1, one type 2, and two type 3. We here provide the first experimental data showing that As (III) can be effectively removed from water and transformed to As (V) through reactions mediated by laccase with the presence of oxygen. To this end, the As (III) removal, As (V) yields, total protein, active laccase, and copper concentrations in the aqueous phase were determined, respectively. Additionally, electron paramagnetic resonance spectra and UV-vis spectra were applied to probe possible structural changes of the laccase during the reaction. The data offer the first evidence that laccase can be inactivated by As (III) attack thus leading to the release of type 2 copper. The released copper has no reactivity with the As (III). These findings provide new ideas into a significant pathway likely to master the environmental transformation of arsenite, and advance the understanding of laccase inactivation mechanisms, thus providing a foundation for optimization of enzyme-based processes and potential development for removal and remediation of arsenite contamination in the environment.

  14. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1986-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia

  15. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, O-Mi [Quarantine Technology Center, Animal and Plant Quarantine Agency Plant, 175 Anyangro, Manan-Gu, Anyang-Si, Gyeonggi-Do 480-757 (Korea, Republic of); Kim, Hyun Young; Park, Wooshin; Kim, Tae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Yu, Seungho, E-mail: seunghoyu68@gmail.com [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, Jeonbuk 580-185 (Korea, Republic of)

    2015-09-15

    Highlights: • The ionizing radiation was applied to inactivate microorganisms and the critical dose to prevent the regrowth was determined. • The seasonal variation of disinfection efficiency observed in on-site UV treatment system was influenced by suspended solid, temperature, and precipitation, whereas, stable values were observed in ionizing radiation. • The electrical power consumption for disinfection using UV and ozone requires higher energy than ionizing radiation. - Abstract: Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes.

  16. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process

    International Nuclear Information System (INIS)

    Lee, O-Mi; Kim, Hyun Young; Park, Wooshin; Kim, Tae-Hun; Yu, Seungho

    2015-01-01

    Highlights: • The ionizing radiation was applied to inactivate microorganisms and the critical dose to prevent the regrowth was determined. • The seasonal variation of disinfection efficiency observed in on-site UV treatment system was influenced by suspended solid, temperature, and precipitation, whereas, stable values were observed in ionizing radiation. • The electrical power consumption for disinfection using UV and ozone requires higher energy than ionizing radiation. - Abstract: Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes

  17. Researchers lack data on trends in UV radiation at Earth's surface

    International Nuclear Information System (INIS)

    Zurer, P.S.

    1993-01-01

    Current anxiety about depletion of stratospheric ozone stems from the expected resulting increase in biologically damaging ultraviolet (UV) radiation at Earth's surface. Atmospheric ozone absorbs sunlight with wavelengths shorter than 320 nm--the highest-energy UV-B wavelengths (280-320 nm) that can damage DNA in living systems. But surprisingly, despite firm evidence the ozone layer is being eroded by chlorine and bromine from man-made compounds, very little information exists on how UV light intensity is changing. Solid data from Antarctica reveal that UV radiation soars under the ozone hole, where fully half of the atmospheric ozone is destroyed each spring. But elsewhere on the globe, where ozone has been thinning at a rate of a few percent per decade, the corresponding trends in UV intensity are not at all clear. In the late 1970s and early 1980s the problem of ozone depletion seemed solved. The US had banned the use of chlorofluorocarbons (CFCs) in aerosols. Model calculations were predicting CFCs would cause only a small loss of ozone by the second half of the 21st century. Costly monitoring of UV radiation commanded little attention. Attitudes began to change with the 1985 discovery of the Antarctic ozone hole. The National Science Foundation (NSF) established UV monitoring stations in the Antarctic in 1988, adding an Alaskan station in 1990. Both the Department of Agriculture (USDA) and the Environmental Protection Agency (EPA) have programs in the works that will eventually place monitoring stations across the US, but it will be many years before researchers have access to the kind of extensive database necessary to reliably evaluation long-term trends in UV intensity

  18. Visualizing and quantifying dose distribution in a UV reactor using three-dimensional laser-induced fluorescence.

    Science.gov (United States)

    Gandhi, Varun N; Roberts, Philip J W; Kim, Jae-Hong

    2012-12-18

    Evaluating the performance of typical water treatment UV reactors is challenging due to the complexity in assessing spatial and temporal variation of UV fluence, resulting from highly unsteady, turbulent nature of flow and variation in UV intensity. In this study, three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. Mapping the spatial and temporal fluence delivery and MS2 inactivation revealed the highest local fluence in the wake zone due to longer residence time and higher UV exposure, while the lowest local fluence occurred in a region near the walls due to short-circuiting flow and lower UV fluence rate. Comparing the tracer based decomposition between hydrodynamics and IT revealed similar coherent structures showing the dependency of fluence delivery on the reactor flow. The location of tracer injection, varying the height and upstream distance from the lamp center, was found to significantly affect the UV fluence received by the tracer. A Lagrangian-based analysis was also employed to predict the fluence along specific paths of travel, which agreed with the experiments. The 3DLIF technique developed in this study provides new insight on dose delivery that fluctuates both spatially and temporally and is expected to aid design and optimization of UV reactors as well as validate computational fluid dynamics models that are widely used to simulate UV reactor performances.

  19. Aromatic/heterocyclic amino acids and the simulated sunlight-ultraviolet inactivation of the Heliothis/Helicoverpa baculovirus

    International Nuclear Information System (INIS)

    Ignoffo, C.M.; Garcia, C.

    1995-01-01

    Tryptophan, of five aromatic/heterocyclic amino acids (tyrosine, phenylalanine, proline, histidine) provided significant protection of the Heliothis baculovirus (HzSNPV) from inactivation by simulated ultraviolet (SUV). Fifty percent of SUV protection of HzSNPV with tryptophan or tyrosine was obtained at 0.03 mg/ml and 0.5 mg/ml, respectively. Rates as high as 100.0 mg/ml of phenylalanine, histidine, or proline provided <50% protection. The extent of tryptophan protection was correlated with its absorption in the sunlight UV-B spectra. 16 refs., 2 tabs

  20. An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.

    Science.gov (United States)

    Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela

    2002-09-01

    EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.

  1. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2.

    Science.gov (United States)

    Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N; Stansbury, Jeffery; Sikes, Hadley D

    In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O 2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O 2 . Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O 2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O 2 in eosin-mediated initiation aids the design of O 2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing.

  2. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light

    Directory of Open Access Journals (Sweden)

    Christopher H Sommers

    2016-04-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC, including uropathogenic E. coli (UPEC are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three nonthermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP, ionizing (gamma radiation (GR, and ultraviolet light (UV-C. Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4 oC, 0-25 min at 300, 400 or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20 oC the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing nonthermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  3. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

    Science.gov (United States)

    Sommers, Christopher H; Scullen, O J; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  4. Wavelength dependence of biological damage induced by UV radiation on bacteria.

    Science.gov (United States)

    Santos, Ana L; Oliveira, Vanessa; Baptista, Inês; Henriques, Isabel; Gomes, Newton C M; Almeida, Adelaide; Correia, António; Cunha, Ângela

    2013-01-01

    The biological effects of UV radiation of different wavelengths (UVA, UVB and UVC) were assessed in nine bacterial isolates displaying different UV sensitivities. Biological effects (survival and activity) and molecular markers of oxidative stress [DNA strand breakage (DSB), generation of reactive oxygen species (ROS), oxidative damage to proteins and lipids, and the activity of antioxidant enzymes catalase and superoxide dismutase] were quantified and statistically analyzed in order to identify the major determinants of cell inactivation under the different spectral regions. Survival and activity followed a clear wavelength dependence, being highest under UVA and lowest under UVC. The generation of ROS, as well as protein and lipid oxidation, followed the same pattern. DNA damage (DSB) showed the inverse trend. Multiple stepwise regression analysis revealed that survival under UVA, UVB and UVC wavelengths was best explained by DSB, oxidative damage to lipids, and intracellular ROS levels, respectively.

  5. Antimicrobial blue light inactivation of Methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Wang, Yucheng; Dai, Tianhong; Gu, Ying

    2016-10-01

    Background: With the increasing emergence of multidrug-resistant (MDR) bacterial strains, there is a pressing need for the development of alternative treatment for infections. Antimicrobial blue light (aBL) has provided a simple and effective approach. Methods: We first investigated the effectiveness of aBL (415 nm) inactivation of USA300 LAClux (a communityacquired Methicillin-resistant Staphylococcus aureus strain) both in the planktonic and biofilm forms. The survival of the bacteria in suspensions was determined by serial dilution and that of the biofilm-embedded bacteria was determined by bioluminescence quantification. Using a mouse model of thermal burn infected with USA300 LAClux, we further assessed the effectiveness of aBL for treating localized infections. Bioluminescence imaging was performed to monitor in real time bacterial viability in vivo. Results: In vitro study showed that, for the planktonic counterpart of the bacteria or the 24-h-old biofilms, an irradiance of 55 mW/cm2 for 60 min resulted in a 4.61 log10 or 2.56 log10 inactivation, respectively. In vivo study using infected mouse burns demonstrated that a 2.56-log10 inactivation was achieved after 100-mW/cm2 irradiation for 62 min. Conclusions: aBL is a potential alternative approach for treating Methicillin-resistant Staphylococcus aureus infections.

  6. UV inactivation of enzymes in supramolecular complexes of biological membranes. The phenomenon of photochemical allotropy

    International Nuclear Information System (INIS)

    Konev, S.V.; Volotovskij, I.D.; Sheiko, L.M.

    1978-01-01

    The photosensitivity of erythrocyte acetylcholinesterase (AChE) is different in its free and membrane-bound states. The modification of the structure of membraneous lipids by phospholipases A 2 , C and D or by cholesterol depletion is accompanied by a change in AChE photosensitivity. UV light was demonstrated to induce cooperative structural transitions in the erythrocyte membrane. This follows from the data obtained by circular dichroism and solubilization in detergents. In contrast to free AChE, UV light acts on the membraneous enzyme as a mixed inhibitor (simultaneous change in Vsub(max) and Ksub(m)). The anomalous behaviour of membrane-bound enzyme, termed the phenomenon of photochemical allotropy, is associated with a modification of the structure within the microenvironment of the residual AChE. The phenomenon depends on membrane integrity, and disappears after treatment of erythrocyte ghosts with ultrasound, trypsin, phospholipases and neuraminidase and remains unchanged in cholesterol-depleted membranes. The nature and localization of events responsible for this phenomenon are discussed. (author)

  7. Effectiveness of UV-C light irradiation on disinfection of an eSOS(®) smart toilet evaluated in a temporary settlement in the Philippines.

    Science.gov (United States)

    Zakaria, Fiona; Harelimana, Bertin; Ćurko, Josip; van de Vossenberg, Jack; Garcia, Hector A; Hooijmans, Christine Maria; Brdjanovic, Damir

    2016-01-01

    Ultraviolet germicidal (short wavelength UV-C) light was studied as surface disinfectant in an Emergency Sanitation Operation System(®) smart toilet to aid to the work of manual cleaning. The UV-C light was installed and regulated as a self-cleaning feature of the toilet, which automatically irradiate after each toilet use. Two experimental phases were conducted i.e. preparatory phase consists of tests under laboratory conditions and field testing phase. The laboratory UV test indicated that irradiation for 10 min with medium-low intensity of 0.15-0.4 W/m(2) could achieve 6.5 log removal of Escherichia coli. Field testing of the toilet under real usage found that UV-C irradiation was capable to inactivate total coliform at toilet surfaces within 167-cm distance from the UV-C lamp (UV-C dose between 1.88 and 2.74 mW). UV-C irradiation is most effective with the support of effective manual cleaning. Application of UV-C for surface disinfection in emergency toilets could potentially reduce public health risks.

  8. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  9. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  10. Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola

    International Nuclear Information System (INIS)

    Kumar, A.; Sinha, R.P.; Häder, D. P.

    1996-01-01

    The effects of ultraviolet-B (UV-B; 280–315 nm) irradiation on nitrogenase and nitrate reductase (NR) activity have been studied in the filamentous and heterocystous N 2 -fixing cyanobacterium Nostoc calcicola. Exposure of cultures to UV-B (5W/m 2 ) for as little as 30 min caused complete inactivation of nitrogenase activity whereas nitrate reductase activity was stimulated twofold in comparison to one exposed to fluorescent white light. GS activity was also inhibited by UV-B treatment, but there was no total loss of activity even after 4 h. NR activity showed a gradual stimulation up to 4 h and thereafter it became constant. Stimulation was also obtained in reductant deficient cultures (12 h incubation in the dark) suggesting independence of NR of PS-II under UV-B. NR activity was also unaffected in the presence of DCMU, a known inhibitor of PS-II. However, both O 2 evolution and 14 CO 2 uptake were completely abolished following 30 min of UV-B treatment. Addition of the protein synthesis inhibitor chloramphenicol (25 μg/mL) to cultures did not show any inhibitory effect on NR activity. SDS-PAGE analysis of UV-B treated cultures elicited gradual loss of protein bands with increasing duration of exposure. Our findings suggest that UV-B irradiance has differential effects on the enzymes of the nitrogen metabolism in the cyanobacterium Nostoc calcicola. Further studies are needed to reveal the exact mechanism involved in the stimulation of NR activity by UV-B. Whether UV-B has a direct effect on NO 2 − accumulation in the cells needs detailed investigation. (author)

  11. Study of the reactivation of X-ray inactivated lambda bacteriophages by irradiated Escherichia coli bacteria

    International Nuclear Information System (INIS)

    Kiessling, W.

    1980-01-01

    Bacteriophages lambda and E.coli cells were exposed to X-rays in LB medium. Host cells exposed to a dose of 85 to 765 Gy had a reactivation factor 1.3 to 3.0 for bacteriophages inactivated by X-rays. The capacity of the bacteria for bacteriophage mutliplication remained apparently unchanged in this dose range. After UV-irradiation of the host cells, only a reactivation factor of 1.3 was found for bacteriophages exposed to X-radiation. The comparatively low Weigle reactivation of bacteriophages exposed to X-radiation - as compared with bacteriophages exposed to UV radiation was analyzed by counting free, non-adsorbed bacteriophages determined by filtration of radioactively labelled bacteriophage-host complexes, it was found to be due to a reduced adsorptivity. Reactivation experiments with bacteriophages exposed to X-rays and host bacterias with different degrees of radiosensitivity proved this assumption to be correct. (orig.) [de

  12. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    Science.gov (United States)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  13. Drug release into hydrogel-based subcutaneous surrogates studied by UV imaging

    DEFF Research Database (Denmark)

    Ye, Fengbin; Larsen, Susan Weng; Yaghmur, Anan

    2012-01-01

    of the performance of drug delivery systems based on in vitro experiments. The objective of this study was to evaluate a UV imaging-based method for real-time characterization of the release and transport of piroxicam in hydrogel-based subcutaneous tissue mimics/surrogates. Piroxicam partitioning from medium chain...... upon the injection of aqueous or MCT solutions into an agarose-based hydrogel were investigated by UV imaging. The spatial distribution of piroxicam around the injection site in the gel matrix was monitored in real-time. The disappearance profiles of piroxicam from the injected aqueous solution were...... obtained. This study shows that the UV imaging methodology has considerable potential for characterizing transport properties in hydrogels, including monitoring the real-time spatial concentration distribution in vitro after administration by injection....

  14. Applicability of UV resistant Bacillus pumilus spore as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data set includes UV dose, and Bacillus pumilus spore plate counts in colony forming units. This dataset is associated with the following publication: Boczek , L.,...

  15. Enhanced UV exposure on a ski-field compared with exposures at sea level.

    Science.gov (United States)

    Allen, Martin; McKenzie, Richard

    2005-05-01

    Personal erythemal UV monitoring badges, which were developed to monitor the UV exposure of school children, were used to measure UV exposures received by one of the authors (MA) at the Mt Hutt ski-field, in New Zealand. These were then compared with measurements taken at the same times from a nearby sea level site in Christchurch city. The badges were designed to give instantaneous readings of erythemally-weighted (i.e., "sun burning") UV radiation and were cross-calibrated against meteorological grade UV instruments maintained by the National Institute of Water & Atmospheric Research (NIWA). All skiing and calibration days were clear and almost exclusively cloud free. It was found that the UV maxima for horizontal surfaces at the ski-field (altitude approximately 2 km) were 20-30% greater than at the low altitude site. Larger differences between the sites were observed when the sensor was oriented perpendicular to the sun. The personal doses of UV received by a sensor on the skier's lapel during two days of skiing activity were less than those received by a stationary detector on a horizontal surface near sea level. The exposures depended strongly on the time of year, and in mid-October the maximum UV intensity on the ski-field was 60% greater than in mid-September. The UV exposure levels experienced during skiing were smaller than the summer maxima at low altitudes.

  16. Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz san

    Science.gov (United States)

    Ryan, Joseph N.; Harvey, Ronald W.; Metge, David W.; Elimelech, Menachem; Navigato, Theresa; Pieper, Ann P.

    2002-01-01

    Field and laboratory experiments were conducted to investigate inactivation of viruses attached to mineral surfaces. In a natural gradient transport field experiment, bacteriophage PRD1, radiolabeled with 32P, was injected into a ferric oxyhydroxide-coated sand aquifer with bromide and linear alkylbenzene sulfonates. In a zone of the aquifer contaminated by secondary sewage infiltration, small fractions of infective and 32P-labeled PRD1 broke through with the bromide tracer, followed by the slow release of 84% of the 32P activity and only 0.011% of the infective PRD1. In the laboratory experiments, the inactivation of PRD1, labeled with 35S (protein capsid), and MS2, dual radiolabeled with 35S (protein capsid) and 32P (nucleic acid), was monitored in the presence of groundwater and sediment from the contaminated zone of the field site. Release of infective viruses decreased at a much faster rate than release of the radiolabels, indicating that attached viruses were undergoing surface inactivation. Disparities between 32P and35S release suggest that the inactivated viruses were released in a disintegrated state. Comparison of estimated solution and surface inactivation rates indicates solution inactivation is ∼3 times as fast as surface inactivation. The actual rate of surface inactivation may be substantially underestimated owing to slow release of inactivated viruses.

  17. Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water.

    Science.gov (United States)

    Ma, Xiao; Bibby, Kyle

    2017-09-01

    Fungi are near-ubiquitous in potable water distribution systems, but the disinfection kinetics of commonly identified fungi are poorly studied. In the present study, laboratory scale experiments were conducted to evaluate the inactivation kinetics of Aspergillus fumigatus, Aspergillus versicolor, and Penicillium purpurogenum by free chlorine and monochloramine. The observed inactivation data were then fit to a delayed Chick-Watson model. Based on the model parameter estimation, the Ct values (integrated product of disinfectant concentration C and contact time t over defined time intervals) for 99.9% inactivation of the tested fungal strains ranged from 48.99 mg min/L to 194.7 mg min/L for free chlorine and from 90.33 mg min/L to 531.3 mg min/L for monochloramine. Fungal isolates from a drinking water system (Aspergillus versicolor and Penicillium purpurogenum) were more disinfection resistant than Aspergillus fumigatus type and clinical isolates. The required 99.9% inactivation Ct values for the tested fungal strains are higher than E. coli, a commonly monitored indicator bacteria, and within a similar range for bacteria commonly identified within water distribution systems, such as Mycobacterium spp. and Legionella spp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. N-type Cu2O Film for Photocatalytic and Photoelectrocatalytic Processes: Its stability and Inactivation of E. coli

    International Nuclear Information System (INIS)

    Xiong, Liangbin; Ng, Tsz Wai; Yu, Ying; Xia, Dehua; Yip, Ho Yin; Li, Guiying; An, Taicheng; Zhao, Huijun; Wong, Po Keung

    2015-01-01

    Highlights: • Photoelectrocatalytic inactivation of E. coli by Cu 2 O film was firstly reported. • 7 log of E. coli could be completely inactivated in 2 h by Cu 2 O with a 0.1 V bias. • Charge transfer between Cu 2 O and E. coli was monitored by electrochemical technique. • Inactivation of E. coli by electric charges of electrodes was in-depth investigated. • Stability of N-type Cu 2 O as a photocatalyst was studied for the first time. - ABSTRACT: Photoelectrocatalytic (PEC) inactivation of Escherichia coli K-12 by cuprous oxide (Cu 2 O) film irradiated by visible light is firstly reported. A complete inactivation of about 7 log of E. coli was obtained for Cu 2 O film within 6 h. The bacterial inactivation efficiency was significantly improved in a photoelectrochemical cell, in which 7 log of E. coli could be completely inactivated within 2 h by Cu 2 O film with a 0.1 V bias. Electric charge transfer between electrodes and E. coli, and electric charge inactivation towards E. coli were investigated using membrane-separated reactor combined with short circuit photocurrent technique. H 2 O 2 , hole, and toxicity of Cu 2 O film were found responsible for the inactivation of E. coli. Toxicity of copper ions (including Cu 2+ and Cu + ) leakage from Cu 2 O films was determined and the results showed that the amount of leakage copper ions was not toxic to E. coli. Finally, the Cu 2 O film was proved to be effective and reusable for PC and PEC inactivation of E. coli

  19. Inactivation of bacterial spores by combination processes: ultraviolet plus gamma radiation. [Streptococcus faecium, micrococcus radiodurans, clostridium botulinum

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N; Durban, E

    1973-01-01

    Bacterial spores, viruses and some vegetative bacteria such as Streptococcus faecium and Micrococcus radiodurans are distinguished by high radiation resistance. In order to lay a theoretical basis for biomedical sterilization applications, we have investigated the combined action of uv and gamma rays. Spores of two strains of C. botulinum were selected, a highly radiation resistant strain, 33A having a D/sub 10/-value of 0.32 Mrad, and a relatively radiation sensitive strain, 51B having a D/sub 10/-value of 0.12 Mrad. Strain 33A exhibits an extensive initial ''shoulder'' in its uv as well as gamma ray survival curves; strain 51B shows only a slight shoulder. The shoulder in the gamma ray survival curve of spores of strain 33A could be reduced or completely eliminated by preirradiation with uv. Simultaneously the D/sub 10/-value for gamma inactivation of spores of 33A was reduced substantially. For example, the gamma resistance was reduced almost to half of its original D/sub 10/-value by uv-preirradiation for only one minute under an 8 watt GE germicidal lamp. The effect of uv-preirradiation on the radiation sensitive strain 51B was less pronounced. In fact, there was about seven fold higher positive interaction (synergism) between uv and gamma radiation in 33A spores than in 51B spores. The experiments suggest that interference with DNA repair enzymes in the radiation resistant strain are responsible for lethal synergism between uv and gamma radiation. A hypothesis is developed attempting to explain the combined effect of these two radiations in terms of a special summation of known DNA lesions in the cell. These observations emphasize the potential practical advantages of combining uv and gamma rays for effective sterilization of certain biomedical devices, drugs and biologicals.

  20. Recombinant methods for screening human DNA excision repair proficiency

    International Nuclear Information System (INIS)

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period

  1. Using continuous UV extinction measurements to monitor and control the aerated phase of sequencing batch reactors; Einsatz der kontinuierlichen UV-Extinktionsmessung fuer die Ueberwachung und Regelung der Belueftungsphase in SBR-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, L.; Rott, U. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft; Bardeck, S. [Optek-Danulat GmbH (Germany)

    1999-07-01

    The work describes the measurement of UV extinction - expressed as the spectral absorption coefficient SAC - at a randomly chosen wave length as a technique for monitoring organic load in effluents from sequencing batch reactors (SBR) at municipal and industrial waste water treatment plants. Further described is to what extent the continuous determination of the SAC can be used in practice for the control of the aerated phase of sequencing batch reactors. By this means, process stabilization and optimization can be achieved and operating reliability can be enhanced. (orig.) [German] Inhalt dieses Beitrages ist es, die Messung der UV-Extinktion - ausgedrueckt durch den spektralen Absorptionskoeffizient (SAK) - bei einer frei gewaehlten Wellenlaenge als Verfahren fuer die Ueberwachung der organischen Belastung in den Ablaeufen von SBR-Anlagen (Sequencing-Batch-Reactor) in der kommunalen und industriellen Abwasserreinigung vorzustellen. Weiterhin soll dargestellt werden, in wieweit die kontinuierliche Bestimmung des SAK in der Praxis fuer die Regelung der beluefteten Phase von SBR-Anlagen eingesetzt werden kann. Hiermit kann eine Prozessstabilisierung und -optimierung der Anlagen erreicht sowie die Betriebssicherheit erhoeht werden. (orig.)

  2. Inactivation of catalase monolayers by irradiation with 100 keV electrons

    International Nuclear Information System (INIS)

    Hahn, M.; Seredynski, J.; Baumeister, W.

    1976-01-01

    A catalase monolayer adsorbed on a layer of arachidic acid deposited on a solid support was irradiated with 100 keV electrons simulating the conditions of electron microscopic imaging. Effective doses were calculated taking into account the angular and energy distribution of backscattered electrons. Enzymatic inactivation was chosen as the criterion for damage and was monitored by a rapid and quantifiable but nevertheless sensitive assay. Dose-response curves revealed that inactivation is a one-hit--multiple-target phenomenon, which is consistent with biochemical evidence for a cooperative function of subunits. The experimentally determined target size coincides fairly well with both calculated cross sections for inelastic interactions based on the atomic composition of catalase and with calculated cross sections for ionizing events based on the chemical bonds involved. This legitimates both types of calculations even for complex biomolecules

  3. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y A [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I V [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V U [Central Aerological Observatory, Moscow (Russian Federation)

    1996-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  4. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  5. Bromodeoxyuridine combined with UV light and gamma irradiation promotes the production of asymmetric somatic hybrid calli

    International Nuclear Information System (INIS)

    Trick, H.N.; Bates, G.W.

    1996-01-01

    The degree of gamma‐ or X‐ray‐induced donor chromosome elimination in asymmetric somatic hybrids is highly variable. Here the beneficial use of bromodeoxyuridine and UV light as additional chromosome destabilizing agents is described. Protoplasts of Nicotiana tabacum were fused with protoplasts of Nicotiana plumbaginifolia (Np) that carried the kanamycin‐resistance and glucuronidase (GUS) genes on separate chromosomes. Prior to fusion, the Np donor protoplasts were pretreated with bromodeoxyuridine and then were inactivated by treatment with iodoacetate ± UV light ± 200 Gy gamma irradiation. Hybrids were selected on medium containing kanamycin. The elimination of Np DNA was assessed by scoring of the fraction of hybrid calli that expressed GUS and by dot‐blot analysis using a Np‐specific probe. gamma irradiation alone resulted in elimination of 50% of Np DNA. Pretreatment with bromodeoxyuridine (10 μM) followed by 2.5 to 5 min UV light resulted in the elimination of 35–45% of the donor genome, but incorporation of bromodeoxyuridine (10 μM) followed by 2,5 to 5 min UV light and 200 Gy gamma irradiation resulted in 85 to 90% elimination of Np DNA

  6. An Evaluation of UV-Monitoring Enhanced Skin Cancer Prevention among Farm Youth in Rural Virginia

    Science.gov (United States)

    Chen, Yi-Chun; Ohanehi, Donatus C.; Redican, Kerry J.

    2015-01-01

    Background: Health districts in southwest Virginia have one of the highest ultraviolet (UV) radiation exposure and sunburn rate. Due to higher levels of UV exposure, rural farm youth are at higher risk for skin cancer than non-farm youth. Few studies have been published that explore best practices for decreasing UV exposure among this population.…

  7. Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii

    OpenAIRE

    Figueiredo, Ana Rita; Campos, Francisco; Freitas, Víctor de; Hogg, Tim; Couto, José António

    2008-01-01

    The aim of this work was to investigate the effect of wine phenolic aldehydes, flavonoids and tannins on growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Cultures were grown in ethanol-containing MRS/TJ medium supplemented with different concentrations of phenolic aldehydes or flavonoids and monitored spectrophotometrically. The effect of tannins was evaluated by monitoring the progressive inactivation of cells in ethanol-containing phosphate buffer supplemented...

  8. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  9. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    M.-M. Zempila

    2017-06-01

    Full Text Available This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4 UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh, in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990 and with a very low bias (0.000 to 0.011 in absolute units proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5

  10. Ultraviolet radiation inactivates SV40 by disrupting at least four genetic functions

    International Nuclear Information System (INIS)

    Brown, T.C.; Cerutti, P.A.

    1986-01-01

    The most UV sensitive region within the SV40 viral genome contains the transcriptional promotors and enhancers for the early and late viral genes plus part of the origin of DNA replication. Lesions within this regulatory region are 3.2-fold more effective in inactivating viral DNA than is the same amount of damage randomly distributed throughout the viral genome. The region least sensitive to damage lies within the coding portion of the viral coat protein genes, which are expressed only late in infection and would therefore be transcribed from undamaged progeny viral genomes, provided DNA replication occurs. Damage within this region is only 45% as effective in inactivating viral DNA as are randomly distributed lesions. Thus there is a 7-fold difference in the lethal effect of DNA damage within the most and least sensitive regions of the viral genome. Intermediate sensitivities are observed within the transcribed portion of the viral A gene, coding for the T antigen whose expression is required early in infection, and in a region at the terminus of DNA replication. The sum of the individual sensitivities for all regions of the SV40 genome is equal to the total sensitivity of viral DNA subjected to random damage. (author)

  11. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  12. The efficiency of different disinfecting agents in inactivating microorganisms detected in natural and treated waters; Eficiencia de diferentes agentes desinfectantes en la inactivacion de microorganismos detectados en aguas naturales y tratadas

    Energy Technology Data Exchange (ETDEWEB)

    Perez Recuerda, R.; Sanchez, J.M.; Borrego, J.J.

    1998-12-01

    The efficiency of microbial inactivation and sublethal injury of six disinfectants (chlorine, chloramines, uV-light, potassium permanganate, fluor and ozone) applied at different dose on several bacterial strains, yeast and viruses has been studied comparatively. Disinfectant effect was higher on Gramnegative bacteria (Salmonella, Pseudomonas, Escherichia and Klebsiella) than on Gram-positive (Clostridium, Enterococcus and Stanphylococcus); although the least inactivation effect was obtained on the MS-2 bacteriophage. The global efficiency ranking of the disinfectants assayed to produce the microbial inactivation was as follows; ozone>chlorine>UV-light>chloramines>permanganate>fluor. On the other hand, on Escherichia coli and Pseudomonas aerugionosa were observed the highest sublethal injuries provokes by the disinfectants and dose assayed. Therefore, these microorganisms are the main candidates to regrow and to form biofilm in drinking water distribution systems. 34 refs. (Author)

  13. Mild processing applied to the inactivation of the main foodborne bacterial pathogens

    DEFF Research Database (Denmark)

    Barba Orellana, Francisco Jose; Koubaa, Mohamed; do Prado-Silva, Leonardo

    2017-01-01

    shelf-lives, pasteurization and commercial sterilization may result in numerous nutritional and sensory changes in foods. To address these disadvantages, mild processing methods (i.e., processing technologies for food preservation that apply mild temperature; ... contaminants have been developed. Scope and approach This review emphasizes the main applications of mild technologies aiming to the inactivation of the four main pathogenic bacteria of relevance for food safety as well as their mechanisms of action. Key findings and conclusions Mild processing technologies...... such as high pressure processing, ultrasounds, pulsed electric fields, UV-light, and atmospheric cold plasma may serve, in some conditions, as useful alternatives to commercial sterilization and pasteurization aiming to destroy foodborne pathogens. Each of these mild technologies has a specific mode...

  14. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    Science.gov (United States)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  15. Technical note: Evaluation of standard ultraviolet absorption ozone monitors in a polluted urban environment

    Directory of Open Access Journals (Sweden)

    E. J. Dunlea

    2006-01-01

    Full Text Available The performance of the EPA Federal Equivalent Method (FEM technique for monitoring ambient concentrations of O3 via ultraviolet absorption (UV has been evaluated using data from the Mexico City Metropolitan Area field campaign (MCMA-2003. Comparisons of UV O3 monitors with open path Differential Optical Absorption Spectroscopy (DOAS and open path Fourier Transform Infrared (FTIR spectroscopy instruments in two locations revealed average discrepancies in the measured concentrations between +13% to −18%. Good agreement of two separate open path DOAS measurements at one location indicated that spatial and temporal inhomogeneities were not substantially influencing comparisons of the point sampling and open path instruments. The poor agreement between the UV O3 monitors and the open path instruments was attributed to incorrect calibration factors for the UV monitors, although interferences could not be completely ruled out. Applying a linear correction to these calibration factors results in excellent agreement of the UV O3 monitors with the co-located open path measurements; regression slopes of 0.94 to 1.04 and associated R2 values of >0.89. A third UV O3 monitor suffered from large spurious interferences, which were attributed to extinction of UV radiation within the monitor by fine particles (3 monitors and recommendations for future testing are made.

  16. uvsI mutants defective in UV mutagenesis define a fourth epistatic group of uvs genes in Aspergillus.

    Science.gov (United States)

    Chae, S K; Kafer, E

    1993-01-01

    Three UV-sensitive mutations of A. nidulans, uvsI, uvsJ and uvsA, were tested for epistatic relationships with members of the previously established groups, here called the "UvsF", "UvsC", and "UvsB" groups. uvsI mutants are defective for spontaneous and induced reversion of certain point mutations and differ also for other properties from previously analyzed uvs types. They are very sensitive to the killing effects of UV-light and 4-NQO (4-nitro-quinoline-N-oxide) but not to MMS (methylmethane sulfonate). When double- and single-mutant uvs strains were compared for sensitivity to these three agents, synergistic or additive effects were found for uvsI with all members of the three groups. The uvsI gene may therefore represent a fourth epistatic group, possibly involved in mutagenic repair. On the other hand, uvsJ was clearly epistatic with members of the UvsF group and fitted well into this group also by phenotype. The uvsA gene was tentatively assigned to the UvsC group. uvsA showed epistatic interactions with uvsC in all tests, and like UvsC-group mutants is UV-sensitive mainly in dividing cells. However, the uvsA mutation does not cause the defects in recombination and UV mutagenesis typical for this group.

  17. Outlier detection in UV/Vis spectrophotometric data

    NARCIS (Netherlands)

    Lepot, M.J.; Aubin, Jean Baptiste; Clemens, F.H.L.R.; Mašić, Alma

    2017-01-01

    UV/Vis spectrophotometers have been used to monitor water quality since the early 2000s. Calibration of these devices requires sampling campaigns to elaborate relations between recorded spectra and measured concentrations. In order to build robust calibration data sets, several spectra must be

  18. Biodosimetric analysis of medium pressure UV disinfection reactor treating unfiltered surface water

    International Nuclear Information System (INIS)

    Leinan, B.E.; Craik, S.A.; Smith, D.W.; Belosevic, M.

    2002-01-01

    Many small and medium-sized communities use chlorination of surface water as their sole treatment of potable water. Ultraviolet (UV) disinfection may offer these communities a cost effective treatment option for protection against pathogens not readily inactivated by chlorine. The effectiveness of UV reactors for microorganism reduction, however, is sensitive to UV dose delivery, which is in turn influenced by water quality characteristics. The effectiveness of a Calgon Carbon Inc. Sentinel medium-pressure UV reactor for microorganism reduction was determined using biodosimetry with two non-pathogenic indicator organisms - MS2 phage and Bacillus subtilis. Testing was conducted using low turbidity (<0.5 NTU) lake water characterized by relatively high absorbance in the UV range (UVT of approx. 87 to 88% at 254 nm). The efficiency of UV dose delivery in the reactor was determined for various operating conditions by calculating the normalized reductive equivalent irradiance (REI). With a single lamp in operation, the normalized REI measured with B. subtilis increased significantly when the flow rate through the reactor was increased from 380 L/min to 1140 L/min. This increase in reactor efficiency was believed to be due to improved reactor hydrodynamics and axial mixing that accompanied the higher flow rates. In contrast, treatment efficiency based on biodosimetry with MS2 phage was found to decrease with increasing flow rate when a single lamp was in operation. In general, treatment efficiency was greater when more than one adjacent lamp was in operation, suggesting that the influence of flow short-circuiting with single lamp operation. Differences between the outcomes observed with the two indicator microorganisms were not resolved, however, it was concluded that reactor efficiency was sensitive to both water flow rate and the number of adjacent lamps that were in operation. (author)

  19. Inactivation of pathogenic bacteria inoculated onto a Bacto™ agar model surface using TiO2-UVC photocatalysis, UVC and chlorine treatments.

    Science.gov (United States)

    Yoo, S; Ghafoor, K; Kim, S; Sun, Y W; Kim, J U; Yang, K; Lee, D-U; Shahbaz, H M; Park, J

    2015-09-01

    The aim of this study was to study inactivation of different pathogenic bacteria on agar model surface using TiO2-UV photocatalysis (TUVP). A unified food surface model was simulated using Bacto(™) agar, a routinely used microbial medium. The foodborne pathogenic bacteria Escherichia coli K12 (as a surrogate for E. coli O157:H7), Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes were inoculated onto the agar surface, followed by investigation of TUVP-assisted inactivation and morphological changes in bacterial cells. The TUVP process showed higher bacterial inactivation, particularly for Gram-negative bacteria, than UVC alone and a control (dark reaction). A TUVP treatment of 17·2 mW cm(-2) (30% lower than the UVC light intensity) reduced the microbial load on the agar surface by 4·5-6·0 log CFU cm(-2). UVC treatment of 23·7 mW cm(-2) caused 3·0-5·3 log CFU cm(-2) reduction. The use of agar model surface is effective for investigation of bacterial disinfection and TUVP is a promising nonthermal technique. The results showing effects of photocatalysis and other treatments for inactivation of bacterial pathogens on model surface can be useful for applying such processes for disinfection of fruit, vegetables and other similar surfaces. © 2015 The Society for Applied Microbiology.

  20. Influence of low ozone episodes on erythemal UV-B radiation in Austria

    Science.gov (United States)

    Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.

    2017-06-01

    This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.

  1. Effect of near-UV light on Na-K-ATPase of the rat lens

    Energy Technology Data Exchange (ETDEWEB)

    Torriglia, A.; Zigman, S.

    1988-06-01

    The influence of in vitro near-UV radiation exposure on the physical state of the rat lens and on its membrane-bound Na-K-ATPase activity was investigated. Lens swelling was correlated to the appearance of opacities and the inactivation of the enzyme. The results show a significant decrease in the Na-K-ATPase activity which may be an early change leading to osmotic type cataracts. The dose-effect curves obtained for cortical and epithelial enzymes were different. Since the data do not follow a mono-exponential function, the existence of two forms of Na-K-ATPase in the lens is discussed.

  2. Monitoring UV-induced signalling pathways in an ex vivo skin organ culture model using phospho-antibody array.

    Science.gov (United States)

    Lenain, Christelle; Gamboa, Bastien; Perrin, Agnes; Séraïdaris, Alexia; Bertino, Béatrice; Rival, Yves; Bernardi, Mathieu; Piwnica, David; Méhul, Bruno

    2018-05-01

    We investigated UV-induced signalling in an ex vivo skin organ culture model using phospho-antibody array. Phosphorylation modulations were analysed in time-course experiments following exposure to solar-simulated UV and validated by Western blot analyses. We found that UV induced P-p38 and its substrates, P-ERK1/2 and P-AKT, which were previously shown to be upregulated by UV in cultured keratinocytes and in vivo human skin. This indicates that phospho-antibody array applied to ex vivo skin organ culture is a relevant experimental system to investigate signalling events following perturbations. As the identified proteins are components of pathways implicated in skin tumorigenesis, UV-exposed skin organ culture model could be used to investigate the effect on these pathways of NMSC cancer drug candidates. In addition, we found that phospho-HCK is induced upon UV exposure, producing a new candidate for future studies investigating its role in the skin response to UV and UV-induced carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Green tide deactivation with layered-structure cuboids of Ag/CaTiO3 under UV light

    International Nuclear Information System (INIS)

    Lee, Soo-Wohn; Lozano-Sánchez, L.M.; Rodríguez-González, V.

    2013-01-01

    Graphical abstract: Synergic reasons such as mass transfer, morphology, biocide properties, UV-A photoresponse, and electron trapping that reduce recombination on Ag/CaTiO 3 nanocomposites, have the potential for the generation of reactive radicals that promote the fatal irreversible deactivation of Tetraselmis suecica algae in 12 min under UV-A irradiation. -- Highlights: • An alternative to deactivate harmful green tide is proposed by employing Ag/CaTiO 3 . • Particles of perovskite-like have rectangular prisms morphology with AgNPs ∼13 nm. • The cuboids achieve complete inactivation of Tetraselmis suecica algae in 12 min. • AgNPs functionalization induce fatal irreversible damages on the algae surface. -- Abstract: In this work, an alternative to deactivate noxious green tide Tetraselmis suecica in the short-term is proposed by employing Perovskite-like cube-shaped, crystalline CaTiO 3 semiconductors functionalized with atomic silver nanoparticles. CaTiO 3 was prepared by a microwave-assisted hydrothermal method and then Ag 0 NPs (1 wt% of CaTiO 3 ), were added by the photoreduction method. The XRD results show that crystalline CaTiO 3 has an orthorhombic unit cell with a Perovskite-like structure. Images obtained by FESEM and HRTEM microscopies show well-faceted CaTiO 3 rectangular prismatic morphology functionalizated with silver nanoparticles ∼13.5 nm. XPS and EDS-FESEM has confirmed the composition of CaTiO 3 and silver occurring mainly as reduced metal. The UV inactivation of noxious T. suecica with Ag/CaTiO 3 nanocomposites formed on bare materials results in complete deactivation of the algae in 12 min. The direct contact between harmful algae and Ag/CaTiO 3 nanocomposite is necessary to deactivate the algae and inhibits algae viability

  4. UV “Indices”—What Do They Indicate?

    Directory of Open Access Journals (Sweden)

    Hanns Moshammer

    2016-10-01

    Full Text Available Ultra-Violet (UV radiation covers the spectrum of wavelengths from 100 to 400 nm. The potency and biological activity for a variety of endpoints differ by wavelength. For monitoring and communication purposes, different UV action spectra have been developed. These spectra use different weighting functions. The action spectrum for erythemal dose is the most widely used one. This erythemal dose per time or dose-rate has been further simplified into a “UV index”. Following this example, in our review we use the term “index” or (plural “indices” in a more general description for all simplified single-value measures for any biologically effective UV dose, e.g., for human non-melanoma skin cancer and for previtamin D production rate. Ongoing discussion about the existence of an increased melanoma risk due to UV-A exposure underscores the uncertainties inherent in current weighting functions. Thus, we performed an online literature search to review the data basis for these indices, to understand their relevance for an individual, and to assess the applicability of the indices for a range of exposure scenarios. Even for natural (solar UV, the spectral composition varies spatially and temporally. Artificial UV sources and personal protection introduce further variation to the spectral composition. Many biological effects are proposed for UV radiation. Only few endpoints have been studied sufficiently to estimate a reliable index. Weighting functions for chronic effects and most importantly for cancer endpoints have been developed in animal models, and often for proxy endpoints only. Epidemiological studies on biological effects of UV radiation should not only depend on single-value weighted UV dose estimates (indexes but should strive for a more detailed description of the individual exposure. A better understanding of the adverse and beneficial effects of UV radiation by wavelength would also improve medical counseling and health

  5. U.V. irradiation inhibits the electrical block to polyspermy in echinoderms

    International Nuclear Information System (INIS)

    David, C.; Moreau, M.; Vilain, J.P.; Guerrier, P.

    1985-01-01

    Oocytes of the sea urchin Sphaerechinus granularis and the starfish Marthasterias glacialis have been submitted to U.V. irradiation before fertilization. This treatment significantly increased the incidence and severity of polyspermy in the sea urchin and was also found effective on starfish oocytes. These were found more resistant to damage than sea urchin eggs and U.V. irradiation did not affect either their response to the hormone l-methyladenine or the rate of elevation of the fertilization envelope, which assures the late and definitive block to polyspermy. Electrophysiological measurements performed on M. glacialis oocytes definitively demonstrate that U.V. irradiation completely inactivates voltage-dependent sodium channels, without altering the other main conductances, Cl - , K + or Ca 2+ . After such a treatment, the relative permeability of the membrane to Na + as compared to K + shifted from 0.019+-0.003 to 0.003+-0.002 and only the calcium component of the action potentials could be observed. However, a fertilization potential, preceded by small sperm induced steps, is still present in these conditions, although its peak and plateau level are greatly reduced. These new findings are discussed, which confirm the electrical nature of the fast block to polyspermy but question about the specificity of those sperm-gated channels which are supposed to trigger the fertilization potential. (author)

  6. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation

    Directory of Open Access Journals (Sweden)

    Dong S

    2018-04-01

    Full Text Available Shuai Dong,1,2 Hongxi Shi,1 Xintong Zhang,1,2 Xi Chen,1 Donghui Cao,2 Chuanbin Mao,3,4 Xiang Gao,1 Li Wang1 1Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, 2First Hospital of Jilin University, Changchun, Jilin, 3School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China; 4Department of Chemistry and Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK, USA Background: Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA’s phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. Methods: In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway.Results: A single-chain variable-fragment phage (JM with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate

  7. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  8. Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system.

    Science.gov (United States)

    Xiong, Pei; Hu, Jiangyong

    2013-09-01

    In this study, an effective photocatalytic disinfection system was established using the newly emerged high power UVA/LED lamp. Crystallizing dish coated with TiO2 was prepared by 32-times impregnation-drying processes, and served as the supporting container for water samples. This study focused on the application of this UVA/LED system for the photocatalytic disinfection of selected antibiotic-resistant bacteria, Escherichia coli ATCC 700891. The disinfection performances were studied under various light intensities and illumination modes. Results show that higher light intensity could reach more significant inactivation of E. coli ATCC 700891. With the same UV dose, log-removal of antibiotic-resistant bacteria decreased with circle time in the studied range, while increased with duty circle. A "residual disinfecting effect" was found in the following dark period for bacteria collected at different phases of photocatalytic process. Residual disinfecting effect was found not significant for bacteria with 30 min periodic illumination. While residual disinfecting effect could kill almost all bacteria after 90 min UV periodic illumination within the following 240 min dark period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents

    International Nuclear Information System (INIS)

    Croughan, W.S.; Behbehani, A.M.

    1988-01-01

    A comparative study of the different reactions of herpes simplex virus types 1 and 2 to Lysol, Listerine, bleach, rubbing alcohol, Alcide disinfectant (Alcide Corp., Westport, Conn.), and various pHs, temperatures, and UV light exposures was performed. Both types of stock virus (titers of approximately 10(6) and 10(5.5) for types 1 and 2, respectively) were inactivated by 0.5% Lysol in 5 min; by Listerine (1:1 mixtures) in 5 min; by 2000 ppm (2000 microliters/liter) of bleach in 10 min; by rubbing alcohol (1:1 mixtures) at zero time; by Alcide disinfectant (0.2 ml of virus plus 2.0 ml of Alcide) at zero time; by pHs 3, 5, and 11 in 10 min; and by a temperature of 56 degrees C in 30 min. A germicidal lamp at a distance of 48 cm failed to completely inactivate the two types in 15 min. Type 1 showed slightly more resistance to Listerine and bleach and significantly more resistance to heat; moreover, pH 9 did not affect the infectivity of either type after 10 min

  10. UV Deprivation Influences Social UV Preference in Juvenile Sticklebacks

    Directory of Open Access Journals (Sweden)

    Ricarda Modarressie

    2015-05-01

    Full Text Available Social aggregations occur in many different animal taxa and mainly result from non-random assortment. Investigating factors that shape and maintain the composition of social aggregations are among others a main topic for understanding ecological speciation processes. Aggregation decisions are mediated by olfactory and visual cues, which in many animals are extended into the UV part of the electromagnetic spectrum. Here, we were interested in developmental plasticity of social preferences with respect to UV radiation in aquatic organisms. Specifically, we tested whether different lighting environments with respect to UV wavelengths during early life stages influence the shoaling preference in juvenile threespine sticklebacks (Gasterosteus aculeatus. Family (full-sibling groups were split and reared under UV-lacking (UV- and UV-present (UV+ lighting conditions. Subsequent shoal choice experiments, in which test fish from both rearing conditions could simultaneously choose between a shoal seen behind a UV-blocking (UV- and a shoal seen behind a UV-transmitting (UV+ filter, revealed a significant effect of lighting condition during rearing on association preference. Test fish that had been deprived of UV spent significantly more time near the UV- shoal compared to the test fish reared under full-spectrum lighting conditions. The results are discussed with respect to plasticity of the visual system and environmental lighting conditions.

  11. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  12. Cell inactivation by heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E A [Lawrence Berkeley Lab., CA (United States). Cell and Molecular Biology Div.

    1992-06-01

    The inactivation of cells resulting in lethal or aberrant effects by charged particles is of growing interest. Charged particles at extremely high LET are capable of completely eliminating cell-type and cell-line differences in repair capacity. It is still not clear however whether the repair systems are inactivated, or merely that heavy-ion lesions are less repairable. Studies correlating the particle inactivation dose of radioresistant cells with intact DNA analyzed with pulse field gel electrophoresis and other techniques may be useful, but more experiments are also needed to assess the fidelity of repair. For particle irradiations between 40-100 keV/{mu}m there is however evidence for particle-induced activation of specific genes in mammalian cells, and certain repair processes in bacteria. New data are available on the inactivation of developmental processes in several systems including seeds, and cells of the nematode C. elegans. Future experimental and theoretical modeling research emphasis should focus on exploring particle-induced inactivation of endpoints assessing functionality and not just lethality, and on analyzing molecular damage and genetic effects arising in damage but non-inactivated survivors. The discrete nature of selective types of particle damage as a function of radiation quality indicates the value of accelerated ions as probes of normal and aberrant biological processes. Information obtained from molecular analyses of damage and repair must however be integrated into the context of cellular and tissue functions of the organism. (orig.).

  13. Towards a high performing UV-A sensor based on Silicon Carbide and hydrogenated Silicon Nitride absorbing layers

    International Nuclear Information System (INIS)

    Mazzillo, M.; Renna, L.; Costa, N.; Badalà, P.; Sciuto, A.; Mannino, G.

    2016-01-01

    Exposure to ultraviolet (UV) radiation is a major risk factor for most skin cancers. The sun is our primary natural source of UV radiation. The strength of the sun's ultraviolet radiation is expressed as Solar UV Index (UVI). UV-A (320–400 nm) and UV-B (290–320 nm) rays mostly contribute to UVI. UV-B is typically the most destructive form of UV radiation because it has enough energy to cause photochemical damage to cellular DNA. Also overexposure to UV-A rays, although these are less energetic than UV-B photons, has been associated with toughening of the skin, suppression of the immune system, and cataract formation. The use of preventive measures to decrease sunlight UV radiation absorption is fundamental to reduce acute and irreversible health diseases to skin, eyes and immune system. In this perspective UV sensors able to monitor in a monolithic and compact chip the UV Index and relative UV-A and UV-B components of solar spectrum can play a relevant role for prevention, especially in view of the integration of these detectors in close at hand portable devices. Here we present the preliminary results obtained on our UV-A sensor technology based on the use of hydrogenated Silicon Nitride (SiN:H) thin passivating layers deposited on the surface of thin continuous metal film Ni 2 Si/4H-SiC Schottky detectors, already used for UV-Index monitoring. The first UV-A detector prototypes exhibit a very low leakage current density of about 0.2 pA/mm 2 and a peak responsivity value of 0.027 A/W at 330 nm, both measured at 0V bias.

  14. DUVAS (derivative uv-absorption spectrometer): instrument description and operating manual

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Dougherty, J.M.; Metcalfe, C.E.

    1980-11-01

    DUVAS is a real-time, field-portable spectrometer capable of monitoring a variety of aromatic organic vapors and inorganic gases at sub-ppM concentrations. The instrument is a prototype, microcomputer-controlled, derivative ultraviolet (UV) absorption spectrometer (DUVAS) developed primarily for area monitoring at coal conversion facilities, although other important occupational and environmental monitoring applications for compounds such as SO 2 , NO/sub x/, NH 3 , and HCHO are also being pursued

  15. Photoreactivation and dark repair of environmental E. coli strains following 24 kHz continuous ultrasound and UV-C irradiation.

    Science.gov (United States)

    Kaur, Jasjeet; Karthikeyan, Raghupathy; Pillai, Suresh D

    2016-07-02

    In this study, effects of 24 kHz continuous ultrasound and UV-C on inactivation and potential repair of environmental E. coli strains were studied through a culture based method and a metabolic activity assay. Three environmental E. coli strains isolated from fecal samples of feral hog and deer and treated wastewater effluent were studied and compared with a laboratory E. coli strain (ATCC® 10798). Metabolic activity of E. coli cells during the inactivation and repair period was assessed using the AlamarBlue® assay. Transmission electron microscopy assays were also performed to evaluate morphological damage of bacterial cell wall. After 24 h of photoreactivation period, laboratory E. coli strain (ATCC® 10798) reactivated by 30% and 42% in contrast to E. coli isolate from treated wastewater effluent, which reactivated by 53% and 82% after ultrasound and UV-C treatment, respectively. Possible shearing and reduction in cell size of E. coli strains exposed to ultrasound was revealed by transmission electron micrographs. Metabolic activity of E. coli strains was greatly reduced due to morphological damage to cell membrane caused by 24 kHz continuous ultrasound. Based upon experimental data and TEM micrographs, it could be concluded that ultrasound irradiation has potential in advanced water treatment and water reuse applications.

  16. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement.

    Science.gov (United States)

    Cooper, S E; Martin, J H; Ghez, C

    2000-10-01

    We previously showed that inactivating the anterior interpositus nucleus in cats disrupts prehension; paw paths, normally straight and accurate, become curved, hypometric, and more variable. In the present study, we determined the joint kinematic and dynamic origins of this impairment. Animals were restrained in a hammock and trained to reach and grasp a cube of meat from a narrow food well at varied heights; movements were monitored using the MacReflex analysis system. The anterior interpositus nucleus was inactivated by microinjection of the GABA agonist muscimol (0.25-0.5 microgram in 0.5 microliter saline). For each joint, we computed the torque due to gravity, inertial resistance (termed self torque), interjoint interactions (termed interaction torque), and the combined effects of active muscle contraction and passive soft tissue stretch (termed generalized muscle torque). Inactivation produced significant reductions in the amplitude, velocity, and acceleration of elbow flexion. However, these movements continued to scale normally with target height. Shoulder extension was reduced by inactivation but wrist angular displacement and velocity were not. Inactivation also produced changes in the temporal coordination between elbow, shoulder, and wrist kinematics. Dynamic analysis showed that elbow flexion both before and during inactivation was produced by the combined action of muscle and interaction torque, but that the timing depended on muscle torque. Elbow interaction and muscle torques were scaled to target height both before and during inactivation. Inactivation produced significant reductions in elbow flexor interaction and muscle torques. The duration of elbow flexor muscle torque was prolonged to compensate for the reduction in flexor interaction torque. Shoulder extension was produced by extensor interaction and muscle torques both before and during inactivation. Inactivation produced a reduction in shoulder extension, primarily by reduced interaction

  17. Evaluating efficacy of filtration + UV-C radiation for ballast water treatment at different temperatures

    Science.gov (United States)

    Casas-Monroy, Oscar; Linley, Robert D.; Chan, Po-Shun; Kydd, Jocelyn; Vanden Byllaardt, Julie; Bailey, Sarah

    2018-03-01

    To prevent new ballast water-mediated introductions of aquatic nonindigenous species (NIS), many ships will soon use approved Ballast Water Management Systems (BWMS) to meet discharge standards for the maximum number of viable organisms in ballast water. Type approval testing of BWMS is typically conducted during warmer seasons when plankton concentrations are highest, despite the fact that ships operate globally year-round. Low temperatures encountered in polar and cool temperate climates, particularly during the winter season, may impact treatment efficacy through changes in plankton community composition, biological metabolic rates or chemical reaction rates. Filtration + UV irradiance is one of the most common ballast water treatment methods, but its effectiveness at low temperatures has not been assessed. The objective in this study was to examine the efficacy of filtration + UV-C irradiation treatment at low temperatures for removal or inactivation of phytoplankton and zooplankton populations during simulated ballast water treatment. Organisms from two size classes (≥ 10 to < 50 μm and ≥ 50 μm) were identified and enumerated using microscope and culture techniques. The response of organisms in both size categories to UV-C irradiation was evident across a range of temperatures (18 °C, 12 °C and 2 °C) as a significant decrease in concentration between controls and treated samples. Results indicate that filtration + UV-C irradiation will be effective at low temperatures, with few viable organisms ≥ 10 to < 50 μm recorded even 21 days following UV exposure (significantly lower than in the control treatment).

  18. Inactivation and unfolding of protein tyrosine phosphatase from Thermus thermophilus HB27 during urea and guanidine hydrochloride denaturation.

    Directory of Open Access Journals (Sweden)

    Yejing Wang

    Full Text Available The effects of urea and guanidine hydrochloride (GdnHCl on the activity, conformation and unfolding process of protein tyrosine phosphatase (PTPase, a thermostable low molecular weight protein from Thermus thermophilus HB27, have been studied. Enzymatic activity assays showed both urea and GdnHCl resulted in the inactivation of PTPase in a concentration and time-dependent manner. Inactivation kinetics analysis suggested that the inactivation of PTPase induced by urea and GdnHCl were both monophasic and reversible processes, and the effects of urea and GdnHCl on PTPase were similar to that of mixed-type reversible inhibitors. Far-ultraviolet (UV circular dichroism (CD, Tryptophan and 1-anilinonaphthalene -8-sulfonic acid (ANS fluorescence spectral analyses indicated the existence of a partially active and an inactive molten globule-like intermediate during the unfolding processes induced by urea and GdnHCl, respectively. Based on the sequence alignment and the homolog Tt1001 protein structure, we discussed the possible conformational transitions of PTPase induced by urea and GdnHCl and compared the conformations of these unfolding intermediates with the transient states in bovine PTPase and its complex structures in detail. Our results may be able to provide some valuable clues to reveal the relationship between the structure and enzymatic activity, and the unfolding pathway and mechanism of PTPase.

  19. Characterization of substances that restore impaired cell division of UV-irradiated E. coli B

    International Nuclear Information System (INIS)

    Yoshiyama, Y.; Shimoii, H.; Tamura, G.

    1981-01-01

    Substances which restore impaired cell division in UV-irradiated E. coli B were surveyed among various bacteria. The active substance was found only in several genera of Gram-negative bacteria, i.e., Escherichia, Enterobacter, Salmonella and some species of Pseudomonas. The activity in the dialyzed cell extract of E. coli B/r was observed in the presence of β-NAD and was enhanced by Mg 2+ and Mn 2+ . The active substance was very labile, but the activity was protected by 1 mM dithiothreitol in the process of purification. The activity of a fraction recovered through DEAE-cellulose column chromatography was stimulated by the presence of membrane fraction. Upon treatment with lipid-degrading enzymes and proteases, the division-stimulating activity was lost or reduced. It appears that the inactivation by lipase and phospholipase A2 was due to the formation of lysophospholipids and that a proteinous substance participated in the recovery of impaired cell division of UV-irradiated E. coli B

  20. Ultraviolet inactivation of papain

    International Nuclear Information System (INIS)

    Baugher, J.F.; Grossweiner, L.I.

    1975-01-01

    Flash photolysis transient spectra (lambda > 250 nm) of aqueous papain showed that the initial products are the neutral tryptophan radical Trp (lambdasub(max) 510 nm), the tryptophan triplet state 3 Trp (lambdasub(max) 460 nm), the disulfide bridge electron adduct -SS - - (lambdasub(max) 420 nm) and the hydrated electron esub(aq) - . The -SS - - yield was not altered by nitrous oxide or air, indicating that the formation of this product does not involve electrons in the external medium. The original papain preparation was activated by irradiating under nitrogen. The action spectrum supports previous work attributing the low initial activity to blocking of cysteinyl site 25 with a mixed disulfide. Flask lamp irradiation in nitrogen led to activation at low starting activities and inactivation at higher starting activities, while only inactivation at the same quantum yield was observed with air saturation. The results are consistent with photoionization of an essential tryptophyl residue as the key inactivating step. (author)

  1. The effect of near-UV light on Na-K-ATPase of the rat lens

    International Nuclear Information System (INIS)

    Torriglia, A.; Zigman, S.

    1988-01-01

    The influence of in vitro near-UV radiation exposure on the physical state of the rat lens and on its membrane-bound Na-K-ATPase activity was investigated. Lens swelling was correlated to the appearance of opacities and the inactivation of the enzyme. The results show a significant decrease in the Na-K-ATPase activity which may be an early change leading to osmotic type cataracts. The dose-effect curves obtained for cortical and epithelial enzymes were different. Since the data do not follow a mono-exponential function, the existence of two forms of Na-K-ATPase in the lens is discussed. (author)

  2. The history of the UV radiation climate of the earth--theoretical and space-based observations.

    Science.gov (United States)

    Cockell, C S; Horneck, G

    2001-04-01

    In the Archean era (3.8-2.5 Ga ago) the Earth probably lacked a protective ozone column. Using data obtained in the Earth's orbit on the inactivation of Bacillus subtilis spores we quantitatively estimate the potential biological effects of such an environment. We combine this practical data with theoretical calculations to propose a history of the potential UV stress on the surface of the Earth over time. The data suggest that an effective ozone column was established at a pO2 of approximately 5 x 10(-3) present atmospheric level. The improvement in the UV environment on the early Proterozoic Earth might have been a much more rapid event than has previously been supposed, with DNA damage rates dropping by two orders of magnitude in the space of just a few tens of millions of years. We postulate that a coupling between reduced UV stress and increased pO2 production could have contributed toward a positive feedback in the production of ozone in the early Proterozoic atmosphere. This would contribute to the apparent rapidity of the oxidation event. The data provide an evolutionary perspective on present-day Antarctic ozone depletion.

  3. Responses of phylloplane yeasts to UV-B (290-320 nm) radiation: interspecific differences in sensitivity

    International Nuclear Information System (INIS)

    Gunasekera, T.S.; Paul, N.D.; Ayres, P.G.

    1997-01-01

    The sensitivity to UV-B (290–320 nm) radiation of common phylloplane yeasts from two contrasting UV-B environments was compared in the laboratory using mixtures of white light (PAR: 400–700 nm) and UV-B radiation from artificial lamp sources. Sporidiobolus salmonicolor, Rhodotorula mucilaginosa and Cryptococcus sp., the dominant yeasts on leaves of tea (Camellia sinensis), were isolated in Sri Lanka (SL), while Sporidiobolus sp. and Bullera alba, dominant on faba bean (Vicia faba), were isolated in the U.K. Dose responses were determined separately for each yeast. UV-B reduced colony forming units (due to cell mortality or inactivation) and colony size (due to reduced multiplication) of all yeasts. The LD 50 values and doses causing 50% reduction of cells per colony were higher for SL isolates than U.K. isolates. Results indicated that each yeast is somewhat vulnerable to UV-B doses representative of its natural habitat. The relative insensitivity of SL isolates was shown when SL and U.K. isolates were irradiated simultaneously with the same dose of UV-B. Of the two U.K. yeasts, B. alba was significantly more sensitive than Sporidiobolus sp. to UV-B. Except for R. mucilaginosa from SL, all yeasts demonstrated some photorepair in the presence of white light. White light provided relatively little protection for the U.K. isolate of Sporidiobolus sp. although it allowed increased colony size. The spectral responses of Sporidiobolus sp. (U.K.) and of B. alba (U.K.) were broadly similar. Wavelengths longer than 320 nm had no measurable effect on colony forming units. However, colony survival was significantly reduced at 310 nm and all shorter wavebands. No colonies were counted at 290 nm or below. (author)

  4. The responses to supplementary of UV radiation of some temperate meadow species

    International Nuclear Information System (INIS)

    Cooley, N.M.

    2002-01-01

    Full text: The growth and development of various meadow species was monitored while growing under enhanced UV-radiation in the natural light environment. Growth responses to supplementary ultraviolet-B (UV-B+A) and ultraviolet-A (UV-A) were compared to the ambient daylight treatment for Bellis perennis, Cardamine pratensis, Cynosurus critatus and Ranunculus ficaria. When the response of ultraviolet A (UV-A) treated plants were compared with those of the UV-B+A, differences were found which varied according to the species and parameter investigated. To further understand the growth responses of the UV-A treatment and their relationship to the UV-B responses polychromatic action spectra in the natural environment was employed B perennis had an action maximum in the UV B (280-315 nm) while C cristatus demonstrates no action in the UV-B but action in the UV-A region (315-400 nm.). To enable further explanation of the effects of elevated UV radiation on the meadow plants Arabidopsis thaliana ecotypes and mutants were investigated. A thaliana ecotypes dry weight accumulation was found to respond differently to the UV treatments. UV B+A treatment was found to inhibit dry weight accumulation in most ecotypes. When UV B+A induced inhibition was expressed in terms of ambient growth rate for each ecotype a linear relationship could be derived. The higher the growth rate the more susceptible the ecotype was to UV-B+A inhibition. The pertinence of the UV-A treatment and UV protocol is discussed. It is suggested that UV responses could alter the diversity of the meadow equilibrium

  5. Quantification of biologically effective environmental UV irradiance

    Science.gov (United States)

    Horneck, G.

    To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance: (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb; (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve; and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.

  6. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  7. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  8. Inactivation of enteroviruses in sewage with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.E.; Bogdanov, M.V.; Kazantseva, V.A.; Gabrilevskaia, L.N.; Kodkind, G.K.H.

    The study of ozone inactivation of enteroviruses in sewage showed the presence in sewage of suspensions of organic origin and bacterial flora to influence the rate of inactivation. The inactivation rate of poliomyelitis virus in sewage free from organic suspension and bacterial flora was significantly higher than that in sewage containing such suspension and bacterial flora. The inactivation rate of enteroviruses was found not to depend upon the protein and salt composition and pH of sewage or strain appurtenance of viruses. The inactivation rate of enteroviruses directly depended upon the dose of ozone and time of contact with it. Differences in the resistance of different types of poliomyelitis virus, ECHO and Coxsackie viruses to the effect of ozone are likely exist. These differences are manifested within the range of relatively small doses of ozone. E. coli is more resistant to ozone than entero-viruses. The results of laboratory studies were used to choose the regimen of sanitation of urban sewage to be used in technological cycles of industrial enterprises.

  9. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    Science.gov (United States)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  10. Mycobacteria inactivation using Engineered Water Nanostructures (EWNS).

    Science.gov (United States)

    Pyrgiotakis, Georgios; McDevitt, James; Gao, Ya; Branco, Alan; Eleftheriadou, Mary; Lemos, Bernardo; Nardell, Edward; Demokritou, Philip

    2014-08-01

    Airborne transmitted pathogens such as Mycobacterium tuberculosis (Mtb) cause serious, often fatal infectious disease with enormous global health implications. Due to their unique cell wall and slow growth, mycobacteria are among the most resilient microbial forms. Herein we evaluate the ability of an emerging, chemical-free, nanotechnology-based method to inactivate M. parafortuitum (Mtb surrogate). This method is based on the transformation of atmospheric water vapor into engineered water nano-structures (EWNS) via electrospray. We demonstrate that the EWNS can interact with and inactivate airborne mycobacteria, reducing their concentration levels significantly. Additionally, EWNS can inactivate M. parafortuitum on surfaces eight times faster than the control. The mechanism of mycobacteria inactivation was also investigated in this study. It was demonstrated that the EWNS effectively deliver the reactive oxygen species, encapsulated during the electrospray process, to the bacteria oxidizing their cell membrane resulting into inactivation. Overall, this is a method with the potential to become an effective intervention technology in the battle against airborne infections. This study demonstrates the feasibility of mycobacterium inactivation in airborne form or on contact surfaces using electrospray activated water nano-structures. Given that the method is free of toxic chemicals, this might become an important tool in the prevention of mycobacterial infections, which are notoriously hard to treat. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures.

    Science.gov (United States)

    Shi, Yunzhou; Manco, Megan; Moyal, Dominique; Huppert, Gil; Araki, Hitoshi; Banks, Anthony; Joshi, Hemant; McKenzie, Richard; Seewald, Alex; Griffin, Guy; Sen-Gupta, Ellora; Wright, Donald; Bastien, Philippe; Valceschini, Florent; Seité, Sophie; Wright, John A; Ghaffari, Roozbeh; Rogers, John; Balooch, Guive; Pielak, Rafal M

    2018-01-01

    Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application.

  12. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures

    Science.gov (United States)

    Shi, Yunzhou; Manco, Megan; Moyal, Dominique; Huppert, Gil; Araki, Hitoshi; Banks, Anthony; Joshi, Hemant; McKenzie, Richard; Seewald, Alex; Griffin, Guy; Sen-Gupta, Ellora; Wright, Donald; Bastien, Philippe; Valceschini, Florent; Seité, Sophie; Wright, John A.; Ghaffari, Roozbeh; Rogers, John; Balooch, Guive

    2018-01-01

    Excessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application. PMID:29293664

  13. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures.

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    Full Text Available Excessive ultraviolet (UV radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses. The patch contains functional layers of ultrathin stretchable electronics and a photosensitive patterned dye that reacts to UV radiation. Color changes in the photosensitive dyes correspond to UV radiation intensity and are analyzed with a smartphone camera. A software application has feature recognition, lighting condition correction, and quantification algorithms that detect and quantify changes in color. These color changes are then correlated with corresponding shifts in UV dose, and compared to existing UV dose risk levels. The soft mechanics of the UV patch allow for multi-day wear in the presence of sunscreen and water. Two evaluation studies serve to demonstrate the utility of the UV patch during daily activities with and without sunscreen application.

  14. Cold-Chain Adaptability During Introduction of Inactivated Polio Vaccine in Bangladesh, 2015.

    Science.gov (United States)

    Billah, Mallick M; Zaman, K; Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I A; Russell, Kevin L; Chai, Shua J

    2017-07-01

    Introduction of inactivated polio vaccine creates challenges in maintaining the cold chain for vaccine storage and distribution. We evaluated the cold chain in 23 health facilities and 36 outreach vaccination sessions in 8 districts and cities of Bangladesh, using purposive sampling during August-October 2015. We interviewed immunization and cold-chain staff, assessed equipment, and recorded temperatures during vaccine storage and transportation. All health facilities had functioning refrigerators, and 96% had freezers. Temperature monitors were observed in all refrigerators and freezers but in only 14 of 66 vaccine transporters (21%). Recorders detected temperatures >8°C for >60 minutes in 5 of 23 refrigerators (22%), 3 of 6 cold boxes (50%) transporting vaccines from national to subnational depots, and 8 of 48 vaccine carriers (17%) used in outreach vaccination sites. Temperatures cold boxes (21%) transporting vaccine from subnational depots to health facilities and 14 of 48 vaccine carriers (29%). Bangladesh has substantial cold-chain storage and transportation capacity after inactivated polio vaccine introduction, but temperature fluctuations during vaccine transport could cause vaccine potency loss that could go undetected. Bangladesh and other countries should strive to ensure consistent and sufficient cold-chain storage and monitor the cold chain during vaccine transportation at all levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Photocatalytic inactivation of hospital-associated bacteria using titania nanoparticle coated textiles

    International Nuclear Information System (INIS)

    Tahir, T.; Qazi, I.A.; Hashmi, I.; Baig, M.A.

    2017-01-01

    Modification in hospital textiles to include disinfection properties may help in the reduction of nosocomial infections. In this study, antibacterial properties were imparted to cotton fabric by modifying it with pure and (1%) silver doped titania nanoparticles. The nanoparticles were prepared by liquid impregnation process and characterized using X-ray Diffraction (XRD) spectroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). These nanoparticles were attached to cotton fabric using a cross linking agent succinic acid. Samples were washed at three different temperatures (30, 60 and 90 degree C), with and without detergent and for different number of cycles to test the durability of nanoparticles to the fabric. Scanning Electron Microscopy (SEM) was used for studying surface topography of fabric. Energy Dispersive X-ray fluorescence (ED-XRF) spectrometer was used to detect the titanium present on the fabric. Catalytic spectrophotometry using UV/visible spectrophotometer was used to determine titania concentration in washing effluent. The antibacterial activity of the modified fabric was examined against Methicillin Resistant Staphylococcus aureus (MRSA) under UV and fluorescent light. The maximum durability of titania nanoparticles to the fabric was retained after washing without detergent at 30 degree C. The overall results of durability testing showed that coating of nanoparticles on fabric was durable against washing at various conditions, hence suitable from an environmental perspective. Antibacterial testing showed 100% photocatalytic inactivation of MRSA after 4 and 24 h of UV and fluorescent light exposure respectively. The potential of using such textiles in hospital environment was validated through the use of modified bed linen in a local hospital for a period of three days consecutively. The viable count indicated the reduced bacterial contamination on nano-coated fabric as compared to uncoated fabric. Bed linen, curtains

  16. Un-laminated Gafchromic EBT3 film for ultraviolet radiation monitoring

    International Nuclear Information System (INIS)

    Welch, David; Randers-Pehrson, Gerhard; Brenner, David J.; Spotnitz, Henry M.

    2017-01-01

    Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines un-laminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 μJ/cm 2 . The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring. (authors)

  17. Development of a new water sterilization device with a 365 nm UV-LED.

    Science.gov (United States)

    Mori, Mirei; Hamamoto, Akiko; Takahashi, Akira; Nakano, Masayuki; Wakikawa, Noriko; Tachibana, Satoko; Ikehara, Toshitaka; Nakaya, Yutaka; Akutagawa, Masatake; Kinouchi, Yohsuke

    2007-12-01

    Ultraviolet (UV) irradiation is an effective disinfection method. In sterilization equipment, a low-pressure mercury lamp emitting an effective germicidal UVC (254 nm) is used as the light source. However, the lamp, which contains mercury, must be disposed of at the end of its lifetime or following damage due to physical shock or vibration. We investigated the suitability of an ultraviolet light-emitting diode at an output wavelength of 365 nm (UVA-LED) as a sterilization device, comparing with the other wavelength irradiation such as 254 nm (a low-pressure mercury lam) and 405 nm (LED). We used a commercially available UVA-LED that emitted light at the shortest wavelength and at the highest output energy. The new sterilization system using the UVA-LED was able to inactivate bacteria, such as Escherichia coli DH5 alpha, Enteropathogenic E. coli, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella enterica serovar Enteritidis. The inactivations of the bacteria were dependent on the accumulation of UVA irradiation. Taking advantage of the safety and compact size of LED devices, we expect that the UVA-LED sterilization device can be developed as a new type of water sterilization device.

  18. UVA Causes Dual Inactivation of Cathepsin B and L Underlying Lysosomal Dysfunction in Human Dermal Fibroblasts

    Science.gov (United States)

    Lamore, Sarah D.; Wondrak, Georg T.

    2013-01-01

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts. PMID:23603447

  19. Inactivation and mutation induction in Saccharomyces cerevisiae exposed to simulated sunlight: evaluation of action spectra.

    Science.gov (United States)

    Schenk-Meuser, K; Pawlowsky, K; Kiefer, J

    1992-07-15

    The effectiveness of polychromatic light irradiation was investigated for haploid yeast cells. Inactivation and mutation induction were measured in both a RAD-wildtype strain and an excision-repair defective strain. The behaviour of vegetative "wet" cells was compared to that of dehydrated cells. The aim of the study was to assess the interaction of UVC with other wavelengths in cells of different states of humidity. The irradiation procedure was therefore carried out using a solar simulator either with full spectrum or with a UVC-blocking filter (modified sunlight) added. The results were analysed on the basis of separately determined action spectra. The summation of the efficiency of individual wavelengths was compared to the values obtained from polychromatic irradiation. It is shown that the effects caused by the whole-spectrum irradiation in wet cells can be predicted sufficiently from the calculation, while dried wildtype cells exhibit higher mutation rates. Thus it can be assumed that drying-specific damage leads to lethal and mutagenic lesions which are processed in different ways, causing a synergistic behaviour in mutation induction. Irradiation of vegetative cells with modified sunlight (UVC-) results in less inactivation and lower mutation rates than were calculated. From these results it can be concluded that this antagonistic behaviour is caused by the interaction of near-UV photoproducts.

  20. UNLAMINATED GAFCHROMIC EBT3 FILM FOR ULTRAVIOLET RADIATION MONITORING.

    Science.gov (United States)

    Welch, David; Randers-Pehrson, Gerhard; Spotnitz, Henry M; Brenner, David J

    2017-11-01

    Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines unlaminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 µJ/cm2. The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Inactivated Tianjin strain, a novel genotype of Sendai virus, induces apoptosis in HeLa, NCI-H446 and Hep3B cells.

    Science.gov (United States)

    Chen, Jun; Han, Han; Wang, Bin; Shi, Liying

    2016-07-01

    The Sendai virus strain Tianjin is a novel genotype of the Sendai virus. In previous studies, ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) demonstrated antitumor effects on human breast cancer cells. The aim of the present study was to investigate the in vitro antitumor effects of UV-Tianjin on the human cervical carcinoma HeLa, human small cell lung cancer NCI-H446 and human hepatocellular carcinoma Hep 3B cell lines, and the possible underlying mechanisms of these antitumor effects. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that UV-Tianjin treatment inhibited the proliferation of HeLa, NCI-H446 and Hep 3B cells in a dose- and time-dependent manner. Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide double staining indicated that UV-Tianjin induced dose-dependent apoptosis in all three cell lines with the most significant effect observed in the HeLa cell line. In the HeLa cell line, UV-Tianjin-induced apoptosis was further confirmed by the disruption of the mitochondria membrane potential and the activation of caspases, as demonstrated by fluorescent cationic dye and colorimetric assays, respectively. In addition, western blot analysis revealed that UV-Tianjin treatment resulted in significant upregulation of cytochrome c , apoptosis protease activating factor-1, Fas, Fas ligand and Fas-associated protein with death domain, and activated caspase-9, -8 and -3 in HeLa cells. Based on these results, it is hypothesized that UV-Tianjin exhibits anticancer activity in HeLa, NCI-H446 and Hep 3B cell lines via the induction of apoptosis. In conclusion, the results of the present study indicate that in the HeLa cell line, intrinsic and extrinsic apoptotic pathways may be involved in UV-Tianjin-induced apoptosis.

  2. [Kinetics of catalase inactivation induced by ultrasonic cavitation].

    Science.gov (United States)

    Potapovich, M V; Eremin, A N; Metelitsa, D I

    2003-01-01

    Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.

  3. Lunar and Planetary Science XXXV: Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites

    Science.gov (United States)

    2004-01-01

    The session Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites includes the following topics: 1) Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential? 2) An Analysis of Potential Photosynthetic Life on Mars; 3) Radiation Inactivation of Bacterial spores on Mars; 4) Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers; 5) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents; 6) Signs of Life in Meridiani Planum-What Might Opportunity See (or Miss)? 7) Isolation of PUrines and Pyrimidines from the Murchison Meteorite Using Sublimation; and 8) Relative Amino Acid Composition of CM1 Carbonaceous Chondrites.

  4. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  5. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  6. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  7. 207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies.

    Directory of Open Access Journals (Sweden)

    Manuela Buonanno

    Full Text Available BACKGROUND: 0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ~200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. AIMS: The aim of this work was to test the biophysically-based hypothesis that ~200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. METHODS: A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts were measured, for both UV radiations incident on 3-D human skin tissue. RESULTS: We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. CONCLUSIONS: As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively

  8. 207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies.

    Science.gov (United States)

    Buonanno, Manuela; Randers-Pehrson, Gerhard; Bigelow, Alan W; Trivedi, Sheetal; Lowy, Franklin D; Spotnitz, Henry M; Hammer, Scott M; Brenner, David J

    2013-01-01

    0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ~200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. The aim of this work was to test the biophysically-based hypothesis that ~200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue. We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug

  9. Structure of suicide-inactivated β-hydroxydecanoyl-thioester dehydrase

    International Nuclear Information System (INIS)

    Schwab, J.M.; Ho, C.K.; Li, W.B.; Townsend, C.A.; Salituro, G.M.

    1986-01-01

    β-Hydroxydecanoylthioester dehydrase, the key enzyme in biosynthesis of unsaturated fatty acids under anaerobic conditions, equilibrates thioesters of (R)-3-hydroxydecanoic acid, E-2-decenoic acid, and Z-3-decenoic acid. Dehydrase is irreversibly inactivated by the N-acetylcysteamine thioester of 3-decynoic acid (3-decynoyl-NAC), via dehydrase-catalyzed isomerization to 2,3-decadienoyl-NAC. To probe the relationship between normal catalysis and suicide inactivation, the structure of the inactivated enzyme has been studied. 3-[2- 13 C]Decynoyl-NAC was synthesized and incubated with dehydrase. 13 C NMR showed that attack of 2,3-decadienoyl-NAC by the active site histidine gives 3-histidinyl-3-decenoyl-NAC, which slowly rearranges to the more stable Δ 2 isomer. Model histidine-allene adducts have been made and characterized. Analysis of NMR data show that the C=C configuration of the decenoyl moiety of enzyme-bound inactivator is E. The suggestion that the mechanism of dehydrase inactivation parallels its normal mechanism of action is supported these findings

  10. Modelling and application of the inactivation of microorganism

    International Nuclear Information System (INIS)

    Oğuzhan, P.; Yangılar, F.

    2013-01-01

    Prevention of consuming contaminated food with toxic microorganisms causing infections and consideration of food protection and new microbial inactivation methods are obligatory situations. Food microbiology is mainly related with unwanted microorganisms spoiling foods during processing and transporting stages and causing diseases. Determination of pathogen microorganisms is important for human health to define and prevent dangers and elongate shelf life. Inactivation of pathogen microorganisms can provide food security and reduce nutrient losses. Microbial inactivation which is using methods of food protection such as food safety and fresh. With this aim, various methods are used such as classical thermal processes (pasteurisation, sterilisation), pressured electrical field (PEF), ionised radiation, high pressure, ultrasonic waves and plasma sterilisation. Microbial inactivation modelling is a secure and effective method in food production. A new microbiological application can give useful results for risk assessment in food, inactivation of microorganisms and improvement of shelf life. Application and control methods should be developed and supported by scientific research and industrial applications

  11. Uranium determination by UV-Vis spectrophotometry in organic matrix

    International Nuclear Information System (INIS)

    Iwaki, Leonardo E.O.; Silva, Ieda S.; Oliveira, Luis C.

    2013-01-01

    Concentrations of uranium in the process samples provide essential information required for nuclear process monitoring. A large number of techniques have been developed to allow uranium determination, but each technique possesses some advantages and disadvantages and cannot be applied without difficulty to all samples. The ultraviolet visible spectrophotometry (UV-Vis) is widely method used in analytical industrial processes due to its simplicity, rapidity, low costs, low generation of analytical waste, easy calibration and operation. In this study, we describe a simple and fast quantification method to determination of a high amount of uranium in organic phase (TBP/kerosene) using UV-Vis spectrophotometry. The process sample was analyzed in UV-Vis and compared with inductively coupled plasma optical emission spectrometry (ICP OES) showing similar results in both methods. The statistical tests (Student-t and Fischer) showed that the both techniques they are equivalent. (author)

  12. Pathogen inactivation in fresh frozen plasma using riboflavin and ultraviolet light: Effects on plasma proteins and coagulation factor VIII

    Directory of Open Access Journals (Sweden)

    Stanojković Zoran

    2011-01-01

    Full Text Available Background/Aim. Riboflavin (vitamin B2 activated by ultraviolet (UV light, produces active oxygen which damages cell membrane and prevents replication of the carrier of diseases (viruses, bacteria, protozoa in all blood products. The aim of this study was to establish the influence of the process of photo inactivation in pathogens using riboflavin and UV rays on the concentration of coagulation factor VIII:C (FVIII:C and proteins in plasma that were treated before freezing. Methods. The examination included 20 units of plasma, separated from whole blood donated by voluntary blood donors around 6 hours from the moment of collection. The units were pooled and separated in to two groups: one consisted of 10 control units and the other of 10 experimental units. Experimental units of the plasma were treated by riboflavin (35 mL and UV rays (6.24 J/mL, 265-370 nm on Mirasol aparature (Caridian BCT Biotechnologies, USA in approximate duration of 6 minutes. Furthermore, 35 mL of saline solution was added to the control plasma. One sample for examining was taken from the control plasma (KG and two residual were taken from experimental plasma after the addition of riboflavin either before (EG1 or post illumination (EG2. Results. Comparing the mean values of FVIII:C (% we noticed statistically significantly higher level in the EG1 group than in the EG2 group (65.00 ± 4.52 vs 63.20 ± 4.73; t = 4.323, p = 0.002, while between the KG and experimental groups (EG1 and EG2 there was no statistically significant difference in the concentration of FVIII:C. There was a statistically significant decrease of albumin concentration (g/L in the EG2 group comparing to the KG (33.35 ± 0.94 vs 31.94 ± 0.84; t = 3.534, p = 0.002, but there was no mentioned difference in albumin concentration between the KG and the EG1, so as between the EG1 and the EG2. Conclusion. Plasma inactivated by riboflavin and UV rays (Mirasol PRT sistem, Caridian BCT, USA keeps all the

  13. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  14. UV filters bioaccumulation in fish from Iberian river basins

    International Nuclear Information System (INIS)

    Gago-Ferrero, Pablo; Díaz-Cruz, M. Silvia; Barceló, Damià

    2015-01-01

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification

  15. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes

    International Nuclear Information System (INIS)

    Guo, Changsheng; Wang, Kai; Hou, Song; Wan, Li; Lv, Jiapei; Zhang, Yuan; Qu, Xiaodong; Chen, Shuyi; Xu, Jian

    2017-01-01

    Highlights: • TiO 2 thin film was successfully synthesized for treating ARB and ARGs from water. • More than 5.5 log units of ARB reduction was achieved by TiO 2 under UV irradiation. • With TiO 2 , ARGs were reduced by more than 5 log units under UV irradiation. • TiO 2 could remove both intracellular and extracellular forms of ARGs. - Abstract: Inactivating antibiotic resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) are very important to prevent their spread into the environment. Previous efforts have been taken to eliminate ARB and ARGs from aqueous solution and sludges, however, few satisfying results have been obtained. This study investigated whether photocatalysis by TiO 2 was able to reduce the two ARGs, mecA and ampC, within the host ARB, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. The addition of H 2 O 2 and matrix effect on the removal of ARB and ARGs were also studied. TiO 2 thin films showed great effect on both ARB inactivation and ARGs removal. Approximately 4.5-5.0 and 5.5–5.8 log ARB reductions were achieved by TiO 2 under 6 and 12 mJ/cm 2 UV 254 fluence dose, respectively. For ARGs, 5.8 log mecA reduction and 4.7 log ampC reduction were achieved under 120 mJ/cm 2 UV 254 fluence dose in the presence of TiO 2 . Increasing dosage of H 2 O 2 enhanced the removal efficiencies of ARB and ARGs. The results also demonstrated that photocatalysis by TiO 2 was capable of removing both intracellular and extracellular forms of ARGs. This study provided a potential alternative method for the removal of ARB and ARGs from aqueous solution.

  16. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing

    International Nuclear Information System (INIS)

    Friedler, Eran; Gilboa, Yael

    2010-01-01

    This paper examines the microbial quality of treated RBC (Rotating Biological Contactor) and MBR (Membrane Bioreactor) light greywater along a continuous pilot-scale reuse system for toilet flushing, quantifies the efficiency of UV disinfection unit, and evaluates the regrowth potential of selected microorganisms along the system. The UV disinfection unit was found to be very efficient in reducing faecal coliforms and Staphylococcus aureus. On the other hand, its efficiency of inactivation of HPC (Heterotrophic Plate Count) and Pseudomonas aeruginosa was lower. Some regrowth occurred in the reuse system as a result of HPC regrowth which included opportunistic pathogens such as P. aeruginosa. Although the membrane (UF) of the MBR system removed all bacteria from the greywater, bacteria were observed in the reuse system due to 'hopping phenomenon.' The microbial quality of the disinfected greywater was found to be equal or even better than the microbial quality of 'clean' water in toilet bowls flushed with potable water (and used for excretion). Thus, the added health risk associated with reusing the UV-disinfected greywater for toilet flushing (regarding P. aeruginosa and S. aureus), was found to be insignificant. The UV disinfection unit totally removed (100%) the viral indicator (F-RNA phage, host: E. coli F amp + ) injected to the treatment systems simulating transient viral contamination. To conclude, this work contributes to better design of UV disinfection reactors and provides an insight into the long-term behavior of selected microorganisms along on-site greywater reuse systems for toilet flushing.

  17. Efficacy of hand held, inexpensive UV light sources on Acanthamoeba, causative organism in amoebic keratitis

    Directory of Open Access Journals (Sweden)

    Ivan Cometa

    2010-01-01

    Full Text Available Ivan Cometa1, Andrew Rogerson1, Scott Schatz21Department of Biology, California State University Fresno, Fresno, CA, USA; 2Arizona College of Optometry, Midwestern University, Glendale, AZ, USAAbstract: Multipurpose lens cleaning solutions (MPS fail to consistently kill or inactivate Acanthamoeba cysts and UV irradiation, while effective at high doses, can damage contact lenses. The present study considered synergy of action between MPS and hand-held inexpensive (ie, relatively weak UV irradiation units. Regardless of disinfection method recently formed cysts (<10 days were far more susceptible to treatment than mature cysts (>14 days. This has important implications for future protocols on testing methods for killing amoebae. The study also showed that cysts of different strains (two tested, FLA2 and P120 are variable in their response to MPS, presumably reflecting differences in cyst wall structure and thus permeability to the disinfectant. On the other hand, the effect of UV irradiation was not wall structure dependent. A 6-hour treatment with MPS alone killed trophic amoebae but failed to kill any mature cysts. Cysts of strain FLA2 were killed after 24 hours with MPS but cysts of strain P120 survived. UV irradiation with the larger 4 W unit killed all cysts after 7 minutes and was more effective than the smaller battery-powered unit (after 10 minutes about 50% of cysts were killed. When the larger unit was used with the MPS disinfection, all trophozoites were killed using UV for 3 minutes and MPS for 1 hour. The resistant P120 cysts remained a challenge but a 2- to 4-minute UV treatment followed by MPS for 3 or 6 hours reduced mature cyst survival by about 50%. The small unit in combination with MPS was less effective but did reduce the time required to kill trophic amoebae in MPS (6 hours MPS alone versus 3 hours MPS with a 1-minute UV treatment. In short, inexpensive UV units do enhance MPS disinfection and future lens cleaning systems

  18. Experiments with a homologous, inactivated canine parvovirus vaccine in vaccination programmers for dogs.

    Science.gov (United States)

    Wilson, J H; Hermann-Dekkers, W M

    1982-01-01

    The significance of canine parvovirus (CPV) infections as a permanent threat susceptible dogs, in particular pups, made the authors develop three liquid homologous inactivated adjuvant CPV vaccines that were compatible with existing canine vaccines and could be incorporated in current vaccination programmes. On vaccine (Kavak Parvo) contained only the CPV component, the second product (Kavak i-LP) also contained two inactivated leptospiral antigens, and the third vaccine (Kavak i-HLP) contained in addition an inactivated canine hepatitis virus. This paper reports on the studies conducted to test the safety and efficacy of the three products. They were used as such and as diluents for freeze dried vaccines containing live attenuated measles, distemper, and hepatitis viruses. The study was performed in a breeding kennel where all dogs were free from CPV antibodies and the nonvaccinated sentinels remained so for the course of the study. All vaccines proved to be safe in dogs of all ages, including pregnant bitches. The efficacy of the CPV component was studied both by monitoring antibody titres for more than a year and by challenge exposure of some dogs to virulent CPV. The results obtained from these studies prove that the CPV component used in the three vaccines can be incorporated as indicated in the recommended canine vaccination programmes. The observations that the inactivated CPV and hepatitis components do induce an active immunity in pups that are still protected by low levels of maternally derived antibodies against these viruses, make those vaccines very suitable in breeding kennels. Additional studies on a comparative basis are being continued in edemically CPV infected breeding kennels to quantify the significance of these observations in these special conditions.

  19. Photodynamic inactivation of rubella virus enhances recombination with a latent virus of a baby hamster kidney cell line BHK21

    International Nuclear Information System (INIS)

    Yamamoto, Nobuto; Urade, Masahiro

    1989-01-01

    Rubella virus is very sensitive to photodynamic action. When tested with 1.2 x 10 -5 M toluidine blue and 8 W fluorescent lamp at a fluence of 11 W/m 2 , inactivation kinetics showed a linear single hit curve with a k value of 1.48 min -1 . Photodynamic inactivation of rubella virus greatly enhanced recombination with a latent virus (R-virus) of baby hamster kidney BHK21 cells. In contrast, no hybrids were detected in lysates of the cells infected with either UV-treated or untreated rubella virus. Therefore, hybrid viruses were readily detected only in lysates of BHK21 cells infected with photodynamically treated rubella virus. Photodynamic damage of rubella virus genomes generated a new hybrid type (hybrid type 3) in addition to a previously described type 2 hybrid (formerly designated as HPV-RV variant). Although both of these hybrid types carry the CF antigens of rubella virus, plaque forming ability of type 3 hybrid is neutralized neither by anti-rubella serum nor by anti-latent virus serum while type 2 hybrid is neutralized by anti-latent virus serum. (author)

  20. Removal of detergents from SDS-inactivated dextransucrase

    International Nuclear Information System (INIS)

    Husman, D.W.; Mayer, R.M.

    1986-01-01

    Dextransucrase, which is rapidly inactivated by SDS, can be reactivated upon the addition of Triton X-100. Purification of the enzyme, in good yield and homogeneity, has been achieved by chromatography in the presence of SDS. The purified enzyme can be reactivated with Triton, but has large amounts of detergents. It was important to develop procedures for their removal. Density gradient centrifugation of SDS-inactivated or Triton-reactivated enzyme, treatment with Extracti-Gel D (Pierce) or chromatography on hydroxyl apatite (HA), have been examined for their effectiveness in providing detergent-free enzyme in good yield. Ultracentrifugation of SDS-inactivated protein provided limited recovery of active enzyme, but suggested that reactivation could be achieved by the simple removal of the detergent. While similar behavior was observed when the enzyme was eluted from Extracti-Gel, it was also shown that the limited recovery was a result of irreversible inactivation of the enzyme. Recovery could be improved if the enzyme was collected in solutions containing Triton, which has been reported to be a stabilizer. Chromatography of SDS-inactivated enzyme on HA also yielded active enzyme. Good recovery was obtained when Triton-reactivated enzyme was employed in these studies. The degree of detergent removal was determined by utilizing radiolabelled SDS and Triton X-100

  1. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.

    Science.gov (United States)

    Reeve, C A; Baldwin, T O

    1981-06-01

    Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.

  2. Comparison of two different methods for inactivation of viruses in serum

    DEFF Research Database (Denmark)

    Preuss, T.; Kamstrup, Søren; Kyvsgaard, N.C.

    1997-01-01

    enterovirus (PEV) was inactivated within 3 h, The inactivation with electron-beam irradiation resulted in almost linear curves in a semilogarithmic plot of virus titer versus irradiation dose, reflecting a first-order inactivation, The rate of inactivation was almost twice as fast in the liquid samples...

  3. UV hazard on Italian Apennines under different shading and ground cover conditions during peak tourist seasons of the year.

    Science.gov (United States)

    Grifoni, Daniele; Carreras, Giulia; Sabatini, Francesco; Zipoli, Gaetano

    2006-12-01

    In solar UV irradiance monitoring and forecasting services UV information is generally expressed in terms of its effect on erythema and referred to horizontal surface. In this work we define the UV radiative regime, in terms of biologically effective UV irradiance (UVBE) for skin and eye, under full sun and shaded conditions, over a mountainous tourist area of central Italy by means of two all-day measurements (summer and early spring) with different ground albedo (grass and snow cover respectively). UV irradiance was monitored on tilted surfaces (the most frequent for people standing and walking). Results show the significant contribution of ground albedo and sun position in determining the incident UVBE irradiance. On early spring days the UVBE irradiance measured on horizontal surface was much lower than on tilted ones; the opposite condition was observed in summer. The highest UVBE irradiance values, in particular conditions of sun elevation and ground cover, were reached in periods different from the summer both in full sun and shaded condition.

  4. Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters.

    Science.gov (United States)

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Paleari, Alberto; Lorenzi, Roberto

    2014-01-01

    Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV-emitting events on a large-scale - from invisible hydrogen flames to corona dispersions. From this perspective, γ-Ga₂O₃ nanocrystals are developed by phase separation in Ga-alkali-germanosilicate glasses, obtaining optical materials based on a UV transparent matrix. Band-to-band UV-excitation of light emission from donor-acceptor pair (DAP) recombination is investigated for the first time in embedded γ-Ga₂O₃. The analysis of the decay kinetics gives unprecedented evidence that nanosized confinement of DAP recombination can force a nanophase to the efficient response of exactly balanced DAPs. The results, including a proof of concept of UV-to-visible viewer, definitely demonstrate the feasibility of workable glass-based fully inorganic nanostructured materials with emission properties borrowed from Ga₂O₃ single-crystals and tailored by the nanocrystal size.

  5. Effect of various conditions on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in fresh-cut lettuce using ultraviolet radiation.

    Science.gov (United States)

    Kim, Yoon-Hee; Jeong, Seul-Gi; Back, Kyeong-Hwan; Park, Ki-Hwan; Chung, Myung-Sub; Kang, Dong-Hyun

    2013-09-16

    The effect of various conditions on inactivation of foodborne pathogens and quality of fresh-cut lettuce during ultraviolet (254 nm, UVC) radiation was investigated. Lettuce was inoculated with a cocktail of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and treated at different temperatures (4 and 25 °C), distances between sample and lamp (10 and 50 cm), type of exposure (illuminated from one or two sides), UV intensities (1.36 to 6.80 mW/cm²), and exposure times (0.5 to 10 min), sequentially. UV treatment at 25 °C for 1 min achieved 1.45-, 1.35-, and 2.12-log reductions in surface-inoculated E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, whereas the reduction of these pathogens at 4 °C was 0.31, 0.57, and 1.16 log, respectively. UV radiation was most effective when distance from UV lamp to the sample was minimal (10 cm) and radiation area was maximal (two-sided exposure). All UV intensities significantly (P0.05) different from those of nontreated samples up to 5 min exposure. However, these qualities significantly (Pradiation under optimized conditions could reduce foodborne pathogens without adversely affecting color quality properties of fresh-cut lettuce. © 2013 Elsevier B.V. All rights reserved.

  6. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    Science.gov (United States)

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Photodynamic inactivation of foodborne bacteria by eosin Y.

    Science.gov (United States)

    Bonin, E; Dos Santos, A R; Fiori da Silva, A; Ribeiro, L H; Favero, M E; Campanerut-Sá, P A Z; de Freitas, C F; Caetano, W; Hioka, N; Mikcha, J M G

    2018-03-25

    The aim of this study was evaluate the effect of photodynamic inactivation mediated by eosin Y in Salmonella enterica serotype Typhimurium ATCC 14028, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778. Bacteria (10 7 CFU per ml) were incubated with eosin Y at concentrations ranging from 0·1 to 10 μmol l -1 , irradiated by green LED (λ max 490-570 nm) for 5, 10 and 15 min and the cellular viability was determined. Pseudomonas aeruginosa was completely inactivated when treated with 10 μmol l -1 eosin Y for 10 min. Treatments reduced B. cereus and Salm. Typhimurium counts to 2·7 log CFU per ml and 1·7 log CFU per ml, respectively. Escherichia coli counts were slightly reduced. Staphylococcus aureus presented the highest sensitivity, being completely inactivated by eosin Y at 5 μmol l -1 and 5 min of illumination. The reduction of cellular viability of photoinactivated Staph. aureus was also demonstrated by flow cytometry and morphological changes were observed by scanning electron microscopy. Eosin Y in combination with LED produced bacterial inactivation, being a potential candidate for photodynamic inactivation. This study evidenced the efficacy of photodynamic inactivation as a novel and promising alternative to bacterial control. © 2018 The Society for Applied Microbiology.

  8. Physicochemical characterization, antioxidant activity and total phenolic content in 'Gala' apples subjected to different UV-C radiation doses

    Directory of Open Access Journals (Sweden)

    Thaís Gabrielle Dias

    2017-01-01

    Full Text Available UV-C radiation is a food preservation method aimed to extend the life of the product, inactivate microorganisms, and stimulate the synthesis of phenolic compounds. This study aimed to physicochemically characterize and evaluate the antioxidant activity and phenolic content of ‘Gala’ apples subjected to different UV-C radiation doses.The fruits were harvested, sanitized, selected and inserted into a UV-C radiation chamber, and different radiation doses were applied as follows:0 KJ m-2 (0 min., 0.68 KJ m-2 (2 minutes,2.73 KJ m-2 (4 minutes, and 4.10 KJ m-2 (6 minutes. The apples were stored for 120 days at 5 ± 1°C and analyzed after 0, 30, 60, 90, and 120 days of storage. Radiation doses had no influence on parameters, such as weight loss, firmness and Hue angle, and physicochemical aspects, such as pH, soluble solids, titratable acidity and the soluble solids/titratable acidity ratio. The 4.10 KJ m-2 dose was effective and increased the phenolic content and antioxidant activity for up to 90 days while maintaining the content of vitamin C during storage.

  9. Utilização de linhagens diplóides uvsH//uvsH de Aspergillus nidulans (Ascomycetes para a avaliação do potencial recombinagênico de agentes químicos e físicos uvsH//uvsH diploid strain favors an efficient method to evaluate the recombinagenic effect of chemical and physical agents in Aspergillus nidulans (Ascomycetes

    Directory of Open Access Journals (Sweden)

    Francielle Baptista

    2001-05-01

    Full Text Available O ascomiceto Aspergillus nidulans apresenta-se como um excelente sistema para o estudo da recombinação somática, por passar grande parte de seu ciclo celular em G2 e por apresentar mutações uvs que promovem aumento das freqüências normais de recombinação mitótica (uvsF e uvsH. O presente trabalho teve como objetivo obter uma nova linhagem diplóide de A. nidulans, com características apropriadas para estudos da recombinagênese, tais como: hetererozigose para marcadores nutricionais e de coloração de conidios e homozigose para a mutação uvsH. A maior sensibilidade do diplóide uvsH//uvsH no monitoramento de eventos de recombinação mitótica foi demonstrada através dos mais altos índices de recombinação mitótica espontânea por ele apresentados, em comparação com o diplóide uvsH+//uvsH +. A nova linhagem apresenta-se como uma ferramenta versátil, podendo ser utilizada em diferentes estudos relacionados à recombinação mitótica em A. nidulansAscomycete Aspergillus nidulans is an excellent system for mitotic crossing-over studies. This is due to the fact that much of its cell cycle is passed in G2 and presents uvs mutations that increase frequencies of normal mitotic recombinations (uvsF and uvsH. The aim of this research was to obtain a new diploid strain of A. nidulans with proper characteristics for recombinagenesis investigations, or rather, heterozygous for nutritional markers and conidia coloration and homozygous for uvsH mutation. Higher sensitivity of diploid uvsH//uvsH in the monitoring of mitotic recombination events was shown by higher indexes of the diploid’s spontaneous mitotic recombination when compared with diploid uvsH+//uvsH +. New strain is a versatile tool that may be used in different studies on mitotic recombination in A. nidulans

  10. UV-Sensitivity of Shiga Toxin-Converting Bacteriophage Virions Φ24B, 933W, P22, P27 and P32

    Directory of Open Access Journals (Sweden)

    Sylwia Bloch

    2015-09-01

    Full Text Available Shiga toxin-converting bacteriophages (Stx phages are present as prophages in Shiga toxin-producing Escherichia coli (STEC strains. Theses phages can be transmitted to previously non-pathogenic E. coli cells making them potential producers of Shiga toxins, as they bear genes for these toxins in their genomes. Therefore, sensitivity of Stx phage virions to various conditions is important in both natural processes of spreading of these viruses and potential prophylactic control of appearance of novel pathogenic E. coli strains. In this report we provide evidence that virions of Stx phages are significantly more sensitive to UV irradiation than bacteriophage λ. Following UV irradiation of Stx virions at the dose of 50 J/m2, their infectivity dropped by 1–3 log10, depending on the kind of phage. Under these conditions, a considerable release of phage DNA from virions was observed, and electron microscopy analyses indicated a large proportion of partially damaged virions. Infection of E. coli cells with UV-irradiated Stx phages resulted in significantly decreased levels of expression of N and cro genes, crucial for lytic development. We conclude that inactivation of Stx virions caused by relatively low dose of UV light is due to damage of capsids that prevents effective infection of the host cells.

  11. Inactivation kinetics of β-N-acetyl-D-glucosaminidase from green crab (Scylla serrata) by guanidinium chloride.

    Science.gov (United States)

    Zhang, Ji-Ping; Leng, Bo; Huang, Qian-Sheng; Yan, Ya-Wen; Liu, Xuan; Wang, Qin; Chen, Qing-Xi

    2012-11-01

    β-N-acetyl-D-glucosaminidase (NAGase) is a major member in chitinolytic enzymes system, which plays an important role in the hatching and molting processes of marine organism. The effects of guanidinium chloride (GuHCl) on the activity of NAGase from green crab (Scylla serrata) were investigated in this study. In results, GuHCl causes reversible inactivation of the enzyme at below 0.8 M concentrations, and the IC50 is estimated to be 0.15 M. The relationship between the enzyme activity and conformation was charaterized by monitoring the change of protein fluorescence spectra. With increasing GuHCl concentration, the fluorescence intensity of the enzyme distinctly decreases , and the maximal emission peaks appear red-shifted (from 338 nm to 343 nm). The enzyme inactivation precedes conformational changes, indicating that the enzyme active site is more flexible than the whole enzyme molecule. The result of the kinetics of inactivation shows that the value of k(+0) is larger than that of k(+0)'. It suggests that the substrate could protect the enzyme to a certain extent during guanidine denaturation. Our results provide important new insights in marine organism culture, especially in crustacean growth.

  12. Concentrations of the UV filter ethylhexyl methoxycinnamate in the aquatic compartment: a comparison of modelled concentrations for Swiss surface waters with empirical monitoring data.

    Science.gov (United States)

    Straub, Jürg Oliver

    2002-05-10

    UV filters in sunscreens and cosmetics protect the skin from damage through UV radiation. Many tonnes per year of UV filters are being used in Europe and will be present, at least seasonally, in detectable concentrations in surface waters similar to common pharmaceutically active substances. Predicted environmental concentrations (PECs) of ethylhexyl methoxycinnamate (EHMC; CAS 5466-77-3) were extrapolated for Switzerland, taking into consideration substance-specific environmental fate data and marketing estimates, by crude worst-case reckoning and by applying two environmental models (Mackay Level III; USES 3.0), both configured for Swiss hydrological and area data. By worst-case reckoning the summer PEC is 70.8-81.3 ng/l while for the remaining 8 months of the year the PEC is 13.1-15.1 ng/l. The Level III model results in concentrations of 2.4 ng/l during the summer and 0.44 ng/l during the rest of the year, while the USES 3.0 model gives an average PEC for the whole year of 7.6 ng/l. Pooling summer monitoring data (90 single analyses) from the River Rhine below Basel in the year 1997 (Water Protection Board of Basel) and from Lakes Zurich and Hüttner in 1998 (Poiger et al., in preparation) allowed a derivation of a probabilistic median concentration of 4.6 ng/l, a 95th-percentile concentration of 18.6 ng/l and a 99th-percentile concentration of 33.5 ng/l. The 6-fold range from the median value to the maximum calls for caution in interpreting published monitoring concentrations. Comparison of modelled PECs with realistic median concentrations shows that crude reckoning overestimates actual concentrations by a factor of about 10, probably through insufficient consideration of (further) degradation of EHMC in sewage works, surface waters, sediments or river banks. Both computer models, in contrast, are within the same order of magnitude as the actual summer concentrations. Based on the available data, both these environmental fate and distribution models give

  13. Inactivation of Mycobacterium avium with free chlorine.

    Science.gov (United States)

    Luh, Jeanne; Mariñas, Benito J

    2007-07-15

    The inactivation kinetics of Mycobacterium avium with free chlorine was characterized by two stages: an initial phase at a relatively fast rate followed by a slower second stage of pseudo first-order kinetics. The inactivation rate of each stage was approximately the same for all experiments performed at a certain condition of pH and temperature; however, variability was observed for the disinfectant exposure at which the transition between the two stages occurred. This variability was not a function of the initial disinfectant concentration, the initial bacterial density, or the bacterial stock. However, the transition to the second stage varied more significantly at high temperatures (30 degrees C), while lower variability was observed at lower temperatures (5 and 20 degrees C). Experiments conducted at pH values in the range of 6-9 revealed that the inactivation of M. avium was primarily due to hypochlorous acid, with little contribution from hypochlorite ion within this pH range. The inactivation kinetics was represented with a two-population model. The activation energies for the resulting pseudo first-order rate constants for the populations with fast and slow kinetics were 100.3 and 96.5 kJ/mol, respectively. The magnitude of these values suggested that for waters of relatively high pH and low temperatures, little inactivation of M. avium would be achieved within treatment plants, providing a seeding source for distribution systems.

  14. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  15. Inactivation of viruses in municipal effluent by chlorine.

    OpenAIRE

    Hajenian, H. G.; Butler, M.

    1980-01-01

    The influence of pH and temperature on the efficiency of chlorine inactivation of two unrelated picornaviruses in a typical urban wastewater effluent was examined. Temperature, unlike pH, had relatively little effect on the rate of inactivation. The pH effect was complex and the two viruses differed. The f2 coliphage was more sensitive to chlorine at low pH, but at all values there was a threshold above which additional chlorine resulted in very rapid inactivation. The amount of chlorine requ...

  16. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  17. Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Henderson, E.E.; Long, W.K.

    1981-01-01

    The efficacy of using an infected centers assay, employing herpes simplex virus-infected, Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) as components, to study host cell reactivation has been explored. Herpes simplex virus type 1 (HSV-1) was shown through the infected centers assay to have detectable but varying ability to lytically infect LCLs established from chromosomal breakage syndromes or closely related genetic disorders. The rate of HSV inactivation by ultraviolet (uv) irradiation was faster in LCLs established from Cockaynes's syndrome than in normal LCLs, and faster still in LCLs established from xeroderma pigmentosum. These results indicate that Cockayne's syndrome, while having what appears to be quantitatively normal levels of uv-induced DNA repair replication, shows decreased ability to host cell reactivated uv-damaged HSV. In direct contrast, X-irradiated HSV showed identical survival when assayed on normal LCLs or LCLs established from ataxia telangiectasia showing increased sensitivity to X irradiation as measured by colony formation. Through the infected centers assay, it has also been possible to demonstrate low levels of multiplicity reactivation of mutagen-damaged HSV in permanently proliferating LCLs

  18. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    Alexandre, D.

    1979-07-01

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-80 0 C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  19. UV filters bioaccumulation in fish from Iberian river basins.

    Science.gov (United States)

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. Copyright © 2015. Published by Elsevier B.V.

  20. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  1. Effects of use of riboflavin and ultraviolet light for pathogen inactivation on quality of platelet concentrates

    Directory of Open Access Journals (Sweden)

    Stanojković Zoran

    2011-01-01

    Full Text Available Background/Aim. Pathogen inactivation in blood and blood products is one of the major means to achieve a zero risk blood supply and improve transfusion safety. Riboflavin (vitamin B2 activated by ultraviolet (UV light, produces active oxygen which damages cell membrane and prevents replication of the carrier of diseases (viruses, bacteria, protozoa in all blood products. The aim of this study was to establish the influence of the process of pathogens photoinactivation using riboflavin and UV rays on the biochemical and functional characteristics of platelet concentrates prepared from “buffy coat”. Methods. The examination included 80 platelet concentrates prepared from “buffy coat”, which was separated from whole blood donated by voluntary blood donors around 6 hours from the moment of collection. Concentrates were pooled, filtered and separated unton two groups: one consisted of 10 control units and the other of 10 examined units (pooled platelet concentrates. Examined units of the platelets were treated by riboflavin (35 mL and UV rays (6.24 J/mL, 265-370 nm on Mirasol aparature (Caridian BCT Biotechnologies, USA in approximate duration of 6 min. A total of 35 mL of saline solution was added to the control units. The samples for examining were taken from the control and examined units initially (K0, I0, after the addition of saline (K1 and riboflavin (I1, after illumination (I2, first day of storage (K3, I3 and the fifth day of storage (K4, I4. The following parameters were measured: platelet count and platelet yield, residual erythrocyte and leukocyte count, pH, pO2, pCO2 and bacterial contamination. Results. All the measured parameters showed a statistically significant decrease comparing to K0 and I0; all the results of the first day of platelet storage showed statistically significant decrease comparing to K1 and I1, and all the results of the fifth day of platelet storage (K4, I4 showed a statistically significant decrease

  2. Randomized Trials Comparing Inactivated Vaccine after Medium- or High-titer Measles Vaccine with Standard Titer Measles Vaccine after Inactivated Vaccine

    DEFF Research Database (Denmark)

    Aaby, Peter; Ravn, Henrik; Benn, Christine S.

    2016-01-01

    Background: Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated va...

  3. Inactivation of purified human recombinant monoamine oxidases A and B by rasagiline and its analogues.

    Science.gov (United States)

    Hubálek, Frantisek; Binda, Claudia; Li, Min; Herzig, Yaacov; Sterling, Jeffrey; Youdim, Moussa B H; Mattevi, Andrea; Edmondson, Dale E

    2004-03-25

    The inactivation of purified human recombinant monoamine oxidases (MAO) A and B by rasagiline [N-propargyl-1(R)-aminoindan] and four of its analogues [N-propargyl-1(S)-aminoindan (S-PAI), 6-hydroxy-N-propargyl-1(R)-aminoindan (R-HPAI), N-methyl-N-propargyl-1(R)-aminoindan (R-MPAI), and 6-(N-methyl-N-ethyl carbamoyloxy)-N-propargyl-1(R)-aminoindan (R-CPAI)] has been investigated. All compounds tested, with the exception of R-CPAI, form stoichiometric N(5) flavocyanine adducts with the FAD moiety of either enzyme. No H(2)O(2) is produced during either MAO A or MAO B inactivation, which demonstrates that covalent addition occurs in a single turnover. Rasagiline has the highest specificity for MAO B, as demonstrated by a 100-fold higher inhibition potency (k(inact)/K(i)) compared to MAO A, with the remaining compounds exhibiting lower isozyme specificities. MAO B and MAO A are more selective for the R-enantiomer (rasagiline) compared to the S-enantiomer (S-PAI) by 2500-fold and 17-fold, respectively. Differences in UV/vis and CD spectral data of the complexes of the studied compounds with both MAO A and MAO B are interpreted in light of crystallographic data of complexes of MAO B with rasagiline and its analogues (Binda, C.; et al. J. Med. Chem. 2004, 47, 1767-1774.

  4. Germination and Inactivation of Alicyclobacillus acidoterrestris Spores Induced by Moderate Hydrostatic Pressure.

    Science.gov (United States)

    Sokołowska, Barbara; Skapska, Sylwia; Fonberg-Broczek, Monika; Niezgoda, Jolanta; Porebska, Izabela; Dekowska, Agnieszka; Rzoska, Sylwester J

    2015-01-01

    Given the importance of spoilage caused by Alicyclobacillus acidoterrestris for the fruit juice industry, the objective of this work was to study the germination and inactivation of A. acidoterrestris spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of A. acidoterrestris spores. At low pH, spore germination of up to 3.59-3.75 log and inactivation of 1.85-2.04 log was observed in a low pressure window (200-300 MPa) applied at 50 degrees C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24-1.06 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20 degrees C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70 degrees C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

  5. Alterations in the antibacterial potential of Synechococcus spp. PCC7942 under the influence of UV-B radiations on skin pathogens

    Directory of Open Access Journals (Sweden)

    Nida Fatima

    2017-11-01

    Full Text Available Marine organisms are seen as a source of novel drugs and the discovery of new pharmaceutical is increasingly in demand. Cyanobacteria are regarded as a potential target for this as antibacterial, antiviral, antifungal, algicide and cytotoxic activities have been reported in these organisms. They have been identified as a new and rich source of bioactive compounds belonging to diversified groups. Radiation in the UV-B range interferes with various metabolic reactions by generating free radicals and active oxygen species. These deleterious compounds are inactivated by antioxidants. Among them are the carotenoids and phycocyanin which protect against photodynamic action in different ways. Stress plays an important role in the production of bioactive metabolites from organisms. Synechococcus spp. PCC7942 was studied for antibacterial activity against various pathogenic bacteria resistant to a number of available antibiotics after being exposed to UV-B radiation. The antibacterial activity of Synechococcus spp. PCC7942 was studied on five potent skin pathogens. The highest antibacterial activity was seen the methanol extracts of 24 h UV-B exposed cultures of Synechococcus spp. PCC7942. It can be concluded that there was moderate antibacterial activity. Results showed stress, solvent and dose-dependent activity. This antibacterial activity might be due to the enhanced synthesis of carotenoids and phycocyanin under UV-B stress. The purpose of the present study was to relate the inhibitory effects of the cyanobacterial compounds specifically on skin pathogens with exposure to UV-B radiation as UV protecting compounds are already reported in these organisms.

  6. Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

    Science.gov (United States)

    Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas

    2012-12-01

    The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.

  7. Inactivation of human and simian rotaviruses by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Chen, Y.S.; Lindburg, K.; Morales, D.

    1987-09-01

    The inactivation of simian rotavirus Sa-11 and human rotavirus type 2 (Wa) by ozone was compared at 4/sup 0/C by using single-particle virus stocks. Although the human strain was clearly more sensitive, both virus types were rapidly inactivated by ozone concentrations of 0.25 mg/liter or greater at all pH levels tested. Comparison of the virucidal activity of ozone with that of chlorine in identical experiments indicated little significant difference in rotavirus-inactivating efficiencies when the disinfectants were used at concentrations of 0.25 mg/liter or greater.

  8. Penetration of UV-A, UV-B and blue light through the leaf trichome layers of two xeromorphic plants, olive and oak, measured by optical fibre microprobes

    International Nuclear Information System (INIS)

    Karabourniotis, G.; Bornman, J.F.

    1999-01-01

    Quartz fibre-optic microprobes were used to monitor the light microenvironment beneath trichome layers of the xeromorphic leaves of two Mediterranean evergreen sclerophylls, Olea europaea and Quercus ilex. Young developing leaves of both plants were densely pubescent on both surfaces of the lamina, whereas the mature leaves were pubescent only on the abaxial side. Trichome layers of young as well as of mature leaves of both plants attenuated almost all incident ultraviolet (UV)-B (310 nm) and UV-A (360 nm) radiation and a considerable portion of blue light (430 nm). Abaxial trichome layers of young leaves were more effective in screening out the incident radiation compared to the adaxial ones of the same leaves and also compared to the abaxial layer of the mature leaves. The abaxial epidermis of dehaired mature leaves of O. europaea was ineffective in absorbing most of the incident UV-B and UV-A radiation. UV and visible spectra beneath trichome layers of O. europaea in mature leaves confirmed that the light microenvironment on the epidermis was deprived in the UV-B, UV-A and partly in the blue spectral regions. It is proposed that the occurrence of a dense trichome layer, especially in young leaves, may play a protective role against not only UV-B radiation damage, but also against high visible irradiance. This function is performed irrespective of the differing anatomy of individual hairs of both plants. The protection provided by the trichomes could afford advantages under stress conditions, especially during leaf development. (author)

  9. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    OpenAIRE

    J. Kujanpää; N. Kalakoski

    2015-01-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSA...

  10. Fabrication of magnetic Fe@ZnO_0_._6S_0_._4 nanocomposite for visible-light-driven photocatalytic inactivation of Escherichia coli

    International Nuclear Information System (INIS)

    Peng, Ziling; Wu, Dan; Wang, Wei; Tan, Fatang; Ng, Tsz Wai; Chen, Jianguo; Qiao, Xueliang; Wong, Po Keung

    2017-01-01

    Highlights: • Fe@ZnO_0_._6S_0_._4 was prepared by a facile two-step precipitation method. • Fe@ZnO_0_._6S_0_._4 exhibited high photocatalytic activity under LED lamp irradiation. • Fe@ZnO_0_._6S_0_._4 possessed good stability and reusability for bacterial inactivation. • Fe@ZnO_0_._6S_0_._4 could be easily collected from the reaction solution by a magnet. • The release rate of metal ions from nanocomposite was kept at a very low level. - Abstract: Bacterial inactivation by magnetic photocatalysts has now received growing interests due to the easy separation for recycle and reuse of photocatalysts. In this study, magnetic Fe@ZnO_0_._6S_0_._4 photocatalyst was prepared by a facile two-step precipitation method. Multiple techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffused reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM) were employed to characterize the structure, morphology and physicochemical properties of the photocatalyst. The as-obtained Fe@ZnO_0_._6S_0_._4 possessing magnetic property was easily collected from the reaction system by a magnet. Under white light-emitting-diode (LED) lamp irradiation, Fe@ZnO_0_._6S_0_._4 nanocomposite could completely inactivate 7-log of Escherichia coli K-12 within 5 h. More importantly, almost no decrease of photocatalytic efficiency in bacterial inactivation was observed even after five consecutive cycles, demonstrating Fe@ZnO_0_._6S_0_._4 exhibited good stability for reuse. The low released rate of Fe"2"+/Fe"3"+ and Zn"2"+ from Fe@ZnO_0_._6S_0_._4 composite further indicated the photocatalyst showed low cytotoxicity to bacterium and high stability under LED lamp irradiation. Facile preparation, high photocatalytic efficiency, good stability and reusability, and magnetic recovery property endow Fe@ZnO_0_._6S_0_._4 nanocomposite to be a promising photocatalytic material

  11. Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) - Part 2: Analysis of site aerosol influence

    Science.gov (United States)

    Cachorro, V. E.; Toledano, C.; Antón, M.; Berjón, A.; de Frutos, A.; Vilaplana, J. M.; Arola, A.; Krotkov, N. A.

    2010-12-01

    Several validation studies have shown a notable overestimation of the clear sky ultraviolet (UV) irradiance at the Earth's surface derived from satellite sensors such as the Total Ozone Mapping Spectrometer (TOMS) and the Ozone Monitoring Instrument (OMI) with respect to ground-based UV data at many locations. Most of this positive bias is attributed to boundary layer aerosol absorption that is not accounted for in the TOMS/OMI operational UV algorithm. Therefore, the main objective of this study is to analyse the aerosol effect on the bias between OMI erythemal UV irradiance (UVER) and spectral UV (305 nm, 310 nm and 324 nm) surface irradiances and ground-based Brewer spectroradiometer measurements from October 2004 to December 2008 at El Arenosillo station (37.1° N, 6.7° W, 20 m a.s.l.), with meteorological conditions representative of the South-West of Spain. The effects of other factors as clouds, ozone and the solar elevation over this intercomparison were analysed in detail in a companion paper (Antón et al., 2010). In that paper the aerosol effects were studied making only a rough evaluation based on aerosol optical depth (AOD) information at 440 nm wavelength (visible range) without applying any correction. We have used the precise information given by single scattering albedo (SSA) from AERONET for the determination of absorbing aerosols which has allowed the correction of the OMI UV data. An aerosol correction expression was applied to the OMI operational UV data using two approaches to estimate the UV absorption aerosol optical depth, AAOD. The first approach was based on an assumption of constant SSA value of 0.91. This approach reduces the OMI UVER bias against the reference Brewer data from 13.4% to 8.4%. Second approach uses daily AERONET SSA values reducing the bias only to 11.6%. Therefore we have obtained a 37% and 12% of improvement respectively. For the spectral irradiance at 324 nm, the OMI bias is reduced from 10.5% to 6.98% for constant

  12. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  13. Enhancing the far-UV sensitivity of silicon CMOS imaging arrays

    Science.gov (United States)

    Retherford, K. D.; Bai, Yibin; Ryu, Kevin K.; Gregory, J. A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winter, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2014-07-01

    We report our progress toward optimizing backside-illuminated silicon PIN CMOS devices developed by Teledyne Imaging Sensors (TIS) for far-UV planetary science applications. This project was motivated by initial measurements at Southwest Research Institute (SwRI) of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures described in Bai et al., SPIE, 2008, which revealed a promising QE in the 100-200 nm range as reported in Davis et al., SPIE, 2012. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include: 1) Representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory (LL); 2) Preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; 3) Detector fabrication was completed through the pre-MBE step; and 4) Initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments. Early results suggest that potential challenges in optimizing the UV-sensitivity of silicon PIN type CMOS devices, compared with similar UV enhancement methods established for CCDs, have been mitigated through our newly developed methods. We will discuss the potential advantages of our approach and briefly describe future development steps.

  14. High pressure inactivation of Brettanomyces bruxellensis in red wine.

    Science.gov (United States)

    van Wyk, Sanelle; Silva, Filipa V M

    2017-05-01

    Brettanomyces bruxellensis ("Brett") is a major spoilage concern for the wine industry worldwide, leading to undesirable sensory properties. Sulphur dioxide, is currently the preferred method for wine preservation. However, due to its negative effects on consumers, the use of new alternative non-thermal technologies are increasingly being investigated. The aim of this study was to determine and model the effect of high pressure processing (HPP) conditions and yeast strain on the inactivation of "Brett" in Cabernet Sauvignon wine. Processing at 200 MPa for 3 min resulted in 5.8 log reductions. However higher pressure is recommended to achieve high throughput in the wine industry, for example >6.0 log reductions were achieved after 400 MPa for 5 s. The inactivation of B. bruxellensis is pressure and time dependent, with increased treatment time and pressure leading to increased yeast inactivation. It was also found that yeast strain had a significant effect on HPP inactivation, with AWRI 1499 being the most resistant strain. The Weibull model successfully described the HPP "Brett" inactivation. HPP is a viable alternative for the inactivation of B. bruxellensis in wine, with the potential to reduce the industry's reliance on sulphur dioxide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles

    Science.gov (United States)

    Shabbir, Mohd; Mohammad, Faqeer

    2018-02-01

    Nanomaterials have great impact on textile industry for multifunctional and smart clothing as per the need of present, and further, green nanotechnology is the current hotspot of research and industrial developments. Silver nanoparticles (AgNPs) are synthesized (in situ) by using natural compounds of plant extracts (naphthoquinones, phenolics/flavonoids, polyphenols) as reducing or stabilizing agents, and simultaneously deposited on wool fabric for coloration, UV protection and antioxidant properties. UV-visible spectroscopy is used to monitor the route of biosynthesis of nanoparticles and transmission electron microscopy for morphological characteristics of synthesized AgNPs. Spherical and almost oval-shaped AgNPs were synthesized by naphthoquinones, polyphenols and flavonoids, respectively. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy were used for the AgNPs@Wool fabrics characterization. SEM-EDX analysis and XRD patterns confirmed the successful deposition of silver nanoparticles on wool. Coloration characteristics in terms of color strength (K/S) and CIEL*a*b*c*h° values, UV protection abilities in terms of UV transmittance and UV protection factor, and % antioxidant activity of AgNPs@Wool are suggestive of good-to-excellent results.

  16. Complex UV/X-ray variability of 1H 0707-495

    Science.gov (United States)

    Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.

    2017-12-01

    We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.

  17. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria.

    Science.gov (United States)

    Kang, Jun-Won; Kim, Sang-Soon; Kang, Dong-Hyun

    2018-07-01

    The object of this study was to elucidate the bactericidal mechanism of a 222 nm Krypton Chlorine (KrCl) excilamp compared with that of a 254 nm Low Pressure mercury (LP Hg) lamp. The KrCl excilamp had higher bactericidal capacity against Gram-positive pathogenic bacteria (Staphylococcus aureus and L. monocytogenes) and Gram-negative pathogenic bacteria (S. Typhimurium and E. coli O157:H7) than did the LP Hg lamp when cell suspensions in PBS were irradiated with each type of UV lamp. It was found out that the KrCl excilamp induced cell membrane damage as a form of depolarization. From the study of respiratory chain dehydrogenase activity and the lipid peroxidation assay, it was revealed that cell membrane damage was attributed to inactivation of enzymes related to generation of membrane potential and occurrence of lipid peroxidation. Direct absorption of UV radiation which led to photoreaction through formation of an excited state was one of the causes inducing cell damage. Additionally, generation of ROS and thus occurrence of secondary damage can be another cause. The LP Hg lamp only induced damage to DNA but not to other components such as lipids or proteins. This difference was derived from differences of UV radiation absorption by cellular materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  19. Plant responses to UV-B irradiation are modified by UV-A irradiation

    International Nuclear Information System (INIS)

    Middleton, E.M.; Teramura, A.H.

    1993-01-01

    The increasing UV-B radiation (0.28-0.32 μm) reaching the earth's surface is an important concern. Plant response in artificial UV-B irradiation studies has been difficult to assess, especially regarding photosynthetic pigments, because the fluorescent lamps also produce UV-A (0.32-0.40μm) radiation which is involved with blue light in pigment synthesis. Both UV-A and UV-B irradiances were controlled in two glasshouse experiments conducted under relatively high PPFD (> 1300μmol m -2 s -1 ) at two biologically effective daily UV-B irradiances (10.7 and 14.1 kJ m -2 ); UV-A irradiances were matched in Controls (∼5, 9 kJ m -2 ). Normal, chlorophyll-deficient, and flavonoid-deficient isolines of soybean cultivar, Clark, were utilized. Many growth/ pigment variables exhibited a statistically significant interaction between light quality and quantity: in general, UV-A radiation moderated the damaging effects of UV-B radiation. Regression analyses demonstrated that a single negative function related photosynthetic efficiency to carotenoid Content (r 2 =0.73, P≤0.001), implying a open-quotes costclose quotes in maintaining carotenoids for photoprotection. A stomatal limitation to photosynthesis was verified and carotenoid content was correlated with UV-B absorbing compound levels, in UV-B irradiated plants

  20. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors

    Directory of Open Access Journals (Sweden)

    Adam J. Hume

    2016-07-01

    Full Text Available Effective inactivation of biosafety level 4 (BSL-4 pathogens is vital in order to study these agents safely. Gamma irradiation is a commonly used method for the inactivation of BSL-4 viruses, which among other advantages, facilitates the study of inactivated yet morphologically intact virions. The reported values for susceptibility of viruses to inactivation by gamma irradiation are sometimes inconsistent, likely due to differences in experimental protocols. We analyzed the effects of common sample attributes on the inactivation of a recombinant vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein and green fluorescent protein. Using this surrogate virus, we found that sample volume and protein content of the sample modulated viral inactivation by gamma irradiation but that air volume within the sample container and the addition of external disinfectant surrounding the sample did not. These data identify several factors which alter viral susceptibility to inactivation and highlight the usefulness of lower biosafety level surrogate viruses for such studies. Our results underscore the need to validate inactivation protocols of BSL-4 pathogens using “worst-case scenario” procedures to ensure complete sample inactivation.

  1. Biobased Nanoparticles for Broadband UV Protection with Photostabilized UV Filters

    NARCIS (Netherlands)

    Hayden, D.R.|info:eu-repo/dai/nl/412640694; Imhof, A.|info:eu-repo/dai/nl/145641600; Velikov, K. P.|info:eu-repo/dai/nl/239483472

    2016-01-01

    Sunscreens rely on multiple compounds to provide effective and safe protection against UV radiation. UV filters in sunscreens, in particular, provide broadband UV protection but are heavily linked to adverse health effects due to the generation of carcinogenic skin-damaging reactive oxygen species

  2. X inactivation in females with X-linked Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Murphy, Sinéad M

    2012-07-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is the second most common inherited neuropathy, caused by mutations in gap junction beta-1 (GJB1). Males have a uniformly moderately severe phenotype while females have a variable phenotype, suggested to be due to X inactivation. We aimed to assess X inactivation pattern in females with CMT1X and correlate this with phenotype using the CMT examination score to determine whether the X inactivation pattern accounted for the variable phenotype in females with CMT1X. We determined X inactivation pattern in 67 females with CMT1X and 24 controls using the androgen receptor assay. We were able to determine which X chromosome carried the GJB1 mutation in 30 females. There was no difference in X inactivation pattern between patients and controls. In addition, there was no correlation between X inactivation pattern in blood and phenotype. A possible explanation for these findings is that the X inactivation pattern in Schwann cells rather than in blood may explain the variable phenotype in females with CMT1X.

  3. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  4. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  5. Sequential capillary electrophoresis analysis using optically gated sample injection and UV/vis detection.

    Science.gov (United States)

    Liu, Xiaoxia; Tian, Miaomiao; Camara, Mohamed Amara; Guo, Liping; Yang, Li

    2015-10-01

    We present sequential CE analysis of amino acids and L-asparaginase-catalyzed enzyme reaction, by combing the on-line derivatization, optically gated (OG) injection and commercial-available UV-Vis detection. Various experimental conditions for sequential OG-UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG-UV/vis CE analysis, sequential online CE enzyme assay of L-asparaginase-catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  7. Inactivation of prion infectivity by ionizing rays

    International Nuclear Information System (INIS)

    Gominet, M.; Vadrot, C.; Austruy, G.; Darbord, J.C.

    2007-01-01

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination

  8. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Thermal inactivation kinetics of β-galactosidase during bread baking.

    Science.gov (United States)

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. UV radiation and its effects. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The National Science Strategy Committee for Climate Change was established in 1991 by the New Zealand Minister of Research, Science and Technology. It advises government through the Minister on research priorities and on levels of expenditure appropriate in various topics relating to climate change. An additional role is to promote coordination between research groups and the user communities to ensure an appropriate range of research strategies. To assist with implementing the latter aspects the NSS Committee will organise workshops on specific aspects of atmosphere and climate change, with a broad spectrum of participants. The first of these was the Workshop on UV Radiation and its Effects held in Christchurch on 20-21 May 1993. The workshop had 40 participants, including representatives from specialist science groups, medicine, veterinary science, farming, forestry and environmental groups. This publication will update the interested reader, whether scientist or lay-person, on the current state of knowledge on changing UV radiation levels and potential problems. As the summaries of papers show, research on ozone levels and on UV radiation and its effects is particularly appropriate for New Zealand scientists with their access to sites covering a wide range of latitudes from Antarctica to the Pacific Islands. New Zealand is part of an important international monitoring network, measuring local stratospheric ozone levels and related surface UV radiation levels. There are concerns about increasing UVB levels and the consequent effects on human health, plant and tree growth, and phytoplankton growth in the oceans. Priorities for further work on these areas are included in the summary of the workshop. (author). 13 figs.; 5 tabs

  11. Design of wideband solar ultraviolet radiation intensity monitoring and control system

    Science.gov (United States)

    Ye, Linmao; Wu, Zhigang; Li, Yusheng; Yu, Guohe; Jin, Qi

    2009-08-01

    According to the principle of SCM (Single Chip Microcomputer) and computer communication technique, the system is composed of chips such as ATML89C51, ADL0809, integrated circuit and sensors for UV radiation, which is designed for monitoring and controlling the UV index. This system can automatically collect the UV index data, analyze and check the history database, research the law of UV radiation in the region.

  12. COMPARATIVE ANALYSIS OF UV-C AND UV-B RADIATION INFLUENCE ON PLANT OBJECTS

    Directory of Open Access Journals (Sweden)

    О. Міхєєв

    2011-04-01

    Full Text Available General aim of work – comparative research of temporal regularities of growth processes of pea,that was grown under normal conditions and with application of UV-C and UV-B irradiation ofstem part, and also detection of irradiation dose relations to parameter of root and stem part sproutsgrowth rate of Aronis pea. Research subject of UV-C and UV-B irradiation influence on dynamicsof plant growth parameters in each set of experiments was alteration of growth rate, pecularities ofgrowth dynamics in different conditions of experiment, detection of UV-C and UV-B irradiationdoses range, that stimulate or inhibit growth parameters of pea sprouts. The investigation resulted indetermination 1,3 times higher efficiency of UV-V irradiation comparing to UV-B irradiation.Reaction of root didn’t depend on the type of UV-radiation

  13. DNA damage caused by UV- and near UV-irradiation

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1986-01-01

    Much work with mutants deficient in DNA repair has been performed concerning UV-induced DNA damage under the condition where there is no artificial stimulation. In an attempt to infer the effects of solar wavelengths, the outcome of the work is discussed in terms of cellular radiation sensitivity, unscheduled DNA synthesis, and mutation induction, leading to the conclusion that some DNA damage occurs even by irradiation of the shorter wavelength light (270 - 315 nm) and is repaired by excision repair. It has been thought to date that pyrimidine dimer (PD) plays the most important role in UV-induced DNA damage, followed by (6 - 4) photoproducts. As for DNA damage induced by near UV irradiation, the yield of DNA single-strand breaks and of DNA-protein crosslinking, other than PD, is considered. The DNA-protein crosslinking has proved to be induced by irradiation at any wavelength of UV ranging from 260 to 425 nm. Near UV irradiation causes the inhibition of cell proliferation to take place. (Namekawa, K.)

  14. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses

    International Nuclear Information System (INIS)

    Lerman, S.

    1987-01-01

    In vitro [UV absorption, fluorescence, phosphorescence, and nuclear magnetic resonance (NMR)] spectroscopic studies on the normal human lens demonstrate age-related changes which can be correlated with biochemical and photobiologic mechanisms occurring during our lifetime. Chronic cumulative UV exposure results in an age-related increase of photochemically induced chromophores and in color of the lens nucleus. This enables the lens to filter the incident UV radiation, thereby protecting the underlying aging retina from UV photodamage. We have measured the age-related increase in lens fluorescence in vivo on more than 300 normal subjects (1st to 9th decade) by UV slitlamp densitography. These data show a good correlation with the in vitro lens fluorescence studies reported previously and demonstrate that molecular photodamage can be monitored in the lens. In vitro NMR (human and animal lenses) and in vivo experiments currently in progress are rapidly elucidating the physicochemical basis for transparency and the development of light scattering areas. Surface scanning NMR can monitor organophosphate metabolism in the ocular lens in vivo as well as in vitro. These studies demonstrate the feasibility of using biophysical methods (optical spectroscopy and NMR analyses) to delineate age-related parameters in the lens, in vivo as well as in vitro. 46 references

  15. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels

    Science.gov (United States)

    Fineberg, Jeffrey D.; Ritter, David M.

    2012-01-01

    A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  16. UV Radiation in an Urban Canyon in Southeast Queensland

    Science.gov (United States)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  17. UV, blue and red upconversion emission in Tm3+ doped Y2O3 phosphor

    International Nuclear Information System (INIS)

    Pandey, Anurag; Kaushal Kumar; Rai, Vineet Kumar

    2012-01-01

    Optimized solution combustion route has been adopted to prepare Tm 3+ doped Y 2 O 3 phosphor. The X-ray diffraction analysis of the doped phosphor for getting the structural information has been performed. Intense UV, blue and red emissions exhibiting narrow band have been monitored using 980 nm diode laser excitation. The origin of UV, blue and red upconversion emissions has been explained based on the available data. (author)

  18. Host-cell reactivation of UV-irradiated and chemically-treated herpes simplex virus-1 by xeroderma pigmentosum, xp heterozygotes and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Selsky, C.A.

    1978-01-01

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 μg N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus. (Auth.)

  19. Sequential use of ultraviolet light and chlorine for reclaimed water disinfection

    Institute of Scientific and Technical Information of China (English)

    Xiujuan Wang; Xuexiang Hu; Chun Hu; Dongbin Wei

    2011-01-01

    Several disinfection processes of ultraviolet (UV),chlorine or UV followed by chlorine were investigated in municipal wastewater according to the inactivation of Escherichia coli,Shigella dysenteriae and toxicity formation.The UV inactivation of the tested pathogenic bacteria was not affected by the quality of water.It was found that the inactivated bacteria were obviously reactivated after one day in dark.Fluorescent light irradiation increased the bacteria repair.The increase of UV dosage could cause more damage to bacteria to inhibit bacteria self-repair.No photoreactivation was detected when the UV dose was up to 80 mJ/cm2 for E.coli DH5α,and 23 mJ/cm2 for S.dysenteriae.Nevertheless,sequential use of 8 mJ/cm2 of UV and low concentration of chlorine (1.5mg/L) could effectively inhibit the photoreactivation and inactivate E.coli below the detection limits within seven days.Compared to chlorination alone,the sequential disinfection decreased the genotoxicity of treated wastewater,especially for the sample with high NH3-N concentration.

  20. New stratospheric UV/visible radiance measurements

    Directory of Open Access Journals (Sweden)

    F. J. Marceau

    1994-01-01

    Full Text Available A stratospheric balloon was launched on 12 October 1986 from the "CNES" base at Aire sur l'Adour (France to record twilight radiance in the stratosphere. The near-UV and visible radiances were continuously monitored by a photometer during sunrise. Some observations are presented for different viewing azimuthal planes and viewing elevation angles. They show the influence of aerosols layers and clouds which can be also seen on related photographs. The results as a whole may be used for testing some radiative models, especially for twilight conditions.

  1. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation.

    Science.gov (United States)

    Manasfi, Tarek; Coulomb, Bruno; Ravier, Sylvain; Boudenne, Jean-Luc

    2017-12-05

    Organic ultraviolet (UV) filters are used in sunscreens and other personal-care products to protect against harmful effects of exposure to UV solar radiation. Little is known about the fate of UV filters in seawater swimming pools disinfected with chlorine. The present study investigated the occurrence and fate of five commonly used organic UV filters, namely dioxybenzone, oxybenzone, avobenzone, 2-ethylhexyl-4-methoxycinnamate, and octocrylene, in chlorinated seawater swimming pools. Pool samples were collected to monitor the variation of UV filter concentrations during pool opening hours. Furthermore, laboratory-controlled chlorination experiments were conducted in seawater spiked with UV filters to investigate the reactivity of UV filters. Extracts of chlorination reaction samples were analyzed using high-resolution mass spectrometry and electron-capture detection to identify the potentially formed byproducts. In the collected pool samples, all the UV filters except dioxybenzone were detected. Chlorination reactions showed that only octocrylene was stable in chlorinated seawater. The four reactive UV filters generated brominated transformation products and disinfection byproducts. This formation of brominated products resulted from reactions between the reactive UV filters and bromine, which is formed rapidly when chlorine is added to seawater. Based on the identified byproducts, the transformation pathways of the reactive UV filters were proposed for the first time. Bromoform was generated by all the reactive UV filters at different yields. Bromal hydrate was also detected as one of the byproducts generated by oxybenzone and dioxybenzone.

  2. Transglutaminase involvement in UV-A damage to the eye lens

    International Nuclear Information System (INIS)

    Weinreb, Orly; Dovrat, A.

    1996-01-01

    Solar radiation is believed to be one of the major environmental factors involved in lens cataractogenesis. The purpose of the study was to investigate the mechanisms by which UV-A at 365 nm causes damage to the eye lens. Bovine lenses were placed in special culture cells for pre-incubation of 24 hr. The lenses were positioned so that the anterior surface faced the incident UV-A radiation source and were maintained in the cells during irradiation. After irradiation, lens optical quality was monitored throughout the culture period and lens epithelium, cortex and nuclear samples were taken for biochemical analysis. Transglutaminase activity in the lens was affected by the radiation. The activity of transglutaminase in lens epithelium cortex and nucleus increased as a result of the irradiation and then declined towards control levels during the culture period, as the lens recovered from the UV-A damage. Specific lens proteins αB and βB1 crystallins (the enzyme substrates) were analyzed by SDS polyacrylamid gel electrophoreses and immunoblotting with specific antibodies. Seventy-two hours after irradiation of 44.8 J cm -2 UV-A, αB crystallins were affected as was shown by the appearance of aggregation and degradation products. Some protein changes seem to be reversible. It appears that transglutaminase may be involved in the mechanism by which UV-A causes damage to the eye lens. (Author)

  3. Application of UV Imaging in Formulation Development.

    Science.gov (United States)

    Sun, Yu; Østergaard, Jesper

    2017-05-01

    Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.

  4. Expression of UV-irradiated adenovirus in normal and UV-sensitive Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1985-01-01

    The chinese hamster ovary (CHO) cell mutants UV-20, UV-24, and UV-41 are abnormally sensitive to UV and harbour various defects lin their ability to repair cellular DNA. This study has examined the expression of UV-irradiated AD2 in these cells. HCR of UV-irradiated Ad2, as measured by viral structural antigen (Vag) formation or progeny production, was found to be similar for the normal and the UV-sensitive CHO strains. UV-irradiation of Ad2 (1200 J/m/sup 2/) resulted in a delay of Vag expression of 18 hours in normal human fibroblasts, which is thought to reflect the time required for removal of UV-induced lesions from the DNA before viral DNA synthesis can proceed. However, a similar UV-irradiation of Ad2 did not result in a delay of Vag expression for infection of CHO cells, suggesting that UV-induced lesions in Ad2 DNA do not inhibit its replication in CHO cells. These results indicate a fundamental difference in the processing of UV-irradiated AD2-DNA in CHO as compared to human cells

  5. Thermal inactivation of enzymes and pathogens in biosamples for MS analysis.

    Science.gov (United States)

    Ahnoff, Martin; Cazares, Lisa H; Sköld, Karl

    2015-01-01

    Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.

  6. Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer.

    Science.gov (United States)

    Chaudhary, Anshu; Singh, Anoop; Verma, Prabhakar Kumar

    2014-12-01

    A rapid and sensitive ultraviolet-visible (UV-VIS) spectroscopic method was developed for the estimation of pyrimidine derivative 6-Bromo-3-(6-(2,6-dichlorophenyl)-2-(morpolinomethylamino) pyrimidine4-yl) -2H-chromen-2-one (BT10M) in bulk form. Pyrimidine derivative was monitored at 275 nm with UV detection, and there is no interference of diluents at 275 nm. The method was found to be linear in the range of 50 to 150 μg/ml. The accuracy and precision were determined and validated statistically. The method was validated as a guideline. The results showed that the proposed method is suitable for the accurate, precise, and rapid determination of pyrimidine derivative. Graphical Abstract Method development and validation of potent pyrimidine derivative by UV spectroscopy.

  7. Índice UV

    Science.gov (United States)

    Información general sobre el Índice UV que proporciona un pronóstico del riesgo esperado de sobreexposición a la radiación ultravioleta (UV) del sol. El índice UV va acompañado de recomendaciones para protegerse del sol.

  8. Spectral dependence of some UV-B and UV-C responses of Tetrahymena pyriformis irradiated with dye laser generated UV

    International Nuclear Information System (INIS)

    Calkins, John; Colley, Ed; Wheeler, John; Kentucky Univ., Lexington

    1987-01-01

    We have generated UV-B and UV-C radiations using a flashlamp driven tunable dye laser combined with frequency doubling crystals. Using this novel UV source, we have investigated lethality and its modification by growth phase, photoreactivation and caffeine in Tetrahymena pyriformis at 254 nm and from 260-315 nm in 5 nm steps. From the observed responses we have constructed action spectra for lethality, with or without caffeine (a repair inhibitor) and under conditions of photoreactivation. We have also estimated quantum efficiencies for these responses. Our observations suggest that complex changes in response occur at several wavelengths over the UV-C and UV-B regions. (author)

  9. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  10. Bovine immunodeficiency-like virus: inactivation in milk by pasteurisation.

    Science.gov (United States)

    Venables, C; Lysons, R; Horigan, M; Stagg, D; Dawson, M

    1997-03-15

    Bioassay was used to determine whether bovine immunodeficiency-like virus (BIV) in milk was inactivated by pasteurisation. Three groups of three calves were inoculated with virus (BIV isolate FL112), milk seeded with virus and milk seeded with virus that had been pasteurised before inoculation, respectively. Seroconversion to BIV was monitored for 12 months by an indirect immunofluorescence assay. The presence of BIV proviral DNA in peripheral blood was determined by a nested polymerase chain reaction (PCR). The animals were euthanized and virus isolation and PCR were attempted on peripheral blood mononunclear cells, prescapular lymph node and spleen. Transmission of BIV was confirmed in the groups that were inoculated with the virus and with the virus in milk, but no evidence of its transmission was demonstrated in the group that received the pasteurised inoculum.

  11. Inactivation as a new regulatory mechanism for neuronal Kv7 channels

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Grunnet, Morten; Olesen, Søren-Peter

    2007-01-01

    neuronal channels and are important for controlling excitability. Kv7.1 channels have been considered the only Kv7 channels to undergo inactivation upon depolarization. However, here we demonstrate that inactivation is also an intrinsic property of Kv7.4 and Kv7.5 channels, which inactivate to a larger...

  12. UV dependent vitamin D syntheses. UV exposure time balancing for optimum production of the vitamins D3 status in the human body. Final report; UV-abhaengige Vitamin D Synthese. Bilanzierung der Expositionszeit durch UV zur Produktion des optimalen Vitamin D{sub 3}-Bedarfes im menschlichen Koerper. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Knuschke, P.; Lehmann, B.; Pueschel, A.; Roensch, H.

    2012-10-15

    significant increase of 7-DHC after 24 h. Under every day life conditions, global influences on the personal UV dose (solar global radiation, meteorological effects, outdoor temperature) and individual behaviour concerning UV exposure of the skin (among other things the use of topical sunscreens) have distinctly stronger effects on the individual vitamin D status around the year than age, UV skin type, or sex. This is suggested by the data of one of our studies, in which the vitamin D status of the volunteers was measured three times a year over two years. Simultaneously, in a personal UV monitoring the personal UV dose and the above mentioned factors were captured continuously. The results provide a large base for recommendations to the public concerning a careful use of solar UV exposures in summer in order to realize vitamin D serum levels in the optimal range. But, the results also raise a lot of questions. Answers to these questions will be essential for establishing recommendations on UV exposure and the realization of an optimal vitamin D status around the year - without an increasing risk on skin cancer due to long-term effects.

  13. Quantum chromodynamics as the sequential fragmenting with inactivation

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors)

  14. Monitoring the consequences of decreased ozone protection: The NSF ultraviolet radiation monitoring network

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The effects of decreased protection from ultraviolet radiation are as troubling as the continuing depletion of stratospheric ozone. Evidence exists to clearly link ozone depletion to changes in the antarctic marine environment. Results of two 1992 papers are summarized here. Enhanced exposure to mid-range UV radiation was found to be affecting marine ecosystems with a recorded 6-12 percent reduction in primary productivity directly related to the ozone layer depletion. In another experiment, a model was developed indicating that the ozone hole could reduce near-surface photosynthesis by as much as 12-15 percent. The NSF UV monitoring system in place for these and other experiments uses a spectroradiometer, making hourly, high-resolution measurements of the distribution of UV surface irradiance

  15. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  16. The design of a wireless portable device for personalized ultraviolet monitoring

    Science.gov (United States)

    Amini, Navid; Matthews, Jerrid E.; Vahdatpour, Alireza; Sarrafzadeh, Majid

    2009-08-01

    The skin care product market is growing due to the threat of ultraviolet (UV) radiation caused by the destruction of the ozone layer, increasing demand for tanning, and the tendency to wear less clothing. Accordingly, there is a potential demand for a personalized UV monitoring system, which can play a fundamental role in skin cancer prevention by providing measurements of UV radiation intensities and corresponding recommendations. Furthermore, the need for such device becomes more vital since it has turned out that in some places (e.g., on snowy mountains) the UV exposure gets doubled, while individuals are unaware of this fact. This paper highlights the development and initial validation of a wireless and portable embedded system for personalized UV monitoring which is based on a novel software architecture, a high-end UV sensor, and conventional PDA (or a cell phone). In terms of short-term applications, by calculating the UV index, it informs the users about their maximum recommended sun exposure time by taking their skin type and sun protection factor (SPF) of the applied sunscreen into consideration. As for long-term applications, given that the damage caused by UV light is accumulated over days, it is able to keep a record of the amount of UV received over a certain course of time, from a single day to a month. Low energy consumption and high accuracy in estimating the UV index are salient features of this system.

  17. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Wase, Nishikant; Pham, Trong Khoa; Ow, Saw Yen; Wright, Phillip C

    2014-09-23

    A quantitative proteomics and metabolomics analysis was performed using iTRAQ, HPLC and GC-MS in the filamentous cyanobacterium Nostoc punctiforme ATCC 29133 to understand the effect of short and long term UV-A exposure. Changes in the proteome were measured for short-term stress (4-24h) using iTRAQ. Changes in the photosynthetic pigments and intracellular metabolites were observed at exposures of up to 7days (pigments) and up to 11days (intracellular metabolites). To assess iTRAQ measurement quality, pseudo selected reaction monitoring (pSRM) was used, with this confirming underestimation of protein abundance levels by iTRAQ. Our results suggest that short term UV-A radiation lowers the abundance of PS-I and PS-II proteins. We also observed an increase in abundance of intracellular redox homeostasis proteins and plastocyanin. Additionally, we observed statistically significant changes in scytonemin, Chlorophyll A, astaxanthin, zeaxanthin, and β-carotene. Assessment of intracellular metabolites showed significant changes in several, suggesting their potential role in the Nostoc's stress mitigation strategy. Cyanobacteria under UV-A radiation have reduced growth due to intensive damage to essential functions, but the organism shows a defense response by remodeling bioenergetics pathway, induction of the UV protection compound scytonemin and increased levels of proline and tyrosine as a mitigation response. The effect of UV-A radiation on the proteome and intracellular metabolites of N. punctiforme ATCC 29133 including photosynthetic pigments has been described. We also verify the expression of 13 iTRAQ quantified protein using LC-pSRM. Overall we observed that UV-A radiation has a drastic effect on the photosynthetic machinery, photosynthetic pigments and intracellular amino acids. As a mitigation strategy against UV-A radiation, proline, glycine, and tyrosine were accumulated. Copyright © 2014. Published by Elsevier B.V.

  18. Scale down of the inactivated polio vaccine production process

    NARCIS (Netherlands)

    Thomassen, Y.E.; Oever, van 't R.; Vinke, C.M.; Spiekstra, A.; Wijffels, R.H.; Pol, van der L.A.; Bakker, W.A.M.

    2013-01-01

    The anticipated increase in the demand for inactivated polio vaccines resulting from the success in the polio eradication program requires an increase in production capacity and cost price reduction of the current inactivated polio vaccine production processes. Improvement of existing production

  19. Quantum chromodynamics as the sequential fragmenting with inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Botet, R. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1996-12-31

    We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors). 15 refs.

  20. Pathogen reduction by ultraviolet C light effectively inactivates human white blood cells in platelet products.

    Science.gov (United States)

    Pohler, Petra; Müller, Meike; Winkler, Carla; Schaudien, Dirk; Sewald, Katherina; Müller, Thomas H; Seltsam, Axel

    2015-02-01

    Residual white blood cells (WBCs) in cellular blood components induce a variety of adverse immune events, including nonhemolytic febrile transfusion reactions, alloimmunization to HLA antigens, and transfusion-associated graft-versus-host disease (TA-GVHD). Pathogen reduction (PR) methods such as the ultraviolet C (UVC) light-based THERAFLEX UV-Platelets system were developed to reduce the risk of transfusion-transmitted infection. As UVC light targets nucleic acids, it interferes with the replication of both pathogens and WBCs. This preclinical study aimed to evaluate the ability of UVC light to inactivate contaminating WBCs in platelet concentrates (PCs). The in vitro and in vivo function of WBCs from UVC-treated PCs was compared to that of WBCs from gamma-irradiated and untreated PCs by measuring cell viability, proliferation, cytokine secretion, antigen presentation in vitro, and xenogeneic GVHD responses in a humanized mouse model. UVC light was at least as effective as gamma irradiation in preventing GVHD in the mouse model. It was more effective in suppressing T-cell proliferation (>5-log reduction in the limiting dilution assay), cytokine secretion, and antigen presentation than gamma irradiation. The THERAFLEX UV-Platelets (MacoPharma) PR system can substitute gamma irradiation for TA-GVHD prophylaxis in platelet (PLT) transfusion. Moreover, UVC treatment achieves suppression of antigen presentation and inhibition of cytokine accumulation during storage of PCs, which has potential benefits for transfusion recipients. © 2014 AABB.

  1. The assessment of efficacy of porcine reproductive respiratory syndrome virus inactivated vaccine based on the viral quantity and inactivation methods

    Directory of Open Access Journals (Sweden)

    Lee Byeongchun

    2011-06-01

    Full Text Available Abstract Background There have been many efforts to develop efficient vaccines for the control of porcine reproductive and respiratory syndrome virus (PRRSV. Although inactivated PRRSV vaccines are preferred for their safety, they are weak at inducing humoral immune responses and controlling field PRRSV infection, especially when heterologous viruses are involved. Results In all groups, the sample to positive (S/P ratio of IDEXX ELISA and the virus neutralization (VN titer remained negative until challenge. While viremia did not reduce in the vaccinated groups, the IDEXX-ELISA-specific immunoglobulin G increased more rapidly and to significantly greater levels 7 days after the challenge in all the vaccinated groups compared to the non-vaccinated groups (p 6 PFU/mL PRRSV vaccine-inoculated and binary ethylenimine (BEI-inactivated groups 22 days after challenge (p Conclusions The inactivated vaccine failed to show the humoral immunity, but it showed different immune response after the challenge compared to mock group. Although the 106 PFU/mL-vaccinated and BEI-inactivated groups showed significantly greater VN titers 22 days after challenge, all the groups were already negative for viremia.

  2. Mechanism of Cd2+-coordination during Slow Inactivation in Potassium Channels

    Science.gov (United States)

    Raghuraman, H.; Cordero-Morales, Julio F.; Jogini, Vishwanath; Pan, Albert C.; Kollewe, Astrid; Roux, Benoît; Perozo, Eduardo

    2013-01-01

    Summary In K+ channels, rearrangements of the pore outer-vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggest these movements to be modest in magnitude. Here, we show that under physiological conditions, the KcsA outer-vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an outer-vestibule cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+-bound Y82C-KcsA in the closed state, together with EPR distance measurements in the KcsA outer-vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation. PMID:22771214

  3. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    International Nuclear Information System (INIS)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi; Somerville, Robert A.; Kitamoto, Tetsuyuki; Mohri, Shirou

    2013-01-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products

  4. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Somerville, Robert A. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, Roslin, Midlothian, EH25 9PS (United Kingdom); Kitamoto, Tetsuyuki [Division of CJD Science and Technology, Department of Prion Research, Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 (Japan); Mohri, Shirou, E-mail: shirou@affrc.go.jp [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.

  5. THE ANTIGENIC POTENCY OF EPIDEMIC INFLUENZA VIRUS FOLLOWING INACTIVATION BY ULTRAVIOLET RADIATION

    Science.gov (United States)

    Salk, Jonas E.; Lavin, G. I.; Francis, Thomas

    1940-01-01

    A study of the antigenic potency of influenza virus inactivated by ultraviolet radiation has been made. Virus so inactivated is still capable of functioning as an immunizing agent when given to mice by the intraperitoneal route. In high concentrations inactivated virus appears to be nearly as effective as active virus but when quantitative comparisons of the immunity induced by different dilutions are made, it is seen that a hundredfold loss in immunizing capacity occurs during inactivation. Virus in suspensions prepared from the lungs of infected mice is inactivated more rapidly than virus in tissue culture medium. A standard for the comparison of vaccines of epidemic influenza virus is proposed. PMID:19871057

  6. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water

    DEFF Research Database (Denmark)

    Souissi, Yasmine; Bouchonnet, Stéphane; Bourcier, Sophie

    2013-01-01

    The widespread occurrence of chlorinated herbicides and their degradation products in the aquatic environment raises health and environmental concerns. As a consequence pesticides, and to a lesser degree their degradation products, are monitored by authorities both in surface waters and drinking...... waters. In this study the formation of degradation products from ultraviolet (UV) treatment of the three chloroacetamide herbicides acetochlor, alachlor and metolachlor and their biological effects were investigated. UV treatment is mainly used for disinfection in water and wastewater treatments. First...

  7. Comets in UV

    Science.gov (United States)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  8. Validation of OMI UV measurements against ground-based measurements at a station in Kampala, Uganda

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Stamnes, Jakob; Hamre, Børge; Frette, Øyvind; Ssenyonga, Taddeo; Chen, Yi-Chun

    2015-04-01

    We present solar ultraviolet (UV) irradiance data measured with a NILU-UV instrument at a ground site in Kampala (0.31°N, 32.58°E), Uganda for the period 2005-2014. The data were analyzed and compared with UV irradiances inferred from the Ozone Monitoring Instrument (OMI) for the same period. Kampala is located on the shores of lake Victoria, Africa's largest fresh water lake, which may influence the climate and weather conditions of the region. Also, there is an excessive use of worn cars, which may contribute to a high anthropogenic loading of absorbing aerosols. The OMI surface UV algorithm does not account for absorbing aerosols, which may lead to systematic overestimation of surface UV irradiances inferred from OMI satellite data. We retrieved UV index values from OMI UV irradiances and validated them against the ground-based UV index values obtained from NILU-UV measurements. The UV index values were found to follow a seasonal pattern similar to that of the clouds and the rainfall. OMI inferred UV index values were overestimated with a mean bias of about 28% under all-sky conditions, but the mean bias was reduced to about 8% under clear-sky conditions when only days with radiation modification factor (RMF) greater than 65% were considered. However, when days with RMF greater than 70, 75, and 80% were considered, OMI inferred UV index values were found to agree with the ground-based UV index values to within 5, 3, and 1%, respectively. In the validation we identified clouds/aerosols, which were present in 88% of the measurements, as the main cause of OMI inferred overestimation of the UV index.

  9. Probing behaviors of Sitobion avenae (Hemiptera: Aphididae on enhanced UV-B irradiated plants

    Directory of Open Access Journals (Sweden)

    Hu Zu-Qing

    2013-01-01

    Full Text Available UV-B induced changes in plants can influence sap-feeding insects through mechanisms that have not been studied. Herein the grain aphid, Sitobion avenae (Fabricius (Hemiptera: Aphididae, was monitored on barley plants under the treatments of control [0 kJ/ (m2.d], ambient UV-B [60 kJ/ (m2.d], and enhanced UV-B [120 kJ/ (m2.d] irradiation. Electrical penetration graph (EPG techniques were used to record aphid probing behaviors. Enhanced UV-B irradiated plants negatively affected probing behaviors of S. avenae compared with control plants. In particular, phloem factors that could diminish sieve element acceptance appeared to be involved, as reflected by smaller number of phloem phase, shorter phloem ingestion, and fewer aphids reaching the sustained phloem ingestion phase (E2>10min. On the other hand, factors from leaf surface, epidermis, and mesophyll cannot be excluded, as reflected by higher number of non-probing, longer non-probing and pathway phase, and later the time to first probe.

  10. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.

    Science.gov (United States)

    Wassmann, Marko; Moeller, Ralf; Rabbow, Elke; Panitz, Corinna; Horneck, Gerda; Reitz, Günther; Douki, Thierry; Cadet, Jean; Stan-Lotter, Helga; Cockell, Charles S; Rettberg, Petra

    2012-05-01

    In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.

  11. Biological monitoring of radiation exposure

    Science.gov (United States)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  12. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    Science.gov (United States)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  13. Thermal inactivation kinetics of β-galactosidase during bread baking

    NARCIS (Netherlands)

    Zhang, L.; Chen, Xiao Dong; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during

  14. Ebola Virus Inactivation by Detergents Is Annulled in Serum

    NARCIS (Netherlands)

    van Kampen, Jeroen J. A.; Tintu, Andrei; Russcher, Henk; Fraaij, Pieter L. A.; Reusken, Chantal B. E. M.; Rijken, Mikel; van Hellemond, Jaap J.; van Genderen, Perry J. J.; Koelewijn, Rob; de Jong, Menno D.; Haddock, Elaine; Fischer, Robert J.; Munster, Vincent J.; Koopmans, Marion P. G.

    2017-01-01

    Treatment of blood samples from hemorrhagic fever virus (HFV)-infected patients with 0.1% detergents has been recommended for virus inactivation and subsequent safe laboratory testing. However, data on virus inactivation by this procedure are lacking. Here we show the effect of this procedure on

  15. Solar UV Variations During the Decline of Cycle 23

    Science.gov (United States)

    DeLand, Matthew, T.; Cebula, Richard P.

    2011-01-01

    Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements

  16. Retrieval of Surface Ozone from UV-MFRSR Irradiances using Deep Learning

    Science.gov (United States)

    Chen, M.; Sun, Z.; Davis, J.; Zempila, M.; Liu, C.; Gao, W.

    2017-12-01

    High concentration of surface ozone is harmful to humans and plants. USDA UV-B Monitoring and Research Program (UVMRP) uses Ultraviolet (UV) version of Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) to measure direct, diffuse, and total irradiances every three minutes at seven UV channels (i.e. 300, 305, 311, 317, 325, 332, and 368 nm channels with 2 nm full width at half maximum). Based on the wavelength dependency of aerosol optical depths, there have been plenty of literatures exploring retrieval methods of total column ozone from UV-MFRSR measurements. However, few has explored the retrieval of surface ozone. The total column ozone is the integral of the multiplication of ozone concentration (varying by height and time) and cross section (varying by wavelength and temperature) over height. Because of the distinctive values of ozone cross section in the UV region, the irradiances at seven UV channels have the potential to resolve the ozone concentration at multiple vertical layers. If the UV irradiances at multiple time points are considered together, the uncertainty or the vertical resolution of ozone concentrations can be further improved. In this study, the surface ozone amounts at the UVMRP station located at Billings, Oklahoma are estimated from the adjacent (i.e. within 200 miles) US Environmental Protection Agency (EPA) surface ozone observations using the spatial analysis technique. Then, the (direct normal) irradiances of UVMRP at one or more time points as inputs and the corresponding estimated surface ozone from EPA as outputs are fed into a pre-trained (dense) deep neural network (DNN) to explore the hidden non-linear relationship between them. This process could improve our understanding of their physical/mathematical relationship. Finally, the optimized DNN is tested with the preserved 5% of the dataset, which are not used during training, to verify the relationship.

  17. Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken Worsøe; Karlberg, Helen; Bragstad, Karoline

    2016-01-01

    Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport, and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available Magna Pure lysis/binding buffer used...... for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding Magna Pure lysis/binding buffer directly into vacuum blood collection EDTA tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum...... tubes are stable for more than 4 months, and Ebola virus RNA is preserved in the Magna Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from Magna Pure lysis/binding buffer-inactivated samples using...

  18. Dichotomy in response to indomethacin in uv-C and uv-B induced ultraviolet light inflammation

    International Nuclear Information System (INIS)

    Eaglstein, W.H.; Marsico, A.R.

    1975-01-01

    In subjects irradiated with both UV-C and UV-B ultraviolet light (UVL), 10 μg of intradermal indomethacin decreased the redness in all 13 of the UV-B irradiated areas but in only 2 of 13 of the UV-C irradiated areas. Higher doses of intradermal indomethacin (50 μg and 100 μg) decreased the redness produced by UV-C irradiation in 6 subjects. It is suggested that the failure of 10 μg of indomethacin to decrease the redness of the UV-C induced inflammation, while decreasing the redness in the UV-B induced inflammation, is consistent with the possibility that prostaglandins participate in UV-B but not UV-C induced inflammation

  19. Two-components UV-therapy

    International Nuclear Information System (INIS)

    Pullmann, H.; Steigleder, G.K.

    1980-01-01

    20 patients with generalized psoriasis were treated with an apparatus containing UV-A- and UV-B-fluorescence tubes to be switched separately. The therapy was started with an UV-A-dose of 12 J/cm 2 daily. After the first week of treatment UV-B in increasing doses was applicated additionally. Clearance was achieved in 80 percent. (orig.) [de

  20. Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband focal plane arrays, operating in UV-to-SWIR wavelength range, are required for atmospheric monitoring of greenhouse gases. Currently, separate image...

  1. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  2. Strategy to inactivate Clostridium perfringens spores in meat products.

    Science.gov (United States)

    Akhtar, Saeed; Paredes-Sabja, Daniel; Torres, J Antonio; Sarker, Mahfuzur R

    2009-05-01

    The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100-200 MPa, 7 min) and elevated temperature (80 degrees C, 10 min); spore germination at high temperatures (55, 60 or 65 degrees C); and inactivation of germinated spores with elevated temperatures (80 and 90 degrees C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 degrees C, 10 min). Low pressures (100-200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 degrees C, 10 min), and germinated at temperatures lethal for vegetative cells (>or= 55 degrees C) when incubated for 60 min with a mixture of L-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (approximately 4 decimal reduction) in meat by elevated temperatures (80-90 degrees C for 20 min) required a long germination period (55 degrees C for 60 min). However, similar inactivation level was reached with shorter germination period (55 degrees C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 degrees C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 degrees C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 degrees C in about 20 min and further incubation at 55 degrees C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 degrees C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C

  3. Detection of Fish Bones in Cod Fillets by UV Illumination.

    Science.gov (United States)

    Wang, Sheng; Nian, Rui; Cao, Limin; Sui, Jianxin; Lin, Hong

    2015-07-01

    The presence of fish bones is now regarded as an important hazard in fishery products, and there is increasing demand for new analytical techniques to control it more effectively. Here, the fluorescent properties of cod bones under UV illumination were investigated, and the maximal wavelengths for excitation and emission were determined to be 320 nm and 515 nm, respectively, demonstrating significantly different fluorescence characteristics and much higher fluorescence intensity compared to those of fillet muscles. Based on the results, UV fluorescence-assisted candling for the detection of bones in fishery products was developed for the first time. Using cod fillets as samples, the detection ratio of this technique was calculated as 90.86%, significantly higher than that of traditional candling under daylight (76.78%). Moreover, the working efficiency of the new technique was about 26% higher than that of the traditional method. A UV fluorescence imaging framework was also developed, and a method for automatic identification of the fish bones in the cod fillets based on the linear discriminant analysis proposed by Fisher was preliminarily realized, but the detection ratio was demonstrated to be relatively poor compared to those of candling techniques. These results allow us to suggest UV-based methods as new and promising approaches for routine monitoring of bones in fishery products.

  4. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  5. The inactivation of papain by high LET radiations

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.

    1984-01-01

    The effect of varying LET over a wide range (0.2-1570 eV/nm) on the radiation-induced inactivation of the enzyme papain in dilute aqueous solution has been investigated. Measurements of total, reparable and non-reparable inactivation G values in oxygen, nitrous oxide and argon saturated solutions have allowed the contributions to inactivation from radicals and hydrogen peroxide to be evaluated. At high LET the results demonstrate an increasing component due to reaction of the superoxide radical, formed from oxygen produced in the track as a primary radiolysis product. This effect was not observed in our previous study with ribonuclease due to the insensitivity of ribonuclease to inactivation by superoxide and hydrogen peroxide. The results obtained with papain clearly demonstrate a maximum in G(H 2 O 2 ) at an LET of equivalent to 140 eV/nm. Generation of O 2 within the track as a primary radiolysis product at high LET now appears to be confirmed as an important mechanism leading to reduction in the oxygen enhancement ratio for cellular systems exposed to high LET radiations (Baverstock and Burns 1981). (author)

  6. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    Science.gov (United States)

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  7. UV exposure in cars.

    Science.gov (United States)

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  8. Design and mechanism of tetrahydrothiophene-based γ-aminobutyric acid aminotransferase inactivators.

    Science.gov (United States)

    Le, Hoang V; Hawker, Dustin D; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-04-08

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O═C interaction with Glu-270, thereby inactivating the enzyme.

  9. Design and Mechanism of Tetrahydrothiophene-Based γ-Aminobutyric Acid Aminotransferase Inactivators

    Energy Technology Data Exchange (ETDEWEB)

    Le, Hoang V. [Departments; Hawker, Dustin D. [Departments; Wu, Rui [Department; Doud, Emma [Departments; Widom, Julia [Departments; Sanishvili, Ruslan [X-ray; Liu, Dali [Department; Kelleher, Neil L. [Departments; Silverman, Richard B. [Departments

    2015-03-25

    Low levels of gamma-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinsons disease, Alzheimers disease, Huntingtons disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the bloodbrain barrier and inhibit the activity of gamma-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a pi-pi interaction with Phe-189, and a weak nonbonded (SO)-O-...=C interaction with Glu-270, thereby inactivating the enzyme.

  10. Antibodies to UV irradiated DNA: the monitoring of DNA damage by ELISA and indirect immunofluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wani, A A; Gibson-D' Ambrosio, R E; D' Ambrosio, S M [Ohio State Univ., Columbus (USA). Dept. of Radiology

    1984-10-01

    The enzyme-linked immunosorbant assay (ELISA) was modified to (1) characterize antibodies raised in rabbits against UV-irradiated single-stranded DNA (UVssDNA) complexed with methylated BSA and (2) directly detect pyrimidine dimers in irradiated DNA. The antisera specifically bound to UVssDNA, UVpoly(dT) and to a limited extent to UVdsDNA and UVpoly(dC). Fifty per cent of the maximum antibody binding was observed at a 1-5000 dilution against UVssDNA. Binding to ssDNA and poly(dT) was observed only at much higher concentrations of antibody, whereas no binding to double stranded DNA (dsDNA) was observed. The extent of binding of the antibody was dependent on the UV dose to DNA and the concentration of antigen immobilized on the plate. The ability of various irradiated molecules, DNA, homopolymers and linkers to act as inhibitors of antibody binding establishes that the antigenic determinants are mainly thymine homodimers with lower affinity for cytosine dimers. Potential usefulness of the antibodies to directly quantitate pyrimidine dimers in cells exposed to UV radiation was determined by indirect immunofluorescence. Flow cytometric analysis of immunostained human lymphocytes irradiated with 254 nm radiation indicated that greater than 50% of the population had significantly higher fluorescent intensity than unirradiated cells.

  11. Calibration of UV instruments and limitations on accuracy

    International Nuclear Information System (INIS)

    Clare, J.F.; Hamlin, J.D.

    1993-01-01

    Instruments measuring UV radiation may be classified as either spectrometers or broadband monitors; whilst the former determine irradiance as a function of wavelength the latter measure a summation of spectral irradiance weighted by some instrument response function which may be designed to approximate a desired action spectrum. For both classes a proper calibration requires the determination of the instrument's absolute spectral responsivity across the relevant wave-band together with an adequate determination of the wavelengths involved. (author). 7 refs

  12. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  13. Gamma-irradiation to inactivate thioglucosidase of crucifers

    International Nuclear Information System (INIS)

    Lessman, K.J.; McCaslin, B.D.

    1987-01-01

    The crucifers contain glucosinolates which through enzymatic hydrolysis give rise to toxicants that limit the use of oil-free meal obtainable from this plant family. Seeds from three crucifers were used to test gamma irradiation to inactivate enzyme systems as a step toward detoxification. Seeds of Crambe abyssinica Hochst (crambe), ground seeds of Sinapis alba L. (mustard), and seeds of Brassica napus L. (rape) were subjected to gamma-irradiation (6.25, 12.5, 25.0 and 50.4 Mrad) to inactivate thioglucosidase and/or destroy glucosinolates. Samples of ground seeds, their oil-free meals, previously irradiated ground seeds and their oil-free meals were assayed for glucose, a product of enzymatic hydrolysis of glucosinolates present in the crucifer seeds. The 50.4 Mrad exposure inactivated thioglucosidase but did not destroy glucosinolates. The fatty acid contents of extracted oils were affected. The amino acid profile of defatted crambe protein meal was affected, while that of white mustard was not

  14. Luteolin as reactive oxygen generator by X-ray and UV irradiation

    Science.gov (United States)

    Toyama, Michiru; Mori, Takashi; Takahashi, Junko; Iwahashi, Hitoshi

    2018-05-01

    Non-toxic X-ray-responsive substances can be used in the radiosensitization of cancer, like porphyrin mediated radiotherapy. However, most X-ray-responsive substances are toxic. To find novel non-toxic X-ray-responsive substances, we studied the X-ray and UV reactivity of 40 non-toxic compounds extracted from plants. Dihydroethidium was used as an indicator to detect reactive oxygen species (ROS) generated by the compounds under X-ray or UV irradiation. We found that 13 of the investigated compounds generated ROS under X-ray irradiation and 17 generated ROS under UV irradiation. Only 4 substances generated ROS under both X-ray and UV. In particular, luteolin exhibited the highest activity among the investigated compounds; therefore, the ROS generated by luteolin were thoroughly characterized. To identify the ROS, we employed a combination of ROS detection reagents and their quenchers. O2·- generation by luteolin was monitored using dihydroethidium and superoxide dismutase (as an O2·- quencher). OH· and 1O2 generation was determined using aminophenyl fluorescein with ethanol (OH· quencher) and Singlet Oxygen Sensor Green® with NaN3 (1O2 quencher), respectively. Generation of O2·- under X-ray and UV irradiation was observed; however, no OH· or 1O2 was detected. The production of ROS from luteolin is surprising, because luteolin is a well-known antioxidant.

  15. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  16. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna.

    Science.gov (United States)

    Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali

    2017-12-01

    Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by

  17. /UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber

    Directory of Open Access Journals (Sweden)

    Yanzhi Wang

    2013-01-01

    Full Text Available The pure polyester polyurethane (TPU film and the modified TPU (M-TPU film containing 2.0 wt.% inorganic UV absorbers mixture (nano-ZnO/CeO2 with weight ratio of 3 : 2 and 0.5 wt.% organic UV absorbers mixture (UV-531/UV-327 with weight ratio of 1 : 1 were prepared by spin-coating technique. The accelerated aging tests of the films exposed to constant UV radiation of 400 ± 20 µW/cm2 (313 nm with an ozone atmosphere of 100 ± 2 ppm were carried out by using a self-designed aging equipment at ambient temperature and relative humidity of 20%. The aging resistance properties of the films were evaluated by UV-Vis spectra, Fourier transform infrared spectra (FT-IR, photooxidation index, and carbonyl index analysis. The results show that the composite UV absorber has better protection for TPU system, which reduces distinctly the degradation of TPU film. O3/UV aging of the films increases with incremental exposure time. PI and CI of TPU and M-TPU films increase with increasing exposure time, respectively. PI and CI of M-TPU films are much lower than that of TPU film after the same time of exposure, respectively. Distinct synergistic aging effect exists between ozone aging and UV aging when PI and CI are used as evaluation index, respectively. Of course, the formula of these additives needs further improvement for industrial application.

  18. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    Jha, Pankaj Kumar; Kudachikar, V.B.; Kumar, Sourav

    2013-01-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  19. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  20. [Application of HPLC-UV method for aripiprazole determination in serum].

    Science.gov (United States)

    Synowiec, Anna; Gomółka, Ewa; Zyss, Tomasz; Zieba, Andrzej; Florek, Ewa; Piekoszewski, Wojciech

    2012-01-01

    Aripiprazole is a new drug applied in schizophrenia treatment. There are not strict indications for aripiprazole therapeutic drug monitoring. Despite, serum aripiprazole measuring would help control the drug doses effectiveness. The drug monitoring can eliminate overdosing, adverse effects and let control proper drug ingestion. The aim of the paper was to develop a simple method for aripiprazole determination in serum for therapeutic drug monitoring. High performance liquid chromatography with spectrophotometric detection (HPLC-UV) was used. Resolution was performed on LC-8 column; moving phase was solution 0,025M trimethylammonium buffer: acetonitrile (62:38). Isocratic flow was 1,2 ml/min; internal standard (IS) was promazine; monitored wavelength was lambda=214 nm. The validation parameters were: limits of linearity (LOL) 100-800 ng/ml, limit of detection (LOD) 10 ng/ml, limit of quantity (LOQ) 100 ng/ml. Coefficient of variation (CV) describing accuracy and precision didn't cross 10%. The method was useful for therapeutic drug monitoring in serum of patients treated with aripiprazole.